

Popper

	Getting Started
	Installation

	Create Your First Workflow

	Run your workflow

	Debug your workflow

	Next Steps

	CLI features
	New workflow initialization

	Executing a workflow

	Executing a step interactively

	Parametrizing workflows with substitutions

	Customizing container engine behavior

	Continuously validating a workflow

	Translating workflows for other task runners

	Visualizing workflows

	Concepts
	Resources

	Glossary

	Workflow Syntax and Execution Runtime
	Syntax

	Execution Runtime

	Container Engines

	Resource Managers

	Life of a Workflow

	Guides
	Choosing a location for your step

	Using shell scripts to define step logic

	Hello world step example

	Creating a Docker container

	Implementing a workflow for an existing set of scripts

	Building images using BuildKit

	Computational research with Python and JupyterLab

	Computational research with R and RStudio Server

	Other Resources

	FAQ
	How can I create a virtual environment to install Popper

	How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

	How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

	Can I follow Popper in computational science research, as opposed to computer science?

	How to apply the Popper protocol for applications that take large quantities of computer time?

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Before going through this guide, you need to have the Docker engine
installed on your machine (see installations instructions
here [https://docs.docker.com/install/]). In addition, this guide
assumes familiarity with Linux containers and the container-native
paradigm to software development. You can read a high-level
introduction to these concepts in this page, where
you can also find references to external resources that explain them
in depth.

Installation

To install or upgrade Popper, run the following in your terminal:

curl -sSfL https://raw.githubusercontent.com/getpopper/popper/master/install.sh | sh

Create Your First Workflow

Assume that as part of our work we want to carryout two tasks:

	Download a dataset (CSV) that we know is available at
https://github.com/datasets/co2-fossil-global/raw/master/global.csv

	Modify the dataset, specifically we want to get the
transpose [https://en.wikipedia.org/wiki/Transpose] of the this
CSV table.

For the first task we can use curl [https://curl.haxx.se/], while
for the second we can use
csvtool [https://github.com/Chris00/ocaml-csv].

When we work under the container-native paradigm, instead of going
ahead and installing these on our computer, we first look for
available images on a container registry, for example
https://hub.docker.com, to see if the software we need is available.

In this case we find two images that do what we need and proceed to
write this workflow in a wf.yml file using your favorite editor:

steps:
download CSV file with data on global CO2 emissions
- id: download
 uses: docker://byrnedo/alpine-curl:0.1.8
 args: [-LO, https://github.com/datasets/co2-fossil-global/raw/master/global.csv]

obtain the transpose of the global CO2 emissions table
- id: get-transpose
 uses: docker://getpopper/csvtool:2.4
 args: [transpose, global.csv, -o, global_transposed.csv]

Run your workflow

To execute the workflow you just created:

popper run -f wf.yml

Since this workflow consists of two steps, there were two
corresponding containers that were executed by the underlying
container engine, which is Docker in this case. We can verify this by
asking Docker to show the list of existing containers:

docker ps -a

You should see the two containers from the example workflow being
listed along with other containers. The name of the containers created
by popper are prefixed with popper_. To obtain more detailed
information of what the popper run command does, you can pass the
--help flag to it:

popper run --help

TIP: All popper subcommands allow you to pass --help flag to
it to get more information about what the command does.

Debug your workflow

From time to time, we find ourselves with a step that does not quite
do what we want it to. In these cases, we can open an interactive
shell instead of having to update the YAML file and invoke popper run again. In those cases, the popper sh comes handy. For example,
if we would like to explore what other things can be done inside the
container for the second step:

popper sh -f wf.yml get-transpose

And the above opens a shell inside a container instantiated from the
docker.io/getpopper/csvtool:2.4 image. In this shell we can, for
example, obtain information about what else can the csvtool do:

csvtool --help

Based on this exploration, we can see that we can pass a -u TAB flag
to the csvtool in order to generate a tab-separated output file
instead of a comma-separated one. Assuming this is what we wanted to
achieve in our case, we then quit the container by running exit.

Back on our host machine context, that is, not running inside the
container anymore, we can update the second step by editing the YAML
file to look like the following:

- id: get-transpose
 uses: docker://getpopper/csvtool:2.4
 args: [transpose, global.csv, -u, TAB, -o, global_transposed.csv]

And test that what we changed worked by running in non-interactive
mode again:

popper run -f wf.yml get-transpose

Next Steps

	Learn more about all the CLI features that
Popper provides.

	Take a look at the “Workflow Language”
for the details on what else can you specify as part of a Step’s
attributes.

	Read the “Popper Execution
Runtime” section to learn
more about what other execution environments Popper supports, as
well as how to customize the behavior of the underlying execution.

	Browse existing workflow
examples [https://github.com/getpopper/popper-examples].

	Take a self-paced
tutorial [https://popperized.github.io/swc-lesson/] to learn how
to use other features of Popper.

CLI features

New workflow initialization

Create a Git repository:

mkdir mypaper
cd mypaper
git init
echo '# mypaper' > README.md
git add .
git commit -m 'first commit'

Initialize the popper repository and add the configuration file to git:

popper init
git add .
git commit -m 'adds .popper.yml file'

Initialize a workflow

popper scaffold

Show what this did (a wf.yml should have been created):

ls -l

Commit the “empty” pipeline:

git add .
git commit -m 'adding my first workflow'

Executing a workflow

To run the workflow:

popper run -f wf.yml

where wf.yml is a file containing a workflow.

Executing a step interactively

For debugging a workflow, it is sometimes useful to open a shell
inside a container associated to a step of a workflow. To accomplish
this, run:

popper sh <STEP>

where <STEP> is the name of a step contained in the workflow. For
example, given the following workflow:

steps:
- id: mystep
 uses: docker://ubuntu:18.04
 runs: ["ls", "-l"]
 dir: /tmp/
 env:
 MYENVVAR: "foo"

if we want to open a shell that puts us inside the mystep above
(inside an container instance of the ubuntu:18.04 image), we run:

popper sh mystep

And this opens an interactive shell inside that step, where the
environment variable MYENVVAR is available. Note that the runs and
args attributes are overridden by Popper. By default, /bin/bash is
used to start the shell, but this can be modified with the
--entrypoint flag.

Parametrizing workflows with substitutions

A workflow can be parametrized by making use of substitutions. A
substitution is a string in the YAML file with the $_ prefix, for
example:

steps:
- id: mystep
 uses: docker://alpine:$_ALPINE_VERSION
 runs: ["ls", "-l"]

in the above workflow, the $_ALPINE_VERSION string defines a
substitution, and will be replaced by a value defined in the command
line via the --substutition or -s flags:

popper run -s _ALPINE_VERSION=3.12 -f wf.yml

Customizing container engine behavior

By default, Popper instantiates containers in the underlying engine by
using basic configuration options. When these options are not suitable
to your needs, you can modify or extend them by providing
engine-specific options. These options allow you to specify
fine-grained capabilities, bind-mounting additional folders, etc. In
order to do this, you can provide a configuration file to modify the
underlying container engine configuration used to spawn containers.
This is a YAML file that defines an engine dictionary with custom
options and is passed to the popper run command via the --conf (or
-c) flag.

For example, to make Popper spawn Docker containers in
privileged mode [https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities], we can write the following option:

engine:
 name: docker
 options:
 privileged: True

Similarly, to bind-mount additional folders, we can use the volumes option to list the directories to mount:

engine:
 name: docker
 options:
 privileged: True
 volumes:
 - myvol1:/folder
 - myvol2:/app

Assuming the above is stored in a file called config.yml, we pass
it to Popper by running:

popper run -f wf.yml -c config.yml

NOTE:

Currently, the --conf option is only supported for the dockerengine.

Continuously validating a workflow

The ci subcommand generates configuration files for multiple CI
systems. The syntax of this command is the following:

popper ci --file wf.yml <service-name>

Where <name> is the name of the CI system (see popper ci --help to get a list of
supported systems). If the wf.yml workflow makes use of substitutions, we
can create a matrix by doing:

popper ci -f wf.yml travis -s _P1=p1v1 -s _P1=p1v2 -s _P2=p2v1 -s _P2=p2v2

And the above will create a 2x2 matrix job, doing a parameter sweep over the
_P1 and _P2 given substitution values.

In the following, we show how to link github with some of the supported CI
systems. In order to do so, we first need to create a repository on github and
upload our commits:

set the new remote
git remote add origin <your-github-repo-url>

verify the remote URL
git remote -v

push changes in your local repository up to github
git push -u origin master

TravisCI

In the following, we assume we have an account on Travis
CI [http://travis-ci.com]. Assuming our repository is already on
GitHub, we can enable it on TravisCI so that it is continuously
validated (see
here [https://docs.travis-ci.com/user/getting-started/] for a guide).
Once the project is registered on Travis, we proceed to generate a
.travis.yml file:

cd my-repo/

popper ci --file wf.yml travis

Before we can execute tests on travis, we need to commit the file we
just generated:

git add .travis.yml
git commit -m 'Adds TravisCI config file'

We then can trigger an execution by pushing to GitHub:

git push

After this, one go to the TravisCI website to see your pipelines being
executed. Every new change committed to a public repository will
trigger an execution of your pipelines. To avoid triggering an
execution for a commit, include a line with [skip ci] as part of the
commit message.

NOTE: TravisCI has a limit of 2 hours, after which the test is
terminated and failed.

Job Matrix

If the workflow is parametrized by the use of
substitutions,
we can create a matrix. For example, assume a workflow like the
following:

steps:
- id: mystep
 uses: docker://alpine:$_ALPINE_VERSION
 runs: [sh, -cue]
 args:
 - |
 # execute command with parameter
 ls -l $_FOLDER

popper ci travis \
 -f wf.yml \
 -s _ALPINE_VERSION=3.10 \
 -s _ALPINE_VERSION=3.11 \
 -s _ALPINE_VERSION=3.12 \
 -s _FOLDER=/root \
 -s _FOLDER=/etc \
 -s _FOLDER=/usr

And the above will create a 3x3 matrix job for travis.

Translating workflows for other task runners

The translate subcommand generates configuration files for other CI systems. The file generated by the ci subcommand executes Popper internally, the translate subcommand convert Popper workflows directly to the notation of the target CI system. The syntax of this command is the following:

popper translate --file wf.yml --to <service-name>

Where <service-name> is the name of the CI system (see popper translate --help to get a list of supported systems).

Drone

The translate subcommand supports Drone CI [https://www.drone.io/]. The command converts a Popper workflow to a Drone pipeline.

Restrictions on translation are as follows:

	Running commands on Docker and Host machine is supported. Singularity and Podman are not supported.

	All steps in a workflow must use either Docker or the host machine. The two cannot be combined in a single workflow.

	Only pre-built Docker images can be used. Workflows that specify the directory where the Dockerfile is located in the uses attribute cannot be translated.

	If you specify the dir attribute, you must also specify the runs attribute.

Task

The translate subcommand supports Task [https://taskfile.dev/]. The command converts a Popper workflow to a Taskfile.

Restrictions on translation are as follows:

	Running commands on Docker and Host machine is supported. Singularity and Podman are not supported.

	Only pre-built Docker images can be used. Workflows that specify the directory where the Dockerfile is located in the uses attribute cannot be translated.

	The Popper workflow to translate must not have a step with an ID of default

Visualizing workflows

While .workflow files are relatively simple to read, it is nice to
have a way of quickly visualizing the steps contained in a workflow.
Popper provides the option of generating a graph for a workflow. To
generate a graph for a pipeline, execute the following:

popper dot -f wf.yml

The above generates a graph in .dot format. To visualize it, you can
install the graphviz [https://graphviz.gitlab.io/] package and
execute:

popper dot -f wf.yml | dot -T png -o wf.png

The above generates a wf.png file depicting the workflow.
Alternatively you can use the http://www.webgraphviz.com/ website to
generate a graph by copy-pasting the output of the popper dot
command.

Concepts

The main three concepts behind Popper are Linux containers, the
container-native paradigm, and workflows. This page is under
construction, we plan on expanding it with our own content
(contributions are more than
welcome [https://github.com/getpopper/popper/issues/822])! For now, we
provide with a list of external resources and a Glossary.

Resources

Container Concepts:

	Overview of Containers in Red Hat Systems (Red Hat) [https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers]

	An Introduction to Containers (Rancher) [https://rancher.com/blog/2019/an-introduction-to-containers]

	A Beginner-Friendly Introduction to Containers, VMs and Docker (freecodecamp.org) [https://www.freecodecamp.org/news/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b]

	A Practical Introduction to Container Terminology (Red Hat) [https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction/]

Container-native paradigm:

	5 Reasons You Should Be Doing Container-native Development (Microsoft) [https://cloudblogs.microsoft.com/opensource/2018/04/23/5-reasons-you-should-be-doing-container-native-development/]

	Let’s Define “Container-native” (TechCrunch) [https://techcrunch.com/2016/04/27/lets-define-container-native/]

	The 7 Characteristics of Container-native Infrastructure (Joyent) [https://www.joyent.com/blog/the-seven-characteristics-of-container-native-infrastructure]

Docker:

	A Docker tutorial for beginners [https://docker-curriculum.com/]

	Dockerfile tutorial by example [https://takacsmark.com/dockerfile-tutorial-by-example-dockerfile-best-practices-2018/#what-is-a-dockerfile-and-why-youd-want-to-use-one]

Singularity:

	Introduction to Singularity [https://sylabs.io/guides/3.5/user-guide/introduction.html]

Glossary

	Linux containers. An OS-level virtualization technology for
isolating applications in a Linux host machine.

	Container runtime. The software that interacts with the Linux
kernel in order to provide with container primitives to
upper-level components such as a container engine (see “Container
Engine”). Examples of runtimes are
runc [https://github.com/opencontainers/runc],
Kata [https://github.com/kata-containers/runtime] and
crun [https://github.com/containers/crun].

	Container engine. Container management software that provides
users with an interface to. Examples of engines are
Docker [https://github.com/docker/docker-ce],
Podman [https://github.com/containers/libpod] and
Singularity [https://github.com/hpcng/singularity].

	Container-native development. An approach to writing software
that makes use of containers at every stage of the software
delivery cycle (building, testing, deploying, etc.). In practical
terms, when following a container-native paradigm, other than a
text editor or ID, dependencies required to develop, test or
deploy software are NEVER installed directly on your host
computer. Instead, they are packaged in container images and you
make use of them through a container engine.

	Workflow. A series of steps, where each step specifies what it
does, as well as which other steps need to be executed prior to
its execution. It is commonly represented as a directed acyclic
graph (DAG), where each node represents a step. The word
“pipeline” is usually used interchangeably to refer to a workflow.

	Task or Step. A node in a workflow DAG.

	Container-native workflow. A workflow where each step runs in
a container.

	Container-native task or step. A step in a container-native
workflow that specifies the image it runs, the arguments that are
executed, the environment available inside the container, among
other attributes available for containers (network configuration,
resource limits, capabilities, volumes, etc.).

Workflow Syntax and Execution Runtime

This section introduces the YAML syntax used by Popper, describes the
workflow execution runtime and shows how to execute workflows in
alternative container engines.

Syntax

A Popper workflow file looks like the following:

steps:
- uses: docker://alpine:3.9
 args: ["ls", "-la"]

- uses: docker://alpine:3.11
 args: ["echo", "second step"]

options:
 env:
 FOO: BAR
 secrets:
 - TOP_SECRET

A workflow specification contains one or more steps in the form of a
YAML list named steps. Each item in the list is a dictionary
containing at least a uses attribute, which determines the docker
image being used for that step. An options dictionary specifies
options that are applied to the workflow.

Workflow steps

The following table describes the attributes that can be used for a
step. All attributes are optional with the exception of the uses
attribute.

	Attribute
	Description

	uses
	required A string with the name of the image that will be executed for thatstep. For example, uses: docker://node:10. See "Referencingimages in a step"

 Guides

Guides

This is a list of guides related to several aspects of working with
Popper workflows.

Choosing a location for your step

If you are developing a docker image for other people to use, we
recommend keeping this image in its own repository instead of bundling
it with your repository-specific logic. This allows you to version,
track, and release this image just like any other software. Storing a
docker image in its own repository makes it easier for others to
discover, narrows the scope of the code base for developers fixing
issues and extending the image, and decouples the image’s versioning
from the versioning of other application code.

Using shell scripts to define step logic

Shell scripts are a great way to write the code in steps. If you can
write a step in under 100 lines of code and it doesn’t require complex
or multi-line command arguments, a shell script is a great tool for
the job. When defining steps using a shell script, follow these
guidelines:

	Use a POSIX-standard shell when possible. Use the #!/bin/sh
shebang [https://en.wikipedia.org/wiki/Shebang_(Unix)] to use the
system’s default shell. By default, Ubuntu and Debian use the
dash [https://wiki.ubuntu.com/DashAsBinSh] shell, and Alpine uses
the ash [https://en.wikipedia.org/wiki/Almquist_shell] shell. Using
the default shell requires you to avoid using bash or shell-specific
features in your script.

	Use set -eu in your shell script to avoid continuing when errors
or undefined variables are present.

Hello world step example

You can create a new step by adding a Dockerfile to the directory in
your repository that contains your step code. This example creates a
simple step that writes arguments to standard output (stdout). An
step declared in a main.workflow would pass the arguments that this
step writes to stdout. To learn more about the instructions used in
the Dockerfile, check out the official Docker
documentation [https://docs.docker.com/engine/reference/builder/]. The two files you need to create an
step are shown below:

./step/Dockerfile

FROM debian:9.5-slim

ADD entrypoint.sh /entrypoint.sh
ENTRYPOINT ["/entrypoint.sh"]

./step/entrypoint.sh

#!/bin/sh -l

sh -c "echo $*"

Your code must be executable. Make sure the entrypoint.sh file has
execute permissions before using it in a workflow. You can modify the
permission from your terminal using this command:

chmod +x entrypoint.sh

This echos the arguments you pass the step. For example, if you were
to pass the arguments "Hello World", you’d see this output in the
command shell:

Hello World

Creating a Docker container

Check out the official Docker documentation [https://docs.docker.com/engine/reference/builder/].

Implementing a workflow for an existing set of scripts

This guide exemplifies how to define a Popper workflow for an existing
set of scripts. Assume we have a project in a myproject/ folder and
a list of scripts within the myproject/scripts/ folder, as shown
below:

cd myproject/
ls -l scripts/

total 16
-rwxrwx--- 1 user staff 927B Jul 22 19:01 download-data.sh
-rwxrwx--- 1 user staff 827B Jul 22 19:01 get_mean_by_group.py
-rwxrwx--- 1 user staff 415B Jul 22 19:01 validate_output.py

A straight-forward workflow for wrapping the above is the following:

- uses: docker://alpine:3.12
 runs: "/bin/bash"
 args: ["scripts/download-data.sh"]

- uses: docker://alpine:3.12
 args: ["./scripts/get_mean_by_group.py", "5"]

- uses: docker://alpine:3.12
 args [
 "./scripts/validate_output.py",
 "./data/global_per_capita_mean.csv"
]

The above runs every script within a Docker container. As you would
expect, this workflow fails to run since the alpine:3/12 image is a
lightweight one (contains only Bash utilities), and the dependencies
that the scripts need are not be available in this image. In cases
like this, we need to either use an existing docker image [https://hub.docker.com]
that has all the dependencies we need, or create a docker image
ourselves [https://docs.docker.com/get-started/part2/].

In this particular example, these scripts depend on CURL and Python.
Thankfully, docker images for these already exist, so we can make use
of them as follows:

- uses: docker://byrnedo/alpine-curl:0.1.8
 args: ["scripts/download-data.sh"]

- uses: docker://python:3.7
 args: ["./scripts/get_mean_by_group.py", "5"]

- uses: docker://python:3.7
 args: [
 "./scripts/validate_output.py",
 "./data/global_per_capita_mean.csv"
]

The above workflow runs correctly anywhere where Docker containers can
run.

Building images using BuildKit

BuildKit [https://github.com/moby/buildkit] can be used as part of a workflow
to build a container image:

steps:
- id: build image using buildkit
 uses: docker://moby/buildkit:rootless
 runs: [buildctl-daemonless.sh]
 options:
 volumes:
 - $_DOCKER_CONFIG_DIR:/root/.docker/
 env:
 BUILDKITD_FLAGS: --oci-worker-no-process-sandbox
 args:
 - |
 build \
 --frontend dockerfile.v0 \
 --local context=/workspace/ \
 --local dockerfile=/workspace/my_container/Dockerfile \
 --import-cache type=registry,ref=docker.io/myrepo/myimg \
 --output type=image,name=docker.io/myrepo/myimg,push=true \
 --export-cache type=inline

The above uses BuildKit to build a container image from the
/workspace/my_container/Dockerfile file and using /workspace as the build
context. The $_DOCKER_CONFIG_DIR substitution is used to point to the
directory where buildctl can find authentication credentials in order to pull
the container images used as cache, as well as pushing the image produced by
this step.

And the above workflow is executed by running:

popper run -f wf.yml -s _DOCKER_CONFIG_DIR=$HOME/.docker/

If credentials need to be generated as part of the execution of the workflow,
the following step can be executed prior to running the BuildKit step:

- id: dockerhub login
 uses: docker://docker:19.03
 secrets: [DOCKERHUB_USERNAME, DOCKERHUB_PASSWORD]
 runs: [sh, -ec]
 options:
 volumes:
 - $_DOCKER_CONFIG_DIR:/root/.docker/
 args:
 - |
 docker login -u $DOCKERHUB_USERNAME -p $DOCKERHUB_PASSWORD

The above expects DOCKERHUB_USERNAME and DOCKERHUB_PASSWORD environment
variables. Alternatively, these can be defined as substitutions:

- id: dockerhub login
 uses: docker://docker:19.03
 runs: [sh, -ec]
 options:
 volumes:
 - $_DOCKER_CONFIG_DIR:/root/.docker/
 args:
 - |
 docker login -u $_DOCKERHUB_USERNAME -p $_DOCKERHUB_PASSWORD

And executed as:

popper run -f wf.yml \
 -s _DOCKER_CONFIG_DIR=$PWD/docker-config/ \
 -s _DOCKERHUB_USERNAME=myuser \
 -s _DOCKERHUB_PASSWORD=mypass

Computational research with Python and JupyterLab

This guide explains how to use Popper to develop and run reproducible workflows
for computational research in fields such as bioinformatics, machine learning, physics
or statistics.
Computational research with Python relies on complex software dependencies that are difficult to port
across environments. In addition, a typical workflow involves multiple dependent
steps which will be hard to replicate if not properly documented.
Popper offers a solution to these challenges:

	Poppers abstracts over software environments with Linux containers [https://popper.readthedocs.io/en/latest/sections/concepts.html#glossary].

	Poppers forces you to define your workflow explicetely such that it can be re-run in
in a single command.

Popper thus provides an open-source alternative to managed solutions such as
Code Ocean for reproducible computational research.

Pre-requisites

You should have basic knowledge of git, the command line and Python.

In addition, you should be familiar with the concepts introduced in the
Getting Started [https://popper.readthedocs.io/en/latest/sections/getting_started.html]
section.
This guide uses examples from machine learning but no prior knowledge of the field
is required.

By default, this guide assumes that you use the Docker container engine, but
highlights where the workflow will differ if you use another engine.

Getting started

The examples presented in this guide come from a workflow developed for the
Flu Shot Learning [https://www.drivendata.org/competitions/66/flu-shot-learning/]
research competition on Driven Data.
This workflow shows examples of using Popper to automate common tasks in computational
research:

	downloading data

	using a Jupyter notebook

	fitting/simulating a model

	visualizing the results

	generating a paper with up-to-date results

To help follow allong, see this
repository [https://github.com/getpopper/popper-examples/tree/master/workflows/comp-research/python] with the final version of the workflow.
To adapt the advice in this guide to your own project, get started
with this Cookiecutter template for Popper [https://github.com/getpopper/cookiecutter-popper-python].

Initial project structure:

├── LICENSE
├── README.md <- The top-level README.
├── data <- The original, immutable data dump.
├── results
| ├── models <- Serialized models, predictions, model summaries.
| └── figures <- Graphics created during analysis.
├── paper <- Generated analysis as PDF, LaTeX.
│ ├── paper.tex
| └── referenced.bib
└── src <- Python source code for this project.
 ├── notebooks <- Jupyter notebooks.
 ├── get_data.sh <- Script for downloading the original data dump.
 ├── models.py <- Script defining models.
 ├── predict.py <- Script for generating model predictions.
 └── evaluate_model.py <- Script for generating model evaluation plots.

Getting data

Your workflow should automate downloading or generating data to ensure that it uses the correct,
up-to-date version of the data. In this example, you can download data with a
simple shell script:

#!/bin/sh
cd $1

wget "https://s3.amazonaws.com/drivendata-prod/data/66/public/test_set_features.csv" --no-check-certificate
wget "https://s3.amazonaws.com/drivendata-prod/data/66/public/training_set_labels.csv" --no-check-certificate
wget "https://s3.amazonaws.com/drivendata-prod/data/66/public/training_set_features.csv" --no-check-certificate

echo "Files downloaded: $(ls)"

Now, wrap this step using a Popper workflow. In a new file wf.yml at the root
of the folder,

steps:
- id: "dataset"
 uses: "docker://jacobcarlborg/docker-alpine-wget"
 args: ["src/get_data.sh", "data"]

Notes:

	pick a Docker image that contains the necessary utilities.
For instance, a default Alpine image does not include wget.

Using JupyterLab

This sections explains how to use Popper to launch Jupyter notebooks, which are a
useful tool for exploratory work.
Refactoring successful experiments into your final workflow is easier if you keep
the software environment consistent between both, which you can do by defining a
container shared between steps.

Some workflows will require multiple containers (and Dockerfiles), so it is
good practice to organize these from the start in a seperate folder.
In containers/, create this Dockerfile:

FROM continuumio/miniconda3:4.8.2
ENV PYTHONDONTWRITEBYTECODE=true
update conda environment with packages and clean up conda installation by removing
conda cache/package tarbarlls and python bytecode
COPY containers/environment.yml .
RUN conda env update -f environment.yml \
 && conda clean -afy \
 && find /opt/conda/ -follow -type f -name '*.pyc' -delete
CMD ["/bin/sh"]

Use a separate environment.yml file to define your Python environment. This
avoids modifying the Dockerfile manually each time you need a new Python package.
Create containers/environment.yml:

name: base
channels:
 - conda-forge
 - base
dependencies:
 - jupyterlab=1.0

To launch JupyterLab, first add a new step to your workflow in wf.yml

- id: "notebook"
 uses: "./containers/"
 args: ["jupyter", "--version"]
 options:
 ports:
 8888/tcp: 8888

Notes:

	uses is set to ./containers/ which tells Popper where to find the Dockerfile
defining the container used for this step

	ports is set to {8888/tcp: 8888} which is necessary for the host machine to connect
to the Jupyter Lab server in the container

Next, in the local command line, execute the notebook step in interactive mode:

popper sh -f wf.yml notebook

Now, in the Docker container’s command line:

jupyter lab --ip 0.0.0.0 --no-browser --allow-root

Skip this second step if you only need the shell interface.

Notes:

	--ip 0.0.0.0 allows the user to access JupyterLab from outside the container (by default,
Jupyter only allows access from localhost).

	--no-browser tells jupyter to not expect to find a browser in the docker container.

	--allow-root runs JupyterLab as a root user (the recommended method for running Docker
containers), which is not enabled by default.

Open the generated link in a browser to access JupyterLab.

Using other container engines

The above steps are for Docker. If you use Singularity, omit

options:
 ports:
 8888/tcp: 8888

Which is not needed because Singularity has no network isolation

Package management

It can be difficult to guess in advance which software libraries are needed in
the final workflow.
Instead, update the workflow requirements as you go using one of the package managers
available for Python.

conda

Conda is recommended for package management because it has better dependency
management and support for compiled libraries.
When executing the notebook step interactively, install package as needed using
(the easiest way to access the container’s command line in this situation is
Jupyter Lab’s terminal interface):

conda install PACKAGE [PACKAGE ...]

Update the environment requirements with:

conda env export > containers/environment.yml

On the next use of the Docker image, Popper will rebuild it with the updated
requirements
(Note: this is triggered byCOPY environment.yml in the Dockerfile).

pip

You can adapt the process decribed for conda to pip:

pip install PACKAGE [PACKAGE ...]
pip freeze > containers/requirements.txt

Modify the run command RUN in the Dockerfile to:

RUN pip install -r requirements.txt

Seperating docker images

Some workflows have conflicting software requirements between steps, for instance if two
steps require different versions of a library. In this case, organize your container
definitions as follows:

└── containers
 ├── step_A
 | ├── Dockerfile
 | └── environment.yml
 └── step_B
 ├── Dockerfile
 └── environment.yml

Then, in wf.yml:

- id: "step_A"
 uses: "./containers/step_A/"
...

- id: "step_b"
 uses: "./containers/step_B/

Models and visualization

Following the above, automate the other steps in your workflow using Popper.
This section shows examples for:

	fitting a model to data

	generating model evaluation plots

	using the model to make predictions on a hold-out dataset

A first file, src/models.py defines the model this workflow uses:

from sklearn import impute, preprocessing, compose, pipeline, linear_model, multioutput

def _get_preprocessor(num_features , cat_features):

 num_transformer = pipeline.Pipeline([
 ("scale", preprocessing.StandardScaler()),
 ("impute", impute.KNNImputer(n_neighbors = 10)),
])

 cat_transformer = pipeline.Pipeline([
 ("impute", impute.SimpleImputer(strategy = "constant", fill_value = "missing")),
 ("encode", preprocessing.OneHotEncoder(drop = "first")),
])

 preprocessor = compose.ColumnTransformer(
 [("num", num_transformer, num_features),
 ("cat", cat_transformer, cat_features)
])
 return preprocessor

def get_lr_model(num_features, cat_features, C = 1.0):

 model = pipeline.Pipeline([
 ("pre", _get_preprocessor(num_features, cat_features)),
 ("model", multioutput.MultiOutputClassifier(
 linear_model.LogisticRegression(penalty="l1", C = C, solver = "saga")
)),
])
 return model

A second script, src/predict.py, uses this model to generate the predictions
on the hold-out dataset:

import pandas as pd
import os
from models import get_lr_model

DATA_PATH = "data/raw"
PRED_PATH = "results/predictions"

if __name__ == "__main__":

 X_train = pd.read_csv(os.path.join(DATA_PATH, "training_set_features.csv")).drop(
 "respondent_id", axis = 1
)

 X_test = pd.read_csv(os.path.join(DATA_PATH, "test_set_features.csv")).drop(
 "respondent_id", axis = 1
)

 y_train = pd.read_csv(os.path.join(DATA_PATH, "training_set_labels.csv")).drop(
 "respondent_id", axis = 1
)

 sub = pd.read_csv(os.path.join(DATA_PATH, "submission_format.csv"))

 num_features = X_train.columns[X_train.dtypes != "object"].values
 cat_features = X_train.columns[X_train.dtypes == "object"].values

 model = get_lr_model(num_features, cat_features, 1)
 model.fit(X_train, y_train)
 preds = model.predict_proba(X_test)

 sub["h1n1_vaccine"] = preds[0][:, 1]
 sub["seasonal_vaccine"] = preds[1][:, 1]
 sub.to_csv(os.path.join(PRED_PATH, "baseline_pred.csv"), index = False)

Add this script as a step in the Popper workflow. This must come after the get_data
step

- id: "predict"
 uses: "./containers/"
 args: ["python", "src/predict.py"]

Notes:

	This use the same container as in the notebook step. Again, the final, ‘canonical’
analysis should be developed in the same environment as exploratory code.

Similarly, add src/evaluate_model.py, which generates model performance plots, to
the workflow.

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os
import pandas as pd
import seaborn as sns
from sklearn.model_selection import cross_val_score
from models import get_lr_model

DATA_PATH = "data/raw"
FIG_PATH = "output/figures"

if __name__ == "__main__":
 mpl.rcParams.update({"figure.autolayout": True, "figure.dpi": 150})
 sns.set()

 X_train = pd.read_csv(os.path.join(DATA_PATH, "training_set_features.csv")).drop(
 "respondent_id", axis=1
)
 y_train = pd.read_csv(os.path.join(DATA_PATH, "training_set_labels.csv")).drop(
 "respondent_id", axis=1
)

 num_features = X_train.columns[X_train.dtypes != "object"].values
 cat_features = X_train.columns[X_train.dtypes == "object"].values

 Cs = np.logspace(-2, 1, num = 10, base = 10)
 auc_scores = cross_val_score(
 estimator = get_model(num_features, cat_features, C),
 X = X_train,
 y = y_train,
 cv = 5,
 n_jobs = -1,
 scoring = "roc_auc",
)

 fig, ax = plt.subplots()
 ax.plot(Cs, auc_scores)
 ax.vlines(
 Cs[np.argmax[auc_scores]],
 ymin = 0.82,
 ymax = 0.86,
 colors = "r",
 linestyle = "dotted"
)
 ax.annotate(
 "$C = 0.464$ \n ROC AUC ={:.4f}".format(np.max(auc_scores)),
 xy = (0.5, 0.835)
)
 ax.set_xscale("log")
 ax.set_xlabel("C")
 ax.grid(axis = "x")
 ax.legend(["AUC", "best C"])
 ax.set_title("AUC for different values of C")
 fig.savefig(os.path.join(FIG_PATH, "lr_reg_performance.png"))

Use a similar step to the previous one:

- id: "figures"
 uses: "./"
 args: ["python, src/evaluate_model.py"]

Notes:

These steps each read data from data/ and output to results/.
It is good practice to keep the input and outputs of a workflow separate
to avoid accidently modifying the original data, which is considered immutable.

Building a LaTeX paper

Wrap the build of the paper in your Popper workflow.
This is useful to ensure that the pdf is always built with the most up-to-date data
and figures.

- id: "paper"
 uses: "docker://blang/latex:ctanbasic"
 args: ["latexmk", "-pdf", "paper.tex"]
 dir: "/workspace/paper"

Notes:

	This step uses a basic LaTeX installation. For more sophisticated needs,
use a full TexLive image [https://hub.docker.com/r/blang/latex/tags]

	dir is set to workspace/paper so that Popper looks for and outputs files in the paper/ folder

Conclusion

This is the final workflow:

steps:
- id: "dataset"
 uses: "docker://jacobcarlborg/docker-alpine-wget"
 args: ["sh", "src/get_data.sh", "data"]

- id: "notebook"
 uses: "./"
 args: ["jupyter", "--version"]
 options:
 ports:
 8888/tcp: 8888

- id: "predict"
 uses: "./"
 args: ["python, src/predict.py"]

- id: "figures"
 uses: "./"
 args: ["python, src/evaluate_model.py"]

- id: "paper"
 uses: "docker://blang/latex:ctanbasic"
 args: ["latexmk", "-pdf", "paper.tex"]
 dir: "/workspace/paper"

And this is the final project structure:

├──LICENSE
├── README.md <- The top-level README.
├── wf.yml <- Definition of the workflow.
├── containers
| ├── Dockerfile <- Definition of the OS environment.
| └── environment.yml <- Definition of the Python environment.
├── data <- The original, immutable data dump.
├── results
| ├── models <- Serialized models, predictions, model summaries.
| └── figures <- Graphics created during analysis.
├── paper <- Generated analysis as PDF, LaTeX.
│ ├── paper.tex
| └── referenced.bib
└── src <- Python source code for this project.
 ├── notebooks <- Jupyter notebooks.
 ├── get_data.sh <- Script for downloading the original data dump.
 ├── models.py <- Script defining models.
 ├── predict.py <- Script for generating model predictions.
 └── evaluate_model.py <- Script for generating model evaluation plots.

To re-run the entire workflow, use:

popper run -f wf.yml

Computational research with R and RStudio Server

This guide explains how to use Popper to develop and run reproducible workflows
for computational research in fields such as bioinformatics, machine learning, physics
or statistics.
Computational research with R relies on complex software dependencies that are difficult to port
across environments. In addition, a typical workflow involves multiple dependent
steps which will be hard to replicate if not properly documented.
Popper offers a solution to these challenges:

	Poppers abstracts over software environments with Linux containers [https://popper.readthedocs.io/en/latest/sections/concepts.html#glossary].

	Poppers forces you to define your workflow explicetely such that it can be re-run in
in a single command.

Popper thus provides an open-source alternative to managed solutions such as
Code Ocean for reproducible computational research.

Pre-requisites

You should have basic knowledge of git, the command line and R
(code snippets in this guide use the tidyverse [https://www.tidyverse.org/] libraries).

In addition, you should be familiar with the concepts introduced in the
Getting Started [https://popper.readthedocs.io/en/latest/sections/getting_started.html]
section.
This guide uses examples from machine learning but no prior knowledge of the field
is required.

By default, this guide assumes that you use the Docker container engine, but
highlights where the workflow will differ if you use another engine.

Getting started

The examples presented in this guide come from a workflow developed for the
Flu Shot Learning [https://www.drivendata.org/competitions/66/flu-shot-learning/]
research competition on Driven Data.
This workflow shows examples of using Popper to automate common tasks in computational
research with R:

	downloading data

	using R Markdown

	fitting/simulating a model using tidymodels

	visualizing the results with ggplot2

	building a LaTeX paper with up-to-date results

To help follow allong, see this
repository [https://github.com/getpopper/popper-examples/tree/master/workflows/comp-research/rstudio]
with the final version of the workflow.
To adapt the advice in this guide to your own project, get started
with this Cookiecutter template for Popper [https://github.com/getpopper/cookiecutter-popper-r].

Initial project structure

├── LICENSE
├── README.md <- The top-level README.
├── data <- The original, immutable data dump.
├── output
| ├── models <- Serialized models, predictions, model summaries.
| └── figures <- Graphics created during analysis.
├── paper <- Generated analysis as PDF, LaTeX.
│ ├── paper.tex
| └── referenced.bib
└── src <- R source code for this project.
 ├── notebooks <- RMarkdown notebooks.
 ├── get_data.sh <- Script for downloading the original data dump.
 ├── models.py <- Script defining models.
 ├── predict.py <- Script for generating model predictions.
 └── evaluate_model.py <- Script for generating model evaluation plots.

Getting data

Your workflow should automate downloading or generating data to ensure that it uses the correct,
up-to-date version of the data. In this example, you can download data with a
simple shell script:

#!/bin/sh
cd $1

wget "https://s3.amazonaws.com/drivendata-prod/data/66/public/test_set_features.csv" --no-check-certificate
wget "https://s3.amazonaws.com/drivendata-prod/data/66/public/training_set_labels.csv" --no-check-certificate
wget "https://s3.amazonaws.com/drivendata-prod/data/66/public/training_set_features.csv" --no-check-certificate

echo "Files downloaded: $(ls)"

Now, wrap this step using a Popper workflow. In a new file wf.yml at the root
of the folder,

steps:
- id: "dataset"
 uses: "docker://jacobcarlborg/docker-alpine-wget"
 args: ["src/get_data.sh", "data"]

Notes:

	pick a Docker image that contains the necessary utilities.
For instance, a default Alpine image does not include wget.

Using RStudio Server

This sections explains how to use Popper to launch RStudio Server, which provides
a convenient environment for exploratory work.
Refactoring successful experiments into your final workflow is easier if you keep
the software environment consistent between both. Thus, you should do both your
exploratory and “canonical” work in the same container.

To run RStudio Server, first add a new step to your workflow in wf.yml

- id: "rstudio"
 uses: "getpopper/r/verse:3.6.2"
 runs: ["r", "--version"]
 options:
 ports:
 8787: 8787

This step uses the getpopper/r/verse image. getpopper on Dockerhub hosts a library
of Docker images configured to work well with Popper and RStudio.

Notes:

	ports is set to {8787: 8787} which is necessary for the host machine to connect

	the container is based by default on the Rocker verse image, which includes the
tidyverse libraries and latex. If you do not plan on using tidyverse or Latex,
using the getpopper/R/rstudio image (based on rocker/rstudio) will make for smaller
images sizes

Go to localhost:8787 in your browser to access RStudio Server. Log in with username
and password rstudio.

Using other container engines

The above steps are for Docker. If you use Singularity, omit

options:
 ports:
 8787/tcp: 8787

Which is not needed because Singularity has no network isolation.

Package and image management

To manage project dependencies, you should use a fully container-based apporach.
R provides a default dependency management throughs its packaging features, but are not
well suited to pinning exact dependencies. While more modern alternatives exist
(packrat and renv), both make assumptions that fit poorly into Popper workflows if you
also want to use RStudio.

Instead, you should use containerit [https://o2r.info/containerit/],
a R package which automatically builds
a Dockerfile from the packages loaded in the current environment.

For instance, this workflow uses the tidyverse and tidymodels libraries.
The base Docker image used in the following does not include tidymodels, so
it needs to be installed. In the RStudio Server prompt,

install.packages("tidymodels")

Furthermore, this workflow uses an optional tidymodels dependencies, glmnet,
for fitting a regularized logistic regress

install.packages("glmnet")

Load containerit:

library(containerit)

Create a Dockerfile from the current R session

library(tidymodels)
library(tidyverse)
library(glmnet)
my_dockerfile <- containerit::dockerfile(
 image = "getpopper/r/verse:3.6.2",
 maintainer = "apoirel@ucsc.edu",
 container_workdir = NULL
)

Alternatively, if src/ were already populated with the
souce code for the project, it would be possible to create a
Dockerfile for a set of files:

my_dockerfile <- containerit::dockerfile(from = "./src",
 image = "getpopper/r/verse:3.6.2",
 maintainer = "apoirel@ucsc.edu",
 container_workdir = NULL
)

Write the Dockerfile:

containerit::write(my_dockerfile)

This is the generated Dockerfile:

FROM getpopper/verse:3.6.2
LABEL maintainer="apoirel@ucsc.edu"
RUN ["install2.r", "dplyr", "forcats", "ggplot2", "purrr", "readr", "stringr", "tibble", "tidyr", "tidyverse", "rsample", "parsnip", "recipes", "workflows", "tune", "yardstick", "broom", "dials", "tidymodels", "glmnet"]
EXPOSE 8787
CMD ["R"]

At this point, you should change your workflow to use this Dockerfile with other steps
using R. (uses: ./)

Models and visualization

Following the above, automate the other steps in your workflow using Popper.
This section shows examples for:

	fitting a model to data

	generating model evaluation plots

	using the model to make predictions on a hold-out dataset

In this example, modeling is done using the tidymodels libraries.

A first file, src/models.py defines the data pre-processing steps
the model will use:

library(tidyverse)
library(tidymodels)

get_preprocessor <- function(df_train, target, ignored) {
 df_train <- df_train %>% select(!ignored)
 rec <-
 recipe(as.formula(paste(target, "~ .")), data = df_train) %>%
 step_medianimpute(all_numeric()) %>%
 step_normalize(all_numeric(), -all_outcomes()) %>%
 step_unknown(all_nominal()) %>%
 step_dummy(all_nominal()) %>%
 step_num2factor(
 target,
 transform = function(x) as.integer(x + 1),
 levels = c("0", "1"),
 skip=TRUE
)
 return(rec)
}

A second script, src/predict.R, uses this to generate the predictions on the
hold-out dataset

library(tidyverse)
library(tidymodels)

DATA_PATH = "data"
OUTPUT_PATH = "output"

source("src/models.R")

df_train <- read_csv(paste(DATA_PATH, "training_set_features.csv", sep = "/"))
y_train <- read_csv(paste(DATA_PATH, "training_set_labels.csv", sep = "/"))
df_test <- read_csv(paste(DATA_PATH, "test_set_features.csv", sep = "/"))
df_submission <- read_csv(paste(DATA_PATH, "submission_format.csv", sep = "/"))

df_train <-
 left_join(df_train, y_train, on = "respondent_id", keep = FALSE) %>%
 select(!"respondent_id")

get_predictions <- function(target, ignored, df_train, df_test) {
 lr_model <-
 logistic_reg(penalty = 0.01, mixture = 1) %>%
 set_engine("glmnet")

 predictions <-
 workflow() %>%
 add_recipe(get_preprocessor(df_train, target, ignored)) %>%
 add_model(lr_model) %>%
 fit(data = df_train) %>%
 predict(df_test, type = "prob") %>% # targets are probabilities
 pull(".pred_1") # we want the probability *being* vaccinated

 return(predictions)
}

preds_seasonal <-
 get_predictions("seasonal_vaccine", "h1n1_vaccine", df_train, df_test)

preds_h1n1 <-
 get_predictions("h1n1_vaccine", "seasonal_vaccine", df_train, df_test)

save predictions to submission file
df_submission %>%
 mutate(h1n1_vaccine = preds_h1n1) %>%
 mutate(seasonal_vaccine = preds_seasonal) %>%
 write_csv(paste(OUTPUT_PATH, "submission.csv", sep = "/"))

As this as a set in the Popper workflow. This must come after the get_data step

- id: "predict"
 uses: "./"
 args: ["Rscript", "predict.R"]

Notes:

	This use the same container as in the rstudio step. Again, the final, ‘canonical’
analysis should be developed in the same environment as exploratory code.

Similary, add src/evaluate_model.R, which generates model performance plots,
to the workflow

library(tidyverse)
library(tidymodels)

DATA_PATH = "data"
OUTPUT_PATH = "output"

source("src/models.R")

df_train <- read_csv(paste(DATA_PATH, "training_set_features.csv", sep = "/"))
y_train <- read_csv(paste(DATA_PATH, "training_set_labels.csv", sep = "/"))

df_train <-
 left_join(df_train, y_train, on = "respondent_id", keep = FALSE) %>%
 select(!"respondent_id")

get_cv_results <- function(df_train, target, ignored) {

 # define model
 lr_model <-
 logistic_reg(penalty = tune(), mixture = 1) %>%
 set_engine("glmnet")

 wf <-
 workflow() %>%
 add_recipe(get_preprocessor(df_train, target, ignored)) %>%
 add_model(lr_model)

 # cv parameters
 folds <- df_train %>% vfold_cv(v = 5)
 lr_grid <-
 grid_regular(
 penalty(range = c(-2,1), trans = log10_trans()),
 levels = 10
)

 # collect cv results
 cv_res <-
 wf %>%
 tune_grid(
 resamples = folds,
 grid = lr_grid,
 metric = metric_set(roc_auc)
) %>%
 collect_metrics()

 # plot_results
 cv_res %>%
 ggplot(aes(penalty, mean)) +
 geom_line(size = 1.2, color = "red", alpha = 0.5) +
 geom_point(color = "red") +
 scale_x_log10(labels = scales::label_number()) +
 scale_color_manual(values = c("#CC6666")) +
 ggtitle(expression(paste("AUC for different ", L[1], " penalties")))

 ggsave(
 paste("cv_", target, ".png", sep = ""),
 path = paste(OUTPUT_PATH, "figures", sep = "/")
)
}

get_cv_results(df_train, "h1n1_vaccine", "seasonal_vaccine")
get_cv_results(df_train, "seasonal_vaccine", "h1n1_vaccine")

- id: "figures"
 uses: "./"
 args: ["Rscript", "evaluate_model.R"]

Note that these steps each read data from data/ and output to output/.
It is good practice to keep the input and outputs of a workflow separate
to avoid accidently modifying the original data, which is considered immutable.

Building a PDF paper

Wrap the build of the final paper or report in your Popper workflow.
This is useful to ensure that the pdf is always built with the most up-to-date data
and figures.

Latex

This is the step for building a LaTeX paper. Note we use the same image
as in previous steps since rocker/verse includes a full LaTeX installation.

- id: "paper"
 uses: "./"
 args: ["latexmk", "-pdf", "paper.tex"]
 dir: "/workspace/paper"

RMarkdown

Many R users find it more convenient to write up the final analysis directly in
RMarkdown and then knit the document to HTML or pdf. You can easily modify the above
step to support this workflow.

- id: "paper"
 uses: "./"
 args: ["R", "-e", "library(rmarkdown);rmarkdown::render("paper/paper.Rmd", output_format="all")"]
 dir: "/workspace/paper"

Conclusion

This is the final workflow, assuming the paper is written in LaTeX

steps:
- id: "dataset"
 uses: "docker://jacobcarlborg/docker-alpine-wget"
 args: ["sh", "src/get_data.sh", "data"]

- id: "rstudio"
 uses: "./"
 args: ["rstudio-server", "start"]
 options:
 ports:
 8787: 8787

- id: "figures"
 uses: "./"
 args: ["Rscript", "evaluate_model.R"]

- id: "predict"
 uses: "./"
 args: ["Rscript", "predict.R"]

- id: "paper"
 uses: "./"
 args: ["latexmk", "-pdf", "paper.tex"]
 dir: "/workspace/paper"

And this is is the final project structure

├── LICENSE
├── README.md <- The top-level README.
├── wf.yml <- Definition of the workflow.
├── Dockerfile <- Dockerfile used by the workflow.
├── data <- The original, immutable data dump.
├── output
| ├── models <- Serialized models, predictions, model summaries.
| └── figures <- Graphics created during analysis.
├── paper <- Generated analysis as PDF, LaTeX.
│ ├── paper.tex <- LaTeX source for the paper.
| └── referenced.bib
└── R <- R source code for this project.
 ├── notebooks <- Exploratory Rmarkdown notebooks.
 ├── get_data.sh <- Script for downloading the original data dump.
 ├── models.R <- Script defining models.
 ├── predict.R <- Script for generating model predictions.
 └── evaluate_model.R <- Script for generating model evaluation plots.

 Other Resources

Other Resources

	A list of example workflows can be found at
https://github.com/popperized/popper-examples.

	Self-paced hands-on
tutorial [https://popperized.github.io/swc-lesson].

 FAQ

FAQ

How can I create a virtual environment to install Popper

The following creates a virtual environment in a $HOME/venvs/popper
folder:

create virtualenv
virtualenv $HOME/venvs/popper

activate it
source $HOME/venvs/popper/bin/activate

install Popper in it
pip install popper

The first step is is only done once. After closing your shell, or
opening another tab of your terminal emulator, you’ll have to reload
the environment (activate it line above). For more on virtual
environments, see
here [https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv].

How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

For datasets that are large enough that they cannot be managed by Git,
solutions such as a PFS, GitLFS, Datapackages, ckan, among others
exist. These tools and services allow users to manage large datasets
and version-control them. From the point of view of Popper, this is
just another tool that will get invoked as part of the execution of a
pipeline. As part of our documentation, we have examples on how to use
datapackages, and another on how to use data.world.

How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

A Popper pipeline is a simple sequence of “containerized bash
scripts”. Popper is not a replacement for scientific workflow engines,
instead, its goal is to capture the highest-most workflow: the human
interaction with a terminal.

Can I follow Popper in computational science research, as opposed to computer science?

Yes, the goal for Popper is to make it a domain-agnostic
experimentation protocol. See the
https://github.com/popperized/popper-examples repository for
examples.

How to apply the Popper protocol for applications that take large quantities of computer time?

The popper run takes an optional STEP argument that can be used to
execute a workflow up to a certain step. Run popper run --help for
more.

 Contributing

Contributing

Read the CONTRIBUTING.md file [https://github.com/getpopper/popper/blob/master/CONTRIBUTING] contained in the main
repository.

 Index

Index

 Installation

Installation

We provide an installer, as described in the main
README.md [https://github.com/getpopper/popper] of the project. This
script installs a Popper executable (popper binary), and optionally
places it on /usr/local/bin/ so that it is available globally on
your system. The script tells you what is doing and asks for
confirmation before moving the file to /usr/local/bin.

The installer script is the preferred method if Docker is the
container engine available in your system, as in this case Popper runs
in Docker itself. For other container engines such as
Singularity [https://github.com/sylabs/singularity], you will need to install the Python Package (see
“Install in a Virtualenv” section). For setting up a development
environment, see the “Development Setup” section.

Requirements

Popper only runs on Linux or MacOS. On Windows systems, Popper can be
executed in the Windows Subsystem for Linux (WSL2) [https://docs.microsoft.com/en-us/windows/wsl/wsl2-index]. The only
requirement for the main installation approach (installer script
described above), is to have Docker installed. Consult the official
Docker documentation [https://docs.docker.com/get-docker/] for detailed instructions on how to
install Docker.

Running workflows on Singularity requires Singularity 3.2+ and can
only be done with Popper installed via via Pip (section below), which
in turn assumes Python 3.6+.

Install in a Virtualenv

If you intent to use Popper for running workflows on Docker, we
recommend using the installer script as described at the beginning
of this page. Installing via Pip is only necessary if you intend to
workflows on Singularity or if you are setting up a development
environment.

To install Popper via Pip, we highly recommend doing it in a virtual
environment using virtualenv [https://virtualenv.pypa.io/en/latest/], as opposed to installing
globally on your system (avoid doing sudo pip install... or pip install --user...), as this usually results in scenarios that are
difficult to debug.

The following installation instructions assume that virtualenv is
installed in your environment (see here for more [https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/#installing-virtualenv]).
Once virtualenv is available in your machine, we proceed to create a
folder where we will place the Popper virtual environment:

create a folder for storing virtual environments
mkdir $HOME/virtualenvs

We then create a virtualenv for Popper. This will depend on the
method with which virtualenv was installed:

1) if virtualenv was installed via package, e.g.:
- apt install virtualenv (debian/ubuntu)
- yum install virtualenv (centos/redhat)
- conda install virtualenv (conda)
- pip install virtualenv (pip)
virtualenv $HOME/virtualenvs/popper

OR
#
2) if virtualenv installed via Python 3.6+ module
python -m venv $HOME/virtualenvs/popper

NOTE: in the case of conda, we recommend the creation of a new
environment before virtualenv is installed in order to avoid
issues with packages that might have been installed previously.

We then load the environment we just created above:

source $HOME/virtualenvs/popper/bin/activate

Finally, we install Popper in this environment using pip:

pip install popper

To test all is working as it should, we can show the version we
installed:

popper version

And to get a list of available commands:

popper --help

NOTE: given that we are using virtualenv, once the shell
session ends (when we close the terminal window or tab), the
environment gets unloaded and newer sessions (new window or tab) will
not have the popper command available in the PATH variable. In
order to have the environment loaded again we need to execute the
source command (see above). In the case of conda we need to load
the Conda environment (conda activate command).

Development Setup

To create a development environment for hacking on Popper, you can
execute the following:

cd $HOME/

create virtualenv
virtualenv $HOME/venvs/popper
source $HOME/venvs/popper/bin/activate

clone popper
git clone git@github.com:getpopper/popper
cd popper

install popper from source
pip install -e src/[dev]

the -e flag passed to pip tells it to install the package from the
source folder, and if you modify the logic in the popper source code
you will see the effects when you invoke the popper command. So with
the above approach you have both (1) popper installed in your machine
and (2) an environment where you can modify popper and test the
results of such modifications.

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/popper_logo.png
Popper

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Popper

 		
 Getting Started

 		
 Installation

 		
 Create Your First Workflow

 		
 Run your workflow

 		
 Debug your workflow

 		
 Next Steps

 		
 CLI features

 		
 New workflow initialization

 		
 Executing a workflow

 		
 Executing a step interactively

 		
 Parametrizing workflows with substitutions

 		
 Customizing container engine behavior

 		
 Continuously validating a workflow

 		
 TravisCI

 		
 Translating workflows for other task runners

 		
 Drone

 		
 Task

 		
 Visualizing workflows

 		
 Concepts

 		
 Resources

 		
 Glossary

 		
 Workflow Syntax and Execution Runtime

 		
 Syntax

 		
 Workflow steps

 		
 Referencing images in a step

 		
 Referencing private Github repositories

 		
 Workflow options

 		
 Execution Runtime

 		
 The Workspace

 		
 Changing the working directory

 		
 Filesystem namespaces and persistence

 		
 Environment variables

 		
 Exit codes and statuses

 		
 Container Engines

 		
 Docker

 		
 Singularity

 		
 Host

 		
 Custom engine configuration

 		
 Resource Managers

 		
 Kubernetes

 		
 SLURM

 		
 Life of a Workflow

 		
 1. Look at uses attribute and pull/build image

 		
 2. Configure and create container

 		
 3. Launch container

 		
 4. Move on to next step

 		
 Conclusion

 		
 Guides

 		
 Choosing a location for your step

 		
 Using shell scripts to define step logic

 		
 Hello world step example

 		
 Creating a Docker container

 		
 Implementing a workflow for an existing set of scripts

 		
 Building images using BuildKit

 		
 Computational research with Python and JupyterLab

 		
 Pre-requisites

 		
 Getting started

 		
 Getting data

 		
 Using JupyterLab

 		
 Package management

 		
 Models and visualization

 		
 Building a LaTeX paper

 		
 Conclusion

 		
 Computational research with R and RStudio Server

 		
 Pre-requisites

 		
 Getting started

 		
 Getting data

 		
 Using RStudio Server

 		
 Package and image management

 		
 Models and visualization

 		
 Building a PDF paper

 		
 Conclusion

 		
 Other Resources

 		
 FAQ

 		
 How can I create a virtual environment to install Popper

 		
 How can we deal with large datasets? For example I have to work on large data of hundreds GB, how would this be integrated into Popper?

 		
 How can Popper capture more complex workflows? For example, automatically restarting failed tasks?

 		
 Can I follow Popper in computational science research, as opposed to computer science?

 		
 How to apply the Popper protocol for applications that take large quantities of computer ti