

powerbox

[image: _images/powerbox.svg]
 [https://pypi.python.org/pypi/powerbox][image: _images/powerbox1.svg]
 [https://travis-ci.org/steven-murray/powerbox][image: _images/badge.svg]
 [https://coveralls.io/github/steven-murray/powerbox?branch=master][image: _images/5853411c78444a5a9c6ec4058c6dbda9.svg]
 [https://www.codacy.com/app/steven-murray/powerbox?utm_source=github.com&utm_medium=referral&utm_content=steven-murray/powerbox&utm_campaign=Badge_Grade][image: _images/72076717.svg]
 [https://zenodo.org/badge/latestdoi/72076717][image: _images/status.svg]
 [https://doi.org/10.21105/joss.00850]Make arbitrarily structured, arbitrary-dimension boxes and log-normal mocks.

powerbox is a pure-python code for creating density grids (or boxes) that have an arbitrary two-point distribution
(i.e. power spectrum). Primary motivations for creating the code were the simple creation of log-normal mock galaxy
distributions, but the methodology can be used for other applications.

Features

	Works in any number of dimensions.

	Really simple.

	Arbitrary isotropic power-spectra.

	Create Gaussian or Log-Normal fields

	Create discrete samples following the field, assuming it describes an over-density.

	Measure power spectra of output fields to ensure consistency.

	Seamlessly uses pyFFTW if available for ~double the speed.

Installation

powerbox only depends on numpy >= 1.6.2, which will be installed automatically if powerbox is installed
using pip (see below). Furthermore, it has the optional dependency of pyfftw, which if installed will offer
~2x performance increase in large fourier transforms. This will be seamlessly used if installed.

To install pyfftw, simply do:

pip install pyfftw

To install powerbox, do:

pip install powerbox

Alternatively, the bleeding-edge version from git can be installed with:

pip install git+git://github.com/steven-murray/powerbox.git

Finally, for a development installation, download the source code and then run (in the top-level directory):

pip install -e .

Acknowledgment

If you find powerbox useful in your research, please cite the Journal of Open Source Software paper at
https://doi.org/10.21105/joss.00850.

QuickLinks

	Docs: https://powerbox.readthedocs.io

	Quickstart: http://powerbox.readthedocs.io/en/latest/demos/getting_started.html

Contents

	Examples
	Getting Started with Powerbox

	How Does Powerbox Work?

	Create a log-normal mock dark-matter distribution

	Changing Fourier Conventions

	License

	Changelog
	v0.5.7 [24 Oct 2018]

	v0.5.6 [23 Oct 2018]

	v0.5.5 [19 July 2018]

	v0.5.4 [30 May 2018]

	v0.5.3 [22 May 2018]

	v0.5.2 [17 May 2018]

	v0.5.1 [4 May 2018]

	v0.4.3 [29 March 2017]

	v0.4.2 [28 March 2017]

	v0.4.1

	v0.4.0

	v0.3.2

	v0.3.1

	v0.3.0

	v0.2.3 [11 Jan 2017]

	v0.2.2 [11 Jan 2017]

	v0.2.1 [10 Jan 2017]

	v0.2.0 [10 Jan 2017]

	v0.1.0 [27 Oct 2016]

	Authors
	Comments, corrections and suggestions

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	API Summary
	powerbox.powerbox Module

	powerbox.dft Module

	powerbox.tools Module

Indices and tables

	Index

	Module Index

	Search Page

Examples

To help get you started using powerbox, we’ve compiled a few simple examples.
Other examples can be found in the API documentation for each object or by looking at some of the tests.

	Getting Started with Powerbox
	Introduction

	Create a 2D Gaussian field with power-law power-spectrum

	Create a 2D Log-Normal field with power-law power spectrum

	Create some discrete samples on the field

	Check the power-spectrum of the field

	How Does Powerbox Work?

	Create a log-normal mock dark-matter distribution

	Changing Fourier Conventions
	Doing the DFT right.

	Using Different Conventions in Powerbox

Getting Started with Powerbox

This demo will get you started with using powerbox for the most
common tasks.

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

import powerbox as pbox

In [2]:

pbox.__version__

Out[2]:

'0.5.5'

Introduction

The power spectrum is ubiquitous in signal processing and spatial
statistics. It measures the amplitude of fluctuations in a given field
over a range of scales. Famously, for an homogeneous Gaussian random
field (i.e. one in which the PDF of the value of the field over all
locations yields a normal distribution), the power spectrum encodes the
entire information of the field. It is thus a hugely useful tool in
characterising close-to-homogeneous scalar fields with close-to-Gaussian
PDFs. Examples of such fields are found in astrophysics, cosmology,
fluid dynamics and various other scientific areas (often as idealised
systems).

Mathematically, the power spectrum is merely the normalised absolute
square of the Fourier Transform of a signal:

\begin{equation}
 P(\vec{k}) \propto |\mathcal{F}(\vec{x})|^2.
\end{equation}
In powerbox, we are concerned with fields of finite extent –
usually subsamples of the true underlying field – that is, we are
concerned with “boxes” which will be periodic representations of the
underlying field. To obtain a power spectrum whose magnitude is
independent of the volume of the box itself, we normalise by volume:

\begin{equation}
 P(\vec{k}) = \frac{|\mathcal{F}(\vec{x})|^2}{V},
\end{equation}
yielding units of \([x]^n\) for the power, with \(n\) the
number of dimensions in the box. In powerbox, normalising by the
volume is optional (and true by default). Note that many conventions
exist for the fourier transform, each of them entirely valid. In
powerbox we support all of these conventions (see the
Changing Fourier Conventions example notebook for details), but the
default is set to mimic those used for cosmological structure:

\begin{align}
 \mathcal{F}_k &= \int \mathcal{F}_x e^{-i\vec{k}\cdot\vec{x}} d^n\vec{x} \\
 \mathcal{F}_x &= (2\pi)^{-n/2} \int \mathcal{F}_ke^{i\vec{k}\cdot\vec{x}} d^n\vec{k}. \\
\end{align}
Note that if the field is homogeneous, then it is also isotropic – i.e.
the field looks (statistically) the same in every direction at every
point. In this case, the power spectrum can be reduced to a
one-dimensional quantity, \(P(k)\), where k is the magnitude of the
fluctuation scale. It is these homogeneous and isotropic fields that
powerbox is designed to work with.

The aim of powerbox is to make it easy to do the following two
things:

	Given a box representing a scalar field, evaluate \(P(k)\).

	Given a function \(P(k)\) representing an isotropic power
spectrum, construct a realisation of a finite, periodic, discretised
field, \(\delta_x(\vec{x})\) in \(n\) dimensions whose power
is \(P(k)\).

The first point is relatively simple (though it is useful to be able to
do it easily and fast). The second point is less trivial: in particular,
it is not fully defined. The information in \(P(k)\) is a complete
representation of \(\delta_x\) iff the PDF of \(\delta_x\) is
Gaussian, and \(\delta_x\) is periodic. In powerbox, we will
always assume that \(\delta_x\) is periodic. However, it is not
always usefule to assume that its PDF is Gaussian. In particular, many
scalar fields are positive-bounded (for example, density fields), while
a Gaussian has support over all \(\mathbb{R}\). This can easily
yield un-physical boxes. In powerbox, we offer support for creating
fields for two kinds of PDFs: the Gaussian and the log-normal (which is
positive bounded).

Properties of the power spectrum

In powerbox, when creating scalar fields from a given power
spectrum, the power spectrum itself is passed as a callable function of
one parameter (i.e. \(k\)). In general, to be physically meaningful,
the power spectrum should have the following properties:

	\(P(k) > 0, \forall k\)

	\(\int_0^\infty P(k) dk\) converges.

The first property is internally checked by powerbox and raises an
error if not satisfied. The second property is not enforced, as in
powerbox only a finite range of \(k\) is used (determined by box
size and resolution). As long as the power is finite over this range,
the field will be well-specified. Note that this assumes that the power
outside of the range of \(k\) specified is zero.

Create a 2D Gaussian field with power-law power-spectrum

There are two useful classes in powerbox: the basic PowerBox,
and one for log-normal fields: LogNormalPowerBox. To see their
options just use help(pbox.PowerBox).

For a basic 2D Gaussian field with a power-law power-spectrum, one can
use the following:

In [3]:

pb = pbox.PowerBox(
 N=512, # Number of grid-points in the box
 dim=2, # 2D box
 pk = lambda k: 0.1*k**-2., # The power-spectrum
 boxlength = 1.0, # Size of the box (sets the units of k in pk)
 seed = 1010 # Set a seed to ensure the box looks the same every time (optional)
)

plt.imshow(pb.delta_x(),extent=(0,1,0,1))
plt.colorbar()
plt.show()

[image: ../_images/demos_getting_started_13_0.png]

The delta_x output is always zero-mean, so it can be interpreted
as an over-density field, \(\rho(x)/\bar{\rho} -1\). The caveat to
this is that an overdensity field is physically invalid below -1. To
ensure the physical validity of the field, the option
ensure_physical can be set, which clips the field:

In [4]:

pb = pbox.PowerBox(
 N=512, # Number of grid-points in the box
 dim=2, # 2D box
 pk = lambda k: 0.1*k**-2., # The power-spectrum
 boxlength = 1.0, # Size of the box (sets the units of k in pk)
 seed = 1010, # Set a seed to ensure the box looks the same every time (optional)
 ensure_physical=True # ** Ensure the delta_x is a physically valid over-density **
)

plt.imshow(pb.delta_x(),extent=(0,1,0,1))
plt.colorbar()
plt.show()

[image: ../_images/demos_getting_started_15_0.png]

If you are actually dealing with over-densities, then this clipping
solution is probably a bit hacky. What you want is a log-normal field…

Create a 2D Log-Normal field with power-law power spectrum

The LogNormalPowerBox class is called in exactly the same way, but
the resulting field has a log-normal pdf with the same power spectrum.

In [5]:

lnpb = pbox.LogNormalPowerBox(
 N=512, # Number of grid-points in the box
 dim=2, # 2D box
 pk = lambda k: 0.1*k**-2., # The power-spectrum
 boxlength = 1.0, # Size of the box (sets the units of k in pk)
 seed = 1010 # Use the same seed as our powerbox
)
plt.imshow(lnpb.delta_x(),extent=(0,1,0,1))
plt.colorbar()
plt.show()

[image: ../_images/demos_getting_started_19_0.png]

Again, the delta_x is zero-mean, but has a longer positive tail due
to the log-normal nature of the distribution. This means it is always
greater than -1, so that the over-density field is always physical.

Create some discrete samples on the field

powerbox lets you easily create samples that follow the field:

In [6]:

fig, ax = plt.subplots(1,2, sharex=True,sharey=True,gridspec_kw={"hspace":0}, subplot_kw={"ylim":(0,1),"xlim":(0,1)}, figsize=(10,5))

Create a discrete sample using the PowerBox instance.
samples = pb.create_discrete_sample(nbar=50000, # nbar specifies the number density
 min_at_zero=True # by default the samples are centred at 0. This shifts them to be positive.
)
ln_samples = lnpb.create_discrete_sample(nbar=50000, min_at_zero=True)

Plot the samples
ax[0].scatter(samples[:,0],samples[:,1], alpha=0.2,s=1)
ax[1].scatter(ln_samples[:,0],ln_samples[:,1],alpha=0.2,s=1)
plt.show()

[image: ../_images/demos_getting_started_23_0.png]

Within each grid-cell, the placement of the samples is uniformly random.
The samples can instead be placed on the cell edge by setting
randomise_in_cell to False.

Check the power-spectrum of the field

powerbox also contains a function for computing the (isotropic)
power-spectrum of a field. This function accepts either a box defining
the field values at every co-ordinate, or a set of discrete samples.
In the latter case, the routine returns the power spectrum of
over-densities, which matches the field that produced them. Let’s go
ahead and compute the power spectrum of our boxes, both from the samples
and from the fields themselves:

In [7]:

from powerbox import get_power

In [8]:

Only two arguments required when passing a field
p_k_field, bins_field = get_power(pb.delta_x(), pb.boxlength)
p_k_lnfield, bins_lnfield = get_power(lnpb.delta_x(), lnpb.boxlength)

The number of grid points are also required when passing the samples
p_k_samples, bins_samples = get_power(samples, pb.boxlength,N=pb.N)
p_k_lnsamples, bins_lnsamples = get_power(ln_samples, lnpb.boxlength,N=lnpb.N)

Now we can plot them all together to ensure they line up:

In [9]:

plt.plot(bins_field, 0.1*bins_field**-2., label="Input Power")

plt.plot(bins_field, p_k_field,label="Normal Field Power")
plt.plot(bins_samples, p_k_samples,label="Normal Sample Power")
plt.plot(bins_lnfield, p_k_lnfield,label="Log-Normal Field Power")
plt.plot(bins_lnsamples, p_k_lnsamples,label="Log-Normal Sample Power")

plt.legend()
plt.xscale('log')
plt.yscale('log')

[image: ../_images/demos_getting_started_30_0.png]

How Does Powerbox Work?

It may be useful to understand the workings of powerbox to some extent
– either to diagnose performance issues or to understand its behaviour
in certain contexts.

The basic algorithm (for a Gaussian field) is the following:

	Given a box length \(L\) (parameter boxlength) and number of
cells along a side, \(N\) (parameter N), as well as Fourier
convention parameters \((a,b)\), determine wavenumbers along a
side of the box: \(k = 2\pi j/(bL)\), for
\(j\in (-N/2,..., N/2)\).

	From these wavenumbers along each side, determine the magnitude of
the wavenumbers at every point of the \(d\)-dimensional box,
\(k_j= \sqrt{\sum_{i=1}^d k_{i,j}^2}\).

	Create an array, \(G_j\), which assigns a complex number to each
grid point. The complex number will have magnitude drawn from a
standard normal, and phase distributed evenly on \((0,2\pi)\).

	Determine \(\delta_{k,j} = G_j \sqrt{P(k_j)}\).

	Determine \(\delta_x = V \mathcal{F}^{-1}(\delta_k)\), with
\(V = \prod_{i=1}^{d} L_i\).

For a Log-Normal field, the steps are slightly more complex, and involve
determining the power spectrum that would be required on a Gaussian
field to yield the same power spectrum for a log-normal field. The
details of this approach can be found in Coles and Jones
(1991) [http://adsabs.harvard.edu/abs/1991MNRAS.248....1C] or
Beutler et al.
(2011) [https://academic.oup.com/mnras/article/416/4/3017/976636].

One characteristic of this algorithm is that it contains no
information below the resolution scale \(L/N\). Thus, a good
rule-of-thumb is to choose \(N\) large enough to ensure that the
smallest scale of interest is covered by a factor of 1.5, i.e., if the
smallest length-scale of interest is \(s\), then use
\(N = 1.5 L/s\).

The range of \(k\) used with this choice of \(N\) also depends
on the Fourier Convention used. For the default convention of
\(b=1\), the smallest scales are equivalent to \(k = \pi N/L\).

Create a log-normal mock dark-matter distribution

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

import powerbox as pbox
pbox.__version__

Out[1]:

'0.5.5'

In this demo, we create a mock dark-matter distribution, based on the
cosmological power spectrum. To generate the power-spectrum we use the
hmf code (https://github.com/steven-murray/hmf).

In [2]:

import hmf
hmf.__version__

Out[2]:

'3.0.3'

The box can be set up like this:

In [3]:

from scipy.interpolate import InterpolatedUnivariateSpline as spline
import numpy as np

Set up a MassFunction instance to access its cosmological power-spectrum
mf = hmf.MassFunction(z=0)

Generate a callable function that returns the cosmological power spectrum.
spl = spline(np.log(mf.k),np.log(mf.power),k=2)
power = lambda k : np.exp(spl(np.log(k)))

Create the power-box instance. The boxlength is in inverse units of the k of which pk is a function, i.e.
Mpc/h in this case.
pb = pbox.LogNormalPowerBox(N=256, dim=3, pk = power, boxlength= 500., seed=1234)

We will be using the delta_x quantity a couple of times throughout
this demo, so we save it to a variable here. Otherwise, powerbox
will recalculate it each time it is called.

In [4]:

deltax = pb.delta_x()

Now we can make a plot of a slice of the density field:

In [5]:

plt.imshow(np.mean(deltax[:100,:,:],axis=0),extent=(0,100,0,100))
plt.colorbar()
plt.show()

[image: ../_images/demos_cosmological_fields_9_0.png]

And we can also compare the power-spectrum of the output field to the
input power:

In [6]:

p_k, kbins = pbox.get_power(deltax,pb.boxlength)
plt.plot(mf.k,mf.power,label="Input Power")
plt.plot(kbins,p_k,label="Sampled Power")
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()

[image: ../_images/demos_cosmological_fields_11_0.png]

Furthermore, we can sample a set of discrete particles on the field and
plot them:

In [7]:

particles = pb.create_discrete_sample(nbar=0.003,min_at_zero=True)

plt.figure(figsize=(8,8))
plt.scatter(particles[:,0],particles[:,1],s=np.sqrt(100./particles[:,2]),alpha=0.2)
plt.xlim(0,500)
plt.ylim(0,500)
plt.show()

[image: ../_images/demos_cosmological_fields_13_0.png]

Or plot them in 3D!

In [8]:

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')

ax.scatter(particles[:,0], particles[:,1], particles[:,2],s=1,alpha=0.2)
plt.show()

[image: ../_images/demos_cosmological_fields_15_0.png]

Then check that the power-spectrum of the sample matches the input:

In [9]:

p_k_sample, kbins_sample = pbox.get_power(particles, pb.boxlength,N=pb.N)

plt.plot(mf.k,mf.power,label="Input Power")
plt.plot(kbins_sample,p_k_sample,label="Sampled Power Discrete")
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()

[image: ../_images/demos_cosmological_fields_17_0.png]

Changing Fourier Conventions

The powerbox package allows for arbitrary Fourier conventions. Since
(continuous) Fourier Transforms can be defined using different
definitions of the frequency term, and varying normalisations, we allow
any consistent combination of these, using the same parameterisation
that Mathematica uses, i.e.:

\[F(k) = \left(\frac{|b|}{(2\pi)^{1-a}}\right)^{n/2} \int f(r) e^{-i b\mathbf{k}\cdot\mathbf{r}} d^n\mathbf{r}\]

for the forward-transform and

\[f(r) = \left(\frac{|b|}{(2\pi)^{1+a}}\right)^{n/2} \int F(k) e^{+i b\mathbf{k}\cdot\mathbf{r}} d^n \mathbf{k}\]

for its inverse. Here \(n\) is the number of dimensions in the
transform, and \(a\) and \(b\) are free to be any real number.
Within powerbox, \(b\) is taken to be positive.

The most common choice of parameters is \((a,b) = (0,2\pi)\), which
are the parameters that for example numpy uses. In cosmology (a
field which powerbox was written in the context of), a more usual
choice is \((a,b)=(1,1)\), and so these are the defaults within the
PowerBox classes.

In this notebook we provide some examples on how to deal with these
conventions.

Doing the DFT right.

In many fields, we are concerned primarily with the continuous FT, as
defined above. However, typically we must evaluate this numerically, and
therefore use a DFT or FFT. While the conversion between the two is
simple, it is all too easy to forget which factors to normalise by to
get back the analogue of the continuous transform.

That’s why in powerbox we provide some fast fourier transform
functions that do all the hard work for you. They not only normalise
everything correctly to produce the continuous transform, they also
return the associated fourier-dual co-ordinates. And they do all this
for arbitrary conventions, as defined above. And they work for any
number of dimensions.

Let’s take a look at an example, using a simple Gaussian field in 2D:

\[f(x) = e^{-\pi r^2},\]

where \(r^2 = x^2 + y^2.\)

The Fourier transform of this field, using the standard mathematical
convention is:

\[\int e^{-\pi r^2} e^{-2\pi i k\cdot x} d^2x = e^{-\pi k^2},\]

where \(k^2 = k_x^2 + k_y^2\).

In [1]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from powerbox import fft,ifft
from powerbox.powerbox import _magnitude_grid
import powerbox as pbox

In [2]:

pbox.__version__

Out[2]:

'0.5.5'

In [3]:

Parameters of the field
L = 10.
N = 512
dx = L/N

x = np.arange(-L/2,L/2,dx)[:N] # The 1D field grid
r = _magnitude_grid(x,dim=2) # The magnitude of the co-ordinates on a 2D grid
field = np.exp(-np.pi*r**2) # Create the field

Generate the k-space field, the 1D k-space grid, and the 2D magnitude grid.
k_field, k, rk = fft(field,L=L, # Pass the field to transform, and its size
 ret_cubegrid=True # Tell it to return the grid of magnitudes.
)

Plot the field minus the analytic result
plt.imshow(np.abs(k_field)-np.exp(-np.pi*rk**2),extent=(k.min(),k.max(),k.min(),k.max()))
plt.colorbar();

[image: ../_images/demos_dft_7_0.png]

We can now of course do the inverse transform, to ensure that we return
the original:

In [4]:

x_field, x_, rx = ifft(k_field, L = L, # Note we can pass L=L, or Lk as the extent of the k-space grid.
 ret_cubegrid=True)

plt.imshow(np.abs(x_field)-field,extent=(x.min(),x.max(),x.min(),x.max()))
plt.title("Residual Between Input and\n Forward+Inverse Transform", fontsize=14)
plt.colorbar()
plt.show();

[image: ../_images/demos_dft_9_0.png]

We can also check that the xgrid returned is the same as the input
xgrid:

In [5]:

x_ -x

Out[5]:

array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

Changing the convention

Suppose we instead required the transform

\[\int e^{-\pi r^2} e^{-i \nu \cdot x} d^2x = e^{-\nu^2/4\pi}.\]

This is the same transform but with the Fourier-convention
\((a,b) = (1,1)\). We would do this like:

In [6]:

Generate the k-space field, the 1D k-space grid, and the 2D magnitude grid.
k_field, k, rk = fft(field,L=L, # Pass the field to transform, and its size
 ret_cubegrid=True, # Tell it to return the grid of magnitudes.
 a=1,b=1 # SET THE FOURIER CONVENTION
)

Plot the field minus the analytic result
plt.imshow(np.abs(k_field)-np.exp(-1./(4*np.pi)*rk**2),extent=(k.min(),k.max(),k.min(),k.max()))
plt.colorbar();

[image: ../_images/demos_dft_14_0.png]

Again, specifying the inverse transform with these conventions gives
back the original:

In [7]:

x_field, x_, rx = ifft(k_field, L = L, # Note we can pass L=L, or Lk as the extent of the k-space grid.
 ret_cubegrid=True,
 a=1,b=1
)

plt.imshow(np.abs(x_field)-field,extent=(x.min(),x.max(),x.min(),x.max()))
plt.colorbar()
plt.show();

[image: ../_images/demos_dft_16_0.png]

Mixing up conventions

It may be that sometimes the forward and inverse transforms in a certain
problem will have different conventions. Say the forward transform has
parameters \((a,b)\), and the inverse has parameters
\((a',b')\). Then first taking the forward transform, and then
inverting it (in \(n\)-dimensions) would yield:

\[\left(\frac{b'}{b(2\pi)^{a'-a}}\right)^{n/2} f\left(\frac{b'r}{b}\right),\]

and doing it the other way would yield:

\[\left(\frac{b}{b'(2\pi)^{a'-a}}\right)^{n/2} F\left(\frac{bk}{b'}\right).\]

The fft and ifft functions handle these easily. For example, if
\((a,b) = (0,2\pi)\) and \((a',b') = (0,1)\), then the 2D
forward-then-inverse transform should be

\[f(r/(2\pi))/ 2\pi,\]

and the inverse-then-forward should be

\[2\pi F(2\pi k).\]

In [8]:

Do the forward transform
k_field,k,rk = fft(field,L=L,a=0,b=2*np.pi, ret_cubegrid=True)

Do the inverse transform, ensuring the boxsize is correct
mod_field,modx,modr = ifft(k_field,Lk=-2*k.min(),a=0,b=1, ret_cubegrid=True)

mod_field, bins = pbox.angular_average(mod_field, modr, 300)

plt.plot(bins,mod_field, label="Numerical",lw=3,ls='--')
plt.plot(bins,np.exp(-np.pi*(bins/(2*np.pi))**2)/(2*np.pi),label="Analytic")
plt.legend()
plt.yscale('log')
plt.xscale('log')
plt.ylim(1e-7,3)
plt.show()

/home/steven/miniconda3/envs/powerbox/lib/python3.6/site-packages/numpy/core/numeric.py:492: ComplexWarning: Casting complex values to real discards the imaginary part
 return array(a, dtype, copy=False, order=order)

[image: ../_images/demos_dft_19_1.png]

Using Different Conventions in Powerbox

These fourier-transform wrappers are used inside powerbox to do the
heavy lifting. That means that one can pass a power spectrum which has
been defined with arbitrary conventions, and receive a fully consistent
box back.

Let’s say, for example, that the fourier convention in your field was to
use \((a,b)=(0,1)\), so that the power spectrum of a 2D field,
\(\delta_x\) was given by

\[P(k) = \frac{1}{2\pi} \int \delta_x e^{-ikx} d^2x.\]

We now wish to create a realisation with a power spectrum following
these conventions. Let’s say the power spectrum is
\(P(k) = 0.1k^{-2}\).

In [9]:

pb = pbox.PowerBox(
 N=512,dim=2,pk = lambda k : 0.1*k**-3.,
 a=0, b=1, # Set the Fourier convention
 boxlength=50.0 # Has units of inverse k
)

plt.imshow(pb.delta_x(),extent=(0,50,0,50))
plt.colorbar()
plt.show()

[image: ../_images/demos_dft_22_0.png]

When we check the power spectrum, we also have to remember to set the
Fourier convention accordingly:

In [10]:

power, kbins = pbox.get_power(pb.delta_x(), pb.boxlength, a= 0,b =1)

plt.plot(kbins,power,label="Numerical")
plt.plot(kbins,0.1*kbins**-3.,label="Analytic")
plt.legend()
plt.xscale('log')
plt.yscale('log')
plt.show()

[image: ../_images/demos_dft_24_0.png]

License

Copyright (c) 2016 Steven Murray

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Changelog

v0.5.7 [24 Oct 2018]

Enhancements

	Added ability to use weights on k-modes in get_power.

Bugfixes

	Fixed bug on using ignore_zero_mode introduced in v0.5.6

	Added tests for ignore_zero_mode and k_weights

v0.5.6 [23 Oct 2018]

Enhancements

	Added ignore_zero_mode parameter to get_power.

Bugfixes

	Removed redundant seed parameter from create_discrete_sample().

v0.5.5 [19 July 2018]

Bugfixes

	log_bins wasn’t being passed through to angular_average correctly.

Enhancements

	angular_average() no longer requires coords to be passed as box of magnitudes.

	improved docs.

	fixed source divide by zero warning in PowerBox()

v0.5.4 [30 May 2018]

Enhancements

	Added ability to do angular averaging in log-space bins

	When not all radial bins have co-ordinates in them, a more reasonable warning message is emitted.

	Removed redundant bincount call when only summing, not averaging (angularly).

Bugfixes

	Now properly deals with co-ordinates outside the bin range in angular_average (will only make a difference when bins
is passed as a vector). Note that this has meant that by default the highest-valued co-ordinate in the box will not
contribute to any bins any more.

	Fixed a bunch of tests in test_power which were using the wrong power index!

Internals

	Re-factored getting radial bins into _getbins() function.

v0.5.3 [22 May 2018]

Bugfixes

	Fixed a bug introduced in v0.5.1 where using bin_ave=False in angular_average_nd would fail.

v0.5.2 [17 May 2018]

Enhancements

	Added ability to calculate the variance of an angularly averaged quantity.

	Removed a redundant calculation of the bin weights in angular_average

Internals

	Updated version numbers of dev requirements.

v0.5.1 [4 May 2018]

Enhancements

	Added ability to not have dimensionless power spectra from get_power.

	Also return linearly-spaced radial bin edges from angular_average_nd

	Python 3 compatibility

Bugfixes

	Fixed bug where field was modified in-place unexpectedly in angular_average

	Now correctly flattens weights before getting the field average in angular_average_nd

v0.5.0 [7 Nov 2017]
——————~
Features

	Input boxes to get_power no longer need to have same length on every dimension.

	New angular_average_nd function to average over first n dimensions of an array.

Enhancements

	Huge (5x or so) speed-up for angular_average function (with resulting speedup for get_power).

	Huge memory reduction in fft/ifft routines, with potential loss of some speed (TODO: optimise)

	Better memory consumption in PowerBox classes, at the expense of an API change (cached properties no
longer cached, or properties).

	Modified fftshift in dft to handle astropy Quantity objects (bit of a hack really)

Bugfixes

	Fixed issue where if the boxlength was passed as an integer (to fft/ifft), then incorrect results occurred.

	Fixed issue where incorrect first_edge assignment in get_power resulted in bad power spectrum. No longer require this arg.

v0.4.3 [29 March 2017]

Bugfixes

	Fixed volume normalisation in get_power.

v0.4.2 [28 March 2017]

Features

	Added ability to cross-correlate boxes in get_power.

v0.4.1

Bugfixes

	Fixed cubegrid return value for dft functions when input boxes have different sizes on each dimension.

v0.4.0

Features

	Added fft/ifft wrappers which consistently return fourier transforms with arbitrary Fourier conventions.

	Boxes now may be composed with arbitrary Fourier conventions.

	Documentation!

Enhancements

	New test to compare LogNormalPowerBox with standard PowerBox.

	New project structure to make for easier location of functions.

	Code quality improvements

	New tests, better coverage.

Bugfixes

	Fixed incorrect boxsize for an odd number of cells

	Ensure mean density is correct in LogNormalPowerBox

v0.3.2

Bugfixes

	Fixed bug in pyFFTW cache setting

v0.3.1

Enhancements

	New interface with pyFFTW to make fourier transforms ~twice as fast. No difference to the API.

v0.3.0

Features

	New functionality in get_power function to measure power-spectra of discrete samples.

Enhancements

	Added option to not store discrete positions in class (just return them)

	get_power now more streamlined and intuitive in its API

v0.2.3 [11 Jan 2017]

Enhancements

	Improved estimation of power (in get_power) for lowest k bin.

v0.2.2 [11 Jan 2017]

Bugfixes

	Fixed a bug in which the output power spectrum was a factor of sqrt(2) off in normalisation

v0.2.1 [10 Jan 2017]

Bugfixes

	Fixed output of create_discrete_sample when not randomising positions.

Enhancements

	New option to set bounds of discrete particles to (0, boxlength) rather than centring at 0.

v0.2.0 [10 Jan 2017]

Features

	New LogNormalPowerBox class for creating log-normal fields

Enhancements

	Restructuring of code for more flexibility after creation. Now requires cached_property package.

v0.1.0 [27 Oct 2016]

First working version. Only Gaussian fields working.

Authors

	Steven Murray [https://github.com/steven-murray]

Comments, corrections and suggestions

	Chris Jordan [https://github.com/cjordan]

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/steven-murray/powerbox/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

powerbox could always use more documentation, whether as part of the
official powerbox docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/steven-murray/powerbox/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up powerbox for local development:

	Fork powerbox [https://github.com/steven-murray/powerbox]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/powerbox.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to CONTRIBUTORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/steven-murray/powerbox/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

API Summary

	powerbox.powerbox Module
	Classes
	LogNormalPowerBox

	PowerBox

	powerbox.dft Module
	Functions
	fft

	ifft

	fftfreq

	fftshift

	ifftshift

	powerbox.tools Module
	Functions
	angular_average

	angular_average_nd

	get_power

powerbox.powerbox Module

A module defining two classes which can create arbitrary-dimensional fields with given power spectra. One such function
produces Gaussian fields, and the other LogNormal fields.

In principle, these may be extended to other 1-point density distributions by subclassing PowerBox and
over-writing the same methods as are over-written in LogNormalPowerBox.

Classes

	LogNormalPowerBox(*args, **kwargs)

	Calculate Log-Normal density fields with given power spectra.

	PowerBox(N, pk[, dim, boxlength, …])

	Calculate real- and fourier-space Gaussian fields generated with a given power spectrum.

LogNormalPowerBox

	
class powerbox.powerbox.LogNormalPowerBox(*args, **kwargs)

	Bases: powerbox.powerbox.PowerBox

Calculate Log-Normal density fields with given power spectra.

See the documentation of PowerBox for a detailed explanation of the arguments, as this class
has exactly the same arguments.

This class calculates an (over-)density field of arbitrary dimension given an input isotropic power spectrum. In
this case, the field has a log-normal distribution of over-densities, always yielding a physically valid field.

Examples

To create a log-normal over-density field:

>>> from powerbox import LogNormalPowerBox
>>> lnpb = LogNormalPowerBox(100,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> overdensities = lnpb.delta_x
>>> grid = lnpb.x
>>> radii = lnpb.r

To plot the overdensities:

>>> import matplotlib.pyplot as plt
>>> plt.imshow(pb.delta_x)

Compare the fields from a Gaussian and Lognormal realisation with the same power:

>>> lnpb = LogNormalPowerBox(300,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> pb = PowerBox(300,lambda k : k**-7./5.,dim=2, boxlength=1.0)
>>> fig,ax = plt.subplots(2,1,sharex=True,sharey=True,figsize=(12,5))
>>> ax[0].imshow(lnpb.delta_x,aspect="equal",vmin=-1,vmax=lnpb.delta_x.max())
>>> ax[1].imshow(pb.delta_x,aspect="equal",vmin=-1,vmax = lnpb.delta_x.max())

To create and plot a discrete version of the field:

>>> positions = lnpb.create_discrete_sample(nbar=1000.0, # Number density in terms of boxlength units
>>> randomise_in_cell=True)
>>> plt.scatter(positions[:,0],positions[:,1],s=2,alpha=0.5,lw=0)

Attributes Summary

	kvec

	The vector of wavenumbers along a side

	r

	The radial position of every point in the grid

	x

	The co-ordinates of the grid along a side

Methods Summary

	correlation_array()

	The correlation function from the input power, on the grid

	create_discrete_sample(nbar[, …])

	Assuming that the real-space signal represents an over-density with respect to some mean, create a sample of tracers of the underlying density distribution.

	delta_k()

	A realisation of the delta_k, i.e.

	delta_x()

	The real-space over-density field, from the input power spectrum

	gauss_hermitian()

	A random array which has Gaussian magnitudes and Hermitian symmetry

	gaussian_correlation_array()

	The correlation function required for a Gaussian field to produce the input power on a lognormal field

	gaussian_power_array()

	The power spectrum required for a Gaussian field to produce the input power on a lognormal field

	k()

	The entire grid of wavenumber magitudes

	power_array()

	The Power Spectrum (volume normalised) at self.k

Attributes Documentation

	
kvec

	The vector of wavenumbers along a side

	
r

	The radial position of every point in the grid

	
x

	The co-ordinates of the grid along a side

Methods Documentation

	
correlation_array()

	The correlation function from the input power, on the grid

	
create_discrete_sample(nbar, randomise_in_cell=True, min_at_zero=False, store_pos=False)

	Assuming that the real-space signal represents an over-density with respect to some mean, create a sample
of tracers of the underlying density distribution.

	Parameters

	
	nbarfloat

	Mean tracer density within the box.

	randomise_in_cellbool, optional

	Whether to randomise the positions of the tracers within the cells, or put them at the grid-points (more
efficient).

	min_at_zerobool, optional

	Whether to make the lower corner of the box at the origin, otherwise the centre of the box is at the
origin.

	store_posbool, optional

	Whether to store the sample of tracers as an instance variable tracer_positions.

	Returns

	
	tracer_positionsfloat, array_like

	(n, d)-array, with n the number of tracers and d the number of dimensions. Each row represents
a single tracer’s co-ordinates.

	
delta_k()

	A realisation of the delta_k, i.e. the gaussianised square root of the unitless power spectrum
(i.e. the Fourier co-efficients)

	
delta_x()

	The real-space over-density field, from the input power spectrum

	
gauss_hermitian()

	A random array which has Gaussian magnitudes and Hermitian symmetry

	
gaussian_correlation_array()

	The correlation function required for a Gaussian field to produce the input power on a lognormal field

	
gaussian_power_array()

	The power spectrum required for a Gaussian field to produce the input power on a lognormal field

	
k()

	The entire grid of wavenumber magitudes

	
power_array()

	The Power Spectrum (volume normalised) at self.k

PowerBox

	
class powerbox.powerbox.PowerBox(N, pk, dim=2, boxlength=1.0, ensure_physical=False, a=1.0, b=1.0, vol_normalised_power=True, seed=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Calculate real- and fourier-space Gaussian fields generated with a given power spectrum.

	Parameters

	
	Nint

	Number of grid-points on a side for the resulting box (equivalently, number of wavenumbers to use).

	pkcallable

	A callable of a single (vector) variable k, which is the isotropic power spectrum. The relationship of the
k of which this is a function to the real-space co-ordinates, x, is determined by the parameters a,b.

	dimint, default 2

	Number of dimensions of resulting box.

	boxlengthfloat, default 1.0

	Length of the final signal on a side. This may have arbitrary units, so long as pk is a function of a
variable which has the inverse units.

	ensure_physicalbool, optional

	Interpreting the power spectrum as a spectrum of density fluctuations, the minimum physical value of the
real-space field, delta_x(), is -1. With ensure_physical set to True, delta_x() is
clipped to return values >-1. If this is happening a lot, consider using LogNormalPowerBox.

	a,bfloat, optional

	These define the Fourier convention used. See powerbox.dft for details. The defaults define the standard
usage in cosmology (for example, as defined in Cosmological Physics, Peacock, 1999, pg. 496.). Standard
numerical usage (eg. numpy) is (a,b) = (0,2pi).

	vol_normalised_powerbool, optional

	Whether the input power spectrum, pk, is volume-weighted. Default True because of standard cosmological
usage.

	seed: int, optional

	A random seed to define the initial conditions. If not set, it will remain random, and each call to eg.
delta_x() will produce a different realisation.

Notes

A number of conventions need to be listed.

The conventions of using x for “real-space” and k for “fourier space” arise from cosmology, but this does
not affect anything – x could just as well stand for “time domain” and k for “frequency domain”.

The important convention is the relationship between x and k, or in other words, whether k is interpreted
as an angular frequency or ordinary frequency. By default, because of cosmological conventions, k is an
angular frequency, so that the fourier transform integrand is delta_k*exp(-ikx). The conventions can be changed
arbitrarily by setting the a,b parameters (see powerbox.dft for details).

The primary quantity of interest is delta_x(), which is a zero-mean Gaussian field with a power spectrum
equivalent to that which was input. Being zero-mean enables its direct interpretation as an overdensity
field, and this interpretation is enforced in the make_discrete_sample() method.

Note

None of the n-dimensional arrays that are created within the class are stored, due to the inefficiency
in memory consumption that this would imply. Thus, each large array is created and returned by their
respective method, to be stored/discarded by the user.

Warning

Due to the above note, repeated calls to eg. delta_x() will produce different realisations
of the real-space field, unless the seed parameter is set in the constructor.

Examples

To create a 3-dimensional box of gaussian over-densities, gridded into 100 bins, with cosmological conventions,
and a power-law power spectrum, simply use

>>> pb = PowerBox(100,lambda k : 0.1*k**-3., dim=3, boxlength=100.0)
>>> overdensities = pb.delta_x()
>>> grid = pb.x
>>> radii = pb.r

To create a 2D turbulence structure, with arbitrary units, once can use

>>> import matplotlib.pyplot as plt
>>> pb = PowerBox(1000, lambda k : k**-7./5.)
>>> plt.imshow(pb.delta_x())

Attributes Summary

	kvec

	The vector of wavenumbers along a side

	r

	The radial position of every point in the grid

	x

	The co-ordinates of the grid along a side

Methods Summary

	create_discrete_sample(nbar[, …])

	Assuming that the real-space signal represents an over-density with respect to some mean, create a sample of tracers of the underlying density distribution.

	delta_k()

	A realisation of the delta_k, i.e.

	delta_x()

	The realised field in real-space from the input power spectrum

	gauss_hermitian()

	A random array which has Gaussian magnitudes and Hermitian symmetry

	k()

	The entire grid of wavenumber magitudes

	power_array()

	The Power Spectrum (volume normalised) at self.k

Attributes Documentation

	
kvec

	The vector of wavenumbers along a side

	
r

	The radial position of every point in the grid

	
x

	The co-ordinates of the grid along a side

Methods Documentation

	
create_discrete_sample(nbar, randomise_in_cell=True, min_at_zero=False, store_pos=False)

	Assuming that the real-space signal represents an over-density with respect to some mean, create a sample
of tracers of the underlying density distribution.

	Parameters

	
	nbarfloat

	Mean tracer density within the box.

	randomise_in_cellbool, optional

	Whether to randomise the positions of the tracers within the cells, or put them at the grid-points (more
efficient).

	min_at_zerobool, optional

	Whether to make the lower corner of the box at the origin, otherwise the centre of the box is at the
origin.

	store_posbool, optional

	Whether to store the sample of tracers as an instance variable tracer_positions.

	Returns

	
	tracer_positionsfloat, array_like

	(n, d)-array, with n the number of tracers and d the number of dimensions. Each row represents
a single tracer’s co-ordinates.

	
delta_k()

	A realisation of the delta_k, i.e. the gaussianised square root of the power spectrum (i.e. the Fourier co-efficients)

	
delta_x()

	The realised field in real-space from the input power spectrum

	
gauss_hermitian()

	A random array which has Gaussian magnitudes and Hermitian symmetry

	
k()

	The entire grid of wavenumber magitudes

	
power_array()

	The Power Spectrum (volume normalised) at self.k

powerbox.dft Module

A module defining some “nicer” fourier transform functions.

We define only two functions – an arbitrary-dimension forward transform, and its inverse. In each case, the transform
is designed to replicate the continuous transform. That is, the transform is volume-normalised and obeys correct
Fourier conventions.

The actual FFT backend is provided by pyFFTW if it is installed, which provides a significant speedup, and
multi-threading.

Conveniently, we allow for arbitrary Fourier convention, according to the scheme in
http://mathworld.wolfram.com/FourierTransform.html. That is, we define the forward and inverse n-dimensional
transforms respectively as

\[F(k) = \sqrt{\frac{|b|}{(2\pi)^{1-a}}}^n \int f(r) e^{-i b\mathbf{k}\cdot\mathbf{r}} d^n\mathbf{r}\]

and

\[f(r) = \sqrt{\frac{|b|}{(2\pi)^{1+a}}}^n \int F(k) e^{+i b\mathbf{k}\cdot\mathbf{r}} d^n \mathbf{k}.\]

In both transforms, the corresponding co-ordinates are returned so a completely consistent transform is simple to get.
This makes switching from standard frequency to angular frequency very simple.

We note that currently, only positive values for b are implemented (in fact, using negative b is consistent, but
one must be careful that the frequencies returned are descending, rather than ascending).

Functions

	fft(X[, L, Lk, a, b, axes, ret_cubegrid])

	Arbitrary-dimension nice Fourier Transform.

	ifft(X[, Lk, L, a, b, axes, ret_cubegrid])

	Arbitrary-dimension nice inverse Fourier Transform.

	fftfreq(N[, d, b])

	Return the fourier frequencies for a box with N cells, using general Fourier convention.

	fftshift(x, *args, **kwargs)

	The same as numpy’s fftshift, except that it preserves units (if Astropy quantities are used)

	ifftshift(x, *args, **kwargs)

	The same as numpy’s ifftshift, except that it preserves units (if Astropy quantities are used)

fft

	
powerbox.dft.fft(X, L=None, Lk=None, a=0, b=6.283185307179586, axes=None, ret_cubegrid=False)

	Arbitrary-dimension nice Fourier Transform.

This function wraps numpy’s fftn and applies some nice properties. Notably, the returned fourier transform
is equivalent to what would be expected from a continuous Fourier Transform (including normalisations etc.). In
addition, arbitrary conventions are supported (see powerbox.dft for details).

Default parameters have the same normalising conventions as numpy.fft.fftn.

The output object always has the zero in the centre, with monotonically increasing spectral arguments.

	Parameters

	
	Xarray

	An array with arbitrary dimensions defining the field to be transformed. Should correspond exactly
to the continuous function for which it is an analogue. A lower-dimensional transform can be specified by using
the axes argument.

	Lfloat or array-like, optional

	The length of the box which defines X. If a scalar, each transformed dimension in X is assumed to have
the same length. If array-like, must be of the same length as the number of transformed dimensions. The default
returns the un-normalised DFT (same as numpy).

	Lkfloat or array-like, optional

	The length of the fourier-space box which defines the dual of X. Only one of L/Lk needs to be provided. If
provided, L takes precedence. If a scalar, each transformed dimension in X is assumed to have
the same length. If array-like, must be of the same length as the number of transformed dimensions.

	a,bfloat, optional

	These define the Fourier convention used. See powerbox.dft for details. The defaults return the standard DFT
as defined in numpy.fft.

	axessequence of ints, optional

	The axes to take the transform over. The default is to use all axes for the transform.

	ret_cubegridbool, optional

	Whether to return the entire grid of frequency magnitudes.

	Returns

	
	ftarray

	The DFT of X, normalised to be consistent with the continuous transform.

	freqlist of arrays

	The frequencies in each dimension, consistent with the Fourier conventions specified.

	gridarray

	Only returned if ret_cubegrid is True. An array with shape given by axes specifying the magnitude
of the frequencies at each point of the fourier transform.

ifft

	
powerbox.dft.ifft(X, Lk=None, L=None, a=0, b=6.283185307179586, axes=None, ret_cubegrid=False)

	Arbitrary-dimension nice inverse Fourier Transform.

This function wraps numpy’s ifftn and applies some nice properties. Notably, the returned fourier transform
is equivalent to what would be expected from a continuous inverse Fourier Transform (including normalisations etc.).
In addition, arbitrary conventions are supported (see powerbox.dft for details).

Default parameters have the same normalising conventions as numpy.fft.ifftn.

	Parameters

	
	Xarray

	An array with arbitrary dimensions defining the field to be transformed. Should correspond exactly
to the continuous function for which it is an analogue. A lower-dimensional transform can be specified by using
the axes argument. Note that this should have its zero in the center.

	Lkfloat or array-like, optional

	The length of the box which defines X. If a scalar, each transformed dimension in X is assumed to have
the same length. If array-like, must be of the same length as the number of transformed dimensions. The default
returns the un-normalised DFT (the same as numpy).

	Lfloat or array-like, optional

	The length of the real-space box, defining the dual of X. Only one of Lk/L needs to be passed. If L is
passed, it is used. If a scalar, each transformed dimension in X is assumed to have
the same length. If array-like, must be of the same length as the number of transformed dimensions. The default
of Lk=1 returns the un-normalised DFT.

	a,bfloat, optional

	These define the Fourier convention used. See powerbox.dft for details. The defaults return the standard DFT
as defined in numpy.fft.

	axessequence of ints, optional

	The axes to take the transform over. The default is to use all axes for the transform.

	ret_cubegridbool, optional

	Whether to return the entire grid of real-space co-ordinate magnitudes.

	Returns

	
	ftarray

	The IDFT of X, normalised to be consistent with the continuous transform.

	freqlist of arrays

	The real-space co-ordinate grid in each dimension, consistent with the Fourier conventions specified.

	gridarray

	Only returned if ret_cubegrid is True. An array with shape given by axes specifying the magnitude
of the real-space co-ordinates at each point of the inverse fourier transform.

fftfreq

	
powerbox.dft.fftfreq(N, d=1.0, b=6.283185307179586)

	Return the fourier frequencies for a box with N cells, using general Fourier convention.

	Parameters

	
	Nint

	The number of grid cells

	dfloat, optional

	The interval between cells

	bfloat, optional

	The fourier-convention of the frequency component (see powerbox.dft for details).

	Returns

	
	freqarray

	The N symmetric frequency components of the Fourier transform. Always centred at 0.

fftshift

	
powerbox.dft.fftshift(x, *args, **kwargs)

	The same as numpy’s fftshift, except that it preserves units (if Astropy quantities are used)

All extra arguments are passed directly to numpy’s fftshift.

ifftshift

	
powerbox.dft.ifftshift(x, *args, **kwargs)

	The same as numpy’s ifftshift, except that it preserves units (if Astropy quantities are used)

All extra arguments are passed directly to numpy’s ifftshift.

powerbox.tools Module

A set of tools for dealing with structured boxes, such as those output by powerbox. Tools include those
for averaging a field angularly, and generating the isotropic power spectrum.

Functions

	angular_average(field, coords, bins[, …])

	Average a given field within radial bins.

	angular_average_nd(field, coords, bins[, n, …])

	Average the first n dimensions of a given field within radial bins.

	get_power(deltax, boxlength[, deltax2, N, …])

	Calculate the isotropic power spectrum of a given field, or cross-power of two similar fields.

angular_average

	
powerbox.tools.angular_average(field, coords, bins, weights=1, average=True, bin_ave=True, get_variance=False, log_bins=False)

	Average a given field within radial bins.

This function can be used in fields of arbitrary dimension (memory permitting), and the field need not be centred
at the origin. The averaging assumes that the grid cells fall completely into the bin which encompasses the
co-ordinate point for the cell (i.e. there is no weighted splitting of cells if they intersect a bin edge).

It is optimized for applying a set of weights, and obtaining the variance of the mean, at the same time as
averaging.

	Parameters

	
	field: nd-array

	An array of arbitrary dimension specifying the field to be angularly averaged.

	coords: nd-array or list of n arrays.

	Either the magnitude of the co-ordinates at each point of field, or a list of 1D arrays specifying the
co-ordinates in each dimension.

	bins: float or array.

	The bins argument provided to histogram. Can be an int or array specifying radial bin edges.

	weights: array, optional

	An array of the same shape as field, giving a weight for each entry.

	average: bool, optional

	Whether to take the (weighted) average. If False, returns the (unweighted) sum.

	bin_avebool, optional

	Whether to return the bin co-ordinates as the (weighted) average of cells within the bin (if True), or
the regularly spaced edges of the bins.

	get_variancebool, optional

	Whether to also return an estimate of the variance of the power in each bin.

	log_binsbool, optional

	Whether to create bins in log-space.

	Returns

	
	field_1d1D-array

	The angularly-averaged field.

	bins1D-array

	Array of same shape as field_1d specifying the radial co-ordinates of the bins. Either the mean co-ordinate
from the input data, or the regularly spaced bins, dependent on bin_ave.

	var1D-array, optional

	The variance of the averaged field (same shape as bins), estimated from the mean standard error.
Only returned if get_variance is True.

See also

	angular_average_nd

	Perform an angular average in a subset of the total dimensions.

Notes

If desired, the variance is calculated as the weight unbiased variance, using the formula at
https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Reliability_weights for the variance in each cell, and
normalising by a factor of \(V_2/V_1^2\) to estimate the variance of the average.

Examples

Create a 3D radial function, and average over radial bins:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-5,5,128) # Setup a grid
>>> X,Y,Z = np.meshgrid(x,x,x)
>>> r = np.sqrt(X**2+Y**2+Z**2) # Get the radial co-ordinate of grid
>>> field = np.exp(-r**2) # Generate a radial field
>>> avgfunc, bins = angular_average(field,r,bins=100) # Call angular_average
>>> plt.plot(bins, np.exp(-bins**2), label="Input Function") # Plot input function versus ang. avg.
>>> plt.plot(bins, avgfunc, label="Averaged Function")

angular_average_nd

	
powerbox.tools.angular_average_nd(field, coords, bins, n=None, weights=1, average=True, bin_ave=True, get_variance=False, log_bins=False)

	Average the first n dimensions of a given field within radial bins.

This function be used to take “hyper-cylindrical” averages of fields. For a 3D field, with n=2, this is exactly
a cylindrical average. This function can be used in fields of arbitrary dimension (memory permitting), and the field
need not be centred at the origin. The averaging assumes that the grid cells fall completely into the bin which
encompasses the co-ordinate point for the cell (i.e. there is no weighted splitting of cells if they intersect a bin
edge).

It is optimized for applying a set of weights, and obtaining the variance of the mean, at the same time as
averaging.

	Parameters

	
	fieldmd-array

	An array of arbitrary dimension specifying the field to be angularly averaged.

	coordslist of n arrays

	A list of 1D arrays specifying the co-ordinates in each dimension to be average.

	binsint or array.

	Specifies the radial bins for the averaged dimensions. Can be an int or array specifying radial bin edges.

	nint, optional

	The number of dimensions to be averaged. By default, all dimensions are averaged. Always uses
the first n dimensions.

	weightsarray, optional

	An array of the same shape as the first n dimensions of field, giving a weight for each entry.

	averagebool, optional

	Whether to take the (weighted) average. If False, returns the (unweighted) sum.

	bin_avebool, optional

	Whether to return the bin co-ordinates as the (weighted) average of cells within the bin (if True), or
the linearly spaced edges of the bins

	get_variancebool, optional

	Whether to also return an estimate of the variance of the power in each bin.

	log_binsbool, optional

	Whether to create bins in log-space.

	Returns

	
	field(m-n+1)-array

	The angularly-averaged field. The first dimension corresponds to bins, while the rest correspond to the
unaveraged dimensions.

	bins1D-array

	The radial co-ordinates of the bins. Either the mean co-ordinate from the input data, or the regularly spaced
bins, dependent on bin_ave.

	var(m-n+1)-array, optional

	The variance of the averaged field (same shape as field), estimated from the mean standard error.
Only returned if get_variance is True.

Examples

Create a 3D radial function, and average over radial bins. Equivalent to calling angular_average():

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-5,5,128) # Setup a grid
>>> X,Y,Z = np.meshgrid(x,x,x) # ""
>>> r = np.sqrt(X**2+Y**2+Z**2) # Get the radial co-ordinate of grid
>>> field = np.exp(-r**2) # Generate a radial field
>>> avgfunc, bins, _ = angular_average_nd(field,[x,x,x],bins=100) # Call angular_average
>>> plt.plot(bins, np.exp(-bins**2), label="Input Function") # Plot input function versus ang. avg.
>>> plt.plot(bins, avgfunc, label="Averaged Function")

Create a 2D radial function, extended to 3D, and average over first 2 dimensions (cylindrical average):

>>> r = np.sqrt(X**2+Y**2)
>>> field = np.exp(-r**2) # 2D field
>>> field = np.repeat(field,len(x)).reshape((len(x),)*3) # Extended to 3D
>>> avgfunc, avbins, coords = angular_average_nd(field, [x,x,x], bins=50, n=2)
>>> plt.plot(avbins, np.exp(-avbins**2), label="Input Function")
>>> plt.plot(avbins, avgfunc[:,0], label="Averaged Function")

get_power

	
powerbox.tools.get_power(deltax, boxlength, deltax2=None, N=None, a=1.0, b=1.0, remove_shotnoise=True, vol_normalised_power=True, bins=None, res_ndim=None, weights=None, weights2=None, dimensionless=True, bin_ave=True, get_variance=False, log_bins=False, ignore_zero_mode=False, k_weights=1)

	Calculate the isotropic power spectrum of a given field, or cross-power of two similar fields.

This function, by default, conforms to typical cosmological power spectrum conventions – normalising by the volume
of the box and removing shot noise if applicable. These options are configurable.

	Parameters

	
	deltaxarray-like

	The field on which to calculate the power spectrum . Can either be arbitrarily n-dimensional, or 2-dimensional with the
first being the number of spatial dimensions, and the second the positions of discrete particles in the field.
The former should represent a density field, while the latter
is a discrete sampling of a field. This function chooses which to use by checking the value of N (see below).
Note that if a discrete sampling is used, the power spectrum calculated is the
“overdensity” power spectrum, i.e. the field re-centered about zero and rescaled by the mean.

	boxlengthfloat or list of floats

	The length of the box side(s) in real-space.

	deltax2array-like

	If given, a box of the same shape as deltax, against which deltax will be cross correlated.

	Nint, optional

	The number of grid cells per side in the box. Only required if deltax is a discrete sample. If given,
the function will assume a discrete sample.

	a,bfloat, optional

	These define the Fourier convention used. See powerbox.dft for details. The defaults define the standard
usage in cosmology (for example, as defined in Cosmological Physics, Peacock, 1999, pg. 496.). Standard
numerical usage (eg. numpy) is (a,b) = (0,2pi).

	remove_shotnoisebool, optional

	Whether to subtract a shot-noise term after determining the isotropic power. This only affects discrete samples.

	vol_weighted_powerbool, optional

	Whether the input power spectrum, pk, is volume-weighted. Default True because of standard cosmological
usage.

	binsint or array, optional

	Defines the final k-bins output. If None, chooses a number based on the input resolution of the box. Otherwise,
if int, this defines the number of kbins, or if an array, it defines the exact bin edges.

	res_ndimint, optional

	Only perform angular averaging over first res_ndim dimensions. By default, uses all dimensions.

	weights, weights2array-like, optional

	If deltax is a discrete sample, these are weights for each point.

	dimensionless: bool, optional

	Whether to normalise the cube by its mean prior to taking the power.

	bin_avebool, optional

	Whether to return the bin co-ordinates as the (weighted) average of cells within the bin (if True), or
the linearly spaced edges of the bins

	get_variancebool, optional

	Whether to also return an estimate of the variance of the power in each bin.

	log_binsbool, optional

	Whether to create bins in log-space.

	ignore_zero_modebool, optional

	Whether to ignore the k=0 mode (or DC term).

	k_weightsnd-array, optional

	The weights of the n-dimensional k modes. This can be used to filter out some modes completely.

	Returns

	
	p_karray

	The power spectrum averaged over bins of equal \(|k|\).

	meankarray

	The bin-centres for the p_k array (in k). This is the mean k-value for cells in that bin.

	vararray

	The variance of the power spectrum, estimated from the mean standard error. Only returned if get_variance is
True.

Examples

One can use this function to check whether a box created with PowerBox has the correct
power spectrum:

>>> from powerbox import PowerBox
>>> import matplotlib.pyplot as plt
>>> pb = PowerBox(250,lambda k : k**-2.)
>>> p,k = get_power(pb.delta_x,pb.boxlength)
>>> plt.plot(k,p)
>>> plt.plot(k,k**-2.)
>>> plt.xscale('log')
>>> plt.yscale('log')

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 powerbox	

 	
 	
 powerbox.dft	

 	
 	
 powerbox.powerbox	

 	
 	
 powerbox.tools	

Index

 A
 | C
 | D
 | F
 | G
 | I
 | K
 | L
 | P
 | R
 | X

A

 	
 	angular_average() (in module powerbox.tools)

 	
 	angular_average_nd() (in module powerbox.tools)

C

 	
 	correlation_array() (powerbox.powerbox.LogNormalPowerBox method)

 	
 	create_discrete_sample() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

D

 	
 	delta_k() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

 	
 	delta_x() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

F

 	
 	fft() (in module powerbox.dft)

 	
 	fftfreq() (in module powerbox.dft)

 	fftshift() (in module powerbox.dft)

G

 	
 	gauss_hermitian() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

 	
 	gaussian_correlation_array() (powerbox.powerbox.LogNormalPowerBox method)

 	gaussian_power_array() (powerbox.powerbox.LogNormalPowerBox method)

 	get_power() (in module powerbox.tools)

I

 	
 	ifft() (in module powerbox.dft)

 	
 	ifftshift() (in module powerbox.dft)

K

 	
 	k() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

 	
 	kvec (powerbox.powerbox.LogNormalPowerBox attribute)

 	(powerbox.powerbox.PowerBox attribute)

L

 	
 	LogNormalPowerBox (class in powerbox.powerbox)

P

 	
 	power_array() (powerbox.powerbox.LogNormalPowerBox method)

 	(powerbox.powerbox.PowerBox method)

 	PowerBox (class in powerbox.powerbox)

 	
 	powerbox.dft (module)

 	powerbox.powerbox (module)

 	powerbox.tools (module)

R

 	
 	r (powerbox.powerbox.LogNormalPowerBox attribute)

 	(powerbox.powerbox.PowerBox attribute)

X

 	
 	x (powerbox.powerbox.LogNormalPowerBox attribute)

 	(powerbox.powerbox.PowerBox attribute)

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 powerbox

 		
 Examples

 		
 Getting Started with Powerbox

 		
 Introduction

 		
 Create a 2D Gaussian field with power-law power-spectrum

 		
 Create a 2D Log-Normal field with power-law power spectrum

 		
 Create some discrete samples on the field

 		
 Check the power-spectrum of the field

 		
 How Does Powerbox Work?

 		
 Create a log-normal mock dark-matter distribution

 		
 Changing Fourier Conventions

 		
 Doing the DFT right.

 		
 Using Different Conventions in Powerbox

 		
 License

 		
 Changelog

 		
 v0.5.7 [24 Oct 2018]

 		
 v0.5.6 [23 Oct 2018]

 		
 v0.5.5 [19 July 2018]

 		
 v0.5.4 [30 May 2018]

 		
 v0.5.3 [22 May 2018]

 		
 v0.5.2 [17 May 2018]

 		
 v0.5.1 [4 May 2018]

 		
 v0.4.3 [29 March 2017]

 		
 v0.4.2 [28 March 2017]

 		
 v0.4.1

 		
 v0.4.0

 		
 v0.3.2

 		
 v0.3.1

 		
 v0.3.0

 		
 v0.2.3 [11 Jan 2017]

 		
 v0.2.2 [11 Jan 2017]

 		
 v0.2.1 [10 Jan 2017]

 		
 v0.2.0 [10 Jan 2017]

 		
 v0.1.0 [27 Oct 2016]

 		
 Authors

 		
 Comments, corrections and suggestions

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 API Summary

 		
 powerbox.powerbox Module

 		
 Classes

 		
 powerbox.dft Module

 		
 Functions

 		
 powerbox.tools Module

 		
 Functions

_images/demos_cosmological_fields_13_0.png

_images/demos_cosmological_fields_15_0.png

_images/demos_cosmological_fields_11_0.png
100

10

10

107

107

10

107

10

— Input Power
—— Sampled Power

17 w0 100 00 e 1

_images/demos_dft_14_0.png
0 10 150

_images/demos_dft_16_0.png

_images/demos_cosmological_fields_17_0.png
100

10

10

107

107

10

107

10

— Input Power
—— Sampled Power Discrete

w7 w0 100 00 e 1

_images/demos_cosmological_fields_9_0.png

_images/demos_dft_19_1.png
100 — - Numerical
— Baalytic

107
102
107
10

10

10

107

10 10° 10

_images/demos_dft_22_0.png

_images/demos_dft_24_0.png
100
— Numerical

— Analytic

10

100
10
102
10
104
10

10

107 10° 10

_images/demos_getting_started_13_0.png

_images/demos_getting_started_15_0.png

_images/demos_dft_7_0.png

_images/demos_dft_9_0.png
Residual Between Input and
Forward-+Inverse Transform i1

_images/demos_getting_started_30_0.png
107

10

10

107

10

10

Input Povier
Normal Field Pomer
Normal Sample Power
Log-Normal Field Pover
Log-Normal Sample Power

10

_images/demos_getting_started_19_0.png

_images/demos_getting_started_23_0.png
10

08

08

04

02

00

00

02

o4

06

08

10

00

02

04

0%

08

10

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

