
Podiant API Documentation

Mark Steadman

Jun 12, 2019

Contents

1 Getting started 3

2 Authentication and authorisation 7

3 REST scaffolding 11

4 Resources 15

5 Available settings 17

6 Helpers 19

7 Context 21

8 License 23

9 Fork it 25

10 Anything wrong or missing? 27

11 Indices and tables 29

Python Module Index 31

Index 33

i

ii

Podiant API Documentation

Podiant API is a Django app for generating JSON-API-compliant API endpoints. It has been tested in Django v1.11
and v1.2.

To install it, simply run:

pip install podiant-api

Then add the app to your settings:

INSTALLED_APPS = (
...
'api',
...

)

Contents 1

Podiant API Documentation

2 Contents

CHAPTER 1

Getting started

To install Podiant API, simply run:

pip install podiant-api

Then add the app to your settings:

INSTALLED_APPS = (
...
'api',
...

)

There are no models, and the package does not come with its own URLconf.

1.1 Quickstart

The quickest way to create an API endpoint for a model is to use the REST shortcut.

Let’s say our app’s models.py file looks like this:

from django.db import models

class List(models.Model):
name = models.CharField(max_length=255)
creator = models.ForeignKey(

'auth.User',
related_name='lists',
on_delete=models.CASCADE

)

class Task(models.Model):
list = models.ForeignKey(

(continues on next page)

3

Podiant API Documentation

(continued from previous page)

List,
related_name='tasks',
on_delete=models.CASCADE

)

name = models.CharField(max_length=255)
completed = models.BooleanField(default=False)

We would add the following to our app’s urls.py file:

from api.urls import rest
from django.contrib.auth.models import User
from .models import List, Task

urlpatterns = rest(
List,
fields=('name',),
readonly_fields=('creator',),
prepopulated_fields={

'creator': lambda request: request.user
},
relations=(

'creator',
'tasks'

)
) + rest(

Task,
fields=(

'name',
'completed'

),
relations=(

'creator',
'list'

)
) + rest(

User,
exclude=(

'email',
'password',
'is_superuser',
'is_staff',
'groups',
'user_permissions'

),
readonly_fields=(

'date_joined',
'last_login'

),
order_by=('last_name', 'first_name'),
relations={

'lists',
}

)

app_name = 'todos'

4 Chapter 1. Getting started

Podiant API Documentation

We now include our app’s URLconf in our project, like so:

from django.conf.urls import url, include
from .todos import urls as todos_urls

urlpatterns = [
url(r'^api/', include(todos_urls, 'api'))

]

We make sure to include the namespace argument. It must be set to ‘api’, and in Django>=2.0, the app’s URLconf
must contain an app_name attribute.

This should expose the following URLs:

/api/lists/
/api/lists/<list_id>/
/api/lists/<list_id>/tasks/
/api/lists/<list_id>/relationships/tasks/
/api/lists/<list_id>/creator/
/api/lists/<list_id>/relationships/creator/

/api/tasks/
/api/tasks/<task_id>/
/api/lists/<list_id>/lists/
/api/lists/<list_id>/relationships/lists/

/api/users/
/api/users/<username>/
/api/users/<username>/lists/
/api/users/<username>/relationships/lists/

The /api/users/<username>/ URLs are a special case, as it uses the API_URL_OVERRIDES setting setting
so that the username is used to identify the user instead of the primary key.

1.2 JSON API

Podiant API is built to allow the easy creation of JSON-API-compliant endpoints. For more information, see the JSON
API documentation.

1.2. JSON API 5

http://jsonapi.org
http://jsonapi.org

Podiant API Documentation

6 Chapter 1. Getting started

CHAPTER 2

Authentication and authorisation

Authentication is the process of determining which user is performing an HTTP request, or whether it is being per-
formed by an anonymous client. Authorisation is the process of determining whether a user (be they authenticated or
anonymous) is permitted to perform a specific option. When writing authenticators, it should be assumed that the user
property of a Django request object is populated, either with an authenticated or anonymous user.

2.1 Authentication

The default authenticator is DjangoSessionAuthenticator, which is useful for unit- testing but should be
extended in production, as it doesn’t have any tested CSRF protection.

2.1.1 Creating an authenticator

A very simple authenticator might look like this:

from api.authentication import AuthenticatorBase
from django.conf import settings

class APIKeyAuthenticator(AuthenticatorBase):
def authenticate(self, request):

return request.GET.get('key') == settings.API_KEY

To use it in all API endpoints, add it to your settings:

API_DEFAULT_AUTHENTICATORS = (
'myapp.auth.APIKeyAuthenticator',
...

)

You can chain multiple authenticators together. The first one that successfully authenticates (returns True) will be
used, and all further authenticators will be ignored.

7

Podiant API Documentation

To use your authenticator in an endpoint created via the REST shortcut, you can pass in an authenticators
keyword argument, specifying your custom class (as a reference, not a string) in a list or tuple:

urlpatterns = rest(
List,
fields=(...),
authenticators=[APIKeyAuthenticator]

)

To use your authenticator in a view extending ModelViewBase, simply set the authenticators property like so:

class TaskListView(ListView):
authenticators = [APIKeyAuthenticator]

2.2 Bundles

When authorisation is successful, an AuthBundle object is created, which represents the current context of the view
(whether it’s a list or detail view), and an arbitrary data property which can store any values. Most commonly,
the data dictionary will contain an object key (for detail views), which denotes the object the API user wants to
interact with. This can be utilised by the authoriser to determine whether an object- specific permission should be
granted.

2.3 Authorisation

The default authoriser is GuestReadOnlyOrDjangoUserAuthoriser, which allows anonymous users to read
data, but requires that users be logged in and have the correct model permissions in order to perform creations, updates
or deletions.

2.3.1 Creating an authoriser

A very simple authoriser might look like this:

from api.authorisation import AuthoriserBase
from api.exceptions import NotAuthenticatedError, ForbiddenError
from django.conf import settings

class SuperUserAuthoriser(AuthoriserBase):
def authorise(self, request, bundle):

if request.user.is_anonymous:
raise NotAuthenticatedError('User is not authenticated.')

if not request.user.is_superuser:
raise ForbiddenError('User is not a superuser.')

To use it in all API endpoints, add it to your settings:

API_DEFAULT_AUTHORISERS = (
'myapp.auth.SuperUserAuthoriser',
...

)

8 Chapter 2. Authentication and authorisation

Podiant API Documentation

You can chain multiple authorisers together. The first one that successfully authenticates (returns without raising a
ForbiddenError or NotAuthenticatedError exception) will be used, and all further authorisers will be
ignored.

To use your authoriser in an endpoint created via the REST shortcut, you can pass in an authorisers keyword
argument, specifying your custom class (as a reference, not a string) in a list or tuple:

urlpatterns = rest(
List,
fields=(...),
authorisers=[SuperUserAuthoriser]

)

To use your authoriser in a view extending ModelViewBase, simply set the authorisers property like so:

class TaskListView(ListView):
authorisers = [SuperUserAuthoriser]

2.4 API reference

2.4. API reference 9

Podiant API Documentation

10 Chapter 2. Authentication and authorisation

CHAPTER 3

REST scaffolding

Use the urls.rest() function to quickly create a REST interface for a specific model.

Example app.urls.py file:

from api.urls import rest
from django.contrib.auth.models import User
from .models import List, Task

Add a REST endpoint for todo lists, which can represent the
relationship between a list, its creator and the tasks in that list.
urlpatterns = rest(

List,
fields=(

'name',
'created',
'updated',
'icon'

),
relations=(

'creator',
'tasks'

)
)

Add a REST endpoint for tasks, which can represent the relationship
back to the parent list.
urlpatterns += rest(

Task,
fields=(

'name',
'created',
'updated',
'completed'

),
relations=(

(continues on next page)

11

Podiant API Documentation

(continued from previous page)

'list'
)

)

Add a REST endpoint for a user, which can represent the relationship
between the user and their tasks.
urlpatterns += rest(

User,
fields=(

'first_name',
'last_name',
'date_joined',
'last_login'

),
readonly_fields=(

'date_joined',
'last_login'

),
pk_field='username',
relations={

'lists',
}

)

3.1 API reference

urls.rest(resource, **kwargs)
Creates model list and detail resources, and API endpoints to interact with them.

Parameters

• resource (django.db.models.Model, ModelResource) – The Django model to
create a REST interface for, or the resource to use when creating the endpoints.

• fields (list, tuple) – (optional) A list of field names to include in resource objects.

• exclude (list, tuple) – (optional) A list of field names to exclude from resource
objects.

• readonly_fields (list, tuple) – (optional) Names of fields that are not update-
able via the API.

• prepopulated_fields (dict) – (optional) A dictionary of fields with lamba expres-
sions for setting model properties (lke setting the current user as the creator of an object).

• form_class (django.forms.ModelForm) – (optional) Overrides the factory-generated
model form

• queryset (lambda, func) – (optional) A replacement for the default queryset

• order_by (list, tuple) – (optional) A list of field names to order the objects by.

• pk_field (str) – (optional) The primary key field name.

• paginate_by (int) – (optional) The number of items to return in a paginated list. (De-
faults to the value of settings.API_DEFAULT_RPP.)

12 Chapter 3. REST scaffolding

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Podiant API Documentation

• relations (list, tuple) – (optional) A list of many-to-many or many-to-one rela-
tionships that need to be represented in the API.

• authenticators (list, tuple) – (optional) Override the default au-
thenticators for this endpoint. (Defaults to the value of settings.
API_DEFAULT_AUTHENTICATORS.)

• authorisers (list, tuple) – (optional) Override the default authorisers for this
endpoint. (Defaults to the value of settings.API_DEFAULT_AUTHORISERS.)

:param resource_kwargs [optional] Add to the default keyword argument dict that is passed to the resource.

3.1. API reference 13

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

Podiant API Documentation

14 Chapter 3. REST scaffolding

CHAPTER 4

Resources

A resource represents an object, typically a Django model instance. Using the REST shortcut, list and detail resources
are automatically created for the relevant models.

You can manually register a resource for a model like this:

from api.resources import registry
from todos.models import Task

registry.register(Task)

This will create TaskResource and TaskResourceList classes at runtime.

You can also define your own resources, and register them like so:

from api.resources import ModelResource, ModelResourceList
from todos.models import Task

class TaskResource(ModelResource):
model = Task

class TaskResourceList(ModelResourceList):
model = Task

registry.register(Task, TaskResourceList, TaskResource)

4.1 API reference

15

Podiant API Documentation

16 Chapter 4. Resources

CHAPTER 5

Available settings

The following settings can be added to a project’s Django settings file.

5.1 API_DEFAULT_AUTHENTICATORS

The authenticator classes to use in all endpoints by default. Defaults to:

(
'api.authentication.DjangoSessionAuthenticator',

)

5.2 API_DEFAULT_AUTHORISERS

The authoriser classes to use in all endpoints by default. Defaults to:

(
'api.authorisation.GuestReadOnlyOrDjangoUserAuthoriser',

)

5.3 API_DEFAULT_RPP

The default number of items to return in a paginated list (defaults to 10).

5.4 API_URL_OVERRIDES

A dictionary defining the alternative fields used as identifiers for models. For example, you probably don’t
want users identified by primary key, so the default override definition looks like this:

17

Podiant API Documentation

{
'auth.user': ('username', lambda o: o.username)

}

The key is the Django model, specified in <app_name>.<model_name> format. The value is a tuple
containing the name of the field, which is passed to the REST URLconf generator, and a lambda function
that obtains the value of that field from a given model instance.

5.5 API_DEBUG

Defaults to the value of the site’s DEBUG setting. Used to determine whether exception info should be returned via the
API endpoint, in the event of an internal server error.

18 Chapter 5. Available settings

CHAPTER 6

Helpers

Public helper functions that projects using Podiant API can use.

helpers.generate_api_key(length)
A simple helper to return a randomly-generated string of a given length.

Parameters length (int) – The length of string

19

https://docs.python.org/3/library/functions.html#int

Podiant API Documentation

20 Chapter 6. Helpers

CHAPTER 7

Context

This project is an open source portion of the Podiant podcast hosting product. Its podiant- prefix is just a naming
convention, and this package should be useful in any Django project that you want to extend with an API, but don’t
necessarily want or need the batteries that the Django REST Framework includes.

This package is maintained by Mark Steadman.

21

https://podiant.co/
https://www.django-rest-framework.org/
https://steadman.io/

Podiant API Documentation

22 Chapter 7. Context

CHAPTER 8

License

Life’s too short, so this package is available under the WTFPL – Do What the Fuck You Want to Public License.

23

http://www.wtfpl.net/

Podiant API Documentation

24 Chapter 8. License

CHAPTER 9

Fork it

The code is hosted at git.steadman.io because reasons, but is publicly available and you should feel free to add a
GitHub origin of your own and push changes there.

I use GitLab day in and day out but haven’t yet done much in the way of accepting merge requests from outside
developers (only developers internal to the projects I’ve worked on), however I’m happy to look at them. Possibly the
best way to discuss that is to find me on Twitter, @iamsteadman.

25

https://git.steadman.io/podiant/api
https://twitter.com/iamsteadman/

Podiant API Documentation

26 Chapter 9. Fork it

CHAPTER 10

Anything wrong or missing?

If I’ve missed something in the documentation, or if something’s broken, find me on Twitter, @iamsteadman and we’ll
talk about it. If it’s a problem that affects the Podiant product, then it’ll likely get fixed pretty quickly. If it’s something
more esoteric, it might take a little longer as my primary commitment is to building the Podiant platform.

27

https://twitter.com/iamsteadman/

Podiant API Documentation

28 Chapter 10. Anything wrong or missing?

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

29

Podiant API Documentation

30 Chapter 11. Indices and tables

Python Module Index

h
helpers, 19

u
urls, 12

31

Podiant API Documentation

32 Python Module Index

Index

G
generate_api_key() (in module helpers), 19

H
helpers (module), 19

R
rest() (in module urls), 12

U
urls (module), 12

33

	Getting started
	Authentication and authorisation
	REST scaffolding
	Resources
	Available settings
	Helpers
	Context
	License
	Fork it
	Anything wrong or missing?
	Indices and tables
	Python Module Index
	Index

