

Welcome to polarTransform’s documentation!

Contents:

	Getting Started
	Introduction

	License

	Installing

	Test and coverage

	Using polarTransform

	Support

	Next Steps

	User Guide
	Example 1

	Example 2

	Reference Guide
	Table of Contents

	polarTransform Module

Indices and tables

	Index

	Module Index

Getting Started

Introduction

polarTransform is a Python package for converting images between the polar and Cartesian domain. It contains many
features such as specifying the start/stop radius and angle, interpolation order (bicubic, linear, nearest, etc), and
much more.

License

polarTransform has an MIT-based license [https://github.com/addisonElliott/polarTransform/blob/master/LICENSE].

Installing

Prerequisites

	Python 3

	
	Dependencies:

	
	numpy

	scipy

	scikit-image

Installing polarTransform

polarTransform is currently available on PyPi [https://pypi.python.org/pypi/polarTransform/]. The simplest way to
install alone is using pip at a command line:

pip install polarTransform

which installs the latest release. To install the latest code from the repository (usually stable, but may have
undocumented changes or bugs):

pip install git+https://github.com/addisonElliott/polarTransform.git

For developers, you can clone the pydicom repository and run the setup.py file. Use the following commands to get
a copy from GitHub and install all dependencies:

git clone pip install git+https://github.com/addisonElliott/polarTransform.git
cd polarTransform
pip install .

or, for the last line, instead use:

pip install -e .

to install in ‘develop’ or ‘editable’ mode, where changes can be made to the local working code and Python will use
the updated polarTransform code.

Test and coverage

Run the following command in the base directory to run the tests:

python -m unittest discover -v polarTransform/tests

Using polarTransform

Once installed, the package can be imported at a Python command line or used in your own Python program with import polarTransform. See the User Guide for more details of how to use the package.

Support

Bugs can be submitted through the issue tracker [https://github.com/addisonElliott/polarTransform/issues].

Pull requests are welcome too!

Next Steps

To start learning how to use polarTransform, see the User Guide.

User Guide

convertToPolarImage and convertToCartesianImage are the two primary functions that make up this package. The two functions are opposites of one another, reversing the action that the other function does.

As the names suggest, the two functions convert an image from the cartesian or polar domain to the other domain with a given set of parameters. The power of these functions is that the user can specify the resulting image resolution, interpolation order, initial and final radii or angles and much much more. See the Reference Guide for more information on the specific parameters that are supported.

Since there are quite a few parameters that can be specified for the conversion functions, the class ImageTransform is created and returned from the convertToPolarImage or convertToCartesianImage functions (along with the converted image) that contains the arguments specified. The benefit of this class is that if one wants to convert the image back to another domain or convert points on either image to/from the other domain, they can simply call the functions within the ImageTransform class without specifying all of the arguments again.

Example 1

Let us take a B-mode echocardiogram and convert it to the polar domain. This is essentially reversing the scan conversion done internally by the ultrasound machine.

Here is the B-mode image:

[image: B-mode echocardiogram of short-axis apex view]
import polarTransform
import matplotlib.pyplot as plt
import imageio

cartesianImage = imageio.imread('IMAGE_PATH_HERE')

polarImage, ptSettings = polarTransform.convertToPolarImage(cartesianImage, center=[401, 365])
plt.imshow(polarImage, origin='lower')

Resulting polar domain image:

[image: Polar image of echocardiogram of short-axis apex view]

Example 2

Input image:

[image: Cartesian image]
import polarTransform
import matplotlib.pyplot as plt
import imageio

verticalLinesImage = imageio.imread('IMAGE_PATH_HERE')

polarImage, ptSettings = polarTransform.convertToPolarImage(verticalLinesImage, initialRadius=30,
 finalRadius=100, initialAngle=2 / 4 * np.pi,
 finalAngle=5 / 4 * np.pi)

cartesianImage = ptSettings.convertToCartesianImage(polarImage)

plt.figure()
plt.imshow(polarImage, origin='lower')

plt.figure()
plt.imshow(cartesianImage, origin='lower')

Resulting polar domain image:

[image: Polar image]
Converting back to the cartesian image results in:

[image: Cartesian image]

Reference Guide

Table of Contents

	polarTransform.convertToCartesianImage(image)

	Convert polar image to cartesian image.

	polarTransform.convertToPolarImage(image[, …])

	Convert cartesian image to polar image.

	polarTransform.getCartesianPointsImage(…)

	Convert list of polar points from image to cartesian image points based on transform metadata

	polarTransform.getPolarPointsImage(points, …)

	Convert list of cartesian points from image to polar image points based on transform metadata

	polarTransform.ImageTransform(center, …)

	Class to store settings when converting between cartesian and polar domain

polarTransform Module

	
polarTransform.convertToCartesianImage(image, center=None, initialRadius=None, finalRadius=None, initialAngle=None, finalAngle=None, imageSize=None, order=3, border='constant', borderVal=0.0, useMultiThreading=False, settings=None)

	Convert polar image to cartesian image.

Using a polar image, this function creates a cartesian image. This function is versatile because it can
automatically calculate an appropriate cartesian image size and center given the polar image. In addition,
parameters for converting to the polar domain are necessary for the conversion back to the cartesian domain.

	Parameters

	
	image(N, M) or (N, M, P) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Polar image to convert to cartesian domain

Note

For a 3D array, polar transformation is applied separately across each 2D slice

Note

If an alpha band (4th channel of image is present), then it will be converted. Typically, this is
unwanted, so the recommended solution is to transform the first 3 channels and set the 4th channel to
fully on.

	centerstr [https://docs.python.org/3/library/stdtypes.html#str] or (2,) list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int [https://docs.python.org/3/library/functions.html#int], optional

	Specifies the center in the cartesian image to use as the origin in polar domain. The center in the
cartesian domain will be (0, 0) in the polar domain.

If center is not set, then it will default to middle-middle. If the image size is None [https://docs.python.org/3/library/constants.html#None], the
center is calculated after the image size is determined.

For relative positioning within the image, center can be one of the string values in the table below. The
quadrant column contains the visible quadrants for the given center. initialAngle and finalAngle must contain
at least one of the quadrants, otherwise an error will be thrown because the resulting cartesian image is blank.
An example cartesian image is given below with annotations to what the center will be given a center string.

Valid center strings

	Value

	Quadrant

	Location in image

	top-left

	IV

	1

	top-middle

	III, IV

	2

	top-right

	III

	3

	middle-left

	I, IV

	4

	middle-middle

	I, II, III, IV

	5

	middle-right

	II, III

	6

	bottom-left

	I

	7

	bottom-middle

	I, II

	8

	bottom-right

	II

	9

[image: Center locations for center strings]

	initialRadiusint [https://docs.python.org/3/library/functions.html#int], optional

	Starting radius in pixels from the center of the cartesian image in the polar image

The polar image begins at this radius, i.e. the first row of the polar image corresponds to this
starting radius.

If initialRadius is not set, then it will default to 0.

	finalRadiusint [https://docs.python.org/3/library/functions.html#int], optional

	Final radius in pixels from the center of the cartesian image in the polar image

The polar image ends at this radius, i.e. the last row of the polar image corresponds to this ending
radius.

Note

The polar image does not include this radius. It includes all radii starting
from initial to final radii excluding the final radius. Rather, it will stop one step size before
the final radius. Assuming the radial resolution (see radiusSize) is small enough, this should not
matter.

If finalRadius is not set, then it will default to the maximum radius which is the size of the radial (1st)
dimension of the polar image.

	initialAnglefloat [https://docs.python.org/3/library/functions.html#float], optional

	Starting angle in radians in the polar image

The polar image begins at this angle, i.e. the first column of the polar image corresponds to this
starting angle.

Radian angle is with respect to the x-axis and rotates counter-clockwise. The angle should be in the range of
0 to \(2\pi\).

If initialAngle is not set, then it will default to 0.0.

	finalAnglefloat [https://docs.python.org/3/library/functions.html#float], optional

	Final angle in radians in the polar image

The polar image ends at this angle, i.e. the last column of the polar image corresponds to this
ending angle.

Note

The polar image does not include this angle. It includes all angles starting
from initial to final angle excluding the final angle. Rather, it stops one step size before
the final angle. Assuming the angular resolution (see angleSize) is small enough, this should not
matter.

Radian angle is with respect to the x-axis and rotates counter-clockwise. The angle should be in the range of
0 to \(2\pi\).

If finalAngle is not set, then it will default to \(2\pi\).

	imageSize(2,) list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int [https://docs.python.org/3/library/functions.html#int], optional

	Desired size of cartesian image where 1st dimension is number of rows and 2nd dimension is number of columns

If imageSize is not set, then it defaults to the size required to fit the entire polar image on a cartesian
image.

	orderint [https://docs.python.org/3/library/functions.html#int] (0-5), optional

	The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

The following orders have special names:

	0 - nearest neighbor

	1 - bilinear

	3 - bicubic

	border{‘constant’, ‘nearest’, ‘wrap’, ‘reflect’}, optional

	Polar points outside the cartesian image boundaries are filled according to the given mode.

Default is ‘constant’

The following table describes the mode and expected output when seeking past the boundaries. The input column
is the 1D input array whilst the extended columns on either side of the input array correspond to the expected
values for the given mode if one extends past the boundaries.

Valid border modes and expected output

	Mode

	Ext.

	Input

	Ext.

	mirror

	4 3 2

	1 2 3 4 5 6 7 8

	7 6 5

	reflect

	3 2 1

	1 2 3 4 5 6 7 8

	8 7 6

	nearest

	1 1 1

	1 2 3 4 5 6 7 8

	8 8 8

	constant

	0 0 0

	1 2 3 4 5 6 7 8

	0 0 0

	wrap

	6 7 8

	1 2 3 4 5 6 7 8

	1 2 3

Refer to scipy.ndimage.map_coordinates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates] for more details on this argument.

	borderValsame datatype as image, optional

	Value used for polar points outside the cartesian image boundaries if border = ‘constant’.

Default is 0.0

	useMultiThreadingbool [https://docs.python.org/3/library/functions.html#bool], optional

	Whether to use multithreading when applying transformation for 3D images. This considerably speeds up the
execution time for large images but adds overhead for smaller 3D images.

Default is False [https://docs.python.org/3/library/constants.html#False]

	settingsImageTransform, optional

	Contains metadata for conversion between polar and cartesian image.

Settings contains many of the arguments in convertToPolarImage() and convertToCartesianImage() and
provides an easy way of passing these parameters along without having to specify them all again.

Warning

Cleaner and more succint to use ImageTransform.convertToCartesianImage()

If settings is not specified, then the other arguments are used in this function and the defaults will be
calculated if necessary. If settings is given, then the values from settings will be used.

	Returns

	
	cartesianImage(N, M) or (N, M, P) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Cartesian image (3D cartesian image if 3D input image is given)

	settingsImageTransform

	Contains metadata for conversion between polar and cartesian image.

Settings contains many of the arguments in convertToPolarImage() and convertToCartesianImage() and
provides an easy way of passing these parameters along without having to specify them all again.

	
polarTransform.convertToPolarImage(image, center=None, initialRadius=None, finalRadius=None, initialAngle=None, finalAngle=None, radiusSize=None, angleSize=None, order=3, border='constant', borderVal=0.0, useMultiThreading=False, settings=None)

	Convert cartesian image to polar image.

Using a cartesian image, this function creates a polar domain image where the first dimension is radius and
second dimension is the angle. This function is versatile because it allows different starting and stopping
radii and angles to extract the polar region you are interested in.

Note

Traditionally images are loaded such that the origin is in the upper-left hand corner. In these cases the
initialAngle and finalAngle will rotate clockwise from the x-axis. For simplicitly, it is
recommended to flip the image along first dimension before passing to this function.

	Parameters

	
	image(N, M) or (N, M, P) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Cartesian image to convert to polar domain

Note

For a 3D array, polar transformation is applied separately across each 2D slice

Note

If an alpha band (4th channel of image is present), then it will be converted. Typically, this is
unwanted, so the recommended solution is to transform the first 3 channels and set the 4th channel to
fully on.

	center(2,) list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of int [https://docs.python.org/3/library/functions.html#int], optional

	Specifies the center in the cartesian image to use as the origin in polar domain. The center in the
cartesian domain will be (0, 0) in the polar domain.

The center is structured as (x, y) where the first item is the x-coordinate and second item is the y-coordinate.

If center is not set, then it will default to round(image.shape[::-1] / 2).

	initialRadiusint [https://docs.python.org/3/library/functions.html#int], optional

	Starting radius in pixels from the center of the cartesian image that will appear in the polar image

The polar image will begin at this radius, i.e. the first row of the polar image will correspond to this
starting radius.

If initialRadius is not set, then it will default to 0.

	finalRadiusint [https://docs.python.org/3/library/functions.html#int], optional

	Final radius in pixels from the center of the cartesian image that will appear in the polar image

The polar image will end at this radius, i.e. the last row of the polar image will correspond to this ending
radius.

Note

The polar image will not include this radius. It will include all radii starting
from initial to final radii excluding the final radius. Rather, it will stop one step size before
the final radius. Assuming the radial resolution (see radiusSize) is small enough, this should not
matter.

If finalRadius is not set, then it will default to the maximum radius of the cartesian image. Using the
furthest corner from the center, the finalRadius can be calculated as:

\[finalRadius = \sqrt{((X_{max} - X_{center})^2 + (Y_{max} - Y_{center})^2)}\]

	initialAnglefloat [https://docs.python.org/3/library/functions.html#float], optional

	Starting angle in radians that will appear in the polar image

The polar image will begin at this angle, i.e. the first column of the polar image will correspond to this
starting angle.

Radian angle is with respect to the x-axis and rotates counter-clockwise. The angle should be in the range of
0 to \(2\pi\).

If initialAngle is not set, then it will default to 0.0.

	finalAnglefloat [https://docs.python.org/3/library/functions.html#float], optional

	Final angle in radians that will appear in the polar image

The polar image will end at this angle, i.e. the last column of the polar image will correspond to this
ending angle.

Note

The polar image will not include this angle. It will include all angle starting
from initial to final angle excluding the final angle. Rather, it will stop one step size before
the final angle. Assuming the angular resolution (see angleSize) is small enough, this should not
matter.

Radian angle is with respect to the x-axis and rotates counter-clockwise. The angle should be in the range of
0 to \(2\pi\).

If finalAngle is not set, then it will default to \(2\pi\).

	radiusSizeint [https://docs.python.org/3/library/functions.html#int], optional

	Size of polar image for radial (1st) dimension

This in effect determines the resolution of the radial dimension of the polar image based on the
initialRadius and finalRadius. Resolution can be calculated using equation below in radial
px per cartesian px:

\[radialResolution = \frac{radiusSize}{finalRadius - initialRadius}\]

If radiusSize is not set, then it will default to the minimum size necessary to ensure that image information
is not lost in the transformation. The minimum resolution necessary can be found by finding the smallest
change in radius from two connected pixels in the cartesian image. Through experimentation, there is a
surprisingly close relationship between the maximum difference from width or height of the cartesian image to
the center times two.

The radiusSize is calculated based on this relationship and is proportional to the initialRadius and
finalRadius given.

	angleSizeint [https://docs.python.org/3/library/functions.html#int], optional

	Size of polar image for angular (2nd) dimension

This in effect determines the resolution of the angular dimension of the polar image based on the
initialAngle and finalAngle. Resolution can be calculated using equation below in angular
px per cartesian px:

\[angularResolution = \frac{angleSize}{finalAngle - initialAngle}\]

If angleSize is not set, then it will default to the minimum size necessary to ensure that image information
is not lost in the transformation. The minimum resolution necessary can be found by finding the smallest
change in angle from two connected pixels in the cartesian image.

For a cartesian image with either dimension greater than 500px, the angleSize is set to be two times larger
than the largest dimension proportional to initialAngle and finalAngle. Otherwise, for a
cartesian image with both dimensions less than 500px, the angleSize is set to be four times larger the
largest dimension proportional to initialAngle and finalAngle.

Note

The above logic estimates the necessary angleSize to reduce image information loss. No algorithm
currently exists for determining the required angleSize.

	orderint [https://docs.python.org/3/library/functions.html#int] (0-5), optional

	The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

The following orders have special names:

	0 - nearest neighbor

	1 - bilinear

	3 - bicubic

	border{‘constant’, ‘nearest’, ‘wrap’, ‘reflect’}, optional

	Polar points outside the cartesian image boundaries are filled according to the given mode.

Default is ‘constant’

The following table describes the mode and expected output when seeking past the boundaries. The input column
is the 1D input array whilst the extended columns on either side of the input array correspond to the expected
values for the given mode if one extends past the boundaries.

Valid border modes and expected output

	Mode

	Ext.

	Input

	Ext.

	mirror

	4 3 2

	1 2 3 4 5 6 7 8

	7 6 5

	reflect

	3 2 1

	1 2 3 4 5 6 7 8

	8 7 6

	nearest

	1 1 1

	1 2 3 4 5 6 7 8

	8 8 8

	constant

	0 0 0

	1 2 3 4 5 6 7 8

	0 0 0

	wrap

	6 7 8

	1 2 3 4 5 6 7 8

	1 2 3

Refer to scipy.ndimage.map_coordinates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates] for more details on this argument.

	borderValsame datatype as image, optional

	Value used for polar points outside the cartesian image boundaries if border = ‘constant’.

Default is 0.0

	useMultiThreadingbool [https://docs.python.org/3/library/functions.html#bool], optional

	Whether to use multithreading when applying transformation for 3D images. This considerably speeds up the
execution time for large images but adds overhead for smaller 3D images.

Default is False [https://docs.python.org/3/library/constants.html#False]

	settingsImageTransform, optional

	Contains metadata for conversion between polar and cartesian image.

Settings contains many of the arguments in convertToPolarImage() and convertToCartesianImage() and
provides an easy way of passing these parameters along without having to specify them all again.

Warning

Cleaner and more succint to use ImageTransform.convertToPolarImage()

If settings is not specified, then the other arguments are used in this function and the defaults will be
calculated if necessary. If settings is given, then the values from settings will be used.

	Returns

	
	polarImage(N, M) or (N, M, P) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Polar image where first dimension is radii and second dimension is angle (3D polar image if 3D input image
is given)

	settingsImageTransform

	Contains metadata for conversion between polar and cartesian image.

Settings contains many of the arguments in convertToPolarImage() and convertToCartesianImage() and
provides an easy way of passing these parameters along without having to specify them all again.

	
class polarTransform.ImageTransform(center, initialRadius, finalRadius, initialAngle, finalAngle, cartesianImageSize, polarImageSize)

	Class to store settings when converting between cartesian and polar domain

	
convertToCartesianImage(image, order=3, border='constant', borderVal=0.0, useMultiThreading=False)

	Convert polar image to cartesian image.

Using a polar image, this function creates a cartesian image. This function is versatile because it can
automatically calculate an appropiate cartesian image size and center given the polar image. In addition,
parameters for converting to the polar domain are necessary for the conversion back to the cartesian domain.

	Parameters

	
	image(N, M) or (N, M, P) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Polar image to convert to cartesian domain

Note

For a 3D array, polar transformation is applied separately across each 2D slice

Note

If an alpha band (4th channel of image is present), then it will be converted. Typically, this is
unwanted, so the recommended solution is to transform the first 3 channels and set the 4th channel to
fully on.

	orderint [https://docs.python.org/3/library/functions.html#int] (0-5), optional

	The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

The following orders have special names:

	0 - nearest neighbor

	1 - bilinear

	3 - bicubic

	border{‘constant’, ‘nearest’, ‘wrap’, ‘reflect’}, optional

	Polar points outside the cartesian image boundaries are filled according to the given mode.

Default is ‘constant’

The following table describes the mode and expected output when seeking past the boundaries. The input
column is the 1D input array whilst the extended columns on either side of the input array correspond to
the expected values for the given mode if one extends past the boundaries.

Valid border modes and expected output

	Mode

	Ext.

	Input

	Ext.

	mirror

	4 3 2

	1 2 3 4 5 6 7 8

	7 6 5

	reflect

	3 2 1

	1 2 3 4 5 6 7 8

	8 7 6

	nearest

	1 1 1

	1 2 3 4 5 6 7 8

	8 8 8

	constant

	0 0 0

	1 2 3 4 5 6 7 8

	0 0 0

	wrap

	6 7 8

	1 2 3 4 5 6 7 8

	1 2 3

Refer to scipy.ndimage.map_coordinates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates] for more details on this argument.

	borderValsame datatype as image, optional

	Value used for polar points outside the cartesian image boundaries if border = ‘constant’.

Default is 0.0

	useMultiThreadingbool [https://docs.python.org/3/library/functions.html#bool], optional

	Whether to use multithreading when applying transformation for 3D images. This considerably speeds up the
execution time for large images but adds overhead for smaller 3D images.

Default is False [https://docs.python.org/3/library/constants.html#False]

	Returns

	
	cartesianImage(N, M) or (N, M, P) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Cartesian image (3D cartesian image if 3D input image is given)

See also

convertToCartesianImage()

	
convertToPolarImage(image, order=3, border='constant', borderVal=0.0, useMultiThreading=False)

	Convert cartesian image to polar image.

Using a cartesian image, this function creates a polar domain image where the first dimension is radius and
second dimension is the angle. This function is versatile because it allows different starting and stopping
radii and angles to extract the polar region you are interested in.

Note

Traditionally images are loaded such that the origin is in the upper-left hand corner. In these cases the
initialAngle and finalAngle will rotate clockwise from the x-axis. For simplicitly, it is
recommended to flip the image along first dimension before passing to this function.

	Parameters

	
	image(N, M) or (N, M, P) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Cartesian image to convert to polar domain

Note

For a 3D array, polar transformation is applied separately across each 2D slice

Note

If an alpha band (4th channel of image is present), then it will be converted. Typically, this is
unwanted, so the recommended solution is to transform the first 3 channels and set the 4th channel to
fully on.

	orderint [https://docs.python.org/3/library/functions.html#int] (0-5), optional

	The order of the spline interpolation, default is 3. The order has to be in the range 0-5.

The following orders have special names:

	0 - nearest neighbor

	1 - bilinear

	3 - bicubic

	border{‘constant’, ‘nearest’, ‘wrap’, ‘reflect’}, optional

	Polar points outside the cartesian image boundaries are filled according to the given mode.

Default is ‘constant’

The following table describes the mode and expected output when seeking past the boundaries. The input
column is the 1D input array whilst the extended columns on either side of the input array correspond to
the expected values for the given mode if one extends past the boundaries.

Valid border modes and expected output

	Mode

	Ext.

	Input

	Ext.

	mirror

	4 3 2

	1 2 3 4 5 6 7 8

	7 6 5

	reflect

	3 2 1

	1 2 3 4 5 6 7 8

	8 7 6

	nearest

	1 1 1

	1 2 3 4 5 6 7 8

	8 8 8

	constant

	0 0 0

	1 2 3 4 5 6 7 8

	0 0 0

	wrap

	6 7 8

	1 2 3 4 5 6 7 8

	1 2 3

Refer to scipy.ndimage.map_coordinates() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.map_coordinates.html#scipy.ndimage.map_coordinates] for more details on this argument.

	borderValsame datatype as image, optional

	Value used for polar points outside the cartesian image boundaries if border = ‘constant’.

Default is 0.0

	Returns

	
	polarImage(N, M) or (N, M, P) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Polar image where first dimension is radii and second dimension is angle (3D polar image if 3D input image
is given)

	
getCartesianPointsImage(points)

	Convert list of polar points from image to cartesian image points based on transform metadata

Note

This does not convert from polar to cartesian points, but rather converts pixels from polar image to
pixels from cartesian image using ImageTransform.

The returned points are not rounded to the nearest point. User must do that by hand if desired.

	Parameters

	
	points(N, 2) or (2,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	List of polar points to convert to cartesian domain

First column is r and second column is theta

	Returns

	
	cartesianPoints(N, 2) or (2,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Corresponding cartesian points from polar points using ImageTransform

See also

getCartesianPointsImage(), getCartesianPoints(), getCartesianPoints2()

	
getPolarPointsImage(points)

	Convert list of cartesian points from image to polar image points based on transform metadata

Note

This does not convert from cartesian to polar points, but rather converts pixels from cartesian image to
pixels from polar image using ImageTransform.

The returned points are not rounded to the nearest point. User must do that by hand if desired.

	Parameters

	
	points(N, 2) or (2,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	List of cartesian points to convert to polar domain

First column is x and second column is y

	Returns

	
	polarPoints(N, 2) or (2,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Corresponding polar points from cartesian points using ImageTransform

See also

getPolarPointsImage(), getPolarPoints(), getPolarPoints2()

	
polarTransform.getCartesianPointsImage(points, settings)

	Convert list of polar points from image to cartesian image points based on transform metadata

Warning

Cleaner and more succinct to use ImageTransform.getCartesianPointsImage()

Note

This does not convert from polar to cartesian points, but rather converts pixels from polar image to
pixels from cartesian image using ImageTransform.

The returned points are not rounded to the nearest point. User must do that by hand if desired.

	Parameters

	
	points(N, 2) or (2,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	List of polar points to convert to cartesian domain

First column is r and second column is theta

	settingsImageTransform

	Contains metadata for conversion from polar to cartesian domain

Settings contains many of the arguments in convertToPolarImage() and convertToCartesianImage() and
provides an easy way of passing these parameters along without having to specify them all again.

	Returns

	
	cartesianPoints(N, 2) or (2,) numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Corresponding cartesian points from polar points using settings

See also

ImageTransform.getCartesianPointsImage(), getCartesianPoints(), getCartesianPoints2()

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 polarTransform	

Index

 C
 | G
 | I
 | P

C

 	
 	convertToCartesianImage() (in module polarTransform)

 	(polarTransform.ImageTransform method)

 	
 	convertToPolarImage() (in module polarTransform)

 	(polarTransform.ImageTransform method)

G

 	
 	getCartesianPointsImage() (in module polarTransform)

 	(polarTransform.ImageTransform method)

 	
 	getPolarPointsImage() (polarTransform.ImageTransform method)

I

 	
 	ImageTransform (class in polarTransform)

P

 	
 	polarTransform (module)

 _static/verticalLinesCartesianImageBorders2.png

_static/verticalLinesCartesianImage_scaled.png

_static/ajax-loader.gif

_static/verticalLinesPolarImageBorders.png

_static/verticalLinesPolarImageBorders3.png

_images/verticalLinesCartesianImage_scaled.png

_static/verticalLinesCartesianImage_scaled2.png

_images/verticalLinesPolarImage_scaled3.png
| \—

_static/verticalLinesPolarImage.png

_static/comment-close.png

_static/verticalLinesPolarImage_scaled3.png
| \—

_static/comment.png

_static/centerAnnotations.png

_static/verticalLinesPolarImage_scaled.png

_static/comment-bright.png

_static/verticalLinesPolarImage_scaled2.png

_static/down-pressed.png

_static/down.png

_images/shortAxisApex.png
MF0302, PRE 10/09/17 2:47:55 PM

MF0302

CardiGen

P4-1ciER

DR6S/M3/P1
GB2/ETH00%
MI15 TIs0.5
16.0 cm
53/50 Hz
7510
imagel

_images/shortAxisApexPolarImage.png

_images/centerAnnotations.png

_images/verticalLines.png

nav.xhtml

 Table of Contents

 		
 Welcome to polarTransform’s documentation!

 		
 Getting Started

 		
 Introduction

 		
 License

 		
 Installing

 		
 Prerequisites

 		
 Installing polarTransform

 		
 Test and coverage

 		
 Using polarTransform

 		
 Support

 		
 Next Steps

 		
 User Guide

 		
 Example 1

 		
 Example 2

 		
 Reference Guide

 		
 Table of Contents

 		
 polarTransform Module

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/shortAxisApex.png
MF0302, PRE 10/09/17 2:47:55 PM

MF0302

CardiGen

P4-1ciER

DR6S/M3/P1
GB2/ETH00%
MI15 TIs0.5
16.0 cm
53/50 Hz
7510
imagel

_static/shortAxisApexPolarImage.png

_static/verticalLines.png

