
porcupy Documentation
Release 0.1

Sviatoslav Abakumov

Oct 26, 2017

Contents

1 Introduction 3

2 Quickstart 5
2.1 Installation . 5
2.2 First scenario . 5

3 Reference 7
3.1 Identifiers and assignment . 8
3.2 Data types . 8
3.3 Compound statements . 9
3.4 Built-in functions . 10
3.5 Game objects . 11
3.6 Constants . 14

4 Indices and tables 17

i

ii

porcupy Documentation, Release 0.1

Welcome to Porcupy’s documentation. Porcupy let’s you compile a subset of Python to Yozhiks in Quake II scenarios.

Check Introduction to find out about Yozhiks in Quake II and its scenarios. Go to Quickstart to learn how to install and
write your first scenario in Porcupy.

Contents 1

http://gegames.org

porcupy Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

Yozhiks in Quake II is video game developed by Nick Koleda between 2001-2006. It’s a 2D side-scrolling demake
of Quake II where player controls a yozhik (hedgehog) battling other yozhiks. It features single player with bots, hot
seat, LAN and Internet multiplayer games with following game modes: Deathmatch, Team Deathmatch, Capture the
Flag, Points, Scenario. There is a map editor to create and edit maps.

The game gained a short-lived fan following in Russia and influenced 3d[Power] to create NFK.

More interestingly it features a tiny custom-made programming language to write scenarios attached to a map. With
this language, map designer is able to create scripted events, spawn and control bots, access and modify the state of
game objects like doors, buttons, and other players.

However, the code is pretty arcane:

e1p < 1 (p1z ~5 p1z p1z+1 e1b ^1 e1p 125)

It reads like this: if first yozhik has less health points than 1, then spawn him in a random spawn-point between 1 and
5, and give him 125 health points.

As you can see, reading and writing such code is not an easy feat: arbitrary one-letter abbreviations of methods and
properties, unnamed variables, flow control consists of one-level if statement and goto statement.

Head over to Quickstart and learn how to install and write scenarios in Porcupy.

3

http://gegames.org/
http://twitter.com/zyaleniyeg
http://needforkill.ru/

porcupy Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER 2

Quickstart

Installation

First of all, you must visit Yozhiks in Quake II and download the game and map editor.

Make sure you have Python 3, then use pip to acquire the package:

pip3 install 'git+https://github.com/Perlence/porcupy#egg=porcupy'

First scenario

Let’s consider rewriting an example from Introduction in Porcupy:

PLAYER = yozhiks[0]

if PLAYER.health < 1:
PLAYER.spawn(randint(1, 5))
PLAYER.health = 125

List yozhiks is a zero-indexed list of all yozhiks in the game and each of them has attributes like health and
weapon, and methods like spawn().

Names written in upper case are considered constants, so, roughly speaking, each next occurrence of PLAYER after
first line will be replaced by yozhiks[0].

New built-in function randint() returns random integer in range [a, b], including both end points.

Let’s save the scenario in a file, e.g. handicap_spawn.py, and see what Porcupy compiler will produce:

porcupy -i handicap_spawn.py

The result is:

5

http://gegames.org/
http://octagram.name/pub/gegames/egiki.1.06.rar.exe
http://octagram.name/pub/gegames/egiki.editor.exe

porcupy Documentation, Release 0.1

e1p >= 1 (g1z) p1z ~5 p2z p1z+1 e1b ^2 e1p 125 :1

It looks a lot like the original example, but you can notice new words like g1z and :1 — these are goto statement and
goto label respectively.

Now, the scenario on it’s own is useless unless it’s bundled with a map. Go to directory where you installed Yozhiks
in Quake II and the map editor. Start red_egiks.exe, open file MAPS/ArenaDM.egm, change the name of map
in Info dialog, and save it to MAPS/ArenaDM2.egm.

Now we can compile and attach the Porcupy scenario to the map:

porcupy -i handicap_spawn.py -a ArenaDM2.egm

Check if scenario works properly by loading the map in Yozhiks in Quake II and proceed to Reference.

6 Chapter 2. Quickstart

CHAPTER 3

Reference

Porcupy compiler uses Python’s ast module to parse Porcupy scenarios. Porcupy aims to resemble Python as close as
possible, with some cues taken from Go. But it’s not feasible to implement each and every one of Python language
features.

Here’s a list of Python language features not supported in Porcupy:

• The import system

• Expressions:

– Await expression

– Power operator

– Shifting operations

– Binary bitwise operations

– Lambdas

– Keywords in function calls

– list, set, dict, and generator comprehensions

• Simple statements:

– The assert statement

– The del statement

– The return statement

– The yield statement

– The raise statement

– The import statement

– The global statement

– The nonlocal statement

7

https://docs.python.org/3/library/ast.html

porcupy Documentation, Release 0.1

• Compound statements:

– The try statement

– The with statement

– Function definitions

– Class definitions

– Coroutines

Identifiers and assignment

Unlike Python, Porcupy introduces a distinction between variables and constants. Constants are not assigned to in-
game variables, like p1z, the value of constant is stored only in compiler’s memory. To define a constant, write its
name in upper case:

PUNCH_VELOCITY = 15

Note: Because of the way the game parses floating point numbers, and because of the way Porcupy tries to alleviate
it, defining floating point constants is not allowed.

All other names are considered variable names:

number = 0

Chained assignment and tuple unpacking are supported:

x = y = 0
a, b = 1, 2

Note: Although present in game, string variables are broken, and it’s not possible to set a string to a variable. At the
same time, it’s still possible to define a string constant.

Data types

Porcupy supports the following data types:

Numbers Integers

Booleans

Floating point numbers

Sequences All sequences provide a way to get/set an item by index, query the length and capacity.

Immutable sequences

Strings Can only be used in constants and as print(), print_at(), and load_map() arguments.
Method format is supported:

print('{} {}'.format(yegiks[0].health, yegiks[0].armor)

8 Chapter 3. Reference

porcupy Documentation, Release 0.1

Range See the range built-in.

Reversed See the reversed built-in.

Mutable sequences

Lists The items of a list are of the same type and the number of items is constant and known at compile-
time:

x = [0, 1, 2, 3, 4]

No original list methods are implemented in Porcupy lists, it can only be used to store a sequence of
numbers, get and set them by index:

x[0] = 10
print(x[0])
print(len(x))

Note: Negative indices are not supported.

Slices Slice is a variable-length sequence with defined maximum capacity, backed by a list. Essentially,
slice is a triple of values: address of first element, length of slice, capacity of slice.

x = [0, 0, 0, 0, 0] # a list of length 5
s = x[:] # a slice of list *x*, length 5, capacity 5
s = x[1:] # a slice of list *x*, length 4, capacity 4
s = x[:0] # a slice of list *x*, length 0, capacity 5
s = x[1:3] # a slice of list *x*, length 3, capacity 4

Note: Slice step is not supported.

There’s a very useful shorthand notation with slice().

It’s possible to slice other slices:

x = slice(int, 5)
y = x[:3]

Slices can be appended to:

x = slice(int, 0, 5)
x.append(4)

Warning: There’s currently no mechanism to prevent user from appending an item to a “full”
slice, so be sure to check length and capacity of slice before appending yourself.

Compound statements

Only the following compound statements from Python are supported:

• The if statement

3.3. Compound statements 9

porcupy Documentation, Release 0.1

• The while statement

• The for statement

Each of them supports optional else clause.

The for statement differs a bit from the original. It can be used to iterate sequences:

items = [10, 20, 30, 40]
for item in items:

print(item) # prints '10', '20', '30', '40', one on each line

But it’s also possible to access item’s index without the enumerate function:

items = [10, 20, 30, 40]
for i, item in items:

print(i, item) # prints '0 10', '1 20', and so on

Built-in functions

cap(sequence)→ int
Return the capacity of a given sequence.

Parameters sequence – an instance of list, slice, range, or reversed.

len(sequence)→ int
Return the length of a given sequence.

Parameters sequence – a list, slice, range, or reversed.

load_map(map_name)
Load the given map.

Note: This function works only in Yozhiks in Quake II v1.07.

print(*values)
Print values as a message in the top-left corner of the screen, separated by a single space.

print_at(x, y, duration, *values)
Print values in given point on screen for duration game ticks, separated by a single space.

Parameters

• x (int) – x coordinate of message.

• y (int) – y coordinate of message.

• duration (int) – number of game ticks the message will be visible.

• values – parts of message to be printed.

Note: Only 20 such messages can be shown at a given time.

randint(a, b)→ int
Return a random integer N such that a <= N <= b.

class range(stop)→ range object

10 Chapter 3. Reference

porcupy Documentation, Release 0.1

class range(start, stop[, step])→ range object
Return an object that produces a sequence of integers from start (inclusive) to stop (exclusive) by step.

class reversed(sequence)→ reversed object
Return a reverse sequence without allocating any in-game variables.

set_color(r, g, b)
Set color of print_at() messages.

slice(type, len, cap=None)→ slice object
Create a slice of capacity cap and len zero elements of given type.

Parameters

• type – int, bool, or float.

• len (int) – length of slice to make.

• cap (int) – capacity of slice to make, defaults to len.

x = slice(int, 5) # equivalent to [0, 0, 0, 0, 0][:]
x = slice(int, 1, 5) # equivalent to [0, 0, 0, 0, 0][:1]
y = slice(bool, 3) # equivalent to [False, False, False][:]
z = slice(float, 5) # equivalent to [.0, .0, .0, .0, .0][:]

spawn_sheep(start, finish)
Spawn a sheep in point start and tell it to go to point finish.

Parameters

• start (Point) – point where sheeps spawns.

• finish (Point) – point where sheep is supposed to go.

Note: Although point finish is required, only green sheeps will go there, other sheeps will always follow player.

Game objects

Porcupy provides access to many built-in objects to interact with the game.

bots
A list of 10 Bot instances.

buttons
A list of 50 Button instances.

doors
A list of 50 Door instances.

points
A list of 100 Point instances.

system
A single System instance.

timers
A list of 100 Timer instances. First timer timers[0] is always started with the game, so if it’s necessary to
set initial variables and game state, use this approach:

3.5. Game objects 11

porcupy Documentation, Release 0.1

if timers[0].value == 1:
Initialize here
pass

viewport
A single Viewport instance.

yozhiks
A list of 10 Yozhik instances. First yozhik yozhiks[0] is player himself.

Note: All classes below cannot be instantiated in scenario, and, in fact, they’re not in the scope.

class Bot

ai
(bool) – should bot function on its own.

can_see_target
(bool, read-only).

goto
(Point) – make bot go to given Point.

level
(int) – a level of the bot, see list of bot level constants for possible values.

point
(Point, read-only) – a Point where bot is now.

target
(Yozhik) – attack target of the bot.

class Button

is_pressed
(bool, read-only).

press()

class Door

state
(int, read-only) – see list of door state constants for possible values.

open()

close()

class Point
Points are set in the map editor, and they are primarily used to tell a bot where to go. They can also be used to
easily mark a location on map to serve as a trigger, or to display a message with print_at().

pos_x
(int) – x coordinate of the point.

pos_y
(int) – y coordinate of the point.

12 Chapter 3. Reference

porcupy Documentation, Release 0.1

class System

bots
(int) – number of bots.

color
(int) – color of print_at() messages.

It’s a triple of 8-bit integers packed in one: blue*65536 + green*256 + red. It’s easier to use
set_color() instead of setting color value to this attribute.

Default color is 48128, or rgb(0, 188, 0).

frag_limit
(int) – see list of frag limit constants for possible values.

game_mode
(int, read-only) – current game mode, see list of games modes for possible values.

class Timer
A timer object that counts game ticks.

One game tick is roughly 1/50 of a second.

enabled
(bool) – is the timer ticking.

value
(int) – how much ticks did the timer count.

start()

stop()

class Viewport
Viewport object holds the location of top-left game screen corner in relation to top-left map corner.

pos_x
(int, read-only) – x coordinate of top-left screen corner.

pos_y
(int, read-only) – y coordinate of top-left screen corner.

class Yozhik

ammo
(int) – amount of ammo for current weapon.

armor
(int) – armor points.

frags
(int) – number of frags.

is_weapon_in_inventory
(bool) – setting is_weapon_in_inventory to True places current weapon in yozhik’s inventory.

health
(int) – health points.

pos_x
(float) – x coordinate of yozhik’s position.

3.5. Game objects 13

porcupy Documentation, Release 0.1

pos_y
(float) – y coordinate of yozhik’s position.

speed_x
(float) – x coordinate of yozhik’s speed vector.

speed_y
(float) – y coordinate of yozhik’s speed vector.

team
(int) – number of team.

view_angle
(int) – a value in range [0, 127], when yozhik looks up it’s 0, when he looks straight to the right or left
it’s 64, when he looks down it’s 127.

weapon
(int) – current weapon, see list of weapon constants. Setting value to this attribute makes yozhik switch to
the weapon, but does not place it in his inventory. If he didn’t have it before and switches back, the weapon
will be gone, unless is_weapon_in_inventory was set.

spawn(point: int)
Spawn yozhik in the given spawn-point.

Spawn points are enumerated starting at 1, from top to bottom, left to right:

Constants

Weapons:

W_BFG10K(0)

W_BLASTER(1)

W_SHOTGUN(2)

W_SUPER_SHOTGUN(3)

W_MACHINE_GUN(4)

W_CHAIN_GUN(5)

W_GRENADE_LAUNCHER(6)

W_ROCKET_LAUNCHER(7)

W_HYPERBLASTER(8)

W_RAILGUN(9)

14 Chapter 3. Reference

porcupy Documentation, Release 0.1

Door states:

DS_CLOSED(0)

DS_OPEN(1)

DS_OPENING(2)

DS_CLOSING(3)

Frag limits:

FL_10(0)

FL_20(1)

FL_30(2)

FL_50(3)

FL_100(4)

FL_200(5)

Bot levels:

BL_VERY_EASY(0)

BL_EASY(1)

BL_NORMAL(2)

BL_HARD(3)

BL_IMPOSSIBLE(4)

Game modes:

GM_MULTI_LAN(0)

GM_MULTI_DUEL(1)

GM_HOT_SEAT(2)

GM_MENU(3)

GM_SINGLE(4)

GM_SHEEP(5)

GM_HOT_SEAT_SPLIT(6)

3.6. Constants 15

porcupy Documentation, Release 0.1

16 Chapter 3. Reference

CHAPTER 4

Indices and tables

• genindex

• search

17

porcupy Documentation, Release 0.1

18 Chapter 4. Indices and tables

Index

A
ai (Bot attribute), 12
ammo (Yozhik attribute), 13
armor (Yozhik attribute), 13

B
BL_EASY (built-in variable), 15
BL_HARD (built-in variable), 15
BL_IMPOSSIBLE (built-in variable), 15
BL_NORMAL (built-in variable), 15
BL_VERY_EASY (built-in variable), 15
Bot (built-in class), 12
bots (built-in variable), 11
bots (System attribute), 13
Button (built-in class), 12
buttons (built-in variable), 11

C
can_see_target (Bot attribute), 12
cap() (built-in function), 10
close() (Door method), 12
color (System attribute), 13

D
Door (built-in class), 12
doors (built-in variable), 11
DS_CLOSED (built-in variable), 15
DS_CLOSING (built-in variable), 15
DS_OPEN (built-in variable), 15
DS_OPENING (built-in variable), 15

E
enabled (Timer attribute), 13

F
FL_10 (built-in variable), 15
FL_100 (built-in variable), 15
FL_20 (built-in variable), 15
FL_200 (built-in variable), 15

FL_30 (built-in variable), 15
FL_50 (built-in variable), 15
frag_limit (System attribute), 13
frags (Yozhik attribute), 13

G
game_mode (System attribute), 13
GM_HOT_SEAT (built-in variable), 15
GM_HOT_SEAT_SPLIT (built-in variable), 15
GM_MENU (built-in variable), 15
GM_MULTI_DUEL (built-in variable), 15
GM_MULTI_LAN (built-in variable), 15
GM_SHEEP (built-in variable), 15
GM_SINGLE (built-in variable), 15
goto (Bot attribute), 12

H
health (Yozhik attribute), 13

I
is_pressed (Button attribute), 12
is_weapon_in_inventory (Yozhik attribute), 13

L
len() (built-in function), 10
level (Bot attribute), 12
load_map() (built-in function), 10

O
open() (Door method), 12

P
point (Bot attribute), 12
Point (built-in class), 12
points (built-in variable), 11
pos_x (Point attribute), 12
pos_x (Viewport attribute), 13
pos_x (Yozhik attribute), 13
pos_y (Point attribute), 12

19

porcupy Documentation, Release 0.1

pos_y (Viewport attribute), 13
pos_y (Yozhik attribute), 13
press() (Button method), 12
print() (built-in function), 10
print_at() (built-in function), 10

R
randint() (built-in function), 10
range (built-in class), 10
reversed (built-in class), 11

S
set_color() (built-in function), 11
slice() (built-in function), 11
spawn() (Yozhik method), 14
spawn_sheep() (built-in function), 11
speed_x (Yozhik attribute), 14
speed_y (Yozhik attribute), 14
start() (Timer method), 13
state (Door attribute), 12
stop() (Timer method), 13
System (built-in class), 12
system (built-in variable), 11

T
target (Bot attribute), 12
team (Yozhik attribute), 14
Timer (built-in class), 13
timers (built-in variable), 11

V
value (Timer attribute), 13
view_angle (Yozhik attribute), 14
Viewport (built-in class), 13
viewport (built-in variable), 12

W
W_BFG10K (built-in variable), 14
W_BLASTER (built-in variable), 14
W_CHAIN_GUN (built-in variable), 14
W_GRENADE_LAUNCHER (built-in variable), 14
W_HYPERBLASTER (built-in variable), 14
W_MACHINE_GUN (built-in variable), 14
W_RAILGUN (built-in variable), 14
W_ROCKET_LAUNCHER (built-in variable), 14
W_SHOTGUN (built-in variable), 14
W_SUPER_SHOTGUN (built-in variable), 14
weapon (Yozhik attribute), 14

Y
Yozhik (built-in class), 13
yozhiks (built-in variable), 12

20 Index

	Introduction
	Quickstart
	Installation
	First scenario

	Reference
	Identifiers and assignment
	Data types
	Compound statements
	Built-in functions
	Game objects
	Constants

	Indices and tables

