

PREMIS Event Service Documentation

Contents:

	Overview
	PREMIS Event Service

	Technical Overview
	Events

	Agents

	Installation
	Dependencies

	Important security warning

	Install

	Configuration
	Mandatory Configuration

	Customizing the Controlled Vocabulary

	Administration
	Manage User Accounts

	Create an Agent

	Using the Event Service
	Events

	Agents

	API
	Introduction

	API URL Structure

	Example

	Development
	Project Structure

	Models

	Views

Overview

For a general overview of the PREMIS Event Service, please see the project
README.rst file (included below for convenience).

PREMIS Event Service

[image: https://travis-ci.org/unt-libraries/django-premis-event-service.svg?branch=master]
 [https://travis-ci.org/unt-libraries/django-premis-event-service]PREMIS Event Service is a Django application for managing PREMIS Events in a
structured, centralized, and searchable manner.

Purpose

The purpose of this application is to provide a straightforward way to send
PREMIS-formatted events to a central location to be stored and retrieved. In
this fashion, it can serve as an event logger for any number of services that
happen to wish to use it. PREMIS is chosen as the underlying format for events
due to its widespread use in the digital libraries world.

Dependencies

	Python 2.7+ (not Python 3)

	Django (tested on 1.7-1.10; 1.3 or higher required)

	lxml (requires libxml2-dev to be installed on your system)

Documentation

Documentation, including installation instructions, can be viewed online at:

http://premis-event-service.readthedocs.org/

The documentation is also browsable locally from within the docs
directory of this repository. You can read the source files in plain text
from the docs/source directory, or generate your own local copy of the
HTML files by doing the following:

	Make sure Sphinx is installed (pip install sphinx)

	cd docs

	make html

	Open index.html (generated in docs/build/html)

License

See LICENSE.

Acknowledgements

The Premis Event Service was developed at the UNT Libraries and has been worked on
by a number of developers over the years including

	Kurt Nordstrom

	Joey Liechty

	Lauren Ko

	Stephen Eisenhauer

	Mark Phillips

	Damon Kelley

	Reed Underwood

If you have questions about the project feel free to contact Mark Phillips at mark.phillips@unt.edu

Developing

There are two (supported) ways to develop the PREMIS event service Django app. One is natively using an SQLite backend. The other is using a MySQL backend for storage inside a Docker container.

Developing Natively Using SQLite [https://sqlite.org/]

Clone the repository

$ git clone https://github.com/unt-libraries/django-premis-event-service.git # check the repo for the latest official release if you don't want the development version at HEAD on the master branch
$ cd django-premis-event-service

Create a virtualenv [https://virtualenv.pypa.io/en/stable/] environment

$ mkvirtualenv premis-event-service # to create and enter the virtualenv
(premis-event-service) $ deactivate # to exit the virtualenv
$ workon premis-event-service # to reactivate the virtualenv

Install the requirements using pip [https://pip.pypa.io/en/stable/]

(premis-event-service) $ pip install -r requirements.txt # install dependencies from text file

Run the tests using tox [https://tox.readthedocs.io/en/latest/]

(premis-event-service) $ tox

Note that the tests will be run in multiple environments, most importantly in distinct environments for Django major versions 1.7-1.10. Tests will also be run against the Django master branch, which is a development branch and prone to failure. These failures are ignored by the PREMIS Event Service testing configuration, and you can likely ignore them as well, particularly if you are using one of the other Django major versions against which the tests should pass.

Apply the migrations

(premis-event-service) $ python manage.py migrate

Start the development server

(premis-event-service) $ python manage.py runserver 9999

This will start the development server listening locally on port 9999. You may want to change the port number, passed as the first argument to the runserver command.

View the web UI in a browser

Navigate to http://localhost:9999/event/ (or whatever port you chose) to see the UI of the app.

Developing Using Docker and MySQL as a Backend

Install Docker [https://docs.docker.com]

On Debian-derived Linux distros, you can use apt-get to install. If you’re on a different OS, check the Docker site for instructions.

Install Docker Compose

$ pip install docker-compose

Alternatively, you may want to install docker-compose using your system’s package manager.

Clone the repository

$ git clone https://github.com/unt-libraries/django-premis-event-service.git # check the repo for the latest official release if you don't want the development version at HEAD on the master branch
$ cd django-premis-event-service

Starting the app

start the app
$ docker-compose up -d db app

optional: add a superuser in order to login to the admin interface
$ docker-compose run manage createsuperuser

View the web UI in a browser

Navigate to http://localhost:8000/event/ to see the UI of the app. The port can be changed by editing the docker-compose.yml file.

The code is in a volume that is shared between your workstation and the app container, which means any edits you make on your workstation will also be reflected in the Docker container. No need to rebuild the container to pick up changes in the code.

However, if the requirements files change, it is important that you rebuild the app container for those packages to be installed. This is something that could happen when switching between feature branches, or when pulling updates from the remote.

stop the app
$ docker-compose stop

remove the app container
$ docker-compose rm app

rebuild the app container
$ docker-compose build app # under some circumstances, you may need to use the --no-cache switch, e.g. upstream changes to packages the app requires

start the app
$ docker-compose up -d db app

Viewing the logs

$ docker-compose logs -f

Running the Tests

To run the tests via Tox, use this command.

$ docker-compose run --rm app test

Technical Overview

	Events

	Agents

Events

A standard PREMIS event encoded as XML looks something like the following:

<?xml version="1.0"?>
<premis:event xmlns:premis="info:lc/xmlns/premis-v2">
 <premis:eventIdentifier>
 <premis:eventIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#UUID
 </premis:eventIdentifierType>
 <premis:eventIdentifierValue>
 9e42cbd3cc3b4dfc888522036bbc4491
 </premis:eventIdentifierValue>
 </premis:eventIdentifier>
 <premis:eventType>
 http://purl.org/net/untl/vocabularies/preservationEvents/#fixityCheck
 </premis:eventType>
 <premis:eventDateTime>2017-05-13T14:14:55Z</premis:eventDateTime>
 <premis:eventDetail>
 There is no muse of philosophy, nor is there one of translation.
 </premis:eventDetail>
 <premis:eventOutcomeInformation>
 <premis:eventOutcome>
 http://purl.org/net/untl/vocabularies/eventOutcomes/#success
 </premis:eventOutcome>
 <premis:eventOutcomeDetail>
 <premis:eventOutcomeDetailNote>
 Total time for verification: 0:00:01.839590
 </premis:eventOutcomeDetailNote>
 </premis:eventOutcomeDetail>
 </premis:eventOutcomeInformation>
 <premis:linkingAgentIdentifier>
 <premis:linkingAgentIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL
 </premis:linkingAgentIdentifierType>
 <premis:linkingAgentIdentifierValue>
 http://localhost:8787/agent/codaMigrationVerification
 </premis:linkingAgentIdentifierValue>
 </premis:linkingAgentIdentifier>
 <premis:linkingObjectIdentifier>
 <premis:linkingObjectIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#ARK
 </premis:linkingObjectIdentifierType>
 <premis:linkingObjectIdentifierValue>
 ark:/67531/coda10kx
 </premis:linkingObjectIdentifierValue>
 <premis:linkingObjectRole/>
 </premis:linkingObjectIdentifier>
</premis:event>

This is a lot at first glance, but the pieces are more or less logical. The
relevant things that a given PREMIS event record keeps track of are the
following:

	Event Identifier - This is a unique identifier assigned to every event when
it is entered into the system. This is what is used to reference given event.

	Event Type - This is an arbitrary value to categorize the kind of event
we’re logging. Examples might include fixity checking, virus scanning or replication.

	Event Time - This is a timestamp for when the event itself occurred.

	Event Added - This is a timestamp for when the event was logged.

	Event Outcome - This is the simple description of the outcome. Usually
something like “pass” or “fail”.

	Outcome Details - A more detailed record of the outcome. Perhaps output from
a secondary program might go here.

	Agent - This is the identifier for the agent that initiated the event. An
agent can be anything, from a person, to an institution, to a program. The
PREMIS event service will also allow you to track agent entries as well.

	Linked Objects - These are identifiers for relevant objects that the event
is associated with. If your system uses object identifiers, you could put
those identifiers here when an event pertains to them.

It is important to note that most of the values that you use in a given PREMIS
event record are arbitrary. You decide on your own values and vocabularies,
and use what makes sense to you. It doesn’t enforce any sort of constraints as
far as that goes. The service is responsible for indexing all PREMIS events
sent to it and providing retrieval for them. Basic retrieval is on a
per-identifier basis, but it is plausible to assume that you may wish to
request events based on date added, agent used, event type, event outcome, or
a combination of these factors.

Agents

The PREMIS metadata specification defines a separate spec for agents that
looks like the following:

<?xml version="1.0"?>
<premis:agent xmlns:premis="info:lc/xmlns/premis-v2">
 <premis:agentIdentifier>
 <premis:agentIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL
 </premis:agentIdentifierType>
 <premis:agentIdentifierValue>
 http://localhost:8787/agent/codaMigrationVerification
 </premis:agentIdentifierValue>
 </premis:agentIdentifier>
 <premis:agentName>
 codaMigrationVerification
 </premis:agentName>
 <premis:agentType>softw</premis:agentType>
</premis:agent>

As you can see from the above example, the agent’s identifier above
corresponds with the agent in the event example. You are able to create and
register agents through the administrative panel on the PREMIS service;
see the Administration section to learn how.

Note that there is no schematic relationship between Agent objects and Event objects in the application’s database tables. Events may be linked to any Agent identifier and are not limited in any way to Agent items created in administrative interface.

Installation

The project’s README.rst file contains some basic installation instructions.
We’ll elaborate a bit in this section.

	Dependencies

	Important security warning

	Install

Dependencies

	Python 2.7.x

	Django 1.8 - 1.10

	libxml2-dev libxslt-dev

	Django Admin - django.contrib.admin

Important security warning

This application does not attempt to authenticate requests or differentiate
between clients in any way – even for write and edit operations via the API.
Do not simply expose the application to the public in your server configuration.
Instead, use a network firewall to whitelist the server to authorized clients,
or use a web server configuration directive (such as Apache’s
<LimitExcept GET>) to set up who is allowed to POST/PUT/DELETE events.

Install

	Install the package.

$ pip install git+https://github.com/unt-libraries/django-premis-event-service@v1.2.2
$ # check https://github.com/unt-libraries/django-premis-event-service/releases for the latest release

	Add premis_event_service to your INSTALLED_APPS. Be sure to add django.contrib.admin if it is not already present.

INSTALLED_APPS = (
 'django.contrib.admin',
 # ...
 'premis_event_service',
)

	Include the URLs.

urlpatterns = [
 url(r'', include('premis_event_service.urls'))
 # ...
 url(r'^admin/', include(admin.site.urls)),
]

	Migrate the database.

$ python manage.py migrate

	Continue to Administration to begin setting up Agents.

Configuration

All configuration related to the PREMIS Event Service takes place inside your
project’s settings.py file.

Note: Make sure you only make changes in your project’s settings.py, not
the settings.py file inside the premis_event_service app directory.

	Mandatory Configuration

	Customizing the Controlled Vocabulary
	Deciding on Controlled Vocabulary Design

	Configuring a Custom Controlled Vocabulary

Mandatory Configuration

	Update your INSTALLED_APPS setting as follows:

INSTALLED_APPS = (
 ...
 'django.contrib.humanize',
 'premis_event_service',
)

	Make sure you have a TEMPLATE_CONTEXT_PROCESSORS setting defined
containing at least the entries shown below:

TEMPLATE_CONTEXT_PROCESSORS = (
 'django.contrib.auth.context_processors.auth',
 'django.core.context_processors.debug',
 'django.core.context_processors.i18n',
 'django.core.context_processors.media',
 'django.core.context_processors.request',
)

	In your MIDDLEWARE_CLASSES setting, remove or comment out the
CsrfViewMiddleware entry:

MIDDLEWARE_CLASSES = (
 ...
 #'django.middleware.csrf.CsrfViewMiddleware',
 ...
)

	Add a MAINTENANCE_MSG setting at the bottom of the file:

MAINTENANCE_MSG = '' # Message to show during maintenance

Customizing the Controlled Vocabulary

Deciding on Controlled Vocabulary Design

The Premis Event Service was designed to us a wide variety of or identifiers
for values within PREMIS Event Objects. That being said there are some best
practices that can be suggested to new a implementer.

It is advantageous for someone implementing the Premis Event Service to make
use of existing controlled vocabularies whenever possible for some of the
concepts that are used throughout the application. For example the Library of
Congress has added a number of Preservation Vocabulary [http://id.loc.gov/vocabulary/preservation.html] entries to its
Authorities and Vocabularies Service [http://id.loc.gov/]. Starting with these identifiers for
concepts such as “Fixity Check”, “Replication”, “Ingestion”, or “Migration” is
a suggestion unless there is a reason to deviate from these in a local
implementation.

Additional concepts that are not covered by the Library of Congress Authorities
and Vocabularies Service are those for the outcome of an event, for example
“Success” and “Failure”. The Premis Event Service has placeholders set aside
for these values that utilize the controlled vocabularies at the University of
North Texas: http://purl.org/NET/untl/vocabularies/

The Premis Event Service will work without fully fleshed out controlled
vocabularies, and the authors have worked to give examples with reasonable
values which can be added to or modified to meet local needs.

Configuring a Custom Controlled Vocabulary

The Event Service makes no attempt to validate values given to it against any
set of allowed values; it is up to your policies and integrations to enforce
consistency across the events you store.

However, you can change the choices that are shown in the “Search” interface
by adding some statements like these to your settings.py file:

EVENT_OUTCOME_CHOICES = (
 ('', 'None'),
 ('http://purl.org/net/untl/vocabularies/eventOutcomes/#success', 'Success'),
 ('http://purl.org/net/untl/vocabularies/eventOutcomes/#failure', 'Failure'),
)
EVENT_TYPE_CHOICES = (
 ('', 'None'),
 ('http://id.loc.gov/vocabulary/preservation/eventType/fix', 'Fixity Check'),
 ('http://id.loc.gov/vocabulary/preservation/eventType/rep', 'Replication'),
 ('http://id.loc.gov/vocabulary/preservation/eventType/ing', 'Ingestion'),
 ('http://id.loc.gov/vocabulary/preservation/eventType/mig', 'Migration'),
)

Administration

This section outlines the initial work needed after installation in order to
prepare your Event Service for use.

	Manage User Accounts

	Create an Agent

Manage User Accounts

To create an admin account, run python manage.py createsuperuser and follow the prompts.

To manage or create other user accounts, do the following:

	Visit the Django admin interface (http://[host]/admin/) in a web browser.

	Log in using your superuser account.

	Click Users. This takes you to the list of Users.

	Click the Add user button near the top-right corner of the page.

	Fill and submit the form.

Keep in mind that any account needing the ability to also administer user
accounts using the admin interface will need to be given “superuser” status.

Create an Agent

Every event stored in the Event Service must be associated with an Agent.
Agents merely represent entities that produce events. In many cases these are
software processes (e.g. a web application or a script), but an agent can also
be a person, an institution, or anything else.

To create a new agent (or to manage existing ones), do the following:

	Visit the Django admin interface (http://[host]/admin/) in a web browser.

	Log in using your superuser account (if you haven’t already).

	Click Agents. This takes you to the list of Agents, which will be empty
at first.

	Click the Add agent button near the top-right corner of the page.

	Fill and submit the form.

Create as many agents as you have a need for.

Using the Event Service

There are two ways of using the PREMIS Event Service:

	using the web interface to view and manage events by hand

	using the APIs to create or query events from other software workflows

This document will cover how to use the web interface and admin site.
For information about the APIs, refer to the next section (API).

	Events
	Browse all Events

	View a single Event

	Search for Events

	Agents
	Browse all Agents

	View a single Agent

Events

Browse all Events

URL: http://[host]/event/

Human readable HTML listing of events.

View a single Event

URL: http://[host]/event/[id]/

Human readable HTML listing of a single event. Contains links to other
formats/representations of the event, such as PREMIS XML.

Search for Events

URL: http://[host]/event/search/

Web interface for searching events. Events can be filtered by outcome, type,
start/end dates, or Linked Object ID.

Agents

Browse all Agents

URL: http://[host]/agent/

Human readable HTML listing of agents.

View a single Agent

URL: http://[host]/agent/[id]/

Human readable HTML listing of a single agent. Contains links to other
formats/representations of the agent, such as PREMIS XML.

API

The bulk of event creation using the Event Service will probably take place
via software as opposed to by hand. This section explains the AtomPub API
(Application Programming Interface) used for interacting with the Event
Service from your custom applications and scripts.

	Introduction
	PREMIS

	A Note on Dates

	API URL Structure
	/APP/

	/APP/event/

	/APP/event/<id>/

	/APP/agent/

	/APP/agent/<id>/

	Example

Introduction

The PREMIS Event Service uses REST to handle the message passing between
client and server. To better provide a standard set of conventions for this,
we have elected to follow the AtomPub protocol for POSTing and GETing events
from the system. The base unit for AtomPub is the Atom “entry” tag, which is
what gets sent back and forth. The actual PREMIS metadata is embedded in the
entry’s “content” tag. There is a lot more to AtomPub than that, but for the
purpose of this document, it is helpful to just view the Atom entry as an
“envelope” for the PREMIS XML.

PREMIS

The PREMIS Event Service makes every effort to conform to the PREMIS v.2
specification [https://www.loc.gov/standards/premis/v2/premis-v2-3.xsd]. Versions 2.* of the spec are not backwards compatible with
versions before the 2.0 milestone.

A Note on Dates

Unless otherwise noted, all datetimes mentioned below must be formatted [https://www.w3.org/TR/xmlschema-2/#dateTime]
as xsDateTime compliant strings. The output of the datetime.isoformat
method in Python is compatible.

API URL Structure

APIs for communicating with the Event Service programmatically are located
under the /APP/ URL tree:

/APP/

AtomPub service document

The service document is an XML file that explains, to an AtomPub aware client,
what services and URLs exist at this site. It’s an integral part of the
AtomPub specification, and allows for things like auto-discovery.

/APP/event/

AtomPub feed for event entries

Accepts parameters:

	start - This is the index of the first record that you want...it starts indexing at 1.

	count - This is the number of records that you want returned.

	start_date - This is a date (or partial date) in ISO8601 format that indicates the earliest record that you want.

	end_date - This is a date that indicates the latest record that you want.

	type - This is a string identifying a type identifier (or partial identifier) that you want to filter events by

	outcome - This is a string identifying an outcome identifier (partial matching is supported)

	link_object_id - This is an identifier that specifies that we want events pertaining to a particular object

	orderdir - This defaults to ‘ascending’. Specifying ‘descending’ will return the records in reverse order.

	orderby - This parameter specifies what field to order the records by. The valid fields are currently: event_date_time (default), event_identifier, event_type, event_outcome

For the human-viewable feeds, the parameters are the same, except, instead of using a
‘start’ parameter, it uses a ‘page’ parameter, because of the way it paginates the output (see
below).

Also serves as a POST point for new entries.

Issuing a ‘GET’ to this URL will return an Atom feed of entries that represent
PREMIS events.

This is the basic form of aggregation that AtomPub uses. Built into the Atom
feed are tags thatallow for easy pagination, so crawlers will be able to
process received data in manageable chunks. Additionally, this URL will accept
a number of GET arguments, in order to filter the results that are returned.

This is also the endpoint for adding new events to the system, in which case a
PREMIS Event is sent within an Atom entry in the form of an HTTP POST request.

/APP/event/<id>/

Permalink for Atom entry for a given event

This is the authoritative link for a given PREMIS Event entry, based upon the
unique identifier that each event is assigned when it is logged into the
system. It returns the event record contained within an Atom entry.

/APP/agent/

AtomPub feed for agent entries

Issuing a ‘GET’ request here returns an AtomPub feed of PREMIS Agent records.
Because there will be far less agents than events in a given system, it is
not known that we’ll build search logic into this URL.

According to the AtomPub spec, this would be where we’d allow adding new
Agents via POST, but because there are likely so few times that we’d need to
add Agents, we would just as well leave this to be done through the admin
interface.

/APP/agent/<id>/

Permalink for Atom entry for a given agent

The authoritative link for a given PREMIS Agent entry, based on the agent’s
unique id. Next are the URLs designed for human consumption.

Example

The example below is a somewhat plausible one, using a fixity check event during a migration
as a scenario:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	<?xml version="1.0"?>
<premis:event xmlns:premis="info:lc/xmlns/premis-v2">
 <premis:eventIdentifier>
 <premis:eventIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#UUID
 </premis:eventIdentifierType>
 <premis:eventIdentifierValue>
 9e42cbd3cc3b4dfc888522036bbc4491
 </premis:eventIdentifierValue>
 </premis:eventIdentifier>
 <premis:eventType>
 http://purl.org/net/untl/vocabularies/preservationEvents/#fixityCheck
 </premis:eventType>
 <premis:eventDateTime>2017-05-13T14:14:55Z</premis:eventDateTime>
 <premis:eventDetail>
 There is no muse of philosophy, nor is there one of translation.
 </premis:eventDetail>
 <premis:eventOutcomeInformation>
 <premis:eventOutcome>
 http://purl.org/net/untl/vocabularies/eventOutcomes/#success
 </premis:eventOutcome>
 <premis:eventOutcomeDetail>
 <premis:eventOutcomeDetailNote>
 Total time for verification: 0:00:01.839590
 </premis:eventOutcomeDetailNote>
 </premis:eventOutcomeDetail>
 </premis:eventOutcomeInformation>
 <premis:linkingAgentIdentifier>
 <premis:linkingAgentIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL
 </premis:linkingAgentIdentifierType>
 <premis:linkingAgentIdentifierValue>
 http://localhost:8787/agent/codaMigrationVerification
 </premis:linkingAgentIdentifierValue>
 </premis:linkingAgentIdentifier>
 <premis:linkingObjectIdentifier>
 <premis:linkingObjectIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#ARK
 </premis:linkingObjectIdentifierType>
 <premis:linkingObjectIdentifierValue>
 ark:/67531/coda10kx
 </premis:linkingObjectIdentifierValue>
 <premis:linkingObjectRole/>
 </premis:linkingObjectIdentifier>
</premis:event>

As you can see, the values chosen for the tags in the PREMIS event XML are
arbitrary, and it is the responsibility of the user to select something that
makes sense in the context of their organization. One thing to note is that
the values for the eventIdentifierType and eventIdentifierValue will be
overwritten, because the Event Service manages the event identifiers, and
assigns new ones upon ingest.

Now, in order to send the event to the Event Service, it must be wrapped in an
Atom entry, so the following Atom wrapper XML tree is created:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	<entry xmlns="http://www.w3.org/2005/Atom">
 <title>9e42cbd3cc3b4dfc888522036bbc4491</title>
 <id>http://localhost:9999/APP/event/9e42cbd3cc3b4dfc888522036bbc4491/</id>
 <updated>2017-05-13T14:14:55Z</updated>
 <author>
 <name>Object Verification Script</name>
 </author>
 <content type="application/xml">
 <premis:event xmlns:premis="info:lc/xmlns/premis-v2">
 ...
 </premis:event>
 </content>
</entry>

(With the previously-generated PREMIS XML going inside of the “content” tag.)

Now that the entry is generated and wrapped in a valid Atom document, it is
ready for upload. In order to do this, we POST the Atom XML to the
/APP/event/ URL.

When the Event Service receives the POST, it reads the content and parses
the XML. If it finds a valid XML PREMIS event document, it will assign the
event an identifier, index the values and save them, and then generate a
return document, also wrapped in an Atom entry. It will look something like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	<?xml version="1.0"?>
 <entry xmlns="http://www.w3.org/2005/Atom">
 <title>9e42cbd3cc3b4dfc888522036bbc4491</title>
 <id>http://localhost:8000/APP/event/9e42cbd3cc3b4dfc888522036bbc4492/</id>
 <updated>2017-03-27T09:15:31.382106-05:00</updated>
 <content type="application/xml">
 <premis:event xmlns:premis="info:lc/xmlns/premis-v2">
 <premis:eventIdentifier>
 <premis:eventIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#UUID
 </premis:eventIdentifierType>
 <premis:eventIdentifierValue>
 9e42cbd3cc3b4dfc888522036bbc4491
 </premis:eventIdentifierValue>
 </premis:eventIdentifier>
 <premis:eventType>
 http://purl.org/net/untl/vocabularies/preservationEvents/#fixityCheck
 </premis:eventType>
 <premis:eventDateTime>
 2017-05-13T09:14:55-05:00
 </premis:eventDateTime>
 <premis:eventDetail>
 There is no muse of philosophy, nor is there one of translation.
 </premis:eventDetail>
 <premis:eventOutcomeInformation>
 <premis:eventOutcome>
 http://purl.org/net/untl/vocabularies/eventOutcomes/#success
 </premis:eventOutcome>
 <premis:eventOutcomeDetail>
 <premis:eventOutcomeDetailNote>
 Total time for verification: 0:00:01.839590
 </premis:eventOutcomeDetailNote>
 </premis:eventOutcomeDetail>
 </premis:eventOutcomeInformation>
 <premis:linkingAgentIdentifier>
 <premis:linkingAgentIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#URL
 </premis:linkingAgentIdentifierType>
 <premis:linkingAgentIdentifierValue>
 http://localhost:8787/agent/codaMigrationVerification
 </premis:linkingAgentIdentifierValue>
 </premis:linkingAgentIdentifier>
 <premis:linkingObjectIdentifier>
 <premis:linkingObjectIdentifierType>
 http://purl.org/net/untl/vocabularies/identifier-qualifiers/#ARK
 </premis:linkingObjectIdentifierType>
 <premis:linkingObjectIdentifierValue>
 ark:/67531/coda10kx
 </premis:linkingObjectIdentifierValue>
 <premis:linkingObjectRole/>
 </premis:linkingObjectIdentifier>
 </premis:event>
 </content>
</entry>

If the POST is successful, the updated record will be returned, along with a
status of 201. If the status is something else, there was an error, and
the event cannot be considered to have been reliably recorded.

Later, when we (or, perhaps, another script) wish to review the event to
find out what went wrong with the file validation, we would access it by
sending an HTTP GET request to
/APP/event/9e42cbd3cc3b4dfc888522036bbc4491, which would return an Atom
entry containing the final event record, which we could then analyze and use
for whatever purposes desired.

Development

Here, you will find some information helpful if you plan on developing upon or
making changes to the Event Service source code itself.

Project Structure

The PREMIS Event Service is structured as a common Python project, providing a
Python package named premis_event_service which is a Django app:

premis_event_service/
├── admin.py ## Customizes the Django admin interface
├── forms.py ## Form definitions and validation code
├── __init__.py ## Makes this directory a Python package
├── migrations ## Django database migrations
│ ├── 0001_initial.py
│ ├── 0002_add_event_ordinal.py
│ └── __init__.py
├── models.py ## Data models, using Django ORM
├── presentation.py ## Business logic
├── settings.py ## App-specific settings
├── templates
│ └── premis_event_service
│ ├── agent.html
│ ├── base.html
│ ├── event.html
│ ├── recent_event_list.html
│ └── search.html
├── urls.py ## App-specific url patterns/routes
└── views.py ## Route handlers which generate human- and machine-readable views

If you’re not sure where to look for something, urls.py is usually the best
place to start. There you’ll find a list of every URL pattern handled by the
application, along with its corresponding view (found in views.py) and
arguments.

Models

Models define the data objects Django keeps in its database. The PREMIS Event
Service defines these three:

	Event - Represents an event.

	Agent - Represents an agent you’ve defined using the Django admin interface.

	LinkObject - Contains an identifier for an object in your preservation
workflow. Exists for the purpose of relating multiple events that pertain to
the same object.

See premis_event_service/models.py for the full definitions to these models.

Views

View are functions (or sometimes classes) that Django calls upon to generate
the result of a request. Usually this just means rendering some HTML from a
template and serving it, but sometimes this involves form processing and API
interactions as well. Django decides which view to run based on what’s defined
in urls.py.

See premis_event_service/views.py for the full source code to all the views
provided by the Event Service.

Index

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		PREMIS Event Service Documentation

 		Overview

 		PREMIS Event Service

 		Purpose

 		Dependencies

 		Documentation

 		License

 		Acknowledgements

 		Developing

 		Technical Overview

 		Events

 		Agents

 		Installation

 		Dependencies

 		Important security warning

 		Install

 		Configuration

 		Mandatory Configuration

 		Customizing the Controlled Vocabulary

 		Deciding on Controlled Vocabulary Design

 		Configuring a Custom Controlled Vocabulary

 		Administration

 		Manage User Accounts

 		Create an Agent

 		Using the Event Service

 		Events

 		Browse all Events

 		View a single Event

 		Search for Events

 		Agents

 		Browse all Agents

 		View a single Agent

 		API

 		Introduction

 		PREMIS

 		A Note on Dates

 		API URL Structure

 		/APP/

 		/APP/event/

 		/APP/event/<id>/

 		/APP/agent/

 		/APP/agent/<id>/

 		Example

 		Development

 		Project Structure

 		Models

 		Views

_static/up-pressed.png

_static/comment-bright.png

