
Poio API Documentation
Release 0.3.4

Peter Bouda

May 18, 2018

Contents

1 Contents 3
1.1 Introduction to Poio API . 3
1.2 Conversion of file formats and annotation mapping . 9
1.3 Parser and Writer classes to map from and to file formats . 14
1.4 Linguistic analysis and pipelines based on GrAF graphs . 22

2 API documentation 25
2.1 PoioAPI Package . 25
2.2 PoioAPI IO Package . 28

3 Indices and tables 29

Python Module Index 31

i

ii

Poio API Documentation, Release 0.3.4

Poio API provides access to language documentation data and a wide range of annotations schemes stored in different
file formats.

The project’s homepage is: http://media.cidles.eu/poio/poio-api/

Contents 1

http://media.cidles.eu/poio/poio-api/

Poio API Documentation, Release 0.3.4

2 Contents

CHAPTER 1

Contents

1.1 Introduction to Poio API

Poio API is a free and open source Python library to access and search data from language documentation in your
linguistic analysis workflow. It converts file formats like Elan’s EAF, Toolbox files, Typecraft XML and others into
annotation graphs as defined in ISO 24612. Those graphs, for which we use an implementation called “Graph Anno-
tation Framework” (GrAF), allow unified access to linguistic data from a wide range sources.

Think of GrAF as an assembly language for linguistic annotation, then Poio API is a libray to map from and to
higher-level languages.

Poio API is developed as a part of the curation project of the F-AG 3 within CLARIN-D.

References:

• ISO 24612: http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326

• Graph Annotation Framework (GrAF): http://www.xces.org/ns/GrAF/1.0/

1.1.1 Quick Example

This block of code loads a Elan EAF file as annotation graph and writes the data as html table into a file:

imports
import poioapi.annotationgraph

Load the data from EAF file
ag = poioapi.annotationgraph.AnnotationGraph.from_elan("elan-example3.eaf")

Output as html
import codecs
f = codecs.open("example.html", "w", "utf-8")
f.write(ag.as_html_table(False, True))
f.close()

3

http://de.clarin.eu/en/discipline-specific-working-groups/wg-3-linguistic-fieldwork-anthropology-language-typology/curation-project-1.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326
http://www.xces.org/ns/GrAF/1.0/

Poio API Documentation, Release 0.3.4

To try it out you may download the example file from the Elan homepage.

1.1.2 Data Structure Types

We use a data type called DataStructureType to represent annotation schemes in a tree. A simple data structure type
describing that the researcher wants to tokenize a text into words before adding a word-for-word translation and a
translation for the whole utterance looks like this:

['utterance', ['word', 'wfw'], 'translation']

A slightly more complex annotation schema is GRAID (Grammatical Relations and Animacy in Discourse), developed
by Geoffrey Haig and Stefan Schnell. GRAID adds the notion of clause units as an intermediate layer between
utterance and word and three more annotation tiers on different levels:

['utterance',
['clause unit',

['word', 'wfw', 'graid1'],
'graid2'],

'translation', 'comment']

One advantage in representing annotation schemes through those simple trees, is that the linguists instantly understand
how such a tree works and can give a representation of “their” annotation schema. In language documentation and
general linguistics researchers tend to create ad-hoc annotation schemes fitting their background and then normally
start to create only those annotations related to their current research project. This is for example reflected in an
annotation software like ELAN, where the user can freely create tiers with any names and arrange them in custom
hierarchies. As we need to map those data into our internal representation, we try to ease the creation of custom
annotation schemes that are easy to understand for users. For this we will allow users to create their own data structure
types and derive the annotation schemes for GrAF files from those structures.

In Poio API there are several data structure types pre-defined as classes in the module poioapi.data, for example:

• poioapi.data.DataStructureTypeGraid

• poioapi.data.DataStructureTypeMorphsynt

The user of the API can of course create her own fixed data structure type, by deriving a custom class from the base
class poioapi.data.DataStructureType. In you workflow you might also create an object with your own tier hierarchy
by passing a list of lists (as in the examples above) when creating an object from DataStructureType:

import poioapi.data

my_data_structure = poioapi.data.DataStructureType(
['utterance', ['word', 'wfw'], 'translation'])

If you create an annotation graph from one of the supported file formats, the hierarchies that are present in file are
accesible via the tier_hierarchies property of the annotation graph object. As an example, we use the example file
from the Elan homepage:

import poioapi.annotationgraph

ag = poioapi.annotationgraph.AnnotationGraph.from_elan("elan-example3.eaf")
print(ag.tier_hierarchies)

Which will output:

4 Chapter 1. Contents

http://tla.mpi.nl/tools/tla-tools/elan/download/
http://tla.mpi.nl/tools/tla-tools/elan/download/
http://tla.mpi.nl/tools/tla-tools/elan/download/

Poio API Documentation, Release 0.3.4

[

['utterance..K-Spch'],

['utterance..W-Spch',
['words..W-Words',

['part_of_speech..W-POS']
],
['phonetic_transcription..W-IPA']

],

['gestures..W-RGU',
['gesture_phases..W-RGph',

['gesture_meaning..W-RGMe']
]

],

['gestures..K-RGU',
['gesture_phases..K-RGph',

['gesture_meaning..K-RGMe']
]

]

]

This is a list of tier hierarchies. In this case, there are four hierarchies in the .eaf file: two for each speaker, where one
has the root tier with utterances (utterance..K-Spch and utterance..K-Spch), the other one with the root tier for gestures
(gestures..W-RGU and gestures..K-RGU)

The user can now easily create an instance of the class DataStructureType with one of the hierarchies.

Per default, the first tier hierarchy from the file is that as the current active hierarchy (for example for queries or HTML
output). To set another tier hierarchy as the default hierarchy you can set the attribute structure_type_handler to one
of the other hierarchies in the data:

ag.structure_type_handler = poioapi.data.DataStructureType(
ag.tier_hierarchies[1])

1.1.3 Structure of GrAF graphs in Poio API

To represent data from tier-based annotations, Poio API internally uses the library graf-python to store data and an-
notations. Those data structures conform to the so-called GrAF standard and consist of nodes and edges* enriched
by **feature structures that contain the linguistic annotations. The nodes itself are linked to the primary data (text,
audio, video, . . .) via regions. The following schema pictures the content of one node:

1.1. Introduction to Poio API 5

http://media.cidles.eu/poio/graf-pthon

Poio API Documentation, Release 0.3.4

Edges are then simple connections between individual nodes that can also have an Annotation with the same feature
structures as the nodes.

Poio API only uses a subset of all possible GrAF graphs to represent tier-based annotations. That means that Poio
API will automatically only create certain edges between nodes and their annotations, to represent a parent-children
relationship between annotations that are on different tiers in the original annotation file. Poio API will not create any
additional edges between annotations on one single tier and between annotations of tiers that are not parent or child of
each other. In addition to this, Poio API will also create some fixed feature structures from the content of annotations
when you load a file. A standard string annotation (i.e. the part-of-speech tag in a Typecraft XML file) is stored as
feature annotation_value in a node. See section Example: GrAF from an Elan EAF file for an in-depth description of
such a GrAF structure when you load an Elan EAF file.

You, as a user, are of course free to create any edges or add any feature structures and features when you process the
graphs in your worklow. You have access to the GrAF object in Poio API after you loaded the content of a file into an
object of the class AnnotationGraph. The GrAF object is stored in the property graf :

imports import poioapi.annotationgraph

Load the data from EAF file ag = poioapi.annotationgraph.AnnotationGraph.from_elan(“elan-
example3.eaf”)

my_graf_object = ag.graf

. . . then do something with the GrAF object. . .

Keep in mind that probably none of your custom changes might be saved to some of the supoprted output file formats
like Elan EAF or Typecraft XML. If you want to make sure that all your data persists when reading and writing files
you should store the graphs as GrAF-XML, which will contain all information in the GrAF object:

... you did something with ag.graf ...

save it
ag.to_graf("my_graf_object.hdr")

load again
ag = poioapi.annotationgraph.AnnotationGraph.from_graf("my_graf_object.hdr")

Other file formats might only store a subset of the content of ag.graf.

6 Chapter 1. Contents

Poio API Documentation, Release 0.3.4

1.1.4 Example: GrAF from an Elan EAF file

Elan is a widely used transcription and annotation software developed at the Max-Planck-Institute in Nijmegen. Due
to its popularity the file format used by Elan, an XML format called “EAF” (“Elan Annotation Standard”), has become
the de facto standard in language documentation and is used by several project in qualitative and quantitative language
typology. Poio API fully supports to convert EAF files to GrAF annotation graphs and back again without any loss of
information.

Basically, Poio API extracts all <annotation> tags from the EAF file and converts them to GrAF nodes and annota-
tions. The <time_slot> tags in the EAF file are used to create the regions for the nodes in GrAF. The rest of the EAF
file is left intact and stored as a separate file prefix-extinfo.xml in parallel to the other GrAF files as described in section
Structure of GrAF graphs in Poio API (where prefix is again the base name of the header file of GrAF).

The structure of the GrAF files is defined by the tier hierarchy in the Elan file. As an example we will use the example
data file that you may download from the the Elan website (next to “Example Set”). If you open those files in Elan
and sort the tiers by hierarchy you will have the following tier hierarchy:

In this case, there are four root tiers with annotations: K-Spch, W-Spch, W-RGU and K-RGU. The latter three each has
several child tiers. Each tier has a linguistic type, which you can see if you click on Tier -> Change Tier Attributes. . . :

1.1. Introduction to Poio API 7

http://tla.mpi.nl/tools/tla-tools/elan/download/

Poio API Documentation, Release 0.3.4

In this case the tier K-Spch has the linguistic type utterance, and so on. These linguistic types correspond to the
names in the data structure types of Poio API (see section Data Structure Types). Which means that if you transform
an EAF file into GrAF files with Poio API it will create one file for each of the linguistic types. Each of those files
file will contain all the annotations of all the tiers that have the corresponding linguistic type. In our example, Poio
API will create one file prefix-utterance.xml that contain the annotations from the tiers K-Spch and W-Spch. The file
prefix-words.xml will then contain all annotations from tier W-Words with links to the parent annotations in prefix-
utterance.xml. You can find an example of the GrAF structure for the sample EAF file on Github.

The first annotation of the tier W-Spch with the annotation value “so you go out of the Institute to the Saint Anna
Straat.” looks like this in GrAF:

<node xml:id="utterance..W-Spch..na8">
<link targets="utterance..W-Spch..ra8"/>

</node>
<region anchors="780 4090" xml:id="utterance..W-Spch..ra8"/>

<fs>
<f name="annotation_value">so you go out of the Institute to the Saint Anna

→˓Straat.</f>
</fs>

The <node> is linked to a <region> that contains the values of the time slots of the original EAF file. The annotation
<a> for the node has a feature structure <fs> with one features <f> for the annotation value.

The first annotation of W-Spch in prefix-words.xml looks like this:

<node xml:id="words..W-Words..na23">
<link targets="words..W-Words..ra23"/>

</node>
<region anchors="780 1340" xml:id="words..W-Words..ra23"/>
<edge from="utterance..W-Spch..na8" to="words..W-Words..na23" xml:id="ea23"/>

<fs>
<f name="annotation_value">so</f>

</fs>

The node for the word annotation is similar to the utterance node, except for an additional <edge> tag that links the
node to the corresponding utterance node. Nodes like this are created for alle the annotations in the EAF file. When
the original annotation does not link to the video or audio file via a timeslot, for example because it is on a tier with

8 Chapter 1. Contents

https://github.com/cidles/poio-api/tree/master/src/poioapi/tests/sample_files/elan_graf

Poio API Documentation, Release 0.3.4

a linguistic type that has the stereotype Time Subdivision, then no region and no link will be created for the node in
GrAF. As an example, here is the POS annotation that is linked to a word node via an edge:

<node xml:id="part_of_speech..W-POS..na121"/>
<edge from="words..W-Words..na24" to="part_of_speech..W-POS..na121" xml:id="ea121"/>
<a as="part_of_speech" label="part_of_speech" ref="part_of_speech..W-POS..na121"
→˓xml:id="a121">
<fs>
<f name="annotation_value">pro</f>

</fs>

References:

• EAF Format: http://www.mpi.nl/tools/elan/EAF_Annotation_Format.pdf

• Information about Elan: http://tla.mpi.nl/tools/tla-tools/elan/elan-description/

• Elan Tools and Documentation: http://tla.mpi.nl/tools/tla-tools/elan/download/

1.2 Conversion of file formats and annotation mapping

From the user’s perspective the conversion of file formats with mapping of annotations (within or across tiers) consists
of three steps:

• Generate an empty mapping file. This file will contain all annotation labels that could not be mapped to the
output file format. The mapping file is a JSON file.

• Edit the JSON file and add missing output annotation labels.

• Run the conversion with the mapping file as additional input.

We will demonstrate the three steps with an example conversion from Toolbox to Typecraft. Typecraft has a fixed set
of annotations that we can use, while most Toolbox files use a variety of tag sets. This makes Toolbox to Typecraft
conversion examplary use case, because in most cases the user has to define a mapping so that she can import her files
into the Typecraft web application. The general mechanism is of course applicable to other conversion workflows as
well.

1.2.1 Conversion on the command line

To convert a file on the command the Poio API source contains a script poio_converter.py in the examples folder. To
convert a file, you have to specify the input file and the output file and the type of both files (for example toolbox and
typecraft). To convert a file from the Toolbox format to the Typecraft XML format you call the script like this:

$ python poio_converter.py -i toolbox -o typecraft toolboxfile.txt typecraftfile.xml

Any annotations that are not part of the Typecraft tagset will be left empty in the output file, as we cannot import the
XML into Typecraft if there is any annotation that does not belong to the tagset.

1.2.2 The JSON mapping file

To map annotation from your Toolbox tagset to the Typecraft tagset you have to create a special mapping JSON file
first. This is done with the -m option of the converter script:

$ python poio_converter.py -m -i toolbox -o typecraft toolboxfile.txt typecraft_mapping.json

1.2. Conversion of file formats and annotation mapping 9

http://www.mpi.nl/tools/elan/EAF_Annotation_Format.pdf
http://tla.mpi.nl/tools/tla-tools/elan/elan-description/
http://tla.mpi.nl/tools/tla-tools/elan/download/

Poio API Documentation, Release 0.3.4

This will generate a file typecraft_mapping.json in the current folder. The content of the file might look like this:

{
"gloss": {
"1PAST": "",

"FV7": "",
"PRN": ""

},
"part of speech": {
"int": ""

}
}

The JSON structure consists of two block for gloss and part of speech tags in this case. The right hand sind of each
tag is an empty string. You have to fill in the Typecraft tags that you want to map to for each of your Toolbox tags. For
example:

{
"gloss": {

"1PAST": "PAST",
"FV7": "FV",

"PRN": ""
},
"part of speech": {

"int": "PROint"
}

}

If you don’t want to map one of the tags then you can just leave the right hand side empty, as in the example above for
the Toolbox tag “PRN”. You can now pass the JSON mapping file to the converter via the -t option when you run the
full conversion:

$ python poio_converter.py -m -i toolbox -o typecraft -t typecraft_mapping.json
→˓toolboxfile.txt typecraftfile.xml

In some cases you might want to map a tag to another tier, for example from the “gloss” tier to the “part of speech”
tier. To map between tiers you have to specify the tier name on the right hand side of the mapping. Just use a list and
put the output tier name as the first element in the list. For example, to map the “PRN” tag from Toolbox to the “part
of speech” tier of Typecraft:

"PRN": ["part of speech", "PN"]

1.2.3 Tier names of the input file

Poio API specifies default tier names for each input file format. For example, in the case of toolbox the tier names of
the “gloss” tier might be “ge” or “g”. Those names are defined in the Toolbox software and might be changed by the
user. If your gloss names are different from the default names in Poio API you can define new tier names by adding
a tier_names map to the JSON mapping file. To use an additional gloss tier name “gloss” you can start the JSON file
with:

{
"tier_mapping": {

"gloss": [
"ge",
"g",

(continues on next page)

10 Chapter 1. Contents

Poio API Documentation, Release 0.3.4

(continued from previous page)

"gloss"
],

},
"gloss": {

[... rest of the file as above ...]

1.2.4 More examples of JSON mapping files

More examples of JSON mapping files can be found in the Poio API repository. We already defined two default
mappings for corpora from different sources. One is the default mapping for Toolbox files:

https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/TOOLBOX_TYPECRAFT.json

The other mapping is used for data from certain Word files that contain interlinear glossed text and is just referenced
here as an example:

https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/MANDINKA_TYPECRAFT.json

1.2.5 Map programmatically in Python

You can also use Poio API directly from Python to generate and apply a JSON mapping file when you convert from
one file format to another. Please also check the poio_converter.py script for example code.

The basic idea is that each Writer class in Poio API is responsible to check for and convert from tags that are part of
the file format of that Writer class. For this, each writer can provide a method missing_tags() that will write a JSON
mapping file. The following code parses a Toolbox file into a GrAF annotation graph, creates a Typecraft writer and
calls missing_tags() with the output file name and the annotation graph as arguments:

from poioapi.annotationgraph import AnnotationGraph
import poioapi.io.typecraft

ag = AnnotationGraph.from_toolbox("toolboxfile.txt")
typecraft = poioapi.io.typecraft.Writer()
typecraft.missing_tags("maping.json", ag)

To apply the mapping file when writing the file you pass an additional argument extra_tag_map to the write() method
of the writer:

typecraft.write("typecraftfile.xml", ag,
extra_tag_map="mapping.json", language="your_iso_code")

1.2.6 Internals: The mapping classes

The TierMapper class

To generalize conversion and annotation mapping in Poio API we define a fixed set of tier types. Each of the tier
types has then one or more names in each specific file format. This allows the conversion to work with the fixed set
of tier types, the converter does not have to handle all the different tier names that might be used in the different file
formats. The class poioapi.mapper.TierMapper is responsible for the mapping between tier types and tier names. A
tier type might be linked to an ISOcat category, as soon as there is an agreement about tier types within the linguistic
community.

To support the files formats and corpora that we encountered so far we defined the following tier types in Poio API:

1.2. Conversion of file formats and annotation mapping 11

https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/TOOLBOX_TYPECRAFT.json
https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/MANDINKA_TYPECRAFT.json

Poio API Documentation, Release 0.3.4

• utterance

• word

• morpheme

• part of speech

• gloss

• graid1

• graid2

• translation

• comment

This list might look kind of ad hoc, and in fact it is the result of the use cases we had so far. If there is any requirement
for new tier types we can easily add new types to this list. Compare the tier types that we listed here to the names
in the JSON mapping files: the tier_names dictionary uses exactly these tier types as keys. In fact, we add any user
defined tier names from the JSON files to the TierMapper object that we use during conversion.

Beside the user defined tier names there is a set of default tier names for each file format. In the case of Toolbox we
pre-defined the following tier names in the module poioapi.io.toolbox:

• utterance: utterance_gen

• word: tx, t

• morpheme: mb, m

• part of speech: ps, p

• gloss: ge, g

• translation: ft, f

• comment: nt

The user can easily add and modify this list via JSON mapping files, as described above.

The AnnotationMapper class

The AnnotationMapper is used by the Writer classes to map the annotation labels. It is also responsible to validate tags,
i.e. to check if the annotation label is part of the tagset of the given file format. Internally, the class uses a dictionary
to map the annotations. This dictionary is created from a default JSON file for each combination of input file format
and output file format. For example, there is a default JSON file for the mapping of annotations from Toolbox files to
Typecraft files:

https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/TOOLBOX_TYPECRAFT.json

Additionally, the programmer can add more JSON files to an AnnotationMapper object to update the mapping. This is
done by the script poio_converter.py when the user specified a mapping file on the command line, as described above.

1.2.7 Application: Toolbox import in the Typecraft web application

An example application of the full Poio API conversion functionality is the import of Toolbox files in the Tpyecraft
web application. Internally, Typecraft uses Poio API to convert a Toolbox file into the Typecraft XML format and then
imports this XML. This modularization of the import allows us to support other file formats in the future, for example
the import of pure text-based IGT from Word files. All we need to modify is the conversion workflow in Poio API, the
web application practically only needs a new entry in a dropdown so that the user can specify the input file format.

12 Chapter 1. Contents

https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/TOOLBOX_TYPECRAFT.json

Poio API Documentation, Release 0.3.4

As the workflow in Poio API consists of three steps we can also allow the user to edit the annotation mapping in
between. In the first step, we generate an JSON mapping file for any missing tags in the default mapping. Based on
this JSON file we generate a user interface that allows the user to specify additional mappings:

Based the user input we generate a new JSON mapping file and add that file to the conversion when we execute the
final conversion step to generate the Typecraft XML. The abstraction in Poio API allows us to use the same workflow
for all file formats that are supported by Poio API.

1.2. Conversion of file formats and annotation mapping 13

Poio API Documentation, Release 0.3.4

1.3 Parser and Writer classes to map from and to file formats

This chapter explains how the Parser and Writer classes in Poio API work. You will learn how to write your own
parsers and writers to support a custom file format. Poio API already support a lot of file formats out of the box, which
are explained in the following sections. In any case the parser class is used by a general Converter class to map the
file format onto a GrAF object. The user may then modify the GrAF object and write back the changes to any of the
supported file format (or a custom format, if you implemented a writer). The following Python code demonstrates how
one file format can be convert to another one with support of an existing parser and writer class:

parser = poioapi.io.wikipedia_extractor.Parser("Wikipedia.xml")
writer = poioapi.io.graf.Writer()

converter = poioapi.io.graf.GrAFConverter(parser, writer)
converter.parse()
converter.write("Wikipedia.hdr")

This code parses from the XML output of the Wikipedia Extractor and writes the content as GrAF files.

Contents

1.3.1 How to write a Parser/Writer for a new file format

In order to support your own file format in Poio API, you would need to implement your own parser as a sub-class of
the base class poioapi.io.graf.BaseParser. The base class contains six abstract methods that will allow the
GrAF converter to build a GrAF object from the content of your files. The six methods are:

• get_root_tiers() - Get the root tiers.

• get_child_tiers_for_tier(tier) - Get the child tiers of a given tier.

• get_annotations_for_tier(tier, annotation_parent) - Get the annotations on a given tier.

• tier_has_regions(tier) - Check if the annotations on a given tier specify regions.

• region_for_annotation(annotation) - Get the region for a given annotation.

• get_primary_data() - Get the primary data that the annotations refer to.

Note: All the methods must be implemented, otherwise an exception will be raised.

The tiers and annotations that are passed to the methods are normally objects from the classes poioapi.io.graf.
Tier and poioapi.io.graf.Annotation. If you need to pass additional information between the methods,
that are not present in our implementation of the classes, you might also sub-class Tier and/or Annotation and
add your own properties. By sub-classing, you make sure that the properties from our implementation are still
there. The converter needs them to build the GrAF object.

Each Tier contains a name and an annotation_space property (the latter is None by default). The class ElanTier
exemplifies the sub-classing of Tier. In the case of Elan, we need to store an additional property linguistic_type to be
able to implement the complete parser:

class ElanTier(poioapi.io.graf.Tier):
__slots__ = ["linguistic_type"]

def __init__(self, name, linguistic_type):
self.name = name
self.linguistic_type = linguistic_type
self.annotation_space = linguistic_type

14 Chapter 1. Contents

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor

Poio API Documentation, Release 0.3.4

Tier s use the annotation_space to describe that they share certain annotation types. If the annotation_space is None
the GrAF converter will use the name as the label for the annotation space.

Each Annotation is defined with a unique id property and can contain a value and a ‘ features‘ property. Features
are stored in a dictionary in the feature_structure of the annotation in the GrAF representation.

References:

• poioapi.io.graf.BaseParser

• poioapi.io.graf.Tier

• poioapi.io.graf.Annotation

Example: A simple parser based on static data

The transformation of annotation data to GrAF is done by the class poioapi.io.graf.GrAFConverter. This
class will use the parser’s methods to retrieve the information from the file.

Sub-classing from BaseParser

First, we will sub-class our own parser SimpleParser from the class poioapi.io.graf.BaseParser with
empty methods. We will set some static data within the class that represent our tier names and the annotations for each
tier:

class SimpleParser(poioapi.io.graf.BaseParser):

tiers = ["utterance", "word", "wfw", "graid"]
utterance_tier = ["This is a utterance", "that is another utterance"]
word_tier = [['This', 'is', 'a', 'utterance'], ['that', 'is', 'another',

'utterance']]
wfw_tier = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
graid_tier = ['i', 'j', 'k', 'l', 'm', 'n', 'o', 'p']

def __init__(self):
pass

def get_root_tiers(self):
pass

def get_child_tiers_for_tier(self, tier):
pass

def get_annotations_for_tier(self, tier, annotation_parent=None):
pass

def tier_has_regions(self, tier):
pass

def region_for_annotation(self, annotation):
pass

def get_primary_data(self):
pass

If your annotations are stored in a file, then you need to implement your own strategy how to load the file’s content
into your parser class. The __init__() of your parser class might be a good place to load your file.

1.3. Parser and Writer classes to map from and to file formats 15

Poio API Documentation, Release 0.3.4

References:

• poioapi.io.graf.GrAFConverter

Implementation of the parser methods

We will start with the get_root_tiers() method. This method will return all the root tiers as objects of the class
Tier (or a sub-class of it). In our case, this is only the utterance tier:

def get_root_tiers(self):
return [poioapi.io.graf.Tier("utterance")]

The method get_child_tiers_for_tier() returns all child tiers of a given tier, again as Tier objects. In our
simple example, we assume that the child of the utterance tier is the word tier, which has the children graid and wfw:

def get_child_tiers_for_tier(self, tier):
if tier.name == "utterance":

return [poioapi.io.graf.Tier("word")]
if tier.name == "word":

return [poioapi.io.graf.Tier("graid"), poioapi.io.graf.Tier("wfw")]

return None

Note: This two methods must always return a list of Tier objects or None.

The method get_annotations_for_tier() is used to collect the annotations for a given tier. Each annotation
must at least cotain a unique id and an annotation value. Both properties are already present in the class Annotation
that we use here to return the annotations. For the utterance tier we can simply convert the list of strings in our
self.utterance_tier data store:

def get_annotations_for_tier(self, tier, annotation_parent=None):
if tier.name == "utterance":

return [poioapi.io.graf.Annotation(i, v)
for i, v in enumerate(self.utterance_tier)]

[...]

For all tiers that are children of another tier, the annotations within the tiers are normally also children of another
annotation on the parent tier. In this case the Converter will pass a value in the parameter annotation_parent.
In our case, the id of the parent annotation points to the location of the child annotations in the lists self.word_tier,
self.graid_tier and self.wfw_tier:

[...]

if tier.name == "word":
return [poioapi.io.graf.Annotation(2 + 4 * annotation_parent.id + i, v) for i,

→˓ v
in enumerate(self.word_tier[annotation_parent.id])]

if tier.name == "graid":
return [poioapi.io.graf.Annotation(

annotation_parent.id + 10, self.graid_tier[annotation_parent.id - 2])]

if tier.name == "wfw":
return [poioapi.io.graf.Annotation(

annotation_parent.id + 12, self.wfw_tier[annotation_parent.id - 2])]

(continues on next page)

16 Chapter 1. Contents

Poio API Documentation, Release 0.3.4

(continued from previous page)

return []

Note: This method must always return a list with Annotation elements or an empty list.

The method tier_has_regions() describes which tiers contain regions. These regions are intervals that refer
to the primary data. Depending on the type of the primary data the regions can encode intervals of time (encoded as
milliseconds, in most cases) or a range in a string (from start to end position). In our case we assume that only the root
tier utterance is connected to the primary data via regions:

def tier_has_regions(self, tier):

if tier.name == "utterance":
return True

return False

To get the regions of a specific annotation the Converter will call the method region_for_annotation().
This method must return a tuple with start and end of the regions. In our example the tier with regions is the utterance
tier. So the region for the first utterance is (0, 19), if we assume that we want to return the content of the two
utterances connected with a blank ” ” as the primary data. We can simply calculate the regions from the length of the
strings in self.utterance_tier:

def region_for_annotation(self, annotation):

if annotation.id == 0:
return (0, len(self.utterance_tier[0]))

elif annotation.id == 1:
return (len(self.utterance_tier[0]) + 1,

len(self.utterance_tier[0]) + 1 + len(self.utterance_tier[1]))

Last but not least, we also have to return the primary data. As the utterance tier was the root tier and we already defined
the regions for the utterance annotations based on the strings in self.utterance_tier we can simply join the
two strings and return the result as the primary data:

def get_primary_data(self):
return ' '.join(self.utterance_tier)

Using the parser to convert to GrAF

You can now use the SimpleParser class to convert the static data into a GrAF object:

parser = SimpleParser()

converter = poioapi.io.graf.GrAFConverter(parser)
converter.parse()

graf = converter.graf

The converter object contains two more objects that contain information from the parsed data:

• The tier hierarchies is stored in converter.tier_hierarchies.

• The primary data for the annotations is stored in converter.primary_data.

1.3. Parser and Writer classes to map from and to file formats 17

Poio API Documentation, Release 0.3.4

If you want to write the data to GrAF files, you have to create a GrAF writer object and pass it to the Converter’s
constructor:

parser = SimpleParser()
writer = poioapi.io.graf.Writer()

converter = poioapi.io.graf.GrAFConverter(parser, writer)
converter.parse()
converter.write("simple.hdr")

The section Spreadsheet to GrAF conversion discusses a slightly more complex use case: how to write a parser for
custom annotations stored in a Microsoft Excel file.

1.3.2 Spreadsheet to GrAF conversion

The section How to write a Parser/Writer for a new file format described how the general conversion mechanism
works in Poio API, and how you can implement your own parser to convert a custom file format to a GrAF object.
In this section we will continue with a more complex example based on annotations in Microsoft Excel or LibreOf-
fice/OpenOffice Calc. We will show how can export Excel data into a CSV file and discuss a CSV parser that we will
finally use to convert the Excel annotations into GrAF-XML files.

The data in this section comes from real-world language documentation project about north-east caucasian languages.
We will use several annotated texts in the language Hinuq. The Excel file was kindly provided by Diana Forker.

The data in Excel

The data in Excel consists of several “tiers” that were encoded as rows in an Excel worksheet. For each utterance of
the original text there are eight rows in the Excel sheet. Here is a screenshot of Excel with that shows the first three
utterances:

18 Chapter 1. Contents

Poio API Documentation, Release 0.3.4

The first row, for example, contains a unique ID, while the second row consists of the tokenized utterance (“word”
tier), with optional spaces between them. Row three and four contain an ID and an annotation for the so-called “clause
unit”, a term stemming from the annotation framework GRAID (Grammatical Relations and Animacy in Discourse),
developed by Geoffrey Haig and Stefan Schnell. The subsequent four rows contain GRAID annotations, custom
annotations and translations based on the word tier.

In this case Diana was interested in the different word orders that were used in the Hinuq texts. Word order appear
within the “clause units”, as those represent parts of utterances like main clauses and sub clauses. To analyze the word
order now, the interesting units within the clause units are the participants and the verb. Participants of clauses are
normally encoded regarding the syntactic/semantic role within the clause, Diana used the labels “S”, “A” and “P” that
are widely used within general linguistics and language typology. The verbs have different tags like “v.tr”, “v.intr” or
“v.aff”. All the interesting tags appear in row five in Excel. Because we are only interested in clause units and the tags
that represent participant and verbs within each clause unit, our parser will only return informations from row three,
four and five of each utterance. It should be easy enough to extend the parser to more rows later. The names that those
three rows will be clause_id, clause_type and grammatical_relation, containing the IDs of the clause units, the type
of the clauses (main or sub class) and the grammatical relations as discussed, respectively. These are the tiers that our
parser will process and for which it will return the annotations from the Excel CSV file.

Export the data

The first step is to export the data from Excel to a CSV file. CSV files are much easier to read in with Python.
Unfortunately, Microsoft Excel still has a big problem when it comes to export Unicode CSV files. In the case of the
Hinuq data, Diana used a lot of different Unicode characters that we need to preserve when exporting. We thus used
Open Office to export the data to a CSV file that uses a UTF-8 encoding. You can open your Excel file in Open Office,
click on File → Save As and then choose Text CSV as file format. In the following dialog choose UTF-8 as encoding
and the pipe symbol “|” as field seperator. We also chose an empty string as text seperator:

In the following steps we assume that the filename is Hinuq.csv and that the file was saved with those settings.

The implementation of the parser

The easiest way to implement a parser for Poio API is to sub-class from poioapi.io.graf.BaseParser as
described in section How to write a Parser/Writer for a new file format. We have to implement six abstract methods so
that the poioapi.io.graf.GrAFConverter class can then build a GrAF from the CSV data. The six methods
are:

• get_root_tiers() - Get the root tiers.

1.3. Parser and Writer classes to map from and to file formats 19

Poio API Documentation, Release 0.3.4

• get_child_tiers_for_tier(tier) - Get the child tiers of a give tier.

• get_annotations_for_tier(tier, annotation_parent) - Get the annotations on a given tier.

• tier_has_regions(tier) - Check if the annotations on a given tier specify regions.

• region_for_annotation(annotation) - Get the region for a given annotation.

• get_primary_data() - Get the primary data that the annotations refer to.

First, we will implement the constructor of our new parser class ExcelParser. The constructor does most of the
work in our class, as it is responsible to parse the CSV file and put all the interesting information in Python data
structures. This is possible here, because the CSV file does not contain so much data and we can still store everything
in memory. If your data is too big you may implement a more sophisticated method to stream the data while the
converter is calling the methods. Our full constructor looks like this:

import csv
import codecs

import poioapi.io.graf
import poioapi.annotationgraph
import poioapi.data

class ExcelParser(poioapi.io.graf.BaseParser):

def __init__(self, filepath):
self.word_orders = dict()
self.clauses = list()
self.clause_types = dict()
self.last_id = -1
with codecs.open(filepath, "r", "utf-8") as csvfile:

hinuq2 = csv.reader(csvfile, delimiter='|')
i = 0
for row in hinuq2:

if i == 2:
clause_ids = row

elif i == 3:
clause_types = row

elif i == 4:
grammatical_relations = row

i += 1
if i > 7:

now parse
word_order = []
c_id = None
prev_c_id = None
for j, clause_id in enumerate(clause_ids):

new clause
if clause_id != "":

add word order to previous clause
if len(word_order) > 0:

self.word_orders[c_id] = word_order
word_order = []

add new clause
c_id = self._next_id()
self.clauses.append(c_id)
self.clause_types[c_id] = clause_types[j].strip()

(continues on next page)

20 Chapter 1. Contents

Poio API Documentation, Release 0.3.4

(continued from previous page)

grammatical_relation = grammatical_relations[j].strip()
word_order.append(grammatical_relation)

if len(word_order) > 0:
self.word_orders[c_id] = word_order

i = 0

The important data structures here are the three properties self.clauses, self.clause_types and self.word_orders. The
first is a list of IDs, while the latter two a dictionaries with the clause IDs as keys. The store the annotations (clause
type and grammatical relations from row four and five of the Excel file) for each clause unit as values.

The six abstract methods of the base class are then easy to implement, we will just list them as a big block of code
here:

def _next_id(self):
self.last_id += 1
return self.last_id

def get_root_tiers(self):
return [poioapi.io.graf.Tier("clause_id")]

def get_child_tiers_for_tier(self, tier):
if tier.name == "clause_id":

return [poioapi.io.graf.Tier("grammatical_relation"),
poioapi.io.graf.Tier("clause_type")]

return None

def get_annotations_for_tier(self, tier, annotation_parent=None):
if tier.name == "clause_id":

return [poioapi.io.graf.Annotation(i, v)
for i, v in enumerate(self.clauses)]

elif tier.name == "clause_type":
return [poioapi.io.graf.Annotation(

self._next_id(), self.clause_types[annotation_parent.id])]

elif tier.name == "grammatical_relation":
return [poioapi.io.graf.Annotation(self._next_id(), v)

for v in self.word_orders[annotation_parent.id]]

return []

def tier_has_regions(self, tier):
return False

def region_for_annotation(self, annotation):
pass

def get_primary_data(self):
pass

The tier hierarchy is simple, we have the root tier clause_id and two child tiers grammatical_relation and clause_type.
The two methods get_root_tiers() and get_child_tiers_of_tier() implement this hierarchy. The
next method get_annotations_for_tier() returns the contents of the different tiers as Annotation ob-
jects. We just have to make sure that all the IDs are unique, which is the responsibilty of the method _next_id().

1.3. Parser and Writer classes to map from and to file formats 21

Poio API Documentation, Release 0.3.4

The last three methods can stay empty, as there are no regions on any tier and did not access the primary data in the
Excel file. Based on this parser class we can now write a simple converter for our type of CSV files, as demonstrated
in the next section.

How to use the parser to convert to GrAF-XML

Next we want to implement a helper function that creates an AnnotationGraph object from an Excel file, which
we will then use to analyze the word orders in the Hinuq texts. We can simply create a parser object from our new
class ExcelParser and pass it to the poioapi.io.graf.GrAFConverter class. After parsing, we have
access to the GrAF object and the tier hierarchy through the converter object. We need to copy these objects into
the AnnotationGraph object to be ableto use some of the methods of the AnnotationGraph later when we
analyze the word order. The full code of our helper method is:

def from_excel(filepath):
ag = poioapi.annotationgraph.AnnotationGraph()
parser = ExcelParser(filepath)
converter = poioapi.io.graf.GrAFConverter(parser)
converter.parse()
ag.tier_hierarchies = converter.tier_hierarchies
ag.structure_type_handler = poioapi.data.DataStructureType(

ag.tier_hierarchies[0])
ag.graf = converter.graf
return ag

With this preparation we can now follow up with the analysis of word order in the Excel file. This analysis is part of a
separate IPython notebook that you can view and download here:

http://nbviewer.ipython.org/urls/raw.github.com/pbouda/notebooks/master/Diana%20Hinuq%20Word%20Order.
ipynb

The first block of code in the notebook loads a file helper/diana.py, which contains exactly the class ExcelParser
and the helper function from_excel() from above. You can download the helper file here:

https://raw.github.com/pbouda/notebooks/master/helpers/diana.py

1.4 Linguistic analysis and pipelines based on GrAF graphs

We think that GrAF graphs can play an important role in the implementation of scientific workflows in linguistics.
Based on the GrAF objects that Poio API generates you might pipe the data to scientific Python libraries like networkx,
numpy or scipy. The American National Corpus implemented connectors for GrAF and two linguistic frameworks.
The conversion of custom file formats to GrAF through Poio API can thus act as an entry point to those pipelines and
support to merge data and annotation from a wide range of heteregenous data sources for further analysis.

1.4.1 Search in annotation graphs: filters and filter chains

The filter class poioapi.annotationgraph.AnnotationGraphFilter can be used to search in anno-
tation graphs in Poio API. The filter class can only be used together with the annotation graph class poioapi.
annotationgraph.AnnotationGraph. The idea is that each annotation graph can contain a set of filters, that
each reduce the full annotation graph to a subset. This list of filters is what we call a filter chain. Each filter consists
of search terms for each of the tiers that were loaded from an input file, as described in section Data Structure Types.
The search terms can be simple strings or regular expressions.

To be able to apply a filter to an annotation graph you have to load some data first. In this example we will use the
example file from the Elan homepage. First, we create a new annotation graph and load the file:

22 Chapter 1. Contents

http://ipython.org/notebook.html
http://nbviewer.ipython.org/urls/raw.github.com/pbouda/notebooks/master/Diana%20Hinuq%20Word%20Order.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/pbouda/notebooks/master/Diana%20Hinuq%20Word%20Order.ipynb
https://raw.github.com/pbouda/notebooks/master/helpers/diana.py
http://networkx.github.io/
http://www.numpy.org/
http://www.scipy.org/
http://tla.mpi.nl/tools/tla-tools/elan/download/

Poio API Documentation, Release 0.3.4

import poioapi.annotationgraph

ag = poioapi.annotationgraph.AnnotationGraph()
ag.from_elan("elan-example3.eaf")

In the next step we set the default tier hierarchy for the annotation graph. As the example file contains four root tiers
with subtiers we have to choose one of the hierarchies carefully. In our case we choose the hierarchy with the root tier
utterance..W-Spch that we find at index 1 of the property ag.tier_hierarchies after we loaded the file. We choose this
tier hierchary to be used for all subsequent filter operations:

ag.structure_type_handler = \
poioapi.data.DataStructureType(ag.tier_hierarchies[1])

In our case the hierarchy ag.tier_hierarchies[1] contains the following tiers:

['utterance..W-Spch',
['words..W-Words',

['part_of_speech..W-POS']],
['phonetic_transcription..W-IPA']]

Now we are ready to create a filter for the data. We will filter the data with serch terms on two of the subtiers of our
tier hierarchy: we will search for follow on the words tier and for the regular expression \bpro\b on the POS tier.
We can look up the full names of the tiers in the above tier hierarchy. The following code creates a filter object and
adds the two search terms for the two tiers:

af = poioapi.annotationgraph.AnnotationGraphFilter(ag)
af.set_filter_for_tier("words..W-Words", "follow")
af.set_filter_for_tier("part_of_speech..W-POS", r"\bpro\b")

The final step is to append the filter to the filter chain of the annotation graph:

ag.append_filter(af)

The append operation will already start the process of graph filtering. The result is stored in the property fil-
tered_node_ids of the annotation graph object, which is a list of root nodes where child nodes matched the search
term:

print(ag.filtered_node_ids)
[['utterance..W-Spch..na10',

'utterance..W-Spch..na12',
'utterance..W-Spch..na19']]

You can get a visible result set by writing a filtered HTML representation of the annotation graph:

import codecs
html = ag.as_html_table(True)
f = codecs.open("filtered.html", "w", "utf-8")
f.write(html)
f.close()

You can add more filters to the annotation graph by creating more filter objects and passing them to append_filter(). If
you want to remove a filter you can call pop_filter(), which will remove the filter that was last added to the annotation
graph object:

ag.pop_filter()

1.4. Linguistic analysis and pipelines based on GrAF graphs 23

Poio API Documentation, Release 0.3.4

A convenient way to create filter objects is by passing a dictionary with tier names and search terms to the method
create_filter_for_dict() of the annotation graph object. The following code will create the same filter as in the example
above:

search_terms = {
"words..W-Words": "follow",
"part_of_speech..W-POS": r"\bpro\b"

}
af = ag.create_filter_for_dict(search_terms)

You can then append the filter to the filter chain. A complete script that demonstrates filters and filter chains is available
on Github:

https://github.com/cidles/poio-api/blob/master/examples/filter.py

1.4.2 Real world examples

Counting word orders

The following example is based on the parser explained in section Spreadsheet to GrAF conversion. The whole
workflow to count word order in GrAF is implemented as IPython notebook, which you can view and download here:

http://nbviewer.ipython.org/urls/raw.github.com/pbouda/notebooks/master/Diana%20Hinuq%20Word%20Order.
ipynb

D3.js for visualization

The graf-python documentation contains a nice example how to visualize GrAF data with the help of the networkx
library and the Javascript visualization library D3.js:

https://graf-python.readthedocs.org/en/latest/Translation%20Graph%20from%20GrAF.html

To just see the example visualization click here:

http://bl.ocks.org/anonymous/4250342

1.4.3 GrAF connectors

The American National Corpus implemented GrAF connectors for the Unstructured Information Management ap-
plications (Apache UIMA) fraemwork and the general architecture for text engineering (GATE) software. You can
download the ANC software here:

• http://www.anc.org/software/uimautils/

• http://www.anc.org/software/gate-tools/

24 Chapter 1. Contents

https://github.com/cidles/poio-api/blob/master/examples/filter.py
http://ipython.org/notebook.html
http://nbviewer.ipython.org/urls/raw.github.com/pbouda/notebooks/master/Diana%20Hinuq%20Word%20Order.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/pbouda/notebooks/master/Diana%20Hinuq%20Word%20Order.ipynb
http://networkx.github.io/
http://networkx.github.io/
http://d3js.org/
https://graf-python.readthedocs.org/en/latest/Translation%20Graph%20from%20GrAF.html
http://bl.ocks.org/anonymous/4250342
http://uima.apache.org/
http://uima.apache.org/
http://gate.ac.uk/
http://www.anc.org/software/uimautils/
http://www.anc.org/software/gate-tools/

CHAPTER 2

API documentation

2.1 PoioAPI Package

2.1.1 poioapi.data

This module contains the classes to access annotated data in various formats.

The parsing is done by Builder classes for each file type, i.e. Elan’s .eaf files, Kura’s .xml file, Toolbox’s .txt files etc.

class poioapi.data.DataStructureType(custom_data_hierarchy=None)
Data structure type constructor.

Attributes

‘name‘ [str] Name of the structure.

data_hirerarchy [array] Structure of the array.

Methods

empty_element() Return the appended list of a certain data hierarchy.
get_children_of_type(ann_type) Returns all the elements that are above a given type

in the type hierarchy.
get_parents_of_type(ann_type) Returns all the elements that are above a given type

in the type hierarchy.
type_has_region(ann_type) Checks whether the given type has regions that con-

nect it to the base data.

__init__(custom_data_hierarchy=None)
Class’s constructor.

empty_element()
Return the appended list of a certain data hierarchy.

25

Poio API Documentation, Release 0.3.4

Returns

_append_list [array_like] The actual list with the appended elements.

get_children_of_type(ann_type)
Returns all the elements that are above a given type in the type hierarchy.

Parameters

ann_type [str] Value of the field in the data structure hierarchy.

Returns

_get_parents_of_type_helper [array_like] The return result depends on the return of the
called method.

See also:

_get_parents_of_type_helper

get_parents_of_type(ann_type)
Returns all the elements that are above a given type in the type hierarchy.

Parameters

ann_type [str] Value of the field in the data structure hierarchy.

Returns

_get_parents_of_type_helper [array_like] The return result depends on the return of the
called method.

See also:

_get_parents_of_type_helper

type_has_region(ann_type)
Checks whether the given type has regions that connect it to the base data.

Parameters

ann_type [str] Value of the field in the data structure hierarchy.

Returns

is_region [bool] Whether the annotation type has regions.

class poioapi.data.DataStructureTypeGraid(custom_data_hierarchy=None)
Data structure type using a GRAID format.

Attributes

‘name‘ [str] Name of the structure.

data_hirerarchy [array_like] Structure of the array.

Methods

empty_element() Return the appended list of a certain data hierarchy.
get_children_of_type(ann_type) Returns all the elements that are above a given type

in the type hierarchy.
get_parents_of_type(ann_type) Returns all the elements that are above a given type

in the type hierarchy.
Continued on next page

26 Chapter 2. API documentation

Poio API Documentation, Release 0.3.4

Table 2 – continued from previous page
type_has_region(ann_type) Checks whether the given type has regions that con-

nect it to the base data.

class poioapi.data.DataStructureTypeGraidDiana(custom_data_hierarchy=None)
Data structure type using a GRAID format.

Attributes

‘name‘ [str] Name of the structure.

data_hirerarchy [array_like] Structure of the array.

Methods

empty_element() Return the appended list of a certain data hierarchy.
get_children_of_type(ann_type) Returns all the elements that are above a given type

in the type hierarchy.
get_parents_of_type(ann_type) Returns all the elements that are above a given type

in the type hierarchy.
type_has_region(ann_type) Checks whether the given type has regions that con-

nect it to the base data.

class poioapi.data.DataStructureTypeMorphsynt(custom_data_hierarchy=None)
Data structure type using a Morphsyntax format.

Attributes

‘name‘ [str] Name of the structure.

data_hirerarchy [array_like] Structure of the array.

Methods

empty_element() Return the appended list of a certain data hierarchy.
get_children_of_type(ann_type) Returns all the elements that are above a given type

in the type hierarchy.
get_parents_of_type(ann_type) Returns all the elements that are above a given type

in the type hierarchy.
type_has_region(ann_type) Checks whether the given type has regions that con-

nect it to the base data.

exception poioapi.data.DataStructureTypeNotCompatible

exception poioapi.data.DataStructureTypeNotSupportedError

exception poioapi.data.NoFileSpecifiedError

exception poioapi.data.UnknownAnnotationTypeError

exception poioapi.data.UnknownDataStructureTypeError

exception poioapi.data.UnknownFileFormatError

2.1. PoioAPI Package 27

Poio API Documentation, Release 0.3.4

2.1.2 poioapi.annotationtree

2.1.3 poioapi.annotationgraph

2.2 PoioAPI IO Package

2.2.1 poioapi.io.elan

2.2.2 poioapi.io.graf

2.2.3 poioapi.io.pickle

Indices and tables

• genindex

• modindex

• search

2.2.4 poioapi.io.typecraft

28 Chapter 2. API documentation

CHAPTER 3

Indices and tables

• genindex

• search

29

Poio API Documentation, Release 0.3.4

30 Chapter 3. Indices and tables

Python Module Index

p
poioapi.data, 25

31

Poio API Documentation, Release 0.3.4

32 Python Module Index

Index

Symbols
__init__() (poioapi.data.DataStructureType method), 25

D
DataStructureType (class in poioapi.data), 25
DataStructureTypeGraid (class in poioapi.data), 26
DataStructureTypeGraidDiana (class in poioapi.data), 27
DataStructureTypeMorphsynt (class in poioapi.data), 27
DataStructureTypeNotCompatible, 27
DataStructureTypeNotSupportedError, 27

E
empty_element() (poioapi.data.DataStructureType

method), 25

G
get_children_of_type() (poioapi.data.DataStructureType

method), 26
get_parents_of_type() (poioapi.data.DataStructureType

method), 26

N
NoFileSpecifiedError, 27

P
poioapi.data (module), 25

T
type_has_region() (poioapi.data.DataStructureType

method), 26

U
UnknownAnnotationTypeError, 27
UnknownDataStructureTypeError, 27
UnknownFileFormatError, 27

33

	Contents
	Introduction to Poio API
	Conversion of file formats and annotation mapping
	Parser and Writer classes to map from and to file formats
	Linguistic analysis and pipelines based on GrAF graphs

	API documentation
	PoioAPI Package
	PoioAPI IO Package

	Indices and tables
	Python Module Index

