

Welcome to Poio API’s documentation!

Poio API provides access to language documentation data and a wide range of annotations schemes stored in different file formats.

The project’s homepage is: http://media.cidles.eu/poio/poio-api/

Contents

	Introduction to Poio API
	Quick Example

	Data Structure Types

	Structure of GrAF graphs in Poio API

	Example: GrAF from an Elan EAF file

	Conversion of file formats and annotation mapping
	Conversion on the command line

	The JSON mapping file

	Tier names of the input file

	More examples of JSON mapping files

	Map programmatically in Python

	Internals: The mapping classes

	Application: Toolbox import in the Typecraft web application

	Parser and Writer classes to map from and to file formats
	How to write a Parser/Writer for a new file format

	Spreadsheet to GrAF conversion

	Linguistic analysis and pipelines based on GrAF graphs
	Search in annotation graphs: filters and filter chains

	Real world examples

	GrAF connectors

API documentation

	PoioAPI Package
	poioapi.data

	poioapi.annotationtree

	poioapi.annotationgraph

	PoioAPI IO Package
	poioapi.io.elan

	poioapi.io.graf

	poioapi.io.pickle

	poioapi.io.typecraft

Indices and tables

	Index

	Search Page

Introduction to Poio API

Poio API is a free and open source Python library to access and search data
from language documentation in your linguistic analysis workflow. It converts
file formats like Elan’s EAF, Toolbox files, Typecraft XML and others into
annotation graphs as defined in ISO 24612. Those graphs, for which we use
an implementation called “Graph Annotation Framework” (GrAF), allow unified
access to linguistic data from a wide range sources.

Think of GrAF as an assembly language for linguistic annotation, then Poio API
is a libray to map from and to higher-level languages.

Poio API is developed as a part of the curation project of the F-AG 3 within
CLARIN-D [http://de.clarin.eu/en/discipline-specific-working-groups/wg-3-linguistic-fieldwork-anthropology-language-typology/curation-project-1.html].

	References:

	
	ISO 24612: http://www.iso.org/iso/catalogue_detail.htm?csnumber=37326

	Graph Annotation Framework (GrAF): http://www.xces.org/ns/GrAF/1.0/

Quick Example

This block of code loads a Elan EAF file as annotation graph and writes the data
as html table into a file:

imports
import poioapi.annotationgraph

Load the data from EAF file
ag = poioapi.annotationgraph.AnnotationGraph.from_elan("elan-example3.eaf")

Output as html
import codecs
f = codecs.open("example.html", "w", "utf-8")
f.write(ag.as_html_table(False, True))
f.close()

To try it out you may download the example file from the Elan homepage [http://tla.mpi.nl/tools/tla-tools/elan/download/].

Data Structure Types

We use a data type called DataStructureType to represent annotation schemes
in a tree. A simple data structure type describing that the researcher wants to
tokenize a text into words before adding a word-for-word translation and a
translation for the whole utterance looks like this:

['utterance', ['word', 'wfw'], 'translation']

A slightly more complex annotation schema is GRAID (Grammatical Relations and
Animacy in Discourse), developed by Geoffrey Haig and Stefan Schnell. GRAID adds
the notion of clause units as an intermediate layer between utterance and word
and three more annotation tiers on different levels:

['utterance',
 ['clause unit',
 ['word', 'wfw', 'graid1'],
 'graid2'],
 'translation', 'comment']

One advantage in representing annotation schemes through those simple trees, is
that the linguists instantly understand how such a tree works and can give a
representation of “their” annotation schema. In language documentation and
general linguistics researchers tend to create ad-hoc annotation schemes fitting
their background and then normally start to create only those annotations
related to their current research project. This is for example reflected in an
annotation software like ELAN, where the user can freely create tiers with any
names and arrange them in custom hierarchies. As we need to map those data into
our internal representation, we try to ease the creation of custom annotation
schemes that are easy to understand for users. For this we will allow users to
create their own data structure types and derive the annotation schemes for
GrAF files from those structures.

In Poio API there are several data structure types pre-defined as classes in
the module poioapi.data, for example:

	poioapi.data.DataStructureTypeGraid

	poioapi.data.DataStructureTypeMorphsynt

The user of the API can of course create her own fixed data structure type, by
deriving a custom class from the base class poioapi.data.DataStructureType.
In you workflow you might also create an object with your own tier hierarchy
by passing a list of lists (as in the examples above) when creating an object
from DataStructureType:

import poioapi.data

my_data_structure = poioapi.data.DataStructureType(
 ['utterance', ['word', 'wfw'], 'translation'])

If you create an annotation graph from one of the supported file formats, the
hierarchies that are present in file are accesible via the tier_hierarchies
property of the annotation graph object. As an example, we use the example
file from the Elan homepage [http://tla.mpi.nl/tools/tla-tools/elan/download/]:

import poioapi.annotationgraph

ag = poioapi.annotationgraph.AnnotationGraph.from_elan("elan-example3.eaf")
print(ag.tier_hierarchies)

Which will output:

[

 ['utterance..K-Spch'],

 ['utterance..W-Spch',
 ['words..W-Words',
 ['part_of_speech..W-POS']
],
 ['phonetic_transcription..W-IPA']
],

 ['gestures..W-RGU',
 ['gesture_phases..W-RGph',
 ['gesture_meaning..W-RGMe']
]
],

 ['gestures..K-RGU',
 ['gesture_phases..K-RGph',
 ['gesture_meaning..K-RGMe']
]
]

]

This is a list of tier hierarchies. In this case, there are four hierarchies in
the .eaf file: two for each speaker, where one has the root tier with
utterances (utterance..K-Spch and utterance..K-Spch), the other one with
the root tier for gestures (gestures..W-RGU and gestures..K-RGU)

The user can now easily create an instance of the class DataStructureType
with one of the hierarchies.

Per default, the first tier hierarchy from the file is that as the current
active hierarchy (for example for queries or HTML output). To set another
tier hierarchy as the default hierarchy you can set the attribute
structure_type_handler to one of the other hierarchies in the data:

ag.structure_type_handler = poioapi.data.DataStructureType(
 ag.tier_hierarchies[1])

Structure of GrAF graphs in Poio API

To represent data from tier-based annotations, Poio API internally uses the
library graf-python [http://media.cidles.eu/poio/graf-pthon] to store
data and annotations. Those data structures conform to the so-called GrAF
standard and consist of nodes and edges* enriched by **feature
structures that contain the linguistic annotations. The nodes itself are
linked to the primary data (text, audio, video, …) via regions. The
following schema pictures the content of one node:

[image: _images/graf_schema.png]
Edges are then simple connections between individual nodes that can also have
an Annotation with the same feature structures as the nodes.

Poio API only uses a subset of all possible GrAF graphs to represent tier-based
annotations. That means that Poio API will automatically only create certain
edges between nodes and their annotations, to represent a parent-children
relationship between annotations that are on different tiers in the
original annotation file. Poio API will not create any additional edges between
annotations on one single tier and between annotations of tiers that are
not parent or child of each other. In addition to this, Poio API will also
create some fixed feature structures from the content of annotations when you
load a file. A standard string annotation (i.e. the part-of-speech tag in a
Typecraft XML file) is stored as feature annotation_value in a node. See
section Example: GrAF from an Elan EAF file for an in-depth description of such a GrAF
structure when you load an Elan EAF file.

You, as a user, are of course free to create any edges or add any feature
structures and features when you process the graphs in your worklow. You have
access to the GrAF object in Poio API after you loaded the content of a file
into an object of the class AnnotationGraph. The GrAF object is stored in
the property graf:

imports
import poioapi.annotationgraph

Load the data from EAF file
ag = poioapi.annotationgraph.AnnotationGraph.from_elan(“elan-example3.eaf”)

my_graf_object = ag.graf

… then do something with the GrAF object…

Keep in mind that probably none of your custom changes might be saved to some
of the supoprted output file formats like Elan EAF or Typecraft XML. If you
want to make sure that all your data persists when reading and writing files
you should store the graphs as GrAF-XML, which will contain all information
in the GrAF object:

... you did something with ag.graf ...

save it
ag.to_graf("my_graf_object.hdr")

load again
ag = poioapi.annotationgraph.AnnotationGraph.from_graf("my_graf_object.hdr")

Other file formats might only store a subset of the content of ag.graf.

Example: GrAF from an Elan EAF file

Elan is a widely used transcription and annotation software developed at the
Max-Planck-Institute in Nijmegen. Due to its popularity the file format used
by Elan, an XML format called “EAF” (“Elan Annotation Standard”), has become
the de facto standard in language documentation and is used by several project
in qualitative and quantitative language typology. Poio API fully supports to
convert EAF files to GrAF annotation graphs and back again without any loss of
information.

Basically, Poio API extracts all <annotation> tags from the EAF file and
converts them to GrAF nodes and annotations. The <time_slot> tags in the
EAF file are used to create the regions for the nodes in GrAF. The rest of the
EAF file is left intact and stored as a separate file prefix-extinfo.xml in
parallel to the other GrAF files as described in section Structure of GrAF graphs in Poio API
(where prefix is again the base name of the header file of GrAF).

The structure of the GrAF files is defined by the tier hierarchy in the Elan
file. As an example we will use the example data file that you may download
from the the Elan website [http://tla.mpi.nl/tools/tla-tools/elan/download/]
(next to “Example Set”). If you open those files in Elan and sort the tiers by
hierarchy you will have the following tier hierarchy:

[image: _images/elan_tier_hierarchy.png]
In this case, there are four root tiers with annotations: K-Spch, W-Spch,
W-RGU and K-RGU. The latter three each has several child tiers. Each tier
has a linguistic type, which you can see if you click on Tier -> Change
Tier Attributes…:

[image: _images/elan_tier_attributes.png]
In this case the tier K-Spch has the linguistic type utterance, and so on.
These linguistic types correspond to the names in the data structure types of
Poio API (see section Data Structure Types). Which means that if you
transform an EAF file into GrAF files with Poio API it will create one file for
each of the linguistic types. Each of those files file will contain all the
annotations of all the tiers that have the corresponding linguistic type. In
our example, Poio API will create one file prefix-utterance.xml that contain
the annotations from the tiers K-Spch and W-Spch. The file
prefix-words.xml will then contain all annotations from tier W-Words with
links to the parent annotations in prefix-utterance.xml. You can find an
example of the GrAF structure for the sample EAF file on Github [https://github.com/cidles/poio-api/tree/master/src/poioapi/tests/sample_files/elan_graf].

The first annotation of the tier W-Spch with the annotation value
“so you go out of the Institute to the Saint Anna Straat.” looks like this in
GrAF:

<node xml:id="utterance..W-Spch..na8">
 <link targets="utterance..W-Spch..ra8"/>
</node>
<region anchors="780 4090" xml:id="utterance..W-Spch..ra8"/>

 <fs>
 <f name="annotation_value">so you go out of the Institute to the Saint Anna Straat.</f>
 </fs>

The <node> is linked to a <region> that contains the values of the time slots of
the original EAF file. The annotation <a> for the node has a feature structure
<fs> with one features <f> for the annotation value.

The first annotation of W-Spch in prefix-words.xml looks like this:

<node xml:id="words..W-Words..na23">
 <link targets="words..W-Words..ra23"/>
</node>
<region anchors="780 1340" xml:id="words..W-Words..ra23"/>
<edge from="utterance..W-Spch..na8" to="words..W-Words..na23" xml:id="ea23"/>

 <fs>
 <f name="annotation_value">so</f>
 </fs>

The node for the word annotation is similar to the utterance node, except for an
additional <edge> tag that links the node to the corresponding utterance node.
Nodes like this are created for alle the annotations in the EAF file. When the
original annotation does not link to the video or audio file via a timeslot, for
example because it is on a tier with a linguistic type that has the stereotype
Time Subdivision, then no region and no link will be created for the node in
GrAF. As an example, here is the POS annotation that is linked to a word node
via an edge:

<node xml:id="part_of_speech..W-POS..na121"/>
<edge from="words..W-Words..na24" to="part_of_speech..W-POS..na121" xml:id="ea121"/>

 <fs>
 <f name="annotation_value">pro</f>
 </fs>

	References:

	
	EAF Format: http://www.mpi.nl/tools/elan/EAF_Annotation_Format.pdf

	Information about Elan: http://tla.mpi.nl/tools/tla-tools/elan/elan-description/

	Elan Tools and Documentation: http://tla.mpi.nl/tools/tla-tools/elan/download/

Conversion of file formats and annotation mapping

From the user’s perspective the conversion of file formats with mapping of annotations (within or across tiers) consists of three steps:

	Generate an empty mapping file. This file will contain all annotation labels that could not be mapped to the output file format. The mapping file is a JSON file.

	Edit the JSON file and add missing output annotation labels.

	Run the conversion with the mapping file as additional input.

We will demonstrate the three steps with an example conversion from Toolbox to Typecraft. Typecraft has a fixed set of annotations that we can use, while most Toolbox files use a variety of tag sets. This makes Toolbox to Typecraft conversion examplary use case, because in most cases the user has to define a mapping so that she can import her files into the Typecraft web application. The general mechanism is of course applicable to other conversion workflows as well.

Conversion on the command line

To convert a file on the command the Poio API source contains a script poio_converter.py in the examples folder. To convert a file, you have to specify the input file and the output file and the type of both files (for example toolbox and typecraft). To convert a file from the Toolbox format to the Typecraft XML format you call the script like this:

$ python poio_converter.py -i toolbox -o typecraft toolboxfile.txt typecraftfile.xml

Any annotations that are not part of the Typecraft tagset will be left empty in the output file, as we cannot import the XML into Typecraft if there is any annotation that does not belong to the tagset.

The JSON mapping file

To map annotation from your Toolbox tagset to the Typecraft tagset you have to create a special mapping JSON file first. This is done with the -m option of the converter script:

$ python poio_converter.py -m -i toolbox -o typecraft toolboxfile.txt typecraft_mapping.json

This will generate a file typecraft_mapping.json in the current folder. The content of the file might look like this:

{
 "gloss": {
 "1PAST": "",
 "FV7": "",
 "PRN": ""
 },
 "part of speech": {
 "int": ""
 }
}

The JSON structure consists of two block for gloss and part of speech tags in this case. The right hand sind of each tag is an empty string. You have to fill in the Typecraft tags that you want to map to for each of your Toolbox tags. For example:

{
 "gloss": {
 "1PAST": "PAST",
 "FV7": "FV",
 "PRN": ""
 },
 "part of speech": {
 "int": "PROint"
 }
}

If you don’t want to map one of the tags then you can just leave the right hand side empty, as in the example above for the Toolbox tag “PRN”. You can now pass the JSON mapping file to the converter via the -t option when you run the full conversion:

$ python poio_converter.py -m -i toolbox -o typecraft -t typecraft_mapping.json toolboxfile.txt typecraftfile.xml

In some cases you might want to map a tag to another tier, for example from the “gloss” tier to the “part of speech” tier. To map between tiers you have to specify the tier name on the right hand side of the mapping. Just use a list and put the output tier name as the first element in the list. For example, to map the “PRN” tag from Toolbox to the “part of speech” tier of Typecraft:

"PRN": ["part of speech", "PN"]

Tier names of the input file

Poio API specifies default tier names for each input file format. For example, in the case of toolbox the tier names of the “gloss” tier might be “ge” or “g”. Those names are defined in the Toolbox software and might be changed by the user. If your gloss names are different from the default names in Poio API you can define new tier names by adding a tier_names map to the JSON mapping file. To use an additional gloss tier name “gloss” you can start the JSON file with:

{
 "tier_mapping": {
 "gloss": [
 "ge",
 "g",
 "gloss"
],
 },
 "gloss": {
 [... rest of the file as above ...]

More examples of JSON mapping files

More examples of JSON mapping files can be found in the Poio API repository. We already defined two default mappings for corpora from different sources. One is the default mapping for Toolbox files:

https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/TOOLBOX_TYPECRAFT.json

The other mapping is used for data from certain Word files that contain interlinear glossed text and is just referenced here as an example:

https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/MANDINKA_TYPECRAFT.json

Map programmatically in Python

You can also use Poio API directly from Python to generate and apply a JSON mapping file when you convert from one file format to another. Please also check the poio_converter.py script for example code.

The basic idea is that each Writer class in Poio API is responsible to check for and convert from tags that are part of the file format of that Writer class. For this, each writer can provide a method missing_tags() that will write a JSON mapping file. The following code parses a Toolbox file into a GrAF annotation graph, creates a Typecraft writer and calls missing_tags() with the output file name and the annotation graph as arguments:

from poioapi.annotationgraph import AnnotationGraph
import poioapi.io.typecraft

ag = AnnotationGraph.from_toolbox("toolboxfile.txt")
 typecraft = poioapi.io.typecraft.Writer()
 typecraft.missing_tags("maping.json", ag)

To apply the mapping file when writing the file you pass an additional argument extra_tag_map to the write() method of the writer:

typecraft.write("typecraftfile.xml", ag,
 extra_tag_map="mapping.json", language="your_iso_code")

Internals: The mapping classes

The TierMapper class

To generalize conversion and annotation mapping in Poio API we define a fixed set of tier types. Each of the tier types has then one or more names in each specific file format. This allows the conversion to work with the fixed set of tier types, the converter does not have to handle all the different tier names that might be used in the different file formats. The class poioapi.mapper.TierMapper is responsible for the mapping between tier types and tier names. A tier type might be linked to an ISOcat category, as soon as there is an agreement about tier types within the linguistic community.

To support the files formats and corpora that we encountered so far we defined the following tier types in Poio API:

	utterance

	word

	morpheme

	part of speech

	gloss

	graid1

	graid2

	translation

	comment

This list might look kind of ad hoc, and in fact it is the result of the use cases we had so far. If there is any requirement for new tier types we can easily add new types to this list. Compare the tier types that we listed here to the names in the JSON mapping files: the tier_names dictionary uses exactly these tier types as keys. In fact, we add any user defined tier names from the JSON files to the TierMapper object that we use during conversion.

Beside the user defined tier names there is a set of default tier names for each file format. In the case of Toolbox we pre-defined the following tier names in the module poioapi.io.toolbox:

	utterance: utterance_gen

	word: tx, t

	morpheme: mb, m

	part of speech: ps, p

	gloss: ge, g

	translation: ft, f

	comment: nt

The user can easily add and modify this list via JSON mapping files, as described above.

The AnnotationMapper class

The AnnotationMapper is used by the Writer classes to map the annotation labels. It is also responsible to validate tags, i.e. to check if the annotation label is part of the tagset of the given file format. Internally, the class uses a dictionary to map the annotations. This dictionary is created from a default JSON file for each combination of input file format and output file format. For example, there is a default JSON file for the mapping of annotations from Toolbox files to Typecraft files:

https://github.com/cidles/poio-api/blob/master/src/poioapi/mappings/TOOLBOX_TYPECRAFT.json

Additionally, the programmer can add more JSON files to an AnnotationMapper object to update the mapping. This is done by the script poio_converter.py when the user specified a mapping file on the command line, as described above.

Application: Toolbox import in the Typecraft web application

An example application of the full Poio API conversion functionality is the import of Toolbox files in the Tpyecraft web application. Internally, Typecraft uses Poio API to convert a Toolbox file into the Typecraft XML format and then imports this XML. This modularization of the import allows us to support other file formats in the future, for example the import of pure text-based IGT from Word files. All we need to modify is the conversion workflow in Poio API, the web application practically only needs a new entry in a dropdown so that the user can specify the input file format.

As the workflow in Poio API consists of three steps we can also allow the user to edit the annotation mapping in between. In the first step, we generate an JSON mapping file for any missing tags in the default mapping. Based on this JSON file we generate a user interface that allows the user to specify additional mappings:

[image: _images/typecraft_import.png]
Based the user input we generate a new JSON mapping file and add that file to the conversion when we execute the final conversion step to generate the Typecraft XML. The abstraction in Poio API allows us to use the same workflow for all file formats that are supported by Poio API.

Parser and Writer classes to map from and to file formats

This chapter explains how the Parser and Writer classes in Poio API work. You
will learn how to write your own parsers and writers to support a custom file
format. Poio API already support a lot of file formats out of the box, which
are explained in the following sections. In any case the parser
class is used by a general Converter class to map the file format onto
a GrAF object. The user may then modify the GrAF object and write back the
changes to any of the supported file format (or a custom format, if you
implemented a writer). The following Python code demonstrates how one
file format can be convert to another one with support of an existing parser
and writer class:

parser = poioapi.io.wikipedia_extractor.Parser("Wikipedia.xml")
writer = poioapi.io.graf.Writer()

converter = poioapi.io.graf.GrAFConverter(parser, writer)
converter.parse()
converter.write("Wikipedia.hdr")

This code parses from the XML output of the Wikipedia Extractor [http://medialab.di.unipi.it/wiki/Wikipedia_Extractor] and writes the content
as GrAF files.

Contents

	How to write a Parser/Writer for a new file format
	Example: A simple parser based on static data

	Spreadsheet to GrAF conversion
	The data in Excel

	Export the data

	The implementation of the parser

	How to use the parser to convert to GrAF-XML

How to write a Parser/Writer for a new file format

In order to support your own file format in Poio API, you would need to
implement your own parser as a sub-class of the base class
poioapi.io.graf.BaseParser. The base class contains six abstract
methods that will allow the GrAF converter to build a GrAF object from the
content of your files. The six methods are:

	get_root_tiers() - Get the root tiers.

	get_child_tiers_for_tier(tier) - Get the child tiers of a given tier.

	get_annotations_for_tier(tier, annotation_parent) - Get the annotations on a
given tier.

	tier_has_regions(tier) - Check if the annotations on a given tier specify
regions.

	region_for_annotation(annotation) - Get the region for a given annotation.

	get_primary_data() - Get the primary data that the annotations refer to.

Note: All the methods must be implemented, otherwise an exception will be
raised.

The tiers and annotations that are passed to the methods are normally objects
from the classes poioapi.io.graf.Tier and
poioapi.io.graf.Annotation. If you need to pass additional
information between the methods, that are not present in our implementation
of the classes, you might also sub-class Tier and/or Annotation and add
your own properties. By sub-classing, you make sure that the properties from
our implementation are still there. The converter needs them to build the GrAF
object.

Each Tier contains a name and an annotation_space property (the latter
is None by default). The class ElanTier exemplifies the sub-classing of
Tier. In the case of Elan, we need to store an additional property
linguistic_type to be able to implement the complete parser:

class ElanTier(poioapi.io.graf.Tier):
 __slots__ = ["linguistic_type"]

 def __init__(self, name, linguistic_type):
 self.name = name
 self.linguistic_type = linguistic_type
 self.annotation_space = linguistic_type

Tier s use the annotation_space to describe that they share certain
annotation types. If the annotation_space is None the GrAF converter
will use the name as the label for the annotation space.

Each Annotation is defined with a unique id property and can contain a
value and a ‘ features` property. Features are stored in a dictionary
in the feature_structure of the annotation in the GrAF representation.

References:

	poioapi.io.graf.BaseParser

	poioapi.io.graf.Tier

	poioapi.io.graf.Annotation

Example: A simple parser based on static data

The transformation of annotation data to GrAF is done by the class
poioapi.io.graf.GrAFConverter. This class will use the parser’s
methods to retrieve the information from the file.

Sub-classing from BaseParser

First, we will sub-class our own parser SimpleParser from the class
poioapi.io.graf.BaseParser with empty methods. We will set some
static data within the class that represent our tier names
and the annotations for each tier:

class SimpleParser(poioapi.io.graf.BaseParser):

 tiers = ["utterance", "word", "wfw", "graid"]
 utterance_tier = ["This is a utterance", "that is another utterance"]
 word_tier = [['This', 'is', 'a', 'utterance'], ['that', 'is', 'another',
 'utterance']]
 wfw_tier = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
 graid_tier = ['i', 'j', 'k', 'l', 'm', 'n', 'o', 'p']

 def __init__(self):
 pass

 def get_root_tiers(self):
 pass

 def get_child_tiers_for_tier(self, tier):
 pass

 def get_annotations_for_tier(self, tier, annotation_parent=None):
 pass

 def tier_has_regions(self, tier):
 pass

 def region_for_annotation(self, annotation):
 pass

 def get_primary_data(self):
 pass

If your annotations are stored in a file, then you need to implement your own
strategy how to load the file’s content into your parser class. The
__init__() of your parser class might be a good place to load your file.

References:

	poioapi.io.graf.GrAFConverter

Implementation of the parser methods

We will start with the get_root_tiers() method. This method will return all
the root tiers as objects of the class Tier (or a sub-class of it). In our
case, this is only the utterance tier:

def get_root_tiers(self):
 return [poioapi.io.graf.Tier("utterance")]

The method get_child_tiers_for_tier() returns all child tiers of
a given tier, again as Tier objects. In our simple example, we assume that
the child of the utterance tier is the word tier, which has the
children graid and wfw:

def get_child_tiers_for_tier(self, tier):
 if tier.name == "utterance":
 return [poioapi.io.graf.Tier("word")]
 if tier.name == "word":
 return [poioapi.io.graf.Tier("graid"), poioapi.io.graf.Tier("wfw")]

 return None

Note: This two methods must always return a list of Tier objects or
None.

The method get_annotations_for_tier() is used to collect the annotations
for a given tier. Each annotation must at least cotain a unique id and an
annotation value. Both properties are already present in the class
Annotation that we use here to return the annotations. For the utterance
tier we can simply convert the list of strings in our self.utterance_tier
data store:

def get_annotations_for_tier(self, tier, annotation_parent=None):
 if tier.name == "utterance":
 return [poioapi.io.graf.Annotation(i, v)
 for i, v in enumerate(self.utterance_tier)]

 [...]

For all tiers that are children of another tier, the annotations within the tiers
are normally also children of another annotation on the parent tier. In this
case the Converter will pass a value in the parameter annotation_parent.
In our case, the id of the parent annotation points to the location of the
child annotations in the lists self.word_tier, self.graid_tier and
self.wfw_tier:

[...]

 if tier.name == "word":
 return [poioapi.io.graf.Annotation(2 + 4 * annotation_parent.id + i, v) for i, v
 in enumerate(self.word_tier[annotation_parent.id])]

 if tier.name == "graid":
 return [poioapi.io.graf.Annotation(
 annotation_parent.id + 10, self.graid_tier[annotation_parent.id - 2])]

 if tier.name == "wfw":
 return [poioapi.io.graf.Annotation(
 annotation_parent.id + 12, self.wfw_tier[annotation_parent.id - 2])]

 return []

Note: This method must always return a list with Annotation elements
or an empty list.

The method tier_has_regions() describes which tiers contain regions.
These regions are intervals that refer to the primary data. Depending on the
type of the primary data the regions can encode intervals of time (encoded
as milliseconds, in most cases) or a range in a string (from start to end
position). In our case we assume that only the root tier utterance is
connected to the primary data via regions:

def tier_has_regions(self, tier):

 if tier.name == "utterance":
 return True

 return False

To get the regions of a specific annotation the Converter will call the
method region_for_annotation(). This method must return a tuple with
start and end of the regions. In our example the tier with regions is the
utterance tier. So the region for the first utterance is (0, 19), if we
assume that we want to return the content of the two utterances connected
with a blank ” ” as the primary data. We can simply calculate the regions from
the length of the strings in self.utterance_tier:

def region_for_annotation(self, annotation):

 if annotation.id == 0:
 return (0, len(self.utterance_tier[0]))
 elif annotation.id == 1:
 return (len(self.utterance_tier[0]) + 1,
 len(self.utterance_tier[0]) + 1 + len(self.utterance_tier[1]))

Last but not least, we also have to return the primary data. As the utterance
tier was the root tier and we already defined the regions for the utterance
annotations based on the strings in self.utterance_tier we can simply join
the two strings and return the result as the primary data:

def get_primary_data(self):
 return ' '.join(self.utterance_tier)

Using the parser to convert to GrAF

You can now use the SimpleParser class to convert the static data into
a GrAF object:

parser = SimpleParser()

converter = poioapi.io.graf.GrAFConverter(parser)
converter.parse()

graf = converter.graf

The converter object contains two more objects that contain information
from the parsed data:

	The tier hierarchies is stored in converter.tier_hierarchies.

	The primary data for the annotations is stored in converter.primary_data.

If you want to write the data to GrAF files, you have to create a GrAF writer
object and pass it to the Converter’s constructor:

parser = SimpleParser()
writer = poioapi.io.graf.Writer()

converter = poioapi.io.graf.GrAFConverter(parser, writer)
converter.parse()
converter.write("simple.hdr")

The section Spreadsheet to GrAF conversion discusses a slightly more complex use case: how to
write a parser for custom annotations stored in a Microsoft Excel file.

Spreadsheet to GrAF conversion

The section How to write a Parser/Writer for a new file format described how the general conversion
mechanism works in Poio API, and how you can implement your own parser to
convert a custom file format to a GrAF object. In this section we will continue
with a more complex example based on annotations in Microsoft Excel or
LibreOffice/OpenOffice Calc. We will show how can export Excel data into a
CSV file and discuss a CSV parser that we will finally use to convert the
Excel annotations into GrAF-XML files.

The data in this section comes from real-world language documentation project
about north-east caucasian languages. We will use several annotated texts in
the language Hinuq. The Excel file was kindly provided by Diana Forker.

The data in Excel

The data in Excel consists of several “tiers” that were encoded as rows in an
Excel worksheet. For each utterance of the original text there are eight rows
in the Excel sheet. Here is a screenshot of Excel with that shows the first
three utterances:

[image: _images/excel_screenshit_hinuq.jpg]
The first row, for example, contains a unique ID, while the second row
consists of the tokenized utterance (“word” tier), with optional spaces
between them. Row three and four contain an ID and an annotation for the
so-called “clause unit”, a term stemming from the annotation framework GRAID
(Grammatical Relations and Animacy in Discourse), developed by Geoffrey Haig
and Stefan Schnell. The subsequent four rows contain GRAID annotations, custom
annotations and translations based on the word tier.

In this case Diana was interested in the different word orders that were used
in the Hinuq texts. Word order appear within the “clause units”, as those
represent parts of utterances like main clauses and sub clauses. To analyze the
word order now, the interesting units within the clause units are the
participants and the verb. Participants of clauses are normally encoded
regarding the syntactic/semantic role within the clause, Diana used the labels
“S”, “A” and “P” that are widely used within general linguistics and language
typology. The verbs have different tags like “v.tr”, “v.intr” or “v.aff”. All
the interesting tags appear in row five in Excel. Because we are only interested
in clause units and the tags that represent participant and verbs within each
clause unit, our parser will only return informations from row three, four and
five of each utterance. It should be easy enough to extend the parser to more
rows later. The names that those three rows will be clause_id, clause_type
and grammatical_relation, containing the IDs of the clause units, the type of
the clauses (main or sub class) and the grammatical relations as discussed,
respectively. These are the tiers that our parser will process and for which
it will return the annotations from the Excel CSV file.

Export the data

The first step is to export the data from Excel to a CSV file. CSV files are
much easier to read in with Python. Unfortunately, Microsoft Excel still has
a big problem when it comes to export Unicode CSV files. In the case of the
Hinuq data, Diana used a lot of different Unicode characters that we need
to preserve when exporting. We thus used Open Office to export the data to
a CSV file that uses a UTF-8 encoding. You can open your Excel file in Open
Office, click on File → Save As and then choose Text CSV as file format.
In the following dialog choose UTF-8 as encoding and the pipe symbol “|” as
field seperator. We also chose an empty string as text seperator:

[image: _images/calc_settings_csvexport.png]
In the following steps we assume that the filename is Hinuq.csv and that
the file was saved with those settings.

The implementation of the parser

The easiest way to implement a parser for Poio API is to sub-class from
poioapi.io.graf.BaseParser as described in section
How to write a Parser/Writer for a new file format. We have to implement six abstract methods so
that the poioapi.io.graf.GrAFConverter class can then build a GrAF
from the CSV data. The six methods are:

	get_root_tiers() - Get the root tiers.

	get_child_tiers_for_tier(tier) - Get the child tiers of a give tier.

	get_annotations_for_tier(tier, annotation_parent) - Get the annotations on a
given tier.

	tier_has_regions(tier) - Check if the annotations on a given tier specify
regions.

	region_for_annotation(annotation) - Get the region for a given annotation.

	get_primary_data() - Get the primary data that the annotations refer to.

First, we will implement the constructor of our new parser class
ExcelParser. The constructor does most of the work in our class, as it is
responsible to parse the CSV file and put all the interesting information
in Python data structures. This is possible here, because the CSV file does
not contain so much data and we can still store everything in memory. If your
data is too big you may implement a more sophisticated method to stream the
data while the converter is calling the methods. Our full constructor looks
like this:

import csv
import codecs

import poioapi.io.graf
import poioapi.annotationgraph
import poioapi.data

class ExcelParser(poioapi.io.graf.BaseParser):

 def __init__(self, filepath):
 self.word_orders = dict()
 self.clauses = list()
 self.clause_types = dict()
 self.last_id = -1
 with codecs.open(filepath, "r", "utf-8") as csvfile:
 hinuq2 = csv.reader(csvfile, delimiter='|')
 i = 0
 for row in hinuq2:
 if i == 2:
 clause_ids = row
 elif i == 3:
 clause_types = row
 elif i == 4:
 grammatical_relations = row
 i += 1
 if i > 7:
 # now parse
 word_order = []
 c_id = None
 prev_c_id = None
 for j, clause_id in enumerate(clause_ids):

 # new clause
 if clause_id != "":
 # add word order to previous clause
 if len(word_order) > 0:
 self.word_orders[c_id] = word_order
 word_order = []

 # add new clause
 c_id = self._next_id()
 self.clauses.append(c_id)
 self.clause_types[c_id] = clause_types[j].strip()

 grammatical_relation = grammatical_relations[j].strip()
 word_order.append(grammatical_relation)

 if len(word_order) > 0:
 self.word_orders[c_id] = word_order
 i = 0

The important data structures here are the three properties self.clauses,
self.clause_types and self.word_orders. The first is a list of IDs,
while the latter two a dictionaries with the clause IDs as keys. The store
the annotations (clause type and grammatical relations from row four and five
of the Excel file) for each clause unit as values.

The six abstract methods of the base class are then easy to implement, we will
just list them as a big block of code here:

def _next_id(self):
 self.last_id += 1
 return self.last_id

def get_root_tiers(self):
 return [poioapi.io.graf.Tier("clause_id")]

def get_child_tiers_for_tier(self, tier):
 if tier.name == "clause_id":
 return [poioapi.io.graf.Tier("grammatical_relation"),
 poioapi.io.graf.Tier("clause_type")]

 return None

def get_annotations_for_tier(self, tier, annotation_parent=None):
 if tier.name == "clause_id":
 return [poioapi.io.graf.Annotation(i, v)
 for i, v in enumerate(self.clauses)]

 elif tier.name == "clause_type":
 return [poioapi.io.graf.Annotation(
 self._next_id(), self.clause_types[annotation_parent.id])]

 elif tier.name == "grammatical_relation":
 return [poioapi.io.graf.Annotation(self._next_id(), v)
 for v in self.word_orders[annotation_parent.id]]

 return []

def tier_has_regions(self, tier):
 return False

def region_for_annotation(self, annotation):
 pass

def get_primary_data(self):
 pass

The tier hierarchy is simple, we have the root tier clause_id and two child
tiers grammatical_relation and clause_type. The two methods
get_root_tiers() and get_child_tiers_of_tier() implement this hierarchy.
The next method get_annotations_for_tier() returns the contents of the
different tiers as Annotation objects. We just have to make sure that all
the IDs are unique, which is the responsibilty of the method _next_id().
The last three methods can stay empty, as there are no regions on any tier and
did not access the primary data in the Excel file. Based on this parser class
we can now write a simple converter for our type of CSV files, as demonstrated
in the next section.

How to use the parser to convert to GrAF-XML

Next we want to implement a helper function that creates an AnnotationGraph
object from an Excel file, which we will then use to analyze the word orders in
the Hinuq texts. We can simply create a parser object from our new class
ExcelParser and pass it to the poioapi.io.graf.GrAFConverter
class. After parsing, we have access to the GrAF object and the tier hierarchy
through the converter object. We need to copy these objects into the
AnnotationGraph object to be ableto use some of the methods of the
AnnotationGraph later when we analyze the word order. The full code of our
helper method is:

def from_excel(filepath):
 ag = poioapi.annotationgraph.AnnotationGraph()
 parser = ExcelParser(filepath)
 converter = poioapi.io.graf.GrAFConverter(parser)
 converter.parse()
 ag.tier_hierarchies = converter.tier_hierarchies
 ag.structure_type_handler = poioapi.data.DataStructureType(
 ag.tier_hierarchies[0])
 ag.graf = converter.graf
 return ag

With this preparation we can now follow up with the analysis of word order in
the Excel file. This analysis is part of a separate IPython notebook [http://ipython.org/notebook.html] that you can view and download here:

http://nbviewer.ipython.org/urls/raw.github.com/pbouda/notebooks/master/Diana%20Hinuq%20Word%20Order.ipynb

The first block of code in the notebook loads a file helper/diana.py, which
contains exactly the class ExcelParser and the helper function
from_excel() from above. You can download the helper file here:

https://raw.github.com/pbouda/notebooks/master/helpers/diana.py

Linguistic analysis and pipelines based on GrAF graphs

We think that GrAF graphs can play an important role in the implementation
of scientific workflows in linguistics. Based on the GrAF objects that
Poio API generates you might pipe the data to scientific Python libraries
like networkx [http://networkx.github.io/], numpy [http://www.numpy.org/]
or scipy [http://www.scipy.org/]. The American National Corpus implemented
connectors for GrAF and two linguistic frameworks. The conversion of custom
file formats to GrAF through Poio API can thus act as an entry point to those
pipelines and support to merge data and annotation from a wide range of
heteregenous data sources for further analysis.

Search in annotation graphs: filters and filter chains

The filter class poioapi.annotationgraph.AnnotationGraphFilter
can be used to search in annotation graphs in Poio API. The filter class can
only be used together with the annotation graph class
poioapi.annotationgraph.AnnotationGraph. The idea is that
each annotation graph can contain a set of filters, that each reduce the
full annotation graph to a subset. This list of filters is what we call a
filter chain. Each filter consists of search terms for each of the
tiers that were loaded from an input file, as described in section
Data Structure Types. The search terms can be simple strings or
regular expressions.

To be able to apply a filter to an annotation graph you have to load some
data first. In this example we will use the example file from the Elan
homepage [http://tla.mpi.nl/tools/tla-tools/elan/download/]. First, we
create a new annotation graph and load the file:

import poioapi.annotationgraph

ag = poioapi.annotationgraph.AnnotationGraph()
ag.from_elan("elan-example3.eaf")

In the next step we set the default tier hierarchy for the annotation graph.
As the example file contains four root tiers with subtiers we have to choose
one of the hierarchies carefully. In our case we choose the hierarchy with
the root tier utterance..W-Spch that we find at index 1 of the
property ag.tier_hierarchies after we loaded the file. We choose this
tier hierchary to be used for all subsequent filter operations:

ag.structure_type_handler = \
 poioapi.data.DataStructureType(ag.tier_hierarchies[1])

In our case the hierarchy ag.tier_hierarchies[1] contains the following
tiers:

['utterance..W-Spch',
 ['words..W-Words',
 ['part_of_speech..W-POS']],
 ['phonetic_transcription..W-IPA']]

Now we are ready to create a filter for the data. We will filter the data
with serch terms on two of the subtiers of our tier hierarchy: we will search
for follow on the words tier and for the regular expression \bpro\b
on the POS tier. We can look up the full names of the tiers in the above
tier hierarchy. The following code creates a filter object and adds the
two search terms for the two tiers:

af = poioapi.annotationgraph.AnnotationGraphFilter(ag)
af.set_filter_for_tier("words..W-Words", "follow")
af.set_filter_for_tier("part_of_speech..W-POS", r"\bpro\b")

The final step is to append the filter to the filter chain of the annotation
graph:

ag.append_filter(af)

The append operation will already start the process of graph filtering. The
result is stored in the property filtered_node_ids of the annotation
graph object, which is a list of root nodes where child nodes matched
the search term:

print(ag.filtered_node_ids)
[['utterance..W-Spch..na10',
 'utterance..W-Spch..na12',
 'utterance..W-Spch..na19']]

You can get a visible result set by writing a filtered HTML representation
of the annotation graph:

import codecs
html = ag.as_html_table(True)
f = codecs.open("filtered.html", "w", "utf-8")
f.write(html)
f.close()

You can add more filters to the annotation graph by creating more filter
objects and passing them to append_filter(). If you want to remove a filter
you can call pop_filter(), which will remove the filter that was last added
to the annotation graph object:

ag.pop_filter()

A convenient way to create filter objects is by passing a dictionary with
tier names and search terms to the method create_filter_for_dict() of the
annotation graph object. The following code will create the same filter as in
the example above:

search_terms = {
 "words..W-Words": "follow",
 "part_of_speech..W-POS": r"\bpro\b"
}
af = ag.create_filter_for_dict(search_terms)

You can then append the filter to the filter chain. A complete script that
demonstrates filters and filter chains is available on Github:

https://github.com/cidles/poio-api/blob/master/examples/filter.py

Real world examples

Counting word orders

The following example is based on the parser explained in section
Spreadsheet to GrAF conversion. The whole workflow to count word order in GrAF is
implemented as IPython notebook [http://ipython.org/notebook.html], which
you can view and download here:

http://nbviewer.ipython.org/urls/raw.github.com/pbouda/notebooks/master/Diana%20Hinuq%20Word%20Order.ipynb

D3.js for visualization

The graf-python documentation contains a nice example how to visualize GrAF
data with the help of the networkx library [http://networkx.github.io/]
and the Javascript visualization library D3.js [http://d3js.org/]:

https://graf-python.readthedocs.org/en/latest/Translation%20Graph%20from%20GrAF.html

To just see the example visualization click here:

http://bl.ocks.org/anonymous/4250342

GrAF connectors

The American National Corpus implemented GrAF connectors for the Unstructured
Information Management applications (Apache UIMA) [http://uima.apache.org/]
fraemwork and the general architecture for text engineering (GATE) [http://gate.ac.uk/] software. You can download the ANC software here:

	http://www.anc.org/software/uimautils/

	http://www.anc.org/software/gate-tools/

PoioAPI Package

	poioapi.data

	poioapi.annotationtree

	poioapi.annotationgraph

PoioAPI IO Package

	poioapi.io.elan

	poioapi.io.graf

	poioapi.io.pickle

	poioapi.io.typecraft

poioapi.data

This module contains the classes to access annotated data in
various formats.

The parsing is done by Builder classes for each file type, i.e.
Elan’s .eaf files, Kura’s .xml file, Toolbox’s .txt files etc.

	
class poioapi.data.DataStructureType(custom_data_hierarchy=None)

	Data structure type constructor.

	Attributes

	
	`name`str

	Name of the structure.

	data_hirerarchyarray

	Structure of the array.

Methods

	empty_element()

	Return the appended list of a certain data hierarchy.

	get_children_of_type(ann_type)

	Returns all the elements that are above a given type in the type hierarchy.

	get_parents_of_type(ann_type)

	Returns all the elements that are above a given type in the type hierarchy.

	type_has_region(ann_type)

	Checks whether the given type has regions that connect it to the base data.

	
__init__(custom_data_hierarchy=None)

	Class’s constructor…..

	
empty_element()

	Return the appended list of a certain data hierarchy.

	Returns

	
	_append_listarray_like

	The actual list with the appended elements.

	
get_children_of_type(ann_type)

	Returns all the elements that are above a given type in the type
hierarchy.

	Parameters

	
	ann_typestr

	Value of the field in the data structure hierarchy.

	Returns

	
	_get_parents_of_type_helperarray_like

	The return result depends on the return of the called method.

See also

_get_parents_of_type_helper

	
get_parents_of_type(ann_type)

	Returns all the elements that are above a given type in the type
hierarchy.

	Parameters

	
	ann_typestr

	Value of the field in the data structure hierarchy.

	Returns

	
	_get_parents_of_type_helperarray_like

	The return result depends on the return of the called method.

See also

_get_parents_of_type_helper

	
type_has_region(ann_type)

	Checks whether the given type has regions that connect it
to the base data.

	Parameters

	
	ann_typestr

	Value of the field in the data structure hierarchy.

	Returns

	
	is_regionbool

	Whether the annotation type has regions.

	
class poioapi.data.DataStructureTypeGraid(custom_data_hierarchy=None)

	Data structure type using a GRAID format.

	Attributes

	
	`name`str

	Name of the structure.

	data_hirerarchyarray_like

	Structure of the array.

Methods

	empty_element()

	Return the appended list of a certain data hierarchy.

	get_children_of_type(ann_type)

	Returns all the elements that are above a given type in the type hierarchy.

	get_parents_of_type(ann_type)

	Returns all the elements that are above a given type in the type hierarchy.

	type_has_region(ann_type)

	Checks whether the given type has regions that connect it to the base data.

	
class poioapi.data.DataStructureTypeGraidDiana(custom_data_hierarchy=None)

	Data structure type using a GRAID format.

	Attributes

	
	`name`str

	Name of the structure.

	data_hirerarchyarray_like

	Structure of the array.

Methods

	empty_element()

	Return the appended list of a certain data hierarchy.

	get_children_of_type(ann_type)

	Returns all the elements that are above a given type in the type hierarchy.

	get_parents_of_type(ann_type)

	Returns all the elements that are above a given type in the type hierarchy.

	type_has_region(ann_type)

	Checks whether the given type has regions that connect it to the base data.

	
class poioapi.data.DataStructureTypeMorphsynt(custom_data_hierarchy=None)

	Data structure type using a Morphsyntax format.

	Attributes

	
	`name`str

	Name of the structure.

	data_hirerarchyarray_like

	Structure of the array.

Methods

	empty_element()

	Return the appended list of a certain data hierarchy.

	get_children_of_type(ann_type)

	Returns all the elements that are above a given type in the type hierarchy.

	get_parents_of_type(ann_type)

	Returns all the elements that are above a given type in the type hierarchy.

	type_has_region(ann_type)

	Checks whether the given type has regions that connect it to the base data.

	
exception poioapi.data.DataStructureTypeNotCompatible

	

	
exception poioapi.data.DataStructureTypeNotSupportedError

	

	
exception poioapi.data.NoFileSpecifiedError

	

	
exception poioapi.data.UnknownAnnotationTypeError

	

	
exception poioapi.data.UnknownDataStructureTypeError

	

	
exception poioapi.data.UnknownFileFormatError

	

poioapi.annotationtree

poioapi.annotationgraph

poioapi.io.elan

poioapi.io.graf

poioapi.io.pickle

Indices and tables

	Index

	Module Index

	Search Page

poioapi.io.typecraft

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 poioapi	

 	
 	
 poioapi.data	

Index

 _
 | D
 | E
 | G
 | N
 | P
 | T
 | U

_

 	
 	__init__() (poioapi.data.DataStructureType method)

D

 	
 	DataStructureType (class in poioapi.data)

 	DataStructureTypeGraid (class in poioapi.data)

 	DataStructureTypeGraidDiana (class in poioapi.data)

 	
 	DataStructureTypeMorphsynt (class in poioapi.data)

 	DataStructureTypeNotCompatible

 	DataStructureTypeNotSupportedError

E

 	
 	empty_element() (poioapi.data.DataStructureType method)

G

 	
 	get_children_of_type() (poioapi.data.DataStructureType method)

 	
 	get_parents_of_type() (poioapi.data.DataStructureType method)

N

 	
 	NoFileSpecifiedError

P

 	
 	poioapi.data (module)

T

 	
 	type_has_region() (poioapi.data.DataStructureType method)

U

 	
 	UnknownAnnotationTypeError

 	
 	UnknownDataStructureTypeError

 	UnknownFileFormatError

GrAF to brat conversion

brat is a web-based tool for text annotation (http://brat.nlplab.org/).
It works quite simple, through a annotation file with a same name of a text file, using the tokens in it, parses the
text file in order to find the annotations using the token ranges.
The annotations configuration are specified in a file name “annotation.conf”, this file is also required otherwise the
brat will through warnings and errors about the annotations.

Our convert will be based in the data from QuantHistLing project (http://www.quanthistling.info/data). The annotation
file should be like this:

[entities]
formatting
 italic
 tab
 newline
 bold
 underline
 superscript
 smallcaps
 hyphen
 pagebreak
dictinterpretation
 head
 pos
 translation
 crossreference
 counterpart
 footnote
 stratum
 phonology
 boundary
 dialectidentification
 headorth
 typo
 iso-639-3
 spa
 des
 doculect
 Desano
 Espan_ol

[relations]
To Arg1:<ENTITY>, Arg2:<ENTITY>
<OVERLAP> Arg1:<ENTITY>, Arg2:<ENTITY>, <OVL-TYPE>:<ANY>

[events]
none

[attributes]
none

For this demonstration we will use the GrAF files from the Aleman2000 dictionary.

To convert a GrAF file to brat first is need to have a GrAF object:

parser = graf.io.GraphParser()
graf_graph = parser.parse("dict-aleman2000-9-69.hdr")

Once we get the graph object is need to set the brat writer.
The brat writer is defined with two paremeters: annotation_space and feature_name.

	The annotation_space serves to filter what annotations are wanted from the graph object to write in brat annotation file.

	The feature_name é a feature key that contains the real value of each annotation.

brat = poioapi.io.brat.Writer("dictinterpretation", feature_name="substring")

In our case we want go get only the annotations from “dictinterpretation” and that contain the feature “substring”:

brat.write(outputfilename="dict-aleman2000-9-69.ann", graf_graph)

The result should be a file named “dict-aleman2000-9-69.ann”.

T1 head 0 6 áriri
#1 AnnotatorNotes T1 NodeID = aleman2000/9/7/annotation/2
T2 Desano 0 6 áriri
#2 AnnotatorNotes T2 NodeID = aleman2000/9/7/annotation/2
T3 des 0 6 áriri
[...]

Note: In order to brat works properly the result file (filename.ann) should have the same name as the text file.

 _static/down-pressed.png

_static/down.png

_static/excel_screenshit_hinuq.jpg
=] M Hinuq2:xsx [Geschitzte Ansicht] - Excel 7 E - 8 X
START ENFUGEN SETENLAYOUT ~ FORMELN DATEN UBERPRUFEN ANSICHT TEAM peter Bouds - [
Al554 s v
Bearbeitungsiiste
A B & D 3 3 c u 1 3] K B M i
1 [XoddonBarun.001
2 zogwen xodon barun. hagbe zog'wen sedi-sedez betin dandets
s @ #2 #
4
s
[np-npl pro-hpl noagr pro-fpl zeohpl bpl
7 husband-vife they refl
s xod-bar xod-bar xodbar xodbar
9 XoddonBarun.002
10 xodos zogwen iyo, yezi agil haw zogwen untaraw aqii
11
2
13
14 pro-2 np2
15) e she woman
16 xod iyo iyo
17 [XoddonBarun.003
18 biRn somodi buce haylu xodozo iyoy, nati buyon hatu agilay],
19
20
21
2 np-1 np2 np3 np-2.def
2 o husband mother work woman
24 xod iyo bar
25 XoddonBarun.004
26 haywqor badiway buho hatugor, "halti buno zogven gomhen” yakiyo yiciyo
27
egcral [seSreg [E]| ab snnotstions. [iSEE < >

BERET

_static/elan_tier_attributes.png
Change Tier Attributes

Current Tiers
Tier Name | ParentTier |LinguisticTy..|_Participant
K-Spch 3 lutterance

W-speh |- lutterance

W-Words [W-Spch _|words

W-POS |W-Words |part of speech)

IWPA [W-Spch __[phonefic_ira.

WRGU |- lgestures

(Add | Change | Detets | import |

| —— .

_static/elan_tier_hierarchy.png
KSpch
o

Jspen

Wewords
Bl
W.POS
Bl

WeIPA
0l

“RGU
il

¢RGph

58]
CROM

e}

KRG

Ll

<ROp
Bl P

K-ROMe
"

000

Gesture Unit 1

00:00:03000 00:00:04.000

00:00:05.00

Sonbion ooonbaonn
0101 90 ot ofth nstut o he Sant Anna Srast ananenyo
so |vougo |oufof [the | instituteto]tr 5] Ann] Straa| an]th Jyou
UL UL N
} {ROf {IQELAL_{N__jpionin in _j jeoqadiare.
{580 ju g3 autafds ittt o sanana irat | enssenin
f f

spar | preparation stroke |hold | preparati]stroke |hold preparation
Gaing out Gaing o

il

_static/graf_schema.png
Node

[xnl:1d = utterance/w-Spch/n

Link

[Ftarget = utterance/w-spch/r

[xnliid = a8
utterance

+ref = utterance/w-spch/ng

Region

FeatureStructure

[+1d = utterance/w-spch/rd
[+anchors = 780 4090

[+annotation_value = so you go out of the Institute fo the Saint Anna Strad
+time_slotl = ts4
+time_slot2 = ts23

_static/minus.png

_static/excel_screenshit_hinuq_small.jpg
e

_static/file.png

_images/calc_settings_csvexport.png

_images/elan_tier_attributes.png
Change Tier Attributes

Current Tiers
Tier Name | ParentTier |LinguisticTy..|_Participant
K-Spch 3 lutterance

W-speh |- lutterance

W-Words [W-Spch _|words

W-POS |W-Words |part of speech)

IWPA [W-Spch __[phonefic_ira.

WRGU |- lgestures

(Add | Change | Detets | import |

| —— .

_images/elan_tier_hierarchy.png
KSpch
o

Jspen

Wewords
Bl
W.POS
Bl

WeIPA
0l

“RGU
il

¢RGph

58]
CROM

e}

KRG

Ll

<ROp
Bl P

K-ROMe
"

000

Gesture Unit 1

00:00:03000 00:00:04.000

00:00:05.00

Sonbion ooonbaonn
0101 90 ot ofth nstut o he Sant Anna Srast ananenyo
so |vougo |oufof [the | instituteto]tr 5] Ann] Straa| an]th Jyou
UL UL N
} {ROf {IQELAL_{N__jpionin in _j jeoqadiare.
{580 ju g3 autafds ittt o sanana irat | enssenin
f f

spar | preparation stroke |hold | preparati]stroke |hold preparation
Gaing out Gaing o

il

_static/typecraft_import.png
) > | [% | [#) @ wctest.typecraft.org/tc2/jsp/converter.jsp

Welcome to Typecraft Importer

Please match these tags with Typecraft's ones:

Gloss TCGloss

N —|

T (f—
Y

POS TCPOS

nav.xhtml

 Table of Contents

 		
 Welcome to Poio API’s documentation!

 		
 Introduction to Poio API

 		
 Quick Example

 		
 Data Structure Types

 		
 Structure of GrAF graphs in Poio API

 		
 Example: GrAF from an Elan EAF file

 		
 Conversion of file formats and annotation mapping

 		
 Conversion on the command line

 		
 The JSON mapping file

 		
 Tier names of the input file

 		
 More examples of JSON mapping files

 		
 Map programmatically in Python

 		
 Internals: The mapping classes

 		
 The TierMapper class

 		
 The AnnotationMapper class

 		
 Application: Toolbox import in the Typecraft web application

 		
 Parser and Writer classes to map from and to file formats

 		
 How to write a Parser/Writer for a new file format

 		
 Example: A simple parser based on static data

 		
 Spreadsheet to GrAF conversion

 		
 The data in Excel

 		
 Export the data

 		
 The implementation of the parser

 		
 How to use the parser to convert to GrAF-XML

 		
 Linguistic analysis and pipelines based on GrAF graphs

 		
 Search in annotation graphs: filters and filter chains

 		
 Real world examples

 		
 Counting word orders

 		
 D3.js for visualization

 		
 GrAF connectors

 		
 PoioAPI Package

 		
 poioapi.data

 		
 poioapi.annotationtree

 		
 poioapi.annotationgraph

 		
 PoioAPI IO Package

 		
 poioapi.io.elan

 		
 poioapi.io.graf

 		
 poioapi.io.pickle

 		
 Indices and tables

 		
 poioapi.io.typecraft

_static/plus.png

_images/typecraft_import.png
) > | [% | [#) @ wctest.typecraft.org/tc2/jsp/converter.jsp

Welcome to Typecraft Importer

Please match these tags with Typecraft's ones:

Gloss TCGloss

N —|

T (f—
Y

POS TCPOS

_static/ajax-loader.gif

_images/excel_screenshit_hinuq.jpg
=] M Hinuq2:xsx [Geschitzte Ansicht] - Excel 7 E - 8 X
START ENFUGEN SETENLAYOUT ~ FORMELN DATEN UBERPRUFEN ANSICHT TEAM peter Bouds - [
Al554 s v
Bearbeitungsiiste
A B & D 3 3 c u 1 3] K B M i
1 [XoddonBarun.001
2 zogwen xodon barun. hagbe zog'wen sedi-sedez betin dandets
s @ #2 #
4
s
[np-npl pro-hpl noagr pro-fpl zeohpl bpl
7 husband-vife they refl
s xod-bar xod-bar xodbar xodbar
9 XoddonBarun.002
10 xodos zogwen iyo, yezi agil haw zogwen untaraw aqii
11
2
13
14 pro-2 np2
15) e she woman
16 xod iyo iyo
17 [XoddonBarun.003
18 biRn somodi buce haylu xodozo iyoy, nati buyon hatu agilay],
19
20
21
2 np-1 np2 np3 np-2.def
2 o husband mother work woman
24 xod iyo bar
25 XoddonBarun.004
26 haywqor badiway buho hatugor, "halti buno zogven gomhen” yakiyo yiciyo
27
egcral [seSreg [E]| ab snnotstions. [iSEE < >

BERET

_static/up-pressed.png

_images/graf_schema.png
Node

[xnl:1d = utterance/w-Spch/n

Link

[Ftarget = utterance/w-spch/r

[xnliid = a8
utterance

+ref = utterance/w-spch/ng

Region

FeatureStructure

[+1d = utterance/w-spch/rd
[+anchors = 780 4090

[+annotation_value = so you go out of the Institute fo the Saint Anna Strad
+time_slotl = ts4
+time_slot2 = ts23

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/calc_settings_csvexport.png

_static/comment.png

