

profiletools: Classes for working with profile data of arbitrary dimension

Source home: https://github.com/markchil/profiletools

Overview

profiletools is a Python package that provides a convenient, powerful
and extensible way of working with multivariate data, particularly profile data
from magnetic plasma confinement devices. profiletools features deep
integration with gptools to support Gaussian process regression (GPR).

Notes

profiletools has been developed and tested on Python 2.7 and scipy
0.14.0. It may work just as well on other versions, but has not been tested.

profiletools uses the module gptools for GPR. You can find
the source at https://github.com/markchil/gptools/ and the documentation at
http://gptools.readthedocs.org/

profiletools uses the module eqtools for tokamak coordinate
transformations. You can find the source at https://github.com/PSFCPlasmaTools/eqtools/
and the documentation at http://eqtools.readthedocs.org/

If you find this software useful, please be sure to cite it:

M.A. Chilenski (2014). profiletools: Classes for working with profile data of
arbitrary dimension, GNU General Public License. github.com/markchil/profiletools

Once I put together a formal publication on this software and its applications,
this readme will be updated with the relevant citation.

Contents

	The profiletools data model
	The Profile class

	Channels

	Linearly transformed quantities

	Averaging data

	gptools integration

	Plasma profile data
	Data model

	Tokamak coordinate systems

	Constraints for Gaussian process regression

	Accessing Alcator C-Mod data
	Example
	Loading the data

	Selecting a time window or specific time points

	Time averaging or using all points

	Plotting the data and smoothing it with a Gaussian process

	Gradients and linear transformations

	Complete example

	Signals supported
	Electron density

	Electron temperature

	X-ray emissivity

	Additional patterns and examples
	Weighted versus unweighted averaging

	Multiple time slices

	profiletools package
	Submodules

	profiletools.CMod module

	profiletools.core module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

The profiletools data model

The Profile class

The core class of profiletools is the Profile.
This class is designed primarily to hold point measurements of some quantity,
which may depend on an arbitrary number of variables and can be sampled at
arbitrary locations – there is no implicit assumption that observations lie on
an orderly grid. Internally, a Profile instance
stores the independent variables in attribute X. X is an array with shape
(M, X_dim), where M is the number of observations and X_dim is the
number of independent variables. The observations themselves are stored in the
attribute y, which is an array of shape (M,). This is essentially how a
sparse matrix is stored and is how profiletools can be so flexible
about how many independent variables there are and where they are sampled. There
can be uncertainties on both the independent variables (stored in the attribute
err_X) and on the dependent variable (stored in the attribute err_y).

Channels

profiletools understands that particular data should be treated as a
unit during averaging and so forth. Such a unit could correspond to all of the
points taken at a given time, or all of the points taken by a given instrument.
The attribute channels is an array with shape (M, X_dim). By default this
array is just a copy of X such that measurements at the exact same locations
are grouped together. But, suppose you have sensors at different locations
taking time-resolved measurements. Hence, X_dim is two: the first column of
X is the time and the second is the spatial coordinate of the sensor. But say
each sensor has a coordinate that varies slightly in time: just using the
default choice for channels will cause each individual measurement from each
sensor to be treated as an independent channel, and time averaging will not have
the desired effect. Instead, the second column of channels can be set such
that all measurements from a given sensor have the same value and are hence
treated together when averaging data.

Linearly transformed quantities

Profile objects can also incorporate quantities
which are linear transformations of the underlying point measurements stored in
X and y. Each channel of a transformed sensor is stored in a
Channel object. This object stores the data
values in attribute y which has shape (M,) along with the associated
uncertainty err_y. Each measurement [image: y] is taken to be a linear
transformation [image: y=Tf(X)] where [image: X] is a collection of N points and
[image: f(X)] refers to the latent variables (i.e., what is stored as y in the
Profile itself). The transformation matrices associated with each of
the observations in y are stored in the attribute T which is an array with
shape (M, N). The locations used are stored in the attribute X which has
shape (M, N, X_dim), with the associated uncertainties stored in err_X.
The Channel instances associated with a given
Profile instance are stored in the attribute
transformed.

Averaging data

Many different techniques for averaging the data and computing the associated
uncertainties are supported, refer to average_points()
for more details. By carrying out all averaging within a given channel using
this function, it is straightforward to add additional capabilities as needed.

gptools integration

profiletools features very tight integration with the gptools
package (https://github.com/markchil/gptools/, http://gptools.readthedocs.org/)
to perform Gaussian process fits. Creating a Gaussian process (GP) for data of
arbitrary X_dim is as simple as calling the
create_gp() method of the
Profile instance. The GP can then be trained by
calling find_gp_MAP_estimate(). Once this is
complete, the smoothed curve can be obtained using
smooth(). If additional adjustments to the
GaussianProcess instance are needed, it is
kept in the gp attribute of the Profile
instance.

Plasma profile data

profiletools is primarily designed for working with profile data from
magnetic confinement fusion devices, namely the Alcator C-Mod tokamak at MIT.
The BivariatePlasmaProfile class is an extension
of Profile designed for this particular use case.

Data model

Plasma profile data are functions of space (1, 2 or 3 coordinates) and time
(hence the term “bivariate” even when X_dim is greater than 2).
Time is always the first column in X, with the remaining spatial coordinates
forming the other columns.

Tokamak coordinate systems

BivariatePlasmaProfile uses eqtools
(https://github.com/PSFCPlasmaTools/eqtools/, http://eqtools.readthedocs.org/)
to support the myriad coordinate systems used in tokamak research. Coordinate
transforms are handled using the
convert_abscissa() method.

Constraints for Gaussian process regression

BivariatePlasmaProfile provides two methods for
adding constraints to the Gaussian process created with
create_gp():
constrain_slope_on_axis()
applies a zero slope constraint at the magnetic axis and
constrain_at_limiter()
applies approximate zero slope and value constraints at the location of the
limiter. Note, however, that both of these constraints are applied automatically
when calling create_gp(). You
can disable them using the constrain_slope_one_axis and constrain_at_limiter
keywords to create_gp(), and
you can influence their behavior with the axis_constraint_kwargs and
limiter_constraint_kwargs keywords.

Accessing Alcator C-Mod data

profiletools provides a collection of functions to access Alcator
C-Mod data. This prevents the user from having to remember the diverse set of
MDSplus calls needed to load the data from the tree and delivers the
data in the standard BivariatePlasmaProfile class.
Notice that each of these are implemented as a function and not a class – that
way all of the instances for a given quantity are the same class.

Example

Loading the data

To load the electron density profile from shot 1101014006, simply call the
ne() function:

p = ne(1101014006, include=['CTS', 'ETS'])

The optional keyword include specifies which signal are included – in this
case core and edge Thomson scattering. If you want the data expressed in a
specific coordinate system, use the abscissa keyword:

p = ne(1101014006, abscissa='r/a')

Or, call convert_abscissa():

p = ne(1101014006)
p.convert_abscissa('r/a')

Selecting a time window or specific time points

To request data only from a certain time window, use the t_min and t_max
keywords. For instance, to get the data from 1.0s to 1.5s, you would type:

p = ne(1101014006, t_min=1.0, t_max=1.5)

If you want to remove points after having created the
BivariatePlasmaProfile, then you can use the
remove_points() method:

p.remove_points((p.X[:, 0] < t_min) | (p.X[:, 0] > t_max))

If you want to only keep points at specific times (such as points at a specific
sawtooth phase), you can use the
keep_times() method. For each
time point designated, this will find the point in the profile which is closest.
If there are many missing datapoints, blindly applying this technique can result
in data far from the desired point being included. Hence, the tol keyword will
cause keep_times() to only
keep points that are within tol of the target. So, to keep the points within
1ms of 1.0s, 1.1s and 1.3s, you would type:

p.keep_times([1.0, 1.1, 1.3], tol=1e-3)

Time averaging or using all points

Once the data are loaded and confined to the desired window, you can
time-average them. Thomson scattering data have computed uncertainties in the
tree, so you can (and should) use a weighted average:

p.time_average(weighted=True)

There are a wide variety of options for how the data are averaging depending on
the specific application – see average_points() for
more details.

If instead you want to keep all of the points within the designated time window,
you can simply drop that axis from X. Recall that time is always the first
column, so you would call:

p.drop_axis(0)

Plotting the data and smoothing it with a Gaussian process

You can plot the data simply by calling
plot_data().

Once you have picked the slices you want and/or time-averaged the data, you can
fit a Gaussian process with the following steps:

p.create_gp()
p.find_gp_MAP_estimate()
p.plot_gp(ax='gca')

This will plot the smoothed profile on a somewhat sensible grid on the axis
created in the previous call to plot_data().
plot_data() is a convenience method to get a
quick look at the smoothed profile. To evaluate the profile on a specific grid,
use the smooth() method:

roa = scipy.linspace(0, 1.2, 100)
mean, stddev = p.smooth(roa)

You can also have smooth() plot the fit at
the same time using the plot keyword:

ax, mean, stddev = p.smooth(roa, plot=True)

Gradients and linear transformations

You can compute gradients simply by passing the n keyword:

mean_gradient, stddev_gradient = p.smooth(roa, n=1)

You can even compute a mixture of values and gradients at once:

roa2 = scipy.concatenate((roa, roa))
n = scipy.concatenate((scipy.zeros_like(roa), scipy.ones_like(roa)))
mean, stddev = p.smooth(roa2, n=n)

You can even get the covariances by using the return_cov keyword:

mean, cov = p.smooth(roa2, n=n, return_cov=True)

See the documentation for gptools.GaussianProcess.predict() for more
details
(http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.predict).

To compute linearly-transformed quantities (such as line or volume integrals),
pass your transformation matrix into the output_transform keyword:

mean, stddev = p.smooth(roa_vals, output_transform=T)

Here, roa_vals are the M points the density is evaluated at and T is a
transformation matrix with shape (N, M) that transforms the values at those
M points into the N transformed outputs.
compute_volume_average() is a
convenience method that uses this approach to compute the volume average and its
uncertainty.

compute_a_over_L() is a
convenience method to compute the normalized inverse gradient scale length. This
calculation uses the covariance between values and gradients to properly
propagate the uncertainty. Since the error propagation equation breaks down in
the edge where the value goes to zero, you can set full_MC = True to use full
Monte Carlo error propagation.

When computing gradients (either directly with
smooth() or indirectly with
compute_a_over_L()) it is
important to use Markov chain Monte Carlo (MCMC) to integrate over the possible
hyperparameters of the model in order to fully capture the uncertainty in the
fit. This is accomplished by leaving out the call to
find_gp_MAP_estimate() and instead setting
use_MCMC=True when calling smooth() or
compute_a_over_L(). You can
control the properties of the MCMC sampler using the keywords for
gptools.GaussianProcess.compute_from_MCMC()
(http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.compute_from_MCMC)
and gptools.GaussianProcess.sample_hyperparameter_posterior()
(http://gptools.readthedocs.org/en/latest/gptools.html#gptools.gaussian_process.GaussianProcess.sample_hyperparameter_posterior).

Complete example

The complete example to load and plot the electron density data as a function of
r/a from shot 1101014006 averaged over 1.0s to 1.5s is:

p = ne(1101014006, t_min=1.0, t_max=1.5, abscissa='r/a')
p.time_average()
p.plot_data()
p.create_gp()
p.find_gp_MAP_estimate()
roa = scipy.linspace(0, 1.2, 100)
ax, mean, std = p.smooth(roa, plot=True, ax='gca')

Signals supported

Electron density

The following diagnostics are supported:

	neCTS(): Core Thomson scattering.

	neETS(): Edge Thomson scattering.

	neTCI(): Two-color interferometer. This is a line-
integrated diagnostic. Loading the data is rather slow because the quadrature
weights must be computed. Fitting the data is rather slow because of the
computational cost of including all of the quadrature points in the Gaussian
process. There are several parameters that let you adjust the tradeoff between
computational time and accuracy, see the documentation for more details.

	neReflect(): Scape-off layer reflectometer.
Because of how these data are stored and processed you need to be very careful
about how you include them in your fits.

Electron temperature

The following diagnostics are supported:

	TeCTS(): Core Thomson scattering.

	TeETS(): Edge Thomson scattering.

	TeFRCECE(): High spatial resolution ECE system.

	TeGPC(): Grating polychromator ECE system.

	TeGPC2(): Second grating polychromator ECE system.

	TeMic(): Michelson interferometer. High frequency
space resolution but low temporal resolution.

X-ray emissivity

You must be careful when interpreting the uncertainties on these fits since they
are already inverted/smoothed. This is mostly useful for getting a rough look at
the results of combining the two AXUV systems.

emissAX() supports both AXA and AXJ through use of
the required system argument.

Additional patterns and examples

Weighted versus unweighted averaging

Diagnostics like CTS and ETS have computed uncertainties that can be used to
weight the data during averaging to give a better representation of the sample
statistics. But, the other diagnostics do not: an assumed value (typically 10%)
is used when the data are loaded. This should be replaced with the unweighted
sample standard deviation when the data are averaged in order to give an honest
assessment of the variability in the quantity. To combine weighted and
unweighted averaging, you should create the profiles separately:

p = Te(1101014006, include=['CTS', 'ETS'], abscissa='r/a', t_min=1.0, t_max=1.5)
p.time_average(weighted=True)
p_ECE = Te(1101014006, include=['GPC', 'GPC2', 'FRCECE'], abscissa='r/a', t_min=1.0, t_max=1.5)
p_ECE.time_average(weighted=False)
p.add_profile(p_ECE)

This example uses the
add_profile() method to merge
the data from p_ECE into p.

Multiple time slices

There is considerable overhead associated with loading the data from the tree
and performing coordinate conversions. Since time averaging mutates the
BivariatePlasmaProfile instance in place, it is
necessary to keep a copy of the master profile with all of the data. This is
accomplished using copy.deepcopy():

p_master = ne(1101014006, include=['CTS', 'ETS'], abscissa='r/a')
windows = [(1.0, 1.1), (1.1, 1.2)]
for w in windows:
 p = copy.deepcopy(p_master)
 p.remove_points((p.X[:, 0] < w[0]) | (p.X[:, 0] > w[1]))
 p.time_average(weighted=True)
 p.find_gp_MAP_estimate()
 mean, std = p.smooth(roa)

Unless the plasma is changing rapidly you can probably save some time by setting
the optimal hyperparameters from one time slice as the initial guess for the
next time slice and setting random_starts to zero.

profiletools package

Submodules

profiletools.CMod module

Provides classes for working with Alcator C-Mod data via MDSplus.

	
class profiletools.CMod.BivariatePlasmaProfile(X_dim=1, X_units=None, y_units='', X_labels=None, y_label='', weightable=True)

	Bases: profiletools.core.Profile

Class to represent bivariate (y=f(t, psi)) plasma data.

The first column of X is always time. If the abscissa is ‘RZ’, then the
second column is R and the third is Z. Otherwise the second column is
the desired abscissa (psinorm, etc.).

	
remake_efit_tree()

	Remake the EFIT tree.

This is needed since EFIT tree instances aren’t pickleable yet, so to
store a BivariatePlasmaProfile in a pickle file, you must
delete the EFIT tree.

	
convert_abscissa(new_abscissa, drop_nan=True, ddof=1)

	Convert the internal representation of the abscissa to new coordinates.

The target abcissae are what are supported by rho2rho from the
eqtools package. Namely,

	psinorm
	Normalized poloidal flux

	phinorm
	Normalized toroidal flux

	volnorm
	Normalized volume

	Rmid
	Midplane major radius

	r/a
	Normalized minor radius

Additionally, each valid option may be prepended with ‘sqrt’ to return
the square root of the desired normalized unit.

	Parameters:	new_abscissa : str

The new abscissa to convert to. Valid options are defined above.

drop_nan : bool, optional

Set this to True to drop any elements whose value is NaN following
the conversion. Default is True (drop NaN elements).

ddof : int, optional

Degree of freedom correction to use when time-averaging a conversion.

	
time_average(**kwargs)

	Compute the time average of the quantity.

Stores the original bounds of t to self.t_min and self.t_max.

All parameters are passed to average_data().

	
drop_axis(axis)

	Drops a selected axis from X.

	Parameters:	axis : int

The index of the axis to drop.

	
keep_times(times, **kwargs)

	Keeps only the nearest points to vals along the time axis for each channel.

	Parameters:	times : array of float

The values the time should be close to.

**kwargs : optional kwargs

All additional kwargs are passed to keep_slices().

	
add_profile(other)

	Absorbs the data from another profile object.

	Parameters:	other : Profile

Profile to absorb.

	
remove_edge_points(allow_conversion=True)

	Removes points that are outside the LCFS.

Must be called when the abscissa is a normalized coordinate. Assumes
that the last column of self.X is space: so it will do the wrong
thing if you have already taken an average along space.

	Parameters:	allow_conversion : bool, optional

If True and self.abscissa is ‘RZ’, then the profile will be
converted to psinorm and the points will be dropped. Default is True
(allow conversion).

	
constrain_slope_on_axis(err=0, times=None)

	Constrains the slope at the magnetic axis of this Profile’s Gaussian process to be zero.

Note that this is accomplished approximately for bivariate data by
specifying the slope to be zero at the magnetic axis for a number of
points in time.

It is assumed that the Gaussian process has already been created with
a call to create_gp().

It is required that the abscissa be either Rmid or one of the
normalized coordinates.

	Parameters:	err : float, optional

The uncertainty to place on the slope constraint. The default is 0
(slope constraint is exact). This could also potentially be an
array for bivariate data where you wish to have the uncertainty
vary in time.

times : array-like, optional

The times to impose the constraint at. Default is to use the
unique time values in X[:, 0].

	
constrain_at_limiter(err_y=0.01, err_dy=0.1, times=None, n_pts=4, expansion=1.25)

	Constrains the slope and value of this Profile’s Gaussian process to be zero at the GH limiter.

The specific value of X coordinate to impose this constraint at is
determined by finding the point of the GH limiter which has the
smallest mapped coordinate.

If the limiter location is not found in the tree, the system will
instead use R=0.91m, Z=0.0m as the limiter location. This is a bit
outside of where the limiter is, but will act as a conservative
approximation for cases where the exact position is not available.

Note that this is accomplished approximately for bivariate data by
specifying the slope and value to be zero at the limiter for a number
of points in time.

It is assumed that the Gaussian process has already been created with
a call to create_gp().

The abscissa cannot be ‘Z’ or ‘RZ’.

	Parameters:	err_y : float, optional

The uncertainty to place on the value constraint. The default is
0.01. This could also potentially be an array for bivariate data
where you wish to have the uncertainty vary in time.

err_dy : float, optional

The uncertainty to place on the slope constraint. The default is
0.1. This could also potentially be an array for bivariate data
where you wish to have the uncertainty vary in time.

times : array-like, optional

The times to impose the constraint at. Default is to use the
unique time values in X[:, 0].

n_pts : int, optional

The number of points outside of the limiter to use. It helps to use
three or more points outside the plasma to ensure appropriate
behavior. The constraint is applied at n_pts linearly spaced
points between the limiter location (computed as discussed above)
and the limiter location times expansion. If you set this to one
it will only impose the constraint at the limiter. Default is 4.

expansion : float, optional

The factor by which the coordinate of the limiter location is
multiplied to get the outer limit of the n_pts constraint points.
Default is 1.25.

	
remove_quadrature_points_outside_of_limiter()

	Remove any of the quadrature points which lie outside of the limiter.

This is accomplished by setting their weights to zero. When
create_gp() is called, it will call
GaussianProcess.condense_duplicates() which will remove any
points for which all of the weights are zero.

This only affects the transformed quantities in self.transformed.

	
get_limiter_locations()

	Retrieve the location of the GH limiter from the tree.

If the data are not there (they are missing for some old shots), use
R=0.91m, Z=0.0m.

	
create_gp(constrain_slope_on_axis=True, constrain_at_limiter=True, axis_constraint_kwargs={}, limiter_constraint_kwargs={}, **kwargs)

	Create a Gaussian process to handle the data.

Calls create_gp(), then imposes
constraints as requested.

Defaults to using a squared exponential kernel in two dimensions or a
Gibbs kernel with tanh warping in one dimension.

	Parameters:	constrain_slope_on_axis : bool, optional

If True, a zero slope constraint at the magnetic axis will be
imposed after creating the gp. Default is True (constrain slope).

constrain_at_limiter : bool, optional

If True, a zero slope and value constraint at the GH limiter will
be imposed after creating the gp. Default is True (constrain at
axis).

axis_constraint_kwargs : dict, optional

The contents of this dictionary are passed as kwargs to
constrain_slope_on_axis().

limiter_constraint_kwargs : dict, optional

The contents of this dictionary are passed as kwargs to
constrain_at_limiter().

**kwargs : optional kwargs

All remaining kwargs are passed to Profile.create_gp().

	
compute_a_over_L(X, force_update=False, plot=False, gp_kwargs={}, MAP_kwargs={}, plot_kwargs={}, return_prediction=False, special_vals=0, special_X_vals=0, compute_2=False, **predict_kwargs)

	Compute the normalized inverse gradient scale length.

Only works on data that have already been time-averaged at the moment.

	Parameters:	X : array-like

The points to evaluate a/L at.

force_update : bool, optional

If True, a new Gaussian process will be created even if one already
exists. Set this if you have added data or constraints since you
created the Gaussian process. Default is False (use current Gaussian
process if it exists).

plot : bool, optional

If True, a plot of a/L is produced. Default is False (no plot).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
create_gp() if it gets called. Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
find_gp_MAP_estimate() if it gets called. Default is {}.

plot_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to plot when
plotting the mean of a/L. Default is {}.

return_prediction : bool, optional

If True, the full prediction of the value and gradient are returned
in a dictionary. Default is False (just return value and stddev of
a/L).

special_vals : int, optional

The number of special return values incorporated into
output_transform that should be dropped before computing a/L. This
is used so that things like volume averages can be efficiently
computed at the same time as a/L. Default is 0 (no extra values).

special_X_vals : int, optional

The number of special points included in the abscissa that should
not be included in the evaluation of a/L. Default is 0 (no extra
values).

compute_2 : bool, optional

If True, the second derivative and some derived quantities will be
computed and added to the output structure (if return_prediction
is True). You should almost always have r/a for your abscissa when
using this: the expressions for other coordinate systems are not as
well-vetted. Default is False (don’t compute second derivative).

**predict_kwargs : optional parameters

All other parameters are passed to the Gaussian process’
predict() method.

	
compute_volume_average(return_std=True, grid=None, npts=400, force_update=False, gp_kwargs={}, MAP_kwargs={}, **predict_kwargs)

	Compute the volume average of the profile.

Right now only supports data that have already been time-averaged.

	Parameters:	return_std : bool, optional

If True, the standard deviation of the volume average is computed
and returned. Default is True (return mean and stddev of volume average).

grid : array-like, optional

The quadrature points to use when finding the volume average. If
these are not provided, a uniform grid over volnorm will be used.
Default is None (use uniform volnorm grid).

npts : int, optional

The number of uniformly-spaced volnorm points to use if grid is
not specified. Default is 400.

force_update : bool, optional

If True, a new Gaussian process will be created even if one already
exists. Set this if you have added data or constraints since you
created the Gaussian process. Default is False (use current Gaussian
process if it exists).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
create_gp() if it gets called. Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
find_gp_MAP_estimate() if it gets called. Default is {}.

**predict_kwargs : optional parameters

All other parameters are passed to the Gaussian process’
predict() method.

	Returns:	mean : float

The mean of the volume average.

std : float

The standard deviation of the volume average. Only returned if
return_std is True. Note that this is only sufficient as an error
estimate if you separately verify that the integration error is less
than this!

	
compute_peaking(return_std=True, grid=None, npts=400, force_update=False, gp_kwargs={}, MAP_kwargs={}, **predict_kwargs)

	Compute the peaking of the profile.

Right now only supports data that have already been time-averaged.

Uses the definition from Greenwald, et al. (2007):
[image: w(\psi_n=0.2)/\langle w \rangle].

	Parameters:	return_std : bool, optional

If True, the standard deviation of the volume average is computed
and returned. Default is True (return mean and stddev of peaking).

grid : array-like, optional

The quadrature points to use when finding the volume average. If
these are not provided, a uniform grid over volnorm will be used.
Default is None (use uniform volnorm grid).

npts : int, optional

The number of uniformly-spaced volnorm points to use if grid is
not specified. Default is 400.

force_update : bool, optional

If True, a new Gaussian process will be created even if one already
exists. Set this if you have added data or constraints since you
created the Gaussian process. Default is False (use current Gaussian
process if it exists).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
create_gp() if it gets called. Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
find_gp_MAP_estimate() if it gets called. Default is {}.

**predict_kwargs : optional parameters

All other parameters are passed to the Gaussian process’
predict() method.

	
profiletools.CMod.neCTS(shot, abscissa='RZ', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False, remove_zeros=True, Z_shift=0.0)

	Returns a profile representing electron density from the core Thomson scattering system.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

remove_zeros: bool, optional

If True, will remove points that are identically zero. Default is True
(remove zero points). This was added because clearly bad points aren’t
always flagged with a sentinel value of errorbar.

Z_shift: float, optional

The shift to apply to the vertical coordinate, sometimes needed to
correct EFIT mapping. Default is 0.0.

	
profiletools.CMod.neETS(shot, abscissa='RZ', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False, remove_zeros=True, Z_shift=0.0)

	Returns a profile representing electron density from the edge Thomson scattering system.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

remove_zeros: bool, optional

If True, will remove points that are identically zero. Default is True
(remove zero points). This was added because clearly bad points aren’t
always flagged with a sentinel value of errorbar.

Z_shift: float, optional

The shift to apply to the vertical coordinate, sometimes needed to
correct EFIT mapping. Default is 0.0.

	
profiletools.CMod.neTCI(shot, abscissa='r/a', t_min=None, t_max=None, electrons=None, efit_tree=None, quad_points=20, Z_point=-3.0, theta=0.7853981633974483, thin=1, flag_threshold=0.001, ds=0.001)

	Returns a profile representing electron density from the two color interferometer system.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘r/a’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree instance open to the electrons tree of the
correct shot. The shot of the given tree is not checked! Default is None
(open tree).

efit_tree : :py:class`eqtools.CModEFITTree`, optional

An eqtools.CModEFITTree instance open to the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

quad_points : int or array of float, optional

The quadrature points to use. If an int, then quad_points linearly-
spaced points between 0 and 1.2 will be used. Otherwise, quad_points
must be a strictly monotonically increasing array of the quadrature
points to use.

Z_point : float

Z coordinate of the starting point of the rays (should be well outside
the tokamak). Units are meters.

theta : float

Angle of the chords. Units are radians.

thin : int

Amount by which the data are thinned before computing weights and
averages. Default is 1 (no thinning).

flag_threshold : float, optional

The threshold below which points are considered bad. Default is 1e-3.

ds : float, optional

The step size TRIPPy uses to form the beam. Default is 1e-3

	
profiletools.CMod.neTCI_old(shot, abscissa='RZ', t_min=None, t_max=None, electrons=None, efit_tree=None, npts=100, flag_threshold=0.001)

	Returns a profile representing electron density from the two color interferometer system.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

npts : int, optional

The number of points to use for the line integral. Default is 20.

flag_threshold : float, optional

The threshold below which points are considered bad. Default is 1e-3.

	
profiletools.CMod.neReflect(shot, abscissa='Rmid', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False, rf=None)

	Returns a profile representing electron density from the LH/SOL reflectometer system.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

rf : MDSplus.Tree, optional

An MDSplus.Tree object open to the RF tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

	
profiletools.CMod.ne(shot, include=['CTS', 'ETS'], TCI_quad_points=None, TCI_flag_threshold=None, TCI_thin=None, TCI_ds=None, **kwargs)

	Returns a profile representing electron density from both the core and edge Thomson scattering systems.

	Parameters:	shot : int

The shot number to load.

include : list of str, optional

The data sources to include. Valid options are:

	CTS
	Core Thomson scattering

	ETS
	Edge Thomson scattering

	TCI
	Two color interferometer

	reflect
	SOL reflectometer

The default is to include all TS data sources, but not TCI or the
reflectometer.

**kwargs

All remaining parameters are passed to the individual loading methods.

	
profiletools.CMod.neTS(shot, **kwargs)

	Returns a profile representing electron density from both the core and edge Thomson scattering systems.

	
profiletools.CMod.TeCTS(shot, abscissa='RZ', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False, remove_zeros=True, Z_shift=0.0)

	Returns a profile representing electron temperature from the core Thomson scattering system.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

remove_zeros: bool, optional

If True, will remove points that are identically zero. Default is True
(remove zero points). This was added because clearly bad points aren’t
always flagged with a sentinel value of errorbar.

Z_shift: float, optional

The shift to apply to the vertical coordinate, sometimes needed to
correct EFIT mapping. Default is 0.0.

	
profiletools.CMod.TeETS(shot, abscissa='RZ', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False, remove_zeros=False, Z_shift=0.0)

	Returns a profile representing electron temperature from the edge Thomson scattering system.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘RZ’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

remove_zeros: bool, optional

If True, will remove points that are identically zero. Default is False
(keep zero points). This was added because clearly bad points aren’t
always flagged with a sentinel value of errorbar.

Z_shift: float, optional

The shift to apply to the vertical coordinate, sometimes needed to
correct EFIT mapping. Default is 0.0.

	
profiletools.CMod.TeFRCECE(shot, rate='s', cutoff=0.15, abscissa='Rmid', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False)

	Returns a profile representing electron temperature from the FRCECE system.

	Parameters:	shot : int

The shot number to load.

rate : {‘s’, ‘f’}, optional

Which timebase to use – the fast or slow data. Default is ‘s’ (slow).

cutoff : float, optional

The cutoff value for eliminating cut-off points. All points with values
less than this will be discarded. Default is 0.15.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

	
profiletools.CMod.TeGPC2(shot, abscissa='Rmid', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False)

	Returns a profile representing electron temperature from the GPC2 system.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

	
profiletools.CMod.TeGPC(shot, cutoff=0.15, abscissa='Rmid', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False)

	Returns a profile representing electron temperature from the GPC system.

	Parameters:	shot : int

The shot number to load.

cutoff : float, optional

The cutoff value for eliminating cut-off points. All points with values
less than this will be discarded. Default is 0.15.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

	
profiletools.CMod.TeMic(shot, cutoff=0.15, abscissa='Rmid', t_min=None, t_max=None, electrons=None, efit_tree=None, remove_edge=False, remove_zeros=True)

	Returns a profile representing electron temperature from the Michelson interferometer.

	Parameters:	shot : int

The shot number to load.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

electrons : MDSplus.Tree, optional

An MDSplus.Tree object open to the electrons tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

	
profiletools.CMod.Te(shot, include=['CTS', 'ETS', 'FRCECE', 'GPC2', 'GPC', 'Mic'], FRCECE_rate='s', FRCECE_cutoff=0.15, GPC_cutoff=0.15, remove_ECE_edge=True, **kwargs)

	Returns a profile representing electron temperature from the Thomson scattering and ECE systems.

	Parameters:	shot : int

The shot number to load.

include : list of str, optional

The data sources to include. Valid options are:

	CTS
	Core Thomson scattering

	ETS
	Edge Thomson scattering

	FRCECE
	FRC electron cyclotron emission

	GPC
	Grating polychromator

	GPC2
	Grating polychromator 2

The default is to include all data sources.

FRCECE_rate : {‘s’, ‘f’}, optional

Which timebase to use for FRCECE – the fast or slow data. Default is
‘s’ (slow).

FRCECE_cutoff : float, optional

The cutoff value for eliminating cut-off points from FRCECE. All points
with values less than this will be discarded. Default is 0.15.

GPC_cutoff : float, optional

The cutoff value for eliminating cut-off points from GPC. All points
with values less than this will be discarded. Default is 0.15.

remove_ECE_edge : bool, optional

If True, the points outside of the LCFS for the ECE diagnostics will be
removed. Note that this overrides remove_edge, if present, in kwargs.
Furthermore, this may lead to abscissa being converted to psinorm if an
incompatible option was used.

**kwargs

All remaining parameters are passed to the individual loading methods.

	
profiletools.CMod.TeTS(shot, **kwargs)

	Returns a profile representing electron temperature data from the Thomson scattering system.

Includes both core and edge system.

	
profiletools.CMod.emissAX(shot, system, abscissa='Rmid', t_min=None, t_max=None, tree=None, efit_tree=None, remove_edge=False)

	Returns a profile representing emissivity from the AXA system.

	Parameters:	shot : int

The shot number to load.

system : {AXA, AXJ}

The system to use.

abscissa : str, optional

The abscissa to use for the data. The default is ‘Rmid’.

t_min : float, optional

The smallest time to include. Default is None (no lower bound).

t_max : float, optional

The largest time to include. Default is None (no upper bound).

tree : MDSplus.Tree, optional

An MDSplus.Tree object open to the cmod tree of the correct shot.
The shot of the given tree is not checked! Default is None (open tree).

efit_tree : eqtools.CModEFITTree, optional

An eqtools.CModEFITTree object open to the correct shot. The shot of the
given tree is not checked! Default is None (open tree).

remove_edge : bool, optional

If True, will remove points that are outside the LCFS. It will convert
the abscissa to psinorm if necessary. Default is False (keep edge).

	
profiletools.CMod.emiss(shot, include=['AXA', 'AXJ'], **kwargs)

	Returns a profile representing emissivity.

	Parameters:	shot : int

The shot number to load.

include : list of str, optional

The data sources to include. Valid options are: {AXA, AXJ}. The default
is to include both data sources.

**kwargs

All remaining parameters are passed to the individual loading methods.

	
profiletools.CMod.read_plasma_csv(*args, **kwargs)

	Returns a profile containing the data from a CSV file.

If your data are bivariate, you must ensure that time ends up being the
first column, either by putting it first in your CSV file or by specifying
its name first in X_names.

The CSV file can contain metadata lines of the form “name data” or
“name data,data,...”. The following metadata are automatically parsed into
the correct fields:

	shot
	shot number

	times
	comma-separated list of times included in the data

	t_min
	minimum time included in the data

	t_max
	maximum time included in the data

	coordinate
	the abscissa the data are represented as a function of

If you don’t provide coordinate in the metadata, the program will try to
use the last entry in X_labels to infer the abscissa. If this fails, it will
simply set the abscissa to the title of the last entry in X_labels. If you
provide your data as a function of R, Z it will look for the last two
entries in X_labels to be R and Z once surrounding dollar signs and spaces
are removed.

Parameters are the same as read_csv().

	
profiletools.CMod.read_plasma_NetCDF(*args, **kwargs)

	Returns a profile containing the data from a NetCDF file.

The file can contain metadata attributes specified in the metadata kwarg.
The following metadata are automatically parsed into the correct fields:

	shot
	shot number

	times
	comma-separated list of times included in the data

	t_min
	minimum time included in the data

	t_max
	maximum time included in the data

	coordinate
	the abscissa the data are represented as a function of

If you don’t provide coordinate in the metadata, the program will try to
use the last entry in X_labels to infer the abscissa. If this fails, it will
simply set the abscissa to the title of the last entry in X_labels. If you
provide your data as a function of R, Z it will look for the last two
entries in X_labels to be R and Z once surrounding dollar signs and spaces
are removed.

Parameters are the same as read_NetCDF().

profiletools.core module

Provides the base Profile class and other utilities.

	
profiletools.core.average_points(X, y, err_X, err_y, T=None, ddof=1, robust=False, y_method='sample', X_method='sample', weighted=False)

	Find the average of the points with the given uncertainties using a variety of techniques.

	Parameters:	X : array, (M, D) or (M, N, D)

Abscissa values to average.

y : array, (M)

Data values to average.

err_X : array, same shape as X

Uncertainty in X.

err_y : array, same shape as y

Uncertainty in y.

T : array, (M, N), optional

Transform for y. Default is None (y is not transformed).

ddof : int, optional

The degree of freedom correction used in computing the standard
deviation. The default is 1, the standard Bessel correction to
give an unbiased estimate of the variance.

robust : bool, optional

Set this flag to use robust estimators (median, IQR). Default is False.

y_method : {‘sample’, ‘RMS’, ‘total’, ‘of mean’, ‘of mean sample’}, optional

The method to use in computing the uncertainty in the averaged y.

	‘sample’ computes the sample standard deviation.

	‘RMS’ computes the root-mean-square of the individual error bars.

	‘total’ computes the square root of the sum of the sample variance and
the mean variance. This is only statistically reasonable if the points
represent sample means/variances already.

	‘of mean’ computes the uncertainty in the mean using error propagation
with the given uncertainties.

	‘of mean sample’ computes the uncertainty in the mean using error
propagation with the sample variance. Should not be used with weighted
estimators!

Default is ‘sample’ (use sample variance).

X_method : {‘sample’, ‘RMS’, ‘total’, ‘of mean’, ‘of mean sample’}, optional

The method to use in computing the uncertainty in the averaged X.
Options are the same as y_method. Default is ‘sample’ (use sample
variance).

weighted : bool, optional

Set this flag to use weighted estimators. The weights are 1/err_y^2.
Default is False (use unweighted estimators).

	Returns:	mean_X : array, (D,) or (N, D)

Mean of abscissa values.

mean_y : float

Mean of data values.

err_X : array, same shape as mean_X

Uncertainty in abscissa values.

err_y : float

Uncertainty in data values.

T : array, (N,) or None

Mean of transformation.

	
class profiletools.core.Channel(X, y, err_X=0, err_y=0, T=None, y_label='', y_units='')

	Bases: object

Class to store data from a single channel.

This is particularly useful for storing linearly transformed data, but
should work for general data just as well.

	Parameters:	X : array, (M, N, D)

Abscissa values to use.

y : array, (M,)

Data values.

err_X : array, same shape as X

Uncertainty in X.

err_y : array, (M,)

Uncertainty in data.

T : array, (M, N), optional

Linear transform to get from latent variables to data in y. Default is
that y represents untransformed data.

y_label : str, optional

Label for the y data. Default is empty string.

y_units : str, optional

Units of the y data. Default is empty string.

	
keep_slices(axis, vals, tol=None, keep_mixed=False)

	Only keep the indices closest to given vals.

	Parameters:	axis : int

The column in X to check values on.

vals : float or 1-d array

The value(s) to keep the points that are nearest to.

keep_mixed : bool, optional

Set this flag to keep transformed quantities that depend on multiple
values of X[:, :, axis]. Default is False (drop mixed quantities).

	Returns:	still_good : bool

Returns True if there are still any points left in the channel,
False otherwise.

	
average_data(axis=0, **kwargs)

	Average the data along the given axis.

	Parameters:	axis : int, optional

Axis to average along. Default is 0.

**kwargs : optional keyword arguments

All additional kwargs are passed to average_points().

	
remove_points(conditional)

	Remove points satisfying conditional.

	Parameters:	conditional : array, same shape as self.y

Boolean array with True wherever a point should be removed.

	Returns:	bad_X : array

The removed X values.

bad_err_X : array

The uncertainty in the removed X values.

bad_y : array

The removed y values.

bad_err_y : array

The uncertainty in the removed y values.

bad_T : array

The transformation matrix of the removed y values.

	
class profiletools.core.Profile(X_dim=1, X_units=None, y_units='', X_labels=None, y_label='', weightable=True)

	Bases: object

Object to abstractly represent a profile.

	Parameters:	X_dim : positive int, optional

Number of dimensions of the independent variable. Default value is 1.

X_units : str, list of str or None, optional

Units for each of the independent variables. If X_dim`=1, this should
given as a single string, if `X_dim>1, this should be given as a list
of strings of length X_dim. Default value is None, meaning a list
of empty strings will be used.

y_units : str, optional

Units for the dependent variable. Default is an empty string.

X_labels : str, list of str or None, optional

Descriptive label for each of the independent variables. If X_dim`=1,
this should be given as a single string, if `X_dim>1, this should be
given as a list of strings of length X_dim. Default value is None,
meaning a list of empty strings will be used.

y_label : str, optional

Descriptive label for the dependent variable. Default is an empty string.

weightable : bool, optional

Whether or not it is valid to use weighted estimators on the data, or if
the error bars are too suspect for this to be valid. Default is True
(allow use of weighted estimators).

Attributes

	y
	(Array, (M,)) The M dependent variables.

	X
	(Matrix, (M, X_dim)) The M independent variables.

	err_y
	(Array, (M,)) The uncertainty in the M dependent variables.

	err_X
	(Matrix, (M, X_dim)) The uncertainties in each dimension of the M independent variables.

	channels
	(Matrix, (M, X_dim)) The logical groups of points into channels along each of the independent variables.

	X_dim
	(positive int) The number of dimensions of the independent variable.

	X_units
	(list of str, (X_dim,)) The units for each of the independent variables.

	y_units
	(str) The units for the dependent variable.

	X_labels
	(list of str, (X_dim,)) Descriptive labels for each of the independent variables.

	y_label
	(str) Descriptive label for the dependent variable.

	weightable
	(bool) Whether or not weighted estimators can be used.

	transformed
	(list of Channel) The transformed quantities associated with the Profile instance.

	gp
	(gptools.GaussianProcess instance) The Gaussian process with the local and transformed data included.

	
add_data(X, y, err_X=0, err_y=0, channels=None)

	Add data to the training data set of the Profile instance.

Will also update the Profile’s Gaussian process instance (if it exists).

	Parameters:	X : array-like, (M, N)

M independent variables of dimension N.

y : array-like, (M,)

M dependent variables.

err_X : array-like, (M, N), or scalar float, or single array-like (N,), optional

Non-negative values only. Error given as standard deviation for
each of the N dimensions in the M independent variables. If a
scalar is given, it is used for all of the values. If a single
array of length N is given, it is used for each point. The
default is to assign zero error to each point.

err_y : array-like (M,) or scalar float, optional

Non-negative values only. Error given as standard deviation in the
M dependent variables. If err_y is a scalar, the data set is
taken to be homoscedastic (constant error). Otherwise, the length
of err_y must equal the length of y. Default value is 0
(noiseless observations).

channels : dict or array-like (M, N)

Keys to logically group points into “channels” along each dimension
of X. If not passed, channels are based simply on which points
have equal values in X. If only certain dimensions have groupings
other than the simple default equality conditions, then you can
pass a dict with integer keys in the interval [0, X_dim-1] whose
values are the arrays of length M indicating the channels.
Otherwise, you can pass in a full (M, N) array.

	Raises:	ValueError

Bad shapes for any of the inputs, negative values for err_y or n.

	
add_profile(other)

	Absorbs the data from one profile object.

	Parameters:	other : Profile

Profile to absorb.

	
drop_axis(axis)

	Drops a selected axis from X.

	Parameters:	axis : int

The index of the axis to drop.

	
keep_slices(axis, vals, tol=None, **kwargs)

	Keeps only the nearest points to vals along the given axis for each channel.

	Parameters:	axis : int

The axis to take the slice(s) of.

vals : array of float

The values the axis should be close to.

tol : float or None

Tolerance on nearest values – if the nearest value is farther than
this, it is not kept. If None, this is not applied.

**kwargs : optional kwargs

All additional kwargs are passed to keep_slices().

	
average_data(axis=0, **kwargs)

	Computes the average of the profile over the desired axis.

If X_dim is already 1, this returns the average of the quantity.
Otherwise, the Profile is mutated to contain the
desired averaged data. err_X and err_y are populated with the
standard deviations of the respective quantities. The averaging is
carried out within the groupings defined by the channels attribute.

	Parameters:	axis : int, optional

The index of the dimension to average over. Default is 0.

**kwargs : optional kwargs

All additional kwargs are passed to average_points().

	
plot_data(ax=None, label_axes=True, **kwargs)

	Plot the data stored in this Profile. Only works for X_dim = 1 or 2.

	Parameters:	ax : axis instance, optional

Axis to plot the result on. If no axis is passed, one is created.
If the string ‘gca’ is passed, the current axis (from plt.gca())
is used. If X_dim = 2, the axis must be 3d.

label_axes : bool, optional

If True, the axes will be labelled with strings constructed from
the labels and units set when creating the Profile instance.
Default is True (label axes).

**kwargs : extra plotting arguments, optional

Extra arguments that are passed to errorbar/errorbar3d.

	Returns:	The axis instance used.

	
remove_points(conditional)

	Remove points where conditional is True.

Note that this does NOT remove anything from the GP – you either need
to call create_gp() again or act manually on the gp
attribute.

Also note that this does not include any provision for removing points
that represent linearly-transformed quantities – you will need to
operate directly on transformed to remove such points.

	Parameters:	conditional : array-like of bool, (M,)

Array of booleans corresponding to each entry in y. Where an
entry is True, that value will be removed.

	Returns:	X_bad : matrix

Input values of the bad points.

y_bad : array

Bad values.

err_X_bad : array

Uncertainties on the abcissa of the bad values.

err_y_bad : array

Uncertainties on the bad values.

	
remove_outliers(thresh=3, check_transformed=False, force_update=False, mask_only=False, gp_kwargs={}, MAP_kwargs={}, **predict_kwargs)

	Remove outliers from the Gaussian process.

The Gaussian process is created if it does not already exist. The
chopping of values assumes that any artificial constraints that have
been added to the GP are at the END of the GP’s data arrays.

The values removed are returned.

	Parameters:	thresh : float, optional

The threshold as a multiplier times err_y. Default is 3 (i.e.,
throw away all 3-sigma points).

check_transformed : bool, optional

Set this flag to check if transformed quantities are outliers.
Default is False (don’t check transformed quantities).

force_update : bool, optional

If True, a new Gaussian process will be created even if one already
exists. Set this if you have added data or constraints since you
created the Gaussian process. Default is False (use current Gaussian
process if it exists).

mask_only : bool, optional

Set this flag to return only a mask of the non-transformed points
that are flagged. Default is False (completely remove bad points).
In either case, the bad transformed points will ALWAYS be removed if
check_transformed is True.

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
create_gp() if it gets called. Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
find_gp_MAP_estimate() if it gets called. Default is {}.

**predict_kwargs : optional parameters

All other parameters are passed to the Gaussian process’
predict() method.

	Returns:	X_bad : matrix

Input values of the bad points.

y_bad : array

Bad values.

err_X_bad : array

Uncertainties on the abcissa of the bad values.

err_y_bad : array

Uncertainties on the bad values.

transformed_bad : array of Channel

Transformed points that were removed.

	
remove_extreme_changes(thresh=10, logic='and', mask_only=False)

	Removes points at which there is an extreme change.

Only for univariate data!

This operation is performed by looking for points who differ by more
than thresh * err_y from each of their neighbors. This operation
will typically only be useful with large values of thresh. This is
useful for eliminating bad channels.

Note that this will NOT update the Gaussian process.

	Parameters:	thresh : float, optional

The threshold as a multiplier times err_y. Default is 10 (i.e.,
throw away all 10-sigma changes).

logic : {‘and’, ‘or’}, optional

Whether the logical operation performed should be an and or an or
when looking at left-hand and right-hand differences. ‘and’ is more
conservative, but ‘or’ will help if you have multiple bad channels
in a row. Default is ‘and’ (point must have a drastic change in both
directions to be rejected).

mask_only : bool, optional

If True, only the boolean mask indicated where the bad points are
will be removed, and it is up to the user to remove them. Default is
False (actually remove the bad points).

	
create_gp(k=None, noise_k=None, upper_factor=5, lower_factor=5, x0_bounds=None, mask=None, k_kwargs={}, **kwargs)

	Create a Gaussian process to handle the data.

	Parameters:	k : Kernel instance, optional

Covariance kernel (from gptools) with the appropriate
number of dimensions, or None. If None, a squared exponential kernel
is used. Can also be a string from the following table:

	SE
	Squared exponential

	gibbstanh
	Gibbs kernel with tanh warping

	RQ
	Rational quadratic

	SEsym1d
	1d SE with symmetry constraint

The bounds for each hyperparameter are selected as follows:

	sigma_f
	[1/lower_factor, upper_factor]*range(y)

	l1
	[1/lower_factor, upper_factor]*range(X[:, 1])

	...
	And so on for each length scale

Here, eps is sys.float_info.epsilon. The initial guesses for each
parameter are set to be halfway between the upper and lower bounds.
For the Gibbs kernel, the uniform prior for sigma_f is used, but
gamma priors are used for the remaining hyperparameters. Default is
None (use SE kernel).

noise_k : Kernel instance, optional

The noise covariance kernel. Default is None (use the default zero
noise kernel, with all noise being specified by err_y).

upper_factor : float, optional

Factor by which the range of the data is multiplied for the upper
bounds on both length scales and signal variances. Default is 5,
which seems to work pretty well for C-Mod data.

lower_factor : float, optional

Factor by which the range of the data is divided for the lower
bounds on both length scales and signal variances. Default is 5,
which seems to work pretty well for C-Mod data.

x0_bounds : 2-tuple, optional

Bounds to use on the x0 (transition location) hyperparameter of the
Gibbs covariance function with tanh warping. This is the
hyperparameter that tends to need the most tuning on C-Mod data.
Default is None (use range of X).

mask : array of bool, optional

Boolean mask of values to actually include in the GP. Default is to
include all values.

k_kwargs : dict, optional

All entries are passed as kwargs to the constructor for the kernel
if a kernel instance is not provided.

**kwargs : optional kwargs

All additional kwargs are passed to the constructor of
gptools.GaussianProcess.

	
find_gp_MAP_estimate(force_update=False, gp_kwargs={}, **kwargs)

	Find the MAP estimate for the hyperparameters of the Profile’s Gaussian process.

If this Profile instance does not already have a Gaussian
process, it will be created. Note that the user is responsible for
manually updating the Gaussian process if more data are added or the
Profile is otherwise mutated. This can be accomplished
directly using the force_update keyword.

	Parameters:	force_update : bool, optional

If True, a new Gaussian process will be created even if one already
exists. Set this if you have added data or constraints since you
created the Gaussian process. Default is False (use current Gaussian
process if it exists).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
create_gp() if it gets called. Default is {}.

**kwargs : optional parameters

All other parameters are passed to the Gaussian process’
optimize_hyperparameters() method.

	
plot_gp(force_update=False, gp_kwargs={}, MAP_kwargs={}, **kwargs)

	Plot the current state of the Profile’s Gaussian process.

If this Profile instance does not already have a Gaussian
process, it will be created. Note that the user is responsible for
manually updating the Gaussian process if more data are added or the
Profile is otherwise mutated. This can be accomplished
directly using the force_update keyword.

	Parameters:	force_update : bool, optional

If True, a new Gaussian process will be created even if one already
exists. Set this if you have added data or constraints since you
created the Gaussian process. Default is False (use current Gaussian
process if it exists).

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
create_gp() if it gets called. Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
find_gp_MAP_estimate() if it gets called. Default is {}.

**kwargs : optional parameters

All other parameters are passed to the Gaussian process’
plot() method.

	
smooth(X, n=0, force_update=False, plot=False, gp_kwargs={}, MAP_kwargs={}, **kwargs)

	Evaluate the underlying smooth curve at a given set of points using Gaussian process regression.

If this Profile instance does not already have a Gaussian
process, it will be created. Note that the user is responsible for
manually updating the Gaussian process if more data are added or the
Profile is otherwise mutated. This can be accomplished
directly using the force_update keyword.

	Parameters:	X : array-like (N, X_dim)

Points to evaluate smooth curve at.

n : non-negative int, optional

The order of derivative to evaluate at. Default is 0 (return value).
See the documentation on gptools.GaussianProcess.predict().

force_update : bool, optional

If True, a new Gaussian process will be created even if one already
exists. Set this if you have added data or constraints since you
created the Gaussian process. Default is False (use current Gaussian
process if it exists).

plot : bool, optional

If True, gptools.GaussianProcess.plot() is called to
produce a plot of the smoothed curve. Otherwise,
gptools.GaussianProcess.predict() is called directly.

gp_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
create_gp() if it gets called. Default is {}.

MAP_kwargs : dict, optional

The entries of this dictionary are passed as kwargs to
find_gp_MAP_estimate() if it gets called. Default is {}.

**kwargs : optional parameters

All other parameters are passed to the Gaussian process’
plot() or predict() method according to the
state of the plot keyword.

	Returns:	ax : axis instance

The axis instance used. This is only returned if the plot
keyword is True.

mean : Array, (M,)

Predicted GP mean. Only returned if full_output is False.

std : Array, (M,)

Predicted standard deviation, only returned if return_std is True and full_output is False.

full_output : dict

Dictionary with fields for mean, std, cov and possibly random samples. Only returned if full_output is True.

	
write_csv(filename)

	Writes this profile to a CSV file.

	Parameters:	filename : str

Path of the file to write. If the file exists, it will be
overwritten without warning.

	
profiletools.core.read_csv(filename, X_names=None, y_name=None, metadata_lines=None)

	Reads a CSV file into a Profile.

If names are not provided for the columns holding the X and y values and
errors, the names are found automatically by looking at the header row, and
are used in the order found, with the last column being y. Otherwise, the
columns will be read in the order specified. The column names should be of
the form “name [units]”, which will be automatically parsed to populate the
Profile. In either case, there can be a corresponding column
“err_name [units]” which holds the 1-sigma uncertainty in that quantity.
There can be an arbitrary number of lines of metadata at the beginning of
the file which are read into the metadata attribute of the
Profile created. This is most useful when using
BivariatePlasmaProfile as you can store the shot and time window.

	Parameters:	X_names : list of str, optional

Ordered list of the column names containing the independent variables.
The default behavior is to infer the names and ordering from the header
of the CSV file. See the discussion above. Note that if you provide
X_names you must also provide y_name.

y_name : str, optional

Name of the column containing the dependent variable. The default
behavior is to infer this name from the header of the CSV file. See the
discussion above. Note that if you provide y_name you must also
provide X_names.

metadata_lines : non-negative int, optional

Number of lines of metadata to read from the beginning of the file.
These are read into the metadata attribute of the profile
created.

	
profiletools.core.read_NetCDF(filename, X_names, y_name, metadata=[])

	Reads a NetCDF file into a Profile.

The file must contain arrays of equal length for each of the independent and
the dependent variable. The units of each variable can either be specified
as the units attribute on the variable, or the variable name can be of the
form “name [units]”, which will be automatically parsed to populate the
Profile. For each independent and the dependent variable there
can be a corresponding column “err_name” or “err_name [units]” which holds
the 1-sigma uncertainty in that quantity. There can be an arbitrary number
of metadata attributes in the file which are read into the corresponding
attributes of the Profile created. This is most useful when using
BivariatePlasmaProfile as you can store the shot and time window.
Be careful that you do not overwrite attributes needed by the class, however!

	Parameters:	X_names : list of str

Ordered list of the column names containing the independent variables.
See the discussion above regarding name conventions.

y_name : str

Name of the column containing the dependent variable. See the discussion
above regarding name conventions.

metadata : list of str, optional

List of attribute names to read into the corresponding attributes of the
Profile created.

	
profiletools.core.parse_column_name(name)

	Parse a column header name into label and units.

	
profiletools.core.errorbar3d(ax, x, y, z, xerr=None, yerr=None, zerr=None, **kwargs)

	Draws errorbar plot of z(x, y) with errorbars on all variables.

	Parameters:	ax : 3d axis instance

The axis to draw the plot on.

x : array, (M,)

x-values of data.

y : array, (M,)

y-values of data.

z : array, (M,)

z-values of data.

xerr : array, (M,), optional

Errors in x-values. Default value is 0.

yerr : array, (M,), optional

Errors in y-values. Default value is 0.

zerr : array, (M,), optional

Errors in z-values. Default value is 0.

**kwargs : optional

Extra arguments are passed to the plot command used to draw the
datapoints.

	
profiletools.core.unique_rows(arr)

	Returns a copy of arr with duplicate rows removed.

From Stackoverflow “Find unique rows in numpy.array.”

	Parameters:	arr : Array, (m, n). The array to find the unique rows of.

	Returns:	unique : Array, (p, n) where p <= m

The array arr with duplicate rows removed.

	
profiletools.core.get_nearest_idx(v, a)

	Returns the array of indices of the nearest value in a corresponding to each value in v.

	Parameters:	v : Array

Input values to match to nearest neighbors in a.

a : Array

Given values to match against.

	Returns:	Indices in a of the nearest values to each value in v. Has the same shape as v.

	
class profiletools.core.RejectionFunc(mask, positivity=True, monotonicity=True)

	Bases: object

Rejection function for use with full_MC mode of GaussianProcess.predict().

	Parameters:	mask : array of bool

Mask for the values to include in the test.

positivity : bool, optional

Set this to True to impose a positivity constraint on the sample.
Default is True.

monotonicity : bool, optional

Set this to True to impose a positivity constraint on the samples.
Default is True.

	
__call__(samp)

	Returns True if the sample meets the constraints, False otherwise.

	
profiletools.core.leading_axis_product(w, x)

	Perform a product along the leading axis, as is needed when applying weights.

	
profiletools.core.meanw(x, weights=None, axis=None)

	Weighted mean of data.

Defined as

[image: \mu = \frac{\sum_i w_i x_i}{\sum_i w_i}]

	Parameters:	x : array-like

The vector to find the mean of.

weights : array-like, optional

The weights. Must be broadcastable with x. Default is to use the
unweighted mean.

axis : int, optional

The axis to take the mean along. Default is to use the whole data set.

	
profiletools.core.varw(x, weights=None, axis=None, ddof=1, mean=None)

	Weighted variance of data.

Defined (for ddof = 1) as

[image: s^2 = \frac{\sum_i w_i}{(\sum_i w_i)^2 - \sum_i w_i^2}\sum_i w_i (x_i - \mu)^2]

	Parameters:	x : array-like

The vector to find the mean of.

weights : array-like, optional

The weights. Must be broadcastable with x. Default is to use the
unweighted mean.

axis : int, optional

The axis to take the mean along. Default is to use the whole data set.

ddof : int, optional

The degree of freedom correction to use. If no weights are given, this
is the standard Bessel correction. If weights are given, this uses an
approximate form based on the assumption that the weights are inverse
variances for each data point. In this case, the value has no effect
other than being True or False. Default is 1 (apply correction assuming
normal noise dictated weights).

mean : array-like, optional

The weighted mean to use. If you have already computed the weighted mean
with meanw(), you can pass the result in here to save time.

	
profiletools.core.stdw(*args, **kwargs)

	Weighted standard deviation of data.

Defined (for ddof = 1) as

[image: s = \sqrt{\frac{\sum_i w_i}{(\sum_i w_i)^2 - \sum_i w_i^2}\sum_i w_i (x_i - \mu)^2}]

	Parameters:	x : array-like

The vector to find the mean of.

weights : array-like, optional

The weights. Must be broadcastable with x. Default is to use the
unweighted mean.

axis : int, optional

The axis to take the mean along. Default is to use the whole data set.

ddof : int, optional

The degree of freedom correction to use. If no weights are given, this
is the standard Bessel correction. If weights are given, this uses an
approximate form based on the assumption that the weights are inverse
variances for each data point. In this case, the value has no effect
other than being True or False. Default is 1 (apply correction assuming
normal noise dictated weights).

mean : array-like, optional

The weighted mean to use. If you have already computed the weighted mean
with meanw(), you can pass the result in here to save time.

	
profiletools.core.robust_std(y, axis=None)

	Computes the robust standard deviation of the given data.

This is defined as [image: IQR/(2\Phi^{-1}(0.75))], where [image: IQR] is the
interquartile range and [image: \Phi] is the inverse CDF of the standard
normal. This is an approximation based on the assumption that the data are
Gaussian, and will have the effect of diminishing the effect of outliers.

	Parameters:	y : array-like

The data to find the robust standard deviation of.

axis : int, optional

The axis to find the standard deviation along. Default is None (find
from whole data set).

	
profiletools.core.scoreatpercentilew(x, p, weights)

	Computes the weighted score at the given percentile.

Does not work on small data sets!

	Parameters:	x : array

Array of data to apply to. Only works properly on 1d data!

p : float or array of float

Percentile(s) to find.

weights : array, same shape as x

The weights to apply to the values in x.

	
profiletools.core.medianw(x, weights=None, axis=None)

	Computes the weighted median of the given data.

Does not work on small data sets!

	Parameters:	x : array

Array of data to apply to. Only works properly on 1d, 2d and 3d data.

weights : array, optional

Weights to apply to the values in x. Default is to use an unweighted
estimator.

axis : int, optional

The axis to take the median along. Default is None (apply to flattened
array).

	
profiletools.core.robust_stdw(x, weights=None, axis=None)

	Computes the weighted robust standard deviation from the weighted IQR.

Does not work on small data sets!

	Parameters:	x : array

Array of data to apply to. Only works properly on 1d, 2d and 3d data.

weights : array, optional

Weights to apply to the values in x. Default is to use an unweighted
estimator.

axis : int, optional

The axis to take the robust standard deviation along. Default is None
(apply to flattened array).

Module contents

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 profiletools	

 	
 	
 profiletools.CMod	

 	
 	
 profiletools.core	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__call__() (profiletools.core.RejectionFunc method)

A

 	
 	add_data() (profiletools.core.Profile method)

 	add_profile() (profiletools.CMod.BivariatePlasmaProfile method)

 	(profiletools.core.Profile method)

 	
 	average_data() (profiletools.core.Channel method)

 	(profiletools.core.Profile method)

 	average_points() (in module profiletools.core)

B

 	
 	BivariatePlasmaProfile (class in profiletools.CMod)

C

 	
 	Channel (class in profiletools.core)

 	compute_a_over_L() (profiletools.CMod.BivariatePlasmaProfile method)

 	compute_peaking() (profiletools.CMod.BivariatePlasmaProfile method)

 	compute_volume_average() (profiletools.CMod.BivariatePlasmaProfile method)

 	
 	constrain_at_limiter() (profiletools.CMod.BivariatePlasmaProfile method)

 	constrain_slope_on_axis() (profiletools.CMod.BivariatePlasmaProfile method)

 	convert_abscissa() (profiletools.CMod.BivariatePlasmaProfile method)

 	create_gp() (profiletools.CMod.BivariatePlasmaProfile method)

 	(profiletools.core.Profile method)

D

 	
 	drop_axis() (profiletools.CMod.BivariatePlasmaProfile method)

 	(profiletools.core.Profile method)

E

 	
 	emiss() (in module profiletools.CMod)

 	
 	emissAX() (in module profiletools.CMod)

 	errorbar3d() (in module profiletools.core)

F

 	
 	find_gp_MAP_estimate() (profiletools.core.Profile method)

G

 	
 	get_limiter_locations() (profiletools.CMod.BivariatePlasmaProfile method)

 	
 	get_nearest_idx() (in module profiletools.core)

K

 	
 	keep_slices() (profiletools.core.Channel method)

 	(profiletools.core.Profile method)

 	
 	keep_times() (profiletools.CMod.BivariatePlasmaProfile method)

L

 	
 	leading_axis_product() (in module profiletools.core)

M

 	
 	meanw() (in module profiletools.core)

 	
 	medianw() (in module profiletools.core)

N

 	
 	ne() (in module profiletools.CMod)

 	neCTS() (in module profiletools.CMod)

 	neETS() (in module profiletools.CMod)

 	
 	neReflect() (in module profiletools.CMod)

 	neTCI() (in module profiletools.CMod)

 	neTCI_old() (in module profiletools.CMod)

 	neTS() (in module profiletools.CMod)

P

 	
 	parse_column_name() (in module profiletools.core)

 	plot_data() (profiletools.core.Profile method)

 	plot_gp() (profiletools.core.Profile method)

 	
 	Profile (class in profiletools.core)

 	profiletools (module)

 	profiletools.CMod (module)

 	profiletools.core (module)

R

 	
 	read_csv() (in module profiletools.core)

 	read_NetCDF() (in module profiletools.core)

 	read_plasma_csv() (in module profiletools.CMod)

 	read_plasma_NetCDF() (in module profiletools.CMod)

 	RejectionFunc (class in profiletools.core)

 	remake_efit_tree() (profiletools.CMod.BivariatePlasmaProfile method)

 	remove_edge_points() (profiletools.CMod.BivariatePlasmaProfile method)

 	
 	remove_extreme_changes() (profiletools.core.Profile method)

 	remove_outliers() (profiletools.core.Profile method)

 	remove_points() (profiletools.core.Channel method)

 	(profiletools.core.Profile method)

 	remove_quadrature_points_outside_of_limiter() (profiletools.CMod.BivariatePlasmaProfile method)

 	robust_std() (in module profiletools.core)

 	robust_stdw() (in module profiletools.core)

S

 	
 	scoreatpercentilew() (in module profiletools.core)

 	
 	smooth() (profiletools.core.Profile method)

 	stdw() (in module profiletools.core)

T

 	
 	Te() (in module profiletools.CMod)

 	TeCTS() (in module profiletools.CMod)

 	TeETS() (in module profiletools.CMod)

 	TeFRCECE() (in module profiletools.CMod)

 	
 	TeGPC() (in module profiletools.CMod)

 	TeGPC2() (in module profiletools.CMod)

 	TeMic() (in module profiletools.CMod)

 	TeTS() (in module profiletools.CMod)

 	time_average() (profiletools.CMod.BivariatePlasmaProfile method)

U

 	
 	unique_rows() (in module profiletools.core)

V

 	
 	varw() (in module profiletools.core)

W

 	
 	write_csv() (profiletools.core.Profile method)

profiletools

	profiletools package
	Submodules

	profiletools.CMod module

	profiletools.core module

	Module contents

 _static/down-pressed.png

_static/down.png

_images/math/effd1933646361b296f40ca7006df282ea96ec3f.png
QR

_images/math/90419dfd2948b20a5943f66d6ff89096758b9205.png

_images/math/8e91f14a5532d32f3d89245b5ee747414fe57d2a.png

_static/up.png

_images/math/b809b0a6f52d9ef3f0d5ed87157cb9f6acb8ff07.png

_static/up-pressed.png

_images/math/a3b52a61e132c13aa1267b45b1f8fb2fe7f06408.png

_images/math/1d7a0442e574a908ae1582ce73475c5a24d6a353.png

_images/math/2a7fe377b7ef640039ab410940d9c1f442d155b6.png

_images/math/b97a502e2b1cc3f61aedfa4ab684d08f044e71d3.png

_images/math/b124ff74afb0914bb434e8fb849eb56d734412f8.png

_images/math/f026aecf11ec7f6141ab863f260d395f94b10f51.png

_images/math/aa33a9c0868591a8601dd890902e31154528da8b.png
IQR/(2071(0.75))

nav.xhtml

 Table of Contents

 		profiletools: Classes for working with profile data of arbitrary dimension

 		The profiletools data model

 		The Profile class

 		Channels

 		Linearly transformed quantities

 		Averaging data

 		gptools integration

 		Plasma profile data

 		Data model

 		Tokamak coordinate systems

 		Constraints for Gaussian process regression

 		Accessing Alcator C-Mod data

 		Example

 		Loading the data

 		Selecting a time window or specific time points

 		Time averaging or using all points

 		Plotting the data and smoothing it with a Gaussian process

 		Gradients and linear transformations

 		Complete example

 		Signals supported

 		Electron density

 		Electron temperature

 		X-ray emissivity

 		Additional patterns and examples

 		Weighted versus unweighted averaging

 		Multiple time slices

 		profiletools package

 		Submodules

 		profiletools.CMod module

 		profiletools.core module

 		Module contents

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

