
PDC Documentation
Release 1.10.0-1.77.gaf79f73

PDC Devel Team

Apr 03, 2018

Contents

1 Using API 3
1.1 PDC API Stability Promise . 3

1.1.1 What stable means? . 3
1.1.2 Exceptions . 4

1.2 Authentication . 4
1.3 Paging . 4
1.4 Change monitoring . 5
1.5 Override Ordering . 5

2 Bulk operations 7
2.1 Create . 7
2.2 Delete . 7
2.3 Update . 8
2.4 Errors . 8

3 Setup development environment 9
3.1 Source Code . 9
3.2 Installation . 9

3.2.1 Option 1: Start it on RPM . 9
3.2.2 Option 2: Start it on virtualenv . 10
3.2.3 Option 3: Start it on Docker . 10

3.3 Customize settings . 10
3.4 Init database . 11
3.5 Run devel server . 11

4 API Development 13
4.1 Checklist . 13
4.2 Writing documentation . 14

5 PDC Model Graphs 15
5.1 overview . 15
5.2 auth . 15
5.3 bindings . 15
5.4 changeset . 15
5.5 common . 15
5.6 component . 16
5.7 compose . 16

i

5.8 contact . 16
5.9 osbs . 16
5.10 package . 16
5.11 partners . 16
5.12 release . 16
5.13 repository . 16
5.14 usage . 16

6 Release 17
6.1 Versioning . 17
6.2 Release Instruction . 18

6.2.1 Tag . 18
6.2.2 Test Build . 18
6.2.3 Push . 19
6.2.4 Release . 19

7 Deployment 21
7.1 Install via yum . 21
7.2 Configure Django settings . 21
7.3 Initialize database . 21
7.4 Collect static . 22
7.5 Config apache . 22
7.6 Running PDC behind reverse proxy . 22

8 Messaging 23
8.1 Overview . 23
8.2 Supported Messengers . 24
8.3 To Be Improved . 25

9 Indices and tables 27

ii

PDC Documentation, Release 1.10.0-1.77.gaf79f73

Contents:

Contents 1

PDC Documentation, Release 1.10.0-1.77.gaf79f73

2 Contents

CHAPTER 1

Using API

This page contains details about using PDC from the API user view-point.

1.1 PDC API Stability Promise

Product Definition Center promises API stability and forwards-compatibility of APIv1 from version 0.9.0. In a nut-
shell, this means that code you develop against PDC will continue to work with future releases. You might be required
to make changes to your usage of the API when changing to a different version of the API or when you want to make
use of new features.

1.1.1 What stable means?

In this context, stable means:

• The documented APIs will not be removed or renamed

• Arguments for APIs will not be removed or renamed

• Keys in returned JSON dictionaries will not be removed or renamed

• If new features are added to these APIs – which is quite possible – they will not break or change the
meaning of existing methods. In other words, “stable” does not (necessarily) mean complete

• Default values of optional arguments will not change

• Order of returned results will not change for following results:

– releases in releases resource API

– composes inside compose_set in releases resource API

– composes in composes resource API

• If, for some reason, an API declared stable must be removed or replaced, it will be declared deprecated in
given version of the API and removed/replaced in future version of API

3

PDC Documentation, Release 1.10.0-1.77.gaf79f73

• We’ll only break backwards compatibility of these APIs if a bug or security hole makes it completely
unavoidable.

To make use of this stability your client code has to accept unknown keys and values in responses and ignore them if
they are not recognized.

1.1.2 Exceptions

There are a few exceptions to the above stability promise. Specifically:

• APIs marked as experimental are not part of promise. This enables us to add new APIs and test them
properly before marking them as stable

• If a security or other high-impact bug is encountered we might break stability promise. This would be used
as last resort.

1.2 Authentication

By default, all the API calls, except GET requests, require authentication, though this depends on PDC server settings.
If you’re logged in, you can list permissions and group you’re in at /rest_api/v1/auth/current-user/. To
see who has which permissions see table at /rest_api/perms/.

While the web UI is authenticated using an external system such as Kerberos or SAML2, the API uses a custom
authentication for performance reasons.

The expected workflow is as follows:

1. Obtain an authorization token from the API /rest_api/v1/auth/token/obtain/. This is one of end-
points that actually use the same authentication system as the web UI.

2. Perform requested actions using the token. It needs to be sent with the request in an HTTP header
Authorization. With curl, this can be done with the -H flag (for example -H "Authorization:
Token XXX").

The token you receive from the API is tied to your user account. Currently, the token is valid indefinitely. However, if
you leak it somewhere, you can manually request a new token, which will invalidate the old one. To do this, use the
/rest_api/v1/auth/token/refresh/ API.

If you access the API through one of PDC client, the authentication can be handled transparently for you.

1.3 Paging

The lists returned from the API can be quite long. They are paginated by default with pages containing 20 items.

The structure of paginated reply is JSON object with following keys:

count Total number of items. Essentially, this tells you how many items you would get if you got all the pages and
concatenated them.

next URL where you can get the next page. Contains null on the last page.

previous URL where the previous page is. On the first page it contains null.

results The actual data as a JSON array.

4 Chapter 1. Using API

PDC Documentation, Release 1.10.0-1.77.gaf79f73

You can control the details of the paginating by a couple query parameters. The page parameter specifies which page
you want. With page_size you can set up different size of a page. The maximum allowed number of results per
page is 100. Specifying anything higher has the same result as specifying 100. There is a special value of -1 for the
page size, which would turn pagination off and give all the results at once. In this case, the response is just the result
array without any count or URLS.

Please be careful when turning the pagination off. If your query could return hundreds or thousands of results, consider
getting the data page by page instead.

1.4 Change monitoring

Whenever a change is performed through the API, a log is created so that it is possible to find out what, when, why
and by who was changed.

The changes can be viewed from the API under the /rest_api/v1/changesets/ end-point. There is also a
view on the web pages. A logged-in user can access it from the menu in top right corner.

To store the reason for the change, add HTTP header PDC-Change-Comment, whose value is an arbitrary string
that will be stored with the change.

1.5 Override Ordering

The client can override the ordering of the results with query parameter. By default, the query parameter is named
ordering. For example, to order releases by release_id:

http://example.com/rest_api/v1/releases/?ordering=release_id

The client may also specify reverse orderings by prefixing the field name with ‘-‘.

For example, to reverse orderings of releases by release_id:

http://example.com/rest_api/v1/releases/?ordering=-release_id

1.4. Change monitoring 5

http://example.com/rest_api/v1/releases/?ordering=release_id
http://example.com/rest_api/v1/releases/?ordering=-release_id

PDC Documentation, Release 1.10.0-1.77.gaf79f73

6 Chapter 1. Using API

CHAPTER 2

Bulk operations

The REST API provides a way to perform many operations in a single request. However, all these operations in a
single request must work with the same collection (e.g. release components or products).

All these bulk operations are available on the resource list URL. Unless stated otherwise in the documentation for a
particular resource, the bulk operation is implemented in terms of the standard call operating on a single item.

The bulk call is atomic – all operations will be performed or none will.

2.1 Create

The input to this call should be a list of JSON objects. The rules for the items in the list are same as when creating a
single item in the collection.

The items will be created in the order in which they were specified in the request.

The response from this call will include a list of whatever would be returned by creating the resources one by one. The
status code on success is 201 CREATED.

Note that the only way in which the bulk create differs from regular create is the request data.

2.2 Delete

To delete multiple items in a collection, send a DELETE request to the list URL. The request should include a body
which should be a list of identifiers of items to be deleted.

The items will be deleted in the order in which they were specified in the request.

The exact format of the identifier is collection specific. Generally it should be the identifier you would append to the
URL to get a detail view of the item.

On success the response will be 204 NO CONTENT.

7

PDC Documentation, Release 1.10.0-1.77.gaf79f73

2.3 Update

Updating multiple items is possible via the PUT or PATCH method directed to the list URL of a collection. In both
cases, the request body should be a JSON object, where keys are identifiers of objects (same as for bulk delete) and
their values describe desired changes.

Exact format of the changes description is resource dependant. It should have the same structure as when updating a
single item.

Because JSON objects are not ordered, the order in which the items will be updated is not specified and can be different
to what is specified in the request.

On success the response will have the 200 OK status code. The response body will include a JSON object with the
same structure as in the original request, only change descriptions will be replaced with whatever gets returned by the
update method for single item. Note that if the requested change results in a change of the identifier, the response will
still contain the old identifier with new value for the item.

2.4 Errors

If an error occurs during processing a bulk operation, all changes from the request will be aborted and no change log
will be recorded. The status code of an error response depends on what went wrong.

The structure of the response body should (in case of client errors) consist of a JSON object with the following
structure.:

{
"detail": <string|object>,
"id_of_invalid_data": <string|int>,
"invalid_data": object

}

The detail key denotes a more precise description of the error. Its value is supplied by the single item manipulating
function.

The id_of_invalid_data describes which part of the request caused the error. For create, it is an integer index
from the request array (starting from zero), for update or delete it is the identifier.

The invalid_data contains the actual part of request that was invalid. It is only present when creating or updating.

Please note that the processing always stops when encountering the first error. It may be very well possible that even
when the reported error is fixed, the request will fail with another error.

8 Chapter 2. Bulk operations

CHAPTER 3

Setup development environment

3.1 Source Code

$ git clone https://github.com/release-engineering/product-definition-center.git

3.2 Installation

3.2.1 Option 1: Start it on RPM

For development purposes, install following dependencies:

• python = 2.7

• python-django = 1.11

• python-ldap

• python-requests

• python-requests-kerberos

• python-mock

• kobo >= 0.4.3

• kobo-django

• djangorestframework >= 3.5.4

• django-mptt >= 0.8.6

• Markdown

• django-cors-headers >= 2.0.0

• [productmd](https://github.com/release-engineering/productmd.git)

9

https://github.com/release-engineering/productmd.git

PDC Documentation, Release 1.10.0-1.77.gaf79f73

• [patternfly1](https://copr.fedoraproject.org/coprs/patternfly/patternfly1/)

• django-filter >= 1.0.2

• python-qpid-proton

3.2.2 Option 2: Start it on virtualenv

• Install virtualenvwrapper

$ pip install virtualenvwrapper

and setup according to ‘Setup’ steps in /usr/bin/virtualenvwrapper.sh. Then create virtual envi-
ronment

$ mkvirtualenv pdc

• Run the following

$ workon pdc
$ pip install -r requirements/devel.txt

to activate pdc virtualenv and install all the dependencies.

3.2.3 Option 3: Start it on Docker

• Install Docker: see the official installation guide for details. Generally, it might be enough to run install it with
yum and then run it.

$ sudo yum install docker-engine
$ sudo service docker start

• Use this command to build a new image

$ sudo docker build -t <YOUR_NAME>/pdc <the directory your Dockerfile is located>

• Run the container (:Z flag is required to mount volumes with SELinux)

$ docker run -it -P -v $PWD:$PWD:Z <YOUR_NAME>/pdc python $PWD/manage.py
→˓runserver 0.0.0.0:8000

• Check the address

1. Find the address of the docker machine (127.0.0.1 –> DOCKER_HOST).

2. Find the mapped port of your running container

$ sudo docker ps -l --> PORT

• Access it by visiting DOCKER_HOST:PORT in your web browser.

3.3 Customize settings

You can use the dist settings template by copying it to settings_local.py:

10 Chapter 3. Setup development environment

https://copr.fedoraproject.org/coprs/patternfly/patternfly1/
https://docs.docker.com/installation/

PDC Documentation, Release 1.10.0-1.77.gaf79f73

$ cp settings_local.py.dist settings_local.py

Feel free to customize your settings_local.py. Changes will be populated automatically. In local development envi-
ronment, you may need to set DEBUG = True to get better error messages and comment out ALLOWED_HOSTS
setting.

When you run PDC locally, you may not want to enable the permission checks, just uncomment
DISABLE_RESOURCE_PERMISSION_CHECK line.

3.4 Init database

To initialize database, run:

$ python manage.py migrate --noinput

3.5 Run devel server

To run development server, run:

$ make run

For development you may find it useful to enable Django Debug Toolbar.

Related settings is documented in comment at the top of settings_local.py.dist.

3.4. Init database 11

http://django-debug-toolbar.readthedocs.org/en/1.3.2/

PDC Documentation, Release 1.10.0-1.77.gaf79f73

12 Chapter 3. Setup development environment

CHAPTER 4

API Development

Each resource available on the REST API is implemented in terms of a couple objects. The main one is a ViewSet,
which may optionally use a Serializer and a FilterSet.

This is a guide for adding new resources.

4.1 Checklist

1. Identify where to implement it: it can be part of existing application or you can create a new application. If you
want a new application, use

$ mkdir pdc/apps/your_app
$ python manage.py startapp your_app pdc/apps/your_app

2. Create your models. Make sure to implement export method for each model that will be editable through the
API.

3. Generate migrations

$ python manage.py makemigrations your_app

4. Make sure the ViewSet inherits from StrictQueryParamMixin to properly handle unknown query pa-
rameters.

5. If the resource objects can be created, updated or deleted, use ChangeSet* mixins (or PDCModelViewSet
as single parent).

6. The docstring of the methods will be visible in browsable documentation. Use Markdown for formatting. See
below for other helpers you can use to simplify documentation.

7. Serializer should inherit from StrictSerializerMixin or implement the same logic itself (report error
when unknown field is specified).

8. Write test cases for both success and error paths.

13

PDC Documentation, Release 1.10.0-1.77.gaf79f73

4.2 Writing documentation

The browsable documentation is exported from docstrings of view set methods. It uses Markdown as a markup
language. There are a couple helpers that make some things easier.

First of all, string %(HOST_NAME)s, %(API_ROOT)s expand to host name of the current server and path to the
API root, respectively.

To include a link to another resource, rather than using the macros above, there is a better way:

• $URL:resourcename:param1$ will expand to URL to that resource. Examples:

– $URL:release-list$→ http://pdc.example.com/rest_api/v1/releases/

– $URL:product-detail:dp$ → http://pdc.example.com/rest_api/v1/products/
dp/

• $LINK:resourcename:param1:param2$ will expand to clickable link to that resource. The link label
will be the URL of the resource (without the host name).

To describe available query filters, use %(FILTERS)s macro. This expands to an unordered list with filter names
and types of the value. The serializer can be described with %(SERIALIZER)s, which expands to a code block with
JSON describing the data. For create/update actions you may need to use %(WRITABLE_SERIALIZER)s which
excludes all read-only fields.

14 Chapter 4. API Development

http://daringfireball.net/projects/markdown/syntax

CHAPTER 5

PDC Model Graphs

Current PDC Model Graphs:

5.1 overview

5.2 auth

5.3 bindings

5.4 changeset

5.5 common

15

PDC Documentation, Release 1.10.0-1.77.gaf79f73

5.6 component

5.7 compose

5.8 contact

5.9 osbs

5.10 package

5.11 partners

5.12 release

5.13 repository

5.14 usage

16 Chapter 5. PDC Model Graphs

CHAPTER 6

Release

6.1 Versioning

PDC versioning is based on Semantic Versioning.

And it’s RPM compatible.

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner,

3. PATCH version when you make backwards-compatible bug fixing.

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

1. A pre-release version MAY be denoted by appending a hyphen and an identifier immediately following the patch
version.

Identifier MUST be comprised and only with ASCII alphanumerics [0-9A-Za-z]. Identifier MUST NOT be
empty. Numeric identifier MUST NOT include leading zeroes. Pre-release versions have a lower precedence
than the associated normal version. A pre-release version indicates that the version is unstable and might not
satisfy the intended compatibility requirements as denoted by its associated normal version. Examples: 1.0.0-
alpha, 1.0.0-sprint5, 1.0.0-rc4.

2. Build metadata MAY be denoted by appending a hyphen and a series of dot separated identifiers immediately
following the patch or a dot and a series of dot separated identifiers immediately following the pre-release
version.

Identifiers MUST be comprise and only with ASCII alphanumerics [0-9A-Za-z]. Identifiers MUST NOT be
empty. Build metadata SHOULD be ignored when determining version precedence. Thus two versions that dif-
fer only in the build metadata, have the same precedence. Examples: 1.0.0-12.g1234abc, 1.0.0-s5.4.g1234abc.

17

http://semver.org/spec/v2.0.0.html

PDC Documentation, Release 1.10.0-1.77.gaf79f73

6.2 Release Instruction

In practice, we use tito to add git tag and do release including tag based on releases and current HEAD based on test
releases.

Note: tito version >= 0.6.2, install guide refer to: https://github.com/dgoodwin/tito

A short instructions as:

1. Tag: tito tag

2. Test Build: tito build –rpm –offline

3. Push: git push origin && git push origin $TAG

4. Release: tito release copr-pdc/copr-pdc-test

For each step, more detail are:

6.2.1 Tag

A new git tag need to be added before starting a new release:

$ tito tag

It will:

• bump version or release, based on which tagger is used, see .tito/tito.props;

• create an annotated git tag based on our version;

• update the spec file accordingly, generate changelog event.

For more options about tito tag, run tito tag –help.

6.2.2 Test Build

Once release tag is available, we can do some build tests including source tarball checking, and rpm building testing.

generate local source tarball
$ tito build --tgz --offline

generate local rpm build
$ tito build --rpm --offline

If everything goes well, you could push your commit and tag to remote, otherwise the tag need to be undo:

$ tito tag -u

Note: During developing, we could also generate test build any time, which will be based on current HEAD instead
of latest tag.

generate test builds
$ tito build --test --tgz/srpm/rpm

18 Chapter 6. Release

PDC Documentation, Release 1.10.0-1.77.gaf79f73

6.2.3 Push

When you’re happy with your build, it’s time to push commit and tag to remote.

$ git push origin && git push origin <your_tag>

6.2.4 Release

Thanks to fedorapeople.org and Fedora Copr, we could use tito to release PDC as a yum or dnf repo. So that user
could install PDC packages after enable the repo.1

Note: Before doing any release, make sure that you have account on both sites and also make sure that you could
access to your fedorapeople space2 and have enough permissions3 to build PDC in Copr.

You need to create a directory called pdc_srpms/ under your fedorapeople space public_html/ to hold all the uploaded
srpms.

copr-cli will be used, installed by sudo yum/dnf install copr-cli and configure it.4

Currently there are two projects in Copr: pdc for all tag based releases and pdc-test for test builds. We have two
release targets in tito, copr-pdc is for pdc in Copr and copr-pdc-test is for pdc-test respectively.

Request as Builder for projects pdc/pdc-test and pdc/pdc, wait until admin approves.

After all setup, release with tito:

$ tito release copr-pdc
or
$ tito release copr-pdc-test

Go and grab a cup of tea or coffee, the release build will be come out soon

test builds: `https://copr.fedoraproject.org/coprs/pdc/pdc-test/builds/`
tag based builds: `https://copr.fedoraproject.org/coprs/pdc/pdc/builds/`

1 https://fedorahosted.org/copr/wiki/HowToEnableRepo
2 http://fedoraproject.org/wiki/Infrastructure/fedorapeople.org#Accessing_Your_fedorapeople.org_Space
3 https://fedorahosted.org/copr/wiki/UserDocs#CanIgiveaccesstomyrepotomyteammate
4 https://copr.fedoraproject.org/api/

6.2. Release Instruction 19

https://fedorapeople.org/
https://copr.fedoraproject.org/
https://fedorahosted.org/copr/wiki/HowToEnableRepo
http://fedoraproject.org/wiki/Infrastructure/fedorapeople.org#Accessing_Your_fedorapeople.org_Space
https://fedorahosted.org/copr/wiki/UserDocs#CanIgiveaccesstomyrepotomyteammate
https://copr.fedoraproject.org/api/

PDC Documentation, Release 1.10.0-1.77.gaf79f73

20 Chapter 6. Release

CHAPTER 7

Deployment

7.1 Install via yum

$ yum install pdc-server

The RPM includes a cron job to perform daily synchronization of users with LDAP. It is installed to /etc/cron.
daily and does not need any configuration.

7.2 Configure Django settings

mv settings_local.py.dist to settings_local.py
change database settings in /usr/lib/pythonX.Y/site-packages/pdc/settings_local.py

7.3 Initialize database

create database
$ su - postgres
$ psql
postgres=# create database "db_name" owner "user_name";
postgres=# \q

migrate database
$ django-admin migrate --settings=pdc.settings --noinput

21

PDC Documentation, Release 1.10.0-1.77.gaf79f73

7.4 Collect static

$ django-admin collectstatic --settings=pdc.settings

7.5 Config apache

replace PDC_HOSTNAME with server’s hostname in /etc/httpd/conf.d/pdc.conf

7.6 Running PDC behind reverse proxy

To make sure documentation links work correctly when PDC is running behind proxy, add
USE_X_FORWARDED_HOST = True in setting_local.py file.

The link to Django documentation: https://docs.djangoproject.com/en/1.9/ref/settings/#use-x-forwarded-host .

22 Chapter 7. Deployment

https://docs.djangoproject.com/en/1.9/ref/settings/#use-x-forwarded-host

CHAPTER 8

Messaging

8.1 Overview

Messaging enables PDC to send out useful informations to message bus so that other systems can subscribe and deal
with them.

Current design is based on Django Middleware system, by implementing our MsgMiddleware, we could initialize
a message queue for every incoming request during the process_request, and push generated messages into it
while processing the request in the view, if no error occurs, before response get returned to user, we pop out all the
messages and invoke the configured backend to send them to the Message Bus.

PDC Messaging Overview and Dataflow:

User Request User Response
+ ^

+-----+ | |
| PDC | | |
+-----+--+
v			
+---------------+			
	MsgMiddleware		^
+---------------+-------------------------------+ +------------+			
	+-----------v-+ Init +-------+----+	+------------+	
→˓Message			
		Process Req +->+ +-->Process Rsp +-----> +--------> Bus	
	+-----------+-+		+------------+
			^ Dequeue
+--^------+ +------------+			
	+--v------+---+		
		Msg Queue	
+--------+	+----+--------+ ^		
	View		^ Enqueue
+--------+--------------------------------------+			

23

PDC Documentation, Release 1.10.0-1.77.gaf79f73

	v -----+-------------->+				
+---+					
+--+

8.2 Supported Messengers

There are two messengers that PDC provides, you should choose which one to use according to your messaging
infrastructure. Also you could write your own messenger based on your own requirements.

Once you got the answer what left is to configure MESSAGE_BUS item in the settings file accordingly. The key
determining which backend to use is BACKEND, whose value should be a dotted module path pointing to the messenger
implementation.

Following is the brief introduction of each messenger along with their settings examples, it will help you to know
which one to use and how to configure it as well.

1. DummyMessenger (Default)

If you do not need to send messages out, you could just omit the configuration out entirely. The messages will
be logged, but not sent anyhere.

2. FedmsgMessenger

If you want to send PDC messages to Fedora Infrastructure Message Bus, you should choose
FedmsgMessenger.

fedmsg needs to be installed.

MESSAGE_BUS = {
'BACKEND': 'pdc.apps.messaging.backends.fedmsg.FedmsgMessenger',

}

3. RHMsgMessenger

This messenger is built on top of python-rhmsg library and is used to send notification to Red Hat’s internal
message bus.

To use it, the configuration should specify a list of message brokers, a path to a certificate used for authentication
and a topic prefix to use for all messages. See the example below for details.

The file pointed to by CERTIFICATE should contain both the public certificate and the private key in PEM
format.

MESSAGE_BUS = {
'BACKEND': 'pdc.apps.messaging.backends.rhmsg.RHMsgMessenger',
The brokers will be tried in random order. If connection can not
be made in a given timeout, another URL is tried.
'URLS': [

'amqps://broker01.example.com:5671',
'amqps://broker02.example.com:5671',

],
How long to wait for each broker. The default is 60 seconds.
'CONNECTION_TIMEOUT': 5,

'CERTIFICATE': '/etc/pdc/certificate.pem',
'CACERT': '/etc/pdc/authoritycert.crt',

24 Chapter 8. Messaging

PDC Documentation, Release 1.10.0-1.77.gaf79f73

This value is prepended to topic of all messages.
'TOPIC_PREFIX': 'VirtualTopic.eng.pdc',

}

8.3 To Be Improved

• Better Error handling

• Message structure refine

• Transaction based Messaging

• Persistent messages that failed to send out

• Non-blocking

8.3. To Be Improved 25

PDC Documentation, Release 1.10.0-1.77.gaf79f73

26 Chapter 8. Messaging

CHAPTER 9

Indices and tables

• genindex

• search

27

	Using API
	PDC API Stability Promise
	What stable means?
	Exceptions

	Authentication
	Paging
	Change monitoring
	Override Ordering

	Bulk operations
	Create
	Delete
	Update
	Errors

	Setup development environment
	Source Code
	Installation
	Option 1: Start it on RPM
	Option 2: Start it on virtualenv
	Option 3: Start it on Docker

	Customize settings
	Init database
	Run devel server

	API Development
	Checklist
	Writing documentation

	PDC Model Graphs
	overview
	auth
	bindings
	changeset
	common
	component
	compose
	contact
	osbs
	package
	partners
	release
	repository
	usage

	Release
	Versioning
	Release Instruction
	Tag
	Test Build
	Push
	Release

	Deployment
	Install via yum
	Configure Django settings
	Initialize database
	Collect static
	Config apache
	Running PDC behind reverse proxy

	Messaging
	Overview
	Supported Messengers
	To Be Improved

	Indices and tables

