
POUET Documentation
Release 0.4

Vivien Bonvin, Thibault Kuntzer

Jan 12, 2020





Contents

1 Quick links 3

Python Module Index 37

Index 39

i



ii



POUET Documentation, Release 0.4

POUET - Programing Observations Usefully at the Euler Telescope

This software helps you planning your observation nights at ANY telescope in the ESO-La Silla Observatory. But
POULSO was a crappy software name, and both authors liked the Swiss Leonhard Euler Telescope a lot.

Why using this software and not one of the dozens of alternatives already existing out there? The strongest case is
certainly that POUET provides a real-time analysis of the weather situation, including automatic clouds detection from
the Danish telescope AllSky Camera.

Designed by observers for observers, with lots of love and hopefully bug-free. Download POUET from github.

Contents 1

http://allsky-dk154.asu.cas.cz
https://github.com/vbonvin/POUET/issues


POUET Documentation, Release 0.4

2 Contents



CHAPTER 1

Quick links

1.1 Welcome to POUET’s tutorial!

This section covers the basics of POUET usage. It is still under construction, but is progressing every day.

Note: POUET being still under development, some screenshots of this tutorial might not exactly correspond to what
you see in your own session. If you feel something is missing or oddly explained, please let us know.

1.1.1 Quick links

Set-up POUET

Installation. . .

. . . is currently not required. Simply clone/download the repository and move to its root.

Make sure you have all the requirements installed

pip install docs/requirements.txt

Note: Compatibility with older version of the required modules has not been assessed, but might be working. If you
find any backward compatibility, please let us know

Tree structure

At the root of POUET, you will find the following directories

• archives contains old pieces of code (will disappear in a future version)

3

https://github.com/vbonvin/POUET
https://github.com/vbonvin/POUET
https://github.com/vbonvin/POUET/issues


POUET Documentation, Release 0.4

• cats contains the catalogs loaded/saved by POUET

• docs contains the documentation and requirement files

• misc contains stuff (will disappear in a future version)

• pouet contains the source code

• standalone contains standalone version of the plots (will disappear in a future version)

• tests contains a series of tests to ensure smooth continuous integration

We will describe these in due time.

Start-up

From the root directory:

python pouet/main.py

This will launch POUET in a dedicated window.

Fig. 1: A fresh POUET session.

Basic usage

4 Chapter 1. Quick links



POUET Documentation, Release 0.4

Buttons, buttons everywhere

And they all serve a purpose. Let’s have a look again at what a freshly opened session of POUET looks like:

Fig. 2: A fresh POUET session, colored for the occasion

The red box at the top allows you to control the date and time.

The blue bow below allows you to display and check the properties of the targets in your catalog - from the
Observations tab. The other tabs allow you to display observing site properties (Station tab), POUET pa-
rameters (Configuration tab) and see the log of the operations you performed so far (View logs tab).

The inserted turquoise box allows a finer control of which targets are visible in the Observations tab.

The black box on the right contains the all sky display and visibility plots.

We will explore in more details these sections later on. For the moment, let’s start by importing a bunch of targets into
POUET.

Import a catalog

POUET has been primarly designed to let you browse through a large list of targets (a catalog) and highligh/display
only the targets of interest.

Thus, your targets need to be arranged in a catalog. A POUET catalog can be as simple as a tab separated file, where
each line is a target and each column a property. The first line is a header and second line is a separator. The minimal
required properties are the name, alpha (HH:MM:SS.sss) and delta coordinates (DD:MM:SS.sss). A minimal working
catalog should look like this:

1.1. Welcome to POUET’s tutorial! 5



POUET Documentation, Release 0.4

name alpha delta
---- ----- -----
HE0047-1756 00:50:27.83 -17:40:08.8
J0158-4325 01:58:41.44 -43:25:04.1
HE0230-2130 02:32:33.1 -21:17:26
HE0435-1223 04:38:14.9 -12:17:14.4

The reading is done by rdbimport(), which is a simple wrapper around astropy.table.Table.read().
Whatever suits astropy should work with POUET as well.

Note: If you do not have a separator line, you should use data_start=1 in the astropy.table.Table.
read() called in rdbimport().

To load your catalog in POUET, clic on Load catalog and chose your file. Then, if the file extension is not
.pouet (more on this on the Quality of Life Improvements page), a popup will appear:

The pop-up asks you to associate the headers found in your catalog with the ones POUET needs. The fourth header,
called Obs program, is optional. It relates to the observing program associated to your targets. The observing program
defines a set of properties that some of your targets share. Currently, this is limited to the minimal distance to the
Moon and the maximum airmass of your target. If you do not have such a property, simply select None. Below, you
can chose a default observing program for the targets that have none assigned.

Note: currently, the properties of each observing program are simply used to raise warning flags if your targets are
too close to the moon or at too high airmass. It does not prevent your targets to be displayed in POUET, so you can
feel safe to use the default observing program (max airmass = 1.5, minimal distance to the moon = 30 deg). Learn
how to define your own observing program on the Quality of Life Improvements page.

The append checkbox in the bottom part of the loading pop-up allows you define if you want to append the targets
you are loading to the ones already in POUET, or if you want to overwrite them.

Note: if you append targets that are duplicate of existing ones, they will not be loaded. However, if the original targets
were hidden (see more below about that), loading duplicates will make the original corresponding targets visible again.

Once a catalog is loaded, all its targets appear in the list view. Try to load the example.cat catalog available on the
cats folder, chosing the lens obsprogram. The output should look as follows:

Each target appear as a line in the list view. Non-straightforwardly understandable header keywords are:

• Obs for the observability [0-1]

• S for the angular distance to the Sun [degree]

• M for the angular distance to the Moon [degree]

• A for the airmass [1-10]

• W for the angle between the telescope and the wind direction [degree]

• C for the cloud index [0-1]

The keyword cells get colored in green or red, depending if the current value matches the obsprogram constraints or
not. A description of the wind angle can be found on the ref:warningmessages page. The observability and cloud
index are detailed in the following section.

6 Chapter 1. Quick links



POUET Documentation, Release 0.4

Fig. 3: Headers selection pop-up

1.1. Welcome to POUET’s tutorial! 7



POUET Documentation, Release 0.4

Fig. 4: Loading the example catalog of lensed quasars.

8 Chapter 1. Quick links



POUET Documentation, Release 0.4

Note: The wind angle and cloud index are displayed only if the observing time is less than 30min off from the actual
time.

Finally, you can manually add single targets on the fly to the current list of targets by clicking the Add new target
button in the bottom right corner of the list view.

Warning: Be aware that POUET does not check that the name of the targets added manually are not duplicates
of existing targets.

Sort your targets

You can order the list view by clicking on the corresponding headers. Sorting which targets appear in the list view
is done through buttons in the small turquoise box of Fig. main_colored. Check the box corresponding on the
criteria you want to apply to your list, and enter a value if needed. You can of course mix criteria as it suits you. To
apply your sorting criteria, click on the Sort button.

The sorting criteria are the following:

• Airmass smaller than

• Sun distance larger than [degree]

• Moon distance larger than [degree]

• Wind Angle larger than 90 [degree]

• Name containing [string pattern]

• Right Ascension (Alpha) earlier/later than [HH:MM:SS], from 00:00:00 to 24:00:00

• Declination (Delta) higher/lower than [DD:MM:SS], from -90:00:00 to +90:00:00

• Clouds index larger than 0. 1 means clear sky, 0 means full cloud coverage.

• Observability larger than 0. The observability is a combination of airmass, moon distance, wind, cloud coverage,
etc. . . that provide a “smart” way of sorting targets.

• Selected/unselected targets. You can check targets in the list directly.

Note: The value of the wind angle below which your targets are hidden (default = 90 degrees) can be changed in the
configuration file (see POUET configuration files).

Note: In future versions of POUET, users will be able to define their own observability formula per observing
program. The default one currently used can be read at compute_observability().

The Reset list button make all the targets visible again. The same can be achieved by unchecking the sorting
boxes and clicking on the Sort button.

If you sort the example.cat catalog with a right ascension later than 10h, a declination smaller than 50 degrees,
an airmass smaller than 0.3 and keep only the targets that have “J1” in their name, you should have only two targets
remaining:

1.1. Welcome to POUET’s tutorial! 9



POUET Documentation, Release 0.4

Fig. 5: Sorting the example catalog of lensed quasars.

10 Chapter 1. Quick links



POUET Documentation, Release 0.4

Display targets on the all-sky and visibility views

The right part of POUET’s main window regroups two views. At the top is the all-sky view, and at the bottom is the
visibility view.

The all-sky view is, as its name says, an all-sky view from La Silla. The image comes from the Danish telescope
AllSky Camera, and is refreshed by default every 2 minutes. A RA/DEC grid is superposed on top of it, as well as a
cloud analysis layer that colors the view according to the cloud coverage. At the top of the plot are displayed the date
of the last update of the all-sky and the wind (see Understand the warning messages) as well as a Refresh button,
especially useful is you deactivate the automatic updates (see Extra tabs).

Fig. 6: All-sky view

The visibility view is a RA/DEC plot that indicates which region of the sky can be observed according to two criterias:
the angle to the Moon, and the airmass. You can change the values at the top of the view and then click Draw to
display a new region. The color of the visible region corresponds to the angle to the Moon, indicated in the right
colorbar.

Note: If you hover the mouse cursor over the visibility view, a marker appears on the all-sky view at the corresponding

1.1. Welcome to POUET’s tutorial! 11

http://allsky-dk154.asu.cas.cz
http://allsky-dk154.asu.cas.cz


POUET Documentation, Release 0.4

Fig. 7: Visibility view

12 Chapter 1. Quick links



POUET Documentation, Release 0.4

coordinates.

If you check some targets on the list view and click on Display selected, they will appear on the corresponding
coordinates on both the all-sky and visibility views.

Fig. 8: Targets displayed on the visibility view

Extra plots

Upon right-clicking on a target in the list view, a drop-down menu will appear, giving you access to additional useful
plots for the selected target. Currently, two options are available:

• Show sky chart opens a pop-up where you can query existing large sky surveys (currently DSS,
NEAT and 2MASS-J) for a finding chart of your target.

• Show airmass opens an pop-up displaying the evolution of the airmass of your target over its
visibility range during the current night, in an Altitude-Azimuth radial grid.

Change the current time

If you want to plan ahead (or in the past, who are we to judge), you can use the time box at the top left of the main
window to change the date and time of the observations. Once set, click on Update to refresh the values displayed
in your target list. If you are more than 30 minutes away from the current time, both the clouds and wind values are
disabled in the list view.

1.1. Welcome to POUET’s tutorial! 13

http://archive.eso.org/dss/dss
https://neat.jpl.nasa.gov
https://www.ipac.caltech.edu/2mass/


POUET Documentation, Release 0.4

Fig. 9: Sky chart of HE0435-1223

14 Chapter 1. Quick links



POUET Documentation, Release 0.4

Fig. 10: Airmass evolution of HE0435-1223 over night

1.1. Welcome to POUET’s tutorial! 15



POUET Documentation, Release 0.4

Fig. 11: HE0047 will still be visible in July 2222. No wind or clouds prediction, though.

16 Chapter 1. Quick links



POUET Documentation, Release 0.4

Note: The all-sky view still displays the up-to-date all-sky image. This is designed to remind you of the current
weather situation.

You can come back to the current time by clicking on Set to now, then Update.

Understand the warning messages

There are two kinds of warning messages. The ones that tell you something is wrong with POUET’s code (bad ones,
report them here) and the ones that tell you to pay attention to what’s happening. In this page, we focus on the latter.

General status of POUET

At the center top of the main window is a small box. POUET uses this box to print all kind of messages

Fig. 12: Examples of status messages

You can see it as a simplified log to let you know the status of the most recent task performed by POUET. A green
message tells you that things happened as expected (catalog successfully loaded, all-sky image successfully down-
loaded) , a yellow message tells you that a task is currently being processed by POUET (retrieving a finding chart,
refreshing the weather display. . . ) and a red message tells you that something went wrong (loading catalog does not
comply with POUET’s import standards, no connexion to the weather service, etc. . . ). To each of these simplified
messages corresponds one or more detailed entries in the Log tab.

Pointing limit

Usually, when the wind blows above a certain limit, you will want to avoid pointing the telescope in the wind direction
(+- 90 degree from the wind). The pointing limit is defined as 15m/s, but can be changed by the user before launching
POUET (see POUET configuration files). When the measured speed exceed this threshold, a hatched grid will appear
on the all-sky and visibility views to indicate which regions are not accessible. The targets in the list view will have
their respective Wind cells paint in red.

If the wind blows really too hard, then the telescope should be closed for safety measures. Most modern telescopes
have automatic closing procedures (either a closing signal sent to the telescope, or a human operator forcing you to
close it) but just in case you are all alone and don’t pay too much attention to your official weather report, POUET
displays a visual reminder in both the visibility and all-sky views.

1.1. Welcome to POUET’s tutorial! 17

https://github.com/vbonvin/POUET/issues


POUET Documentation, Release 0.4

Fig. 13: When the wind blows too hard, a pointing limit grid appears on the displays.

18 Chapter 1. Quick links



POUET Documentation, Release 0.4

Fig. 14: When the wind blows really too hard, POUET reminds you that no observations are possible.

1.1. Welcome to POUET’s tutorial! 19



POUET Documentation, Release 0.4

POUET closing limit is 20m/s, and as the pointing limit can be changed (see POUET configuration files). As an extra
warning, note that in both cases the Station tab changed color (yellow for pointing limit, red for closing limit)

Clouds detection

The approach chosen in POUET to detect clouds is very straightforward: small boxes are drawn on the all sky image
and a peak detection algorithm counts how many stars are visible. If that number is large enough, then POUET
assumes the sky is clear and paint the all-sky in green. A Gaussian filtering is also applied to reduce the false cloud
detection due to the presence of the moon.

The number of stars per box has been optimized to match a visual detection from the Danish telescope AllSky Camera.
If you plan to use another all-sky (see POUET configuration files), the cloud detection algorithm might need some
adaptation.

A target behind the clouds will have its cloud flag C in the list view painted in red with a value of 0, and, of course,
appears in a correspondingly red region in the all-sky display. The yellow regions corresponds to areas with a cloud
density between thin and thick; you can still hope for some flux if you do e.g. spectroscopy of bright objects, but don’t
even attempt to do photometric observations, unless you are really desperate (The “I’m-a-PhD-student-whose-thesis-
can-be-awarded-only-if-I-get-these-observations-done-tonight” kind of desperate).

Fig. 15: When everyone else is closed because of bad weather, the smart POUET user knows he can still observe
WFI2033.

20 Chapter 1. Quick links

http://allsky-dk154.asu.cas.cz


POUET Documentation, Release 0.4

Moon distance

In a similar fashion than the wind limit or cloud coverage, a target too close to the moon will have its M box in the list
view painted in red. The default minimum moon distance is 30 degree, but can of course be changed (see Quality of
Life Improvements)

Fig. 16: HE0047-1743 is too close to the moon.

The same warning flag exists for the distance to the Sun, S.

No internet connexion

Observatories are remote places, whose network connections are sometimes hectic. POUET works as best as it could
in offline mode. Of course, the all-sky view will be disabled, similarly to the finding charts

Extra tabs

Besides the Observation tab are three other important tabs. In this section, we briefly review the important infor-
mation you can get from them.

1.1. Welcome to POUET’s tutorial! 21



POUET Documentation, Release 0.4

Station tab

The Station tab gives you an overview of the Site conditions: weather status, Sun and Moon position, etc. . . If
something goes wrong (Sun is up in the sky, humidity is too high, wind blows too strong, etc. . . ), the Station label
at the top of the window gets colored, as well as the relevant part in the tab. The example below shows the Site status
when the wind blows stronger than the defined pointing limit.

Fig. 17: The Station tab of POUET indicates that the wind blows above the pointing limit.

The default values at which the Station panel gets colored can of course be redefined (see POUET configuration
files).

Configuration tab

The Configuration tab allows you to change some of the running parameters of POUET.

By checking/unchecking the checkboxes, you can control the behaviour of the weather analysis. You can also control
the behaviour of the Display selected button in the Observations panel, if you want the selected targets to
be displayed only in the all-sky or visibility view.

Note: an upcoming feature (planned for version 0.4) will allow you to create/load a new configuration file directly
from the Configuration panel. Until then, the corresponding button will remains gray, a dull reminder of our
failures as developer to deliver everything we promise on time.

22 Chapter 1. Quick links



POUET Documentation, Release 0.4

1.1. Welcome to POUET’s tutorial! 23



POUET Documentation, Release 0.4

View logs tab

Particularly useful is something goes nuts and you don’t know why, the View logs tab keeps track of the majority
of what happens in POUET. In case you want to report a suspicious behaviour, copy/pasting the last five minutes of
the logs along with your report might be super useful for us.

Fig. 18: The View logs tab of POUET usually displays a massive wall of text.

Quality of Life Improvements

POUET provides a bunch of interesting features that can make your life much more comfortable. Here is what you
should know.

Save your catalogs in .pouet format

Any catalog successfully imported can be saved in a .pouet format, using the Export selected button at the
bottom left of the Observations tab.

The advantage of having your catalog in a .pouet format is that they can be loaded without prompting any import-
related questions. Only the selected targets are written when you click on Export selected, which allows you to
trim down your list according to whichever criteria you find useful. The path is to be entered in the Save path field.

24 Chapter 1. Quick links

https://github.com/vbonvin/POUET


POUET Documentation, Release 0.4

Fig. 19: Export-related widgets, located at the bottom of the Observations tab

The Overwrite checkbox, checked by default, ensure that your fully replace any existing catalog when exporting.
If unchecked, the selected OBs will be added to the existing catalog, thus allowing you to build .pouet catalogs
combining targets from various other catalogs.

Note: A safer export function, warning you when you are about to erase an existing catalog as well as a rollback
mode will be available in v0.4.

Export the list of selected names

Say you know which targets from your catalog you plan to observe, and you would like to access the list of names
quickly to copy/paste it somewhere. This can be done by clicking on the Show selected names at the bottom
right of the Observations tab. This will prompt a pop-up with the names of all the selected targets from the list
view.

Fig. 20: The pop-up that appears after clicking on the Show selected names button.

1.1. Welcome to POUET’s tutorial! 25



POUET Documentation, Release 0.4

Change the default obsprogram/create a new obsprogram file

The default obsprogram parameters can be accessed in pouet/obsprogram/progdefault.py. It can be ac-
cessed and modified with any text editor.

This file contains a couple of functions we are still playing with (keep in mind that POUET is still under development)
and that are currently not used. The only values of interest are the minangletomoon and maxairmass, that define
the observability of your targets once loaded in POUET. To change the default behaviour of POUET, simply edit these
values.

If you work with multiple kind of targets that have various angle to moon and airmass requirements,
you can also create new obsprogram files. Simply copy/paste the progdefault.py file, rename it as
prog%YOUROBSPROGRAMNAME%.py and edit its value. When loading a new catalog in POUET, your new ob-
spgrogram will appear in the obsgprogram popup selection.

Note: The obsprogram files are read each time you import a new catalog. If you have a POUET instance launched
and edit the obsprogram files on the fly, you should reload your catalogs for the effects to take change, no choice.

POUET configuration files

Change the default configuration (general and Site)

The general POUET configuration file is found under pouet/config/settings.cfg. This is a simple text file
that is loaded when a POUET instance is launched. Simply edit the variables values to adapt POUET to your liking.

26 Chapter 1. Quick links



POUET Documentation, Release 0.4

1.1. Welcome to POUET’s tutorial! 27



POUET Documentation, Release 0.4

The default Site configuration file is found under pouet/config/LaSilla.cfg. As above, the values of the
parameters can be edited prior to launching a POUET instance.

All these parameters are fully described in the config files. If you want to adjust the humidity and wind
warning levels, you have to edit the windWarnLevel, windLimitLevel, humidityWarnLevel and
humidityLimitLevel parameters of the LaSilla.cfg file.

Unless you work under very specific conditions, there should be no need to tweak the other parameters - we thus
recommend you to go with the default settings.

Note: On-the-fly overriding of (most of) the default parameters from POUET’s Configuration tab will be
available in v0.4.

Adapt POUET to another observing site

This feature, along with its tutorial, will be fully available in a future version of POUET (we target the official release
version).

In the meantime, you can still change the default observing Site configuration, but beware that the allsky view will not
be adapted anymore. You can deactivate it from the Configuration tab (see Extra tabs).

1.2 Questions & Answers

1.2.1 Why this name?

Because it sounds funny.

1.2.2 Can I use POUET from every observatory?

Technically, yes. You just need to define a new config file associated to your location, and disable the webcam (see
POUET configuration files).

28 Chapter 1. Quick links



POUET Documentation, Release 0.4

1.2.3 How much trust can I put in your weather report?

The weather variable displayed in the code are directly copied from La Silla weather report. Staled weather information
turns the Site tab red in POUET. However, we offer no guarantee that the displayed information is correct. Always
refer to the official weather report of your observatory - POUET is not a replacement for it.

1.2.4 It’s full of bugs! What should I do?

Head over to our github repository and explain to us what is happening. We will do our best to answer within
reasonable delays.

1.2.5 How can I contribute?

The code is in open access (GNU GPLv3), feel free to reach us on github and propose your help.

1.2.6 The code seems. . . a bit convoluted sometimes, to say the least.

Both authors have learned (py)Qt coding this project. Be understanding.

1.2.7 What is POUET’s future?

We aim to make it as modulable as possible, so it can be used from anywhere.

1.3 pouet

1.3.1 pouet package

Submodules

pouet.clouds module

pouet.main module

pouet.meteo module

pouet.obs module

Define the Observable class, the standard object of pouet, and related functions

class obs.Observable(name=’emptyobservable’, obsprogram=None, attributes=None, alpha=None,
delta=None, minangletomoon=None, maxairmass=None, exptime=None)

Bases: object

Class to hold a specific target from any observational progamm

Unvariable parameters are defined at initialisation

Variable parameters (distance to moon, azimuth, observability,. . . ) are undefined until associated methods are
called

Constructor

1.3. pouet 29

http://www.ls.eso.org/lasilla/dimm/meteo.last
https://github.com/vbonvin/POUET
https://github.com/vbonvin/POUET


POUET Documentation, Release 0.4

An observable is the basic building bloc of POUET. It stores all the values of a target that are needed to compute
its observability at a given time from a given position

Parameters

• name – string, name of the observable

• obsprogram – string, related to one of the existing programs defined in :any:’obsprogram’

• attributes – any type of extra information about the target you want to store

• alpha – Right Ascension angle, in hours HH:MM:ss

• delta – Declination angle, in degree DD:MM:ss

• minangletomoon – float, minimum angle in the sky plane to the moon below which the
target is not to be observed

• maxairmass – float, maximum airmass below which the target is not to be observed

• exptime – float, expected exposure time of the target

compute_airmass(meteo)
Computes the airmass of the observable.

Parameters meteo – a Meteo object, whose time attribute has been actualized beforehand

compute_altaz(meteo)
Computes the altitude and azimuth of the observable.

Parameters meteo – a Meteo object, whose time attribute has been actualized beforehand

compute_angletomoon(meteo)
Computes the distance to the moon

Parameters meteo – a Meteo object, whose time attribute has been actualized beforehand

compute_angletosun(meteo)
Computes the distance to the Sun

Parameters meteo – a Meteo object, whose time attribute has been actualized beforehand

compute_angletowind(meteo)
Computes the angle to wind

Parameters meteo – a Meteo object, whose time attribute has been actualized beforehand

compute_observability(meteo, cwvalidity=30, cloudscheck=True, verbose=True, display-
all=True, future=False)

Update the status using update(). Compute the observability param, a value between 0 and 1 that tells
if the target can be observed at a given time. Also define flags for each parameter (moon, wind, etc. . . )

The closer to 1 the better 0 is impossible to observe

Parameters

• meteo – a Meteo object, whose time attribute has been actualized beforehand

• cwvalidity – float, current weather validity: time (in minutes) after/before which the
allsky cloud coverage and wind are not taken into account in the observability, effectively
setting the future variable to True

• verbose – boolean, displaying the status of the observable according to the present func-
tion

• displayall – boolean, if verbose is True, then print also the targets that are not observ-
able.

30 Chapter 1. Quick links



POUET Documentation, Release 0.4

• future – boolean, if set to True then cloud coverage and wind are note taken into account
in the observability.

copy()

Returns an, observable, python deep copy of the current observable

is_cloudfree(meteo)
Computes whether the pointing direction is cloudy according to the altaz coordinates in memory

Parameters meteo – a Meteo object, whose cloudmap attribute has been actualized beforehand

todo: instead of taking altaz coordinates in memory, shouldn’t we use meteo.time to recompute altaz on
the fly?

Note: is_cloudfree is actualized with 0: cloudy or 1: no clouds. If unavailable, returns 2: connection
error, if error during computation of observability from map: 3

update(meteo)
Update the observable parameters according to the meteo object passed: altitude, azimuth, angle to wind,
airmass, angle to moon and angle to sun.

Parameters meteo – a Meteo object, whose time attribute has been actualized beforehand

obs.rdbexport(filepath, observables, append=False)
Save a list of observables at a given filepath, respecting the formatting used when default importing with
:meth:’obs.rdbimport’.

Parameters

• filepath – string. Path of where the .pouet file is written

• observables – list of Observables to save

• append – boolean. If True, then the current observables are added to the existing list

Note: append=True only works if the file you want to append to has the correct formatting. See headerline and
headersubline in the source code.

obs.rdbimport(filepath, namecol=1, alphacol=2, deltacol=3, obsprogramcol=4, obsprogram=None)
Import an rdb catalog into a list of observables

Must be compatible with astropy Table reader (i.e. a header line, then an empty/blank/comment line, then each
obs in a dedicated line, attributes separater by a tab or a space)

Parameters

• filepath – path to the file you want to import. Must be a text file, format is not important.

• namecol – integer, index of the column containing the names

• alphacol – integer, index of the column containing the right ascension

• deltacol – integer, index of the column containing the declination

• obsprogramcol – integer, index of the column containing the obs program. If not pro-
vided, use the provided obsprogram instead.

• obsprogram – which :any:’obsprogram.__init__’ is to be used as a default if nothing is
provided from the imported file.

1.3. pouet 31



POUET Documentation, Release 0.4

Note: providing an obsprogramcol overloads the given obsprogram, as long as there is a valid field in the rdb
obsprogramcol. You can use both to load a catalogue that has only part of its programcol defined.

obs.showstatus(observables, meteo, displayall=True, cloudscheck=True)
print the observability of a list of observables according to a given meteo.

Parameters

• observables – list of observables, :meth:’~obs.Observable’

• displayall – boolean, if set to True then display the status of all the targets, even those
which are not visible.

• cloudscheck – boolean, if set to True then use the cloud coverage in the observability
computation.

pouet.run module

pouet.util module

Useful functions and definitions

util.check_value(var, flag)
Check that a value is NaN, replace it with a given flag if True

Parameters

• var – value to check against NaN

• flag – replacement value

Returns processed value

util.elev2airmass(el, alt, threshold=10.0)
Converts the elevation to airmass.

Parameters

• el – float, elevation in radians

• alt – float, altitude of the observer in meters

• threshold – maximum allowed airmass, will be returned if actual airmass exceeds the
threshold

Returns airmass

Note: This is the code used for the Euler EDP at La Silla.

util.grid_points(res_x=400, res_y=200)
Maps the whole sky in right ascension and declination

Parameters

• res_x – integer, number of points in right ascension

• res_y – integer, number of points in declination

32 Chapter 1. Quick links



POUET Documentation, Release 0.4

Note: the points are equally spaced.

Returns numpy tuples containing right ascension points and declination points

util.hilite(string, status, bold)
Helper to add colors and bold in the terminal

Parameters

• string – string you want to color or bold

• status – boolean, if True then the text is colored in green, otherwise in red.

• bold – boolean, if True then the text is bolded

Returns

util.load_station(name)
Load the parameters corresponding to an observation station

Parameters name – string, name of the station. The corresponding file must be located in
config()

Returns station parameters

util.readconfig(configpath)
Reads in a config file

Parameters configpath – path of the configfile

Returns configuration dictionary

util.readpickle(filepath)
I read a pickle file and return whatever object it contains. If the filepath ends with .gz, I’ll unzip the pickle file.

Parameters filepath – string, path of the pickle to load

Returns object contained in the pickle

util.takeclosest(dico, key, value)

Warning: I assume that dict[key] is sorted.

Returns the dict value which dict[key] is closest to value. If two dict[key] are equally close to value, return the
highest (i.e. latest).

Parameters

• dico – python dictionary you want to sort

• key – dictionary key used for sorting

• value – target value,

Returns index of the element in dico that is the closest to the target value

Note: This is much faster than a simple min loop, although a bit more tedious to use.

1.3. pouet 33



POUET Documentation, Release 0.4

util.time2hhmm(obstime)
Concatenate a string HH MM SS or HH.MM.SS into an HHMM string

Parameters obstime – string, HH MM SS or HH.MM.SS

Returns HHMM string

util.writepickle(obj, filepath, protocol=-1)
I write your python object obj into a pickle file at filepath. If filepath ends with .gz, I’ll use gzip to compress the
pickle.

Parameters

• obj – python container you want to compress

• filepath – string, path where the pickle will be written

• protocol – Leave protocol = -1 : I’ll use the latest binary protocol of pickle.

pouet.plots module

plots.plot_airmass_on_sky(target, meteo, ax=None)
Plots the airmass evolution on the sky of a given target at a given time.

Parameters

• target – a pouet.obs.Observable class instance

• meteo – a pouet.meteo.Meteo class instance

• ax – the matplotlib axis to plot on. If None, then plot on a new figure

plots.plot_target_on_sky(target, figure=None, northisup=True, eastisright=False, boxsize=None,
survey=’DSS’, cmap=’Greys’)

Uses astroquery (hopefully soon accessible from astropy.vo) to plot an image of the target

plots.shownightobs(observable, meteo, obs_night=None, savefig=False, dirpath=None, ver-
bose=False)

Plot the observability of one observable along the night #todo: add the option to be returned in an Axes object
instead of plotting

Subpackages

pouet.obsprogram package

Submodules

pouet.obsprogram.prog703 module

obsprogram.prog703.get_exptime(attributes, obs_time)

obsprogram.prog703.observability(attributes, obs_time)

pouet.obsprogram.prog714 module

obsprogram.prog714.get_exptime(attributes, obs_time)

obsprogram.prog714.observability(attributes, obs_time)

34 Chapter 1. Quick links



POUET Documentation, Release 0.4

pouet.obsprogram.progbebop module

obsprogram.progbebop.get_exptime(obj, obs_time)

obsprogram.progbebop.observability(attributes, obs_time)

pouet.obsprogram.proglens module

obsprogram.proglens.get_exptime(attributes, obs_time)

obsprogram.proglens.observability(attributes, obs_time)

Module contents

pouet.LaSilla package

Submodules

pouet.config.LaSilla module

class config.LaSilla.AllSky
Bases: object

Station-specific class that handles the all sky image and its transformation of the sky.

Class constructor that saves some important all sky parameters as a class attribute.

get_image_coordinates(az, elev)
Converts the azimuth and elevation of a target in pixel coordinates

Parameters

• az – azimuth (in rad)

• elev – elevation (in rad)

Returns x and y position

get_mask(ar)
Returns the mask to apply on the AllSky hide unwanted features in the image. In the LaSilla case, to
remove the danish and the text in the corners.

Parameters ar – original image (or at least an array with the same size). Used to get the image
size.

get_radius(elev)
Method that computes the radius of a given elevation on the sky, in pixel.

Parameters elev – elevation (in radians)

Returns Radius, in px

class config.LaSilla.WeatherReport(name=’LaSilla’)
Bases: object

This class is dedicated to recovering the weather report at the La Silla site and feeding the wind direction, wind
speed, temperature and humidity back to pouet. It must contain at least a get method that returns the above
variable.

1.3. pouet 35



POUET Documentation, Release 0.4

Class constructor. Loads the LaSilla.cfg configuration file and saves it as attribute.

Parameters name – name of the cfg file, only included for completeness.

get(debugmode, FLAG=-9999)
Get method that reads the weather reports off the web. In the LaSilla case, it download a meteo.last and
interprets the data.

Parameters

• debugmode – whether or not POUET is in debugmode. If true, it ought to return some
static and dummy data

• FLAG – what to return in case the weather report cannot be downloaded or treated. Cur-
rently, POUET expect -9999 as a placeholder.

Returns Wind direction, speed, temperature and humidity

Warning: Such a method must return the following variables in that precise order: wind direction,
wind speed, temperature and humidity

Module contents

36 Chapter 1. Quick links



Python Module Index

c
config, 36
config.LaSilla, 35

o
obs, 29
obsprogram, 35
obsprogram.prog703, 34
obsprogram.prog714, 34
obsprogram.progbebop, 35
obsprogram.proglens, 35

p
plots, 34

u
util, 32

37



POUET Documentation, Release 0.4

38 Python Module Index



Index

A
AllSky (class in config.LaSilla), 35

C
check_value() (in module util), 32
compute_airmass() (obs.Observable method), 30
compute_altaz() (obs.Observable method), 30
compute_angletomoon() (obs.Observable

method), 30
compute_angletosun() (obs.Observable method),

30
compute_angletowind() (obs.Observable

method), 30
compute_observability() (obs.Observable

method), 30
config (module), 36
config.LaSilla (module), 35
copy() (obs.Observable method), 31

E
elev2airmass() (in module util), 32

G
get() (config.LaSilla.WeatherReport method), 36
get_exptime() (in module obsprogram.prog703), 34
get_exptime() (in module obsprogram.prog714), 34
get_exptime() (in module obsprogram.progbebop),

35
get_exptime() (in module obsprogram.proglens), 35
get_image_coordinates() (config.LaSilla.AllSky

method), 35
get_mask() (config.LaSilla.AllSky method), 35
get_radius() (config.LaSilla.AllSky method), 35
grid_points() (in module util), 32

H
hilite() (in module util), 33

I
is_cloudfree() (obs.Observable method), 31

L
load_station() (in module util), 33

O
obs (module), 29
observability() (in module obsprogram.prog703),

34
observability() (in module obsprogram.prog714),

34
observability() (in module obspro-

gram.progbebop), 35
observability() (in module obsprogram.proglens),

35
Observable (class in obs), 29
obsprogram (module), 35
obsprogram.prog703 (module), 34
obsprogram.prog714 (module), 34
obsprogram.progbebop (module), 35
obsprogram.proglens (module), 35

P
plot_airmass_on_sky() (in module plots), 34
plot_target_on_sky() (in module plots), 34
plots (module), 34

R
rdbexport() (in module obs), 31
rdbimport() (in module obs), 31
readconfig() (in module util), 33
readpickle() (in module util), 33

S
shownightobs() (in module plots), 34
showstatus() (in module obs), 32

T
takeclosest() (in module util), 33
time2hhmm() (in module util), 33

39



POUET Documentation, Release 0.4

U
update() (obs.Observable method), 31
util (module), 32

W
WeatherReport (class in config.LaSilla), 35
writepickle() (in module util), 34

40 Index


	Quick links
	Python Module Index
	Index

