

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Police API Client 1.0.1 documentation

Police API Client (Python)

The Police API Client is an open-source client for the Police API [https://data.police.uk/docs/]. It was
built to power the new Police.uk [https://www.police.uk/] website.

View the README [https://github.com/rkhleics/police-api-client-python/] for installation instructions and quick-start examples.

Reference

	Police API

	Forces

	Neighbourhoods

	Crime

	Stop and search

Configuration

The API doesn’t require any configuration or authentication, so all you need to
do to get going is make a PoliceAPI instance:

>>> from police_api import PoliceAPI
>>> api = PoliceAPI()

For available methods and configuration parameters, see the PoliceAPI
reference.

Forces

To retrieve a list of police forces, use PoliceAPI.get_forces():

>>> api.get_forces()
[<Force> Avon and Somerset Constabulary, ..., <Force> Wiltshire Police]

If you know the ID of a particular force, then you can use PoliceAPI.get_force():

>>> force = api.get_force('leicestershire')
>>> force
<Force> Leicestershire Police

For available attributes and methods, see the forces.Force reference.

Neighbourhoods

Forces are broken down into Neighbourhood Policing Teams:

>>> force.neighbourhoods
[<Neighbourhood> C02, <Neighbourhood> L03, ..., <Neighbourhood> L69]

If you know the ID of a particular neighbourhood, then you can use
PoliceAPI.get_neighbourhood():

>>> neighbourhood = api.get_neighbourhood('leicestershire', 'C02')
>>> neighbourhood
<Neighbourhood> C02

Or, if you already have a Force object:

>>> neighbourhood = force.get_neighbourhood('C02')
>>> neighbourhood
<Neighbourhood> C02

For available attributes and methods, see the
neighbourhoods.Neighbourhood reference.

Officers

The contact details for each officer in a particular neighbourhood are
available:

>>> neighbourhood.officers
[<Neighbourhood.Officer> Michelle Zakoscielny, ..., <Neighbourhood.Officer> Richard Jones]

For available attributes and methods, see the
neighbourhoods.Neighbourhood.Officer reference.

Events

Neighbourhood-level events (beat meetings, surgeries, etc.) are available:

>>> neighbourhood.events
[<Neighbourhood.Event> Stocking Farm beat surgery, ..., <Neighbourhood.Event> Stocking Farm beat surgery]

For available attributes and methods, see the
neighbourhoods.Neighbourhood.Event reference.

Priorities

Policing teams set priorities to deal with in their neighbourhoods, which are
represented by an issue, and an action to be taken:

>>> neighbourhood.priorities
[<Neighbourhood.Priority> <p>To address the issues of people begging next to cash machines in Market Street and surrounding area.</p>, ..., <Neighbourhood.Priority> <p>To reduce street drinking and associated anti-social behaviour on Conduit Street and London Road between 10am and 6pm each day.</p>]

For available attributes and methods, see the
neighbourhoods.Neighbourhood.Priority reference.

Crime & Outcomes

The crime data is updated monthly, and each data set is represented by a date
string, in the format YYYY-MM:

>>> api.get_dates()
[u'2014-03', u'2014-02', u'2014-01', ..., u'2010-12']
>>> api.get_latest_date()
u'2014-03'

To get crimes within a particular neighbourhood, call
PoliceAPI.get_crimes_area() with that neighbourhood’s boundary:

>>> pprint(api.get_crimes_area(neighbourhood.boundary))
[<Crime> 30412621,
 <Crime> 30412622,
 <Crime> 30409577,
 <Crime> 30411516,
 ...
 <Crime> 30410475,
 <Crime> 30412775,
 <Crime> 30411518,
 <Crime> 30412182]

To fetch data for months other than the latest one, use a date string like the
ones returned by PoliceAPI.get_dates():

>>> pprint(api.get_crimes_area(neighbourhood.boundary, date='2013-10'))
[<Crime> 27566767,
 <Crime> 27573059,
 <Crime> 27570299,
 <Crime> 27570923,
 ...
 <Crime> 27569847,
 <Crime> 27570896,
 <Crime> 27571396,
 <Crime> 27570916]

Crimes contain the date, category and location:

>>> crime = api.get_crime('ddf4c172d29569ab0cb667a346bcffad18f54a9bc3e0ae9694d2daf6738f068b')
>>> crime
<Crime> 20325597
>>> crime.month
u'2013-01'
>>> crime.category
<CrimeCategory> Shoplifting
>>> crime.location
<Location> 701166
>>> crime.location.name, crime.location.latitude, crime.location.longitude
(u'On or near Constance Close', u'51.737837', u'-2.235178')

Crimes have a list of outcomes, which represents the timeline of events since
the crime was reported:

>>> pprint(crime.outcomes)
[<Crime.Outcome> Under investigation,
 <Crime.Outcome> Suspect charged,
 <Crime.Outcome> Awaiting court outcome,
 <Crime.Outcome> Offender imprisoned]
>>> crime.outcomes[-1].date
u'2013-01'

Crime objects representing Anti-Social Behaviour will not have outcomes:

>>> asb = api.get_crimes_area(neighbourhood.boundary, category='anti-social-behaviour')[0]
>>> asb.outcomes
[]

For available attributes and methods, see the crime.Crime reference.

 Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Police API Client 1.0.1 documentation

Police API

	
class police_api.PoliceAPI(**config)[source]

	>>> from police_api import PoliceAPI
>>> api = PoliceAPI(user_agent='cops-and-robbers/9.9.9', timeout=60)

	Parameters:	
	base_url – The base endpoint URL for the Police API. Default:
'https://data.police.uk/api/'

	user_agent – The user agent string to use. Default:
'police-api-client-python/<version>'

	timeout – The timeout in seconds. Default: 30

	username – The username to authenticate with. Default: None

	password – The password to authenticate with. Default: None

	
get_forces()[source]

	Get a list of all police forces. Uses the forces [https://data.police.uk/docs/method/forces/] API call.

	Return type:	list

	Returns:	A list of forces.Force objects (one for each police
force represented in the API)

	
get_force(id, **attrs)[source]

	Get an individual forces. Uses the force [https://data.police.uk/docs/method/force/] API call.

	Parameters:	id – The ID of the force to get information about.

	Return type:	forces.Force

	Returns:	The appropriate forces.Force object.

	
get_neighbourhoods(force)[source]

	Get a list of all neighbourhoods for a force. Uses the neighbourhoods [https://data.police.uk/docs/method/neighbourhoods/]
API call.

	Parameters:	force (str or forces.Force) – The force to get neighbourhoods for (either by ID or
forces.Force object)

	Return type:	list

	Returns:	A list of neighbourhoods.Neighbourhood objects
(one for each Neighbourhood Policing Team in the given force).

	
get_neighbourhood(force, id, **attrs)[source]

	Get a specific neighbourhood. Uses the neighbourhood [https://data.police.uk/docs/method/neighbourhood/] API call.

	Parameters:	
	force (str or Force) – The force within which the neighbourhood resides (either
by ID or forces.Force object)

	neighbourhood (str) – The ID of the neighbourhood to fetch.

	Return type:	Neighbourhood

	Returns:	The Neighbourhood object for the given force/ID.

	
locate_neighbourhood(lat, lng)[source]

	Find a neighbourhood by location. Uses the locate-neighbourhood [https://data.police.uk/docs/method/neighbourhood-locate/] API
call.

	Parameters:	
	lat (float or str) – The latitude of the location.

	lng (float or str) – The longitude of the location.

	Return type:	Neighbourhood or None

	Returns:	The Neighbourhood object representing the Neighbourhood
Policing Team responsible for the given location.

	
get_dates()[source]

	Get a list of available dates. Uses the crimes-street-dates [https://data.police.uk/docs/method/crimes-street-dates/] API call.

	Return type:	list

	Returns:	A list of str representing each monthly data set, in
the format YYYY-MM, most recent first.

	
get_latest_date()[source]

	Get the latest available date. Uses the crimes-street-dates [https://data.police.uk/docs/method/crimes-street-dates/] API call
(not crime-last-updated [https://data.police.uk/docs/method/crime-last-updated/], becuase the format differs).

	Return type:	str

	Returns:	The most recent data set’s date, in the format YYYY-MM.

	
get_crime_categories(date=None)[source]

	Get a list of crime categories, valid for a particular date. Uses the
crime-categories [https://data.police.uk/docs/method/crime-categories/] API call.

	Return type:	list

	Parameters:	date (str or None) – The date of the crime categories to get.

	Returns:	A list of crime categories which are valid at the
specified date (or at the latest date, if None).

	
get_crime_category(id, date=None)[source]

	Get a particular crime category by ID, valid at a particular date. Uses
the crime-categories [https://data.police.uk/docs/method/crime-categories/] API call.

	Return type:	CrimeCategory

	Parameters:	
	id (str) – The ID of the crime category to get.

	date (str or None) – The date that the given crime category is valid for (the
latest date is used if None).

	Returns:	A crime category with the given ID which is valid for the
specified date (or at the latest date, if None).

	
get_crime(persistent_id)[source]

	Get a particular crime by persistent ID. Uses the outcomes-for-crime [https://data.police.uk/docs/method/outcomes-for-crime/]
API call.

	Return type:	Crime

	Parameters:	persistent_id (str) – The persistent ID of the crime to get.

	Returns:	The Crime with the given persistent ID.

	
get_crimes_point(lat, lng, date=None, category=None)[source]

	Get crimes within a 1-mile radius of a location. Uses the crime-street
API call.

	Return type:	list

	Parameters:	
	lat (float or str) – The latitude of the location.

	lng (float or str) – The longitude of the location.

	date (str or None) – The month in which the crimes were reported in the format
YYYY-MM (the latest date is used if None).

	category (str or CrimeCategory) – The category of the crimes to filter by (either by ID
or CrimeCategory object)

	Returns:	A list of crimes which were reported within 1 mile of the
specified location, in the given month (optionally filtered by
category).

	
get_crimes_area(points, date=None, category=None)[source]

	Get crimes within a custom area. Uses the crime-street API call.

	Return type:	list

	Parameters:	
	points (list) – A list of (lat, lng) tuples.

	date (str or None) – The month in which the crimes were reported in the format
YYYY-MM (the latest date is used if None).

	category (str or CrimeCategory) – The category of the crimes to filter by (either by ID
or CrimeCategory object)

	Returns:	A list of crimes which were reported within the specified
boundary, in the given month (optionally filtered by
category).

	
get_crimes_location(location_id, date=None)[source]

	Get crimes at a particular snap-point location. Uses the
crimes-at-location [https://data.police.uk/docs/method/crimes-at-location/] API call.

	Return type:	list

	Parameters:	
	location_id (int) – The ID of the location to get crimes for.

	date (str or None) – The month in which the crimes were reported in the format
YYYY-MM (the latest date is used if None).

	Returns:	A list of Crime objects which were snapped to the
Location with the specified ID in the given month.

	
get_crimes_no_location(force, date=None, category=None)[source]

	Get crimes with no location for a force. Uses the crimes-no-location [https://data.police.uk/docs/method/crimes-no-location/]
API call.

	Return type:	list

	Parameters:	
	force (str or Force) – The force to get no-location crimes for.

	date (str or None) – The month in which the crimes were reported in the format
YYYY-MM (the latest date is used if None).

	category (str or CrimeCategory) – The category of the crimes to filter by (either by ID
or CrimeCategory object)

	Returns:	A list of crime.NoLocationCrime objects which
were reported in the given month, by the specified force, but
which don’t have a location.

 Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Police API Client 1.0.1 documentation

Forces

	
class police_api.forces.Force(api, preload=False, **attrs)[source]

	A police force.

>>> from police_api import PoliceAPI
>>> from police_api.forces import Force
>>> api = PoliceAPI()
>>> force = Force(api, id='leicestershire')
>>> print(force.name)
Leicestershire Police

	Parameters:	
	api (PoliceAPI) – The API instance to use.

	preload (bool) – If True, attributes are loaded from the API on
instantiation rather than waiting for a property to
be accessed.

	attrs – Only the id is required. Any other attributes supplied
will be set on the instance and not fetched from the API.

	
id

	

	Type:	str

The force’s identifier (a slugified version of the name).

	
name

	

	Type:	str

The full name of the force.

	
description

	

	Type:	str

A short description of the force’s role.

	
url

	

	Type:	str

The force’s website address.

	
telephone

	

	Type:	str

The force’s main switchboard number. Usually set to '101' since the
introduction of the national service.

	
engagement_methods

	

	Type:	list

A list of dict, containing the keys url, type,
description, and title.

>>> from pprint import pprint
>>> pprint(['{type}: {url}'.format(**method)
... for method in force.engagement_methods])
['facebook: http://www.facebook.com/leicspolice',
 'twitter: http://www.twitter.com/leicspolice',
 'youtube: http://www.youtube.com/leicspolice',
 'rss: http://www.leics.police.uk/feeds/news/',
 'telephone: ',
 'flickr: http://www.flickr.com/photos/leicspolice-property']

	
neighbourhoods

	

	Type:	list

A list of Neighbourhood objects (all the Neighbourhood Policing
Teams in this force area).

	
senior_officers

	

	Type:	list

A list of Force.SeniorOfficer objects.

	
class SeniorOfficer(api, data={})[source]

	A senior police officer. Uses the senior-officers [https://data.police.uk/docs/method/senior-officers/] API call.

	Parameters:	
	api (PoliceAPI) – The API instance to use.

	data (dict) – The attributes that will be copied to this instance.

	
force

	

	Type:	Force

The police force that this officer works for.

	
name

	

	Type:	str

The officer’s name.

	
rank

	

	Type:	str

The officer’s rank.

	
bio

	

	Type:	str

The officer’s biography.

	
contact_details

	

	Type:	list

A list of dict, containing methods of contacting the
officer.

>>> from police_api import PoliceAPI
>>> force = PoliceAPI().get_force('leicestershire')
>>> officer = force.senior_officers[0]
>>> print(officer.contact_details['twitter'])
http://www.twitter.com/CCLeicsPolice

 Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Police API Client 1.0.1 documentation

Neighbourhoods

	
class police_api.neighbourhoods.Neighbourhood(*args, **kwargs)[source]

	A Neighbourhood Policing Team. Uses the neighbourhood [https://data.police.uk/docs/method/neighbourhood/] API call.

	Parameters:	
	api (PoliceAPI) – The instance of PoliceAPI to use.

	preload (bool) – If True, attributes are loaded from the API on
instantiation rather than waiting for a property to
be accessed.

	attrs – Only the force and id are required. Any other
attributes supplied will be set on the instance and not
fetched from the API.

>>> from police_api import PoliceAPI
>>> api = PoliceAPI()
>>> force = api.get_force('leicestershire')
>>> neighbourhood = force.get_neighbourhood('C04')
>>> print(neighbourhood.name)
City Centre neighbourhood

	
id

	

	Type:	str

The neighbourhood’s identifier (usually a code, but can contain
spaces).

	
name

	

	Type:	str

The name of the NPT.

	
description

	

	Type:	str

A description of the NPT’s area.

	
url_force

	

	Type:	str

The URL for this NPT on the force’s website

	
population

	

	Type:	str

An estimate of the number of people living within the NPT boundary.

	
centre

	

	Type:	dict

The approximate centre point of the neighbourhood.

>>> print(neighbourhood.centre['latitude'])
52.6268
>>> print(neighbourhood.centre['longitude'])
-1.12621

	
links

	

	Type:	list

A list of links relevant to this force.

>>> link = neighbourhood.links[0]
>>> print(link['title'])
Leicester City Council
>>> print(link['url'])
http://www.leicester.gov.uk/

	
locations

	

	Type:	list

A list of police stations in this NPT.

>>> print(neighbourhood.locations[0]['address'])
74 Belgrave Gate
, Leicester

	
contact_details

	

	Type:	dict

Ways that this NPT can be contacted.

>>> print(neighbourhood.contact_details['email'])
centralleicester.npa@leicestershire.pnn.police.uk
>>> print(neighbourhood.contact_details['twitter'])
http://www.twitter.com/leicesterpolice

	
officers

	

	Type:	list

A list of Neighbourhood.Officer objects.

	
events

	

	Type:	list

A list of Neighbourhood.Event objects.

	
priorities

	

	Type:	list

A list of Neighbourhood.Priority objects.

	
boundary

	

	Type:	list

A list of (lat, lng) coordinates representing the perimeter of
this neighbourhood’s boundary.

>>> neighbourhood.boundary[0]
(52.6235790036, -1.1433951806)

	
class Officer(api, data={})[source]

	A police officer. Uses the neighbourhood-team [https://data.police.uk/docs/method/neighbourhood-team/] API call.

	Parameters:	
	api (PoliceAPI) – The instance of PoliceAPI to use.

	data (dict) – The attributes that will be copied to this instance.

>>> from police_api import PoliceAPI
>>> api = PoliceAPI()
>>> force = api.get_force('surrey')
>>> neighbourhood = force.get_neighbourhood('ELCO')
>>> officer = neighbourhood.officers[0]

	
neighbourhood

	

	Type:	Neighbourhood

The Neighbourhood Policing Team that this officer is part of.

	
name

	

	Type:	str

The officer’s name.

	
rank

	

	Type:	str

The officer’s rank.

	
bio

	

	Type:	str

The officer’s biography.

	
contact_details

	

	Type:	list

A list of dict, containing methods of contacting the
officer.

>>> print(officer.contact_details['email'])
elmbridge@surrey.pnn.police.uk
>>> print(officer.contact_details['telephone'])
101

	
class Neighbourhood.Event(api, data={})[source]

	A neighbourhood event (e.g. a beat meating or surgery). Uses the
neighbourhood-events [https://data.police.uk/docs/method/neighbourhood-events/] API call.

	Parameters:	
	api (PoliceAPI) – The instance of PoliceAPI to use.

	data (dict) – The attributes that will be copied to this instance.

>>> from police_api import PoliceAPI
>>> api = PoliceAPI()
>>> force = api.get_force('leicestershire')
>>> neighbourhood = force.get_neighbourhood('C04')
>>> event = neighbourhood.events[0]

	
neighbourhood

	

	Type:	Neighbourhood

The Neighbourhood Policing Team that organised this event.

	
title

	

	Type:	str

The title of the event.

	
type

	

	Type:	str

The type of the event.

	
description

	

	Type:	str

A description of the event.

	
address

	

	Type:	str

The location of the event.

	
start_date

	

	Type:	datetime.datetime

The date and time that the event starts.

	
class Neighbourhood.Priority(api, data={})[source]

	A neighbourhood priority (i.e. an issue raised by the community and
a corresponding policing action to address this). Uses the
neighbourhood-priorities [https://data.police.uk/docs/method/neighbourhood-priorities/] API call.

	Parameters:	
	api (PoliceAPI) – The instance of PoliceAPI to use.

	data (dict) – The attributes that will be copied to this instance.

	
neighbourhood

	

	Type:	Neighbourhood

The Neighbourhood Policing Team that owns this priority.

	
issue

	

	Type:	str

The issue that was raised.

	
action

	

	Type:	str

The action that was taken to address the issue.

	
issue_date

	

	Type:	datetime.datetime

The date that the issue was raised.

	
action_date

	

	Type:	datetime.datetime

The date that the action was implemented.

 Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Police API Client 1.0.1 documentation

Crime

	
class police_api.crime.Crime(api, data={})[source]

	An individual crime. Uses the outcomes-for-crime [https://data.police.uk/docs/method/outcomes-for-crime/] API call.

	Parameters:	
	api (PoliceAPI) – The API instance to use.

	data (dict) – The attributes that will be copied to this instance.

	
id

	

	Type:	int

This crime’s unique internal ID (not used elsewhere in the data or
API).

	
persistent_id

	

	Type:	str

This crime’s persistent ID, which is referenced by the outcomes data
and in the CSV files. Not guaranteed to be unique.

	
month

	

	Type:	str

The month that this crime was reported in (%m-%d).

	
category

	

	Type:	CrimeCategory

The category of this crime.

	
location

	

	Type:	Location

The anonymised location that this crime occurred closest to.

	
context

	

	Type:	str

Additional data about this crime provided by the reporting force.

	
outcome_status

	

	Type:	Crime.Outcome

The latest outcome to have been recorded for this crime.

	
outcomes

	

	Type:	list

A list of Outcome objects for this crime, in the order
they occurred.

	
class Outcome(api, data={})[source]

	An outcome for an individual crime.

	Parameters:	
	api (PoliceAPI) – The API instance to use.

	data (dict) – The attributes that will be copied to this instance.

	
crime

	

	Type:	Crime

The crime that this outcome refers to.

	
category

	

	Type:	OutcomeCategory

The category of this particular outcome.

	
date

	

	Type:	str

The month that this outcome was recorded in (%m-%d).

	
class police_api.crime.Location(*args, **kwargs)[source]

	An anonymised location, to which crimes are “snapped”. Information about
how location anonymisation works is published on the data.police.uk about
page [https://data.police.uk/about/#location-anonymisation].

	Parameters:	
	api (PoliceAPI) – The API instance to use.

	data (dict) – The attributes that will be copied to this instance.

	
id

	

	Type:	int

This location’s unique ID.

	
name

	

	Type:	str

The name of this location (e.g. On or near Petrol Station)

	
latitude

	

	Type:	str

This location’s latitude.

	
longitude

	

	Type:	str

This location’s longitude.

	
type

	

	Type:	str

This location’s type (either 'BTP' or 'Force', indicating
whether the location contains crimes snapped from the British Transport
Police or all other forces).

	
is_btp()[source]

	

	Return type:	bool

	Returns:	True if this location’s type is 'BTP', and False
otherwise.

	
class police_api.crime.CrimeCategory(api, data={})[source]

	A crime category. Uses the crime-categories [https://data.police.uk/docs/method/crime-categories/] API call.

	Parameters:	
	api (PoliceAPI) – The API instance to use.

	data (dict) – The attributes that will be copied to this instance.

	
id

	

	Type:	str

A slug representing this crime category.

	
name

	

	Type:	str

The name of this crime category.

	
class police_api.crime.OutcomeCategory(api, data={})[source]

	An outcome category.

	Parameters:	
	api (PoliceAPI) – The API instance to use.

	data (dict) – The attributes that will be copied to this instance.

	
id

	

	Type:	str

A slug representing this outcome category.

	
name

	

	Type:	str

The name of this outcome category.

	
class police_api.crime.NoLocationCrime(api, data={})[source]

	A crime with no location. Retrieved via the crimes-no-location [https://data.police.uk/docs/method/crimes-no-location/] API call.

 Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Police API Client 1.0.1 documentation

Stop and search

	
class police_api.stop_and_search.Stop(api, data={})[source]

	A stop and search incident. Only a few of the attributes here are
guaranteed to be provided by forces, so take care around any None
values you may encounter.

>>> from police_api import PoliceAPI
>>> api = PoliceAPI()
>>> def sort_stops_by_date(unsorted_stops):
... return(sorted(unsorted_stops, key=lambda s: s.datetime))
>>> stops = sort_stops_by_date(
... api.get_stops_force('metropolitan', '2015-07')
...)

	
age_range

	

	Type:	str

Human-readable string representing the age range of the person stopped.

>>> print(stops[0].age_range)
25-34

	
object_of_search

	

	Type:	str

The officer’s justification for conducting the search.

	
outcome

	

	Type:	str

The outcome of the stop.

>>> print(stops[0].outcome)
Offender given drugs possession warning

	
outcome_linked_to_object_of_search

	

	Type:	bool

Whether the outcome of the stop was related to the reason the stop was
conducted.

	
legislation

	

	Type:	str

The legislation allowing this particular stop.

>>> print(stops[0].legislation)
Misuse of Drugs Act 1971 (section 23)

	
type

	

	Type:	str

What type of search this was (person, vehicle, etc.).

>>> print(stops[0].type)
Person search

	
involved_person

	

	Type:	bool

Whether or not a person was searched in this stop.

>>> stops[0].involved_person
True
>>> vehicle_stop = [
... s for s in stops if s.type == 'Vehicle search'
...][0]
>>> vehicle_stop.involved_person
False

	
operation

	

	Type:	bool

Whether this stop was part of a policing operation.

	
operation_name

	

	Type:	str

The name of the policing operation this stop was part of, if
applicable.

	
self_defined_ethnicity

	

	Type:	str

The ethnicity of the person stopped, as reported by the person stopped.

>>> print(stops[0].self_defined_ethnicity)
Black or Black British - Any other Black ethnic background (B9)

	
officer_defined_ethnicity

	

	Type:	str

The ethnicity of the person stopped, as reported by the officer who
conducted the stop.

>>> print(stops[0].officer_defined_ethnicity)
Black

	
gender

	

	Type:	str

The gender of the person stopped. It is not clear if this is as
reported by the officer or the person stopped.

>>> print(stops[0].gender)
Male

	
datetime

	

	Type:	datetime

When the stop was conducted. Note that if a force appears to only
conduct stops at midnight, that probably means they don’t record the
time of stops.

>>> print(stops[0].datetime.isoformat())
2015-07-01T00:05:00

	
location

	

	Type:	Location

The approximate location of the stop.

	
removal_of_more_than_outer_clothing

	

	Type:	bool

Whether significant clothing was removed in order to carry out the
search.

 Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Police API Client 1.0.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 police_api	

 	
 	
 police_api.crime	

 	
 	
 police_api.forces	

 	
 	
 police_api.neighbourhoods	

 	
 	
 police_api.stop_and_search	

 Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Police API Client 1.0.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	

 	action (police_api.neighbourhoods.Neighbourhood.Priority attribute)

 	action_date (police_api.neighbourhoods.Neighbourhood.Priority attribute)

 	

 	address (police_api.neighbourhoods.Neighbourhood.Event attribute)

 	age_range (police_api.stop_and_search.Stop attribute)

B

 	

 	bio (police_api.forces.Force.SeniorOfficer attribute)

 	

 	(police_api.neighbourhoods.Neighbourhood.Officer attribute)

 	

 	boundary (police_api.neighbourhoods.Neighbourhood attribute)

C

 	

 	category (police_api.crime.Crime attribute)

 	

 	(police_api.crime.Crime.Outcome attribute)

 	centre (police_api.neighbourhoods.Neighbourhood attribute)

 	contact_details (police_api.forces.Force.SeniorOfficer attribute)

 	

 	(police_api.neighbourhoods.Neighbourhood attribute)

 	(police_api.neighbourhoods.Neighbourhood.Officer attribute)

 	context (police_api.crime.Crime attribute)

 	

 	Crime (class in police_api.crime)

 	crime (police_api.crime.Crime.Outcome attribute)

 	Crime.Outcome (class in police_api.crime)

 	CrimeCategory (class in police_api.crime)

D

 	

 	date (police_api.crime.Crime.Outcome attribute)

 	datetime (police_api.stop_and_search.Stop attribute)

 	

 	description (police_api.forces.Force attribute)

 	

 	(police_api.neighbourhoods.Neighbourhood attribute)

 	(police_api.neighbourhoods.Neighbourhood.Event attribute)

E

 	

 	engagement_methods (police_api.forces.Force attribute)

 	

 	events (police_api.neighbourhoods.Neighbourhood attribute)

F

 	

 	Force (class in police_api.forces)

 	force (police_api.forces.Force.SeniorOfficer attribute)

 	

 	Force.SeniorOfficer (class in police_api.forces)

G

 	

 	gender (police_api.stop_and_search.Stop attribute)

 	get_crime() (police_api.PoliceAPI method)

 	get_crime_categories() (police_api.PoliceAPI method)

 	get_crime_category() (police_api.PoliceAPI method)

 	get_crimes_area() (police_api.PoliceAPI method)

 	get_crimes_location() (police_api.PoliceAPI method)

 	get_crimes_no_location() (police_api.PoliceAPI method)

 	

 	get_crimes_point() (police_api.PoliceAPI method)

 	get_dates() (police_api.PoliceAPI method)

 	get_force() (police_api.PoliceAPI method)

 	get_forces() (police_api.PoliceAPI method)

 	get_latest_date() (police_api.PoliceAPI method)

 	get_neighbourhood() (police_api.PoliceAPI method)

 	get_neighbourhoods() (police_api.PoliceAPI method)

I

 	

 	id (police_api.crime.Crime attribute)

 	

 	(police_api.crime.CrimeCategory attribute)

 	(police_api.crime.Location attribute)

 	(police_api.crime.OutcomeCategory attribute)

 	(police_api.forces.Force attribute)

 	(police_api.neighbourhoods.Neighbourhood attribute)

 	involved_person (police_api.stop_and_search.Stop attribute)

 	is_btp() (police_api.crime.Location method)

 	

 	issue (police_api.neighbourhoods.Neighbourhood.Priority attribute)

 	issue_date (police_api.neighbourhoods.Neighbourhood.Priority attribute)

L

 	

 	latitude (police_api.crime.Location attribute)

 	legislation (police_api.stop_and_search.Stop attribute)

 	links (police_api.neighbourhoods.Neighbourhood attribute)

 	locate_neighbourhood() (police_api.PoliceAPI method)

 	

 	Location (class in police_api.crime)

 	location (police_api.crime.Crime attribute)

 	

 	(police_api.stop_and_search.Stop attribute)

 	locations (police_api.neighbourhoods.Neighbourhood attribute)

 	longitude (police_api.crime.Location attribute)

M

 	

 	month (police_api.crime.Crime attribute)

N

 	

 	name (police_api.crime.CrimeCategory attribute)

 	

 	(police_api.crime.Location attribute)

 	(police_api.crime.OutcomeCategory attribute)

 	(police_api.forces.Force attribute)

 	(police_api.forces.Force.SeniorOfficer attribute)

 	(police_api.neighbourhoods.Neighbourhood attribute)

 	(police_api.neighbourhoods.Neighbourhood.Officer attribute)

 	Neighbourhood (class in police_api.neighbourhoods)

 	neighbourhood (police_api.neighbourhoods.Neighbourhood.Event attribute)

 	

 	(police_api.neighbourhoods.Neighbourhood.Officer attribute)

 	(police_api.neighbourhoods.Neighbourhood.Priority attribute)

 	Neighbourhood.Event (class in police_api.neighbourhoods)

 	

 	Neighbourhood.Officer (class in police_api.neighbourhoods)

 	Neighbourhood.Priority (class in police_api.neighbourhoods)

 	neighbourhoods (police_api.forces.Force attribute)

 	NoLocationCrime (class in police_api.crime)

O

 	

 	object_of_search (police_api.stop_and_search.Stop attribute)

 	officer_defined_ethnicity (police_api.stop_and_search.Stop attribute)

 	officers (police_api.neighbourhoods.Neighbourhood attribute)

 	operation (police_api.stop_and_search.Stop attribute)

 	operation_name (police_api.stop_and_search.Stop attribute)

 	

 	outcome (police_api.stop_and_search.Stop attribute)

 	outcome_linked_to_object_of_search (police_api.stop_and_search.Stop attribute)

 	outcome_status (police_api.crime.Crime attribute)

 	OutcomeCategory (class in police_api.crime)

 	outcomes (police_api.crime.Crime attribute)

P

 	

 	persistent_id (police_api.crime.Crime attribute)

 	police_api (module), [1]

 	police_api.crime (module)

 	police_api.forces (module)

 	police_api.neighbourhoods (module)

 	

 	police_api.stop_and_search (module)

 	PoliceAPI (class in police_api)

 	population (police_api.neighbourhoods.Neighbourhood attribute)

 	priorities (police_api.neighbourhoods.Neighbourhood attribute)

R

 	

 	rank (police_api.forces.Force.SeniorOfficer attribute)

 	

 	(police_api.neighbourhoods.Neighbourhood.Officer attribute)

 	

 	removal_of_more_than_outer_clothing (police_api.stop_and_search.Stop attribute)

S

 	

 	self_defined_ethnicity (police_api.stop_and_search.Stop attribute)

 	senior_officers (police_api.forces.Force attribute)

 	

 	start_date (police_api.neighbourhoods.Neighbourhood.Event attribute)

 	Stop (class in police_api.stop_and_search)

T

 	

 	telephone (police_api.forces.Force attribute)

 	title (police_api.neighbourhoods.Neighbourhood.Event attribute)

 	

 	type (police_api.crime.Location attribute)

 	

 	(police_api.neighbourhoods.Neighbourhood.Event attribute)

 	(police_api.stop_and_search.Stop attribute)

U

 	

 	url (police_api.forces.Force attribute)

 	

 	url_force (police_api.neighbourhoods.Neighbourhood attribute)

 Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

 _modules/police_api/forces.html

 Navigation

 		
 index

 		
 modules |

 		Police API Client 1.0.1 documentation »

 		Module code »

 		police_api »

 Source code for police_api.forces

from .neighbourhoods import Neighbourhood
from .resource import Resource, SimpleResource

[docs]class Force(Resource):
 """
 A police force.

 .. doctest::

 >>> from police_api import PoliceAPI
 >>> from police_api.forces import Force
 >>> api = PoliceAPI()
 >>> force = Force(api, id='leicestershire')
 >>> print(force.name)
 Leicestershire Police

 :param PoliceAPI api: The API instance to use.
 :param bool preload: If ``True``, attributes are loaded from the API on
 instantiation rather than waiting for a property to
 be accessed.
 :param attrs: Only the ``id`` is required. Any other attributes supplied
 will be set on the instance and not fetched from the API.

 .. attribute:: id

 :type: str

 The force's identifier (a slugified version of the name).

 .. attribute:: name

 :type: str

 The full name of the force.

 .. attribute:: description

 :type: str

 A short description of the force's role.

 .. attribute:: url

 :type: str

 The force's website address.

 .. attribute:: telephone

 :type: str

 The force's main switchboard number. Usually set to ``'101'`` since the
 introduction of the national service.

 .. attribute:: engagement_methods

 :type: list

 A ``list`` of ``dict``, containing the keys ``url``, ``type``,
 ``description``, and ``title``.

 .. doctest::

 >>> from pprint import pprint
 >>> pprint(['{type}: {url}'.format(**method)
 ... for method in force.engagement_methods])
 ['facebook: http://www.facebook.com/leicspolice',
 'twitter: http://www.twitter.com/leicspolice',
 'youtube: http://www.youtube.com/leicspolice',
 'rss: http://www.leics.police.uk/feeds/news/',
 'telephone: ',
 'flickr: http://www.flickr.com/photos/leicspolice-property']

 .. attribute:: neighbourhoods

 :type: list

 A ``list`` of ``Neighbourhood`` objects (all the Neighbourhood Policing
 Teams in this force area).

 .. attribute:: senior_officers

 :type: list

 A ``list`` of :class:`Force.SeniorOfficer` objects.
 """

 id = None
 _resource_cache = {}
 _neighbourhoods = None
 fields = ['description', 'telephone', 'name', 'engagement_methods', 'url']

[docs] class SeniorOfficer(SimpleResource):
 """
 A senior police officer. Uses the senior-officers_ API call.

 :param `PoliceAPI` api: The API instance to use.
 :param dict data: The attributes that will be copied to this instance.

 .. attribute:: force

 :type: :class:`Force`

 The police force that this officer works for.

 .. attribute:: name

 :type: str

 The officer's name.

 .. attribute:: rank

 :type: str

 The officer's rank.

 .. attribute:: bio

 :type: str

 The officer's biography.

 .. attribute:: contact_details

 :type: list

 A ``list`` of ``dict``, containing methods of contacting the
 officer.

 .. doctest::

 >>> from police_api import PoliceAPI
 >>> force = PoliceAPI().get_force('leicestershire')
 >>> officer = force.senior_officers[0]
 >>> print(officer.contact_details['twitter'])
 http://www.twitter.com/CCLeicsPolice

 .. _senior-officers:
 https://data.police.uk/docs/method/senior-officers/
 """
 fields = ['force', 'name', 'rank', 'contact_details', 'bio']

 def __str__(self):
 return '<Force.SeniorOfficer> %s' % self.name

 def __str__(self):
 return '<Force> %s' % self.name

 def _get_api_method(self):
 return 'forces/%s' % self.id

 def _get_resource(self, cls, method):
 if method in self._resource_cache:
 return self._resource_cache[method]
 objs = []
 method = 'forces/%s/%s' % (self.id, method)
 for d in self.api.service.request('GET', method):
 d.update({
 'force': self,
 })
 objs.append(cls(self.api, data=d))
 self._resource_cache[method] = objs
 return objs

 def get_neighbourhood(self, neighbourhood_id, **attrs):
 return Neighbourhood(self.api, force=self, id=neighbourhood_id,
 **attrs)

 @property
 def senior_officers(self):
 return self._get_resource(self.SeniorOfficer, 'people')

 @property
 def neighbourhoods(self):
 if self._neighbourhoods is None:
 self._neighbourhoods = self.api.get_neighbourhoods(self)
 return self._neighbourhoods

 @property
 def slug(self):
 return self.id

 © Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

_modules/police_api/neighbourhoods.html

 Navigation

 		
 index

 		
 modules |

 		Police API Client 1.0.1 documentation »

 		Module code »

 		police_api »

 Source code for police_api.neighbourhoods

from datetime import datetime

from .exceptions import NeighbourhoodsNeighbourhoodException
from .resource import Resource, SimpleResource

[docs]class Neighbourhood(Resource):
 """
 A Neighbourhood Policing Team. Uses the neighbourhood_ API call.

 :param PoliceAPI api: The instance of ``PoliceAPI`` to use.
 :param bool preload: If ``True``, attributes are loaded from the API on
 instantiation rather than waiting for a property to
 be accessed.
 :param attrs: Only the ``force`` and ``id`` are required. Any other
 attributes supplied will be set on the instance and not
 fetched from the API.

 .. doctest::

 >>> from police_api import PoliceAPI
 >>> api = PoliceAPI()
 >>> force = api.get_force('leicestershire')
 >>> neighbourhood = force.get_neighbourhood('C04')
 >>> print(neighbourhood.name)
 City Centre neighbourhood

 .. attribute:: id

 :type: str

 The neighbourhood's identifier (usually a code, but can contain
 spaces).

 .. attribute:: name

 :type: str

 The name of the NPT.

 .. attribute:: description

 :type: str

 A description of the NPT's area.

 .. attribute:: url_force

 :type: str

 The URL for this NPT on the force's website

 .. attribute:: population

 :type: str

 An estimate of the number of people living within the NPT boundary.

 .. attribute:: centre

 :type: dict

 The approximate centre point of the neighbourhood.

 .. doctest::

 >>> print(neighbourhood.centre['latitude'])
 52.6268
 >>> print(neighbourhood.centre['longitude'])
 -1.12621

 .. attribute:: links

 :type: list

 A ``list`` of links relevant to this force.

 .. doctest::

 >>> link = neighbourhood.links[0]
 >>> print(link['title'])
 Leicester City Council
 >>> print(link['url'])
 http://www.leicester.gov.uk/

 .. attribute:: locations

 :type: list

 A ``list`` of police stations in this NPT.

 .. doctest::

 >>> print(neighbourhood.locations[0]['address'])
 74 Belgrave Gate
 , Leicester

 .. attribute:: contact_details

 :type: dict

 Ways that this NPT can be contacted.

 .. doctest::

 >>> print(neighbourhood.contact_details['email'])
 centralleicester.npa@leicestershire.pnn.police.uk
 >>> print(neighbourhood.contact_details['twitter'])
 http://www.twitter.com/leicesterpolice

 .. attribute:: officers

 :type: list

 A ``list`` of ``Neighbourhood.Officer`` objects.

 .. attribute:: events

 :type: list

 A ``list`` of ``Neighbourhood.Event`` objects.

 .. attribute:: priorities

 :type: list

 A ``list`` of ``Neighbourhood.Priority`` objects.

 .. attribute:: boundary

 :type: list

 A ``list`` of ``(lat, lng)`` coordinates representing the perimeter of
 this neighbourhood's boundary.

 .. doctest::

 >>> neighbourhood.boundary[0]
 (52.6235790036, -1.1433951806)

 .. _neighbourhood: https://data.police.uk/docs/method/neighbourhood/
 """
 force = None
 _resource_cache = {}
 _boundary = None
 _crimes = None
 fields = ['contact_details', 'name', 'links', 'description', 'url_force',
 'population', 'centre', 'locations']

[docs] class Officer(SimpleResource):
 """
 A police officer. Uses the neighbourhood-team_ API call.

 :param PoliceAPI api: The instance of ``PoliceAPI`` to use.
 :param dict data: The attributes that will be copied to this instance.

 .. doctest::

 >>> from police_api import PoliceAPI
 >>> api = PoliceAPI()
 >>> force = api.get_force('surrey')
 >>> neighbourhood = force.get_neighbourhood('ELCO')
 >>> officer = neighbourhood.officers[0]

 .. attribute:: neighbourhood

 :type: :class:`Neighbourhood`

 The Neighbourhood Policing Team that this officer is part of.

 .. attribute:: name

 :type: str

 The officer's name.

 .. attribute:: rank

 :type: str

 The officer's rank.

 .. attribute:: bio

 :type: str

 The officer's biography.

 .. attribute:: contact_details

 :type: list

 A ``list`` of ``dict``, containing methods of contacting the
 officer.

 .. doctest::

 >>> print(officer.contact_details['email'])
 elmbridge@surrey.pnn.police.uk
 >>> print(officer.contact_details['telephone'])
 101

 .. _neighbourhood-team:
 https://data.police.uk/docs/method/neighbourhood-team/
 """
 fields = ['neighbourhood', 'name', 'rank', 'contact_details', 'bio']

 def __str__(self):
 return '<Neighbourhood.Officer> %s' % self.name

[docs] class Event(SimpleResource):
 """
 A neighbourhood event (e.g. a beat meating or surgery). Uses the
 neighbourhood-events_ API call.

 :param PoliceAPI api: The instance of ``PoliceAPI`` to use.
 :param dict data: The attributes that will be copied to this instance.

 .. doctest::

 >>> from police_api import PoliceAPI
 >>> api = PoliceAPI()
 >>> force = api.get_force('leicestershire')
 >>> neighbourhood = force.get_neighbourhood('C04')
 >>> event = neighbourhood.events[0]

 .. attribute:: neighbourhood

 :type: :class:`Neighbourhood`

 The Neighbourhood Policing Team that organised this event.

 .. attribute:: title

 :type: str

 The title of the event.

 .. attribute:: type

 :type: str

 The type of the event.

 .. attribute:: description

 :type: str

 A description of the event.

 .. attribute:: address

 :type: str

 The location of the event.

 .. attribute:: start_date

 :type: datetime.datetime

 The date and time that the event starts.

 .. _neighbourhood-events:
 https://data.police.uk/docs/method/neighbourhood-events/
 """

 fields = ['neighbourhood', 'title', 'type', 'description',
 'contact_details', 'start_date', 'address']

 def __str__(self):
 return '<Neighbourhood.Event> %s' % self.title

 def _hydrate_start_date(self, data):
 return datetime.strptime(data, '%Y-%m-%dT%H:%M:%S')

[docs] class Priority(SimpleResource):
 """
 A neighbourhood priority (i.e. an issue raised by the community and
 a corresponding policing action to address this). Uses the
 neighbourhood-priorities_ API call.

 :param PoliceAPI api: The instance of ``PoliceAPI`` to use.
 :param dict data: The attributes that will be copied to this instance.

 .. attribute:: neighbourhood

 :type: :class:`Neighbourhood`

 The Neighbourhood Policing Team that owns this priority.

 .. attribute:: issue

 :type: str

 The issue that was raised.

 .. attribute:: action

 :type: str

 The action that was taken to address the issue.

 .. attribute:: issue_date

 :type: datetime.datetime

 The date that the issue was raised.

 .. attribute:: action_date

 :type: datetime.datetime

 The date that the action was implemented.

 .. _neighbourhood-priorities:
 https://data.police.uk/docs/method/neighbourhood-priorities/
 """

 fields = ['neighbourhood', 'issue', 'action', 'issue_date',
 'action_date']

 def __str__(self):
 return '<Neighbourhood.Priority> %s' % self.issue

 def _hydrate(self, data):
 for field in ['issue-date', 'action-date']:
 data[field.replace('-', '_')] = data[field]
 return super(Neighbourhood.Priority, self)._hydrate(data)

 def __hydrate_date(self, data):
 return datetime.strptime(data, '%Y-%m-%dT%H:%M:%S')

 def _hydrate_issue_date(self, data):
 return self.__hydrate_date(data) if data else None

 _hydrate_action_date = _hydrate_issue_date

 def __init__(self, *args, **kwargs):
 super(Neighbourhood, self).__init__(*args, **kwargs)
 self._assert_id_not_neighbourhoods()

 def __str__(self):
 return '<Neighbourhood> %s' % self.id

 def __eq__(self, other):
 return isinstance(other, Neighbourhood) and self.id == other.id

 def __hash__(self):
 return hash(self.id)

 def _assert_id_not_neighbourhoods(self):
 # Have a look at the docstring of NeighbourhoodsNeighbourhoodException.
 if self.id == 'neighbourhoods':
 raise NeighbourhoodsNeighbourhoodException()

 def _get_api_method(self):
 self._assert_id_not_neighbourhoods()
 return '%s/%s' % (self.force.id, self.id)

 def _hydrate_population(self, data):
 return int(data) if data is not None else None

 def _get_resource(self, cls, method):
 if method in self._resource_cache:
 return self._resource_cache[method]
 objs = []
 method = '%s/%s/%s' % (self.force.id, self.id, method)
 for d in self.api.service.request('GET', method):
 d.update({
 'neighbourhood': self,
 })
 objs.append(cls(self.api, data=d))
 self._resource_cache[method] = objs
 return objs

 def _get_boundary(self):
 method = '%s/%s/boundary' % (self.force.id, self.id)
 points = self.api.service.request('GET', method)
 return [(float(p['latitude']), float(p['longitude'])) for p in points]

 def _get_crimes(self):
 return self.api.get_crimes_area(self.boundary)

 @property
 def officers(self):
 return self._get_resource(self.Officer, 'people')

 @property
 def events(self):
 return self._get_resource(self.Event, 'events')

 @property
 def priorities(self):
 return sorted(self._get_resource(self.Priority, 'priorities'),
 key=lambda x: x.issue_date, reverse=True)

 @property
 def boundary(self):
 if self._boundary is None:
 self._boundary = self._get_boundary()
 return self._boundary

 @property
 def crimes(self):
 if self._crimes is None:
 self._crimes = self._get_crimes()
 return self._crimes

 © Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

_modules/police_api.html

 Navigation

 		
 index

 		
 modules |

 		Police API Client 1.0.1 documentation »

 		Module code »

 Source code for police_api

from .crime import NoLocationCrime, Crime, CrimeCategory
from .exceptions import InvalidCategoryException
from .forces import Force
from .neighbourhoods import Neighbourhood
from .service import BaseService, APIError
from .stop_and_search import Stop
from .utils import encode_polygon
from .version import __version__ # NOQA

[docs]class PoliceAPI(object):
 """
 .. doctest::

 >>> from police_api import PoliceAPI
 >>> api = PoliceAPI(user_agent='cops-and-robbers/9.9.9', timeout=60)

 :param base_url: The base endpoint URL for the Police API. Default:
 ``'https://data.police.uk/api/'``
 :param user_agent: The user agent string to use. Default:
 ``'police-api-client-python/<version>'``
 :param timeout: The timeout in seconds. Default: ``30``
 :param username: The username to authenticate with. Default: ``None``
 :param password: The password to authenticate with. Default: ``None``
 """

 def __init__(self, **config):
 self.service = BaseService(self, **config)
 self.crime_categories = {}

[docs] def get_forces(self):
 """
 Get a list of all police forces. Uses the forces_ API call.

 .. _forces: https://data.police.uk/docs/method/forces/

 :rtype: list
 :return: A list of :class:`forces.Force` objects (one for each police
 force represented in the API)
 """

 forces = []
 for f in self.service.request('GET', 'forces'):
 forces.append(Force(self, id=f['id'], name=f['name']))
 return forces

[docs] def get_force(self, id, **attrs):
 """
 Get an individual forces. Uses the force_ API call.

 .. _force: https://data.police.uk/docs/method/force/

 :param id: The ID of the force to get information about.
 :rtype: :class:`forces.Force`
 :return: The appropriate :class:`forces.Force` object.
 """

 return Force(self, id=id, **attrs)

[docs] def get_neighbourhoods(self, force):
 """
 Get a list of all neighbourhoods for a force. Uses the neighbourhoods_
 API call.

 .. _neighbourhoods: https://data.police.uk/docs/method/neighbourhoods/

 :param force: The force to get neighbourhoods for (either by ID or
 :class:`forces.Force` object)
 :type force: str or :class:`forces.Force`
 :rtype: list
 :return: A ``list`` of :class:`neighbourhoods.Neighbourhood` objects
 (one for each Neighbourhood Policing Team in the given force).
 """

 if not isinstance(force, Force):
 force = Force(self, id=force)

 neighbourhoods = []
 for n in self.service.request('GET', '%s/neighbourhoods' % force.id):
 neighbourhoods.append(
 Neighbourhood(self, force=force, id=n['id'], name=n['name']))
 return sorted(neighbourhoods, key=lambda n: n.name)

[docs] def get_neighbourhood(self, force, id, **attrs):
 """
 Get a specific neighbourhood. Uses the neighbourhood_ API call.

 .. _neighbourhood: https://data.police.uk/docs/method/neighbourhood/

 :param force: The force within which the neighbourhood resides (either
 by ID or :class:`forces.Force` object)
 :type force: str or Force
 :param str neighbourhood: The ID of the neighbourhood to fetch.
 :rtype: Neighbourhood
 :return: The Neighbourhood object for the given force/ID.
 """

 if not isinstance(force, Force):
 force = Force(self, id=force, **attrs)

 return Neighbourhood(self, force=force, id=id, **attrs)

[docs] def locate_neighbourhood(self, lat, lng):
 """
 Find a neighbourhood by location. Uses the locate-neighbourhood_ API
 call.

 .. _locate-neighbourhood:
 https://data.police.uk/docs/method/neighbourhood-locate/

 :param lat: The latitude of the location.
 :type lat: float or str
 :param lng: The longitude of the location.
 :type lng: float or str
 :rtype: Neighbourhood or None
 :return: The Neighbourhood object representing the Neighbourhood
 Policing Team responsible for the given location.
 """

 method = 'locate-neighbourhood'
 q = '%s,%s' % (lat, lng)
 try:
 result = self.service.request('GET', method, q=q)
 return self.get_neighbourhood(result['force'],
 result['neighbourhood'])
 except APIError:
 pass

[docs] def get_dates(self):
 """
 Get a list of available dates. Uses the crimes-street-dates_ API call.

 .. _crimes-street-dates:
 https://data.police.uk/docs/method/crimes-street-dates/

 :rtype: list
 :return: A ``list`` of ``str`` representing each monthly data set, in
 the format ``YYYY-MM``, most recent first.
 """

 response = self.service.request('GET', 'crimes-street-dates')
 return [d['date'] for d in response]

[docs] def get_latest_date(self):
 """
 Get the latest available date. Uses the crimes-street-dates_ API call
 (not crime-last-updated_, becuase the format differs).

 .. _crimes-street-dates:
 https://data.police.uk/docs/method/crimes-street-dates/
 .. _crime-last-updated:
 https://data.police.uk/docs/method/crime-last-updated/

 :rtype: str
 :return: The most recent data set's date, in the format ``YYYY-MM``.
 """

 return self.get_dates()[0]

 def _populate_crime_categories(self, date=None):
 response = self.service.request('GET', 'crime-categories', date=date)
 self.crime_categories[date] = {}
 for c in filter(lambda x: x['url'] != 'all-crime', response):
 self.crime_categories[date][c['url']] = CrimeCategory(self, data=c)

 def _get_crime_categories(self, date=None):
 if date not in self.crime_categories:
 self._populate_crime_categories(date=date)
 return self.crime_categories[date]

[docs] def get_crime_categories(self, date=None):
 """
 Get a list of crime categories, valid for a particular date. Uses the
 crime-categories_ API call.

 .. _crime-categories:
 https://data.police.uk/docs/method/crime-categories/

 :rtype: list
 :param date: The date of the crime categories to get.
 :type date: str or None
 :return: A ``list`` of crime categories which are valid at the
 specified date (or at the latest date, if ``None``).
 """

 return sorted(self._get_crime_categories(date=date).values(),
 key=lambda c: c.name)

[docs] def get_crime_category(self, id, date=None):
 """
 Get a particular crime category by ID, valid at a particular date. Uses
 the crime-categories_ API call.

 :rtype: CrimeCategory
 :param str id: The ID of the crime category to get.
 :param date: The date that the given crime category is valid for (the
 latest date is used if ``None``).
 :type date: str or None
 :return: A crime category with the given ID which is valid for the
 specified date (or at the latest date, if ``None``).
 """

 try:
 return self._get_crime_categories(date=date)[id]
 except KeyError:
 raise InvalidCategoryException(
 'Category %s not found for %s' % (id, date))

[docs] def get_crime(self, persistent_id):
 """
 Get a particular crime by persistent ID. Uses the outcomes-for-crime_
 API call.

 .. _outcomes-for-crime:
 https://data.police.uk/docs/method/outcomes-for-crime/

 :rtype: Crime
 :param str persistent_id: The persistent ID of the crime to get.
 :return: The ``Crime`` with the given persistent ID.
 """

 method = 'outcomes-for-crime/%s' % persistent_id
 response = self.service.request('GET', method)
 crime = Crime(self, data=response['crime'])
 crime._outcomes = []
 outcomes = response['outcomes']
 if outcomes is not None:
 for o in outcomes:
 o.update({
 'crime': crime,
 })
 crime._outcomes.append(crime.Outcome(self, o))
 return crime

[docs] def get_crimes_point(self, lat, lng, date=None, category=None):
 """
 Get crimes within a 1-mile radius of a location. Uses the crime-street_
 API call.

 .. _crime-street: https//data.police.uk/docs/method/crime-street/

 :rtype: list
 :param lat: The latitude of the location.
 :type lat: float or str
 :param lng: The longitude of the location.
 :type lng: float or str
 :param date: The month in which the crimes were reported in the format
 ``YYYY-MM`` (the latest date is used if ``None``).
 :type date: str or None
 :param category: The category of the crimes to filter by (either by ID
 or CrimeCategory object)
 :type category: str or CrimeCategory
 :return: A ``list`` of crimes which were reported within 1 mile of the
 specified location, in the given month (optionally filtered by
 category).
 """

 if isinstance(category, CrimeCategory):
 category = category.id
 method = 'crimes-street/%s' % (category or 'all-crime')
 kwargs = {
 'lat': lat,
 'lng': lng,
 }
 crimes = []
 if date is not None:
 kwargs['date'] = date
 for c in self.service.request('GET', method, **kwargs):
 crimes.append(Crime(self, data=c))
 return crimes

[docs] def get_crimes_area(self, points, date=None, category=None):
 """
 Get crimes within a custom area. Uses the crime-street_ API call.

 .. _crime-street: https//data.police.uk/docs/method/crime-street/

 :rtype: list
 :param list points: A ``list`` of ``(lat, lng)`` tuples.
 :param date: The month in which the crimes were reported in the format
 ``YYYY-MM`` (the latest date is used if ``None``).
 :type date: str or None
 :param category: The category of the crimes to filter by (either by ID
 or CrimeCategory object)
 :type category: str or CrimeCategory
 :return: A ``list`` of crimes which were reported within the specified
 boundary, in the given month (optionally filtered by
 category).
 """

 if isinstance(category, CrimeCategory):
 category = category.id
 method = 'crimes-street/%s' % (category or 'all-crime')
 kwargs = {
 'poly': encode_polygon(points),
 }
 crimes = []
 if date is not None:
 kwargs['date'] = date
 for c in self.service.request('POST', method, **kwargs):
 crimes.append(Crime(self, data=c))
 return crimes

[docs] def get_crimes_location(self, location_id, date=None):
 """
 Get crimes at a particular snap-point location. Uses the
 crimes-at-location_ API call.

 .. _crimes-at-location:
 https://data.police.uk/docs/method/crimes-at-location/

 :rtype: list
 :param int location_id: The ID of the location to get crimes for.
 :param date: The month in which the crimes were reported in the format
 ``YYYY-MM`` (the latest date is used if ``None``).
 :type date: str or None
 :return: A ``list`` of :class:`Crime` objects which were snapped to the
 :class:`Location` with the specified ID in the given month.
 """

 kwargs = {
 'location_id': location_id,
 }
 crimes = []
 if date is not None:
 kwargs['date'] = date
 for c in self.service.request('GET', 'crimes-at-location', **kwargs):
 crimes.append(Crime(self, data=c))
 return crimes

[docs] def get_crimes_no_location(self, force, date=None, category=None):
 """
 Get crimes with no location for a force. Uses the crimes-no-location_
 API call.

 .. _crimes-no-location:
 https://data.police.uk/docs/method/crimes-no-location/

 :rtype: list
 :param force: The force to get no-location crimes for.
 :type force: str or Force
 :param date: The month in which the crimes were reported in the format
 ``YYYY-MM`` (the latest date is used if ``None``).
 :type date: str or None
 :param category: The category of the crimes to filter by (either by ID
 or CrimeCategory object)
 :type category: str or CrimeCategory
 :return: A ``list`` of :class:`crime.NoLocationCrime` objects which
 were reported in the given month, by the specified force, but
 which don't have a location.
 """

 if not isinstance(force, Force):
 force = Force(self, id=force)

 if isinstance(category, CrimeCategory):
 category = category.id

 kwargs = {
 'force': force.id,
 'category': category or 'all-crime',
 }
 crimes = []
 if date is not None:
 kwargs['date'] = date
 for c in self.service.request('GET', 'crimes-no-location', **kwargs):
 crimes.append(NoLocationCrime(self, data=c))
 return crimes

 def get_stops_within_area(self, points, **kwargs):
 return [Stop(self, data) for data in self.service.request(
 'POST', 'stops-street', poly=encode_polygon(points), **kwargs)]

 def get_stops_within_radius(self, point, **kwargs):
 return [Stop(self, data) for data in self.service.request(
 'POST', 'stops-street', lat=point[0], lng=point[1], **kwargs)]

 def get_stops_location(self, location_id, **kwargs):
 return [Stop(self, data) for data in self.service.request(
 'POST', 'stops-at-location', location_id=location_id, **kwargs)]

 def get_stops_no_location(self, force, **kwargs):
 if not isinstance(force, Force):
 force = Force(self, id=force)

 return [Stop(self, data) for data in self.service.request(
 'GET', 'stops-no-location', force=force.id, **kwargs)]

 def get_stops_force(self, force, date=None, **kwargs):
 if not isinstance(force, Force):
 force = Force(self, id=force)

 return [Stop(self, data) for data in self.service.request(
 'GET', 'stops-force', force=force.id, date=date, **kwargs)]

 © Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

_modules/police_api/stop_and_search.html

 Navigation

 		
 index

 		
 modules |

 		Police API Client 1.0.1 documentation »

 		Module code »

 		police_api »

 Source code for police_api.stop_and_search

from dateutil.parser import parse as parse_date

from .resource import SimpleResource
from .crime import Location

[docs]class Stop(SimpleResource):
 """
 A stop and search incident. Only a few of the attributes here are
 guaranteed to be provided by forces, so take care around any ``None``
 values you may encounter.

 .. doctest::

 >>> from police_api import PoliceAPI
 >>> api = PoliceAPI()
 >>> def sort_stops_by_date(unsorted_stops):
 ... return(sorted(unsorted_stops, key=lambda s: s.datetime))
 >>> stops = sort_stops_by_date(
 ... api.get_stops_force('metropolitan', '2015-07')
 ...)

 .. attribute:: age_range

 :type: str
 Human-readable string representing the age range of the person stopped.

 .. doctest::

 >>> print(stops[0].age_range)
 25-34

 .. attribute:: object_of_search

 :type: str
 The officer's justification for conducting the search.

 .. attribute:: outcome

 :type: str
 The outcome of the stop.

 .. doctest::

 >>> print(stops[0].outcome)
 Offender given drugs possession warning

 .. attribute:: outcome_linked_to_object_of_search

 :type: bool
 Whether the outcome of the stop was related to the reason the stop was
 conducted.

 .. attribute:: legislation

 :type: str
 The legislation allowing this particular stop.

 .. doctest::

 >>> print(stops[0].legislation)
 Misuse of Drugs Act 1971 (section 23)

 .. attribute:: type

 :type: str
 What type of search this was (person, vehicle, etc.).

 .. doctest::

 >>> print(stops[0].type)
 Person search

 .. attribute:: involved_person

 :type: bool
 Whether or not a person was searched in this stop.

 .. doctest::

 >>> stops[0].involved_person
 True
 >>> vehicle_stop = [
 ... s for s in stops if s.type == 'Vehicle search'
 ...][0]
 >>> vehicle_stop.involved_person
 False

 .. attribute:: operation

 :type: bool
 Whether this stop was part of a policing operation.

 .. attribute:: operation_name

 :type: str
 The name of the policing operation this stop was part of, if
 applicable.

 .. attribute:: self_defined_ethnicity

 :type: str
 The ethnicity of the person stopped, as reported by the person stopped.

 .. doctest::

 >>> print(stops[0].self_defined_ethnicity)
 Black or Black British - Any other Black ethnic background (B9)

 .. attribute:: officer_defined_ethnicity

 :type: str
 The ethnicity of the person stopped, as reported by the officer who
 conducted the stop.

 .. doctest::

 >>> print(stops[0].officer_defined_ethnicity)
 Black

 .. attribute:: gender

 :type: str
 The gender of the person stopped. It is not clear if this is as
 reported by the officer or the person stopped.

 .. doctest::

 >>> print(stops[0].gender)
 Male

 .. attribute:: datetime

 :type: datetime
 When the stop was conducted. Note that if a force appears to only
 conduct stops at midnight, that probably means they don't record the
 time of stops.

 .. doctest::

 >>> print(stops[0].datetime.isoformat())
 2015-07-01T00:05:00

 .. attribute:: location

 :type: :class:`Location`
 The approximate location of the stop.

 .. attribute:: removal_of_more_than_outer_clothing

 :type: bool
 Whether significant clothing was removed in order to carry out the
 search.

 """

 fields = [
 'age_range', 'outcome', 'legislation', 'type', 'operation',
 'operation_name', 'self_defined_ethnicity', 'gender', 'datetime',
 'outcome_linked_to_object_of_search', 'location', 'involved_person',
 'removal_of_more_than_outer_clothing', 'officer_defined_ethnicity',
 'object_of_search',
]

 def __str__(self):
 return '<Stop> at %s' % self.datetime

 def _hydrate_location(self, data):
 return Location(self.api, data=data)

 def _hydrate_datetime(self, data):
 if data:
 return parse_date(data)

 © Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_modules/police_api/crime.html

 Navigation

 		
 index

 		
 modules |

 		Police API Client 1.0.1 documentation »

 		Module code »

 		police_api »

 Source code for police_api.crime

from .resource import SimpleResource

[docs]class CrimeCategory(SimpleResource):
 """
 A crime category. Uses the crime-categories_ API call.

 :param PoliceAPI api: The API instance to use.
 :param dict data: The attributes that will be copied to this instance.

 .. attribute:: id

 :type: str

 A slug representing this crime category.

 .. attribute:: name

 :type: str

 The name of this crime category.

 .. _crime-categories: https://data.police.uk/docs/method/crime-categories/
 """

 fields = ['id', 'url', 'name']

 def __init__(self, api, data={}):
 if data:
 data['id'] = data.get('url')
 super(CrimeCategory, self).__init__(api, data=data)

 def __str__(self):
 return '<CrimeCategory> %s' % self.name

 def __eq__(self, other):
 return isinstance(other, CrimeCategory) and self.id == other.id

 def __hash__(self):
 return hash(self.id)

[docs]class OutcomeCategory(SimpleResource):
 """
 An outcome category.

 :param PoliceAPI api: The API instance to use.
 :param dict data: The attributes that will be copied to this instance.

 .. attribute:: id

 :type: str

 A slug representing this outcome category.

 .. attribute:: name

 :type: str

 The name of this outcome category.
 """
 fields = ['id', 'code', 'name']

 def __init__(self, api, data={}):
 if data:
 data['id'] = data.get('code')
 super(OutcomeCategory, self).__init__(api, data=data)

 def __str__(self):
 return '<OutcomeCategory> %s' % self.name

 def __eq__(self, other):
 return isinstance(other, OutcomeCategory) and self.name == other.name

 def __hash__(self):
 return hash(self.name)

[docs]class NoLocationCrime(SimpleResource):
 """
 A crime with no location. Retrieved via the crimes-no-location_ API call.

 .. _crimes-no-location:
 https://data.police.uk/docs/method/crimes-no-location/
 """
 fields = ['id', 'context', 'month']

 def _hydrate_category(self, id):
 return self.api.get_crime_category(id, date=self.month)

 def __str__(self):
 return '<NoLocationCrime> %s' % self.id

[docs]class Crime(NoLocationCrime):
 """
 An individual crime. Uses the outcomes-for-crime_ API call.

 :param PoliceAPI api: The API instance to use.
 :param dict data: The attributes that will be copied to this instance.

 .. _outcomes-for-crime:
 https://data.police.uk/docs/method/outcomes-for-crime/

 .. attribute:: id

 :type: int

 This crime's unique internal ID (not used elsewhere in the data or
 API).

 .. attribute:: persistent_id

 :type: str

 This crime's persistent ID, which is referenced by the outcomes data
 and in the CSV files. Not guaranteed to be unique.

 .. attribute:: month

 :type: str

 The month that this crime was reported in (``%m-%d``).

 .. attribute:: category

 :type: :class:`CrimeCategory`

 The category of this crime.

 .. attribute:: location

 :type: :class:`Location`

 The anonymised location that this crime occurred closest to.

 .. attribute:: context

 :type: str

 Additional data about this crime provided by the reporting force.

 .. attribute:: outcome_status

 :type: :class:`Crime.Outcome`

 The latest outcome to have been recorded for this crime.

 .. attribute:: outcomes

 :type: list

 A ``list`` of :class:`Outcome` objects for this crime, in the order
 they occurred.
 """

 _outcomes = None
 fields = ['month', 'category', 'id', 'persistent_id', 'location',
 'location_type', 'location_subtype', 'context', 'outcome_status']

[docs] class Outcome(SimpleResource):
 """
 An outcome for an individual crime.

 :param PoliceAPI api: The API instance to use.
 :param dict data: The attributes that will be copied to this instance.

 .. attribute:: crime

 :type: :class:`Crime`

 The crime that this outcome refers to.

 .. attribute:: category

 :type: :class:`OutcomeCategory`

 The category of this particular outcome.

 .. attribute:: date

 :type: str

 The month that this outcome was recorded in (``%m-%d``).
 """
 crime = None
 fields = ['crime', 'category', 'date']

 def _hydrate_category(self, data):
 if not isinstance(data, dict):
 data = {
 'name': data,
 }
 return OutcomeCategory(self.api, data)

 def __str__(self):
 return '<Crime.Outcome> %s' % self.category.name

 def _get_outcomes(self):
 outcomes = []

 if not self.persistent_id:
 return outcomes

 method = 'outcomes-for-crime/%s' % self.persistent_id
 for o in self.api.service.request('GET', method)['outcomes']:
 o.update({
 'crime': self,
 })
 outcomes.append(self.Outcome(self.api, o))

 if outcomes is None:
 return []
 else:
 return outcomes

 @property
 def outcomes(self):
 if self._outcomes is None:
 self._outcomes = self._get_outcomes()
 return self._outcomes

 def _hydrate_location(self, data):
 return Location(self.api, data=data)

 def _hydrate_outcome_status(self, data):
 if data:
 data.update({
 'crime': self,
 })
 return self.Outcome(self.api, data)

 def _hydrate(self, data):
 if data['location']:
 data['location'].update({
 'type': data['location_type'],
 'subtype': data['location_subtype'],
 })
 return super(Crime, self)._hydrate(data)

 def __str__(self):
 return '<Crime> %s' % self.id

[docs]class Location(SimpleResource):
 """
 An anonymised location, to which crimes are "snapped". Information about
 how location anonymisation works is published on the `data.police.uk about
 page`_.

 .. _data.police.uk about page:
 https://data.police.uk/about/#location-anonymisation

 :param PoliceAPI api: The API instance to use.
 :param dict data: The attributes that will be copied to this instance.

 .. attribute:: id

 :type: int

 This location's unique ID.

 .. attribute:: name

 :type: str

 The name of this location (e.g. ``On or near Petrol Station``)

 .. attribute:: latitude

 :type: str

 This location's latitude.

 .. attribute:: longitude

 :type: str

 This location's longitude.

 .. attribute:: type

 :type: str

 This location's type (either ``'BTP'`` or ``'Force'``, indicating
 whether the location contains crimes snapped from the British Transport
 Police or all other forces).
 """
 fields = ['latitude', 'longitude', 'street', 'type', 'subtype']

 def __init__(self, *args, **kwargs):
 super(Location, self).__init__(*args, **kwargs)

 # the 'street' dictionary contains the location's id and name
 self.id = getattr(self, 'street', {}).get('id')
 self.name = getattr(self, 'street', {}).get('name')

[docs] def is_btp(self):
 """
 :rtype: bool
 :return: ``True`` if this location's type is ``'BTP'``, and ``False``
 otherwise.
 """
 return self.type == 'BTP'

 def __str__(self):
 return '<Location> %s' % self.id

 def __eq__(self, other):
 return isinstance(other, Location) and self.id == other.id

 def __hash__(self):
 return hash(self.id)

 © Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/down.png

_static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Police API Client 1.0.1 documentation »

 All modules for which code is available

		police_api

		police_api.crime

		police_api.forces

		police_api.neighbourhoods

		police_api.stop_and_search

 © Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Police API Client 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2015, Rock Kitchen Harris.
 Created using Sphinx 1.3.1.

_static/up.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/up-pressed.png

