prodyn Documentation
Release 0.1

Dannis Atabay

May 28, 2017

Contents

1 Contents

2 Features

3 Get Started

4 Dependencies (Python)

Python Module Index

19

21

23

25

prodyn Documentation, Release 0.1

Maintainer Dennis Atabay, <dennis.atabay @tum.de>

Organization Institute for Energy Economy and Application Technology, Technische Uni-
versitdt Miinchen

Version 0.1
Date May 28, 2017

Copyright This documentation is licensed under a Creative Commons Attribution 4.0 In-
ternational license.

Contents 1

mailto:dennis.atabay@tum.de
http://www.ewk.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

prodyn Documentation, Release 0.1

2 Contents

cHAPTER 1

Contents

This documentation contains the following pages:

Overview

An overview explains the basic procedure of the dynamic programming implementation in the random
example. It also introduces files, which are involved in the implementation process, and clarifies main
functions inside these files.

Simplified diagram of the process and connection between documents involved in it are shown in the
Figure 1.

system_data

| s
1

system_model run_system

prodyn

Fig. 1.1: Figure 1: Scheme of the dynamic programming implementation

prodyn Documentation, Release 0.1

According to the diagram any implemetation consists of four files. Three of them (system_data, sys-
tem_model and run_system) are specified and should be created for each current example. The fourth
one (prodyn) is autonomous and can be used with any example without modifications.

System Data

System_data stores an information about a system, which operation should be controlled in an optimal
way. All data is split between four parts: Time-Series, Constants, DP-States and DP-Decisions. Each
of this part is described below. Chp_data written in excel-form is taken as an example.

Note: System_data doesn’t have to be always written in excel-form. Other formats are also possible.
In addition, system_data doesn’t have to exist in the form of file. It can be typed by the user through
the code or interface and so on.

Time-Series

A series of values for parameters, which described the system, is shown here. Values are obtained at
successive times and with equal intervals between them. Small part of Time-Series from chp_data is
illustrated in the Figure 2.

A B C D E

1 Time el demand heat demand el cost el _feed-in

2 1 0,24 507 0,16 0,06
2 2 0,71 3,35 0,15 0,06
4 3 0,23 2,47 0,15 0,06
5 4 1,06 243 0,14 0,06
6 5 1,23 3,05 0,14 0,06
7 6 1,59 3,28 0,14 0,06
8 7 1,27 3,71 0,14 0,06
9 8 2,61 5,66 0,13 0,06
10 9 2,66 3,98 0,13 0,06

Fig. 1.2: Figure 2: Time-Series from chp example

Constants

This sheet keeps all values for parameters, which doesn’t change during any operation of the system.

DP-States

The part of the system, which operation should be optimized, is characterized by a number of states.
Each state has min, max allowable values and number of steps between them. All these data is stored in
DP-States sheet. DP-States for chp example is shown in the Figure 3.

As seen from the Figure 3 the system has two states. State of the battery can take values from 0 to 5
with a step equaled to 0,1. Similarly heat-storage is changing between 0 and 10 with a step 0,1.

4 Chapter 1. Contents

prodyn Documentation, Release 0.1

A B E D
1 |state xmin xmax Ksteps
2 battery 0 5 50
3 heat-storage 0 10 100

Fig. 1.3: Figure 3: DP-States from chp example

DP-Decisions

An operation of the system for every timestep can be influenced by one of the specific decisions, which
are written in DP-Decisions sheet. In other words, all possibilities for system control are written here.
Figure 4 illustrates decisions for the same chp example.

A B
1 | MNumber Decisions
2 1 off
3 2 on

Fig. 1.4: Figure 4: DP-Decisions from chp example

As seen above chp example has only two decisions: off and on operation of the combined heat and
power plant.

System Model

System_model is a file, which is written in python and should be created specifically for the current
system. Generally, it contains two functions: read_data and system. The second one, which describes
the transition of the system from one timestep to another one, is the main part of this file. Figure 5 gives
simplified illustration of this transition.

System’s condition at timestep i is defined by an array X, which is built from the DP-States data. The
process of X formation is fully described in one of the next subchapters prepareDP. System function
calculates the transition from i to j in dependance of each decision from the list of possible ones U.
Results of the calculation are an array Xj, which describes the condition of the system at timestep j, and
the cost of the transition for each possible decision from U.

For your own implementation your own system function, which characterizes the transition from i to j,
should be written. Groups of fixed inputs and outputs of this function are presented in the Figure 6.

Inputs of the system are:
* u - decision from the possible ones in list U.
* X - array containing any possible condition of the system.
* t - actual timestep i.
* cst - constants needed for calculation, which are taken from Constants in excel file system_data.
* srs - values of needed timeseries taken from Time-Series.

* Data - pandas dataframe, which keeps information about previous transitions. This is main return
of the prodyn file.

1.3. System Model 5

prodyn Documentation, Release 0.1

DP-States DP-Decisions

system_data

X

cost

Fig. 1.5: Figure 5: System transition from timestep i to j

cost

Fig. 1.6: Figure 6: System’s necessary inputs and outputs for the description of the transition from
timestep i to j

Chapter 1. Contents

prodyn Documentation, Release 0.1

Returns of the system are:
* cost - costs of the transition from i to j.
* X_j - array with condition of the system at timestep j, which is formed due to decision u.

* data - intermediate pandas dataframe containing additional information about the transition from
i to j. Needed for Data formation in prodyn.

The remaining function read_data is responsible for reading system_data and returning the following
parameters, which partially form the group of inputs of the system: cst, srs, U and states. Read_data
for all of the examples presented in the documentation is written for reading system_data in excel-from.
However, the format or form of system_data can be absolutely various. In these cases read_data should
be rewritten.

Note: Regardless of system_data format and it’s possible absence cst, srs, U and states must always
be identified according to the following standarts:

e cst, srs and states - Pandas Data Frames;

* U - 1-d numpy array.

Prodyn

Prodyn is an autonomous file, which is written in python and can be used with any example. This is the
core and driving force of every dynamic programming implementation. Three main prodyn’s functions
are described below in details.

prepare DP
The goal of prepare_DP is a creation of several arrays, which will be used subsequently. The simplified
procedure of the creation for 1 and 2 states random examples is presented in the Figure 7.

The table with states of the system, which is stored in DP-States sheet of system_data, plays a role of
input for the prepare_DP. Three new arrays are the main returns of the function:

* X is an array containing every possible condition of the system. It’s size depends on the number
of system’s states. For example, any condition of the system with 2 states is always characterized
by two variables and X is, consequently, 2d.

* Xidx stores numbers corresponded to every system’s condition. This array is always 1-d.

* XX is an array of arrays, from which X is built. In other words, X is the cartesian product of XX.

DP forward

Current function realizes dynamic programming algorithm in forward direction. Forward means that
simulation starts from t_start and ends on t_end. A diagram, which helps to understand the process
inside DP_forward, is shown in the Figure 8.

Let’s imagine, that we have arbitrary system with 2 states. It has 4 possible conditions, all of them are
defined by X. U contains only two possible decisions {ul; u2}, their influence on the system’s condition

1.4. Prodyn 7

prodyn Documentation, Release 0.1

state Xmin Xxmax xsteps
battery 0 10 3
O
= §
b7 prepare DP
. - -
0 0 0
X |5 Xidx | 1 XX |'5
10 2 10
state xmin xmax xsteps
battery 0 1 2
(7s) heat-storage 2 3 2
3 -
_.‘E prepare_DP
w
(@ 0 2 0
0 3 ; 1 0 2
X |4 o Xidx 5 XX { 1} {3}
1 3 3
Fig. 1.7: Figure 7: Working principle of prepare_DP function
ul~ +[0 11=5€
U = {u1; u2} !] penalty = 100 €

u2~+1 0]=3€

Fig. 1.8: Figure 8: Processes inside DP_forward function

8 Chapter 1. Contents

prodyn Documentation, Release 0.1

and their costs are described at the top side of Figure 8. Penalty is an additional cost for the transition
in cases, where system is pushed by ul or u2 to the condition, which system can’t achieve.

Note: The way U influences on the system, value of costs and possible penalties are always described
in system_model. Due to this information prodyn knows how to make the transition from one step to
another one for any possible condition of the system.

In the Figure 8 the transition for Oth and 2nd sytem’s condition from timestep i to timestep j is shown.
An idea of penalty is clarified very well, where u2 is applied on the 2nd condition. [1 2] is forced by u2
to be [2 2], which is impossible. In such way prodyn runs the system through the whole timesteps until
t_end is reached. The one and only return of the prodyn is called Data, which structure is presented in
the Figure 9.

Data

t Xidx_end U cost other parameters

0

1

t start 2
N

0

1

t start+1 2
N

0

1

t end 2
N

Fig. 1.9: Figure 9: Data - return of the prodyn

Data is a pandas dataframe with two indices. Xidx_end represents system’s conditions at the end of
last timestep and t collects all timesteps. With Data we can see which decisions should be applied to
the system on each timestep for achieving the desired condition at the end of simulation. There are also
other system’s parameters, which help to analyze the results of simulation

DP backward

DP_backward realizes dynamic programming algorithm in a same way as DP_forward does, but in
the opposite direction. Simulation starts from t_end and goes backward until t_start will be reached.

1.4. Prodyn 9

prodyn Documentation, Release 0.1

Run System

Run_system file is a place, where all other three documents meet and interact between each other. At
the end, when simulation of the system with dynamic programming algorithm is finished, an optimal
way of control it is searched. All parameters, which shows the most optimal path (the cheapest path or
the path with empty storage at the last timestep), are extracted from the Data and plotted for results
visualisation. The procedure is illustrated in the Figure 10.

Data

t Xidx_end parameters
0 Results

Results of 1-day (19-44 hours) 25

o
Py, W]
2 s e
g & &
¥ & ¥ 2
fec price, |cent kWi

Fig. 1.10: Figure 10: The procedure of achieving results

Examples

The examples given in this chapter show how to implement dynamic programming algorithm. First
example of the system (building) is presented very detailed. For other systems only brief description is
given. However, very detailed comments through all codes will help to achieve deeper understanding.
Results of optimal system control can be seen after simulations of the run_system codes.

Building
Description

A system in building example contains a model of the real building (pre-trained Neural Network) and a
heat pump. The goal of the optimization is to keep room temperature Troom inside the range of allowed
values [Tmin; Tmax] in a cost-efficient way. Simulation covers one day (19-44 hours) with 15 min time
resolution. The picture in the Figure 11 visualizes current system.

10 Chapter 1. Contents

prodyn Documentation, Release 0.1

\
)

, ®
Tamb . Z?@r
heating on/off radiation
mechvent
= > Pel
use heat
room Troom Tinlet pump _
N N
time

Fig. 1.11: Figure 11: Illustration of the building example

Dynamic Programming algorithm for optimal control of the building is realized with using four follow-
ing files:

* building_data.xlsx - stores information about the system.

* building_model.py - reads system’s data and describes transition from one timestep to another.
* prodyn.py - realizes dynamic programming algorithm.

* run_building_forward.py - runs the simulation and finds the optimal system’s control.

Run_building_forward.py and building_model.py are described in detail below.

run_building_forward.py

There is a script of the run_building_forward.py (one from four dynamic programming files)
is explained step by step for better understanding.

import numpy as np
import matplotlib.pyplot as plt
import pyrenn as prn

Three packages are included:
* numpy is the fundamental package for scientific computing with Python;
» matplotlib.pyplot is a plotting library which allows present results in a diagram form quite easily;

* pyrenn is a recurrent neural network toolbox for Python.

import building model as model
import prodyn as prd

Then building_meodel and prodyn (two other files of dynamic programming) are imported. They as-
signed as model and prd respectively.

file = 'building data.xlsx'

Gives the path to the excel-file building_data containing data about the current system. This is the last
file of dynamic programming.

1.6. Examples 11

https://docs.scipy.org/doc/numpy-dev/user/index.html
https://matplotlib.org/index.html
https://github.com/yabata/pyrenn

prodyn Documentation, Release 0.1

cst,srs,U,states = model.read_data(file)

srs['massflow'] = 0
srs['P_th'] = 0
srs['T_room'] = 20

Defines constants cst, timeseries srs, list of possible decisions U and parameters states, which charac-
terize each possible building’s state, by reading the building_data file. Process of reading is realized
due to read_data function hidden in the building_model (model) file. To timeseries srs written from
building_data some extra data is added.

timesteps=np.arange(cst['t_start'],cst['t_end'])

Sets a timeframe on which optimization will be realized.

net = prn.loadNN('NN_building.csv')
cst['net'] = net

Defines a model net of the real building (pre-trained Neural Network) and saves it to the constants cst.

xsteps=np.prod(states['xsteps'].values)

J0 = np.zeros (xsteps)
idx = prd.find_index(np.array([20]),states)
JO0[idx] = -9999.9

Creates an array JO of initial terminal costs. JO will be changed from transition to transition according
to list of possible decisions U and will keep all costs. Due to stored infromation in JO optimal control of
the building can be found.

idx = prd.find_index(np.array([20]),states)
J0[idx] = -9999.9

Shifts the initial postition to index with temperature equaled to 20 degrees.

system=model .building

Defines function building from building_model for characterization the transition from one timestep to
another.

result = prd.DP_forward(states,U,timesteps,cst, srs, system,J0=J0,
—verbose=True, t_verbose=5)

i_mincost = result.loclcst['t_end']-1]1["'J"'].idxmin ()

opt_result = result.xs(i_mincost, level="Xidx_end")

Implements dynamic programming algorithm for the chosen timeframe and saves all data to the result.
Then finds index for cost-minimal path, extracts it from result and saves to opt_result.

best_massflow=opt_result['massflow'].values[:-1]
Troom=opt_result['T_room'].values|[:-1]
Pel=opt_result['P_el'].values[:—-1]

Chooses parameters, which characterize cost-efficient building control system, and extracts them from
opt_result. Best_massflow is a schedule, which shows at which timestep heat pump is switched on and
at which switched off. Pel defines consumed electrical power, Troom - room temperature inside the
house, which shouldn’t be out of the comfort zone [Tmin; Tmax].

12 Chapter 1. Contents

prodyn Documentation, Release 0.1

Troom=np.concatenate ((srs.loc[timesteps[0]-4:timesteps([0]-1]['T_room'],

—Troom))
Pel=np.concatenate ((s

rs.loc[timesteps[0]-4:timesteps[0]-1]['P_th'],Pel))

Sums values for timesteps, which were not involved in the optimization, with those, which were ex-
tracted from opt_result. The remaining part of the code is responsible for plotting chosen and additional
parameters. They are presented in the Figure 12.

Results of 1-day (19-44 hours) optimization

2.5
26 — Troom Tmax Tmf-ﬂ SO',ar
F2.0 7L
24 1 g
~
U 221 F15
= | m]
20 F10 ©
[
18 - T
0.5 Q
(]
16
‘ r r r . 0.0
20 25 30 35 40 45
time,[h
2.0 [h] 80
Pey rice elec =
e P 70 £
151 =
2
60 TE“
= 1.0 [
X F50 9
= O
T (0.5 A Fa0 O
[y 2
30 o
J F30 u
0.0 3
_20 QJ
-0.5 ‘ . ! ! !
20 25 30 35 40 45
time, [h]

Fig. 1.12: Figure 12: Cost-minimal control of the building for keeping Troom inside [Tmin; Tmax].

building_model.py

The script of the building_model.py is explained step by step for better understanding.

import pandas as pd
import numpy as np
import pyrenn as prn
import pdb

Three packages are included:

* pandas is a source helping to work with data structure and data analysis;

* numpy is the fundamental package for scientific computing with Python;

* pyrenn is a recurrent

neural network toolbox for Python;

1.6. Examples

13

https://pandas.pydata.org/
https://docs.scipy.org/doc/numpy-dev/user/index.html
https://github.com/yabata/pyrenn

prodyn Documentation, Release 0.1

* pdb is a specific module, which allows to debug Python codes.

def read_data(file):
xls = pd.ExcelFile (file)

states = xls.parse('DP-States',index_col=[0])

cst = xls.parse('Constants',index_col=[0]) ['Value']

srs = xls.parse('Time-Series',index_col=[0])

U = xls.parse('DP-Decisions',index_col=[0]) ['Decisions'].values

return cst,srs,U, states

Read_data reads data about the building system from the excel-file and assigns it to different parame-
ters.

def building(u,x,t,cst,Srs,Data):
1l = len(x)
delay=4
net = cst['net']

Opens function building responsible for the system transition. Also identifies the length 1 of the array
with possible system states X, gives a name to the pre-trained Neural Network (NN) net and chooses
number of timesteps delay for the initial input PO and output Y0 needed for the NN’s usage.

hour = Srs.loc[t]['hour']

solar = Srs.loc[t]['solar']

T _amb = Srs.loc[t]['T_amb']
user = Srs.loc[t]['use_room']
T_inlet = Srs.loc[t]['T_inlet']

Creates 5 inputs for the input array P required for the NN’s usage.

if u=='heating on':

massflow = cst['massflow']
elif u=='heating off':

massflow = 0

Defines the 6th and the last input of P in dependance of the current decision u.

P = np.array ([[hour], [solar], [T_amb], [user], [massflow], [T_inlet]],dtype =
—np.float)

—

Builds the input array P from six inputs for the current timestep t.

hour0 = Srs.loc[t-delay:t-1]['hour'].values.copy ()
solar0 = Srs.loc[t-delay:t-1]['solar'].values.copy ()
T_amb0 = Srs.loc[t-delay:t-1]1['T_amb'].values.copy ()
user0 = Srs.loc[t-delay:t-1]['use_room'].values.copy ()
T_inlet0 = Srs.loc[t-delay:t-1]['T_inlet'].values.copy ()

Creates 5 inputs for the initial input array P0, which is also needed for the NN’s usage. The length of
each input is equaled to the chosen delay at the beginning of the function.

X_3 = np.zeros (1)
P_th = np.zeros (1)
costx = np.zeros (1)

Defines array x_j for the building states after the transition, array P_th for thermal power given to the
building from heat pump and array costx, which will contain penalty costs for transition from each

14 Chapter 1. Contents

https://docs.python.org/3/library/pdb.html

prodyn Documentation, Release 0.1

building state in x to x_j according to current decision u.

for i,xi in enumerate (x) :
#prepare 6th input for PO and 2 outputs for YO
if t-delay<cst['t_start']:

#take all values for PO and Y0 from timeseries
if Data is None or t==cst['t_start']:
T_roomO = Srs.loc[t-delay:t-1]['T_room'].values.
—copy ()
P_th0O = Srs.loc[t-delay:t-1]['P_th'].values.copy()
massflow0 = Srs.loc[t-delay:t-1]['massflow'].
—values.copy ()

#take part of values from timeseries and part from big Data

else:
tx = t-cst['t_start']
T_room0 = np.concatenate([Srs.loc[t-delay:t-tx—1]][
—'T_room'].values.copy(),Data.loc[t-tx-1:tl].xs(i,level="Xidx_end") ['T_
—room'].values.copy()])

P_thO = np.concatenate([Srs.loc[t-delay:t-tx-1]['P_
—th'].values.copy(),Data.loc[t-tx-1:t-1].xs(i,level="Xidx_end"') ['P_th'].
—values.copy () 1)

massflow0 = np.concatenate([Srs.loc[t-delay:t-tx—
—1]['massflow'].values.copy(),Data.loc[t-tx-1:t-1].xs(i,level="Xidx_end") [
—'massflow'].values.copy()])

#take all values for PO and YO0 from big Data

else:
T_room0O =Data.loc[t-delay:t-1].xs(i,level="Xidx _end')['T_
—room'].values.copy ()
P_thO = Data.loc[t-delay:t-1].xs(i,level="Xidx_end') ['P_th
—'].values.copy ()
massflow0 = Data.loc[t-delay:t-1].xs(i,level="Xidx_end') [
— 'massflow'].values.copy ()

Loop for every possible state of the building from x opens. All other strings are responsible for pre-
pairing the 6th input massflow(for the input array PO and two outputs T_room0, P_th0 for the initial
output array Y0. In dependance of relation between current timestep t and t_start (initial timestep, from
which optimal builidng control should be found) these three parameters are created with values from
the timeseries srs and Data, which keeps all information about the previous transitions. There are three
cases for the massflow0, T_room0 and P_th0 creation. Supporting commentaries in this part split these
cases.

T roomO[-1] = xi

PO = np.array([hour0,solar0,T_amb0,user0,massflow0,T_inlet0],dtype = np.
—~float)

Y0 = np.array ([T_roomO,P_th0],dtype = np.float)

Corrects last value of T_room0 and builds initial input P and initial output YO arrays.

if np.any (P0!=P0) or np.any(YO!=YO0) :
#1f PO or Y0 not valid use valid values and apply penalty costs

costx[i] = 1000%10
x_J[i] = xi
P_th[i] = 0

else:

1.6. Examples 15

prodyn Documentation, Release 0.1

x_j[i],P_th[i] = prn.NNOut (P,net,P0=P0,Y0=Y0)

if x_jl[i] != x_j[i] or P_th[i] != P_th[i]:
pdb.set_trace()

Runs NN for one timestep. Checks if P0 and YO are valid. Two outputs of the NN usage are array x_j,
which keeps all possible states of the building after transition, and array P_th, which stores data about
delivered thermal power from the pump to the building. In the case of mistake a Python debugger will
be open. Here the loop for every possible state of the building from x closes.

Tmax = Srs.loc[t]['Tmax']
Tmin = Srs.loc[t]['Tmin']
costx = (x_j>Tmax) » (x_j-Tmax) **2+x1000 + (x_Jj<Tmin) * (Tmin-x_73)*»*x2+x1000+costx

Selects borders for the allowed T_room and calculates penalty costs costx if any state of x_j is out of
chosen borders.

x_j=np.clip(x_3j,x[0],x[-1])

Corrects x_j. Values smaller than x[0] become x[0], and values larger than x[-1] become x[-1].

P_el = P_th«T_inlet/(T_inlet-T_amb)
cost P_el * Srs.loc[t]['price_elec']*x0.25 + costx

Calculates cost of the transition by summing electricity and penalty costs.

data = pd.DataFrame (index = np.arange(l))
data['P_th'] = P_th

data['P_el'] = P_el

data['T_room'] = x_J

data['massflow'] = massflow

data['cost'] = cost

data['costx'] = costx

return cost, x_7Jj, data

Defines parameters, which will be put in data used in prodyn file. Returns of the building function are
costs of the transition cost, new array with building states x_j and data.

Building with Storage

The presence of the heat storage makes this system different to the building. Due to this build-
ing_with_storage has 4 decisions and 2 states (the room temperature Troom and energy content of
the storage E). The goal and period of simulation are identical to the building example. In the Figure
13 schematic picture the building_with_storage system is given.

By reason of long-time simulation the results are already given in the folder related to this example.

Note: Building and building_with_storage examples can be simulated only in forward direction.

16 Chapter 1. Contents

prodyn Documentation, Release 0.1

solar
radiation

Tamb

storage on/off pump on/off

%

mechvent

i Php Pel
A heat -

\ /
- ~

use

heat storage
room

Troom

==ilje

time

Fig. 1.13: Figure 13: Illustration of the building_with_storage example

CHP

Grid, gas-boiler, chp power plant, battery and heat storage are components of the system, which should
cover given heat and electical demand. Energy contents of the battery and heat storage are 2 states of
the system. When chp is on, it covers the demand. Surplus of electricity is stored in the battery and sold
to the grid. Surplus of the heat is stored in the heat storage. When chp is off, at first both demands are
covered by storages, then by the grid and gas boiler. The goal of optimization is to find the path, where
both storages will be empty at the final timestep. Figure 14 shows simplified scheme of the chp system.

PV Storage

Photovoltaic system with storage form the system for covering given electrical demand. Energy content
of the storage is the only state of the system. List U contains three possible decisions. With normal
system operates without participation of the storage. Possible surplus of the produced by pv power can
be saved in the storage with charge decision. With discharge system tries to cover the residual demand
by stored energy. After each possible system’s decision grid load is checked. This residual power is
covered by or fed into the grid. The main goal is to find the result, where the storage is empty at the end.
[lustration of the current example is presented in the Figure 15.

Pv_storage_model, which describes the transition from i to j according to each possible decision u, is
written in two ways. In first case the transition is applied for the whole array X, which characterizes the
system. In the second case - for each possible condition of X. Calculation for each condition and jump
from one to another are realized inside the loop.

1.6. Examples 17

prodyn Documentation, Release 0.1

50 8.0
4.0 A h - 6.0 A
530 A £
LAV M) s\ A
= AVl 2, VI IL I
1.0 f \] =20 W
. ' \, \
0,0 N \/ \j \‘, 0.0 l 'A
T4 4 7 101316 19 22 25 28 31 34 37 40 43 46 T4 4 7 1013 16 19 22 25 25 31 34 37 40 43 46
time time
battery I
heat storage

grid CHP (on/off) gas boiler

=
>

time

Fig. 1.14: Figure 14: Illustration of the chp example

supply —

o
=}

=
=}

_ -

A II\\ I,f‘W"\
\N \

Tl

”')

el demand
¥ [¥%]
= =
P—
o
"=|5__

i
—
_...--'

33 41

— . storage

‘ pv (normal, charge, discharge)

feed-in

time

Fig. 1.15: Figure 15: Illustration of the pv_storage example

18

Chapter 1. Contents

CHAPTER 2

Features

* mutiple states...

19

prodyn Documentation, Release 0.1

20

Chapter 2. Features

CHAPTER 3

Get Started

. download or clone (with git) this repository to a directory of your choice.

. Copy the prodyn. py file in the prodyn folder to a directory which is already in python’s search
path or add the prodyn folder to python’s search path (sys.path) (how to)

. Run the given examples in the examples folder.

. Implement your own system function.

21

https://github.com/yabata/prodyn/archive/master.zip
http://git-scm.com/
http://stackoverflow.com/questions/17806673/where-shall-i-put-my-self-written-python-packages/17811151#17811151)

prodyn Documentation, Release 0.1

22

Chapter 3. Get Started

cHAPTER 4

Dependencies (Python)

* numpy for mathematical operations

* pandas only for using the examples

23

http://www.numpy.org/
https://pandas.pydata.org

prodyn Documentation, Release 0.1

24

Chapter 4. Dependencies (Python)

Python Module Index

prodyn, |

25

prodyn Documentation, Release 0.1

26

Python Module Index

Index

P
prodyn (module), 1

27

	Contents
	Features
	Get Started
	Dependencies (Python)
	Python Module Index

