

PRISONER

PRISONER is a framework for running ethical and reproducible social network
experiments.

PRISONER is actively under development, and has been released to help steer
its design, and to improve the consideration of these concerns in the community.

Features

	A single consistent API to collect and publish data from supported social network sites

	Built-in support for Facebook, Twitter, and Last.fm with simple interfaces to add support for additional services

	Simplified API for sensitively storing data collected from social network sites along with responses to experimental interventions, with support for any database engine with SQLAlchemy bindings [http://docs.sqlalchemy.org/en/rel_1_0/dialects/index.html]

	Declarative syntax for expressing the data collection requirements of an experiment to ensure only the data needed for an experiment can be collected.

	Built-in support for common sanitisations of sensitive data which can be invoked declaratively

	Includes tools to simplify the creation of Docker containers wrapping experiments along with an instance of PRISONER to support reproducibility of experiments

Currently in development

The following features are not yet ready for distribution, but will be
available in future releases. Please track progress on GitHub if you are
interested in contributing to these features.

	Automatic generation of consent forms based on the data-handling requirements of an experiment

	Improve the longevity of code by automatically mapping older API calls to newer API versions, gracefully degrading where individual calls can no longer be satisfied.

	Support the archiving of social network data and PRISONER workflows by generating metadata designed for ingest by research information systems.

What PRISONER is not

PRISONER is not:

	a crawler. PRISONER is designed to support the execution of user studies which handle social network data, and is not designed for crawling or scraping data from these services where there is no direct intervention from a participant. As a rule of thumb, if your experiment would not require individual participants to authenticate your experiment to access data via their social network account, it is probably not the kind of experiment PRISONER can support.

	a tool for “anonymising” social network data. Guaranteeing the anonymity of identifiable data while maintaining utility is not a trivial problem. PRISONER’s support for sanitisations is to coarsen sensitive data as they are collected, and is not intended for anonymising data before release.

If you have any issues deploying or using PRISONER, or have suggestions for how
to improve the framework, please raise an issue on GitHub. We would be delighted
if you would like to contribute code or improved documentation to PRISONER, and we will accept pull requests with test coverage.

This documentation includes tutorials to help you run a PRISONER instance,
build experiments which use social network data, and to package your
experiments such that others can reproduce them. A full API reference is
available, but familiarity with this is not required to use PRISONER.

Contents:

	Tutorials
	Running the PRISONER demo

	Installing PRISONER

	Writing your first experiment

	Deploying a PRISONER server

	Best practices for distributing reproducible PRISONER experiments

	prisoner package
	Subpackages

	Submodules

	prisoner.SocialObjects module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Tutorials

These tutorials help you install PRISONER, build a simple experiment, and
package your experiment so it can be reproduced by others. We strongly recommend
that you follow the first three tutorials.

	Running the PRISONER demo
	Prerequisites
	Facebook app

	Twitter app

	Docker

	Start the Docker container

	Running the demo

	Modifying the demo

	Saving data

	Packaging the modified demo

	Installing PRISONER
	Installing PRISONER for local development
	Spin-up a Docker VM

	Clone from GitHub
	Prerequisites

	Installing PRISONER

	Writing your first experiment
	Prerequisites

	In this tutorial

	Privacy policies
	Writing the privacy policy

	Experimental designs
	Writing the experimental design

	Writing the experiment app

	Deploying a PRISONER server

	Best practices for distributing reproducible PRISONER experiments
	1) Sharing code and PRISONER policies

	2) Forking PRISONER on GitHub

	3) Release a virtual machine image

	Final thoughts

Running the PRISONER demo

This tutorial helps you launch a Docker container with a self-contained instance
of PRISONER and a demo web application which demonstrates how to use its basic
functionality, connecting to Facebook and Twitter.

Prerequisites

The PRISONER demo uses data from Facebook and Twitter. To run this demo, you
will need to have Facebook and Twitter accounts to test the experiment with, be a
registered Facebook and Twitter developer, and create an app for both services
which PRISONER can use to make authenticated requests to the appropriate API.

Facebook app

Please follow these steps to create a Facebook app:

	Visit https://developers.facebook.com and follow the steps to register as a developer, if you have not done so before.

	From the navigation bar, click “My Apps > Add a new app > Website”.

	Provide a name for your experiment, such as “PRISONER Demo”. The name you choose here is not significant.

	Click “Skip quick start”, then go to the “Settings” page. Enter “localhost” as the Site URL and App Domains.

	At the top of the screen, note the App ID and App Secret for this app. You will need to provide these to PRISONER later.

Twitter app

Please follow these steps to create a Twitter app:

	Visit https://dev.twitter.com and click “Manage Your Apps” in the footer.

	Click “Create new app” and provide the required details.

	The “Callback URL” most be a non-empty value. As PRISONER dynamically provides

a callback, the callback given here is irrelevant. For example, you can supplyyour homepage or http://prisoner.cs.st-andrews.ac.uk
* Click “Create your Twitter application”.
* Go to the “Keys and access tokens” tab and make a note of the API key and
secret, which you will need later.

Docker

You will need to be running Docker [https://www.docker.com] to run the demo container. The Docker site provides guides to getting started for your platform.

Start the Docker container

If you are running macOS, you should run the following commands to correctly map the ports to the VirtualBox VM (where “default” is the name of your Docker VM). If you are running Docker natively on Linux, you do not need to do this:

VBoxManage controlvm default natpf1 "prisoner,tcp,127.0.0.1,5000,,5000"
VBoxManage controlvm default natpf1 "demo,tcp,127.0.0.1,9000,,9000"

To avoid port conflicts after using the Docker container, you should run the following when you’re done:

VBoxManage controlvm default natpf1 delete prisoner
VBoxManage controlvm default natpf1 delete demo

From the command line, run the following to download the Docker image for the PRISONER demo and start the container:

docker run -i -t -p 9000:9000 -p 5000:5000 --name prisoner-demo lhutton/prisoner-demo

If your /etc/resolv.conf points to 127.0.0.1 (default on Ubuntu installs since 12.04) Docker will try to use public DNS to resolve domains. In some configurations, this might not work (if you receive “Name or service not known” errors when trying to use this experiment, this is probably the cause), in which case you will need to manually provide a nameserver by running the container as follows:

docker run -i -t -p 9000:9000 -p 5000:5000 --dns=[YOUR_NAMESERVER_HERE] --name prisoner-demo lhutton/prisoner-demo

Running the demo

When the container starts, you will be prompted to enter the Facebook and
Twitter App IDs and secrets you noted earlier. Then, you will be given a URL to visit to start testing the experiment.

This demo initially shows the workflow of a trivial experiment which collects
some data from your Facebook profile, and displays it in the browser. You can run this experiment to make sure that the PRISONER instance is working. You will see how PRISONER provides the bootstrapping interface to the experiment, showing some basic information about how the experiment works, and the process of authenticating with Facebook.

To view and edit the underlying files, you will need to open a shell on the Docker container:

docker exec -it prisoner-demo /bin/bash

You can look at how the demo is implemented by visiting /usr/bin/prisoner-demo. “demo.py” implements the server for the web experiment, and shows how the PRISONER session is instantiated, and how Facebook data are collected and displayed. In “static/policy/design.xml” you can see the privacy policy which constrains this experiment. If you are not familiar with the role of the policy, consider reviewing the “Writing your first experiment” tutorial. This container includes vim for editing text files (TODO: include a simpler text editor too)

Modifying the demo

We can see how trivial modifications to the policy affect the execution of the
experiment. For example, when you tried this experiment, you will have seen that
your name was displayed, but not your politics and religion, even if you have
provided this in your Facebook profile. In demo.py we make a request to the PRISONER API for a “Person” object in our on_get() method, which retrieves a user’s biographical attributes, so why are these missing? If we turn to policy.xml, we can see why. Note that in the policy element, we enumerate the gender, first name, and last name attributes, which we have “retrieve” policies for. This provides a whitelist of the data we can collect, so let’s add the following religion and politics clauses after the “last name” attribute policy:

<attribute type="religion">
<attribute-policy allow="retrieve" />
</attribute>

<attribute type="politicalViews">
<attribute-policy allow="retrieve" />
</attribute>

If you now revisit the website for the demo experiment, and continue through the PRISONER bootstrap process, you will note that PRISONER automatically detects the changes to the policy and requests the appropriate additional Facebook permissions. Now, the missing attributes will be visible on the experimental results page.

Similarly, you can modify any other aspect of this demo to see how you can request different types of data. To understand the data you can collect from Facebook using PRISONER, consult the documentation for the Facebook Service Gateway.

So far, we have shown we can collect different types of data from Facebook. Now,
let’s change the experiment completely to collect data from Twitter instead.
This might sound like an arduous task, but we can do this by changing a single
line of code. Return to /usr/bin/prisoner-demo/demo.py and find line 28, which
currently indicates Facebook is our social network of choice. Change this to
read “Twitter” and save the file. Return to the URL for the experiment and run
through it one more time. Note that PRISONER now authenticates you with Twitter
instead, and instead of seeing Facebook’s status updates, you see a list of your
recent tweets. How is this possible? PRISONER provides a consistent API for
requesting equivalent types of data from different services. Therefore, just by
changing the name of the provider, we can collect data from a completely
different service, while maintaining all other parameters of the experiment.

If you return to the policy.xml we’ve edited already, you might notice we don’t
even have a policy for Twitter. While we have explicit Facebook policies to
collect attributes such as “gender” or “likes” which are Facebook-specific, we
have “base” policies which only refer to the common attributes in all base
social objects. Instead of matching the author on the Facebook session ID, we
use a special object, “session:Service.id” which allows us to authenticate with
whatever the current data provider is, allowing us to re-use a policy for any
service, including ones which don’t exist yet. Only if we required
Twitter-specific attributes would we need to write an explicit Twitter policy.

Saving data

When running an experiment, we usually want to save some data, which might take the form of some data we collected from a social network site, coupled with data provided by a participant, such as questionnaire responses. PRISONER provides a mechanism for saving data that works similarly to retrieving data from services. It ensures we can only store the data that we absolutely need for our experiment, and can help us apply any sanitisations to remove unnecessarily sensitive data before they are stored, while maintaining as association with additional data provided by participants during the course of an experiment.

We can test this by clicking the “Store this user profile” button, which will save the user profile object we summarise at the top of the screen to the database which PRISONER initialised when we started the experiment.

However, when we click this, we get an error. Why? Just like retrieving data, our policy needs to enable storing social objects on a per-object, and per-attribute basis. Let’s quickly amend our policy.xml file to let us save the name attributes of our user object, but not religion and politics. Within both the firstName and lastName elements, where we already have a “retrieve” attribute-policy, add the following:

<attribute-policy allow="store" />

Then, after the “retrieve” object-policy, add the following:

 <object-policy allow="store">
 <object-criteria>
 <attribute-match match="author.id" on_object="session:Facebook.id" />
 </object-criteria>
</object-policy>

What did this do? The “store” object-policy tells PRISONER we can now store
objects of the type Facebook:Person, so long as it matches the current
participant, while the two “store” attribute-policies only allow us to store these attributes.

Let’s reload the experiment, and try to save the object again. This time, you should be told this was successful. But what can we do with these data? Let’s go back to our shell on the Docker container and run the following:

sqlite3
.open /tmp/prisoner_demo.db
SELECT * from response;

Here you will see a JSON representation of the Person object we just saved. Note
that the attributes, such as religion and gender, have been nullified, while the name is still visible. From here, we can run our own analyses on these results, or share the SQLite database with others.

Packaging the modified demo

Now that we’ve made these changes, perhaps we want to package up the changes we’ve made, including our now-populated database, so others can reproduce our version of the experiment or run analyses with our results. Docker allows us to commit the changes we’ve made within a container and build a new image from that, which we can use to restore the state of this container at any time, or share with others. To do this, run the following:

docker commit prisoner-demo [YOUR_NAME]/prisoner-demo-mod

Now, if you run:

docker images

You will see prisoner-demo-mod among your cached images. From here, you could publish this to Docker Hub to make it publicly visible:

docker push [YOUR_NAME]/prisoner-demo-mod

Then, anyone else can pull and run your image, or you can simply run this container later as above, by running:

docker run -i -t -p 9000:9000 -p 5000:5000 --name prisoner-demo-mod lhutton/prisoner-demo-mod

Installing PRISONER

This tutorial helps you get up and running with a PRISONER instance.

Installing PRISONER for local development

For developing experiments, you will probably want to run a PRISONER server locally on your development machine to quickly iterate. There are two ways to do
this: using our pre-prepared Docker VM image, or cloning the latest release from
GitHub.

Spin-up a Docker VM

If you have familiarity with the Docker environment, using the PRISONER Docker
container is probably the easiest way to get up and running without having to
worry about your environment and resolving dependencies. We have an image in Docker Hub which includes the latest release from our GitHub repository.

This guide assumes you have installed Docker and are familiar with using it.

To spin-up a PRISONER instance, run the following at the command line:

docker run -p 5000:5000 --name prisoner lhutton/prisoner

This will pull the prisoner image from the DockerHub registry, and its prerequisites, which may take several minutes then start an instance of the container.

Now, PRISONER’s development server has started on port 5000. Test that
everything is working, and that Docker has correctly mapped the port by visiting
localhost:<mapped_port>, which should display a “Welcome to PRISONER” message.
Depending on your Docker configuration, you may have to
access the underlying VM via an alternative IP.

Clone from GitHub

Prerequisites

PRISONER should work on any platform which supports Python 2.7. PRISONER is not
compatible with Python 3.

Installing PRISONER

PRISONER is developed openly, with all active development pushed to GitHub [https://github.com/uoscompsci/PRISONER].
We recommend cloning the latest release [https://github.com/uoscompsci/PRISONER/releases] rather than pulling from
head for
stability. From the directory where you cloned the repository, run the following
at the command line to install any dependencies:

pip install -r requirements.txt

We strongly recommend running PRISONER from within a virtualenv to isolate
dependencies and avoid conflicts with your system Python configuration. See
this guide [http://docs.python-guide.org/en/latest/dev/virtualenvs/] for more
information about setting up virtual environments.

From the PRISONER directory, run the following to start the local development server:

python server/prisoner.wsgi

Make sure everything is working by visiting localhost:5000, where you should see
a “Welcome to PRISONER” message.

In the next tutorial, we cover writing your first PRISONER experiment.

Writing your first experiment

Please note, this tutorial is a work-in-progress and not complete. In the
meantime, we recommend reviewing the PRISONER demo for
an understanding of how to build a simple experiment.

Now that you have a PRISONER development server up and running, we are going to
write a simple experiment which collects some data from a participant’s Facebook
account, sanitises it, and displays it in the browser.

Prerequisites

This tutorial shows an experiment being written in Python, but as this is
to only demonstrate how to use the PRISONER web service, this can be easily
adapted to any other environment. This guide assumes a working understanding of
XML files.

This example requires a Facebook account to test, and assumes you are registered
as a Facebook developer [https://developers.facebook.com]. You will need to
create a Facebook app, and make a note of its App ID and Secret. A short guide
to doing this is available in our demo tutorial.

In this tutorial

PRISONER experiments consist of three elements, which we will introduce and
develop during this tutorial:

	Your experimental application

	An XML privacy policy

	An XML experimental design

Privacy policies

Privacy policies are XML documents which outline the types of data your
experiment needs to collect or publish to social network sites. They contain
rules that place constraints on how your experiment handles data.
For a given type of data (for example, a tweet, or a Facebook user profile),
the policy answers the following questions:

	Is my experiment able to handle this data type?

	Can my experiment retrieve, store, or publish this data type, or a combination of these?

	Under which conditions can I retrieve, store, or publish this data type?

	Which attributes of this data type can my experiment retrieve, store, or publish?

	Which attributes need to be sanitised as they are retrieved, stored, or published?

Encoding this information in a policy file yields some advantages from both
ethical and reproducibility perspectives:

	Policies can be written “offline” before you write any code. This allows you
to iterate on the appropriate data-handling strategy for your experiment,
including engagement with IRB or ethics boards, until you arrive at a final
set of constraints for your experiment.

	PRISONER enforces this policy at runtime, so that if the experimental code you are writing attempts to violate its constraints, you cannot inadvertently collect more data than needed for your experiment.

	The standardised representation of the policy allows other documents to be
automatically and consistently generated, such as consent forms for
participants which reflect the actual data-handling practices of a study, or
human-readable summaries of the study’s design for review by IRB or ethics
boards.

	Privacy policies are effectively a workflow standard for social network
experiments, and allow the protocols for studies to be shared. While ideally
coupled with the underlying experimental code to support full reproducibility
of experiments, the platform-agnostic nature of the privacy policy allows
other researchers to replicate a study under the same constraints, even if
they are not using PRISONER.

Writing the privacy policy

Outside of the PRISONER directory, create a directory to store your experiment
application. In there, create a new file called policy.xml. Populate it with the following:

<?xml version="1.0" encoding="UTF-8"?>

<p:privacy-policy
	xmlns:p="http://prisoner.cs.st-andrews.ac.uk/prisoner/privacy-policy"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://prisoner.cs.st-andrews.ac.uk/prisoner/privacy-policy privacy_policy.xsd">

	<policy for="Facebook:Person">
		<attributes>
			<attribute type="id">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
			<attribute type="displayName">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
			<attribute type="username">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
			<attribute type="image">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
			<attribute type="firstName">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
			<attribute type="middleName">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
			<attribute type="lastName">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
			<attribute type="birthday">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
			<attribute type="gender">
				<attribute-policy allow="retrieve"></attribute-policy>
			</attribute>
		</attributes>

		<object-policy allow="retrieve">
			<object-criteria>
					<attribute-match match="id" on_object="session:Facebook.id" />
			</object-criteria>
		</object-policy>
	</policy>
</p:privacy-policy>

So, what does this policy do? Simply, it enumerates the objects we can collect,
and the attributes of those objects we can collect. The policy file includes a
clear hierarchy where we define policy elements for each data type, which
contains a collection of attributes we can process, and an object-policy which
describes the criteria under which we can collect objects of this type. In this
experiment, we want to collect some biographical information about the
participant in this experiment, so our policy is for the User object provided by
Facebook. The Facebook prefix defines the namespace, which means we are
explicitly requesting Facebook’s representation of a User, and is not
generalisable to the other social network sites that PRISONER supports. This
means we can access Facebook-specific attributes, but at the cost of making our
experiment harder to adapt for other services. Because we only want to collect
data about the current participant, we provide an object-policy which dictates
that we can only collect a User object if it matches the ID of the participant.
This ensures our experiment can not inadvertently collect more sensitive data
than we need, such as the identitfy of the participant’s friends. Although we
now have criteria for collecting the objects themselves, the objects PRISONER
returns will have no attributes. Therefore, we must specifically enumerate the
attributes we need in the attributes collection of this policy. Each policy
element enables us to retrieve that attribute. We could add additional
attribute-policy elements for each attribute to also enable us to store those
attributes if we later wish to persist these data, but this is not necessary for
this experiment.

Later, when we write the experimental application, we will provide PRISONER with this policy to initialise the experiment and allow these constraints to be enforced.

Experimental designs

Experimental design files provide PRISONER with basic metadata about your
experiment, such as its name, properties for specific services such as API keys, and the structure of any data you wish to store so PRISONER can manage the database appropriately.

Writing the experimental design

In the same directory where you wrote your privacy policy, add another file
called design.xml, and populate it with the following:

<p:experimental-design xmlns:p="http://prisoner.cs.st-andrews.ac.uk/prisoner/experimental_design"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://prisoner.cs.st-andrews.ac.uk/prisoner/experimental_design.xsd">

	<experiment name="PRISONER Tutorial">
		<tables>
			<table name="participant" type="participant">
				<column name="email" type="string"/>
			</table>

			<table name="response" type="response">
				<column name="participant_id" type="string" />
				<column name="user" mapTo="Facebook:Person" />
			</table>
		</tables>
		<props>
			<prop for="Facebook" key="app_id" value="$APP_ID" />
			<prop for="Facebook" key="app_secret" value="$APP_SECRET" />
			<prop for="Facebook" key="api_version" value="2.0" />
			<prop for="PRISONER" key="secret" value="prisonerTutorialSecret" />
		</props>
	</experiment>
</p:experimental-design>

What does this design do? First of all, note that in the tables element, we
specify two tables. The first is marked as a “participant” table, which
indicates to PRISONER that the table stores metadata about individual
participants. This allows PRISONER’s internal record of an individual
participant, including their service-specific session identifiers, to be related
to the metadata that is specific to your experiment. In this case, we identify
participants by their email address.

Our second table is marked as a “response” table, which lets PRISONER know that
data collected during the course of an experiment can be stored here. For the
purposes of this tutorial, we will store the participant’s Facebook profile
along with our identifier for that participant.

The schema we have provided here does not directly translate to the underlying
database which PRISONER will instantiate on our behalf. The “mapTo” syntax in
our response table means PRISONER will store the representation of a Facebook
profile in a metatable, which individual response records will be related to.
Rather than directly accessing the database, PRISONER recommends you use its
persistence API to store responses and retrieve them, with fully-formed social
objects returned as part of the response, where appropriate.

Finally, we provide some properties, or “props”, which provide miscellaneous
metadata PRISONER needs to provide your experiment. Because we are using
Facebook, we must provide the App ID and secret for our app which we noted
earlier, so make sure you edit the file with these values as appropriate.
Finally, we provide a PRISONER secret. This is a passphrase which you will
provide to PRISONER whenever you make administrative commands, such as
initialising an experiment, to make sure you are authorised to do this.

Writing the experiment app

We’re two thirds of the way there! These two policy files do a lot of the work
in telling PRISONER what your experiment needs to do. From these two files,
PRISONER can create an entire pre-briefing structure and authentication flow,
and is now able to enforce constraints on our experiment’s data collection.

Let’s put this into action by writing a small web app. In this example, we’re
using Python and the WSGI library Werkzeug, but you can choose to follow along
in an alternative environment of your choosing. As PRISONER is exposed as a web
service, your application just consists of your experiment-specific logic, along
with some simple HTTP requests to PRISONER to initialise an experiment and
retrieve the appropriate data.

Our experimental application consists of four functions:
* Initialise the PRISONER experiment with the policy files we have prepared, and
allow PRISONER to authenticate our participant with Facebook

	Collect some data from the participant’s Facebook profile

	Present the collected data to the participant

	Store a response from the participant along with a sanitised subset of the

collected data in the PRISONER database.

Deploying a PRISONER server

This guide will explain how to deploy a PRISONER server.

Best practices for distributing reproducible PRISONER experiments

PRISONER aims to help make social network studies more reproducible, but what
does that mean in practice, and what do you need to do to make your
experiments reproducible?

First of all, when we talk about reproducibility, we mean someone else can
reproduce the methodology of your experiment. This is distinctive from
replicating or recomputing a result, where you might want to verify that
an algorithm produces a certain result given a certain input. This distinction
is important, because it means we need to make sure that others have access to
all of the resources needed to reproduce your experiment. This probably
doesn’t just mean the source code for your experimental software, or the
scripts you used to perform stats, but all manner of details, including how
participants were recruited, what types of data were collected about them, and
how they were briefed before taking part in the study.

We suggest that reproducibility hinges on three components: the availability
of code, methodology, and data. In this guide we discuss how you
can work towards adequate sharing of your code and methodology. While making
available the source code for your PRISONER-based experiments achieves the
former, it may only make a limited contribution to the latter. Sharing your
PRISONER policy files, however, can be very helpful, as it encodes useful
information about how you collect and process data in your experiment, which
can aid others reproducing your experiments, even if they choose not to use
PRISONER themselves.

Placing your code in an online archive or
public version control repository, via GitHub for example, is a good way of
letting others examine and run your code.
This approach, however, has some limitations. Distributing software in this way
does not make it easy to resolve package dependencies, and if others are not
running the same operating system as you, or other environmental variables
differ, it may be difficult or impossible to execute your experiment.

Specifically, if you are developing a PRISONER experiment, you will need to
distribute your PRISONER policies, and someone hoping to execute your experiment
needs to be able to understand how to setup and run an instance of PRISONER to
get things working.

In this guide we cover some best practices for distributing PRISONER
experiments, outlining a few scenarios which involve packaging your experiment
in different ways. Please note this guidance is not final and may not cover all
scenarios. We welcome
suggestions or improvements as GitHub issues or pull requests.

1) Sharing code and PRISONER policies

Making the source code for your experiment available online is a great
first step to allowing others to see how your experiment works, and reproduce
it. The Software Sustainability Institute provides lots of guidance on this
subject [http://software.ac.uk/resources/guides/choosing-repository-your-software-project].

We recommend using GitHub, as you can assign a DOI to individual releases of
your
repository [https://guides.github.com/activities/citable-code/] using Zenodo,
which can make it easier for others to cite your experiment software [http://software.ac.uk/so-exactly-what-software-did-you-use].

Within your repository, you should include the two PRISONER policy files
your experiment requires: the privacy policy and experimental design. While this
will not be sufficient for others to execute the experiment
without access to an instance of PRISONER itself, these policy files are an
excellent way of distributing a list of constraints about the data-handling
requirements of your experiment, which may not be obvious from the source code
alone.

Before distributing your experiment, please make sure your experimental design
file does not include any hard-coded API keys. In your documentation, make sure
you point out that users must supply their own API keys as necessary.

In the documentation for your project, linking to the PRISONER website [http://prisoner.cs.st-andrews.ac.uk] lets others find out more about the
framework, so they can choose whether to download it themselves in order to
execute the experiment.

Finally, we ask you to let us know that you’re sharing a PRISONER experiment,
which you can do by email or Twitter [http://twitter.com/EthicsPRISONER]. It’s useful for us to be able to monitor
how widely used our tools are, and we can also give your experiment a shout-out
to help people find it!

2) Forking PRISONER on GitHub

While the above is clearly better than nothing, it falls a little short of our
reproducibility goal as it falls on anyone wishing to replicate your study to
manage their own instance of PRISONER.

One way to simplify this is to distribute your experiment as a fork of PRISONER
on GitHub [https://github.com/uoscompsci/PRISONER], with your
experiment-specific code added to the repository. This has
a number of advantages:

	Your experiment is clearly bound to a specific release of PRISONER avoiding issues with mismatched versions

	If you have made any modifications to PRISONER, their relationship to the canonical version is easier to track, and you can also push changes upstream to help make PRISONER better!

	The visibility of your experiment will be helped by its direct relationship to the base PRISONER repository, and we can help promote interesting uses of PRISONER to achieve better impact.

	It helps us monitor usage of PRISONER with no additional effort on your part.

	As your repository includes a full release of PRISONER, people don’t need to go to any further effort to get your experiment running.

3) Release a virtual machine image

If your experiment has complex software or environmental dependencies which can
impede distribution, you may wish to consider a virtual machine image, either as
a full VM (recomputation.org has guidance on
this [http://recomputation.org/resources]) or as a Docker image.

We recommend using Docker [https://docs.docker.com/articles/dockerfile_best-practices/] as you can
distribute a relatively lightweight image of your experimental code and PRISONER
policies, while expressing any other environmental dependencies. Anyone else
running Docker can then pull your image and instantiate a container with an
executable version of your experiment and PRISONER server.

A guide to using Docker is beyond the scope of this document, but to help you
get started, we provide PRISONER itself, and a separate working example, as
Docker images via Docker Hub. This tutorial [http://prisoner.cs.st-andrews.ac.uk/docs/tutorials.demo.html] explains how to
run our example Docker experiment.
To see how we build this Docker image,
derived from a base PRISONER image see the source for the demo [https://github.com/uoscompsci/PRISONER/tree/master/examples/dockerdemo].

We recommend distributing both a PRISONER fork [https://github.com/uoscompsci/PRISONER] as above, and a Docker image
(either via Docker Hub or a private Docker registry). This approach has some
further advantages:

	Maximises the sustainability of your experiment, as most environmental dependencies have been abstracted from the user.

	Consistency for the end-user. While each GitHub repository may have its own dependencies and installation procedures, once someone has learned how to pull and run one Docker image, they can run any experiment in the same manner.

Final thoughts

In this guide, we’ve introduced a few ways you can distribute your PRISONER
experiments, with trade-offs between upfront complexity and the ease with which
others can reproduce your experiment. The scenarios we discuss here are based on
our own experience in conducting and distributing experiments, and should not be
considered the final word. Ultimately, you should choose whichever workflow
suits you, and please share your own recommendations with us and the community
via GitHub [https://github.com/uoscompsci/PRISONER]. We will update this
document with alternative distribution
strategies which emerge.

prisoner package

Subpackages

	prisoner.gateway package
	Subpackages
	prisoner.gateway.tests package
	Submodules

	prisoner.gateway.tests.FacebookGatewayTests module

	prisoner.gateway.tests.LastfmGatewayTests module

	prisoner.gateway.tests.SocialGatewayTests module

	Module contents

	Submodules

	prisoner.gateway.FacebookGateway module

	prisoner.gateway.LastfmGateway module

	prisoner.gateway.ServiceGateway module

	prisoner.gateway.TwitterGateway module

	Module contents

	prisoner.persistence package
	Submodules

	prisoner.persistence.PersistenceManager module

	Module contents

	prisoner.server package
	Submodules

	prisoner.server.webservice module

	Module contents

	prisoner.tests package
	Submodules

	prisoner.tests.tests module

	Module contents

	prisoner.workflow package
	Subpackages
	prisoner.workflow.tests package
	Submodules

	prisoner.workflow.tests.PolicyProcessorTests module

	prisoner.workflow.tests.SocialObjectGatewayTests module

	Module contents

	Submodules

	prisoner.workflow.Exceptions module

	prisoner.workflow.ExperimentBuilder module

	prisoner.workflow.PolicyDocumentGenerator module

	prisoner.workflow.PolicyProcessor module

	prisoner.workflow.SocialObjectGateway module

	Module contents

Submodules

prisoner.SocialObjects module

	
class prisoner.SocialObjects.Address

	Bases: prisoner.SocialObjects.SocialObject

Generally used as an attribute of Place, encodes a textual
description of a physical address on Earth

	
country

	The country name

	
formatted

	A full textual representation of the address, formatted as
for printing a mailing label

	
locality

	The city, town, village, etc.

	
postalCode

	The zip or postal code

	
region

	The state or region

	
streetAddress

	The street address including house number, street name, PO
Box

	
class prisoner.SocialObjects.Collection

	Bases: prisoner.SocialObjects.SocialObject

Represents a generic collection of SocialObjects. It may contain any
number and any combination of SocialObjects.

	
objects

	The collection of objects. Should be a list or SocialObjects
instances.

	
class prisoner.SocialObjects.Comment

	Bases: prisoner.SocialObjects.SocialObject

A textual response to another SocialObject. The base type should not
be used for replying with rich content - video or images, etc.

	
inReplyTo

	The SocialObject (or set of objects) this comment is in
response to.

	
class prisoner.SocialObjects.DateTimeJSONHandler(context)

	Bases: jsonpickle.handlers.BaseHandler

	
flatten(obj, data)

	

	
restore(data)

	

	
class prisoner.SocialObjects.Event

	Bases: prisoner.SocialObjects.SocialObject

An event occuring in a place during a time interval.

	
attending

	A collection of People who have RSVP’d to an event

	
endTime

	A time object representing when the event ends

	
maybeAttending

	A collection of People who have responded to say they may
attend the event

	
notAttending

	A collection of People who have responded to say they are
not attending the event

	
startTime

	A time object representing when the event starts

	
class prisoner.SocialObjects.Image

	Bases: prisoner.SocialObjects.SocialObject

A graphical image, such as a photo.

	
fullImage

	A URI for a full-size version of this image.

	
exception prisoner.SocialObjects.InvalidTransformationLevelError(value)

	Bases: exceptions.Exception

	
class prisoner.SocialObjects.Note

	Bases: prisoner.SocialObjects.SocialObject

A short text message, often used in a microblogging context, or to
share short status updates. Shorter than blog posts, Notes are expected
to have a shorter life and might not even expose a permalink

	
class prisoner.SocialObjects.Person

	Bases: prisoner.SocialObjects.SocialObject

A human actor involved in the exchange of SocialObjects.

	
image

	An instance of Image used to visually represent this
Person.

	
class prisoner.SocialObjects.Place

	Bases: prisoner.SocialObjects.SocialObject

A location on Earth. For maximum flexibility, use geographic
coordinates. Alternatively, a physical address or free-form location name may be
provided, so long as the applications which consume Place objects can
understand its semantics. A combination of location identifiers may be
used.

	
address

	An instance of Address, for encoding a textual addresss

	
position

	Latitude, longitude and altitude of point on Earth. This
must be an ISO 6709 string (eg. “+27.5916+086.5640+8850/”)

	
position_as_dict()

	Converts the internal ISO 6709 representation to a dictionary
with ‘lat’ and ‘lng’ components, non-destructively

	
class prisoner.SocialObjects.SocialObject

	Bases: object

SocialObjects are representations of social data, consumed and
generated by a range of services and applications. Every SocialObject
provides a small number of general attributes, with each implementation
providing additional relevant attributes.
SocialObjects must also provide transformation logic for each attribute,
allowing each attribute to be sanitised to an appropriate level.

	
author

	The person responsible for the creation of the object. For
example, the person who wrote a post, uploaded a photo, etc.
Should be an instance of Person.

	
base_transform_name(string, transformation, level)

	The Base Social Objects package provides a number of
standard transformations which are intended for use by any objects providing
attributes of common types.
This base transformation is designed to anonymise names of
people, objects etc. but can be used for any string attribute

	Parameters:	
	string (str) – the string to transform

	transformation (str) – “reduce” supported. Coarsens author object depending on
value for level

	level (str) – first - reduce author’s displayName to first name
last - reduce author’s displayName to last name
initial - reduce author’s displayName to initials of
current names

	Raises:	InvalidTransformationLevelError

	
content

	The main content of this object. Where possible, this should
be plain text, or a URI to an external resource. Avoid packing binary data into
this property as it may be difficult to sanitise and serialize.

	
displayName

	A natural language plain-text description of this object,
without any additional markup. For example, the name of a location, or a
person’s full name.

	
get_friendly_name(attribute)

	All Social Objects should include a dictionary of friendly
names - mapping their attributes to human-readable terms. Friendly names may
consist of several words, and must make sense in the following sentence
construction:

“This experiment may retrieve this social object’s <friendly
name>”

Subclassed objects should provide their own self._friendly_names
dictionary with mappings for each additional attribute it provides, or where it
has semantically altered a base attribute. PRISONER will attempt to return a
friendly name from the most specialised dictionary where possible

	Parameters:	attribute (str) – Attribute to get friendly name of

	
id

	A unique identifier for this object. Where possible, this
should allow the service gateway to relate an instance of a SocialObject to its
counterpart on the service

	
location

	An instance of Place to indicate the location of an object,
or the location in which it was used.

	
provider

	The name of the ServiceGateway which generated this object,
or where it is intended to be published to. This must map to an available
ServiceGateway, or not be set.

	
published

	A time object indicating when the object was created.

	
tags

	A collection of SocialObjects associated with this object.
This object must not be dependent on the tags to be semantically correct (eg. do
not embed a collection of authors as tags)

	
transform_hash(content, level='sha224')

	Hashes content using given algorithm.
Currently only supports SHA224

	Parameters:	
	content – the content to be hashed

	level – the hashing algorithm to use (only supports sha224)

	Returns:	hashed object

	
transform_reduce(content, level)

	New-style transform for reduce.
This is just a wrapper around the old base_transform_name

	Parameters:	
	content – the content to be transformed, which will be cast to a string

	level – the level to reduce to.

	Returns:	reduced content

	
updated

	A time object indicating when the object was last updated.

	
url

	A permament link to this object’s online representation.
This should be unique to this object and ideally permanent. It is acceptable for
this link to be inaccessible without authentication.

Module contents

prisoner.gateway package

Subpackages

	prisoner.gateway.tests package
	Submodules

	prisoner.gateway.tests.FacebookGatewayTests module

	prisoner.gateway.tests.LastfmGatewayTests module

	prisoner.gateway.tests.SocialGatewayTests module

	Module contents

Submodules

prisoner.gateway.FacebookGateway module

	
class prisoner.gateway.FacebookGateway.Album

	Bases: prisoner.SocialObjects.SocialObject

Representation of an album object on Facebook.
Albums are created by users or apps and have a number of key attributes such as privacy and count.
Albums also have a cover photo and a type. Once you have an album’s ID, you can then use Photo() to retreive
the photos it contains.

	
albumType

	The album’s type. (Eg: Wall, Mobile)

	
comments

	The comments on this photo album.

	
count

	The number of photos in this album.

	
coverPhoto

	This album’s cover photo.

	
likes

	The people who’ve liked this album.

	
photos

	The images in the album.

	
privacy

	The privacy setting for this album.

	
class prisoner.gateway.FacebookGateway.Albums

	Bases: prisoner.SocialObjects.Collection

Lightweight collection class for representing collections of albums.

	
class prisoner.gateway.FacebookGateway.Book

	Bases: prisoner.gateway.FacebookGateway.Page

Stub for representing music.

	
class prisoner.gateway.FacebookGateway.Checkin

	Bases: prisoner.SocialObjects.SocialObject

Representation of a check-in.
A Facebook user can be determined to have been somewhere if they explicitly said they were there in a status,
or have been tagged in a photo that is also tagged with that location.
As well as containing basic information such as where the check-in is for and who the user was with, a check-in object
also contains a “Type” attribute that specifies how the check-in was determined. (Eg: Status, Photo...)

	
checkinType

	This check-in’s type. (Eg: Status, Photo)

	
image

	

	
class prisoner.gateway.FacebookGateway.Checkins

	Bases: prisoner.SocialObjects.Collection

Lightweight collection class for representing collections of check-ins.

	
class prisoner.gateway.FacebookGateway.Comment

	Bases: prisoner.SocialObjects.Note

Representation of a comment object on Facebook.
Comments are typically short replies / notes on objects such as statuses, photos, check-ins or just about any
other Facebook object. Comments consist of their content, an author a published date and a permalink.

	
class prisoner.gateway.FacebookGateway.Comments

	Bases: prisoner.SocialObjects.Collection

Lightweight collection class for representing collections of comments.

	
class prisoner.gateway.FacebookGateway.FacebookServiceGateway(access_token=None, props={}, policy=None)

	Bases: prisoner.gateway.ServiceGateway.ServiceGateway

Service gateway for Facebook.
This gateway interacts with Facebook directly by making calls via the network’s Social Graph API.

The Facebook Service Gateway allows you to access Facebook from PRISONER
experiments. In order to use Facebook, you must register an app with the
Facebook Developers portal and provide three additional props in your
experimental design file. The app_id and app_secret props correspond to the
values for your app, and the api_version prop dictates which version of the
Facebook API your experiment targets. At this time, only “2.0” is an
acceptable API version. See the documentation on key concepts for guidance on
using props in experimental designs.

	
Album(operation, payload)

	Performs operations on a user’s photo albums.
Currently only supports GET operations. This lets us retrieve a list of photo albums associated with the
supplied payload ID.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (Person) – A Person() whose ID is either a Facebook UID or username.

	Returns:	A collection representing this person / object’s photo albums.

	
Book(operation, payload)

	Performs operations relating to people’s taste in books and literature.
Currently only supports GET operations. This lets us get the books / authors people are into.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (SocialObject) – A Person() whose ID is either a Facebook UID or username.

	Returns:	A list of the books this person likes.

	
Checkin(operation, payload)

	Performs operations on check-ins / objects with location.
Currently only supports GET operations. This lets us retrieve a list of places the supplied User()
or Person() has been.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (SocialObject) – The Person() object to retrieve check-in information for.

	Returns:	A collection of objects representing check-ins.

	
Friends(operation, payload)

	Performs operations on a user’s friends.
Only supports GET operations. This lets us retrieve someone’s entire friends list.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (Person) – A Person() whose ID is either a Facebook UID or username.

	Returns:	A collection representing this person’s friends list.

	
Like(operation, payload)

	Returns a user’s liked pages.
Only supports GET operations.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (SocialObject) – A Person() whose ID is either a Facebook UID or username.

	Returns:	A list of pages this person likes.

	
Movie(operation, payload)

	Performs operations relating to people’s taste in films.
Currently only supports GET operations. This lets us retrieve the movies / films people like.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (SocialObject) – A Person() whose ID is either a Facebook UID or username.

	Returns:	A list of the movies this person likes.

	
Music(operation, payload)

	Performs operations relating to people’s musical tastes.
Currently only supports GET operations, so we can just get the bands a person / user likes.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (SocialObject) – A Person() whose ID is either a Facebook UID or username.

	Returns:	A list of the bands this person likes.

	
Note(operation, payload)

	Performs operations on a user’s status updates.
Currently only supports GET operations. This lets us retrieve a user’s entire backlog of status updates.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (SocialObject) – A Person() whose ID is either a Facebook UID or username.

	Returns:	A collection representing this person’s backlog of status updates.

	
Person(operation, payload)

	Performs operations relating to people’s profile information.
Currently only supports GET operations. This allows us to, given a suitable
payload such as a Person() object, retrieve the information they have added to Facebook. (Eg: Full name, education, religion...)

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (SocialObject) – A Person() object whose ID is either a Facebook UID or username.

	Returns:	A Person() object with all available attributes populated.

	
Photo(operation, payload)

	Performs operations on images.
Currently only supports GET operations. This lets us retrieve the photos associated with the supplied
payload’s ID. This will commonly be an Album() to get the photos in said album, or a User() / Person()
to get any photos they’re tagged in.

	Parameters:	
	operation (str) – The operation to perform. (GET)

	payload (SocialObject) – The Facebook object to retrieve associated photos for.

	Returns:	A collection representing photos associated with the supplied object.

	
Session()

	The Facebook session exposes the authenticated user as an instance of User().
Can also be accessed in the same way as Person() as this class simply extends it.

	Returns:	session object

	
complete_authentication(request)

	Completes authentication. Extracts the “code” param that Facebook provided and exchanges it for an
access token so we can make authenticated calls on behalf of the user.

	Parameters:	request (HTTPRequest) – Response from the first stage of authentication.

	Returns:	Unique access token that should persist for this user.

	
generate_permissions_list()

	Generates a list of permissions based on the experiment’s privacy policy.

	Returns:	List of permissions

	
get_comments(object_id)

	Internal function.
Takes a JSON Facebook object and returns a list of the comments on it.

	Parameters:	facebook_obj (Dict) – The Facebook object to get comments on.

	Returns:	A list representing the comments on this object.

	
get_graph_data(query)

	Internal function.
Queries Facebook’s Graph API and returns the result as a dict.

	Parameters:	query (str) – The Graph API query to perform. (Eg: /me/picture?access_token=...)

	Returns:	A Dict containing the parsed JSON response from Facebook. Attributes are accessed through their name.

	
get_likes(object_id)

	Internal function.
Takes a JSON Facebook object and returns a list of the people who’ve liked it.

	Parameters:	facebook_obj (Dict) – The Facebook object to get likes for.

	Returns:	A list representing the people / users that have liked this object.

	
get_value(haystack, needle)

	Internal function.
Attempts to get the value corresponding to the supplied key.
If no key exists, None is returned.

	Parameters:	
	haystack – The Dictionary object to look at.

	needle – The key we’re looking for.

	Returns:	If the key exists, its corresponding value is returned. Otherwise None is returned.

	
parse_comments(facebook_obj)

	Internal function.
Takes a JSON Facebook object and returns a list of the comments on it.
Note that this function just PARSES. It does not attempt to retrieve all the comments on the given
object. This means it has a limit of around 25 comments.

	Parameters:	facebook_obj (Dict) – The Facebook object to get comments on.

	Returns:	A list representing the comments on this object.

	
parse_json(json_obj)

	Internal function.
Takes a JSON object as returned by Facebook and returns the Dict representation of it.
Avoids having to call json.loads(?) everywhere, and allows for potential improvements in the future.

	Parameters:	json_obj (str, list) – The JSON object to parse.

	Returns:	A Dict object representing the supplied JSON.

	
parse_likes(facebook_obj)

	Internal function.
Takes a JSON Facebook object and returns a list of the people who’ve liked it.
Note that this function just PARSES. It does not attempt to retrieve all the likes for the given
object. This means it has a limit of around 25 likes.

	Parameters:	facebook_obj (Dict) – The Facebook object to get likes for.

	Returns:	A list representing the people / users that have liked this object.

	
parse_location(facebook_obj)

	Internal function.
Takes a JSON Facebook object and returns a Place object representing its location.

	Parameters:	facebook_obj (Dict) – The Facebook object to get the location of.

	Returns:	A Place() object representing the location of the supplied object.

	
parse_tags(facebook_obj)

	Internal function.
Takes a JSON Facebook object and returns a list of the objects that have been tagged
in it. (Usually people)

	Parameters:	facebook_obj (Dict) – The Facebook object to get tags for.

	Returns:	A list representing the people / objects that were tagged in the supplied object.

	
post_graph_data(query, params)

	Internal Function.
Post the params dictionary to the given query path on the Graph API
Use for creating, deleting, updating content
All calls must be authenticated

	Parameters:	
	query (str) – Graph API query to perform

	params (dict) – Dictionary of data to publish to this endpoint

	
request_authentication(callback)

	Initiates Facebook’s authentication process.
Returns a URI at which the user can confirm access to their profile by the application.

	Parameters:	callback – PRISONER’s authentication flow URL. User must be redirected here after registering with Facebook

in order to continue the flow.
:type callback: str
:returns: URI the user must visit in order to authenticate.

	
request_handler(request, operation, payload, extra_args=None)

	Wrapper around object requests. Used to inject any necessary debug headers.

	Parameters:	
	request (method) – A method instance on this service gateway

	operation (str) – A HTTP method of this request (ie. GET or POST)

	payload – The criteria for this request, ie. which objects to retrieve,

or data to publish
:param extra_args: A dictionary of arguments to further filter this query
(eg. limit)
:type extra_args: dict
:returns: A WrappedResponse with any additional headers injected

	
restore_authentication(access_token)

	Provides a mechanism to restore a session. (Essentially refresh an access token)
Facebook does not allow access tokens to be refreshed. However, if the user is forced to go through the
authentication process again, it will be done transparently so long as the PRISONER app has not requested
additional permissions.

	Parameters:	access_token (str) – The current access token held for this user.

	Returns:	False, thus forcing the authentication process to take place again. (Transparently)

	
str_to_time(time)

	Internal function.
Used to convert Facebook’s ISO-8601 date/time into a Date/Time object.
Also converts Facebook’s MM/DD/YYYY format used for birthdays.

	Parameters:	time (str) – The string to parse.

	Returns:	A Date/Time object.

	
class prisoner.gateway.FacebookGateway.Friends

	Bases: prisoner.SocialObjects.Collection

Lightweight collection class for representing collections of users / friends.

	
class prisoner.gateway.FacebookGateway.Image

	Bases: prisoner.SocialObjects.Image

Representation of a photo object on Facebook.
Photos are images uploaded by users or applications. As well as the standard attributes inherited from SocialObject,
a photo also has additional specialised attributes such as position, width and height.
A photo also contains Image() objects to represent both the full-size image as well as thumbnails.

	
comments

	The comments on this photo.

	
height

	The height of this photo. (Pixels)

	
image

	The full size version of this photo.

	
likes

	The people who’ve liked this photo.

	
position

	Position of this photo in its album.

	
tags

	The people who are tagged in this photo.

	
thumbnail

	The thumbnail image for this photo.

	
width

	The width of this photo. (Pixels)

	
class prisoner.gateway.FacebookGateway.Images

	Bases: prisoner.SocialObjects.Collection

Lightweight collection class for representing collections of photos.

	
class prisoner.gateway.FacebookGateway.Like

	Bases: prisoner.gateway.FacebookGateway.Page

A Like is just a representation of a Page

	
class prisoner.gateway.FacebookGateway.Likes

	Bases: prisoner.SocialObjects.Collection

Lightweight collection class for representing collections of likes.

	
class prisoner.gateway.FacebookGateway.Movie

	Bases: prisoner.gateway.FacebookGateway.Page

Stub for representing music.

	
class prisoner.gateway.FacebookGateway.Music

	Bases: prisoner.gateway.FacebookGateway.Page

Stub for representing music.

	
class prisoner.gateway.FacebookGateway.Note

	Bases: prisoner.SocialObjects.Note

Representation of a status object on Facebook.
Status updates are short posts by Facebook users. They can either be entirely textual or contain a link or a photo.
As well as the basic attributes, status updates also contain a privacy setting as well as a collection of likes and
comments.

	
comments

	The comments on this status update.

	
likes

	The people who liked this status update.

	
link

	A link to an external resource embedded in this status update

	
privacy

	The privacy setting for this status update. (Eg: Friends)

	
class prisoner.gateway.FacebookGateway.Page

	Bases: prisoner.SocialObjects.SocialObject

Representation of a generic Facebook page / object.
Pages are used to represent entities like bands, books, films and so on.

	
category

	

	
image

	

	
class prisoner.gateway.FacebookGateway.Person

	Bases: prisoner.SocialObjects.Person

Representation of a user object on Facebook.
Users are essentially the backbone of the Facebook service and such objects can contain a great deal of information.
User objects will not always have values for all their attributes, as Facebook does not require users to provide
allthis information.

	
bio

	This person’s short biography.

	
birthday

	This person’s birthday.

	
education

	This person’s education history.

	
email

	This person’s email address.

	
firstName

	This person’s first name.

	
gender

	This person’s gender.

	
hometown

	This person’s hometown.

	
interestedIn

	This person’s sexual orientation.

	
languages

	Languages this person can speak.

	
lastName

	This person’s last name.

	
location

	This person’s current location.

	
middleName

	This person’s middle name.

	
politicalViews

	This person’s political preferences.

	
relationshipStatus

	This person’s relationship status.

	
religion

	This person’s religion.

	
significantOther

	This person’s significant other.

	
timezone

	This person’s timezone. (Offset from UTC)

	
updatedTime

	When this person last updated their Facebook profile.

	
username

	This person’s Facebook username.

	
work

	This person’s work history.

	
class prisoner.gateway.FacebookGateway.StatusList

	Bases: prisoner.SocialObjects.Collection

Lightweight collection class for representing collections of statuses.

	
class prisoner.gateway.FacebookGateway.Tags

	Bases: prisoner.SocialObjects.Collection

Lightweight collection class for representing collections of tags.
Tags are simply User() objects that have been tagged in a photo or status.

	
prisoner.gateway.FacebookGateway.check_none(value)

	Internal function.
Used to check to see whether or not a value is None. If so, it replaces it with N/A.
Mainly used for testing and creating string representations.

prisoner.gateway.LastfmGateway module

	
class prisoner.gateway.LastfmGateway.LastfmServiceGateway(access_token=None)

	Bases: prisoner.gateway.ServiceGateway.ServiceGateway

ServiceGateway for Last.fm. This is a concrete implementation to
demonstrate how to build experimental applications which consume data from, and
publish data to, Last.fm

This ServiceGateway supports a number of core Social Objects, and
introduces a range of its own to represent site-specific constructs such as
Tracks and Playlists, etc.

This gateway uses a modified version of pylast to interact with Last.fm
API

	
Comment(operation, payload)

	Performs operations on Comment objects. Supports GET and
POST operations.

	Parameters:	
	operation (str) – The operation to perform (GET, POST)

	payload (SocialObject) – Provide a Comment object. Will be posted as a shout to
the profile of the inReplyTo attribute.

	
Image(operation, payload)

	Performs operations on Image objects. Only supports GET
operations.

	Parameters:	
	operation (str) – The operation to perform (GET)

	payload (SocialObject) – Provide a Person object, to return that user’s profile
image

:returns Image – image of requested object

	
Playlist(operation, payload)

	

	
Session()

	The Last.fm session exposes the authenticated
user as a Person instance

	
Track(operation, payload)

	Performs operations on Track objects. Only supports the GET
operation (you can get a user’s tracks, you can’t create them).

Returns a set of Tracks depending on the payload.

	Parameters:	
	operation (str) – The operation to perform (GET)

	payload (SocialObject) – Provide a Person (whose id is username) to return a set
of that user’s Loved Tracks

	Returns:	list[track] - set of tracks matching criteria

	
complete_authentication(request)

	Completes authentication. Request passed via authentication flow
must contain a token argument as returned by Last.fm. We pass this to Last.fm to
return a session key (lasts indefinitely) for making authenticated calls on this
user.

	Parameters:	request (HTTPRequest) – Request from first stage of authentication

	Returns:	Session key to persist for this user

	
request_authentication(callback)

	Instigates first of Last.fm’s two-stage authentication.
Returns a URL for the participant to confirm access to their profile by this
application.

	Parameters:	callback (str) – PRISONER’s authentication flow URL. The
participant must go here after authenticating with Last.fm to continue the flow

	
restore_authentication(access_token)

	Restores previously authenticated session. Last.fm session
keys last indefinitely so this just provides pylast with the old session key and
hope it works

	Parameters:	access_token (str) – Last.fm session key received from previous
auth attempt

	Returns:	boolean - was auth successful?

	
class prisoner.gateway.LastfmGateway.Playlist

	Bases: prisoner.SocialObjects.Collection

	
class prisoner.gateway.LastfmGateway.Track

	Bases: prisoner.SocialObjects.SocialObject

	
artist

	String identifying artist of this track.

	
get_friendly_name(attribute)

	

	
tag

	Set of tags associated with this track

	
title

	The title of this track.

	
transform_artist(transformation, level)

	Applies anonymising transformation to the artist attribute.
Uses the base_transform_name transformation

prisoner.gateway.ServiceGateway module

	
class prisoner.gateway.ServiceGateway.SARHeaders(operation, provider, object_type, payload)

	Bases: object

SARHeaders contain information about the request for a SocialObject.
They are used within the validation/sanitisation process as part of a
SocialActivityResponse. They may also be used to audit the requests made for
objects.

	
object_type

	The name of the SocialObject type to use. This must be a
core SocialObject or provided by the ServiceGateway indicated in the provider
attribute.

	
operation

	The operation to be performed by this request. These map to
HTTP methods (GET, POST etc.)

	
payload

	The criteria for a request, or object to publish.

	
provider

	The provider this request is intended for. Must map to a
ServiceGateway

	
wrapped_headers

	The header component of a WrappedResponse. Allows service-specific headers
to be surfaced

	
class prisoner.gateway.ServiceGateway.ServiceGateway(props={}, policy=None)

	Bases: object

Service Gateways make external providers of social data accessible to
the rest of PRISONER. They accept sanitised requests for Social Objects, and
make the appropriate API calls to return well-formed social objects. They also
accept requests to publish social objects to services, converting these to the
representations expected by that API.

This is an abstract interface - concrete implementations subclass this
and provide methods corresponding to each Social Object they implement,
with the signature def ObjectType(self, operation, payload).

See examples of concrete implementations for examples of this.

ServiceGateways must adhere to the following conventions:

	exist as a package <GatewayName>ServiceGateway.py within the gateway
module

	contain a class called <GatewayName>ServiceGateway which subclasses
ServiceGateway

NEW in 0.2: ServiceGateways should expect a props dict in __init__, populated
by an experiment’s design policy, and a policy parameter with an instance of
PolicyProcessor, allowing the experiment’s privacy policy to be interrogated.

NEW in 0.2: All gateways must implement a request_handler() - or use the
superclass-provided implementation. This allows a dictionary of response
headers to be added by the service gateway, provided to a WrappedResponse
object.

	
Image(operation, payload)

	Perform operations on ServiceGateway to publish and retrieve
Image objects

	Parameters:	
	operation (str) – The operation to perform (eg. GET, POST)

	payload (SocialObject) – Object to perform operation with, eg. GET
objects matching criteria, or POST this object to service

	
Session()

	Each ServiceGateway can maintain a Session object, which
contains limited information that is needed to persist throughout the session
with the service. This should not be used as a way of caching social objects
to circumvent the usual GetObject interface. The session is intended to store,
for example, metadata about the authenticated participant so that it is possible
to relate the participant to their service username, etc.

	
complete_authentication(request)

	Second stage of authentication. Request contains the
response from the client-side authentication, which should
contain access tokens required to complete the authentication process.

Do not implement this method if the service does not perform
authenticated requests.

	Parameters:	request (HTTPRequest) – Request with clientside authentication tokens

	
request_authentication(callback=None)

	First stage of two-stage authentication. Participation
client has requested that participant is authenticated with this service.

For most authentication schemes, return a URL the participant can visit to
authenticate themselves with the service. After completing this stage, the user
must be redirected to the callback URL.

Do not implement this method if the service does not perform
authenticated requests.

	Parameters:	callback (str) – URL that PRISONER has determined participant
must visit after authenticating with service.

	
request_handler(request, operation, payload)

	

	
restore_authentication(access_token)

	Similar to complete_authentication(), except directly
providing the access token needed by the gateway to restore an existing session.
We can’t guarantee the token is still valid, so the gateway should return a
boolean value to indicate whether the attempt was successful. If not, it may be
necessary to complete the clientside request/complete flow.

	Parameters:	access_token (object) – Object needed by service gateway to restore
authentication

	Returns:	boolean - was authentication attempt succesful?

	
class prisoner.gateway.ServiceGateway.SocialActivityResponse(content, headers)

	Bases: object

SocialActivityResponse wraps a SocialObject received from a service
gateway. It provides the original object alongside headers relating to the
request from the participation clients. These headers are used to validate the
request, and sanitise the response object.

	
content

	

	
headers

	

	
class prisoner.gateway.ServiceGateway.WrappedResponse(social_object, headers)

	Bases: object

A Social Object returned by a service gateway is wrapped in this object
which allows the gateway to inject additional metadata to be handled elsewhere

	
headers

	

	
social_object

	

prisoner.gateway.TwitterGateway module

	
class prisoner.gateway.TwitterGateway.Note

	Bases: prisoner.SocialObjects.Note

A tweet is a single post shared to Twitter, derived from the base
Note object.

	
favorites

	

	
retweets

	

	
class prisoner.gateway.TwitterGateway.Person

	Bases: prisoner.SocialObjects.Person

A Twitter User

	
class prisoner.gateway.TwitterGateway.Timeline

	Bases: prisoner.SocialObjects.Collection

A collection of Tweets

	
class prisoner.gateway.TwitterGateway.TwitterServiceGateway(policy=None, props=None)

	Bases: prisoner.gateway.ServiceGateway.ServiceGateway

Service Gateway for Twitter.

This gateway supports reading a user’s timeline and publishing tweets on
their behalf, with support for geo-tagged content.

	
Note(operation, payload)

	Requests all
tweets by a given user.

	Parameters:	
	operation (str) – (GET) tweets

	payload (Person) – A Person whose ID is a Twitter ID

	Returns:	A list of Tweet objects

	
Person(operation, payload)

	Gets the user profile of a user.

	Parameters:	
	operation (str) – (GET) user

	payload (Person) – A Person or User whose ID is a Twitter user ID

	Returns:	User object populated by profile

	
Session()

	The Twitter session exposes the authenticated user as an instance of Person().

	
complete_authentication(request)

	Final stage of authentication flow.

	Parameters:	request (HTTPRequest) – Response from the first stage of authentication.

	Returns:	Unique access token that should persist for this user.

	
request_authentication(callback)

	Initiates Twitter’s authentication process.
Returns a URI at which the user can confirm access to their profile by the application.

	Parameters:	callback – PRISONER’s authentication flow URL. User must be redirected

here after registering with Twitter
in order to continue the flow.

	Returns:	URI the user must visit in order to authenticate.

	
request_handler(request, operation, payload, extra_args=None)

	Wrapper around object requests. Used to inject any necessary debug headers.

	Parameters:	
	request (method) – A method instance on this service gateway

	operation (str) – A HTTP method of this request (ie. GET or POST)

	payload – The criteria for this request, ie. which objects to retrieve,

or data to publish
:param extra_args: A dictionary of arguments to further filter this query
(eg. limit)
:type extra_args: dict
:returns: A WrappedResponse with any additional headers injected

	
restore_authentication(access_token)

	Provides a mechanism to restore a session. (Essentially refresh an access token)
Twitter does not allow access tokens to be refreshed. However, if the user is
forced to go through the
authentication process again, it will be done transparently so long as the PRISONER app has not requested
additional permissions.

	Parameters:	access_token (str) – The current access token held for this user.

	Returns:	False, thus forcing the authentication process to take place again. (Transparently)

Module contents

prisoner.gateway.tests package

Submodules

prisoner.gateway.tests.FacebookGatewayTests module

	
class prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase(methodName='runTest')

	Bases: unittest2.case.TestCase

	
create_user_all_permissions()

	Creates a test user who has every relevant FB permission enabled

	
create_user_no_permissions()

	Creates a test user who has no FB permission enabled

	
get_bad_processor()

	

	
get_empty_processor()

	

	
get_good_processor()

	

	
get_good_props()

	

	
post_graph_data(query, params)

	Internal Function.
Post the params dictionary to the given query path on the Graph API
Use for creating, deleting, updating content
All calls must be authenticated

	Parameters:	
	query (str) – Graph API query to perform

	params (dict) – Dictionary of data to publish to this endpoint

	
setUp()

	### These values must be set before running these tests!

	
set_test_user_attributes()

	sets some attributes for testing common to all test objects

	
class prisoner.gateway.tests.FacebookGatewayTests.GetPermissionsForPolicyTestCase(methodName='runTest')

	Bases: prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase

	
test_bad_policy()

	

	
test_good_policy()

	

	
class prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase(methodName='runTest')

	Bases: prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase

Test handling of init parameters: tokens, props, and policies

	
test_bad_policy()

	

	
test_bad_props()

	

	
test_bad_token()

	

	
test_good_policy()

	

	
test_good_props()

	

	
test_good_token()

	

	
test_no_policy()

	

	
test_no_props()

	

	
test_no_token()

	

	
class prisoner.gateway.tests.FacebookGatewayTests.StatusTestCase(methodName='runTest')

	Bases: prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase

	
test_post()

	

	
class prisoner.gateway.tests.FacebookGatewayTests.UserTestCase(methodName='runTest')

	Bases: prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase

	
test_good_get()

	

	
test_post(*arg, **kw)

	

prisoner.gateway.tests.LastfmGatewayTests module

	
class prisoner.gateway.tests.LastfmGatewayTests.BaseLastfmServiceGatewayTestCase(methodName='runTest')

	Bases: unittest2.case.TestCase

	
setUp()

	

	
class prisoner.gateway.tests.LastfmGatewayTests.ImageTestCase(methodName='runTest')

	Bases: prisoner.gateway.tests.LastfmGatewayTests.BaseLastfmServiceGatewayTestCase

	
test_get_failure()

	

	
test_get_success()

	

prisoner.gateway.tests.SocialGatewayTests module

Module contents

prisoner.persistence package

Submodules

prisoner.persistence.PersistenceManager module

	
class prisoner.persistence.PersistenceManager.PersistenceManager(exp_design=None, policy_processor=None, connection_string=None)

	Bases: object

The PersistenceManager manages the storage of all data, including
participant metadata, experimental responses, and persistence of Social Objects.
Storage of data is subject to the privacy policy for the experiment.
Generally, participation clients do not directly instantiate a
PersistenceManager, and where possible, friendlier interfaces are available
through the ExperimentBuilder and SocialObjectsGateway.

	
close_connection()

	

	
do_build_schema(drop_first=False)

	

	
experimental_design

	

	
get_existing_provider_auth(participant_id, provider)

	Checks if the given participant has been
previously authenticated with the named provider. If so, returns the credentials
stored. Otherwise, returns None, so participant should continue with consent
flow.
If credentials are found, a ServiceGateway should be provided with them. It
should signal whether it is able to successfully authenticate with them. If not,
it should attempt to reauthenticate server-side if possible (eg. request new
session from API). If clientside intervention is required, it should signal
this.

	Parameters:	
	participant_id (int) – ID of participant to authenticate

	provider (str) – Name of provider to return authentication for

	Returns:	Stored credentials or None

	
get_participant(schema, participant_id)

	Retrieve the participant with the given ID from the given
schema.

	Parameters:	
	schema (str) – name of scema to get participant from

	participant_id (int) – ID of participant to return

	Returns:	tuple - participant data from database

	
get_props()

	Parses the props collection in the experimental design and makes these
available as a dict of dicts

	Returns:	dict of dicts of props

	
get_table(table_type, table_name)

	Returns an active connection to the requested table. Used
internally for data access. Do not use this from participation
clients. Instead, use managed data access interfaces where possible to
ensure data are sanitised appropriately.

	Parameters:	
	table_type (str) – Type of table [response, participant, object]

	table_name – Name of table to return

	Returns:	Table - requested table

	
post_response(schema, response)

	Writes response to given schema.

	Parameters:	
	schema (str) – Schema to write to

	response (dict) – Response data to write

	
post_response_json(sog, schema, response)

	Wrapper to post_response for use by web services.

	Parameters:	
	sog (SocialObjectsGateway) – Current instance of SocialObjectsGateway

	schema (str) – Name of response schema to write to

	response (JSON object as str.) – JSON object corresponding to the response schema.
References to SocialObjects must consist of its prisoner_id (as originally
received)

	
props

	

	
rebuild_engine(connection_string)

	

	
register_participant(schema, participant)

	Add the participant data in given dictionary to the
participant table in this database and return the ID

	Parameters:	schema – name of participant table (must be of type

‘participant’)
:type schema: str.
:param participant: dictionary of data about participant
:type participant: dict
:returns: int – inserted row ID

	
register_participant_with_provider(participant_id, provider, token)

	Store access credentials with this provider for the given
participant. Access token can be any object, so long as the
relevant service gateway is able to interpet it.

	Parameters:	
	participant_id (int) – Participant to register access token with

	provider (str) – Name of provider to register access token with

	token (object) – Access token used in authenticated calls

	Returns:	row as inserted in meta_table

	
validate_design(design)

	Tests that the given experimental design validates against the
XML schema

	Parameters:	design (str) – Path to experimental design

	Raises:	IOError

	Returns:	ElementTree - parsed experimental design object

Module contents

prisoner.server package

Submodules

prisoner.server.webservice module

	
class prisoner.server.webservice.PRISONER

	Bases: object

PRISONER Web Service
Exposes the functionality of PRISONER through a RESTful API.
Participation clients should use this API to manage social objects.

The PRISONER web service requires the following flow:

1) Call / to handshake with PRISONER. Returns a PRISession header whose
value must be passed to all future requests as a PRISession argument

	
	Call /begin with the following POST payload:

	‘policy’: URL to your experiment’s privacy policy
‘design’: URL to your experimental design
‘participant’: The ID of the current participant
‘providers’: A comma-seperated list of services the participant
must be authenticated with

3) PRISONER will return a URL your participant must visit to complete
their consent and authentication flow. Call this and append an (escaped)
argument “callback” - this is the URL your participant should be
returned to, to begin using your experiment

	
	From this point onwards, use PRISONER to request objects:

	/get/<provider>/<object_name>/<payload>/<criteria>

eg. to get a participant’s favourite tracks by Pixies on Last.fm we query:
/get/Lastfm/Track/session:Lastfm.id/x.artist==”Pixies”

(for readability we have not escaped this query string - this
must be safely encoded before making requests!)

Append a ‘?async’ parameter to perform this request
asynchronously.
Call the same URL, but with a ‘?isready’ parameter to get the
result (if it’s not ready yet, expect blank response)

	To publish objects:

	/publish/<provider>/<object_name>
with a form-encoded payload of the data to publish.

eg. to publish a comment to my own Last.fm profile, we query:
/publish/Lastfm/Comment
{‘author’: session:Lastfm.id,
‘inReplyTo’: session:Lastfm.id,
‘content’: “Test comment” }

	To store experimental responses:

	/post
with a form-encoded payload matching the response schema in your
experimental design.

eg. to publish a response to a question about a favourite track,
we query:
/response
{‘track’: 5343gt32-g43519500-223f,
‘answer’: “My response”,
}

5) PRISONER provides a simple session layer for temporarily storing
state information (eg. one set of responses by a participant in a multi-step
form). To write to the session store call:

/session/write/
with a form-encoded ‘key’ and ‘data’ (any arbitrary data can be
stored)

	Later, to retrieve session data, call:

	/session/read/<key>

Note that the session store is not persistent, and there are no
guarantees how long this data will be accessible. For permanent data, use the
experiment response interface.

Note that the PRISONER Web Service returns JSON objects corresponding to
instances of Social Objects. Each object in a JSON response includes a “prisoner_id”
attribute. Use this to subsequently relate a request to a previous
object you received. PRISONER will lookup the original object based on
this identifier. For example, in our experimentntal response above, we
provided a track ID. This allows requests to be lightweight while
PRISONER temporarily stores the complete version of that object.

	
dispatch_request(request)

	Internal handler to get from URL mapping to the right response handler
:param request: Current HTTP request

	
find_nth(haystack, needle, n)

	Utility method for fallback endpoint.

	Parameters:	
	haystack – search for nth item in here

	needle – search nth this in haystack

	n – this is n!

	Returns:	found needle

	
get_builder_reference(request)

	Each session has its own instance of PRISONER’s internals,
keyed on the session cookie.

	Parameters:	request – Current HTTP request

	Returns:	The ExperimentBuilder for this session

	
on_begin(request)

	Initialises the flow of an experiment. This endpoint must be provided with the
following arguments:

policy: the URL to the privacy policy XML file

design: the URL to the experimental design XML file

title: the name of the experiment

contact: the email address of the researcher

db: a connection string (must have SQLAlchemy bindings to be supported) for
PRISONER to store data to
participant: form data to register the current participant

providers: a comma-delimited list of all social network sites this experiment
connects to

callback: which URL for your experiment to redirect the participant to after
successful authentication

	Returns:	Response for participant to be redirected to

	
on_cancel(request)

	Call if the participant does not provide consent and revokes
participation. Should also invalidate and remove any session identifiers.

	Parameters:	request – Current HTTP request

	
on_complete(request)

	Called at the end of the authentication flow. Redirects participant to the
callback provided at the start of the experiment.
Request must provide cbprovider and PRISession arguments to identify this
session and provider flow.

	Parameters:	request – The current HTTP request

	Returns:	redirect to experiment callback or /cancel if participant

invalidates entry

	
on_confirm(request)

	Provides the authentication flow to redirect participant through
authentication for each requested provider.
Request must provide the following arguments:

pctoken: the authentication token provided earlier in the flow
provider: the name of the service participant is being authenticated against
PRISession: current session identifier from cookie

	Parameters:	request – HTTP request with above arguments provided

	Returns:	Redirect response to service authentication or to complete

authentication flow

	
on_consent(request)

	

	
on_fallback(request, wildcard)

	If an invalid URL is provided, try to rewrite and redirect it in case
something malformed it.

	Parameters:	
	request – current HTTP request

	wildcard – Not used

	Returns:	redirect to rewritten URL

	
on_get_object(request, provider, object_name, payload, criteria=None)

	Returns a SocialObject of given type (object_name) from a
given provider.
The payload is the primary criteria for evaluating a request for
the object, and must be interpretable by the receiving ServiceGateway. For
example, providing a user ID may return instances of objects created by that
user. Provide a lambda expression (criteria) to filter this
request further (eg. only return objects matching a certain
attribute value).

For larger requests, an asynchronous request pattern is also
provided (for AJAX calls). Make your request as usual, but
append the argument ‘async’. This will immediately return if
your request was valid. Periodically, call your request URL
again, instead with the additional argument ‘isready’. This will
return an empty response if the request has not been completed, or the full
response object when it is.

	Parameters:	request – Current HTTP request. If a limit argument is provided this

will be pushed to an extra_args dictionary for filtering in gateways. Provide
an async parameter to perform request asynchronously, or an isready parameter
to check if a previous async request for the same data is ready.
:param provider: The service to retrieve data from
:type provider: str
:param object_name: The class name of object being retrieved
:param payload: Query argument of object to be retrieved, ie. object ID
:param criteria: Lambda function for filtering objects before being returned
:returns: A JSON response of the returned object, or an empty JSON object if
request is happening asynchronously, or existing async request is not ready

	
on_handshake(request)

	This initial call provides the client with their session
token. If response is good, call /begin providing the given
PRISession value.

	Parameters:	request – Current HTTP response

	Returns:	HTTP response to confirm handshake.

	
on_invalidate(request, session)

	Invalidate the current session, removing it from memory.
Call this at the end of the experiment to remove its footprint,
or in the event of an irrecoverable error, from which you do not want the
participant to recover without restarting the experiment flow

	Parameters:	
	request – Current HTTP request

	session (str) – Session ID to invalidate

	
on_post_response(request)

	Writes response data to the given response schema. Provide a form with:
schema: the name of the schema to write to
response: json data of response to write

	Returns:	HTTP Response with the written data

	
on_publish_object(request, provider, object_name)

	Publishes the given data as a social object to the given service.

	Parameters:	
	request – HTTP request with the required payload as a HTTP form

	provider (str) – the name of the service to publish to

	object_name (str) – The class of object being published

	
on_register(request)

	Register a participant. Requires a URL for the experimental
design and privacy policy, and a form of columns to insert about this participant.

	Parameters:	request – Current HTTP request

	Returns:	HTTP response to confirm the ID of the registered participant

	
on_schema(request)

	Builds the database schema matching this experimental design.

	Parameters:	request – Current HTTP request

	Returns:	Response to confirm the schema was built successfully.

	
on_session_read(request, session)

	Read the session data corresponding to the given key
parameter. Session data is bound to the active PRISession.

	Parameters:	
	request – Current HTTP request with a key argument of which data to read

	session – Session we’re reading data from

	Returns:	HTTP response with JSON object of returned data

	
on_session_timeout(request)

	Participant is redirected here if their session key is not found

	Parameters:	request – Current HTTP request

	Returns:	Response rendering the expired session template

	
on_session_write(request, session)

	Writes arbitrary data to a temporary session. A
session is bound to a PRISession, and is intended to retain state data
during an experiment before committing to database.
There is no guarantee how long the session will be
valid for, so gracefully handle instances where expected data cannot
be retrieved.

To write session data, provide a POST form with a
“key” value (used to retrieve the data later) and
“data” (the arbitrary session data to store).

	Parameters:	
	request – Current HTTP request including session data to write

	session – The session to write data to

	Returns:	Empty response if successful

	
render_template(template_name, **context)

	Return the given template populated with content
:param template_name: Name of the template file to render
:type template_name: str
:param context: Additional context
:returns: Response

	
set_builder_reference(request, builder)

	Attach this ExperimentBuilder to the current session.

	Parameters:	
	request – Current HTTP request

	builder (ExperimentBuilder) – Instance of ExperimentBuilder to Attach

	Returns:	ExperimentBuilder

	
threaded_get_object(request, provider, object_name, payload, criteria=None, extra_args=None)

	Wrapper around the SocialObjectGateway GetObjectJSON method to retrieve social
objects as JSON, then return as response. This should not be called directly,
but is intended to be called by the on_get_object handler.

	Parameters:	
	request – Current HTTP request

	provider (str) – The service to retreive data from

	object_name (str) – The class of object being retrieved

	payload – The criteria to retrieve objects by

	criteria – Optional lambda function to filter request by

	extra_args – Dictionary of generic arguments to filter on. Currently

only limit is (partially) supported
:type extra_args: dict
:returns: Response with a JSON object of requested data

	
wsgi_app(environ, start_response)

	Exposes the server as a WSGI application. Handles session injection and
request dispatch.

”:param environ: The environment for this request
:param start_response: Initial response for app
:returns: Response

	
prisoner.server.webservice.create_app()

	Instantiates server instance.

Module contents

prisoner.tests package

Submodules

prisoner.tests.tests module

PRISONER Unit Test Runner

If it runs, test it.

Don’t worry too much about where your tests live, so long as they live.
By convention, each module contains a tests directory - segregate your tests
logically as you see fit, and complement the base test suite with your own tests
for additional service gateways, etc.

	
class prisoner.tests.tests.SocialObjectsTestCase(methodName='runTest')

	Bases: unittest.case.TestCase

	
setUp()

	

Module contents

prisoner.workflow package

Subpackages

	prisoner.workflow.tests package
	Submodules

	prisoner.workflow.tests.PolicyProcessorTests module

	prisoner.workflow.tests.SocialObjectGatewayTests module

	Module contents

Submodules

prisoner.workflow.Exceptions module

	
exception prisoner.workflow.Exceptions.DisallowedByPrivacyPolicyError(error)

	Bases: exceptions.Exception

Raised if a method attempts to perform an action not allowed by the
current privacy policy.

	
exception prisoner.workflow.Exceptions.IncorrectSecretError

	Bases: exceptions.Exception

Raised if the secret is not correct for this experiment

	
exception prisoner.workflow.Exceptions.InvalidPolicyProvidedError(error)

	Bases: exceptions.Exception

	
exception prisoner.workflow.Exceptions.NoPrivacyPolicyProvidedError

	Bases: exceptions.Exception

Raised if a privacy policy is required before the operation can be
completed. See the SocialObjectGateway or ExperimentBuilder to provide a privacy
policy.

A Privacy policy is required to read or write data to/from service
gateways.

	
exception prisoner.workflow.Exceptions.OperationNotImplementedError(operation)

	Bases: exceptions.Exception

Raised if a service gateway does not implement a request operation
(GET, POST, PUT etc.)

	
exception prisoner.workflow.Exceptions.RuntimePrivacyPolicyParserError(error)

	Bases: exceptions.Exception

Raised if a privacy policy which passed schema validation fails
complex validation - eg. an invalid object reference is provided, or logical
criteria is incorrectly expressed

	
exception prisoner.workflow.Exceptions.ServiceGatewayNotFoundError(gateway)

	Bases: exceptions.Exception

Raised if a participation client attempts to connect to a service
without a corresponding ServiceGateway class in the gateway module.

	
exception prisoner.workflow.Exceptions.SocialObjectNotSupportedError(gateway, object)

	Bases: exceptions.Exception

Raised if a service gateway doesn’t know how to handle the given
social object.

prisoner.workflow.ExperimentBuilder module

	
class prisoner.workflow.ExperimentBuilder.CallbackHandler(application, request, **kwargs)

	Bases: tornado.web.RequestHandler

Takes a parameter (callback), and calls the unescaped version of
that URL (useful for baking nested params in a callback URL)

	
get()

	

	
class prisoner.workflow.ExperimentBuilder.CompleteConsentHandler(application, request, **kwargs)

	Bases: tornado.web.RequestHandler

Called when the user has authenticated themselves with the last
provider necessary. This completes the authentication flow and allows the
experimental application to begin.

	
get()

	

	
class prisoner.workflow.ExperimentBuilder.ConsentFlowHandler(application, request, **kwargs)

	Bases: tornado.web.RequestHandler

This renders the human-readable representation of the privacy
policy and ensures the participant understands the data requirements of the
experimental application before providing consent.

	
get()

	

	
class prisoner.workflow.ExperimentBuilder.ExperimentBuilder

	Bases: object

The ExperimentBuilder is the interface for bootstrapping an
experiment with PRISONER. After instantiating an ExperimentBuilder,
complete the following steps:

	call provide_privacy_policy() with the path to your privacy policy XML
file

	call provide_experimental_design() with the path to your experimental
design XML file

	call authenticate_participant() with the id of the participant in this
session

	call authenticate_providers() with a list of services which the
participant must authenticate with to participate

	call build() to generate a pre-experiment flow, which allows
participants to review a human-readable version of your privacy
policy, and to authenticate themselves with providers as needed.

	
authenticate_participant(schema, participant_id)

	Provide the ID of the participant in this experiment. This
participant must exist in the participant table for this
experiment.

	Parameters:	participant_id (int) – ID of participant

	
authenticate_providers(providers)

	Provide a list of provider names this participant needs to
be authenticated with to participate (eg. if they are only using
a subset of providers all participants will be using, only include that subset
in this list). When the experiment is built, each gateway will inject its own
authentication logic.

	Parameters:	providers (list[str]) – List of providers to authenticate with

	
build(callback_url)

	Using the information provided by the participation client,
instigate the experiment consent process. This does the
following:

	parse the experimental design and privacy policy and generate
a human-readable document, relevant to the participant, which
also lists which providers the participant will be asked to authenticate with

	creates a temporary web server - the participation client must
access the returned URL using the cookie provided when the
ExperimentBuilder was instantiated

	when the user consents to the policies, each service gateway
for which authentication is needed provides a URL to
authenticate with which the participant is asked to visit in

turn (decorated by additional context from PRISONER for participants’
confidence). Note, this URL must contain the entire
authentication flow, so you may need to host this yourself, particularly if this
involves two (or more) factor authentication as users are bounced between URLs
(many authentication flows expect a URL callback). This flow
must return a token to persist alongside the Participant.

: param callback_url: A callable to be invoked only when consent is
confirmed - ie. the entrypoint for the participation client
:type callback_url: callable
: returns: URL participant must visit to begin consent flow

	
build_schema()

	Constructs the database schema (destroying whatever data
might already exist). This places the database in a state in which participants
may be registered, and experiments run, but does not return usable interfaces to
the rest of the workflow (such as the SocialObjectGateway)

	
consent_confirmed(cookie)

	Called when user with given cookie accepts consent. If
cookie is valid, continue the authentication flow for that participant.

	
get_props(who_for=None)

	Retrieve the props for a given target (eg. PRISONER or a provider)

	Parameters:	who_for (str) – the target to retrieve props for

	
provide_contact(contact)

	How to contact someone in connection with this experiment,
eg. an email address. This should be provided in a form that fits the following
sentence construction:

“Contact the researcher at <contact>.”

	Parameters:	contact (str) – Contact information

	
provide_db_string(db_string)

	Set connection string for this experiment.

	Parameters:	db_string (str) – conncetion string

	
provide_experimental_design(exp_design)

	Provide the experimental design for this experiment.

	Parameters:	exp_design (str) – Path to experimental design file

	
provide_privacy_policy(policy)

	Provide the privacy policy for this experiment.

	Parameters:	policy (str) – Path to privacy policy file

	
provide_title(title)

	The title of the experiment as presented to your
participants.
:param title: Friendly experiment title
:type title: str

	
class prisoner.workflow.ExperimentBuilder.ProviderAuthentHandler(application, request, **kwargs)

	Bases: tornado.web.RequestHandler

Called during the authentication flow for each provider. Informs the
participant about the service they are about to authenticate themselves with,
then redirects to the appropriate URL for that service.

	
get()

	

prisoner.workflow.PolicyDocumentGenerator module

	
class prisoner.workflow.PolicyDocumentGenerator.PolicyDocumentGenerator(policy, design, format)

	Bases: object

The PolicyDocumentGenerator generates human-readable versions of
PRISONER policy documents - the privacy policy and experimental design. It
returns natural language documents so that participants and other stakeholders
know exactly how an experimental application will collect, store, and generate
data about them. This exposes generators for HTML, LaTeX, among others, with the
ability to define your own generators for specific output formats.

This is in-development, concept stuff. Do not use in production!

	
do_print_policy()

	

	
html()

	

	
latex()

	

	
print_policy(tree)

	

prisoner.workflow.PolicyProcessor module

	
class prisoner.workflow.PolicyProcessor.PolicyProcessor(policy=None, sog=None)

	Bases: object

The Policy Processor is responsible for validating and sanitising all
requests to retrieve and publish Social Objects.

It requires a well-formed privacy policy XML file to be supplied. If
this is missing or invalid, all requests will fail.

The PolicyProcessor is an internal object. Service gateways and
participation clients do not need to directly interact with it.
See the SocialObjectGateway for a friendly interface to these innards.

PolicyProcessor needs an instance of SocialObjectGateway so it can
evaluate the current session scope of service gateways.

	
privacy_policy

	Get the privacy policy bound to this PolicyProcessor.

	
validate_policy(policy)

	Validates a privacy policy against the XML Schema.

	Parameters:	policy (str.) – Path to privacy policy XML file.

	Returns:	ElementTree – policy object

	Raises:	IOError

prisoner.workflow.SocialObjectGateway module

	
exception prisoner.workflow.SocialObjectGateway.InvalidPrivacyPolicy(error)

	Bases: exceptions.Exception

	
exception prisoner.workflow.SocialObjectGateway.ServiceGatewayNotFound(gateway)

	Bases: exceptions.Exception

	
class prisoner.workflow.SocialObjectGateway.SocialObjectsGateway(server_url=None)

	Bases: object

This is a friendlier interface to PRISONER’s internals,
which participation clients should access.
This coordinates access to other service gateways, and the management of experimental responses.

A single instance of this object should be maintained throughout the lifecycle of an experimental application.

	
GetObject(provider, object_type, payload, allow_many=False, criteria=None, extra_args=None)

	Interface for retrieving an object from a service gateway.
Requests are verified against the privacy policy, and returned objects are sanitised as appropriate.
The payload and filter arguments are semantically distinct. See
the documentation for each argument to understand how to use them.

	Parameters:	
	provider (str) – name of provider to get object from

	object_type (str) – name of object to get

	payload (object) – This must contain a SocialObject or dictionary of
arguments necessary for the ServiceGateway to make a meaningful request. For
example, it may be a user ID to retrieve their photos, however it should not
contain criteria for filtering the objects returned
(see criteria).
The expected payload depends on the ServiceGateway and
the objects you are requesting. See the documentation for each object exposed by
the ServiceGateway to see the payload it requests.

	criteria – Optional criteria for filtering the objects returned by the
ServiceGateway. This expression is run on all objects returned by
gateway, and only where it evaluates as True is the
object returned. Uses syntax similar to lambda expressions, without prefix. x is used
to refer to each instance of an object.
eg. ‘“party” in x.tags’

	Returns:	SocialObject – sanitised for consumption by participation client

	
GetObjectJSON(provider, object_type, payload, criteria, extra_args=None)

	Interface for retrieving objects from a service gateway, for
consumption by web services.

This differs from GetObject in some fundamental ways. GetObject
is more pythonic - you request objects by supplying relevant SocialObjects, and
you get SocialObject instances in return. This method however, receives
plain-text responses, and returns
JSON objects. Whereas GetObject expects a
semantically-appropriate SocialObject as the payload (eg. supply an instance of Person to
receive objects of a given type owned by that Person), this method expects a
payload expressed as a query string, using the namespaced syntax found in the
privacy policy spec. For example, a payload of “session:Lastfm.id” will
be evaluated as “get objects authored by the user ID in the Last.fm session.
“literal:lukeweb”, similarly, returns objects owned by that literal user.
JSON objects are returned, with the same fields as the Pythonic counterparts. A
key difference is that the returned object has an additional attribute injected
- prisoner_id. This is a unique identifier for the returned object *that is

valid for the duration of this session*. Rather than passing around full

instances of objects, subsequent queries, or publication of experimental
responses, need only refer to this ID to ensure PRISONER is able to relate your
requests back to the full representation of the data. Note that subsequent
attempts to retrieve the cached object are subject to the privacy policy
sanitisation process of the original request.

	
PostObject(provider, object_type, payload)

	Request to write a Social Object to a given provider.
Requests are verified against the privacy policy, and outgoing objects are sanitised as necessary.

	Parameters:	
	provider (str) – Provider name

	object_type (str) – Type of object to write

	payload (Social Object) – Object to post to provider

	
PostObjectJSON(provider, object_type, payload)

	Used by web services interface for pushing objects to a service gateway.

Expects a payload as a JSON dictionary, where the keys are the appropriate fields of <object_type>
This method converts the dictionary to a native object and pushes it through the PRISONER pipe for sanitisation and publication

	
cache_object(object_to_cache)

	Generates a unique identifier for this object, caches it,
and returns the identifier.

	Parameters:	object_to_cache (SocialObject) – SocialObject to cache

	Returns:	str – object’s identifier

	
complete_authentication(provider, request=None)

	Completes the second stage of authentication with a provider.

	Parameters:	
	provider (str.) – Name of provider to authenticate with.

	request – The request received from the provider when it

called the PRISONER callback. This should contain any parameters needed to
complete authentication
:type request: werkzeug Request

	
get_participant()

	

	
get_service_gateway(provider)

	External wrapper to internal function

	
post_response(schema, response)

	Passes the response to the PersistenceManager to write to the
internal database. There must be an experimental design bound first.

	Parameters:	
	schema (str.) – Name of the response table to write to

	response (dict) – The response dictionary to write to the specified schema

	
provide_experimental_design(experimental_design, connection_string)

	Provide the experimental design for this experiment.
Used to instantiate a PersistenceManager.
Can only be done once per instance of SocialObjectGateway.
This must be called before attemtping to persist any response data.

	Parameters:	
	experimental_design (str) – path to an experimental design XML file

	connection_string (str) – database connection string for persisting data

	
provide_privacy_policy(privacy_policy)

	Provide the privacy policy for this experiment. Used to instantiate an instance
of PolicyProcessor. This can only be done once for an instance of SocialObjectGateway.
This must be called before attempting to read or write Social Objects.

	Parameters:	privacy_policy (str) – path to a privacy policy XML file

	
register_participant(schema, participant)

	

	
request_authentication(provider, callback)

	Call this if it is necessary to perform authenticated API
calls with a service gateway (usually required to write data as a person or to
read sensitive data).

Each service gateway has its own res
mechanism. Calling this will return a token needed to proceed with
authentication. Authentication is completed by presenting a relevant interface
to users, then calling complete_authentication() with its token.

	Parameters:	
	provider (str.) – Name of provider to authenticate with.

	callback – URL to let PRISONER authentication server know

user has provided authentication
:type callback: str.
:returns: URL required to complete authentication

	
restore_authentication(provider, access_token)

	Attempt to provide a service gateway with an existing access
token (eg. stored in DB) to authenticate without going through clientside flow.
Returns boolean value to indicate success. If False, a call
should be made to requst_authentication() to begin clientside flow.

	Parameters:	
	provider (str) – Name of provider to authenticate with

	access_token (object) – Object used to authenticate with this provider

:returns boolean - was authentication attempt successful?

Module contents

prisoner.workflow.tests package

Submodules

prisoner.workflow.tests.PolicyProcessorTests module

	
class prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase(methodName='runTest')

	Bases: unittest2.case.TestCase

	
get_bad_processor()

	

	
get_disallow_processor()

	

	
get_good_processor()

	

	
setUp()

	

	
class prisoner.workflow.tests.PolicyProcessorTests.InferAttributesTestCase(methodName='runTest')

	Bases: prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase

	
test_bad_attribute()

	

	
test_bad_format()

	

	
test_bad_nested_obj()

	

	
test_bad_obj()

	

	
test_good_nested_obj()

	

	
test_good_obj()

	

	
class prisoner.workflow.tests.PolicyProcessorTests.InferObjectTestCase(methodName='runTest')

	Bases: prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase

	
test_good_literal()

	

	
test_invalid_base()

	

	
test_invalid_literal()

	

	
test_invalid_social_gateway()

	

	
test_missing_base()

	

	
test_valid_base()

	

	
test_valid_social_gateway()

	

	
class prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase(methodName='runTest')

	Bases: prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase

	
test_good_response()

	

	
test_logic_failOnAnd()

	

	
test_logic_failOnImplicitAnd()

	

	
test_logic_failOnNested()

	

	
test_logic_failOnOr()

	

	
test_malformed_headers()

	

	
test_malformed_response()

	

	
test_missing_headers()

	

	
test_no_allow_attribute()

	

	
class prisoner.workflow.tests.PolicyProcessorTests.ValidateObjectRequestTestCase(methodName='runTest')

	Bases: prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase

	
test_bad_request_badObject()

	

	
test_bad_request_badOperation()

	

	
test_fail_validation()

	

	
test_good_validation()

	

	
class prisoner.workflow.tests.PolicyProcessorTests.ValidatePolicyTestCase(methodName='runTest')

	Bases: prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase

	
test_bad_policy()

	

	
test_good_policy()

	

	
test_no_policy()

	

prisoner.workflow.tests.SocialObjectGatewayTests module

	
class prisoner.workflow.tests.SocialObjectGatewayTests.BaseSocialObjectGatewayTestCase(methodName='runTest')

	Bases: unittest2.case.TestCase

This test suite ensures:
- caching behaves as expected
- service gateway authentication flows are delegated correctly
- object requests are delegated correctly

	
GetObject_returns_object(*args, **keywargs)

	

	
ProcessorInferObject_returns_Person(*args, **keywargs)

	

	
setUp()

	

	
class prisoner.workflow.tests.SocialObjectGatewayTests.CacheObjectTestCase(methodName='runTest')

	Bases: prisoner.workflow.tests.SocialObjectGatewayTests.BaseSocialObjectGatewayTestCase

	
test_cache_hit()

	

	
test_cache_miss(*arg, **kw)

	

	
class prisoner.workflow.tests.SocialObjectGatewayTests.GetObjectJSONTestCase(methodName='runTest')

	Bases: prisoner.workflow.tests.SocialObjectGatewayTests.BaseSocialObjectGatewayTestCase

	
test_bad_get(*args, **keywargs)

	

	
test_good_get()

	

	
class prisoner.workflow.tests.SocialObjectGatewayTests.ProvidePoliciesTestCase(methodName='runTest')

	Bases: prisoner.workflow.tests.SocialObjectGatewayTests.BaseSocialObjectGatewayTestCase

	
test_provide_good_exp_design()

	

	
test_provide_good_privacy_policy()

	

	
test_provide_invalid_exp_design()

	

	
test_provide_invalid_privacy_policy(*arg, **kw)

	

Module contents

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 prisoner	

 	
 	
 prisoner.gateway	

 	
 	
 prisoner.gateway.FacebookGateway	

 	
 	
 prisoner.gateway.LastfmGateway	

 	
 	
 prisoner.gateway.ServiceGateway	

 	
 	
 prisoner.gateway.tests	

 	
 	
 prisoner.gateway.tests.FacebookGatewayTests	

 	
 	
 prisoner.gateway.tests.LastfmGatewayTests	

 	
 	
 prisoner.gateway.tests.SocialGatewayTests	

 	
 	
 prisoner.gateway.TwitterGateway	

 	
 	
 prisoner.persistence	

 	
 	
 prisoner.persistence.PersistenceManager	

 	
 	
 prisoner.server	

 	
 	
 prisoner.server.webservice	

 	
 	
 prisoner.SocialObjects	

 	
 	
 prisoner.tests	

 	
 	
 prisoner.tests.tests	

 	
 	
 prisoner.workflow	

 	
 	
 prisoner.workflow.Exceptions	

 	
 	
 prisoner.workflow.ExperimentBuilder	

 	
 	
 prisoner.workflow.PolicyDocumentGenerator	

 	
 	
 prisoner.workflow.PolicyProcessor	

 	
 	
 prisoner.workflow.SocialObjectGateway	

 	
 	
 prisoner.workflow.tests	

 	
 	
 prisoner.workflow.tests.PolicyProcessorTests	

 	
 	
 prisoner.workflow.tests.SocialObjectGatewayTests	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Address (class in prisoner.SocialObjects)

 	address (prisoner.SocialObjects.Place attribute)

 	Album (class in prisoner.gateway.FacebookGateway)

 	Album() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	Albums (class in prisoner.gateway.FacebookGateway)

 	
 	albumType (prisoner.gateway.FacebookGateway.Album attribute)

 	artist (prisoner.gateway.LastfmGateway.Track attribute)

 	attending (prisoner.SocialObjects.Event attribute)

 	authenticate_participant() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	authenticate_providers() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	author (prisoner.SocialObjects.SocialObject attribute)

B

 	
 	base_transform_name() (prisoner.SocialObjects.SocialObject method)

 	BaseFacebookGatewayTestCase (class in prisoner.gateway.tests.FacebookGatewayTests)

 	BaseLastfmServiceGatewayTestCase (class in prisoner.gateway.tests.LastfmGatewayTests)

 	BasePolicyProcessorTestCase (class in prisoner.workflow.tests.PolicyProcessorTests)

 	BaseSocialObjectGatewayTestCase (class in prisoner.workflow.tests.SocialObjectGatewayTests)

 	
 	bio (prisoner.gateway.FacebookGateway.Person attribute)

 	birthday (prisoner.gateway.FacebookGateway.Person attribute)

 	Book (class in prisoner.gateway.FacebookGateway)

 	Book() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	build() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	build_schema() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

C

 	
 	cache_object() (prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	CacheObjectTestCase (class in prisoner.workflow.tests.SocialObjectGatewayTests)

 	CallbackHandler (class in prisoner.workflow.ExperimentBuilder)

 	category (prisoner.gateway.FacebookGateway.Page attribute)

 	check_none() (in module prisoner.gateway.FacebookGateway)

 	Checkin (class in prisoner.gateway.FacebookGateway)

 	Checkin() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	Checkins (class in prisoner.gateway.FacebookGateway)

 	checkinType (prisoner.gateway.FacebookGateway.Checkin attribute)

 	close_connection() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	Collection (class in prisoner.SocialObjects)

 	Comment (class in prisoner.gateway.FacebookGateway)

 	(class in prisoner.SocialObjects)

 	Comment() (prisoner.gateway.LastfmGateway.LastfmServiceGateway method)

 	Comments (class in prisoner.gateway.FacebookGateway)

 	comments (prisoner.gateway.FacebookGateway.Album attribute)

 	(prisoner.gateway.FacebookGateway.Image attribute)

 	(prisoner.gateway.FacebookGateway.Note attribute)

 	
 	complete_authentication() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	(prisoner.gateway.LastfmGateway.LastfmServiceGateway method)

 	(prisoner.gateway.ServiceGateway.ServiceGateway method)

 	(prisoner.gateway.TwitterGateway.TwitterServiceGateway method)

 	(prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	CompleteConsentHandler (class in prisoner.workflow.ExperimentBuilder)

 	consent_confirmed() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	ConsentFlowHandler (class in prisoner.workflow.ExperimentBuilder)

 	content (prisoner.gateway.ServiceGateway.SocialActivityResponse attribute)

 	(prisoner.SocialObjects.SocialObject attribute)

 	count (prisoner.gateway.FacebookGateway.Album attribute)

 	country (prisoner.SocialObjects.Address attribute)

 	coverPhoto (prisoner.gateway.FacebookGateway.Album attribute)

 	create_app() (in module prisoner.server.webservice)

 	create_user_all_permissions() (prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

 	create_user_no_permissions() (prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

D

 	
 	DateTimeJSONHandler (class in prisoner.SocialObjects)

 	DisallowedByPrivacyPolicyError

 	dispatch_request() (prisoner.server.webservice.PRISONER method)

 	
 	displayName (prisoner.SocialObjects.SocialObject attribute)

 	do_build_schema() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	do_print_policy() (prisoner.workflow.PolicyDocumentGenerator.PolicyDocumentGenerator method)

E

 	
 	education (prisoner.gateway.FacebookGateway.Person attribute)

 	email (prisoner.gateway.FacebookGateway.Person attribute)

 	endTime (prisoner.SocialObjects.Event attribute)

 	
 	Event (class in prisoner.SocialObjects)

 	experimental_design (prisoner.persistence.PersistenceManager.PersistenceManager attribute)

 	ExperimentBuilder (class in prisoner.workflow.ExperimentBuilder)

F

 	
 	FacebookServiceGateway (class in prisoner.gateway.FacebookGateway)

 	favorites (prisoner.gateway.TwitterGateway.Note attribute)

 	find_nth() (prisoner.server.webservice.PRISONER method)

 	firstName (prisoner.gateway.FacebookGateway.Person attribute)

 	
 	flatten() (prisoner.SocialObjects.DateTimeJSONHandler method)

 	formatted (prisoner.SocialObjects.Address attribute)

 	Friends (class in prisoner.gateway.FacebookGateway)

 	Friends() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	fullImage (prisoner.SocialObjects.Image attribute)

G

 	
 	gender (prisoner.gateway.FacebookGateway.Person attribute)

 	generate_permissions_list() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	get() (prisoner.workflow.ExperimentBuilder.CallbackHandler method)

 	(prisoner.workflow.ExperimentBuilder.CompleteConsentHandler method)

 	(prisoner.workflow.ExperimentBuilder.ConsentFlowHandler method)

 	(prisoner.workflow.ExperimentBuilder.ProviderAuthentHandler method)

 	get_bad_processor() (prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

 	(prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase method)

 	get_builder_reference() (prisoner.server.webservice.PRISONER method)

 	get_comments() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	get_disallow_processor() (prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase method)

 	get_empty_processor() (prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

 	get_existing_provider_auth() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	get_friendly_name() (prisoner.gateway.LastfmGateway.Track method)

 	(prisoner.SocialObjects.SocialObject method)

 	get_good_processor() (prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

 	(prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase method)

 	
 	get_good_props() (prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

 	get_graph_data() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	get_likes() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	get_participant() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	(prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	get_props() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	(prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	get_service_gateway() (prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	get_table() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	get_value() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	GetObject() (prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	GetObject_returns_object() (prisoner.workflow.tests.SocialObjectGatewayTests.BaseSocialObjectGatewayTestCase method)

 	GetObjectJSON() (prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	GetObjectJSONTestCase (class in prisoner.workflow.tests.SocialObjectGatewayTests)

 	GetPermissionsForPolicyTestCase (class in prisoner.gateway.tests.FacebookGatewayTests)

H

 	
 	headers (prisoner.gateway.ServiceGateway.SocialActivityResponse attribute)

 	(prisoner.gateway.ServiceGateway.WrappedResponse attribute)

 	
 	height (prisoner.gateway.FacebookGateway.Image attribute)

 	hometown (prisoner.gateway.FacebookGateway.Person attribute)

 	html() (prisoner.workflow.PolicyDocumentGenerator.PolicyDocumentGenerator method)

I

 	
 	id (prisoner.SocialObjects.SocialObject attribute)

 	Image (class in prisoner.gateway.FacebookGateway)

 	(class in prisoner.SocialObjects)

 	image (prisoner.gateway.FacebookGateway.Checkin attribute)

 	(prisoner.SocialObjects.Person attribute)

 	(prisoner.gateway.FacebookGateway.Image attribute)

 	(prisoner.gateway.FacebookGateway.Page attribute)

 	Image() (prisoner.gateway.LastfmGateway.LastfmServiceGateway method)

 	(prisoner.gateway.ServiceGateway.ServiceGateway method)

 	Images (class in prisoner.gateway.FacebookGateway)

 	
 	ImageTestCase (class in prisoner.gateway.tests.LastfmGatewayTests)

 	IncorrectSecretError

 	InferAttributesTestCase (class in prisoner.workflow.tests.PolicyProcessorTests)

 	InferObjectTestCase (class in prisoner.workflow.tests.PolicyProcessorTests)

 	InitialiseTestCase (class in prisoner.gateway.tests.FacebookGatewayTests)

 	inReplyTo (prisoner.SocialObjects.Comment attribute)

 	interestedIn (prisoner.gateway.FacebookGateway.Person attribute)

 	InvalidPolicyProvidedError

 	InvalidPrivacyPolicy

 	InvalidTransformationLevelError

L

 	
 	languages (prisoner.gateway.FacebookGateway.Person attribute)

 	LastfmServiceGateway (class in prisoner.gateway.LastfmGateway)

 	lastName (prisoner.gateway.FacebookGateway.Person attribute)

 	latex() (prisoner.workflow.PolicyDocumentGenerator.PolicyDocumentGenerator method)

 	Like (class in prisoner.gateway.FacebookGateway)

 	Like() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	Likes (class in prisoner.gateway.FacebookGateway)

 	
 	likes (prisoner.gateway.FacebookGateway.Album attribute)

 	(prisoner.gateway.FacebookGateway.Image attribute)

 	(prisoner.gateway.FacebookGateway.Note attribute)

 	link (prisoner.gateway.FacebookGateway.Note attribute)

 	locality (prisoner.SocialObjects.Address attribute)

 	location (prisoner.gateway.FacebookGateway.Person attribute)

 	(prisoner.SocialObjects.SocialObject attribute)

M

 	
 	maybeAttending (prisoner.SocialObjects.Event attribute)

 	middleName (prisoner.gateway.FacebookGateway.Person attribute)

 	Movie (class in prisoner.gateway.FacebookGateway)

 	
 	Movie() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	Music (class in prisoner.gateway.FacebookGateway)

 	Music() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

N

 	
 	NoPrivacyPolicyProvidedError

 	notAttending (prisoner.SocialObjects.Event attribute)

 	Note (class in prisoner.gateway.FacebookGateway)

 	(class in prisoner.SocialObjects)

 	(class in prisoner.gateway.TwitterGateway)

 	
 	Note() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	(prisoner.gateway.TwitterGateway.TwitterServiceGateway method)

O

 	
 	object_type (prisoner.gateway.ServiceGateway.SARHeaders attribute)

 	objects (prisoner.SocialObjects.Collection attribute)

 	on_begin() (prisoner.server.webservice.PRISONER method)

 	on_cancel() (prisoner.server.webservice.PRISONER method)

 	on_complete() (prisoner.server.webservice.PRISONER method)

 	on_confirm() (prisoner.server.webservice.PRISONER method)

 	on_consent() (prisoner.server.webservice.PRISONER method)

 	on_fallback() (prisoner.server.webservice.PRISONER method)

 	on_get_object() (prisoner.server.webservice.PRISONER method)

 	on_handshake() (prisoner.server.webservice.PRISONER method)

 	
 	on_invalidate() (prisoner.server.webservice.PRISONER method)

 	on_post_response() (prisoner.server.webservice.PRISONER method)

 	on_publish_object() (prisoner.server.webservice.PRISONER method)

 	on_register() (prisoner.server.webservice.PRISONER method)

 	on_schema() (prisoner.server.webservice.PRISONER method)

 	on_session_read() (prisoner.server.webservice.PRISONER method)

 	on_session_timeout() (prisoner.server.webservice.PRISONER method)

 	on_session_write() (prisoner.server.webservice.PRISONER method)

 	operation (prisoner.gateway.ServiceGateway.SARHeaders attribute)

 	OperationNotImplementedError

P

 	
 	Page (class in prisoner.gateway.FacebookGateway)

 	parse_comments() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	parse_json() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	parse_likes() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	parse_location() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	parse_tags() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	payload (prisoner.gateway.ServiceGateway.SARHeaders attribute)

 	PersistenceManager (class in prisoner.persistence.PersistenceManager)

 	Person (class in prisoner.gateway.FacebookGateway)

 	(class in prisoner.SocialObjects)

 	(class in prisoner.gateway.TwitterGateway)

 	Person() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	(prisoner.gateway.TwitterGateway.TwitterServiceGateway method)

 	Photo() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	photos (prisoner.gateway.FacebookGateway.Album attribute)

 	Place (class in prisoner.SocialObjects)

 	Playlist (class in prisoner.gateway.LastfmGateway)

 	Playlist() (prisoner.gateway.LastfmGateway.LastfmServiceGateway method)

 	PolicyDocumentGenerator (class in prisoner.workflow.PolicyDocumentGenerator)

 	PolicyProcessor (class in prisoner.workflow.PolicyProcessor)

 	politicalViews (prisoner.gateway.FacebookGateway.Person attribute)

 	position (prisoner.gateway.FacebookGateway.Image attribute)

 	(prisoner.SocialObjects.Place attribute)

 	position_as_dict() (prisoner.SocialObjects.Place method)

 	post_graph_data() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	(prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

 	post_response() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	(prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	post_response_json() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	postalCode (prisoner.SocialObjects.Address attribute)

 	PostObject() (prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	PostObjectJSON() (prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	print_policy() (prisoner.workflow.PolicyDocumentGenerator.PolicyDocumentGenerator method)

 	PRISONER (class in prisoner.server.webservice)

 	prisoner (module)

 	prisoner.gateway (module)

 	prisoner.gateway.FacebookGateway (module)

 	prisoner.gateway.LastfmGateway (module)

 	
 	prisoner.gateway.ServiceGateway (module)

 	prisoner.gateway.tests (module)

 	prisoner.gateway.tests.FacebookGatewayTests (module)

 	prisoner.gateway.tests.LastfmGatewayTests (module)

 	prisoner.gateway.tests.SocialGatewayTests (module)

 	prisoner.gateway.TwitterGateway (module)

 	prisoner.persistence (module)

 	prisoner.persistence.PersistenceManager (module)

 	prisoner.server (module)

 	prisoner.server.webservice (module)

 	prisoner.SocialObjects (module)

 	prisoner.tests (module)

 	prisoner.tests.tests (module)

 	prisoner.workflow (module)

 	prisoner.workflow.Exceptions (module)

 	prisoner.workflow.ExperimentBuilder (module)

 	prisoner.workflow.PolicyDocumentGenerator (module)

 	prisoner.workflow.PolicyProcessor (module)

 	prisoner.workflow.SocialObjectGateway (module)

 	prisoner.workflow.tests (module)

 	prisoner.workflow.tests.PolicyProcessorTests (module)

 	prisoner.workflow.tests.SocialObjectGatewayTests (module)

 	privacy (prisoner.gateway.FacebookGateway.Album attribute)

 	(prisoner.gateway.FacebookGateway.Note attribute)

 	privacy_policy (prisoner.workflow.PolicyProcessor.PolicyProcessor attribute)

 	ProcessorInferObject_returns_Person() (prisoner.workflow.tests.SocialObjectGatewayTests.BaseSocialObjectGatewayTestCase method)

 	props (prisoner.persistence.PersistenceManager.PersistenceManager attribute)

 	provide_contact() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	provide_db_string() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	provide_experimental_design() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	(prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	provide_privacy_policy() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	(prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	provide_title() (prisoner.workflow.ExperimentBuilder.ExperimentBuilder method)

 	ProvidePoliciesTestCase (class in prisoner.workflow.tests.SocialObjectGatewayTests)

 	provider (prisoner.gateway.ServiceGateway.SARHeaders attribute)

 	(prisoner.SocialObjects.SocialObject attribute)

 	ProviderAuthentHandler (class in prisoner.workflow.ExperimentBuilder)

 	published (prisoner.SocialObjects.SocialObject attribute)

R

 	
 	rebuild_engine() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	region (prisoner.SocialObjects.Address attribute)

 	register_participant() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	(prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	register_participant_with_provider() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	relationshipStatus (prisoner.gateway.FacebookGateway.Person attribute)

 	religion (prisoner.gateway.FacebookGateway.Person attribute)

 	render_template() (prisoner.server.webservice.PRISONER method)

 	request_authentication() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	(prisoner.gateway.LastfmGateway.LastfmServiceGateway method)

 	(prisoner.gateway.ServiceGateway.ServiceGateway method)

 	(prisoner.gateway.TwitterGateway.TwitterServiceGateway method)

 	(prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	
 	request_handler() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	(prisoner.gateway.ServiceGateway.ServiceGateway method)

 	(prisoner.gateway.TwitterGateway.TwitterServiceGateway method)

 	restore() (prisoner.SocialObjects.DateTimeJSONHandler method)

 	restore_authentication() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	(prisoner.gateway.LastfmGateway.LastfmServiceGateway method)

 	(prisoner.gateway.ServiceGateway.ServiceGateway method)

 	(prisoner.gateway.TwitterGateway.TwitterServiceGateway method)

 	(prisoner.workflow.SocialObjectGateway.SocialObjectsGateway method)

 	retweets (prisoner.gateway.TwitterGateway.Note attribute)

 	RuntimePrivacyPolicyParserError

S

 	
 	SanitiseObjectRequestTestCase (class in prisoner.workflow.tests.PolicyProcessorTests)

 	SARHeaders (class in prisoner.gateway.ServiceGateway)

 	ServiceGateway (class in prisoner.gateway.ServiceGateway)

 	ServiceGatewayNotFound

 	ServiceGatewayNotFoundError

 	Session() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	(prisoner.gateway.LastfmGateway.LastfmServiceGateway method)

 	(prisoner.gateway.ServiceGateway.ServiceGateway method)

 	(prisoner.gateway.TwitterGateway.TwitterServiceGateway method)

 	set_builder_reference() (prisoner.server.webservice.PRISONER method)

 	set_test_user_attributes() (prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

 	setUp() (prisoner.gateway.tests.FacebookGatewayTests.BaseFacebookGatewayTestCase method)

 	(prisoner.gateway.tests.LastfmGatewayTests.BaseLastfmServiceGatewayTestCase method)

 	(prisoner.tests.tests.SocialObjectsTestCase method)

 	(prisoner.workflow.tests.PolicyProcessorTests.BasePolicyProcessorTestCase method)

 	(prisoner.workflow.tests.SocialObjectGatewayTests.BaseSocialObjectGatewayTestCase method)

 	
 	significantOther (prisoner.gateway.FacebookGateway.Person attribute)

 	social_object (prisoner.gateway.ServiceGateway.WrappedResponse attribute)

 	SocialActivityResponse (class in prisoner.gateway.ServiceGateway)

 	SocialObject (class in prisoner.SocialObjects)

 	SocialObjectNotSupportedError

 	SocialObjectsGateway (class in prisoner.workflow.SocialObjectGateway)

 	SocialObjectsTestCase (class in prisoner.tests.tests)

 	startTime (prisoner.SocialObjects.Event attribute)

 	StatusList (class in prisoner.gateway.FacebookGateway)

 	StatusTestCase (class in prisoner.gateway.tests.FacebookGatewayTests)

 	str_to_time() (prisoner.gateway.FacebookGateway.FacebookServiceGateway method)

 	streetAddress (prisoner.SocialObjects.Address attribute)

T

 	
 	tag (prisoner.gateway.LastfmGateway.Track attribute)

 	Tags (class in prisoner.gateway.FacebookGateway)

 	tags (prisoner.gateway.FacebookGateway.Image attribute)

 	(prisoner.SocialObjects.SocialObject attribute)

 	test_bad_attribute() (prisoner.workflow.tests.PolicyProcessorTests.InferAttributesTestCase method)

 	test_bad_format() (prisoner.workflow.tests.PolicyProcessorTests.InferAttributesTestCase method)

 	test_bad_get() (prisoner.workflow.tests.SocialObjectGatewayTests.GetObjectJSONTestCase method)

 	test_bad_nested_obj() (prisoner.workflow.tests.PolicyProcessorTests.InferAttributesTestCase method)

 	test_bad_obj() (prisoner.workflow.tests.PolicyProcessorTests.InferAttributesTestCase method)

 	test_bad_policy() (prisoner.gateway.tests.FacebookGatewayTests.GetPermissionsForPolicyTestCase method)

 	(prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	(prisoner.workflow.tests.PolicyProcessorTests.ValidatePolicyTestCase method)

 	test_bad_props() (prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	test_bad_request_badObject() (prisoner.workflow.tests.PolicyProcessorTests.ValidateObjectRequestTestCase method)

 	test_bad_request_badOperation() (prisoner.workflow.tests.PolicyProcessorTests.ValidateObjectRequestTestCase method)

 	test_bad_token() (prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	test_cache_hit() (prisoner.workflow.tests.SocialObjectGatewayTests.CacheObjectTestCase method)

 	test_cache_miss() (prisoner.workflow.tests.SocialObjectGatewayTests.CacheObjectTestCase method)

 	test_fail_validation() (prisoner.workflow.tests.PolicyProcessorTests.ValidateObjectRequestTestCase method)

 	test_get_failure() (prisoner.gateway.tests.LastfmGatewayTests.ImageTestCase method)

 	test_get_success() (prisoner.gateway.tests.LastfmGatewayTests.ImageTestCase method)

 	test_good_get() (prisoner.gateway.tests.FacebookGatewayTests.UserTestCase method)

 	(prisoner.workflow.tests.SocialObjectGatewayTests.GetObjectJSONTestCase method)

 	test_good_literal() (prisoner.workflow.tests.PolicyProcessorTests.InferObjectTestCase method)

 	test_good_nested_obj() (prisoner.workflow.tests.PolicyProcessorTests.InferAttributesTestCase method)

 	test_good_obj() (prisoner.workflow.tests.PolicyProcessorTests.InferAttributesTestCase method)

 	test_good_policy() (prisoner.gateway.tests.FacebookGatewayTests.GetPermissionsForPolicyTestCase method)

 	(prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	(prisoner.workflow.tests.PolicyProcessorTests.ValidatePolicyTestCase method)

 	test_good_props() (prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	test_good_response() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_good_token() (prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	test_good_validation() (prisoner.workflow.tests.PolicyProcessorTests.ValidateObjectRequestTestCase method)

 	test_invalid_base() (prisoner.workflow.tests.PolicyProcessorTests.InferObjectTestCase method)

 	
 	test_invalid_literal() (prisoner.workflow.tests.PolicyProcessorTests.InferObjectTestCase method)

 	test_invalid_social_gateway() (prisoner.workflow.tests.PolicyProcessorTests.InferObjectTestCase method)

 	test_logic_failOnAnd() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_logic_failOnImplicitAnd() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_logic_failOnNested() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_logic_failOnOr() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_malformed_headers() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_malformed_response() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_missing_base() (prisoner.workflow.tests.PolicyProcessorTests.InferObjectTestCase method)

 	test_missing_headers() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_no_allow_attribute() (prisoner.workflow.tests.PolicyProcessorTests.SanitiseObjectRequestTestCase method)

 	test_no_policy() (prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	(prisoner.workflow.tests.PolicyProcessorTests.ValidatePolicyTestCase method)

 	test_no_props() (prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	test_no_token() (prisoner.gateway.tests.FacebookGatewayTests.InitialiseTestCase method)

 	test_post() (prisoner.gateway.tests.FacebookGatewayTests.StatusTestCase method)

 	(prisoner.gateway.tests.FacebookGatewayTests.UserTestCase method)

 	test_provide_good_exp_design() (prisoner.workflow.tests.SocialObjectGatewayTests.ProvidePoliciesTestCase method)

 	test_provide_good_privacy_policy() (prisoner.workflow.tests.SocialObjectGatewayTests.ProvidePoliciesTestCase method)

 	test_provide_invalid_exp_design() (prisoner.workflow.tests.SocialObjectGatewayTests.ProvidePoliciesTestCase method)

 	test_provide_invalid_privacy_policy() (prisoner.workflow.tests.SocialObjectGatewayTests.ProvidePoliciesTestCase method)

 	test_valid_base() (prisoner.workflow.tests.PolicyProcessorTests.InferObjectTestCase method)

 	test_valid_social_gateway() (prisoner.workflow.tests.PolicyProcessorTests.InferObjectTestCase method)

 	threaded_get_object() (prisoner.server.webservice.PRISONER method)

 	thumbnail (prisoner.gateway.FacebookGateway.Image attribute)

 	Timeline (class in prisoner.gateway.TwitterGateway)

 	timezone (prisoner.gateway.FacebookGateway.Person attribute)

 	title (prisoner.gateway.LastfmGateway.Track attribute)

 	Track (class in prisoner.gateway.LastfmGateway)

 	Track() (prisoner.gateway.LastfmGateway.LastfmServiceGateway method)

 	transform_artist() (prisoner.gateway.LastfmGateway.Track method)

 	transform_hash() (prisoner.SocialObjects.SocialObject method)

 	transform_reduce() (prisoner.SocialObjects.SocialObject method)

 	TwitterServiceGateway (class in prisoner.gateway.TwitterGateway)

U

 	
 	updated (prisoner.SocialObjects.SocialObject attribute)

 	updatedTime (prisoner.gateway.FacebookGateway.Person attribute)

 	
 	url (prisoner.SocialObjects.SocialObject attribute)

 	username (prisoner.gateway.FacebookGateway.Person attribute)

 	UserTestCase (class in prisoner.gateway.tests.FacebookGatewayTests)

V

 	
 	validate_design() (prisoner.persistence.PersistenceManager.PersistenceManager method)

 	validate_policy() (prisoner.workflow.PolicyProcessor.PolicyProcessor method)

 	
 	ValidateObjectRequestTestCase (class in prisoner.workflow.tests.PolicyProcessorTests)

 	ValidatePolicyTestCase (class in prisoner.workflow.tests.PolicyProcessorTests)

W

 	
 	width (prisoner.gateway.FacebookGateway.Image attribute)

 	work (prisoner.gateway.FacebookGateway.Person attribute)

 	
 	wrapped_headers (prisoner.gateway.ServiceGateway.SARHeaders attribute)

 	WrappedResponse (class in prisoner.gateway.ServiceGateway)

 	wsgi_app() (prisoner.server.webservice.PRISONER method)

Key concepts

This document introduces the key components and concepts in PRISONER.
We recommend reading this before following the other tutorials to get a basic
understanding of how PRISONER works, and the kinds of experiments it supports.

 ==

	prisoner package
	Subpackages
	prisoner.gateway package
	Subpackages

	Submodules

	prisoner.gateway.FacebookGateway module

	prisoner.gateway.LastfmGateway module

	prisoner.gateway.ServiceGateway module

	prisoner.gateway.TwitterGateway module

	Module contents

	prisoner.persistence package
	Submodules

	prisoner.persistence.PersistenceManager module

	Module contents

	prisoner.server package
	Submodules

	prisoner.server.webservice module

	Module contents

	prisoner.tests package
	Submodules

	prisoner.tests.tests module

	Module contents

	prisoner.workflow package
	Subpackages

	Submodules

	prisoner.workflow.Exceptions module

	prisoner.workflow.ExperimentBuilder module

	prisoner.workflow.PolicyDocumentGenerator module

	prisoner.workflow.PolicyProcessor module

	prisoner.workflow.SocialObjectGateway module

	Module contents

	Submodules

	prisoner.SocialObjects module

	Module contents

 _static/down.png

_static/comment.png

_static/prisoner-logo.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		PRISONER

 		Tutorials

 		Running the PRISONER demo

 		Prerequisites

 		Start the Docker container

 		Running the demo

 		Modifying the demo

 		Saving data

 		Packaging the modified demo

 		Installing PRISONER

 		Installing PRISONER for local development

 		Writing your first experiment

 		Prerequisites

 		In this tutorial

 		Privacy policies

 		Experimental designs

 		Writing the experiment app

 		Deploying a PRISONER server

 		Best practices for distributing reproducible PRISONER experiments

 		1) Sharing code and PRISONER policies

 		2) Forking PRISONER on GitHub

 		3) Release a virtual machine image

 		Final thoughts

 		prisoner package

 		Subpackages

 		prisoner.gateway package

 		prisoner.persistence package

 		prisoner.server package

 		prisoner.tests package

 		prisoner.workflow package

 		Submodules

 		prisoner.SocialObjects module

 		Module contents

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

