

Privileged Residues Documentation

Contents:

	Privileged Residues
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	API Documentation
	Privileged Residues Package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2018-02-05)

Indices and tables

	Index

	Module Index

	Search Page

Privileged Residues

[image: _images/privileged_residues.svg]
 [https://pypi.python.org/pypi/privileged_residues][image: _images/privileged_residues1.svg]
 [https://travis-ci.org/RosettaCommons/privileged_residues][image: Documentation Status]
 [https://privileged-residues.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/RosettaCommons/privileged_residues/]Privileged Residues contains methods for placing residues on the surface of a target protein that can be added to a RIF.

	Free software: Apache Software License 2.0

	Documentation: https://privileged-residues.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install Privileged Residues, run this command in your terminal:

$ pip install privileged_residues

This is the preferred method to install Privileged Residues, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Privileged Residues can be downloaded from the Github repo [https://github.com/weitzner/privileged_residues].

You can either clone the public repository:

$ git clone git://github.com/weitzner/privileged_residues

Or download the tarball [https://github.com/weitzner/privileged_residues/tarball/master]:

$ curl -OL https://github.com/weitzner/privileged_residues/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Privileged Residues in a project:

import privileged_residues

API Documentation

	Privileged Residues Package
	Submodules
	privileged_residues.chemical module

	privileged_residues.geometry module

	privileged_residues.postproc module

	privileged_residues.privileged_residues module

	privileged_residues.table module

	privileged_residues.util module

	Module contents

Privileged Residues Package

Submodules

privileged_residues.chemical module

	
class privileged_residues.chemical.FunctionalGroup

	Bases: tuple

Store hydrogen bonding information about a
functional group as well as information that can be used to position it
in three-space.

	
resName

	str – Name of the functional group.

	
donor

	bool – True if the functional group can be a donor in a hydrogen bond.

	
acceptor

	bool – True if the functional group can be an acceptor in a hydrogen bond.

	
atoms

	list of str – List of three atom names that are used to construct a coordinate
frame to describe the position of the functional group in three-space.

	
acceptor

	Alias for field number 2

	
atoms

	Alias for field number 3

	
donor

	Alias for field number 1

	
resName

	Alias for field number 0

	
class privileged_residues.chemical.ResInfo

	Bases: tuple

Store functional group information about an amino
acid as well as information that can be used to position it in
three-space.

	
grp

	str – Name of a functional group.

	
atoms

	list of str – List of three atom names that are used to construct a coordinate
frame to describe the position of the functional group of the amino
acid in three-space.

	
atoms

	Alias for field number 1

	
grp

	Alias for field number 0

	
privileged_residues.chemical.acceptor_acceptor_rays(pose, selector)

	Get acceptor-acceptor network ray pairs for the residues
indicated by the provided residue selector.

	Parameters

	
	pose (pyrosetta.pose) – Target structure.

	selector (pyrosetta.rosetta.core.select.residue_selector.ResidueSelector) – Residue selector to apply to the pose.

	Returns

	All of the ray pairs corresponding to possible
acceptor-acceptor network interactions in the selected
subset of the pose.

	Return type

	list of tuple of np.ndarray

	
privileged_residues.chemical.donor_acceptor_rays(pose, selector)

	Get donor-acceptor network ray pairs for the residues indicated
by the provided residue selector.

	Parameters

	
	pose (pyrosetta.pose) – Target structure.

	selector (pyrosetta.rosetta.core.select.residue_selector.ResidueSelector) – Residue selector to apply to the pose.

	Returns

	All of the ray pairs corresponding to possible
donor-acceptor network interactions in the selected subset
of the pose.

	Return type

	list of tuple of np.ndarray

	
privileged_residues.chemical.donor_donor_rays(pose, selector)

	Get donor-donor network ray pairs for the residues indicated by
the provided residue selector.

	Parameters

	
	pose (pyrosetta.pose) – Target structure.

	selector (pyrosetta.rosetta.core.select.residue_selector.ResidueSelector) – Residue selector to apply to the pose.

	Returns

	All of the ray pairs corresponding to possible donor-donor
network interactions in the selected subset of the pose.

	Return type

	list of tuple of np.ndarray

	
privileged_residues.chemical.sc_bb_rays(pose, selector)

	Get sidechain-to-backbone ray pairs for the residues indicated
by the provided residue selector.

	Parameters

	
	pose (pyrosetta.pose) – Target structure.

	selector (pyrosetta.rosetta.core.select.residue_selector.ResidueSelector) – Residue selector to apply to the pose.

	Returns

	All of the ray pairs corresponding to possible
sidechain-to-backbone interactions in the selected subset of the
pose.

	Return type

	list of tuple of np.ndarray

	
privileged_residues.chemical.sc_sc_rays(pose, selector)

	Get sidechain-to-sidechain ray pairs for the residues indicated
by the provided residue selector.

	Parameters

	
	pose (pyrosetta.pose) – Target structure.

	selector (pyrosetta.rosetta.core.select.residue_selector.ResidueSelector) – Residue selector to apply to the pose.

	Returns

	All of the ray pairs corresponding to possible
sidechain-to-sidechain interactions in the selected subset of
the pose.

	Return type

	list of tuple of np.ndarray

	
privileged_residues.chemical.sc_scbb_rays(pose, selector)

	Get sidechain-to-sidechain-and-backbone ray pairs for the
residues indicated by the provided residue selector.

	Parameters

	
	pose (pyrosetta.pose) – Target structure.

	selector (pyrosetta.rosetta.core.select.residue_selector.ResidueSelector) – Residue selector to apply to the pose.

	Returns

	All of the ray pairs corresponding to possible
sidechain-to-sidechain-and-backbone interactions in the selected
subset of the pose.

	Return type

	list of tuple of np.ndarray

privileged_residues.geometry module

	
privileged_residues.geometry.coords_to_transform(coords)

	From a set of coordinates, construct a homogeneous transform.

	Parameters

	coords (np.ndarray) –

	Returns

	Homogeneous transform constructed from the input coordinates.

	Return type

	np.ndarray

	
privileged_residues.geometry.create_ray(center, base)

	Create a ray of unit length from two points in space and return
it.

Notes

The ray is constructed such that:

	The direction points from base to center and is unit length.

	The point at which the ray is centered is at center.

	Parameters

	
	center (numpy.ndarray) – A (1, 3) array representing the coordinate at which to center
the resulting ray.

	base (numpy.ndarray) – A (1, 3) array representing the base used to determine the
direction of the resulting ray.

	Returns

	A (2,4) array representing a ray in space with a point and a
unit direction.

	Return type

	numpy.ndarray

	
privileged_residues.geometry.rays_to_transform(first, second)

	From two rays, construct a homogeneous transform.

	Parameters

	
	first (np.ndarray) –

	second (np.ndarray) –

	Returns

	Homogeneous transform constructed from the input rays.

	Return type

	np.ndarray

privileged_residues.postproc module

	
privileged_residues.postproc.filter_clash_minimize(pose, hits, clash_cutoff=35.0, rmsd_cutoff=0.5, sfx=None, mmap=None, limit=0)

	Filter match output for clashes, then minimize the remaining
structures against the target pose.

	Parameters

	
	pose (pyrosetta.Pose) – Target structure.

	hits (np.ndarray) – Set of functional group matches against positions in the target.

	clash_cutoff (float) – Maximum tolerated increase in score terms during clash checking.

	sfx (pyrosetta.rosetta.core.scoring.ScoreFunction, optional) – Scorefunction to use during minimization. If left as None, a
default scorefunction is constructed.

	mmap (pyrosetta.rosetta.protocols.minimization_packing.MinMover, optional) – Movemap to use during minimization. If left as None, a default
movemap is constructed.

	Yields

	pyrosetta.Pose – Next target structure and matched functional group, minimized
and in complex.

privileged_residues.privileged_residues module

	
class privileged_residues.privileged_residues.PrivilegedResidues(path='/home/onalant/dump/2018-05-07_datatables/database.h5')

	Bases: object

	
match(ray1, ray2, group)

	Construct all of the matched structures for a given ray pair
and group.

Notes

The following are the available search groups.

	Bidentates:

	
	“sc_sc”

	“sc_scbb”

	“sc_bb”

	Networks:

	
	“acceptor_acceptor”

	“acceptor_donor”

	“donor_acceptor”

	“donor_donor”

	Parameters

	
	ray1 (np.ndarray) –

	ray2 (np.ndarray) – Rays used to search in the underlying database.

	group (str) – Dataset to search in.

	Yields

	pyrosetta.Pose – Functional group as placed by transform from table.

	
search(pose, groups, selector)

	Search for privileged interactions in a pose.

	Parameters

	
	pose (pyrosetta.Pose) – Target structure.

	groups (list of str) – Datasets or groups to search for matches in.

	selector (pyrosetta.rosetta.core.select.residue_selector.ResidueSelector) – Residue selector to apply to the pose.

	Yields

	tuple of np.uint64 and pyrosetta.Pose – Target ray pair hash and output pose.

privileged_residues.table module

	
class privileged_residues.table.GenericTable(dbpath)

	Bases: object

Indexed key-value store implementation.

Best used on large datasets that do not fit into memory.

	
fetch(key, findgroup='')

	
	Parameters

	
	key (np.uint64) – A hash value.

	findgroup (str, optional) – A named group to search for hashes in. Defaults to “”, which
searches in all named groups.

	Returns

	Concatenated list of matches for a hash and group query.

	Return type

	np.ndarray

privileged_residues.util module

	
privileged_residues.util.models_from_pdb(fname)

	Get models from a PDB as individual poses.

	Parameters

	fname (str) – Path to a PDB.

	Yields

	pyrosetta.Pose – The next model in the PDB.

	
privileged_residues.util.numpy_to_rif(r)

	Convert from NumPy ray representation to RIF ray representation.

	Parameters

	r (np.ndarray) – Input NumPy ray.

	Returns

	

	Return type

	rif.geom.Ray

Module contents

	
class privileged_residues.PrivilegedResidues(path='/home/onalant/dump/2018-05-07_datatables/database.h5')

	Bases: object

	
match(ray1, ray2, group)

	Construct all of the matched structures for a given ray pair
and group.

Notes

The following are the available search groups.

	Bidentates:

	
	“sc_sc”

	“sc_scbb”

	“sc_bb”

	Networks:

	
	“acceptor_acceptor”

	“acceptor_donor”

	“donor_acceptor”

	“donor_donor”

	Parameters

	
	ray1 (np.ndarray) –

	ray2 (np.ndarray) – Rays used to search in the underlying database.

	group (str) – Dataset to search in.

	Yields

	pyrosetta.Pose – Functional group as placed by transform from table.

	
search(pose, groups, selector)

	Search for privileged interactions in a pose.

	Parameters

	
	pose (pyrosetta.Pose) – Target structure.

	groups (list of str) – Datasets or groups to search for matches in.

	selector (pyrosetta.rosetta.core.select.residue_selector.ResidueSelector) – Residue selector to apply to the pose.

	Yields

	tuple of np.uint64 and pyrosetta.Pose – Target ray pair hash and output pose.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/RosettaCommons/privileged_residues/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Privileged Residues could always use more documentation, whether as part of the
official Privileged Residues docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/RosettaCommons/privileged_residues/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up privileged_residues for local development.

	Fork the privileged_residues repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/privileged_residues.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv privileged_residues
$ cd privileged_residues/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 privileged_residues tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/RosettaCommons/privileged_residues/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_privileged_residues

Credits

Development Lead

	Brian D. Weitzner <weitzner@uw.edu>

Contributors

None yet. Why not be the first?

History

0.1.0 (2018-02-05)

	First release on PyPI.

	This package is used to position amino acid residues at a protein interface in a “privileged” position.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 privileged_residues	

 	
 	
 privileged_residues.chemical	

 	
 	
 privileged_residues.geometry	

 	
 	
 privileged_residues.postproc	

 	
 	
 privileged_residues.privileged_residues	

 	
 	
 privileged_residues.table	

 	
 	
 privileged_residues.util	

Index

 A
 | C
 | D
 | F
 | G
 | M
 | N
 | P
 | R
 | S

A

 	
 	acceptor (privileged_residues.chemical.FunctionalGroup attribute), [1]

 	acceptor_acceptor_rays() (in module privileged_residues.chemical)

 	
 	atoms (privileged_residues.chemical.FunctionalGroup attribute), [1]

 	(privileged_residues.chemical.ResInfo attribute), [1]

C

 	
 	coords_to_transform() (in module privileged_residues.geometry)

 	
 	create_ray() (in module privileged_residues.geometry)

D

 	
 	donor (privileged_residues.chemical.FunctionalGroup attribute), [1]

 	
 	donor_acceptor_rays() (in module privileged_residues.chemical)

 	donor_donor_rays() (in module privileged_residues.chemical)

F

 	
 	fetch() (privileged_residues.table.GenericTable method)

 	
 	filter_clash_minimize() (in module privileged_residues.postproc)

 	FunctionalGroup (class in privileged_residues.chemical)

G

 	
 	GenericTable (class in privileged_residues.table)

 	
 	grp (privileged_residues.chemical.ResInfo attribute), [1]

M

 	
 	match() (privileged_residues.privileged_residues.PrivilegedResidues method)

 	(privileged_residues.PrivilegedResidues method)

 	
 	models_from_pdb() (in module privileged_residues.util)

N

 	
 	numpy_to_rif() (in module privileged_residues.util)

P

 	
 	privileged_residues (module)

 	privileged_residues.chemical (module)

 	privileged_residues.geometry (module)

 	privileged_residues.postproc (module)

 	
 	privileged_residues.privileged_residues (module)

 	privileged_residues.table (module)

 	privileged_residues.util (module)

 	PrivilegedResidues (class in privileged_residues)

 	(class in privileged_residues.privileged_residues)

R

 	
 	rays_to_transform() (in module privileged_residues.geometry)

 	
 	ResInfo (class in privileged_residues.chemical)

 	resName (privileged_residues.chemical.FunctionalGroup attribute), [1]

S

 	
 	sc_bb_rays() (in module privileged_residues.chemical)

 	sc_sc_rays() (in module privileged_residues.chemical)

 	
 	sc_scbb_rays() (in module privileged_residues.chemical)

 	search() (privileged_residues.privileged_residues.PrivilegedResidues method)

 	(privileged_residues.PrivilegedResidues method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Privileged Residues Documentation

 		
 Privileged Residues

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 API Documentation

 		
 Privileged Residues Package

 		
 Submodules

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2018-02-05)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

