

 Navigation

 	
 index

 	
 next |

 	cocotb 1.0 documentation

Welcome to Cocotb’s documentation!

Contents:

	Introduction
	What is cocotb?

	How is Cocotb different?

	How does Cocotb work?

	Contributors

	Quickstart Guide
	Installing cocotb

	Using Cocotb

	Build options and Environment Variables
	Make System

	Environment Variables

	Coroutines

	Triggers
	Simulation Timing

	Signal related

	Python Triggers

	Library Reference
	Test Results

	Writing and Generating tests

	Interacting with the Simulator

	Testbench Structure

	Tutorial: Endian Swapper
	Design

	Testbench

	Tutorial: Ping
	Architecture

	Implementation

	Further work

	Tutorial: Driver Cosimulation
	Difficulties with Driver Co-simulation

	Cocotb infrastructure

	Implementation

	Further Work

	Roadmap

	Simulator Support
	Icarus

	Synopsys VCS

	Aldec Riviera-PRO

	Mentor Questa

	Cadence Incisive

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Introduction

What is cocotb?

Cocotb is a COroutine based COsimulation TestBench environment for verifying VHDL/Verilog RTL using Python [http://python.org].

Cocotb is completely free, open source (under the BSD License [http://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_.28.22Revised_BSD_License.22.2C_.22New_BSD_License.22.2C_or_.22Modified_BSD_License.22.29]) and hosted on GitHub [https://github.com/potentialventures/cocotb].

Cocotb requires a simulator to simulate the RTL. Simulators that have been tested and known to work with Cocotb:

Linux Platforms

	Icarus Verilog [http://iverilog.icarus.com/]

	Aldec [https://www.aldec.com/] Riviera-PRO

	Synopsys [http://www.synopsys.com/] VCS

	Cadence [http://www.cadence.com/] Incisive

	Mentor [http://www.mentor.com/] Modelsim

Windows Platform

	Icarus Verilog [http://iverilog.icarus.com/]

	Aldec [https://www.aldec.com/] Riviera-PRO

	Mentor [http://www.mentor.com/] Modelsim

Cocotb can be used live in a web-browser using EDA Playground [http://www.edaplayground.com].

How is Cocotb different?

Cocotb encourages the same philosophy of design re-use and randomised testing as UVM, however is implemented in Python rather than SystemVerilog.

In Cocotb VHDL/Verilog/SystemVerilog are only used for the synthesisable design.

Cocotb has built-in support for integrating with the Jenkins [http://jenkins-ci.org/] continuous integration system.

Cocotb was specifically designed to lower the overhead of creating a test.

Cocotb automatically discovers tests so that no additional step is required to add a test to a regression.

All verification is done using Python which has various advantages over using SystemVerilog or VHDL for verification:

	Writing Python is fast - it’s a very productive language

	It’s easy to interface to other languages from Python

	Python has a huge library of existing code to re-use like packet generation [http://www.secdev.org/projects/scapy/] libraries.

	Python is interpreted. Tests can be edited and re-run them without having to recompile the design or exit the simulator GUI.

	Python is popular - far more engineers know Python than SystemVerilog or VHDL

How does Cocotb work?

Overview

A typical cocotb testbench requires no additional RTL code. The Design Under Test (DUT) is instantiated as the toplevel in the simulator without any wrapper code. Cocotb drives stimulus onto the inputs to the DUT (or further down the hierarchy) and monitors the outputs directly from Python.

A test is simply a Python function. At any given time either the simulator is advancing time or the Python code is executing. The yield keyword is used to indicate when to pass control of execution back to the simulator. A test can spawn multiple coroutines, allowing for independent flows of execution.

Contributors

Cocotb was developed by Potential Ventures [http://potential.ventures] with the support of Solarflare Communications Ltd [http://www.solarflare.com/] and contributions from Gordon McGregor and Finn Grimwood (see contributers [https://github.com/potentialventures/cocotb/graphs/contributors] for full list of contributions).

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Quickstart Guide

Installing cocotb

Pre-requisites

Cocotb has the following requirements:

	Python 2.6+

	Python-dev packages

	GCC and associated development packages

	GNU Make

	A Verilog simulator

Internal development is performed on Linux Mint 17 (x64). We also use Redhat 6.5(x64). Other Redhat and Ubuntu based distributions (x32 and x64) should work too but due fragmented nature of Linux we can not test everything. Instructions are provided for the main distributions we use.

Linux native arch installation

Ubuntu based installation

$> sudo apt-get install git make gcc g++ swig python-dev

This will allow building of the Cocotb libs for use with a 64 bit native simulator. If a 32 bit simulator is being used then additional steps to install 32bit development libraries and python are needed.

Redhat based installation

$> sudo yum install gcc gcc-c++ libstdc++-devel swig python-devel

This will allow building of the Cocotb libs for use with a 64 bit native simulator. If a 32 bit simulator is being used then additional steps to install 32bit development libraries and python are needed.

32 bit Python

Additional development libraries are needed for building 32bit python on 64 bit systems.

Ubuntu based installation

$> sudo apt-get install libx32gcc1 gcc-4.8-multilib lib32stdc++-4.8-dev

Replace 4.8 with the version of gcc that was installed on the system in the step above. Unlike on Redhat where 32 bit python can co-exist with native python ubuntu requires the source to be downloaded and built.

Redhat based installation

$> sudo yum install glibc.i686 glibc-devel.i386 libgcc.i686 libstdc++-devel.i686

Specific releases can be downloaded from https://www.python.org/downloads/ .

$> wget https://www.python.org/ftp/python/2.7.9/Python-2.7.9.tgz
$> tar xvf Python-2.7.9.tgz
$> cd Python-2.7.9
$> export PY32_DIR=/opt/pym32
$> ./configure CC="gcc -m32" LDFLAGS="-L/lib32 -L/usr/lib32 -Lpwd/lib32 -Wl,-rpath,/lib32 -Wl,-rpath,$PY32_DIR/lib" --prefix=$PY32_DIR --enable-shared
$> make
$> sudo make install

Cocotb can now be built against 32bit python by setting the architecture and placing the 32bit python ahead of the native version in the path when running a test

$> export PATH=/opt/pym32/bin
$> cd <cocotb_dir>
$> ARCH=i686 make

Windows 7 installation

Recent work has been done with the support of the Cocotb community to enable Windows support using the MinGW/Msys environment. Download the MinGQ installer from.

http://sourceforge.net/projects/mingw/files/latest/download?source=files .

Run the GUI installer and specify a directory you would like the environment installed in. The installer will retrieve a list of possible packages, when this is done press continue. The MinGW Installation Manager is then launched.

The following packages need selecting by checking the tick box and selecting “Mark for installation”

Basic Installation
 -- mingw-developer-tools
 -- mingw32-base
 -- mingw32-gcc-g++
 -- msys-base

From the Installation menu then select “Apply Changes”, in the next dialog select “Apply”.

When installed a shell can be opened using the “msys.bat” file located under the <install_dir>/msys/1.0/

Python can be downloaded from https://www.python.org/ftp/python/2.7.9/python-2.7.9.msi, other versions of python can be used as well. Run the installer and download to your chosen location.

It is beneficial to add the path to Python to the windows system PATH variable so it can be used easily from inside Msys.

Once inside the Msys shell commands as given here will work as expected.

Running an example

$> git clone https://github.com/potentialventures/cocotb
$> cd cocotb/examples/endian_swapper/tests
$> make

To run a test using a different simulator:

$> make SIM=vcs

Running a VHDL example

The endian swapper example includes both a VHDL and Verilog RTL implementation. The Cocotb testbench can execute against either implementation using VPI for Verilog and VHPI/FLI for VHDL. To run the test suite against the VHDL implementation use the following command (a VHPI or FLI capable simulator must be used):

$> make SIM=aldec TOPLEVEL_LANG=vhdl

Using Cocotb

A typical Cocotb testbench requires no additional RTL code.
The Design Under Test (DUT) is instantiated as the toplevel in the simulator without any wrapper code.
Cocotb drives stimulus onto the inputs to the DUT and monitors the outputs directly from Python.

Creating a Makefile

To create a Cocotb test we typically have to create a Makefile. Cocotb provides
rules which make it easy to get started. We simply inform Cocotb of the
source files we need compiling, the toplevel entity to instantiate and the
python test script to load.

VERILOG_SOURCES = $(PWD)/submodule.sv $(PWD)/my_design.sv
TOPLEVEL=my_design
MODULE=test_my_design
include $(COCOTB)/makefiles/Makefile.inc
include $(COCOTB)/makefiles/Makefile.sim

We would then create a file called test_my_design.py containing our tests.

Creating a test

The test is written in Python. Assuming we have a toplevel port called clk
we could create a test file containing the following:

import cocotb
from cocotb.triggers import Timer

@cocotb.test()
def my_first_test(dut):
 """
 Try accessing the design
 """
 dut.log.info("Running test!")
 for cycle in range(10):
 dut.clk = 0
 yield Timer(1000)
 dut.clk = 1
 yield Timer(1000)
 dut.log.info("Running test!")

This will drive a square wave clock onto the clk port of the toplevel.

Accessing the design

When cocotb initialises it finds the top-level instantiation in the simulator and creates a handle called dut.
Top-level signals can be accessed using the “dot” notation used for accessing object attributes in Python.
The same mechanism can be used to access signals inside the design.

Get a reference to the "clk" signal on the top-level
clk = dut.clk

Get a reference to a register "count" in a sub-block "inst_sub_block"
count = dut.inst_sub_block.count

Assigning values to signals

Values can be assigned to signals using either the .value property of a handle object or using direct assignment while traversing the hierarchy.

Get a reference to the "clk" signal and assign a value
clk = dut.clk
clk.value = 1

Direct assignment through the hierarchy
dut.input_signal = 12

Assign a value to a memory deep in the hierarchy
dut.sub_block.memory.array[4] = 2

Reading values from signals

Accessing the .value property of a handle object will return a BinaryValue object. Any unresolved bits are preserved and can be accessed using the binstr attribute, or a resolved integer value can be accessed using the value attribute.

>>> # Read a value back from the dut
>>> count = dut.counter.value
>>>
>>> print count.binstr
1X1010
>>> # Resolve the value to an integer (X or Z treated as 0)
>>> print count.integer
42

We can also cast the signal handle directly to an integer:

>>> print int(dut.counter)
42

Parallel and sequential execution of coroutines

@cocotb.coroutine
def reset_dut(reset_n, duration):
 reset_n <= 0
 yield Timer(duration)
 reset_n <= 1
 reset_n.log.debug("Reset complete")

@cocotb.test()
def parallel_example(dut):
 reset_n = dut.reset

 # This will call reset_dut sequentially
 # Execution will block until reset_dut has completed
 yield reset_dut(reset_n, 500)
 dut.log.debug("After reset")

 # Call reset_dut in parallel with this coroutine
 reset_thread = cocotb.fork(reset_dut(reset_n, 500)

 yield Timer(250)
 dut.log.debug("During reset (reset_n = %s)" % reset_n.value)

 # Wait for the other thread to complete
 yield reset_thread.join()
 dut.log.debug("After reset")

Creating a test

import cocotb
from cocotb.triggers import Timer

@cocotb.test(timeout=None)
def my_first_test(dut):

 # drive the reset signal on the dut
 dut.reset_n <= 0
 yield Timer(12345)
 dut.reset_n <= 1

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Build options and Environment Variables

Make System

Makefiles are provided for a variety of simulators in cocotb/makefiles/simulators. The common Makefile cocotb/makefiles/Makefile.sim includes the appropriate simulator makefile based on the contents of the SIM variable.

Make Targets

Makefiles define two targets, ‘regression’ and ‘sim’, the default target is sim.

Both rules create a results file in the calling directory called ‘results.xml’. This file is a JUnit-compatible output file suitable for use with Jenkins [http://jenkins-ci.org/]. The ‘sim’ targets unconditionally re-runs the simulator whereas the regression target only re-builds if any dependencies have changed.

Make phases

Typically the makefiles provided with Cocotb for various simulators use a separate compile and run target. This allows for a rapid re-running of a simulator if none of the RTL source files have changed and therefore the simulator does not need to recompile the RTL.

Make Variables

GUI

Set this to 1 to enable the GUI mode in the simulator (if supported).

SIM

Selects which simulator Makefile to use. Attempts to include a simulator specific makefile from cocotb/makefiles/makefile.$(SIM)

VERILOG_SOURCES

A list of the Verilog source files to include.

VHDL_SOURCES

A list of the VHDL source files to include.

COMPILE_ARGS

Any arguments or flags to pass to the compile stage of the simulation. Only applies to simulators with a separate compilation stage (currently Icarus and VCS).

SIM_ARGS

Any arguments or flags to pass to the execution of the compiled simulation. Only applies to simulators with a separate compilation stage (currently Icarus and VCS).

EXTRA_ARGS

Passed to both the compile and execute phases of simulators with two rules, or passed to the single compile and run command for simulators which don’t have a distinct compilation stage.

CUSTOM_COMPILE_DEPS

Use to add additional dependencies to the compilation target; useful for defining additional rules to run pre-compilation or if the compilation phase depends on files other than the RTL sources listed in VERILOG_SOURCES or VHDL_SOURCES.

CUSTOM_SIM_DEPS

Use to add additional dependencies to the simulation target.

Environment Variables

TOPLEVEL

Used to indicate the instance in the hierarchy to use as the DUT. If this isn’t defined then the first root instance is used.

RANDOM_SEED

Seed the Python random module to recreate a previous test stimulus. At the beginning of every test a message is displayed with the seed used for that execution:

INFO cocotb.gpi __init__.py:89 in _initialise_testbench Seeding Python random module with 1377424946

To recreate the same stimulis use the following:

make RANDOM_SEED=1377424946

COCOTB_ANSI_OUTPUT

Use this to override the default behaviour of annotating cocotb output with
ANSI colour codes if the output is a terminal (isatty()).

COCOTB_ANSI_OUTPUT=1 forces output to be ANSI regardless of the type stdout

COCOTB_ANSI_OUTPUT=0 supresses the ANSI output in the log messages

MODULE

The name of the module(s) to search for test functions. Multiple modules can be specified using a comma-separated list.

TESTCASE

The name of the test function(s) to run. If this variable is not defined cocotb discovers and executes all functions decorated with @cocotb.test() decorator in the supplied modules.

Multiple functions can be specified in a comma-separated list.

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Coroutines

Testbenches built using Cocotb use coroutines. While the coroutine is executing
the simulation is paused. The coroutine uses the yield keyword to
pass control of execution back to the simulator and simulation time can advance
again.

Typically coroutines yield a Trigger object which
indicates to the simulator some event which will cause the coroutine to be woken
when it occurs. For example:

@cocotb.coroutine
def wait_10ns():
 cocotb.log.info("About to wait for 10ns")
 yield Timer(10000)
 cocotb.log.info("Simulation time has advanced by 10 ns")

Coroutines may also yield other coroutines:

@cocotb.coroutine
def wait_100ns():
 for i in range(10):
 yield wait_10ns()

Coroutines may also yield a list of triggers to indicate that execution should
resume if any of them fires:

@cocotb.coroutine
def packet_with_timeout(monitor, timeout):
 """Wait for a packet but timeout if nothing arrives"""
 yield [Timer(timeout), monitor.wait_for_recv()]

The trigger that caused execution to resume is passed back to the coroutine,
allowing them to distinguish which trigger fired:

@cocotb.coroutine
def packet_with_timeout(monitor, timeout):
 """Wait for a packet but timeout if nothing arrives"""
 tout_trigger = Timer(timeout)
 result = yield [tout_trigger, monitor.wait_for_recv()]
 if result is tout_trigger:
 raise TestFailure("Timed out waiting for packet")

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Triggers

Triggers are used to indicate when the scheduler should resume coroutine execution. Typically a coroutine will yield a trigger or a list of triggers.

Simulation Timing

Timer(time)

Registers a timed callback with the simulator to continue execution of the coroutine after a specified simulation time period has elapsed.

Todo

What is the behaviour if time=0?

ReadOnly()

Registers a callback which will continue execution of the coroutine when the current simulation timestep moves to the ReadOnly phase. Useful for monitors which need to wait for all processes to execute (both RTL and cocotb) to ensure sampled signal values are final.

Signal related

Edge(signal)

Registers a callback that will continue execution of the coroutine on any value change of a signal.

Todo

Behaviour for vectors

RisingEdge(signal)

Registers a callback that will continue execution of the coroutine on a transition from 0 to 1 of signal.

FallingEdge(signal)

Registers a callback that will continue execution of the coroutine on a transition from 1 to 0 of signal.

ClockCycles(signal, num_cycles)

Registers a callback that will continue execution of the coroutine when num_cycles transistions from 0 to 1 have occured.

Python Triggers

Event()

Can be used to synchronise between coroutines. yielding Event.wait() will block the coroutine until Event.set() is called somewhere else.

Join(coroutine)

Will block the coroutine until another coroutine has completed.

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Library Reference

Test Results

The following exceptions can be raised at any point by any code and will terminate the test:

Writing and Generating tests

Interacting with the Simulator

Triggers

Triggers are used to indicate when the scheduler should resume coroutine execution. Typically a coroutine will yield a trigger or a list of triggers.

Simulation Timing

Signal related

Python Triggers

Testbench Structure

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Tutorial: Endian Swapper

In this tutorial we’ll use some of the built-in features of Cocotb to quickly create a complex testbench.

Note

All the code and sample output from this example are available on EDA Playground [http://www.edaplayground.com/s/example/199]

For the impatient this tutorial is provided as an example with Cocotb. You can run this example from a fresh checkout:

cd examples/endian_swapper/tests
make

Design

We have a relatively simplistic RTL block called the endian_swapper. The DUT has three interfaces, all conforming to the Avalon standard:

The DUT will swap the endianness of packets on the Avalon-ST bus if a configuration bit is set. For every packet arriving on the “stream_in” interface the entire packet will be endian swapped if the configuration bit is set, otherwise the entire packet will pass through unmodified.

Testbench

To begin with we create a class to encapsulate all the common code for the testbench. It is possible to write directed tests without using a testbench class however to encourage code re-use it is good practice to create a distinct class.

class EndianSwapperTB(object):

 def __init__(self, dut):
 self.dut = dut
 self.stream_in = AvalonSTDriver(dut, "stream_in", dut.clk)
 self.stream_out = AvalonSTMonitor(dut, "stream_out", dut.clk)
 self.csr = AvalonMaster(dut, "csr", dut.clk)

 self.expected_output = []
 self.scoreboard = Scoreboard(dut)
 self.scoreboard.add_interface(self.stream_out, self.expected_output)

 # Reconstruct the input transactions from the pins and send them to our 'model'
 self.stream_in_recovered = AvalonSTMonitor(dut, "stream_in", dut.clk, callback=self.model)

With the above code we have created a testbench with the following structure:

If we inspect this line-by-line:

self.stream_in = AvalonSTDriver(dut, "stream_in", dut.clk)

Here we’re creating an AvalonSTDriver instance. The constructor requires 3 arguments - a handle to the entity containing the interface (dut), the name of the interface (stream_in) and the associated clock with which to drive the interface (dut.clk). The driver will auto-discover the signals for the interface, assuming that they follow the naming convention interface_name _ signal.

In this case we have the following signals defined for the stream_in interface:

	Name
	Type
	Description (from Avalon Specification)

	stream_in_data
	data
	The data signal from the source to the sink

	stream_in_empty
	empty
	Indicates the number of symbols that are empty during cycles that contain the end of a packet

	stream_in_valid
	valid
	Asserted by the source to qualify all other source to sink signals

	stream_in_startofpacket
	startofpacket
	Asserted by the source to mark the beginning of a packet

	stream_in_endofpacket
	endofpacket
	Asserted by the source to mark the end of a packet

	stream_in_ready
	ready
	Asserted high to indicate that the sink can accept data

By following the signal naming convention the driver can find the signals associated with this interface automatically.

self.stream_out = AvalonSTMonitor(dut, "stream_out", dut.clk)
self.csr = AvalonMaster(dut, "csr", dut.clk)

We do the same to create the monitor on stream_out and the CSR interface.

self.expected_output = []
self.scoreboard = Scoreboard(dut)
self.scoreboard.add_interface(self.stream_out, self.expected_output)

The above lines create a Scoreboard instance and attach it to the stream_out monitor instance. The scoreboard is used to check that the DUT behaviour is correct. The call to add_interface takes a Monitor instance as the first argument and the second argument is a mechanism for describing the expected output for that interface. This could be a callable function but in this example a simple list of expected transactions is sufficient.

Reconstruct the input transactions from the pins and send them to our 'model'
self.stream_in_recovered = AvalonSTMonitor(dut, "stream_in", dut.clk, callback=self.model)

Finally we create another Monitor instance, this time connected to the stream_in interface. This is to reconstruct the transactions being driven into the DUT. It’s good practice to use a monitor to reconstruct the transactions from the pin interactions rather than snooping them from a higher abstraction layer as we can gain confidence that our drivers and monitors are functioning correctly. We also pass the keyword argument callback to the monitor constructor which will result in the supplied function being called for each transaction seen on the bus with the transaction as the first argument. Our model function is quite straightforward in this case - we simply append the transaction to the expected output list and increment a counter:

def model(self, transaction):
 """Model the DUT based on the input transaction"""
 self.expected_output.append(transaction)
 self.pkts_sent += 1

Test Function

There are various ‘knobs’ we can tweak on this testbench to vary the behaviour:

	Packet size

	Backpressure on the stream_out interface

	Idle cycles on the stream_in interface

	Configuration switching of the endian swap register during the test.

We want to run different variations of tests but they will all have a very similar structure so we create a common run_test function. To generate backpressure on the stream_out interface we use the BitDriver class from cocotb.drivers.

@cocotb.coroutine
def run_test(dut, data_in=None, config_coroutine=None, idle_inserter=None, backpressure_inserter=None):

 cocotb.fork(clock_gen(dut.clk))
 tb = EndianSwapperTB(dut)

 yield tb.reset()
 dut.stream_out_ready <= 1

 # Start off any optional coroutines
 if config_coroutine is not None:
 cocotb.fork(config_coroutine(tb.csr))
 if idle_inserter is not None:
 tb.stream_in.set_valid_generator(idle_inserter())
 if backpressure_inserter is not None:
 tb.backpressure.start(backpressure_inserter())

 # Send in the packets
 for transaction in data_in():
 yield tb.stream_in.send(transaction)

 # Wait at least 2 cycles where output ready is low before ending the test
 for i in xrange(2):
 yield RisingEdge(dut.clk)
 while not dut.stream_out_ready.value:
 yield RisingEdge(dut.clk)

 pkt_count = yield tb.csr.read(1)

 if pkt_count.integer != tb.pkts_sent:
 raise TestFailure("DUT recorded %d packets but tb counted %d" % (
 pkt_count.integer, tb.pkts_sent))
 else:
 dut.log.info("DUT correctly counted %d packets" % pkt_count.integer)

 raise tb.scoreboard.result

We can see that this test function creates an instance of the testbench, resets the DUT by running the coroutine tb.reset() and then starts off any optional coroutines passed in using the keyword arguments. We then send in all the packets from data_in, ensure that all the packets have been received by waiting 2 cycles at the end. We read the packet count and compare this with the number of packets. Finally we use the tb.scoreboard.result to determine the status of the test. If any transactions didn’t match the expected output then this member would be an instance of the TestFailure result.

Test permutations

Having defined a test function we can now auto-generate different permutations of tests using the TestFactory class:

factory = TestFactory(run_test)
factory.add_option("data_in", [random_packet_sizes])
factory.add_option("config_coroutine", [None, randomly_switch_config])
factory.add_option("idle_inserter", [None, wave, intermittent_single_cycles, random_50_percent])
factory.add_option("backpressure_inserter", [None, wave, intermittent_single_cycles, random_50_percent])
factory.generate_tests()

This will generate 32 tests (named run_test_001 to run_test_032) with all possible permutations of options provided for each argument. Note that we utilise some of the built-in generators to toggle backpressure and insert idle cycles.

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Tutorial: Ping

One of the benefits of Python is the ease with which interfacing is possible.
In this tutorial we’ll look at interfacing the standard GNU ping [http://www.gnu.org/software/inetutils/manual/html_node/ping-invocation.html] command
to the simulator. Using Python we can ping our DUT with fewer than 50 lines of
code.

For the impatient this tutorial is provided as an example with Cocotb. You can
run this example from a fresh checkout:

cd examples/ping_tun_tap/tests
sudo make

Note

To create a virtual interface the test either needs root permissions or have CAP_NET_ADMIN capability.

Architecture

We have a simple RTL block that takes ICMP echo requests and generates an ICMP
echo response. To verify this behaviour we want to run the ping [http://www.gnu.org/software/inetutils/manual/html_node/ping-invocation.html] utility
against our RTL running in the simulator.

In order to achieve this we need to capture the packets that are created by
ping, drive them onto the pins of our DUT in simulation, monitor the output of
the DUT and send any responses back to the ping process.

Linux has a TUN/TAP [http://en.wikipedia.org/wiki/TUN/TAP] virtual network device which we can use for this
purpose, allowing ping [http://www.gnu.org/software/inetutils/manual/html_node/ping-invocation.html] to run unmodified and unaware that it is
communicating with our simulation rather than a remote network endpoint.

Implementation

First of all we need to work out how to create a virtual interface. Python has
a huge developer base and a quick search of the web reveals a TUN example [https://gist.github.com/glacjay/585369]
that looks like an ideal starting point for our testbench. Using this example
we write a function that will create our virtual interface:

import subprocess, fcntl, struct

def create_tun(name="tun0", ip="192.168.255.1"):
 TUNSETIFF = 0x400454ca
 TUNSETOWNER = TUNSETIFF + 2
 IFF_TUN = 0x0001
 IFF_NO_PI = 0x1000
 tun = open('/dev/net/tun', 'r+b')
 ifr = struct.pack('16sH', name, IFF_TUN | IFF_NO_PI)
 fcntl.ioctl(tun, TUNSETIFF, ifr)
 fcntl.ioctl(tun, TUNSETOWNER, 1000)
 subprocess.check_call('ifconfig tun0 %s up pointopoint 192.168.255.2 up' % ip, shell=True)
 return tun

Now we can get started on the actual test. First of all we’ll create a clock
signal and connect up the Avalon driver and monitor to the DUT. To help debug
the testbench we’ll enable verbose debug on the drivers and monitors by setting
the log level to logging.DEBUG.

import cocotb
from cocotb.clock import Clock
from cocotb.drivers.avalon import AvalonSTPkts as AvalonSTDriver
from cocotb.monitors.avalon import AvalonSTPkts as AvalonSTMonitor

@cocotb.test()
def tun_tap_example_test(dut):
 cocotb.fork(Clock(dut.clk, 5000).start())

 stream_in = AvalonSTDriver(dut, "stream_in", dut.clk)
 stream_out = AvalonSTMonitor(dut, "stream_out", dut.clk)

 # Enable verbose logging on the streaming interfaces
 stream_in.log.setLevel(logging.DEBUG)
 stream_out.log.setLevel(logging.DEBUG)

We also need to reset the DUT and drive some default values onto some of the
bus signals. Note that we’ll need to import the Timer and RisingEdge
triggers.

Reset the DUT
dut.log.debug("Resetting DUT")
dut.reset_n <= 0
stream_in.bus.valid <= 0
yield Timer(10000)
yield RisingEdge(dut.clk)
dut.reset_n <= 1
dut.stream_out_ready <= 1

The rest of the test becomes fairly straightforward. We create our TUN
interface using our function defined previously. We’ll also use the
subprocess module to actually start the ping command.

We then wait for a packet by calling a blocking read call on the TUN file
descriptor and simply append that to the queue on the driver. We wait for
a packet to arrive on the monitor by yielding on wait_for_recv() and then
write the received packet back to the TUN file descriptor.

Create our interface (destroyed at the end of the test)
tun = create_tun()
fd = tun.fileno()

Kick off a ping...
subprocess.check_call('ping -c 5 192.168.255.2 &', shell=True)

Respond to 5 pings, then quit
for i in xrange(5):

 cocotb.log.info("Waiting for packets on tun interface")
 packet = os.read(fd, 2048)
 cocotb.log.info("Received a packet!")

 stream_in.append(packet)
 result = yield stream_out.wait_for_recv()

 os.write(fd, str(result))

That’s it - simple!

Further work

This example is deliberately simplistic to focus on the fundamentals of
interfacing to the simulator using TUN/TAP. As an exercise for the reader a
useful addition would be to make the file descriptor non-blocking and spawn
out separate coroutines for the monitor / driver, thus decoupling the sending
and receiving of packets.

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Tutorial: Driver Cosimulation

Cocotb was designed to provide a common platform for hardware and software
developers to interact. By integrating systems early, ideally at the
block level, it’s possible to find bugs earlier in the design process.

For any given component that has a software interface there is typically a
software abstraction layer or driver which communicates with the hardware. In
this tutorial we will call unmodified production software from our testbench
and re-use the code written to configure the entity.

For the impatient this tutorial is provided as an example with Cocotb. You can
run this example from a fresh checkout:

cd examples/endian_swapper/tests
make MODULE=test_endian_swapper_hal

Note

SWIG [http://www.swig.org/] is required to compile the example

Difficulties with Driver Co-simulation

Co-simulating un-modified production software against a block-level
testbench is not trivial - there are a couple of significant obstacles to
overcome:

Calling the HAL from a test

Typically the software component (often referred to as a Hardware Abstraction
Layer or HAL) is written in C. We need to call this software from our test
written in Python. There are multiple ways to call C code from Python, in
this tutorial we’ll use SWIG [http://www.swig.org/] to generate Python bindings for our HAL.

Blocking in the driver

Another difficulty to overcome is the fact that the HAL is expecting to call
a low-level function to access the hardware, often something like ioread32.
We need this call to block while simulation time advances and a value is
either read or written on the bus. To achieve this we link the HAL against
a C library that provides the low level read/write functions. These functions
in turn call into Cocotb and perform the relevant access on the DUT.

Cocotb infrastructure

There are two decorators provided to enable this flow, which are typically used
together to achieve the required functionality. The cocotb.external
decorator turns a normal function that isn’t a coroutine into a blocking
coroutine (by running the function in a separate thread). The
cocotb.function decorator allows a coroutine that consumes simulation time
to be called by a normal thread. The call sequence looks like this:

Implementation

Register Map

The endian swapper has a very simple register map:

	Byte Offset
	Register
	Bits
	Access
	Description

	0
	CONTROL
	0
	R/W
	Enable

	31:1
	N/A
	Reserved

	4
	PACKET_COUNT
	31:0
	RO
	Num Packets

HAL

To keep things simple we use the same RTL from the Tutorial: Endian Swapper. We
write a simplistic HAL which provides the following functions:

endian_swapper_enable(endian_swapper_state_t *state);
endian_swapper_disable(endian_swapper_state_t *state);
endian_swapper_get_count(endian_swapper_state_t *state);

These functions call IORD and IOWR - usually provided by the Altera
NIOS framework.

IO Module

This module acts as the bridge between the C HAL and the Python testbench. It
exposes the IORD and IOWR calls to link the HAL against, but also
provides a Python interface to allow the read/write bindings to be dynamically
set (through set_write_function and set_read_function module functions).

In a more complicated scenario, this could act as an interconnect, dispatching
the access to the appropriate driver depending on address decoding, for
instance.

Testbench

First of all we set up a clock, create an Avalon Master interface and reset
the DUT. Then we create two functions that are wrapped with the
cocotb.function decorator to be called when the HAL attempts to perform
a read or write. These are then passed to the IO Module:

@cocotb.function
def read(address):
 master.log.debug("External source: reading address 0x%08X" % address)
 value = yield master.read(address)
 master.log.debug("Reading complete: got value 0x%08x" % value)
 raise ReturnValue(value)

@cocotb.function
def write(address, value):
 master.log.debug("Write called for 0x%08X -> %d" % (address, value))
 yield master.write(address, value)
 master.log.debug("Write complete")

io_module.set_write_function(write)
io_module.set_read_function(read)

We can then intialise the HAL and call functions, using the cocotb.external
decorator to turn the normal function into a blocking coroutine that we can
yield:

state = hal.endian_swapper_init(0)
yield cocotb.external(hal.endian_swapper_enable)(state)

The HAL will perform whatever calls it needs, accessing the DUT through the
Avalon-MM driver, and control will return to the testbench when the function
returns.

Note

The decorator is applied to the function before it is called

Further Work

In future tutorials we’ll consider co-simulating unmodified drivers written
using mmap (for example built upon the UIO framework [https://www.kernel.org/doc/htmldocs/uio-howto/about.html]) and consider
interfacing with emulators like QEMU [http://wiki.qemu.org/Main_Page] to allow us to co-simulate when the
software needs to execute on a different processor architecture.

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	cocotb 1.0 documentation

Roadmap

Cocotb is in active development.

We use GitHub issues to track our pending tasks. Take a look at the open Enhancements [https://github.com/potentialventures/cocotb/issues?labels=enhancement&state=open] to see the work that’s lined up.

If you have a GitHub account you can also raise an enhancement request [https://github.com/potentialventures/cocotb/issues/new] to suggest new features.

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	cocotb 1.0 documentation

Simulator Support

This page documents any known quirks and gotchas in the various simulators.

Icarus

Accessing bits of a vector doesn’t work:

dut.stream_in_data[2] <= 1

See “access_single_bit” test in examples/functionality/tests/test_discovery.py.

Synopsys VCS

Aldec Riviera-PRO

Mentor Questa

Cadence Incisive

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	cocotb 1.0 documentation

Index

 Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

installation.html

 Navigation

 		
 index

 		cocotb 1.0 documentation »

Installation

Get the Source

Source can be obtained as a tar ball for the current release [https://github.com/potentialventures/cocotb/tree/v0.3].

Or by cloning the repository git@github.com:potentialventures/cocotb.git

There are two supported installation options for Cocotb, standalone or centralised.

Standalone Usage

Simply check out the code and hit make at the root of the tree. This will run the test cases and exampkles against Icarus [http://iverilog.icarus.com/].

The list of supported simulators for the version you have can be found by make help.

Centralised Usage

A build can be installed in a centralised location with make install INSTALL_PATH=<dir>. This will also generate an uninstall script.

 © Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

examples.html

 Navigation

 		
 index

 		cocotb 1.0 documentation »

Examples

These code samples show some typical usage of Cocotb based on real-world problems.

Example testbench for snipped of code from comp.lang.verilog [https://github.com/chiggs/comp.lang.verilog/blob/master/maja55/testbench.py]:

@cocotb.coroutine
def run_test(dut, data_generator=random_data, delay_cycles=2):
 """
 Send data through the DUT and check it is sorted out output
 """
 cocotb.fork(Clock(dut.clk, 100).start())

 # Don't check until valid output
 expected = [None] * delay_cycles

 for index, values in enumerate(data_generator(bits=len(dut.in1))):
 expected.append(sorted(values))

 yield RisingEdge(dut.clk)
 dut.in1 = values[0]
 dut.in2 = values[1]
 dut.in3 = values[2]
 dut.in4 = values[3]
 dut.in5 = values[4]

 yield ReadOnly()
 expect = expected.pop(0)

 if expect is None: continue

 got = [int(dut.out5), int(dut.out4), int(dut.out3),
 int(dut.out2), int(dut.out1)]

 if got != expect:
 dut.log.error('Expected %s' % expect)
 dut.log.error('Got %s' % got)
 raise TestFailure("Output didn't match")

 dut.log.info('Sucessfully sent %d cycles of data' % (index + 1))

 © Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

tests.html

 Navigation

 		
 index

 		cocotb 1.0 documentation »

Tests

Tests are defined using the @test decorator

 © Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		cocotb 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, PotentialVentures.
 Created using Sphinx 1.3.5.

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

