

Welcome to PDC’s documentation!

Contents:

	1. Using API
	1.1. PDC API Stability Promise
	1.1.1. What stable means?

	1.1.2. Exceptions

	1.2. Authentication

	1.3. Paging

	1.4. Change monitoring

	1.5. Override Ordering

	2. Bulk operations
	2.1. Create

	2.2. Delete

	2.3. Update

	2.4. Errors

	3. Setup development environment
	3.1. Source Code

	3.2. Installation
	3.2.1. Option 1: Start it on RPM

	3.2.2. Option 2: Start it on virtualenv

	3.2.3. Option 3: Start it on Docker

	3.3. Customize settings

	3.4. Init database

	3.5. Run devel server

	4. API Development
	4.1. Checklist

	4.2. Writing documentation

	5. PDC Model Graphs
	5.1. overview

	5.2. auth

	5.3. bindings

	5.4. changeset

	5.5. common

	5.6. component

	5.7. compose

	5.8. contact

	5.9. osbs

	5.10. package

	5.11. partners

	5.12. release

	5.13. repository

	5.14. usage

	6. Release
	6.1. Versioning

	6.2. Release Instruction
	6.2.1. Tag

	6.2.2. Test Build

	6.2.3. Push

	6.2.4. Release

	7. Deployment
	7.1. Install via yum

	7.2. Configure Django settings

	7.3. Initialize database

	7.4. Collect static

	7.5. Config apache

	7.6. Running PDC behind reverse proxy

	8. Messaging
	8.1. Overview

	8.2. Supported Messengers

	8.3. To Be Improved

Indices and tables

	Index

	Search Page

1. Using API

This page contains details about using PDC from the API user view-point.

1.1. PDC API Stability Promise

Product Definition Center promises API stability and forwards-compatibility of
APIv1 from version 0.9.0. In a nutshell, this means that code you develop
against PDC will continue to work with future releases. You might be required
to make changes to your usage of the API when changing to a different version of
the API or when you want to make use of new features.

1.1.1. What stable means?

	In this context, stable means:

	
	The documented APIs will not be removed or renamed

	Arguments for APIs will not be removed or renamed

	Keys in returned JSON dictionaries will not be removed or renamed

	If new features are added to these APIs – which is quite possible – they will not break or change the meaning of existing methods. In other words, “stable” does not (necessarily) mean complete

	Default values of optional arguments will not change

	
	Order of returned results will not change for following results:

	
	releases in releases resource API

	composes inside compose_set in releases resource API

	composes in composes resource API

	If, for some reason, an API declared stable must be removed or replaced, it will be declared deprecated in given version of the API and removed/replaced in future version of API

	We’ll only break backwards compatibility of these APIs if a bug or security hole makes it completely unavoidable.

To make use of this stability your client code has to accept unknown keys and
values in responses and ignore them if they are not recognized.

1.1.2. Exceptions

	There are a few exceptions to the above stability promise. Specifically:

	
	APIs marked as experimental are not part of promise. This enables us to
add new APIs and test them properly before marking them as stable

	If a security or other high-impact bug is encountered we might break stability
promise. This would be used as last resort.

1.2. Authentication

By default, all the API calls, except GET requests, require authentication,
though this depends on PDC server settings. If you’re logged in, you can list
permissions and group you’re in at /rest_api/v1/auth/current-user/. To see
who has which permissions see table at /rest_api/perms/.

While the web UI is authenticated using an external system such as Kerberos or
SAML2, the API uses a custom authentication for performance reasons.

The expected workflow is as follows:

	Obtain an authorization token from the API /rest_api/v1/auth/token/obtain/.
This is one of end-points that actually use the same authentication system
as the web UI.

	Perform requested actions using the token. It needs to be sent with the
request in an HTTP header Authorization. With curl, this can be done
with the -H flag (for example -H "Authorization: Token XXX").

The token you receive from the API is tied to your user account. Currently, the
token is valid indefinitely. However, if you leak it somewhere, you can
manually request a new token, which will invalidate the old one. To do this,
use the /rest_api/v1/auth/token/refresh/ API.

If you access the API through one of PDC client, the authentication can be
handled transparently for you.

1.3. Paging

The lists returned from the API can be quite long. They are paginated by
default with pages containing 20 items.

The structure of paginated reply is JSON object with following keys:

	count

	Total number of items. Essentially, this tells you how many items you would
get if you got all the pages and concatenated them.

	next

	URL where you can get the next page. Contains null on the last page.

	previous

	URL where the previous page is. On the first page it contains null.

	results

	The actual data as a JSON array.

You can control the details of the paginating by a couple query parameters. The
page parameter specifies which page you want. With page_size you can
set up different size of a page. The maximum allowed number of results per page
is 100. Specifying anything higher has the same result as specifying 100. There
is a special value of -1 for the page size, which would turn pagination off
and give all the results at once. In this case, the response is just the result
array without any count or URLS.

Please be careful when turning the pagination off. If your query could return
hundreds or thousands of results, consider getting the data page by page
instead.

1.4. Change monitoring

Whenever a change is performed through the API, a log is created so that it is
possible to find out what, when, why and by who was changed.

The changes can be viewed from the API under the /rest_api/v1/changesets/
end-point. There is also a view on the web pages. A logged-in user can access
it from the menu in top right corner.

To store the reason for the change, add HTTP header PDC-Change-Comment,
whose value is an arbitrary string that will be stored with the change.

1.5. Override Ordering

The client can override the ordering of the results with query parameter.
By default, the query parameter is named ordering.
For example, to order releases by release_id:

http://example.com/rest_api/v1/releases/?ordering=release_id

The client may also specify reverse orderings by prefixing the field name with ‘-‘.

For example, to reverse orderings of releases by release_id:

http://example.com/rest_api/v1/releases/?ordering=-release_id

2. Bulk operations

The REST API provides a way to perform many operations in a single request.
However, all these operations in a single request must work with the same
collection (e.g. release components or products).

All these bulk operations are available on the resource list URL. Unless
stated otherwise in the documentation for a particular resource, the bulk
operation is implemented in terms of the standard call operating on a single
item.

The bulk call is atomic – all operations will be performed or none will.

2.1. Create

The input to this call should be a list of JSON objects. The rules for the
items in the list are same as when creating a single item in the collection.

The items will be created in the order in which they were specified in the
request.

The response from this call will include a list of whatever would be returned
by creating the resources one by one. The status code on success is 201
CREATED.

Note that the only way in which the bulk create differs from regular create is
the request data.

2.2. Delete

To delete multiple items in a collection, send a DELETE request to the list
URL. The request should include a body which should be a list of identifiers of
items to be deleted.

The items will be deleted in the order in which they were specified in the
request.

The exact format of the identifier is collection specific. Generally it should
be the identifier you would append to the URL to get a detail view of the item.

On success the response will be 204 NO CONTENT.

2.3. Update

Updating multiple items is possible via the PUT or PATCH method
directed to the list URL of a collection. In both cases, the request body
should be a JSON object, where keys are identifiers of objects (same as for
bulk delete) and their values describe desired changes.

Exact format of the changes description is resource dependant. It should have
the same structure as when updating a single item.

Because JSON objects are not ordered, the order in which the items will be
updated is not specified and can be different to what is specified in the
request.

On success the response will have the 200 OK status code. The response body
will include a JSON object with the same structure as in the original request,
only change descriptions will be replaced with whatever gets returned by the
update method for single item. Note that if the requested change results in a
change of the identifier, the response will still contain the old identifier
with new value for the item.

2.4. Errors

If an error occurs during processing a bulk operation, all changes from the
request will be aborted and no change log will be recorded. The status code of
an error response depends on what went wrong.

The structure of the response body should (in case of client errors) consist of
a JSON object with the following structure.:

{
 "detail": <string|object>,
 "id_of_invalid_data": <string|int>,
 "invalid_data": object
}

The detail key denotes a more precise description of the error. Its value
is supplied by the single item manipulating function.

The id_of_invalid_data describes which part of the request caused the error.
For create, it is an integer index from the request array (starting from zero),
for update or delete it is the identifier.

The invalid_data contains the actual part of request that was invalid. It
is only present when creating or updating.

Please note that the processing always stops when encountering the first error.
It may be very well possible that even when the reported error is fixed, the
request will fail with another error.

3. Setup development environment

3.1. Source Code

$ git clone https://github.com/release-engineering/product-definition-center.git

3.2. Installation

3.2.1. Option 1: Start it on RPM

For development purposes, install following dependencies:

	python = 2.7

	python-django = 1.11

	python-ldap

	python-requests

	python-requests-kerberos

	python-mock

	kobo >= 0.4.3

	kobo-django

	djangorestframework >= 3.5.4

	django-mptt >= 0.8.6

	Markdown

	django-cors-headers >= 2.0.0

	[productmd](https://github.com/release-engineering/productmd.git)

	[patternfly1](https://copr.fedoraproject.org/coprs/patternfly/patternfly1/)

	django-filter >= 1.0.2

	python-qpid-proton

3.2.2. Option 2: Start it on virtualenv

	Install virtualenvwrapper

$ pip install virtualenvwrapper

and setup according to ‘Setup’ steps in /usr/bin/virtualenvwrapper.sh.
Then create virtual environment

$ mkvirtualenv pdc

	Run the following

$ workon pdc
$ pip install -r requirements/devel.txt

to activate pdc virtualenv and install all the dependencies.

3.2.3. Option 3: Start it on Docker

	Install Docker: see the official installation
guide [https://docs.docker.com/installation/] for details. Generally, it
might be enough to run install it with yum and then run it.

$ sudo yum install docker-engine
$ sudo service docker start

	Use this command to build a new image

$ sudo docker build -t <YOUR_NAME>/pdc <the directory your Dockerfile is located>

	Run the container (:Z flag is required to mount volumes with SELinux)

$ docker run -it -P -v $PWD:$PWD:Z <YOUR_NAME>/pdc python $PWD/manage.py runserver 0.0.0.0:8000

	Check the address

	Find the address of the docker machine (127.0.0.1 –> DOCKER_HOST).

	Find the mapped port of your running container

$ sudo docker ps -l --> PORT

	Access it by visiting DOCKER_HOST:PORT in your web browser.

3.3. Customize settings

You can use the dist settings template by copying it to settings_local.py:

$ cp settings_local.py.dist settings_local.py

Feel free to customize your settings_local.py. Changes will be populated
automatically. In local development environment, you may need to set DEBUG =
True to get better error messages and comment out ALLOWED_HOSTS setting.

When you run PDC locally, you may not want to enable the permission checks,
just uncomment DISABLE_RESOURCE_PERMISSION_CHECK line.

3.4. Init database

To initialize database, run:

$ python manage.py migrate --noinput

3.5. Run devel server

To run development server, run:

$ make run

For development you may find it useful to enable Django Debug Toolbar [http://django-debug-toolbar.readthedocs.org/en/1.3.2/].

Related settings is documented in comment at the top of
settings_local.py.dist.

4. API Development

Each resource available on the REST API is implemented in terms of a couple
objects. The main one is a ViewSet, which may optionally use a
Serializer and a FilterSet.

This is a guide for adding new resources.

4.1. Checklist

	Identify where to implement it: it can be part of existing application or
you can create a new application. If you want a new application, use

$ mkdir pdc/apps/your_app
$ python manage.py startapp your_app pdc/apps/your_app

	Create your models. Make sure to implement export method for each model
that will be editable through the API.

	Generate migrations

$ python manage.py makemigrations your_app

	Make sure the ViewSet inherits from StrictQueryParamMixin to
properly handle unknown query parameters.

	If the resource objects can be created, updated or deleted, use
ChangeSet* mixins (or PDCModelViewSet as single parent).

	The docstring of the methods will be visible in browsable documentation. Use
Markdown for formatting. See below for other helpers you can use to simplify
documentation.

	Serializer should inherit from StrictSerializerMixin or implement the
same logic itself (report error when unknown field is specified).

	Write test cases for both success and error paths.

4.2. Writing documentation

The browsable documentation is exported from docstrings of view set methods. It
uses Markdown [http://daringfireball.net/projects/markdown/syntax] as a markup language. There are a couple helpers that make
some things easier.

First of all, string %(HOST_NAME)s, %(API_ROOT)s expand to host name of
the current server and path to the API root, respectively.

To include a link to another resource, rather than using the macros above,
there is a better way:

	$URL:resourcename:param1$ will expand to URL to that resource. Examples:

	$URL:release-list$ → http://pdc.example.com/rest_api/v1/releases/

	$URL:product-detail:dp$ → http://pdc.example.com/rest_api/v1/products/dp/

	$LINK:resourcename:param1:param2$ will expand to clickable link to that
resource. The link label will be the URL of the resource (without the host
name).

To describe available query filters, use %(FILTERS)s macro. This expands to
an unordered list with filter names and types of the value. The serializer can
be described with %(SERIALIZER)s, which expands to a code block with JSON
describing the data. For create/update actions you may need to use
%(WRITABLE_SERIALIZER)s which excludes all read-only fields.

5. PDC Model Graphs

Current PDC Model Graphs:

5.1. overview

[image: _images/overview.svg]

5.2. auth

[image: _images/auth.svg]

5.3. bindings

[image: _images/bindings.svg]

5.4. changeset

[image: _images/changeset.svg]

5.5. common

[image: _images/common.svg]

5.6. component

[image: _images/component.svg]

5.7. compose

[image: _images/compose.svg]

5.8. contact

[image: _images/contact.svg]

5.9. osbs

[image: _images/osbs.svg]

5.10. package

[image: _images/package.svg]

5.11. partners

[image: _images/partners.svg]

5.12. release

[image: _images/release.svg]

5.13. repository

[image: _images/repository.svg]

5.14. usage

[image: _images/usage.svg]

6. Release

6.1. Versioning

PDC versioning is based on Semantic Versioning [http://semver.org/spec/v2.0.0.html].

And it’s RPM compatible.

Given a version number MAJOR.MINOR.PATCH, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards-compatible manner,

	PATCH version when you make backwards-compatible bug fixing.

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

	A pre-release version MAY be denoted by appending a hyphen and an identifier immediately following the patch version.

Identifier MUST be comprised and only with ASCII alphanumerics [0-9A-Za-z].
Identifier MUST NOT be empty.
Numeric identifier MUST NOT include leading zeroes.
Pre-release versions have a lower precedence than the associated normal version.
A pre-release version indicates that the version is unstable and might not satisfy the intended compatibility requirements as denoted by its associated normal version.
Examples: 1.0.0-alpha, 1.0.0-sprint5, 1.0.0-rc4.

	Build metadata MAY be denoted by appending a hyphen and a series of dot separated identifiers immediately following the patch or a dot and a series of dot separated identifiers immediately following the pre-release version.

Identifiers MUST be comprise and only with ASCII alphanumerics [0-9A-Za-z].
Identifiers MUST NOT be empty.
Build metadata SHOULD be ignored when determining version precedence.
Thus two versions that differ only in the build metadata, have the same precedence.
Examples: 1.0.0-12.g1234abc, 1.0.0-s5.4.g1234abc.

6.2. Release Instruction

In practice, we use tito to add git tag and do release including tag based on releases and current HEAD based on test releases.

Note

tito version >= 0.6.2, install guide refer to: https://github.com/dgoodwin/tito

A short instructions as:

	Tag: tito tag

	Test Build: tito build –rpm –offline

	Push: git push origin && git push origin $TAG

	Release: tito release copr-pdc/copr-pdc-test

For each step, more detail are:

6.2.1. Tag

A new git tag need to be added before starting a new release:

$ tito tag

It will:

	bump version or release, based on which tagger is used, see .tito/tito.props;

	create an annotated git tag based on our version;

	update the spec file accordingly, generate changelog event.

For more options about tito tag, run tito tag –help.

6.2.2. Test Build

Once release tag is available, we can do some build tests including source tarball checking, and rpm building testing.

generate local source tarball
$ tito build --tgz --offline

generate local rpm build
$ tito build --rpm --offline

If everything goes well, you could push your commit and tag to remote, otherwise the tag need to be undo:

$ tito tag -u

Note

During developing, we could also generate test build any time, which will be based on current HEAD instead of latest tag.

generate test builds
$ tito build --test --tgz/srpm/rpm

6.2.3. Push

When you’re happy with your build, it’s time to push commit and tag to remote.

$ git push origin && git push origin <your_tag>

6.2.4. Release

Thanks to fedorapeople.org [https://fedorapeople.org/] and Fedora Copr [https://copr.fedoraproject.org/], we could
use tito to release PDC as a yum or dnf repo.
So that user could install PDC packages after enable the repo. 1

Note

Before doing any release, make sure that you have account on both sites and also make sure that you could
access to your fedorapeople space 2 and have enough permissions 3 to build PDC in Copr.

You need to create a directory called pdc_srpms/ under your fedorapeople space public_html/ to hold all the uploaded
srpms.

copr-cli will be used, installed by sudo yum/dnf install copr-cli and configure it. 4

Currently there are two projects in Copr: pdc for all tag based releases and pdc-test for test builds. We have two
release targets in tito, copr-pdc is for pdc in Copr and copr-pdc-test is for pdc-test respectively.

Request as Builder for projects pdc/pdc-test and pdc/pdc, wait until admin approves.

After all setup, release with tito:

$ tito release copr-pdc
or
$ tito release copr-pdc-test

Go and grab a cup of tea or coffee, the release build will be come out soon

test builds: `https://copr.fedoraproject.org/coprs/pdc/pdc-test/builds/`
tag based builds: `https://copr.fedoraproject.org/coprs/pdc/pdc/builds/`

	1

	https://fedorahosted.org/copr/wiki/HowToEnableRepo

	2

	http://fedoraproject.org/wiki/Infrastructure/fedorapeople.org#Accessing_Your_fedorapeople.org_Space

	3

	https://fedorahosted.org/copr/wiki/UserDocs#CanIgiveaccesstomyrepotomyteammate

	4

	https://copr.fedoraproject.org/api/

7. Deployment

7.1. Install via yum

$ yum install pdc-server

The RPM includes a cron job to perform daily synchronization of users with
LDAP. It is installed to /etc/cron.daily and does not need any
configuration.

7.2. Configure Django settings

mv settings_local.py.dist to settings_local.py
change database settings in /usr/lib/pythonX.Y/site-packages/pdc/settings_local.py

7.3. Initialize database

create database
$ su - postgres
$ psql
postgres=# create database "db_name" owner "user_name";
postgres=# \q

migrate database
$ django-admin migrate --settings=pdc.settings --noinput

7.4. Collect static

$ django-admin collectstatic --settings=pdc.settings

7.5. Config apache

replace PDC_HOSTNAME with server’s hostname in /etc/httpd/conf.d/pdc.conf

7.6. Running PDC behind reverse proxy

To make sure documentation links work correctly when PDC is running behind proxy,
add USE_X_FORWARDED_HOST = True in setting_local.py file.

The link to Django documentation: https://docs.djangoproject.com/en/1.9/ref/settings/#use-x-forwarded-host .

8. Messaging

8.1. Overview

Messaging enables PDC to send out useful informations to message bus so that other
systems can subscribe and deal with them.

Current design is based on Django Middleware system, by implementing our MsgMiddleware,
we could initialize a message queue for every incoming request during the process_request,
and push generated messages into it while processing the request in the view,
if no error occurs, before response get returned to user, we pop out all the messages
and invoke the configured backend to send them to the Message Bus.

PDC Messaging Overview and Dataflow:

 User Request User Response
 + ^
+-----+ | |
| PDC | | |
+-----+--+
v			
+---------------+			
	MsgMiddleware		^
+---------------+-------------------------------+ +------------+			
	+-----------v-+ Init +-------+----+	+------------+	Message
		Process Req +->+ +-->Process Rsp +-----> +--------> Bus	
	+-----------+-+		+------------+
			^ Dequeue
+--^------+ +------------+			
	+--v------+---+		
		Msg Queue	
+--------+	+----+--------+ ^		
	View		^ Enqueue
+--------+--------------------------------------+			
	v -----+-------------->+		
+---+			
+--+

8.2. Supported Messengers

There are two messengers that PDC provides, you should choose which one to use
according to your messaging infrastructure. Also you could write your own
messenger based on your own requirements.

Once you got the answer what left is to configure MESSAGE_BUS item in the
settings file accordingly. The key determining which backend to use is
BACKEND, whose value should be a dotted module path pointing to the
messenger implementation.

Following is the brief introduction of each messenger along with their settings
examples, it will help you to know which one to use and how to configure it as
well.

	DummyMessenger (Default)

If you do not need to send messages out, you could just omit the
configuration out entirely. The messages will be logged, but not sent
anyhere.

	FedmsgMessenger

If you want to send PDC messages to Fedora Infrastructure Message Bus, you
should choose FedmsgMessenger.

fedmsg needs to be installed.

MESSAGE_BUS = {
 'BACKEND': 'pdc.apps.messaging.backends.fedmsg.FedmsgMessenger',
}

	RHMsgMessenger

This messenger is built on top of python-rhmsg library and is used to
send notification to Red Hat’s internal message bus.

To use it, the configuration should specify a list of message brokers, a
path to a certificate used for authentication and a topic prefix to use for
all messages. See the example below for details.

The file pointed to by CERTIFICATE should contain both the public
certificate and the private key in PEM format.

MESSAGE_BUS = {
 'BACKEND': 'pdc.apps.messaging.backends.rhmsg.RHMsgMessenger',
 # The brokers will be tried in random order. If connection can not
 # be made in a given timeout, another URL is tried.
 'URLS': [
 'amqps://broker01.example.com:5671',
 'amqps://broker02.example.com:5671',
],
 # How long to wait for each broker. The default is 60 seconds.
 'CONNECTION_TIMEOUT': 5,

 'CERTIFICATE': '/etc/pdc/certificate.pem',
 'CACERT': '/etc/pdc/authoritycert.crt',

 # This value is prepended to topic of all messages.
 'TOPIC_PREFIX': 'VirtualTopic.eng.pdc',
}

8.3. To Be Improved

	Better Error handling

	Message structure refine

	Transaction based Messaging

	Persistent messages that failed to send out

	Non-blocking

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to PDC’s documentation!

 		
 Using API

 		
 PDC API Stability Promise

 		
 What stable means?

 		
 Exceptions

 		
 Authentication

 		
 Paging

 		
 Change monitoring

 		
 Override Ordering

 		
 Bulk operations

 		
 Create

 		
 Delete

 		
 Update

 		
 Errors

 		
 Setup development environment

 		
 Source Code

 		
 Installation

 		
 Option 1: Start it on RPM

 		
 Option 2: Start it on virtualenv

 		
 Option 3: Start it on Docker

 		
 Customize settings

 		
 Init database

 		
 Run devel server

 		
 API Development

 		
 Checklist

 		
 Writing documentation

 		
 PDC Model Graphs

 		
 overview

 		
 auth

 		
 bindings

 		
 changeset

 		
 common

 		
 component

 		
 compose

 		
 contact

 		
 osbs

 		
 package

 		
 partners

 		
 release

 		
 repository

 		
 usage

 		
 Release

 		
 Versioning

 		
 Release Instruction

 		
 Tag

 		
 Test Build

 		
 Push

 		
 Release

 		
 Deployment

 		
 Install via yum

 		
 Configure Django settings

 		
 Initialize database

 		
 Collect static

 		
 Config apache

 		
 Running PDC behind reverse proxy

 		
 Messaging

 		
 Overview

 		
 Supported Messengers

 		
 To Be Improved

_static/up.png

_static/up-pressed.png

