
PMLS Documentation
Release

PMLS, Inc.

Jul 07, 2017

Contents

1 PMLS Bösen and Strads Installation 3
1.1 Foreword and Supported Operating Systems . 3
1.2 Obtaining PMLS . 3
1.3 Compiling PMLS . 4
1.4 Compiling PMLS Bösen with cmake . 4
1.5 Very important: Setting up password-less SSH authentication . 5
1.6 Shared directories . 5
1.7 Network ports to open . 5
1.8 Cloud compute support . 6
1.9 Getting started with applications . 6

2 Configuration 7
2.1 Make sure password-less SSH is set up correctly . 7
2.2 Bösen and Strads . 7
2.3 Bösen configuration files . 7
2.4 I want to run on my local machine . 8
2.5 My cluster does not have shared directories . 8
2.6 Caution - Please Read! . 8
2.7 Strads configuration files . 9
2.8 I want to run on my local machine . 9
2.9 My cluster does not have shared directories . 10

3 PMLS YARN+HDFS support 11
3.1 Preliminaries . 11
3.2 Recompiling Bösen . 12
3.3 Which applications are supported? . 12
3.4 Troubleshooting . 12

4 Frequently asked questions 15

5 Latent Dirichlet Allocation (LDA) 17
5.1 Introduction to LDA . 17
5.2 Performance . 17
5.3 Quick start . 17
5.4 Input data format . 18
5.5 Output format . 18
5.6 Program options . 18

i

6 MedLDA 21
6.1 Performance . 21
6.2 Installation . 21
6.3 Data Preparation . 22
6.4 Running MedLDA . 22
6.5 Configuration and using multiple machines . 25
6.6 Command line flags . 26

7 Deep Neural Network 27
7.1 Performance . 27
7.2 Quick start . 27
7.3 Making predictions . 28
7.4 Input data format . 28
7.5 Creating synthetic data . 29
7.6 Running the Deep Neural Network Application . 29
7.7 Format of DNN Configuration File . 30
7.8 Terminating the DNN app . 31
7.9 File IO from HDFS . 31
7.10 Use Yarn to launch DNN app . 31

8 Deep Neural Network for Speech Recognition 33
8.1 Installation . 33
8.2 The Whole Pipeline . 34
8.3 Running the Deep Neural Network application . 35
8.4 Input data format . 36
8.5 Format of DNN Configuration File . 37
8.6 Output format . 37
8.7 Terminating the DNN app . 38

9 Matrix Factorization 39
9.1 Performance . 39
9.2 Quick start . 39
9.3 Input data format . 40
9.4 Output format . 40
9.5 Program options . 40

10 Non-negative Matrix Factorization (NMF) 43
10.1 Introduction to NMF . 43
10.2 Quick Start . 43
10.3 Data format . 44
10.4 Creating synthetic data . 45
10.5 Running the NMF application . 45
10.6 Terminating the NMF app . 47
10.7 Data partitioning . 47
10.8 File IO from HDFS . 47
10.9 Use Yarn to launch NMF app . 48

11 Sparse Coding 49
11.1 Performance . 49
11.2 Quick Start . 49
11.3 Data format . 51
11.4 Creating synthetic data . 51
11.5 Running the Sparse Coding application . 51
11.6 Terminating the Sparse Coding app . 53
11.7 Data partitioning . 53

ii

11.8 File IO from HDFS . 54
11.9 Use Yarn to launch Sparse Coding app . 54

12 Lasso and Logistic Regression 55
12.1 Performance . 55
12.2 Input data format . 56
12.3 Output format . 56
12.4 Machine configuration . 56
12.5 Program Options . 56

13 Distance Metric Learning 59
13.1 Performance . 59
13.2 Quick start . 59
13.3 Running the Distance Metric Learning Application . 60
13.4 Format of DML Configuration File . 60
13.5 Input data format . 61
13.6 Output model format . 61
13.7 Terminate DML app . 62
13.8 File IO from HDFS . 62
13.9 Use Yarn to launch DML app . 62

14 K-Means Clustering 63
14.1 Quick Start . 63
14.2 Use HDFS . 63
14.3 Use Yarn . 64
14.4 Input Format . 65
14.5 Setting up machines . 65
14.6 Common Parameters . 65
14.7 Center Initialization . 66
14.8 Output . 66
14.9 References . 66

15 Random Forest 67
15.1 Quick Start . 67
15.2 Use HDFS . 68
15.3 Use Yarn . 69
15.4 Input format . 69
15.5 Setting up machines . 69
15.6 Common parameters . 70
15.7 Save prediction to file . 70
15.8 Save trained trees to file . 70
15.9 Load trained trees from file . 71
15.10 Finish up . 71

16 Support Vector Machine 73
16.1 Performance . 73
16.2 Input data format . 73
16.3 Output format . 74
16.4 Machine configuration . 74
16.5 Program Options . 74

17 Multi-class Logistic Regression 75
17.1 Performance . 75
17.2 Preliminaries . 75
17.3 Quick Start . 75

iii

17.4 Use HDFS . 76
17.5 Use Yarn . 77
17.6 Data Format . 77
17.7 Synthetic Data . 78
17.8 MLR Details . 78
17.9 Terminating the MLR app . 80

18 Home 81
18.1 Foreword - please read . 81
18.2 PMLS Bösen/Strads v1.1 manual . 81
18.3 Introduction to PMLS . 82
18.4 Key PMLS features . 83
18.5 Support and Bug reports . 83

iv

PMLS Documentation, Release

The fastest way to get started with PMLS is to use this script, which will setup Bösen and Strads systems on a single
machine with just 1 command. After setting it up, you can run two demo applications to verify that they are working.
To get the script:

wget https://gist.githubusercontent.com/holyglenn/dc3a2b8a5d496735a0a297b0d5ec3479/
→˓raw/2b21c2cf23d0360d2b4760e92fdb308ab263dd49/petuum.py

Before start, run the following command to prepare compilation environment. This is the only setup where sudo is
required. If you do not have sudo privilege, please contact your administrator for help.

sudo apt-get -y update && sudo apt-get -y install g++ make autoconf git libtool uuid-
→˓dev openssh-server cmake libopenmpi-dev openmpi-bin libssl-dev libnuma-dev python-
→˓dev python-numpy python-scipy python-yaml protobuf-compiler subversion libxml2-dev
→˓libxslt-dev zlibc zlib1g zlib1g-dev libbz2-1.0 libbz2-dev

After getting the compilation environment ready, you are good to run PMLS with or without sudo.

If you have sudo privilege, you can install part of PMLS’s dependencies to save compilation time.

sudo apt-get -y install libgoogle-glog-dev libzmq3-dev libyaml-cpp-dev \
libgoogle-perftools-dev libsnappy-dev libsparsehash-dev libgflags-dev libeigen3-dev

Then run the following command to setup PMLS, which takes approximately 10 minutes on a 2-core machine. The
script will first enable passwordless ssh connection to localhost using default id_rsa.pub key or generate one if without.
Then it will download and compile Bösen and Strads systems and their customized dependencies. By default PMLS
is under ~/petuum_test.

python petuum.py setup

If you don’t have sudo, run the setup command with --no-sudo argument. In addition to the setup process above,
the script will compile all PMLS’s dependencies and install them in its local folder. This process takes about 20
minutes.

python petuum.py setup --no-sudo

Now PMLS is ready to go. To run the Multi-class Logistic Regression demo (in Bösen system),

python petuum.py run_mlr

The app launches locally and trains multi-class logistic regression model using a subset of the Covertype dataset.
You should see something like below. The numbers will be slightly different as it’s executed indeterministically with
multi-threads.

40 400 0.253846 0.61287 520 0.180000 50 7.43618
I0701 00:35:00.550900 9086 mlr_engine.cpp:298] Final eval: 40 400 train-0-1: 0.
→˓253846 train-entropy: 0.61287 num-train-used: 520 test-0-1: 0.180000 num-test-used:
→˓50 time: 7.43618
I0701 00:35:00.551867 9086 mlr_engine.cpp:425] Loss up to 40 (exclusive) is saved to
→˓/home/ubuntu/petuum/app/mlr/out.loss in 0.000955387
I0701 00:35:00.552652 9086 mlr_sgd_solver.cpp:160] Saved weight to /home/ubuntu/
→˓petuum/app/mlr/out.weight
I0701 00:35:00.553907 9031 mlr_main.cpp:150] MLR finished and shut down!

To run the MedLDA supervised topic model (in STRADS system), run

python petuum.py run_lda

Contents 1

https://gist.github.com/holyglenn/dc3a2b8a5d496735a0a297b0d5ec3479/raw/47442c52181545f40b4302c6ebdb19c25c75d433/petuum.py
https://archive.ics.uci.edu/ml/datasets/Covertype

PMLS Documentation, Release

The app launches 3 workers locally and trains with 20 newsgroup dataset. You will see outputs like below. Once all
workers have reported “Ready to exit program”, you may Ctrl-C to terminate the program.

......
Rank (2) Ready to exit program from main function in ldall.cpp
I1222 20:38:31.271615 2687 trainer.cpp:464] (rank:0) Dict written into /tmp/dump_dict
I1222 20:38:31.271632 2687 trainer.cpp:465] (rank:0) Total num of words: 53485
I1222 20:38:46.930896 2687 trainer.cpp:487] (rank:0) Model written into /tmp/dump_
→˓model
Rank (0) Ready to exit program from main function in ldall.cpp

Use the following command to display top 10 words in each of the topics that’s just generated.

python petuum.py display_topics

If you seek further deployment or prefer a more detailed hands-on experience, please refer to the full installation guide
or the manual. Also check out PMLS-Caffe, the multi-GPU distributed deep learning framework of PMLS.

2 Contents

http://qwone.com/~jason/20Newsgroups/
https://github.com/sailing-pmls/pmls-caffe/wiki#quick-start

CHAPTER 1

PMLS Bösen and Strads Installation

Foreword and Supported Operating Systems

PMLS Bösen is a communication-efficient distributed key-value store (parameter server) for data-parallel Machine
Learning, and PMLS Strads is a dynamic scheduler for model-parallel Machine Learning. Both Bösen and Strads have
been officially tested on 64-bit Ubuntu Desktop 14.04 (available at: http://www.ubuntu.com/download/desktop). The
instructions in this tutorial are meant for Ubuntu 14.04.

We have also successfully tested PMLS on some versions of RedHat and CentOS. However, the commands for
installing dependencies in this manual are specific to 64-bit Ubuntu Desktop 14.04. They do not apply to Red-
Hat/CentOS; you will need to know the corresponding packages in yum.

Note: Server versions of Ubuntu may require additional packages above those listed here, depending on your config-
uration.

Obtaining PMLS

The best way to download PMLS is via the git command. Install git by running

sudo apt-get -y update
sudo apt-get -y install git

Then, run the following commands to download PMLS Bösen and Strads:

git clone -b stable https://github.com/sailing-pmls/bosen.git
git clone https://github.com/sailing-pmls/strads.git
cd bosen
git clone https://github.com/sailing-pmls/third_party.git third_party
cd ..

Next, for each machine that PMLS will be running on, execute the following commands to install dependencies:

3

http://www.ubuntu.com/download/desktop

PMLS Documentation, Release

sudo apt-get -y update
sudo apt-get -y install g++ make autoconf git libtool uuid-dev openssh-server cmake
→˓libopenmpi-dev openmpi-bin libssl-dev libnuma-dev python-dev python-numpy python-
→˓scipy python-yaml protobuf-compiler subversion libxml2-dev libxslt-dev zlibc zlib1g
→˓zlib1g-dev libbz2-1.0 libbz2-dev

Warning: Some parts of PMLS require openmpi, but are incompatible with mpich2 (e.g. in the Anaconda scien-
tific toolkit for Python). If you have both openmpi and mpich2 installed, make sure mpirun points to openmpi’s
executable.

Compiling PMLS

You’re now ready to compile PMLS. From the directory in which you started, run

cd strads
make
cd ../bosen/third_party
make
cd ../../bosen
cp defns.mk.template defns.mk
make
cd ..

If you are installing PMLS to a shared filesystem, the above steps only need to be done from one machine.

The first make builds Strads, and the second and third makes build Bösen and its dependencies. All commands will
take between 5-30 minutes each, depending on your machine. We’ll explain how to compile and run PMLS’s built-in
apps later in this manual.

Compiling PMLS Bösen with cmake

Run the following commands to download PMLS Bösen.

git clone https://github.com/sailing-pmls/bosen.git

For each machine that PMLS will be running on, execute the following commands to install dependencies and
libraries.

sudo apt-get -y install libgoogle-glog-dev libzmq3-dev libyaml-cpp-dev \
libgoogle-perftools-dev libsnappy-dev libsparsehash-dev libgflags-dev \
libboost-thread1.55-dev libboost-system1.55-dev libleveldb-dev \
libconfig++-dev libeigen3-dev libevent-pthreads-2.0-5

You’re now ready to compile PMLS. Run

cd bosen
mkdir build
cd build && cmake .. && make -j

If you are installing PMLS to a shared filesystem, the above steps only need to be done from one machine. The
process takes about 5 minutes.

4 Chapter 1. PMLS Bösen and Strads Installation

PMLS Documentation, Release

Very important: Setting up password-less SSH authentication

PMLS uses ssh (and mpirun, which invokes ssh) to coordinate tasks on different machines, even if you are only
using a single machine. This requires password-less key-based authentication on all machines you are going to use
(PMLS will fail if a password prompt appears).

If you don’t already have an SSH key, generate one via

ssh-keygen

You’ll then need to add your public key to each machine, by appending your public key file ~/.ssh/id_rsa.pub
to ~/.ssh/authorized_keys on each machine. If your home directory is on a shared filesystem visible to all
machines, then simply run

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

If the machines do not have a shared filesystem, you need to upload your public key to each machine, and the append
it as described above.

Note: Password-less authentication can fail if ~/.ssh/authorized_keys does not have the correct permissions.
To fix this, run chmod 600 ~/.ssh/authorized_keys.

Shared directories

We highly recommend using PMLS in an cluster environment with a shared filesystem, such as NFS. To set up
NFS on Ubuntu machines, you may refer to here.

Provided all machines are identically configured and have the necessary packages/libraries from apt-get, you only
need to compile PMLS and its applications once, from one machine. The PMLS ML applications are all designed
to work in this environment, as long as the input data and configuration files are also available through the shared
filesystem.

If your cluster doesn’t have shared directories, some PMLS applications can still work, but we do not officially support
this. You’ll need to take the following extra steps:

1. Ensure all machines are identically configured: they must be running the same Linux distro (with the same
machine architecture, e.g. x86_64), and the packages described earlier must be installed on every machine.
The machines need not have exactly identical hardware, but the Linux software environment must be the same.
PMLS will fail if you have different versions of gcc or the needed software packages across different
machines.

2. You need to copy or git clone PMLS onto every machine, at exactly the same path (e.g.
/home/username/pmls). You must compile PMLS and the PMLS apps separately on each machine.

3. When running PMLS apps, the input data and configuration files must be present on every machine, at exactly
the same path.

Network ports to open

If you have a firewall, you must open these ports on all machines:

• SSH port: 22

• Bösen apps: port range 9999-10998 (you can change these)

• Strads apps: port ranges 47000-47999 and 38000-38999

1.5. Very important: Setting up password-less SSH authentication 5

https://help.ubuntu.com/14.04/serverguide/network-file-system.html

PMLS Documentation, Release

Cloud compute support

PMLS can run in any Linux-based cloud environment that supports SSH; we recommend using 64-bit Ubuntu 14.04.
If you wish to run PMLS on Amazon EC2, we recommend using the official 64-bit Ubuntu 14.04 Amazon Machine
Images provided by Canonical: http://cloud-images.ubuntu.com/releases/14.04/release/.

If you’re using Red Hat Enterprise Linux or CentOS on Google Compute Engine, you need to turn off the iptables
firewall (which is on by default), or configure it to allow traffic through ports 9999-10998 (or whatever ports you
intend to use). See https://developers.google.com/compute/docs/troubleshooting#knownissues for more info.

Getting started with applications

Now that you have successfully set up PMLS on one or more machines, you can try out some applications. We
recommend getting started with:

• Bosen: Non-negative Matrix Factorization

• Strads: Latent Dirichlet Allocation

6 Chapter 1. PMLS Bösen and Strads Installation

http://cloud-images.ubuntu.com/releases/14.04/release/
https://developers.google.com/compute/docs/troubleshooting#knownissues

CHAPTER 2

Configuration

Make sure password-less SSH is set up correctly

This is the most common issue people have when running PMLS. Please read!

You must be able to ssh into all machines without a password - even if you are only using your local machine.
The PMLS apps will fail in unexpected ways if password-less ssh is not working. When this happens, you will not
see any error output stating that this is the problem!

Hence, you will save yourself a lot of trouble by taking the time to ensure password-less ssh actually works,
before you attempt to run the PMLS apps. For example, if you are going to run PMLS on your local machine, make
sure that ssh 127.0.0.1 logs you in without asking for a password. See Installing PMLS for instructions on how
to do this.

Bösen and Strads

PMLS includes two platforms for writing and running ML applications: Bösen for data-parallel execution, and Strads
for model-parallel execution. Each PMLS ready-to-run application is either a Bösen application, or a Strads applica-
tion. The two systems use different machine configuration files; please see the following guides.

Note: This page explains machine configuration for non-YARN, stand-alone operation. If you are looking to
run PMLS on YARN, please see this page.

Bösen configuration files

Some PMLS ML applications require Bösen configuration files, in the following format:

0 ip_address_0 9999
1 ip_address_1 9999
2 ip_address_2 9999

7

PMLS Documentation, Release

3 ip_address_3 9999
...

IMPORTANT: There cannot be any trailing blank lines in the configuration file. If there are trailing blank
lines, the applications will fail.

You can give your configuration file any filename. The placeholders ip_address_0, ip_address_1, etc. are
the IP addresses of each machine you want to use. If you only know the hostname of the machine, for example
work-machine-1.mycluster.com, use host to get the actual IP (the hostname will not work):

host work-machine-1.mycluster.com

Each line in the server configuration file format specifies an ID (0, 1, 1000, 2000, etc.), the IP address of the machine
assigned to that ID, and a starting port number (9999). Every machine is assigned to one ID and one starting port
number. We say “starting port number” because some applications may use additional consecutive ports, up to a
maximum of 100 ports (i.e. the port range 9999-10998).

I want to run on my local machine

Simply create this localhost configuration file:

0 127.0.0.1 9999

My cluster does not have shared directories

PMLS is meant to be used from a shared filesystem, such as NFS - you can find instructions for how to set up NFS on
Ubuntu machines here.

If you don’t have NFS, you can still run PMLS, but you need to pay attention to the following points:

Make sure that PMLS is compiled on every machine, and the machine configuration files are present on every machine.
The paths to PMLS and machine configuration files must be identical across machines.

Different apps have different requirements for input data; if no requirements are explicitly stated, you should make
sure the input data is present on every machine.

Some apps store their arguments and parameters in script files. If you modify these script files, you should copy them
to every machine, to be safe.

Caution - Please Read!

You cannot crtl-c to terminate a Bösen app, because they are invoked in the background via ssh. Each Bösen
app comes with a kill script for this purpose; please see the individual app sections in this manual for instructions.

If you want to simultaneously run two PMLS apps on the same machines, make sure you give them separate Bösen
configuration files with different starting ports, separated by at least 1000 (e.g. 9999 and 10999). The apps cannot
share the same port ranges!

If you cannot run an app - especially if you see error messages with “Check failure stack trace” - the cause is probably
another running (or hung) PMLS app using the same ports. In that case, you should use the offending app’s kill script
to terminate it.

8 Chapter 2. Configuration

https://help.ubuntu.com/14.04/serverguide/network-file-system.html

PMLS Documentation, Release

Strads configuration files

Some PMLS ML applications require Strads machine configuration files, which are simply a list of machine IP ad-
dresses (like an MPI hostfile). Unlike Bösen configuration files, Strads configuration files may repeat IP addresses.

Strads creates three types of processes: Workers, the Scheduler, and the Coordinator.

• The Coordinator is the master process that oversees the Scheduler and Workers, and is spawned on the last IP in
the machine file.

• The Scheduler creates and dispatches model variables for the Workers to update. Unless otherwise stated, there
is only one Scheduler, spawned on the 2nd last IP in the machine file.

• The Workers perform the actual variable updates to the ML program. They are spawned on the remaining IPs in
the machine file. At least 2 workers are required.

You may repeat IP addresses to put multiple processes on the same machine. However, the repeat IPs must be
contiguous.

Example 1: If you want 4 workers, then the machine file looks like this:

worker1-ip-address
worker2-ip-address
worker3-ip-address
worker4-ip-address
scheduler-ip-address
coordinator-ip-address

Example 2: Let’s say you only have 2 machines, and you want to spawn 2 Workers on the 1st machine, and the
Scheduler and the Coordinator on the 2nd machine. The machine file looks like this:

ip-address-1
ip-address-1
ip-address-2
ip-address-2

Because repeat IPs must be contiguous, the following configuration is invalid:

ip-address-1 (this configuration WILL NOT WORK)
ip-address-2
ip-address-1
ip-address-2

I want to run on my local machine

If you only have 1 machine, use this Strads machine file with 2 Workers (plus the Scheduler and Coordinator):

127.0.0.1
127.0.0.1
127.0.0.1
127.0.0.1

2.7. Strads configuration files 9

PMLS Documentation, Release

My cluster does not have shared directories

PMLS is meant to be used from a shared filesystem, such as NFS - you can find instructions for how to set up NFS on
Ubuntu machines here.

If you don’t have NFS, you can still run PMLS, but you need to pay attention to the following points:

Make sure that PMLS is compiled on every machine, and the machine configuration files are present on every machine.
The paths to PMLS and machine configuration files must be identical across machines.

Different apps have different requirements for input data; if no requirements are explicitly stated, you should make
sure the input data is present on every machine.

Some apps store their arguments and parameters in script files. If you modify these script files, you should copy them
to every machine, to be safe.

10 Chapter 2. Configuration

https://help.ubuntu.com/14.04/serverguide/network-file-system.html

CHAPTER 3

PMLS YARN+HDFS support

As of version 1.1, PMLS includes support for running apps on YARN and HDFS (Hadoop version 2.4 or later). To
enable support for YARN and HDFS, please follow the instructions below.

Preliminaries

Before you begin, please ensure the following:

• hadoop command is working on every machine.

• Java 7 or higher is installed.

First, install PMLS on every machine in the YARN cluster, as described in Installation. You may install PMLS to the
local filesystem; NFS is not required for YARN operation.

Second, you will need to install Gradle to build the PMLS Java components required for YARN. Follow the instructions
on the Gradle webpage to install Gradle, and ensure that the command gradle (from the bin subdirectory) is in your
PATH.

We do not recommend installing Gradle via apt-get on Ubuntu 14.04, as the repository version may be out
of date.

Finally, on each machine, open bosen/defns.mk, and note the following lines:

JAVA_HOME = /usr/lib/jvm/java-7-openjdk-amd64
HADOOP_HOME = /usr/local/hadoop/hadoop-2.6.0
HAS_HDFS = # Leave empty to build without hadoop.
#HAS_HDFS = -DHAS_HADOOP # Uncomment this line to enable hadoop

Change these lines to:

JAVA_HOME = <path to Java 7 or Java 8 on your machines>
HADOOP_HOME = <path to Hadoop on your machines>
HAS_HDFS = -DHAS_HADOOP # Uncomment this line to enable hadoop

11

http://gradle.org

PMLS Documentation, Release

Recompiling Bösen

You must now recompile Bösen and the supported Bösen apps on each machine. Recompile Bösen using

cd bosen
make clean
make

Now build the YARN support libraries:

cd bosen/src/yarn
gradle build

Finally, recompile the apps you want to use via

cd bosen/app/path_to_app
make clean
make

The list of supported apps, as well as instructions on how to run them, can be found below.

Which applications are supported?

The following Bösen apps have YARN+HDFS support:

• General-purpose Deep Neural Network (DNN)

• Non-negative Matrix Factorization (NMF)

• Sparse Coding

• Distance Metric Learning

• K-means Clustering

• Random Forest

• Multi-class Logistic Regression

Please refer to the respective wiki pages for running instructions. Note that the YARN launch scripts are different
from the regular SSH launch scripts.

YARN/HDFS support for Strads will be coming in a future update.

Troubleshooting

Running out of virtual memory when using YARN

If you are running out of virtual memory when launching PMLS apps via YARN, you may need to edit
$HADOOP_CONF_DIR/yarn-site.xml in order to increase the maximum amount of virtual memory that can
be allocated to containers. Search for the lines

<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>100</value>
</property>

12 Chapter 3. PMLS YARN+HDFS support

PMLS Documentation, Release

and increase value to a ratio higher than 100.

3.4. Troubleshooting 13

PMLS Documentation, Release

14 Chapter 3. PMLS YARN+HDFS support

CHAPTER 4

Frequently asked questions

Q: How does PMLS differ from Spark and Hadoop?

A: PMLS uses bounded-asynchronous communication and fine-grained update scheduling to speed up ML algorithms,
over bulk-synchronous execution (used in Spark and Hadoop).

These techniques take advantage of ML-specific properties such as error tolerance and dependency structures, in order
to speed up ML algorithms while still maintaining correct execution guarantees.

PMLS is specifically designed for algorithms used in ML, such as optimization algorithms and sampling algorithms.
It is not intended as a general platform for all types of Big Data algorithms.

Q: How does PMLS differ from other Key-Value stores or Parameter Servers?

A: PMLS has two major components: a dynamic scheduler system (Strads) for model-parallel ML algorithms, and a
bounded-asynchronous key-value store (Bösen) for data-parallel ML algorithms.

The Bösen key-value store supports tunable ML-specific consistency models that guarantee correct execution even
under worst-case conditions. Eventually-consistent key-value stores may not have ML execution guarantees.

Q: What kind of clusters is PMLS targeted at?

A: PMLS is designed to improve the speed and maximum problem size of ML algorithms, on moderate cluster or
cloud compute sizes (1-100 machines). PMLS can also be run on desktops or laptops.

15

PMLS Documentation, Release

16 Chapter 4. Frequently asked questions

CHAPTER 5

Latent Dirichlet Allocation (LDA)

After compiling Strads, we can test that it is working correctly with Latent Dirichlet Allocation, a popular algorithm
for topic modeling of documents.

Introduction to LDA

Topic modeling, a.k.a Latent Dirichlet Allocation (LDA), is an algorithm that discovers latent semantic structure from
documents. LDA finds global topics, which are weighted vocabularies, and the topical composition of each document
in the collection.

PMLS’s Strads LDA app uses a new model-parallel Gibbs sampling scheme described in this 2014 NIPS paper, and
implemented on top of the Strads scheduler. The documents are partitioned onto different machines, which take turns
to sample disjoint subsets of words. By keeping the word subsets disjoint, our model-parallel implementation exhibits
improved convergence times and memory utilization over data-parallel strategies. We use the sparse Gibbs sampling
procedure in Yao et al (2009).

Performance

The Strads LDA app can train an LDA model with 1K topics, from a corpus with 8M documents and vocabulary size
140K, in 1000 seconds (17 minutes) using 25 machines (16 cores each).

Quick start

PMLS LDA uses the Strads scheduler, and can be found in strads/apps/lda_release/. From this point
on, all instructions will assume you are in strads/apps/lda_release/. After building Strads (as explained
under Installation), you may build the LDA app from strads/apps/lda_release/ by running

make

17

http://www.cs.cmu.edu/~epxing/papers/2014/STRADS_NIPS14.pdf

PMLS Documentation, Release

Test the app (on your local machine) by running

./run.py

This will learn 1000 topics from a small subset of the NYtimes dataset, and output the word-topic and doc-topic tables
to tmplog/wt-mach-* and tmplog/dt-mach-* respectively.

Input data format

The LDA app takes a single file as input, with the following format:

0 dummyword word-id word-id ...
1 dummyword word-id word-id ...
2 dummyword word-id word-id ...
...

Caution: the input file must use UNIX line endings. Windows or Mac line endings will cause a crash.

Each line represents a single document: the first item is the document ID (0-indexed), followed by any character string
(represented by dummyword), and finally a list of tokens in the document, each represented by its word ID.

Output format

The LDA app outputs two types of files: word-topic tables tmplog/wt-mach-* and doc-topic tables tmplog/
dt-mach-*. The word-topic tables use this format:

word-id, topic-id count, topic-id count, topic-id count ...
word-id, topic-id count, topic-id count, topic-id count ...
...

Each line contains, for a particular word word-id, all the topics topic-id that word is seen in, and the number of
times count that word is seen in each topic.

The doc-topic tables follow an identical format:

doc-id, topic-id count, topic-id count, topic-id count ...
doc-id, topic-id count, topic-id count, topic-id count ...
...

The number of files wt-mach-* and dt-mach-* depends on the number of worker processes used — see the next
section for more information.

Program options

The LDA app is launched using a python script, e.g. run.py used earlier:

#!/usr/bin/python
import os
import sys

datafile = ['./sampledata/nytimes_subset.id']
topics = [' 1000 ']

18 Chapter 5. Latent Dirichlet Allocation (LDA)

PMLS Documentation, Release

iterations = [' 3 ']
threads = [' 16 ']

machfile = ['./singlemach.vm']

prog = ['./bin/ldall ']
os.system("mpirun -machinefile "+machfile[0]+" "+prog[0]+" --machfile "+machfile[0]+"
→˓-threads "+threads[0]+" -num_topic "+topics[0]+" -num_iter "+iterations[0]+" -data_
→˓file "+datafile[0]+" -logfile tmplog/1 -wtfile_pre tmplog/wt -dtfile_pre tmplog/dt
→˓");

The basic options are:

• datafile: Path to the data file, which must be visible to all machines. If using multiple machines, provide
the full path to the data file.

• topics: How many topics to find.

• iterations: How many iterations to run.

• threads: How many threads to use for each Worker process.

• machfile: Strads machine file; see below for details.

Strads requires a machine file - singlemach.vm in the above example. Strads machine files control which machines
house Workers, the Scheduler, and the Coordinator (the 3 architectural elements of Strads). In singlemach.vm, we
spawn all element processes on the local machine 127.0.0.1, so the file simply looks like this:

127.0.0.1
127.0.0.1
127.0.0.1
127.0.0.1

To prepare a multi-machine file, please refer to the Strads section under Configuration Files for PMLS Apps.

5.6. Program options 19

PMLS Documentation, Release

20 Chapter 5. Latent Dirichlet Allocation (LDA)

CHAPTER 6

MedLDA

Maximum entropy discrimination latent Dirichlet allocation (MedLDA, JMLR‘12 paper) is a supervised topic model
that jointly learns classifier and latent topic representation from the text, by integrating max-margin principle to hier-
archical Bayesian topic model. Here we provide multi-class MedLDA using Gibbs sampling algorithm described in
the KDD‘13 paper.

MedLDA is built on top of the Strads scheduler system, but uses a data-parallel style. A similar (though more
complicated) implementation can be found here.

Performance

Using 20 machines (12 cores each), the Strads MedLDA app can solve for 1.1 million documents, 20 labels, 1000
topics in 5000 seconds.

Installation

The application can be found at strads/apps/medlda_release/. All subsequent operations are done under
this directory:

cd strads/apps/medlda_release/

Assuming you have completed the Strads installation instructions,

make

will do the right job. The generated binary executable is located under bin/.

21

http://bigml.cs.tsinghua.edu.cn/~jun/pub/MedLDA_jmlr.pdf
http://bigml.cs.tsinghua.edu.cn/~jun/large-scale-gibbs-medlda.pdf
http://bigml.cs.tsinghua.edu.cn/~jun/gibbs-medlda.shtml

PMLS Documentation, Release

Data Preparation

This application takes inputs in LIBSVM format:

<label>...<word>:<count>...

For instance,

21 5 cogito:1 sum:1 ergo:1

represents a short document “Cogito ergo sum” labeled as 21 and 5. Note that <word> is considered as a string while
<label> should be an integer in [0, num_label).

We included a toy data set 20newsgroups under the app directory for demo purpose. If you type

wc -l 20news.{train,test}

you’ll see the training file contains 11269 documents and the test file contains 7505 documents.

The data needs to be partitioned according to the number of workers: e.g. if you use 3 workers, you will need 3
partitions. To partition the data, run

python split.py <filename> <num_worker>

For instance,

python split.py 20news.train 3
python split.py 20news.test 3

randomly partitions the training and testing corpus into three subsets: 20news.train.0, 20news.train.1,
20news.train.2, and 20news.test.0, 20news.test.1, 20news.test.2.

If your cluster doesn’t support Network File System (NFS), don’t forget to scp or rsync files to the right host. The
workers will determine which file to read according to the file suffix, e.g., worker_0 reads <filename>.0.

If your cluster supports NFS or you only intend to do a single machine experiment, you’re ready to go.

Running MedLDA

Quick example on a single machine

We will train MedLDA on 20newsgroups dataset on a single machine. The dataset and machine configuration files are
provided in the package. It will spawn 3 servers and 3 workers, each worker running 2 threads. You can then execute:

python single.py

It will run the medlda binary using default flag settings. You will see outputs like:

......
I1222 20:36:42.225085 2688 trainer.cpp:78] (rank:1) num train doc: 3756
I1222 20:36:42.225152 2688 trainer.cpp:79] (rank:1) num train word: 37723
I1222 20:36:42.225159 2688 trainer.cpp:80] (rank:1) num train token: 446496
I1222 20:36:42.225164 2688 trainer.cpp:81] (rank:1) ---------------------------------
→˓------------------------------------
I1222 20:36:42.236769 2689 trainer.cpp:78] (rank:2) num train doc: 3756
I1222 20:36:42.236814 2689 trainer.cpp:79] (rank:2) num train word: 37111

22 Chapter 6. MedLDA

http://qwone.;com/~jason/20Newsgroups/

PMLS Documentation, Release

I1222 20:36:42.236821 2689 trainer.cpp:80] (rank:2) num train token: 426452
I1222 20:36:42.236827 2689 trainer.cpp:81] (rank:2) ---------------------------------
→˓------------------------------------
I1222 20:36:42.238376 2687 trainer.cpp:78] (rank:0) num train doc: 3757
I1222 20:36:42.238426 2687 trainer.cpp:79] (rank:0) num train word: 37572
I1222 20:36:42.238435 2687 trainer.cpp:80] (rank:0) num train token: 445351
I1222 20:36:42.238440 2687 trainer.cpp:81] (rank:0) ---------------------------------
→˓------------------------------------
......
I1222 20:38:18.517712 2689 trainer.cpp:139] (rank:2) Burn-in Iteration 39 1.99362
→˓sec
I1222 20:38:18.517719 2688 trainer.cpp:139] (rank:1) Burn-in Iteration 39 1.99363
→˓sec
I1222 20:38:18.517725 2687 trainer.cpp:139] (rank:0) Burn-in Iteration 39 1.99362
→˓sec
I1222 20:38:20.451874 2687 trainer.cpp:139] (rank:0) Burn-in Iteration 40 1.93407
→˓sec
I1222 20:38:20.451865 2689 trainer.cpp:139] (rank:2) Burn-in Iteration 40 1.93407
→˓sec
I1222 20:38:20.451872 2688 trainer.cpp:139] (rank:1) Burn-in Iteration 40 1.93408
→˓sec
I1222 20:38:20.456595 2689 trainer.cpp:374] (rank:2) --------------------------------
→˓-------------------------------------
I1222 20:38:20.456612 2689 trainer.cpp:375] (rank:2) Elapsed time: 98.1856 sec
→˓Train Accuracy: 0.999734 (3755/3756)
I1222 20:38:20.456607 2687 trainer.cpp:374] (rank:0) --------------------------------
→˓-------------------------------------
I1222 20:38:20.456634 2689 trainer.cpp:378] (rank:2) --------------------------------
→˓-------------------------------------
I1222 20:38:20.456622 2687 trainer.cpp:375] (rank:0) Elapsed time: 98.1783 sec
→˓Train Accuracy: 0.999468 (3755/3757)
I1222 20:38:20.456643 2687 trainer.cpp:378] (rank:0) --------------------------------
→˓-------------------------------------
I1222 20:38:20.457993 2688 trainer.cpp:374] (rank:1) --------------------------------
→˓-------------------------------------
I1222 20:38:20.458014 2688 trainer.cpp:375] (rank:1) Elapsed time: 98.1953 sec
→˓Train Accuracy: 0.999734 (3755/3756)
I1222 20:38:20.458036 2688 trainer.cpp:378] (rank:1) --------------------------------
→˓-------------------------------------
......
I1222 20:38:30.521900 2688 trainer.cpp:398] (rank:1) Train prediction written into /
→˓tmp/dump_train_pred.1
I1222 20:38:30.526638 2689 trainer.cpp:398] (rank:2) Train prediction written into /
→˓tmp/dump_train_pred.2
I1222 20:38:30.592419 2687 trainer.cpp:398] (rank:0) Train prediction written into /
→˓tmp/dump_train_pred.0
I1222 20:38:31.044430 2687 trainer.cpp:403] (rank:0) Train doc stats written into /
→˓tmp/dump_train_doc.0
I1222 20:38:31.076773 2689 trainer.cpp:403] (rank:2) Train doc stats written into /
→˓tmp/dump_train_doc.2
I1222 20:38:31.213727 2688 trainer.cpp:403] (rank:1) Train doc stats written into /
→˓tmp/dump_train_doc.1
Rank (1) Ready to exit program from main function in ldall.cpp
I1222 20:38:31.256194 2687 trainer.cpp:449] (rank:0) Hyperparams written into /tmp/
→˓dump_param
I1222 20:38:31.259068 2687 trainer.cpp:454] (rank:0) Classifier written into /tmp/
→˓dump_classifier
Rank (2) Ready to exit program from main function in ldall.cpp

6.4. Running MedLDA 23

PMLS Documentation, Release

I1222 20:38:31.271615 2687 trainer.cpp:464] (rank:0) Dict written into /tmp/dump_dict
I1222 20:38:31.271632 2687 trainer.cpp:465] (rank:0) Total num of words: 53485
I1222 20:38:46.930896 2687 trainer.cpp:487] (rank:0) Model written into /tmp/dump_
→˓model
Rank (0) Ready to exit program from main function in ldall.cpp

Once all workers have reported Ready to exit program, you may Crtl-c to terminate the program.

As the last few lines suggest, the training results will be stored at /tmp/dump_* by default. Specifically, (let D =
num of docs in a partition, L = num of labels, and K = num of topics)

• _train_pred.x stores the predicted label of partition x. (D x 1 integer vector)

• _train_doc.x stores the doc-topic distribution in log scale. (D x K matrix)

• _param stores the value of alpha, beta, num_topic, and num_label.

• _classifier stores the classifier weights. (K x L matrix, each column is a binary classifier)

• _dict stores the aggregated distinct words appeared in the train corpus.

• _model stores the topic-word distribution in log scale. (K x V matrix)

Now we’re ready for test. You can run

python single_test.py

It will load the model files generated at the training phase and perform inference on test documents. You will see
outputs like:

......
I1222 20:39:30.173037 3258 tester.cpp:24] (rank:1) Hyperparams loaded from /tmp/dump_
→˓param
I1222 20:39:30.173049 3259 tester.cpp:24] (rank:2) Hyperparams loaded from /tmp/dump_
→˓param
I1222 20:39:30.173061 3258 tester.cpp:25] (rank:1) Alpha: 0.16 Beta: 0.01 Num Topic:
→˓40 Num Label: 20
I1222 20:39:30.173069 3259 tester.cpp:25] (rank:2) Alpha: 0.16 Beta: 0.01 Num Topic:
→˓40 Num Label: 20
I1222 20:39:30.173780 3257 tester.cpp:31] (rank:0) Classifier loaded from /tmp/dump_
→˓classifier
I1222 20:39:30.176692 3258 tester.cpp:31] (rank:1) Classifier loaded from /tmp/dump_
→˓classifier
I1222 20:39:30.176772 3259 tester.cpp:31] (rank:2) Classifier loaded from /tmp/dump_
→˓classifier
I1222 20:39:30.213495 3257 tester.cpp:44] (rank:0) Dict loaded from /tmp/dump_dict
I1222 20:39:30.213523 3257 tester.cpp:45] (rank:0) Total num of words: 53485
I1222 20:39:30.228713 3259 tester.cpp:44] (rank:2) Dict loaded from /tmp/dump_dict
I1222 20:39:30.228745 3259 tester.cpp:45] (rank:2) Total num of words: 53485
I1222 20:39:30.235925 3258 tester.cpp:44] (rank:1) Dict loaded from /tmp/dump_dict
I1222 20:39:30.235959 3258 tester.cpp:45] (rank:1) Total num of words: 53485
I1222 20:39:31.196068 3258 tester.cpp:51] (rank:1) Model loaded into /tmp/dump_model
I1222 20:39:31.259271 3259 tester.cpp:51] (rank:2) Model loaded into /tmp/dump_model
I1222 20:39:31.306517 3258 tester.cpp:95] (rank:1) num test doc: 2502
I1222 20:39:31.306558 3258 tester.cpp:96] (rank:1) num test oov: 8212
I1222 20:39:31.306565 3258 tester.cpp:97] (rank:1) num test token: 300103
I1222 20:39:31.306571 3258 tester.cpp:98] (rank:1) ----------------------------------
→˓-----------------------------------
I1222 20:39:31.348415 3259 tester.cpp:95] (rank:2) num test doc: 2501
I1222 20:39:31.348460 3259 tester.cpp:96] (rank:2) num test oov: 8227
I1222 20:39:31.348469 3259 tester.cpp:97] (rank:2) num test token: 292610

24 Chapter 6. MedLDA

PMLS Documentation, Release

I1222 20:39:31.348476 3259 tester.cpp:98] (rank:2) ----------------------------------
→˓-----------------------------------
I1222 20:39:31.350323 3257 tester.cpp:51] (rank:0) Model loaded into /tmp/dump_model
I1222 20:39:31.420966 3257 tester.cpp:95] (rank:0) num test doc: 2502
I1222 20:39:31.421005 3257 tester.cpp:96] (rank:0) num test oov: 7172
I1222 20:39:31.421013 3257 tester.cpp:97] (rank:0) num test token: 267530
I1222 20:39:31.421018 3257 tester.cpp:98] (rank:0) ----------------------------------
→˓-----------------------------------
I1222 20:39:35.194511 3257 tester.cpp:118] (rank:0) Elapsed time: 3.77297 sec
→˓Test Accuracy: 0.797362 (1995/2502)
I1222 20:39:35.206197 3257 tester.cpp:212] (rank:0) Test prediction written into /
→˓tmp/dump_test_pred.0
I1222 20:39:35.307680 3259 tester.cpp:118] (rank:2) Elapsed time: 3.95875 sec
→˓Test Accuracy: 0.822471 (2057/2501)
I1222 20:39:35.315475 3259 tester.cpp:212] (rank:2) Test prediction written into /
→˓tmp/dump_test_pred.2
I1222 20:39:35.392273 3258 tester.cpp:118] (rank:1) Elapsed time: 4.08543 sec
→˓Test Accuracy: 0.804956 (2014/2502)
I1222 20:39:35.404650 3258 tester.cpp:212] (rank:1) Test prediction written into /
→˓tmp/dump_test_pred.1
I1222 20:39:35.549335 3257 tester.cpp:217] (rank:0) Test doc stats written into /tmp/
→˓dump_test_doc.0
Rank (0) Ready for exit program from main function in ldall.cpp
I1222 20:39:35.647891 3259 tester.cpp:217] (rank:2) Test doc stats written into /tmp/
→˓dump_test_doc.2
Rank (2) Ready for exit program from main function in ldall.cpp
I1222 20:39:35.724900 3258 tester.cpp:217] (rank:1) Test doc stats written into /tmp/
→˓dump_test_doc.1
Rank (1) Ready for exit program from main function in ldall.cpp

Once all workers have reported Ready to exit program, you may Crtl-c to terminate the program.

We’re done! Similar to the training phase, prediction results for test documents are stored at /tmp/
dump_test_doc.x and /tmp/dump_test_pred.x.

Configuration and using multiple machines

Let us inspect the training script single.py:

#!/usr/bin/python
import os
import sys

machfile = ['./singlemach.vm']
traindata = ['./20news.train']
numservers = ['3']

prog=['./bin/medlda ']
os.system("mpirun -machinefile "+machfile[0]+" "+prog[0]+" -machfile "+machfile[0]+" -
→˓schedulers "+numservers[0]+" -train_prefix "+traindata[0]);

Things to note:

• The last line os.system executes the MedLDA app; you may insert advanced command line flags here. See
the end of this article for a full list of flags.

• machfile gives the machine configuration file.

6.5. Configuration and using multiple machines 25

PMLS Documentation, Release

• traindata gives the dataset prefix (20news.train in this case).

• numservers is the number of servers (key-value stores) to use.

MedLDA is built upon the Strads scheduler architecture, and uses a similar machine configuration file. This machine
file is a simple list of IP addresses, corresponding to workers, followed by servers, and finally the Strads coordinator.
For example, the singlemach.vm machine file used in single.py looks like this:

127.0.0.1 <--- this is worker 0
127.0.0.1 <--- this is worker 1
127.0.0.1 <--- this is worker 2
127.0.0.1 <--- this is server 0
127.0.0.1 <--- this is server 1
127.0.0.1 <--- this is server 2
127.0.0.1 <--- this is the coordinator

The last IP is always the coordinator, and the servers come immediately before it (numservers controls the number
of servers). The workers make up the remaining IPs (you must use at least 2 workers).

Note: remember to partition your data for the correct number of workers.

To use multiple machines, simply change the machine file IPs to point to the desired machines. You may repeat
IP addresses to assign multiple processes to the same machine, but the repeat IPs must be contiguous - ip1
followed by ip2 followed by ip1 is invalid.

Important: do not forget to prepare the test script (e.g. single_test.py) in the same fashion. You must use
the same machine configuration as the training script.

Command line flags

Flags for training:

• train_prefix: Prefix to the LIBSVM format training corpus.

• dump_prefix: Prefix to the dump results.

• num_thread: Number of worker threads.

• alpha: Parameter of Dirichlet prior on doc-topic distribution.

• beta: Parameter of Dirichlet prior on topic-word distribution.

• cost: Cost parameter on hinge loss, usually called “C”.

• ell: Margin parameter in SVM, usually set to 1. Hinge loss = max(0, ell - y <w, x>).

• num_burnin: Number of burn-in iterations.

• num_topic: Number of topics, usually called “K”.

• num_label: Total number of labels.

• eval_interval: Print out information every N iterations

Flags for testing:

• test_prefix: Prefix to LIBSVM format test corpus.

• dump_prefix: Prefix to the dump results.

• num_thread: Number of worker threads.

26 Chapter 6. MedLDA

CHAPTER 7

Deep Neural Network

This app implements a fully-connected Deep Neural Network (DNN) for multi-class classification, on Bösen. The
DNN consists of an input layer, arbitrary number of hidden layers and an output layer. Each layer contains a certain
amount of neuron units. Each unit in the input layer corresponds to an element in the feature vector. We represent the
class label using 1-of-K coding and each unit in the output layer corresponds to a class label. The number of hidden
layers and the number of units in each hidden layer are configured by the users. Units between adjacent layers are
fully connected. In terms of DNN learning, we use the cross entropy loss and stochastic gradient descent where the
gradient is computed using backpropagation method.

Performance

On a dataset with 1M data instances; 360 feature dimension; 24M parameters, the Bösen DNN implementation con-
verges in approximately 45 minutes, using 6 machines (16 cores each).

Going from 1 to 6 machines results in a speedup of roughly 4.1x.

Quick start

The DNN app can be found in bosen/app/dnn. From this point on, all instructions will assume you are in bosen/
app/dnn. After building PMLS (as explained earlier in this manual), you can build the DNN app from bosen/app/
dnn by running

make

This will put the DNN binary in the subdirectory bin/.

Create a simulated dataset:

script/gen_data.sh 10000 360 2001 1 datasets

27

PMLS Documentation, Release

Change app_dir in script/run_local.py; see example below. You need to provide the full path to the DNN
directory. This will allow for correct YARN operation (if required).

app_dir = "/home/user/bosen/app/dnn"

then you can test that the app works on the local machine (with 4 worker threads). From the bosen/app/dnn
directory, run:

./script/launch.py

The DNN app runs in the background (progress is output to stdout). After the app terminates, you should get 2 output
files:

datasets/weights.txt
datasets/biases.txt

weights.txt saves the weight matrices. The order is: weight matrix between layer 1 (input layer) and layer 2 (the
first hidden layer), weight matrix between layer 2 and layer 3, etc. All matrices are saved in row major order and each
line corresponds to a row.

Making predictions

Change app_dir in script/predict.py; see example below. You need to provide the full path to the DNN
directory.

app_dir = "/home/user/bosen/app/dnn"

You can now make predictions with the learned model using

./script/launch_pred.py

After the app terminates, you should get a prediction result file for each of the input data file. Please check the directory
where you put the data files. Each line of the prediction result file contains the prediction for the corresponding data.

Input data format

We assume users have partitioned the data into M pieces, where M is the total number of clients (machines). Each
client will be in charge of one piece. User needs to provide a file recording the data partition information. In this file,
each line corresponds to one data partition. The format of each line is

<data_file> \t <num_data_in_partition>

<num_data_in_partition> is the number of data points in this partition. <data_file> stores the class label
and feature vector of a data sample in each line. <data_file> must be an absolute path. The format of each line in
<data_file> is:

<class_label> \t <feature vector>

Elements in the feature vector are separated with single blank. Note that class label starts from 0. If there are K classes,
the range of class labels are [0,1,...,K-1].

28 Chapter 7. Deep Neural Network

PMLS Documentation, Release

Creating synthetic data

We provide a synthetic data generator for testing purposes. The generator generates random data and automatically
partitions the data into different files. To see detailed instructions, run

scripts/gen_data.sh

The basic syntax is

scripts/gen_data.sh <num_train_data> <dim_feature> <num_classes> <num_partitions>
→˓<save_dir>

• <num_train_data>: number of training data

• <dim_feature>: dimension of features

• <num_classes>: number of classes

• <num_partitions>: how many pieces the data is going to be partitioned into

• <save_dir>: the directory where the generated data will be saved

The generator will generate an amount of <num_partitions> files storing class labels and feature vectors.
The data files are automatically named as 0_data.txt, 1_data.txt, etc. The generator will also generate a file
data_ptt_file.txt where each line stores the data file of one data partition and the number of points in this
partition.

For example, you can create a dataset by running the following command:

scripts/gen_data.sh 10000 360 2001 3 datasets

It will generate a dataset where the number of training examples is 10000, feature dimension is 360 and number of
classes are 2001. Moreover, it will partition the dataset into 3 pieces and save the generated files to datasets/:
0_data.txt, 1_data.txt, 2_data.txt and a data_ptt_file.txt file which will have three lines. Example:

/home/user/bosen/app/dnn/datasets/0_data.txt 3333
/home/user/bosen/app/dnn/datasets/1_data.txt 3333
/home/user/bosen/app/dnn/datasets/2_data.txt 3334

Each line corresponds to one data partition and contains the data file of this partition and number of data points in this
partition. Note that the path of data file must be an absolute path.

Running the Deep Neural Network Application

Parameters of the DNN training are specified in script/run_local.py, including:

• <num_worker_threads>: how many worker threads to use in each machine

• <staleness>: staleness value

• <parafile>: configuration file on DNN parameters

• <data_ptt_file>: a file containing the data file path and the number of training points in each data partition

• <model_weight_file>: the path where the output weight matrices will be stored

• <model_bias_file>: the path there the output bias vectors will be stored

The machine file is specified in script/launch.py:

7.5. Creating synthetic data 29

PMLS Documentation, Release

hostfile_name = "machinefiles/localserver"

After configuring these parameters, perform DNN training by:

./script/launch.py

Parameters of the DNN prediction are specified in script/predict.py, including:

• <parafile>: configuration file on DNN parameters

• <data_ptt_file>: a file containing the data file path and the number of training points in each data partition

• <model_weight_file>: the file storing the weight matrices

• <model_bias_file>: the file storing the bias vectors

The machine file is specified in script/launch_pred.py:

hostfile_name = "machinefiles/localserver"

After configuring these parameters, perform prediction by:

./script/launch_pred.py

Format of DNN Configuration File

The DNN configurations are stored in <parameter_file>. Each line corresponds to a parameter and its format is

<parameter_name>: <parameter_value>

<parameter_name> is the name of the parameter. It is followed by a : (there is no blank between
<parameter_name> and :). <parameter_value> is the value of this parameter. Note that : and
<parameter_value> must be separated by a blank.

The list of parameters and their meanings are:

• num_layers: number of layers, including input layer, hidden layers, and output layer

• num_units_in_each_layer: number of units in each layer

• num_epochs: number of epochs in stochastic gradient descent training

• stepsize: learn rate of stochastic gradient descent

• mini_batch_size: mini batch size in each iteration

• num_smp_evaluate: when evaluating the objective function, we randomly sample <num_smp_evaluate>
points to compute the objective -num_iters_evaluate: every <num_iters_evaluate> iterations, we do an
objective function evaluation Note that, the order of the parameters cannot be switched.

Here is an example:

num_layers: 6
num_units_in_each_layer: 360 512 512 512 512 2001
num_epochs: 2
stepsize: 0.05
mini_batch_size: 10
num_smp_evaluate: 2000
num_iters_evaluate: 100

30 Chapter 7. Deep Neural Network

PMLS Documentation, Release

Terminating the DNN app

The DNN app runs in the background, and outputs its progress to stdout. If you need to terminate the app before it
finishes, run

./script/kill.py <petuum_ps_hostfile>

File IO from HDFS

Put datasets to HDFS

hadoop fs -mkdir -p /user/bosen/dataset/dnn
hadoop fs -put datasets /user/bosen/dataset/dnn

Change the corresponding file paths in script/run_local.py to the right HDFS path. Comment out the local
path.

, "parafile": join(app_dir, "datasets/para_imnet.txt")
, "parafile": "hdfs://hdfs-domain/user/bosen/dataset/dnn/datasets/para_imnet.txt"
, "data_ptt_file": join(app_dir, "datasets/data_ptt_file.txt")
, "data_ptt_file": "hdfs://hdfs-domain/user/bosen/dataset/dnn/datasets/data_ptt_file.
→˓txt"
, "model_weight_file": join(app_dir, "datasets/weights.txt")
, "model_weight_file": "hdfs://hdfs-domain/user/bosen/dataset/dnn/datasets/weights.txt
→˓"
, "model_bias_file": join(app_dir, "datasets/biases.txt")
, "model_bias_file": "hdfs://hdfs-domain/user/bosen/dataset/dnn/datasets/biases.txt"

Launch it over ssh

./script/launch.py

Check the output

hadoop fs -cat /user/bosen/dataset/dnn/datasets/biases.txt

Similar configurations apply to DNN prediction.

Use Yarn to launch DNN app

./script/launch_on_yarn.py

7.8. Terminating the DNN app 31

PMLS Documentation, Release

32 Chapter 7. Deep Neural Network

CHAPTER 8

Deep Neural Network for Speech Recognition

This tutorial shows how the Deep Neural Network (DNN) application (implemented on Bösen) can be applied to
speech recognition, using Kaldi (http://kaldi.sourceforge.net/about.html) as our tool for feature extraction and decod-
ing. Kaldi is a toolkit for speech recognition written in C++ and licensed under the Apache License v2.0. It also
provides two DNN applications (http://kaldi.sourceforge.net/dnn.html), and we follow Dan’s setting in feature extrac-
tion, preprocessing and decoding.

Our DNN consists of an input layer, arbitrary number of hidden layers and an output layer. Each layer contains
a certain amount of neuron units. Each unit in the input layer corresponds to an element in the feature vector. We
represent the class label using 1-of-K coding and each unit in the output layer corresponds to a class label. The number
of hidden layers and the number of units in each hidden layer are configured by the users. Units between adjacent
layers are fully connected. In terms of DNN learning, we use the cross entropy loss and stochastic gradient descent
where the gradient is computed using backpropagation method.

Installation

PMLS Deep Neural Network Application

The DNN for Speech Recognition app can be found in bosen/app/dnn_speech/. From this point on, all in-
structions will assume you are in bosen/app/dnn_speech/. After building PMLS (as explained earlier in this
manual), you can build the DNN from bosen/app/dnn_speech/ by running

make

This will put the DNN binary in the subdirectory bin/.

Kaldi

From bosen/app/dnn_speech/, extract Kaldi by running:

33

http://kaldi.sourceforge.net/about.html
http://kaldi.sourceforge.net/dnn.html

PMLS Documentation, Release

tar -xvf kaldi-trunk.tar.gz
cd kaldi-trunk/tools

Next, we must build the ATLAS libraries in a local directory. From kaldi-trunk/tools,

sudo apt-get install gfortran
./install_atlas.sh

This process will take some time, and will report some messages of the form Error 1 (ignored) - this
is normal. More details can be found in kaldi-trunk/INSTALL, kaldi-trunk/tools/INSTALL and
kaldi-trunk/src/INSTALL.

Once ATLAS has been set up,

make
cd ../src/
./configure
make depend
make

The first make may produce some “Error 1 (ignored)” messages, this is normal and can be ignored. The ./
configure may produce a warning about GCC 4.8.2, which can also be ignored for our purposes. Be advised
that these steps will take a while (up to 1-2 hours).

The Whole Pipeline

Currently, we only support TIMIT dataset (https://catalog.ldc.upenn.edu/LDC93S1), a well-known benchmark dataset
for speech recognition. You can process this dataset through following steps.

1. Feature extraction

WARNING: this stage will take several hours, and requires at least 16GB free RAM.

Run

sh scripts/PrepDNNFeature.sh <TIMIT_path>

where <TIMIT_path> is the absolute path to the TIMIT directory. This will extract features and do some pre-
processing work to generate Train.fea, Train.label, Train.para, head.txt and tail.txt in app/
dnn_speech directory and exp/petuum_dnn in kaldi-trunk/egs/timit/s5 directory. The script will
take 1-2 hours to complete.

• <TIMIT_path> is the absolute path of TIMIT dataset. You can get it through https://catalog.ldc.upenn.edu/
LDC93S1.

• Train.fea and Train.label save the feature and label of training examples, one example per line.

• Train.para saves the information of training examples, including the feature dimension, the number of
classes of labels and the number of examples.

• head.txt contains the transistion model and the preprocessing information of training features, including
splicing and linear discriminant analysis (LDA), saved in the format of Dan’s setup in Kaldi.

• tail.txt contains the empirical distribution of the classes of labels, saved in the format of Dan’s setup in
Kaldi.

34 Chapter 8. Deep Neural Network for Speech Recognition

https://catalog.ldc.upenn.edu/LDC93S1
https://catalog.ldc.upenn.edu/LDC93S1
https://catalog.ldc.upenn.edu/LDC93S1

PMLS Documentation, Release

• kaldi-trunk/egs/timit/s5/exp/petuum_dnn contains all the log file and intermediate results.

2. DNN Training

According to the information in Train.para, you can set the configuration file for DNN (more details can be found
in Input data format and Format of DNN Configuration file section). For example, if Train.
para is

360 2001 1031950

You can set datasets/data_partition.txt by

/home/user/bosen/app/dnn_speech/Train 1031950

and datasets/para_imnet.txt by

num_layers: 4
num_units_in_each_layer: 360 512 512 2001
num_epochs: 2
stepsize: 0.1
mini_batch_size: 256
num_smp_evaluate: 2000
num_iters_evaluate: 100

And run

scripts/run_dnn.sh 4 5 machinefiles/localserver datasets/para_imnet.txt datasets/data_
→˓partition.txt DNN_para.txt

The DNN app runs in the background (progress is output to stdout). After the app terminates, you should get 1 output
files:

DNN_para.txt

which stores weight matrices and bias vectors as Dan’s setup in Kaldi. More details can be found in next section.

3. Decoding

Run

scripts/NetworkDecode.sh DNN_para.txt datasets/para_imnet.txt

Wait for several minutes and you will see the decode result over the core test dataset of TIMIT.

Running the Deep Neural Network application

Notice that the interface of DNN for speech recognition is slightly different from the general purpose DNN in app/
dnn. To see the instructions for the DNN for speech app, run

scripts/run_dnn.sh

The basic syntax is

8.3. Running the Deep Neural Network application 35

PMLS Documentation, Release

scripts/run_dnn.sh <num_worker_threads> <staleness> <hostfile> <parameter_file>
→˓<data_partition_file> <model_para_file> "additional options"

• <num_worker_threads>: how many worker threads to use in each machine

• <staleness>: staleness value

• <hostfile>: machine configuration file

• <parameter_file>: configuration file on DNN parameters

• <data_partition_file>: a file containing the data file path and the number of training points in each
data partition

• <model_para_file>: the path where the output weight matrices and bias vector will be stored

The final argument, “additional options”, is an optional quote-enclosed string of the form "--opt1 x --opt2 y
..." (you may omit this if you wish). This is used to pass in the following optional arguments:

• ps_snapshot_clock x: take snapshots every x iterations

• ps_snapshot_dir x: save snapshots to directory x (please make sure x already exists!)

• ps_resume_clock x: if specified, resume from iteration x (note: if –staleness s is specified, then we resume
from iteration x-s instead)

• ps_resume_dir x: resume from snapshots in directory x. You can continue to take snapshots by specifying

• ps_snapshot_dir y, but do make sure directory y is not the same as x!

For example, to run the DNN app on local machine (one client) where the number of worker thread is 4, staleness is 5,
machine file is machinefiles/localserver, DNN configuration file is datasets/para_imnet.txt, data
partition file is datasets/data_partition.txt, model parameter file is DNN_para.txt, use the following
command:

scripts/run_dnn.sh 4 5 machinefiles/localserver datasets/para_imnet.txt datasets/data_
→˓partition.txt DNN_para.txt

Input data format

We assume users have partitioned the data into M pieces, where M is the total number of clients (machines). Each
client will be in charge of one piece. User needs to provide a file recording the data partition information. In this file,
each line corresponds to one data partition. The format of each line is

<data_file> \t <num_data_in_partition>

<num_data_in_partition> is the number of data points in this partition. <data_file> is the prefix of the
class label file (<data_file>.label) and the feature file (<data_file>.fea). And <data_file> must be
an absolute path.

For example,

/home/user/bosen/app/dnn_speech/Train 1031950

means there are 1031950 training examples, the class label file is /home/user/bosen/app/dnn_speech/
Train.label and the feature file is /home/user/bosen/app/dnn_speech/Train.fea.

The format of <data_file>.fea is:

36 Chapter 8. Deep Neural Network for Speech Recognition

PMLS Documentation, Release

<feature vector 1>
<feature vector 2>
...

Elements in the feature vector are separated with single blank.

The format of <data_file>.label is

<label 1>
<label 2>
...

Note that class label starts from 0. If there are K classes, the range of class labels are [0,1,...,K-1].

Format of DNN Configuration File

The DNN configurations are stored in <parameter_file>. Each line corresponds to a parameter and its format is

<parameter_name>: <parameter_value>

<parameter_name> is the name of the parameter. It is followed by a : (there is no blank between
<parameter_name> and :). <parameter_value> is the value of this parameter. Note that : and
<parameter_value> must be separated by a blank.

The list of parameters and their meanings are:

• num_layers: number of layers, including input layer, hidden layers, and output layer

• num_units_in_each_layer: number of units in each layer

• num_epochs: number of epochs in stochastic gradient descent training

• stepsize: learn rate of stochastic gradient descent

• mini_batch_size: mini batch size in each iteration

• num_smp_evaluate: when evaluating the objective function, we randomly sample
<num_smp_evaluate> points to compute the objective

• num_iters_evaluate: every <num_iters_evaluate> iterations, we do an objective function evalua-
tion Note that, the order of the parameters cannot be switched.

Here is an example:

num_layers: 4
num_units_in_each_layer: 360 512 512 2001
num_epochs: 2
stepsize: 0.1
mini_batch_size: 256
num_smp_evaluate: 2000
num_iters_evaluate: 100

Output format

The DNN app outputs just one file:

8.5. Format of DNN Configuration File 37

PMLS Documentation, Release

<model_para_file>

<model_para_file> saves the weight matrices and bias vectors. The order is: weight matrix between layer 1
(input layer) and layer 2 (the first hidden layer), bias vector for layer 2, weight matrix between layer 2 and layer 3,
bias vector for layer 3, etc. All matrices are saved in row major order and each line corresponds to a row. Elements in
each row are separated with blank.

Terminating the DNN app

The DNN app runs in the background, and outputs its progress to stdout. If you need to terminate the app before it
finishes, for distributed version, run

scripts/kill_dnn.sh <hostfile>

38 Chapter 8. Deep Neural Network for Speech Recognition

CHAPTER 9

Matrix Factorization

Given an input matrix A (with some missing entries), MF learns two matrices W and H such that W*H approximately
equals A (except where elements of A are missing). If A is N-by-M, then W will be N-by-K and H will be K-by-M.
Here, K is a user-supplied parameter (the “rank”) that controls the accuracy of the factorization. Higher values of K
usually yield a more accurate factorization, but require more computation.

MF is commonly used to perform Collaborative Filtering, where A represents the known relationships between two
categories of things - for example, A(i,j) = v might mean that “person i gave product j rating v”. If some rela-
tionships A(i,j) are missing, we can use the learnt matrices W and H to predict them:

A(i,j) = W(i,1)*H(1,i) + W(i,2)*H(2,i) + ... + W(i,K)*H(K,i)

The PMLS MF app uses a model-parallel coordinate descent scheme, implemented on the Strads scheduler. If you
would like to use the older Bösen-based PMLS MF app, you may obtain it from the PMLS v0.93 release.

Performance

The Strads MF app finishes training on the Netflix dataset (480k by 20k matrix) with rank=40 in 2 minutes, using 25
machines (16 cores each).

Quick start

PMLS MF uses the Strads scheduler, and can be found in src/strads/apps/cdmf_release/. From this
point on, all instructions will assume you are in src/strads/apps/cdmf_release/. After building the
main PMLS libraries (as explained under Installation), you may build the MF app from src/strads/apps/
cdmf_release/ by running

make

Test the app (on your local machine) by running

39

https://github.com/sailing-pmls/bosen/tree/v0.9.3

PMLS Documentation, Release

./run.py

This will perform a rank K=40 decomposition on a synthetic 10k-by-10k matrix, and output the factors W and H to
tmplog/wfile-mach-* and tmplog/hfile-mach-* respectively.

Input data format

The MF app uses the MatrixMarket format:

%%MatrixMarket matrix coordinate real general
num_rows num_cols num_nonzeros
row col value
row col value
row col value

The first line is the MatrixMarket header, and should be copied as-is. The second line gives the number of rows N,
columns M, and non-zero entries in the matrix. This is followed by num_nonzeros lines, each representing a single
matrix entry A(row,col) = value (where row and col are 0-indexed).

Output format

The MF app outputs W and H to tmplog/wfile-mach-* and tmplog/hfile-mach-* respectively. The W files
have the following format:

row-id: value-0 value-1 ... value-(K-1)
row-id: value-0 value-1 ... value-(K-1)
...

Each line represents one row in W, beginning with the row index row-id, and followed by all K values that make up
the row.

The H files follow a similar format:

col-id: value-0 value-1 ... value-(K-1)
col-id: value-0 value-1 ... value-(K-1)
...

The number of files wfile-mach-* and hfile-mach-* depends on the number of worker processes used — see
the next section for more information.

Program options

The MF app is launched using a python script, e.g. run.py used earlier:

#!/usr/bin/python
import os
import sys

datafile = ['./sampledata/mftest.mmt ']
threads = [' 16 ']
rank = [' 40 ']

40 Chapter 9. Matrix Factorization

http://math.nist.gov/MatrixMarket/formats.html

PMLS Documentation, Release

iterations = [' 10 ']
lambda_param = [' 0.05 ']

machfile = ['./singlemach.vm']

prog = ['./bin/lccdmf ']
os.system("mpirun -machinefile "+machfile[0]+" "+prog[0]+" --machfile "+machfile[0]+"
→˓-threads "+threads[0]+" -num_rank "+rank[0]+" -num_iter "+iterations[0]+" -lambda
→˓"+lambda_param[0]+" -data_file "+datafile[0]+" -wfile_pre tmplog/wfile -hfile_pre
→˓tmplog/hfile");

The basic options are:

• datafile: Path to the data file, which must be present/visible to all machines. We strongly recommend
providing the full path name to the data file.

• threads: How many threads to use for each worker.

• rank: The desired decomposition rank K.

• iterations: How many iterations to run.

• lambda_param: Regularization parameter (PMLS MF uses an L2 regularizer)

• machfile: Strads machine file; see below for details.

Strads requires a machine file - singlemach.vm in the above example. Strads machine files control which machines
house Workers, the Scheduler, and the Coordinator (the 3 architectural elements of Strads). In singlemach.vm, we
spawn all element processes on the local machine 127.0.0.1, so the file simply looks like this:

127.0.0.1
127.0.0.1
127.0.0.1
127.0.0.1

To prepare a multi-machine file, please refer to the Strads section under Configuration Files for PMLS Apps.

9.5. Program options 41

PMLS Documentation, Release

42 Chapter 9. Matrix Factorization

CHAPTER 10

Non-negative Matrix Factorization (NMF)

After compiling Bösen, we can test that it is working correctly with Non-negative Matrix Factorization, a popular
algorithm for recommender systems.

Introduction to NMF

Given an input matrix X, the NMF app on Bösen learns two non-negative matrices L and R such that L*R is approxi-
mately equal to X.

If X is N-by-M, then L will be N-by-K and R will be K-by-M where N is the number of data points, M is the dimension
of the data, K is a user-supplied parameter that controls the rank of the factorization. The objective of NMF app is to
minimize the function ||X - L*R||^2 subject to the constraint that the elements in matrices are non-negative.

Our NMF app uses the projected Stochastic Gradient Descent (SGD) algorithm to learn the two matrices L and R.

Quick Start

The NMF app can be found in bosen/app/NMF/. From this point on, all instructions will assume you are in
bosen/app/NMF/. After building PMLS (as explained earlier in this manual), you can build the NMF app from
bosen/app/NMF by running

make

This will put the NMF binary in the subdirectory bin/.

Create directory

mkdir sample
mkdir sample/data
mkdir sample/output

Create a simulated dataset:

43

PMLS Documentation, Release

./script/make_synth_data.py 3 3 sample/data/sample.txt

Change app_dir in script/run_local.py; see example below. You need to provide the full path to the NMF
directory. This will allow for correct YARN operation (if required).

app_dir = "/home/user/bosen/app/NMF"

then you can test that the app works on the local machine (with 4 worker threads). From the bosen/app/NMF/
directory, run:

./script/launch.py

The NMF app runs in the background (progress is output to stdout). After a few minutes, you should get the following
output files in the subdirectory sample/output/:

L.txt.0
R.txt
loss.txt
time.txt

The file L.txt.0 and the file R.txt are the optimization results of two matrices L and R, which looks something
like this (note that there exist many valid solutions; the NMF app produces one at random):

0.80641 0 0
0.80641 0 0
0.80641 0 0
0 0 1.47865
0 0 1.47865
0 0 1.47865
0 2.2296 0
0 2.2296 0
0 2.2296 0

1.24006 1.24006 1.24006 0 0 0 0 0 0
0 0 0 0 0 0 1.34553 1.34553 1.34553
0 0 0 1.35258 1.35258 1.35258 0 0 0

The file loss.txt contains the statistics of loss function evaluated at iterations specified by user. If there are
num_clientmachines in the experiment, it will has num_client columns, and the i-th column is the loss function
evaluated by the i-th machine. Note that loss function is evaluated by averaging loss function at randomly sampled
data points. The file time.txt also has num_client columns, and contains the time (seconds) taken between
evaluations on each client (Evaluating time is excluded). Don’t be surprised if the first row of time.txt is nearly 0,
that’s because the loss function is evaluated once before any optimization is conducted. Also note that at the end of
time.txt and loss.txt there might be some N/As, that’s invalid and is due to the fact that different clients may
evaluate different times.

You won’t see the exact same numeric values in different runs as there are multiple optimums of the optimization
problem. All you need to confirm is that in optimized L, lines 1-3, lines 4-6 and line 7-9 shall be similar. Similarly, in
optimized R, columns 1-3, 4-6, 7-9 shall be similar.

Data format

The NMF app takes a dense matrix X as input, where each row corresponds to a data sample and each column cor-
responds to a feature. The file containing X should be a binary or text file, and elements are sorted by rows then
columns:

44 Chapter 10. Non-negative Matrix Factorization (NMF)

PMLS Documentation, Release

ele_0_0 ele_0_1 ... ele_0_n-1
ele_1_0 ele_1_1 ... ele_1_n-1
...
ele_n-1_0 ele_n-1_1 ... ele_n-1_n-1

You must specify the format of file (binary or text) by using the parameter file_format, which will be explained
in Running the NMF application section.

Creating synthetic data

We provide a synthetic data generator for testing purposes (we have tested it on python 2.7). To see detailed instruc-
tions, run

python script/make_synth_data.py

Running the NMF application

There are many parameters involved for running NMF. We provide default values for all of them in script/
run_local.py. Some important ones are:

• Input files

– data_filename="sample/data/sample.txt": The data file name. The data file, which rep-
resents input matrix X, can be text file or binary file. The format of file needs to be specified in
data_format. Matrix elements shall be sorted by rows then columns. Matrix elements in text file
needs to be separated by blank characters. Matrix elements in binary file needs to be single-precision
floating-point format which occupies 4 bytes each.

– is_partitioned=0: Indicates whether or not the input file has been partitioned. For distributed set-
ting, each machine needs to access their part of data. If is_partitioned is set to 0, then each machine
needs to get access to the whole data file and NMF app will do the partitioning automatically. Otherwise,
the whole data file needs to be partitioned by column id (See Data partitioning for details), and each ma-
chine will read file named data_filename.client_id, e.g. if data_filename is “sample.txt”, then machine 0
will read file “sample.txt.0”.

– data_format="text": Specify the format of input and output data. Can be “text” or “binary”. Note
that the format of time.txt and loss.txt does not depend on this parameter and is always text.

– load_cache=0: Specify if whether or not load previous saved results. If load_cache is set to 1,
the app will load the results in directory cache_dirname, which has to contain the matrix R and the
partial matrix Li. The data format of files in cache_dirname need to be the same as specified in
data_format.

– cache_dirname="N/A": Required if load_cache is set to 1. See load_cache.

• Output files

– output_dirname="sample/output": Directory where the results will be put into. The
output_dirname is path relative to bosen/app/NMF. Set output_path directly if you want to
use absolute path.

• Objective function parameters

– m: Dimension of input data. It is also the number of columns (for text format input file) in input data.

– n: Size of input data. It is also the number of rows (for text file) in input data.

10.4. Creating synthetic data 45

PMLS Documentation, Release

– rank: Rank of matrix factorization.

• Optimization parameters

– num_epochs=500: Perform how many epochs during optimization. Each epoch approximately visit all
data points once (not exactly because the data points are visited stochastically).

– minibatch_size=100: Size of minibatch.

– init_step_size=0.01: Base init step size. The step size at the t-th iter is in the form of
init_step_size * (t + step_size_offset)^(-step_size_pow). As we are alternatively opti-
mizing R and L, and there might be multiple threads or multiple clients running, the actual step size for R
and L is rescaled by a factor related to number of threads and dimension of data. For most applications,
it is enough to only tune this parameter, keeping step_size_offset and step_size_pow to 0. If
the output contains nan during optimization, then the init_step_size shall be decreased. But smaller
step size may result in lower convergence speed.

– step_size_offset=0.0: See init_step_size.

– step_size_pow=0.0: See init_step_size.

– init_L_low=0.0: Elements in matrix L are initialized from uniform distribution with lower bound
init_L_low and upper bound init_L_high.

– init_L_high=0.0: Elements in matrix L are initialized from uniform distribution with lower bound
init_L_low and upper bound init_L_high.

– init_R_low=0.0: Elements in matrix R are initialized from uniform distribution with lower bound
init_R_low and upper bound init_R_high.

– init_R_high=0.0: Elements in matrix R are initialized from uniform distribution with lower bound
init_R_low and upper bound init_R_high.

– num_iter_L_per_minibatch=10: How many iterations to perform gradient on a randomly picked
data point to update the corresponding row in L matrix. The default value is enough for most applications.
A bigger value will result in better optimization results at a given iteration, but at the cost of more time.

– init_step_size_R=0.0: Optional. Valid when it is set to nonzero values. For advanced users, the
step size for L and R can be set directly by setting init_step_size_R, step_size_offset_R,
step_size_pow_R, init_step_size_L, step_size_offset_L, step_size_pow_L di-
rectly. Note that init_step_size_R or init_step_size_L must be set to nonzero values
if you want to set them directly instead of using step size determined by base step size. For ex-
ample, if init_step_size_R is set to a nonzero value, the step size at the t-th iter will be
init_step_size_R * (t + step_size_offset_R)^(-step_size_pow_R). The step size for-
mula for L is analogous.

– step_size_offset_R=0.0: Optional. See init_step_size_R.

– step_size_pow_R=0.0: Optional. See init_step_size_R.

– init_step_size_L=0.0: Optional. See init_step_size_R.

– step_size_offset_L=0.0: Optional. See init_step_size_R.

– step_size_pow_L=0.0: Optional. See init_step_size_R.

• Evaluation parameters

– num_eval_minibatch=100: Evaluate objective function per how many minibatches.

– num_eval_samples=$n: How many samples to pick for each worker thread to evaluate objective
function. If the size of data is so large that evaluating objective function takes too much time, you can use
either a smaller num_eval_samples or a larger num_eval_minibatch value.

46 Chapter 10. Non-negative Matrix Factorization (NMF)

PMLS Documentation, Release

• System parameters

– num_worker_threads=4: Number of threads running NMF on each machine.

– table_staleness=0: The staleness for tables.

– maximum_running_time=0.0: The app will try to terminate after running
maximum_running_time hours. Valid if the value is greater than 0.0.

After all parameters have been chosen appropriately, use the command ./script/run_local.py, then NMF
application will run in background. The results will be put as specified in output_dirname. Matrix R will be
stored in B.txt in client 0 (whose ip appears in the first line in hostfile). Matrix L will be stored in a row-partitioned
manner, i.e., client i will have a L.txt.i in output_dirname, and the whole matrix L can be obtained by putting
all L.txt.i together, which will be explained in Data partitioning.

Terminating the NMF app

The NMF app runs in the background, and outputs its progress to log files in user-specified directory. If you need to
terminate the app before it finishes, just run

./script/kill.py <petuum_ps_hostfile>

Data partitioning

If there are multiple machines in host file, each machine will only take a part of input matrix. Concretely, if there are
num_client clients, client i will read the j-th row of X if j mod num_client=i. For example, if the data matrix X
is:

1.0 1.0 1.0 1.0
2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0
4.0 4.0 4.0 4.0
5.0 5.0 5.0 5.0

In the above X, the feature dimension is 4, and the size of data is 5. Suppose there are 3 machines in host file, then
machine 0 will read the 1-st, 4-th row of X, machine 2 will read the 2-nd, 5-th row of X and machine 3 will read the
3-rd row of X.

Each machine only needs to read part of data, so we provide a parameter is_partitoned. In order to use partitioned
data (for example, when each client’s disk is not enough to hold all data), is_partitioned shall be set to 1, and
data needs to be partitioned according to the above partitioning strategy. Note that the name of partitioned data on
each client needs to be data_filename.client_id. We have provided a tool for partitioning data in script/
partition_data.py. Run python script/partition_data.py for its usage.

When using multiple machines, the result matrix L will be stored distributedly corresponding to the part of input data
that client reads. For example, In the above example, machine 0 will store L.txt.0, which is the 1-st, 4-th row of L.
We have provided a tool for merging partitioned L.txt.i together in script/merge_data.py. Run python
script/merge_data.py for its usage.

File IO from HDFS

Put datasets to HDFS

10.6. Terminating the NMF app 47

PMLS Documentation, Release

hadoop fs -mkdir -p /user/bosen/dataset/nmf
hadoop fs -put sample /user/bosen/dataset/nmf

Change the corresponding file paths in script/run_local.py to the right HDFS path. Comment out the local
path.

, "output_path": join(app_dir, "sample/output")
, "output_path": "hdfs://hdfs-domain/user/bosen/dataset/nmf/sample/output"
, "data_file": join(app_dir, "sample/data/sample.txt")
, "data_file": "hdfs://hdfs-domain/user/bosen/dataset/nmf/sample/data/sample.txt"

Launch it over ssh

./script/launch.py

Check the output

hadoop fs -cat /user/bosen/dataset/nmf/sample/output/time.txt

Use Yarn to launch NMF app

./script/launch_on_yarn.py

48 Chapter 10. Non-negative Matrix Factorization (NMF)

CHAPTER 11

Sparse Coding

Given an input matrix X, the Sparse Coding app (implemented on Bösen) learns the dictionary B and the coefficients
matrix S such that S*B is approximately equal to X and the coefficients matrix S is sparse.

If X is N-by-M, then Bwill be K-by-M and Swill be N-by-K, where N is the number of data points, M is the dimension
of the data, K is a user-supplied parameter that controls the size of the dictionary. The objective of sparse coding app is
to minimize the function ||X - S*B||^2 + lambda*||S||_1 subject to the constraint that ||B(i,:)||_2
<= c, where lambda and c are hyperparameters and lambda/c controls the regulariztion strength.

Our Sparse Coding app uses the projected Stochastic Gradient Descent (SGD) algorithm to learn the dictionary B and
the coefficients S.

Performance

On a dataset with 1M data instances; 22K feature dimension; 22M parameters, the Bösen Sparse Coding implementa-
tion converges in approximately 12.5 hours, using 8 machines (16 cores each).

Quick Start

The Sparse Coding app can be found in bosen/app/sparsecoding/. From this point on, all instructions will
assume you are in bosen/app/sparsecoding/. After building PMLS (as explained earlier in this manual), you
can build the Sparse Coding app from bosen/app/sparsecoding by running

make

This will put the Sparse Coding binary in the subdirectory bin/.

Create directory

mkdir sample
mkdir sample/data
mkdir sample/output

49

PMLS Documentation, Release

Create a simulated dataset:

./script/make_synth_data.py 5 100 6 sample/data/sample.txt 1

Change app_dir in script/run_local.py; see example below. You need to provide the full path to the Sparse
Coding directory. This will allow for correct YARN operation (if required).

app_dir = "/home/user/bosen/app/sparsecoding"

then you can test that the app works on the local machine (with 4 worker threads). Now, run:

./script/launch.py

The Sparse Coding app runs in the background (progress is output to stdout). After a few minutes, you should get the
following output files in the subdirectory sample/output/:

B.txt
S.txt.0
loss.txt
time.txt

The file B.txt and the file S.txt.0 are the optimization results of dictionary B and coefficients S, which looks like
this:

0.187123 0.584781 0.716686 0.259561 -0.20495
0.378984 0.0456092 -0.667287 -0.218985 -0.600886
-0.863578 -0.162164 -0.244522 -0.171278 -0.372572
0.188104 0.558853 0.744098 0.252362 0.186899
-0.71181 -0.165808 -0.562194 0.00220546 -0.386997
0.075108 0.496782 0.0201851 0.692971 0.516672

0 -0.232664 0 0.273726 -0.123055 0.216856
0.342858 0 0 0.249487 0 0.121574
0.392845 0 -0.214571 0.486131 -0.486699 0
0.346318 0 0 0.258979 0 0.118132
0 -0.221088 0 0.297128 -0.113161 0.209509
0 0 -0.058158 0.0697259 -0.00593826 0.378869
0 -0.252994 0 0.286514 -0.102685 0.203422
0.156121 0 -0.0727321 0.183034 -0.0765836 0.0734904
0.359529 0 0 0.249562 0 0.120825
...

The file loss.txt contains the statistics of loss function evaluated at iterations specified by user. If there are
num_clientmachines in the experiment, it will has num_client columns, and the i-th column is the loss function
evaluated by the i-th machine. Note that loss function is evaluated by averaging loss function at randomly sampled
data points. The file time.txt also has num_client columns, and contains the time (seconds) taken between
evaluations on each client (Evaluating time is excluded). Don’t be surprised if the first row of time.txt is nearly 0,
that’s because the loss function is evaluated once before any optimization is conducted. Also note that at the end of
time.txt and loss.txt there might be some N/As, that’s invalid and is due to the fact that different clients may
evaluate different times.

You won’t see the exact same numeric values in different runs as there are multiple optimums of the optimization
problem. All you need to confirm is that the optimized S shall be sparse and average objective function value of the
final result shoud be lower than or close to 0.1.

50 Chapter 11. Sparse Coding

PMLS Documentation, Release

Data format

The Sparse Coding app takes a dense matrix X as input, where each row corresponds to a data sample and each column
corresponds to a feature. The file containing X should be a binary or text file, and elements are sorted by rows then
columns:

ele_0_0 ele_0_1 ... ele_0_n-1
ele_1_0 ele_1_1 ... ele_1_n-1
...
ele_n-1_0 ele_n-1_1 ... ele_n-1_n-1

You must specify the format of file (binary or text) by using the parameter file_format, which will be explained
in Running the Sparse Coding application section.

Creating synthetic data

We provide a synthetic data generator for testing the app (requires Python 2.7). To see detailed instructions, run

python script/make_synth_data.py

Running the Sparse Coding application

There are many parameters involved for running Sparse Coding. We provide default values for all of them in
scripts/run_local.py. Some important ones are:

• Input files

– data_filename="sample/data/sample.txt": The data file name. The data file, which rep-
resents input matrix X, can be text file or binary file. The format of file needs to be specified in
data_format. Matrix elements shall be sorted by rows then columns. Matrix elements in text file
needs to be separated by blank characters. Matrix elements in binary file needs to be single-precision
floating-point format which occupies 4 bytes each.

– is_partitioned=0: Indicates whether or not the input file has been partitioned. For distributed set-
ting, each machine needs to access their part of data. If is_partitioned is set to 0, then each machine
needs to get access to the whole data file and Sparse Coding app will do the partitioning automatically.
Otherwise, the whole data file needs to be partitioned by column id (See Data partitioning for details),
and each machine will read file named data_filename.client_id, e.g. if data_filename is “sample.txt”, then
machine 0 will read file “sample.txt.0”.

– data_format="text": Specify the format of input and output data. Can be “text” or “binary”. Note
that the format of time.txt and loss.txt does not depend on this parameter and is always text.

– load_cache=0: Specify if whether or not load previous saved results. If load_cache is set to 1,
the app will load the results in directory cache_dirname, which has to contain the matrix B and the
partial matrix Si. The data format of files in cache_dirname need to be the same as specified in
data_format.

– cache_dirname="N/A": Required if load_cache is set to 1. See load_cache.

• Output files

11.3. Data format 51

PMLS Documentation, Release

– output_dirname: Directory where the results will be put into. The output_dirname is path rel-
ative to bosen/app/sparsecoding. Change output_path directly if you want to use absolute
path.

• Objective function parameters

– m: Dimension of input data. It is also the number of columns (for text format input file) in input data.

– n: Size of input data. It is also the number of rows (for text file) in input data.

– dictionary_size: Size of dictionary.

– c: The l2-norm constraint on dictionary elements.

– lambda: The regularization strength in objective function.

• Optimization parameters

– num_epochs=500: Perform how many epochs during optimization. Each epoch approximately visit all
data points once (not exactly because the data points are visited stochastically).

– minibatch_size=100: Size of minibatch.

– init_step_size=0.01: Base init step size. The step size at the t-th iter is in the form of
init_step_size * (t + step_size_offset)^(-step_size_pow). As we are alternatively opti-
mizing B and S, and there might be multiple threads or multiple clients running, the actual step size for B
and S is rescaled by a factor related to number of threads and dimension of data. For most applications, it
is enough to only tune this parameter, keeping step_size_offset and step_size_pow to 0. If you
get nan or inf during optimization, then you should decrease init_step_size. However, too small a
step size will cause slow convergence speed.

– step_size_offset=0.0: See init_step_size.

– step_size_pow=0.0: See init_step_size.

– init_S_low=0.0: Elements in matrix S are initialized from uniform distribution with lower bound
init_S_low and upper bound init_S_high.

– init_S_high=0.0: Elements in matrix S are initialized from uniform distribution with lower bound
init_S_low and upper bound init_S_high.

– init_B_low=0.0: Elements in matrix B are initialized from uniform distribution with lower bound
init_B_low and upper bound init_B_high.

– init_B_high=0.0: Elements in matrix B are initialized from uniform distribution with lower bound
init_B_low and upper bound init_B_high.

– num_iter_S_per_minibatch=10: How many iterations to perform gradient on a randomly picked
data point to update the corresponding coefficient. The default value is enough for most applications. A
bigger value will result in better optimization results at a given iteration, but at the cost of more time.

– init_step_size_B=0.0: Optional. Valid when it is set to nonzero values. For advanced users, the
step size for B and S can be set directly by setting init_step_size_B, step_size_offset_B,
step_size_pow_B, init_step_size_S, step_size_offset_S, step_size_pow_S di-
rectly. Note that init_step_size_B or init_step_size_S must be set to nonzero values
if you want to set them directly instead of using step size determined by base step size. For ex-
ample, if init_step_size_B is set to a nonzero value, the step size at the t-th iter will be
init_step_size_B * (t + step_size_offset_B)^(-step_size_pow_B). The step size for-
mula for S is analogous.

– step_size_offset_B=0.0: Optional. See init_step_size_B.

– step_size_pow_B=0.0: Optional. See init_step_size_B.

52 Chapter 11. Sparse Coding

PMLS Documentation, Release

– init_step_size_S=0.0: Optional. See init_step_size_B.

– step_size_offset_S=0.0: Optional. See init_step_size_B.

– step_size_pow_S=0.0: Optional. See init_step_size_B.

• Evaluation parameters

– num_eval_minibatch=100: Evaluate objective function per how many minibatches.

– num_eval_samples=$n: How many samples to pick for each worker thread to evaluate objective
function. If the size of data is so large that evaluating objective function takes too much time, you can use
either a smaller num_eval_samples or a larger num_eval_minibatch value.

• System parameters

– num_worker_threads=4: Number of threads running Sparse Coding on each machine.

– table_staleness=0: The staleness for tables.

– maximum_running_time=0.0: The app will try to terminate after running
maximum_running_time hours. Valid if the value is greater than 0.0.

After all parameters have been chosen appropriately, use the command ./script/run_local.py, then Sparse
Coding application will run in background. The results will be put as specified in output_dirname. Matrix B
will be stored in B.txt in client 0 (whose ip appears in the first line in hostfile). Matrix S will be stored in a row-
partitioned manner, i.e., client i will have a S.txt.i in output_dirname, and the whole matrix S can be obtained
by putting all S.txt.i together, which will be explained in Data partitioning.

Terminating the Sparse Coding app

The Sparse Coding app runs in the background, and outputs its progress to log files in user-specified directory. If you
need to terminate the app before it finishes, just run

./script/kill.py <petuum_ps_hostfile>

Data partitioning

If there are multiple machines in host file, each machine will only take a part of input matrix. Concretely, if there are
num_client clients, client i will read the j-th row of X if j mod num_client=i. For example, if the data matrix X
is:

1.0 1.0 1.0 1.0
2.0 2.0 2.0 2.0
3.0 3.0 3.0 3.0
4.0 4.0 4.0 4.0
5.0 5.0 5.0 5.0

In the above X, the feature dimension is 4, and the size of data is 5. Suppose there are 3 machines in host file, then
machine 0 will read the 1-st, 4-th row of X, machine 2 will read the 2-nd, 5-th row of X and machine 3 will read the
3-rd row of X.

Each machine only needs to read part of data, so we provide a parameter is_partitioned. In order to use
partitioned data (for example, when each client’s disk is not enough to hold all data), is_partitioned shall be set
to 1, and data needs to be partitioned according to the above partitioning strategy. Note that the name of partitioned data
on each client needs to be data_filename.client_id. We have provided a tool for partitioning data in scripts/
partition_data.py. Run python scripts/partition_data.py for its usage.

11.6. Terminating the Sparse Coding app 53

PMLS Documentation, Release

When using multiple machines, the result coefficients Swill be stored in a distributed fashion, corresponding to the part
of input data that client reads. For example, In the above example, machine 0 will store S.txt.0, which is the 1-st,
4-th row of X. We have provided a tool for merging partitioned S.txt.i together in scripts/merge_data.py.
Run python scripts/merge_data.py for its usage.

File IO from HDFS

Put datasets to HDFS

hadoop fs -mkdir -p /user/bosen/dataset/sc
hadoop fs -put sample /user/bosen/dataset/sc

Change the corresponding file paths in script/run_local.py to the right HDFS path. Comment out the local
path.

, "output_path": join(app_dir, "sample/output")
, "output_path": "hdfs://hdfs-domain/user/bosen/dataset/sc/sample/output"
, "data_file": join(app_dir, "sample/data/sample.txt")
, "data_file": "hdfs://hdfs-domain/user/bosen/dataset/sc/sample/data/sample.txt"

Launch it over ssh

./script/launch.py

Check the output

hadoop fs -cat /user/bosen/dataset/sc/sample/output/time.txt

Use Yarn to launch Sparse Coding app

./script/launch_on_yarn.py

54 Chapter 11. Sparse Coding

CHAPTER 12

Lasso and Logistic Regression

PMLS provides a linear solver for Lasso and Logistic Regression, using the Strads scheduler system. These apps can
be found in strads/apps/linear-solver_release/. From this point on, all instructions will assume you
are in strads/apps/linear-solver_release/.

After building the Strads system (as explained in the installation page), you may build the the linear solver from
strads/apps/linear-solver_release/ by running

make

Test the app (on your local machine) by running

python lasso.py for lasso

python logistic.py for LR

This will perform Lasso/LR on two separate synthetic data sets in ./input. The estimated model weights can be
found in ./output.

Note: on some configurations, MPI may report that the program “exited improperly”. This is not an issue as
long as it occurs after this line:

@@@@@@@@@@@@@@@@@@@@@@@@@@@@ Congratulation ! Finishing task. output file ./output/
→˓coeff.out

If you see this line, the Lasso/LR program has finished successfully.

Performance

The logistic regression app on Strads can solve a 10M-dimensional sparse problem (30GB) in 20 minutes, using 8
machines (16 cores each). The Lasso app can solve a 100M-dimensional sparse problem (60GB) in 30 minutes, using
8 machines (16 cores each).

55

PMLS Documentation, Release

Input data format

The Lasso/LR apps use the MatrixMarket format:

%%MatrixMarket matrix coordinate real general
num_rows num_cols num_nonzeros
row col value
row col value
row col value

The first line is the MatrixMarket header, and should be copied as-is. The second line gives the number of rows N,
columns M, and non-zero entries in the matrix. This is followed by num_nonzeros lines, each representing a single
matrix entry A(row,col) = value (where row and col are 1-indexed as like Matlab).

Output format

The output file of Lasso/LR also follows the MatrixMarket format, and looks something like this:

%MatrixMarket matrix coordinate real general
1 1000 108
1 6 -0.02388
1 9 -0.08180
1 40 -0.13945
1 63 -0.07788
...

This represents the model weights as a single row vector.

Machine configuration

See Strads configuration files

Program Options

The Lasso/LR is launched using a python script, e.g. lasso.py/logistic.py.

machfile = ['./singlemach.vm']

data setting
→˓

datafilex = ['./input/lasso500by1K.X.mmt']
datafiley = ['./input/lasso500by1K.Y.mmt']
csample = [' 500 ']
column = [' 1000 ']

scheduler setting
→˓

cscheduler = [' 1 ']
scheduler_threads = [' 1 ']

worker thread per machine
→˓

56 Chapter 12. Lasso and Logistic Regression

http://math.nist.gov/MatrixMarket/formats.html

PMLS Documentation, Release

worker_threads = [' 1 ']

degree of parallelism
→˓

set_size = [' 1 ']

prog = ['./bin/cdsolver ']

os.system(" mpirun -machinefile "+machfile[0]+" "+prog[0]+" --machfile "+machfile[0]+
→˓" -threads "+worker_threads[0]+" \
-samples "+csample[0]+" -columns "+column[0]+" -data_xfile "+datafilex[0]+" -data_
→˓yfile "+datafiley[0]+" -schedule_si\
ze "+set_size[0]+" -max_iter 30000 -lambda 0.001 -scheduler "+cscheduler[0]+" -
→˓threads_per_scheduler "+scheduler_threa\
ds[0]+" -weight_sampling=false -check_interference=false -algorithm lasso");

The basic options are:

• datafilex: Path to the design matrix file, which must be present/visible to all machines. We strongly recom-
mend providing the full path name to the data file.

• datafiley: Path to the observation file, which must be present/visible to all machines. We strongly recom-
mend providing the full path name to the data file.

• samples, columns: number of rows and columns of the design matrix

• threads: number of threads to create per worker machine

• scheduler: number of scheduler machines to use

• threads_per_scheduler: number of threads to create per scheduler machine

• max_iter: maximum number of iterations

• algorithm: flag to specify algorithm to run (lasso/logistic)

The following options are available for advanced users, who wish to control the dynamic scheduling algorithm used
in the linear solver:

• weight_sampling, check_interference: flags to disable/enable parameter-weight-based dynamic
scheduling and parameter dependency checking. We strongly recommend to set both of them to the same
value (either false or true).

• schedule_size: the number of parameters to schedule per iteration. Increasing this can improve perfor-
mance, but only up to a point.

12.5. Program Options 57

PMLS Documentation, Release

58 Chapter 12. Lasso and Logistic Regression

CHAPTER 13

Distance Metric Learning

This app implements Distance Metric Learning (DML) as proposed in [1], on Bösen. DML takes data pairs labeled
either as similar or dissimilar to learn a Mahalanobis distance matrix such that similar data pairs will have small
distances while dissimilar pairs are separated apart.

[1] Eric P. Xing, Michael I. Jordan, Stuart Russell, and Andrew Y. Ng. “Distance metric learning with application to
clustering with side-information.” In Advances in neural information processing systems, pp. 505-512. 2002.

Performance

On a dataset with 1M data instances; 22K feature dimension; 22M parameters, the Bösen DML implementation
converges in approximately 15 minutes, using 4 machines (64 cores each).

Going from 1 to 4 machines results in a speedup of roughly 3.75x.

Quick start

The DML app can be found in bosen/app/dml/. From this point on, all instructions will assume you are in
bosen/app/dml/. After building PMLS (as explained earlier in this manual), you can build the DML app from
bosen/app/dml by running

make

This will put the DML binary in the subdirectory bin/.

Next, download the preprocessed MNIST dataset from http://www.cs.cmu.edu/~pengtaox/dataset/mnist_petuum.zip.
Unzip the files and copy them to the datasets folder. You can use the following commands:

cd datasets
wget http://www.cs.cmu.edu/%7Epengtaox/dataset/mnist_petuum.zip
unzip mnist_petuum.zip
cd ..

59

http://www.cs.cmu.edu/~pengtaox/dataset/mnist_petuum.zip

PMLS Documentation, Release

Change app_dir in script/run_local.py; see example below. You need to provide the full path to the DML
directory. This will allow for correct YARN operation (if required).

app_dir = "/home/user/bosen/app/dml"

Using the MNIST dataset, you can test that the app works on the local machine (with 4 worker threads). From the
app/dml/ directory, run:

./script/launch.py

The DML app runs in the background (progress is output to stdout). After the app terminates, you should get one
output file:

datasets/dismat.txt

dismat.txt saves the distance matrix in row major order and each line corresponds to a row.

Running the Distance Metric Learning Application

Parameters of the DML app are specified in script/run_local.py, including:

• <num_worker_threads>: how many worker threads to use in each machine

• <staleness>: staleness value

• <parafile>: configuration file of DML parameters

• <feature_file>: file storing features of data samples

• <simi_pairs_file>: file storing similar pairs

• <diff_pairs_file>: file storing dissimilar pairs

• <model_weight_file>: the path where the learned distance matrix will be stored

The machine file is specified in script/launch.py:

hostfile_name = "machinefiles/localserver"

After configuring these parameters, launch the app by:

./script/launch.py

Format of DML Configuration File

The DML configurations are stored in <parameter_file>. Each line corresponds to a parameter and its format is

<parameter_name>: <parameter_value>

<parameter_name> is the name of the parameter. It is followed by a : (there is no blank between
<parameter_name> and :). <parameter_value> is the value of this parameter. Note that : and
<parameter_value> must be separated by a blank.

The list of parameters and their meanings are:

• src_feat_dim: dimension of the observed feature space

60 Chapter 13. Distance Metric Learning

PMLS Documentation, Release

• dst_feat_dim: dimension of the latent space

• learn_rate: learning rate of Stochastic Gradient Descent (SGD)

• epoch: number of epochs in SGD

• num_total_pts: number of data samples

• num_simi_pairs: number of similar pairs

• num_diff_pairs: number of dissimilar pairs

• mini_batch_size: size of mini-batch

• num_iters_evaluate: every <num_iters_evaluate> iterations, we do an objective function evaluation

• num_smp_evaluate: when evaluating the objective function, we randomly sample <num_smp_evaluate>
points to compute the objective

Note that, the order of the parameters cannot be switched. Here is an example:

src_feat_dim: 780
dst_feat_dim: 600
lambda: 1
thre: 1
learn_rate: 0.001
epoch: 50
num_total_pts: 60000
num_simi_pairs: 1000
num_diff_pairs: 1000
mini_batch_size: 100
num_iters_evaluate: 1000
num_smps_evaluate: 1000

Input data format

The input data is stored in three files

<feat file>
<simi pairs file>
<diff pairs file>

<feat file> stores the features of data samples in sparse format. Each lines corresponds to one data sample. The
format is

<class label> <num of nonzero features> <feature id>:<feature value> <feature
id>:<feature value> ...

<simi pairs file> stores the data pairs labeled as similar. Each line contains a similar data pair separated with
tab. <diff pairs file> stores the data pairs labeled as dissimilar. Each line contains a dissimilar data pair
separated with tab.

Output model format

The app outputs the learned model to one file:

13.5. Input data format 61

PMLS Documentation, Release

<dismat_file>

<dismat_file> saves the distance matrix in row major order and each line corresponds to a row. Elements in each
row are separated with blank.

Terminate DML app

The DML app runs in the background, and outputs its progress to stdout. If you need to terminate the app before it
finishes, for distributed version, run

./script/kill.py <hostfile>

File IO from HDFS

Put datasets to HDFS

hadoop fs -mkdir -p /user/bosen/dataset/dml
hadoop fs -put datasets /user/bosen/dataset/dml

Change the corresponding file paths in script/run_local.py to the right HDFS path. Comment out the local
path.

, "parafile": join(app_dir, "datasets/dml_para.txt")
, "parafile": "hdfs://hdfs-domain/user/bosen/dataset/dml/datasets/dml_para.txt"
, "feature_file": join(app_dir, "datasets/mnist_petuum/minist_reformatted.txt")
, "feature_file": "hdfs://hdfs-domain/user/bosen/dataset/dml/datasets/mnist_petuum/
→˓minist_reformatted.txt"
, "simi_pairs_file": join(app_dir, "datasets/mnist_petuum/mnist_simi_pairs.txt")
, "simi_pairs_file": "hdfs://hdfs-domain/user/bosen/dataset/dml/datasets/mnist_petuum/
→˓mnist_simi_pairs.txt"
, "diff_pairs_file": join(app_dir, "datasets/mnist_petuum/mnist_diff_pairs.txt")
, "diff_pairs_file": "hdfs://hdfs-domain/user/bosen/dataset/dml/datasets/mnist_petuum/
→˓mnist_diff_pairs.txt"
, "model_weight_file": join(app_dir, "datasets/dismat.txt")
, "model_weight_file": "hdfs://hdfs-domain/user/bosen/dataset/dml/datasets/dismat.txt"

Launch it over ssh

./script/launch.py

Check the output

hadoop fs -cat /user/bosen/dataset/dml/datasets/dismat.txt

Use Yarn to launch DML app

./script/launch_on_yarn.py

62 Chapter 13. Distance Metric Learning

CHAPTER 14

K-Means Clustering

K-means is a clustering algorithm, which identifies cluster centers based on Euclidean distances. Our K-Means app
on Bösen uses the Mini-Batch K-means algorithm [1].

Quick Start

The app can be found at bosen/app/kmeans. From this point on, all instructions will assume you are at bosen/
app/kmeans. After building the main PMLS libraries, you can build kmeans:

make -j2

Then

Create run script from template
cp script/launch.py.template script/launch.py

chmod +x script/launch.py
./script/launch.py

The last command runs kmeans using the provided sample dataset dataset/sample.txt and output the found
centers in output/out.centers and the cluster assignments in output/out.assignmentX.txt where X
is the worker ID (each worker outputs cluster assignments in its partition).

Use HDFS

Kmeans supports HDFS read and output. You need to build Bösen with HAS_HDFS = -DHAS_HADOOP in bosen/
defns.mk. See the YARN/HDFS page for detailed instructions.

Rebuild the binary if you rebuilt the library with Hadoop enabled (under bosen/app/kmeans):

63

PMLS Documentation, Release

make clean all

Let’s copy the demo data to HDFS, where /path/to/data/ should be replaced:

hadoop fs -mkdir -p /path/to/data/
hadoop fs -put dataset/sample.txt /path/to/data/

quickly verify
hadoop fs -ls /path/to/data/

Change a few paths in script/launch.py, where <ip>:<port> points to HDFS (You can find them on the
HDFS web UI):

"train_file": "hdfs://<ip>:<port>/path/to/data/sample.txt"
"output_file_prefix": "hdfs://<ip>:<port>/path/to/data/out"

Also uncomment this line in script/launch.py:

cmd += "export CLASSPATH=`hadoop classpath --glob`:$CLASSPATH; "

to add hadoop path. Older hadoop might not have hadoop classpath --glob. You need to make sure the class
path is set appropriately.

Then launch it as before:

./script/launch.py

Check the result
hadoop fs -ls /path/to/data/out*

Use Yarn

We will launch job through Yarn and read/output to HDFS. Make sure you’ve built Yarn by running gradle build
under bosen/src/yarn and have HDFS enabled in bosen/defns.mk like before.

Remove the outputs from previous runs:

hadoop fs -rm /path/to/data/out.*

Create run script from template

cp script/run_local.py.template script/run_local.py

In scripts/run_local.py, set train_file, output_file_prefix as previously described in the Use
HDFS section. Also set the app_dir to the absolute path, e.g., /path/to/bosen/app/kmeans. Then launch
it:

chmod +x script/launch_on_yarn.py

script/launch_on_yarn.py will call script/run_local.py
./script/launch_on_yarn.py

You can monitor the job progress in Yarn’s WebUI. There you can also find the application ID (e.g.,
application_1431548686685_0240). You can then get the stderr/stdout outputs:

64 Chapter 14. K-Means Clustering

PMLS Documentation, Release

yarn logs -applicationId application_1431548686685_0240

There you should see similar output as before. As before, you can check the results by hadoop fs -cat /path/
to/data/out.centers.

Input Format

The input data needs to be in the libsvm format. A data point would look like:

+1 1:0.504134425797 2:-0.259344641268 3:1.74953783689 4:2.62475223767 5:-3.
→˓12607240823 6:8.9244514355 7:5.69376634865 8:8.41921260536 9:0.0805904064359 10:4.
→˓36430063362

where +1 is ignored and feature index starts at 1. We provide a script to generate synthetic dataset:

cd dataset
Generates 100 10-dim points drawn from 10 centers
python data_generate.py 10 10 100 libsvm

2 files are generated. dataset/synthetic.txt contains the datapoints and dataset/centers.txt contains
the centers for these data points.

Setting up machines

Put the desired machine IP addresses in the Parameter Server machine file. See this page for more information:
Configuration Files for PMLS apps.

Common Parameters

In script/launch.py.template' andscript/run_local.py.template‘:

• host_filename = Parameter Server machine file. Contains a list of the ip addresses and port numbers for
machines in the cluster.

• train_file = Name of the training file present under the dataset folder. It is assumed the entire file is present on a
shared file system.

• total_num_of_training_samples = Number of data points that need to be considered.

• num_epochs = Number of mini batch Iterations.

• mini_batch_size = Size of the mini batch.

• num_centers = The number of cluster centers.

• dimensionality = The number of dimensions in each vector.

• num_app_threads = The number of application threads to run minibatch iterations in parallel.

• load_clusters_from_disk = true/talse indicating whether to do initialization of centers from external source. If
set False, a random initialization is performed.

• cluster_centers_input_location = Location to the file containing the cluster centers. This file is read if the above
argument is set to true.

14.4. Input Format 65

PMLS Documentation, Release

• output_dir = The directory location where the cluster centers information is written after optimization. The
assignments for the data points is written in the assignments sub-directory of the same folder.

Center Initialization

As of now, we are only providing support for a random initialization for centers. But you could also provide any
choice of clusters centers as input to the algorithm. This option can be enabled in the script provided for running the
application. The data format for the input centers is same as the one specified for the training dataset.

Output

The centers obtained by running the application can be found under the output/ subdirectory. The indices of the
centers run from 0 to k-1 , where k is the number of cluster centers. The assignment of the nearest cluster center to
the training data points can be found in the assignments subdirectory. The files in this subdirectory contain the line
number of the training data point in the training file and its correspoding cluster center index.

References

[1]: Sculley, D. “Web-scale k-means clustering.” Proceedings of the 19th international conference on World wide web.
ACM, 2010.

66 Chapter 14. K-Means Clustering

CHAPTER 15

Random Forest

A Random Forest is a classification algorithm that uses a large number of decision trees. Our Random Forest app is
implemented on Bösen, using C4.5 to learn the trees.

Quick Start

Random Forest can be found in bosen/app/rand_forest. From this point on, all instructions will assume you
are in bosen/app/rand_forest. After building the main PMLS libraries (as explained earlier in this manual),
you can build the Rand Forest app from bosen/app/rand_forest by running

make -j2

This will put the rand_forest binaries in the subdirectory bin.

We now turn to the run script. A template is provided for you:

cp script/launch.py.template script/launch.py

Make it executable
chmod +x script/launch.py

Launch it through ssh.
./script/launch.py

The last command launches 4 threads on local node (single node) using Iris dataset. You should see something like

I0702 03:30:21.282187 18509 rand_forest.cpp:31] Each thread trained 122/125 trees.
I0702 03:30:21.290820 18509 rand_forest.cpp:31] Each thread trained 123/125 trees.
I0702 03:30:21.308017 18509 rand_forest.cpp:31] Each thread trained 124/125 trees.
SaveTrees to hdfs://cogito.local:8020/user/wdai/dataset/rand_forest/out.part0
I0702 03:30:21.315143 18509 rand_forest.cpp:31] Each thread trained 125/125 trees.
SaveTrees to hdfs://cogito.local:8020/user/wdai/dataset/rand_forest/out.part0
SaveTrees to hdfs://cogito.local:8020/user/wdai/dataset/rand_forest/out.part0
SaveTrees to hdfs://cogito.local:8020/user/wdai/dataset/rand_forest/out.part0

67

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://en.wikipedia.org/wiki/C4.5_algorithm
https://archive.ics.uci.edu/ml/datasets/Iris

PMLS Documentation, Release

I0702 03:30:22.283545 18509 rand_forest_engine.cpp:210] client 0 train error: 0.025
→˓(evaluated on 120 training data)
I0702 03:30:22.283751 18509 rand_forest_engine.cpp:221] client 0 test error: 0.1
→˓(evaluated on 30 test data)
I0702 03:30:22.310386 18509 rand_forest_engine.cpp:316] Test using 500 trees.
I0702 03:30:22.321123 18509 rand_forest_engine.cpp:228] Test error: 0.1 computed on
→˓30 test instances.
I0702 03:30:22.321923 18392 rand_forest_main.cpp:158] Rand Forest finished and shut
→˓down!

The results are saved to output/.

Use HDFS

Random Forest supports HDFS read and output. You need to build Bösen with HAS_HDFS = -DHAS_HADOOP in
bosen/defns.mk. See the YARN/HDFS page for detailed instructions.

Rebuild the binary if you rebuilt the library with Hadoop enabled (under bosen/app/rand_forest):

make clean all

Let’s copy the demo data to HDFS, where /path/to/data/ should be replaced:

hadoop fs -mkdir -p /path/to/data/
hadoop fs -put dataset/iris.* /path/to/data/

quickly verify
hadoop fs -ls /path/to/data/

Change a few paths in script/launch.py, where <ip>:<port> points to HDFS (You can find them on the
HDFS web UI):

"train_file": "hdfs://<ip>:<port>/path/to/data/iris.train"
"test_file": "hdfs://<ip>:<port>/path/to/data/iris.test"
"pred_file": "hdfs://<ip>:<port>/path/to/data/pred"
"output_file": "hdfs://<ip>:<port>/path/to/data/output"

Also uncomment this line in script/launch.py:

cmd += "export CLASSPATH=`hadoop classpath --glob`:$CLASSPATH; "

to add hadoop path. Older hadoop might not have hadoop classpath --glob. You need to make sure the class
path is set appropriately.

Then launch it as before:

./script/launch.py

Check the result
hadoop fs -ls /path/to/data/

68 Chapter 15. Random Forest

PMLS Documentation, Release

Use Yarn

We will launch job through Yarn and read/output to HDFS. Make sure you’ve built Yarn by running gradle build
under bosen/src/yarn and have HDFS enabled in bosen/defns.mk like before.

Remove the outputs from previous runs:

hadoop fs -rm /path/to/data/out*
hadoop fs -rm /path/to/data/pred

Create run script from template

cp script/run_local.py.template script/run_local.py

In script/run_local.py, set train_file, test_file, output_file, pred_file as previously de-
scribed in the Use HDFS section. Also set the app_dir to the absolute path, e.g., /path/to/bosen/app/
rand_forest. Then launch it:

chmod +x script/launch_on_yarn.py

script/launch_on_yarn.py will call script/run_local.py
./script/launch_on_yarn.py

You can monitor the job progress in Yarn’s WebUI. There you can also find the application ID (e.g.,
application_1431548686685_0240). You can then get the stderr/stdout outputs:

yarn logs -applicationId application_1431548686685_0240

There you should see similar output as before. As before, you can check the results by hadoop fs -ls /path/
to/data/.

Input format

The input data needs to be in the libsvm format or binary format.

Setting up machines

The ip addresses and ports of all the machines used should be included in the hostfile. You also need to assign client
id to each machine in the following format.

Client id, IP, Port (do not include this line)
0 192.168.1.1 10000
1 192.168.1.2 10000
2 192.168.1.3 10000
...

See this page for more details.

15.3. Use Yarn 69

PMLS Documentation, Release

Common parameters

All of the parameters required for running the application can be seen and changed in the sample script script/
launch.py.template.

Here are several important parameters that should be paid attention to.

• train_file: Path of training set file.

• test_file: Path of test set file.

• num_trees: Overall number of trees in the forest,

• max_depth: Maximum depth of each tree (ignore it or set to 0 if you want it to grow freely).

• num_data_subsample: Number of samples used to train each tree (ignore it or set to 0 if you want it to use all
the data).

• num_feature_subsample: Number of features used to find best split of each node (ignore it or set to 0 if you
want it to use all the feature).

• host_filename: Path of hostfile.

• num_app_threads: Number of threads used by each client (machine).

• perform_test: Do the test if true.

• save_pred && pred_file: If save_pred is true, prediction on test set will be saved in pred_file.

• save_trees && output_file: If save_trees is true, trained trees will be saved in output_file.

• load_trees && input_file: If load_trees is set as true, training part will be ignored and the app only performs
test on trees loaded from input_file.

Save prediction to file

The app allows users to save prediction on test set into file for future use.

To save prediction, set save_pred as true and set pred_file. If using provided script run_rf.sh or
run_rf_load.sh, setting pred_filename will be enough.

You can find the output file of prediction results under output/rf.dataset.Sa.Tb.Mx.Ty/ (dataset for the
name of dataset, a for staleness, b for number of epoch, x for number of client used and y for number of thread in each
client). Note that if your machines do not have a shared file system, you can find the file only on client 0 as only thread
0 on client 0 will do the test and save results.

Remember to move important output to somewhere safe since the output directory will be rewrite if rerun the app with
parameters above remaining the same.

Save trained trees to file

The app provides the user with methods to do the training and testing separately.

To save trained model, set save_trees as true and set output_file.

Note that each client will generate one output file with postfix .partn where n is the client id. Each file will only
contain trees trained by that client. So if the machines have a shared file system, you can find all output files in the
output path. But if your machines do not have a shared file system, you have to collect them manually from all your
clients and combine them to generate a final output file.

70 Chapter 15. Random Forest

PMLS Documentation, Release

The format of output file is shown as below. Each line is the pre-order deserialization of a trained tree. Every a:b
token indicates a node in the tree. For non-leaf node, a is the fearture used to split this node and b is the split threshold.
For leaf node, a is -1 and b is the label.

Output file format
3:0.934434 -1:0 2:4.703931 -1:1 -1:2
3:1.609452 2:3.019952 -1:0 -1:1 -1:2
2:2.264446 -1:0 3:1.774834 -1:1 -1:2
...

Besides, by setting perform_test to false at the same time, the app will do the training only and save the trained
trees for further test. Otherwise, the app will still do the test and the trained model is also saved to be reused later.

Load trained trees from file

To load trained model from file and do test with it, set load_trees as true and set input_file. If you want to
load your trees after saving them with save_trees parameter, remember to merge all the output files generated by
all the clients into one and let input_file point to that file.

Once load_trees is set to true, the app will then skip the training part. One thread will perform the test, ig-
noring parameters such as max_depth, num_data_subsample, etc. Set save_pred=true to store the test
predictions.

Note that if your machines do not have a shared file system, make sure that input file at least exists on Client 0.

Finish up

To kill unfinished process, use

Kill the app
python script/kill.py <hostfile>

15.9. Load trained trees from file 71

PMLS Documentation, Release

72 Chapter 15. Random Forest

CHAPTER 16

Support Vector Machine

PMLS provides a SVM solver on distributed system. SVM application can be found in strads/apps/
svm_release/. From this point on, all instructions will assume you are in strads/apps/svm_release/.

After building the Strads system (as explained in the installation page), you may build the the SVM solver from
strads/apps/svm_release/ by running

make

Test the app (on your local machine) by running

python svm.py

This will perform SVM on rcv1.binary sample data in ./input. The estimated model weights can be found in
./output.

Performance

Coming soon

Input data format

The SVM use the LIBSVM format:

y col:value col:value col:value col:value col:value
y col:value col:value col:value col:value
y col:value col:value col:value

A single line represents a sample that consists of y response values and non-zero entries with column indexes. col is
1-indexed as like Matlab.

73

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

PMLS Documentation, Release

Output format

The output file of SVM looks something like this:

col value
col value
col value
col value
col value
...

Each row with column id and value represents a non-zero model-parameter.

Machine configuration

See Strads configuration files

Program Options

The SVM is launched using a python script, e.g. svm.py.

machfile = ['./singlemach.vm']

data setting
→˓

input = ['./input/rcv']

degree of parallelism
→˓

set_size = [' 1 ']

prog = ['./bin/svm-dual ']

os.system(" mpirun -machinefile "+machfile[0]+" "+prog[0]+" --machfile "+machfile[0]+
→˓" -input "+inputfile[0]+" -max_iter 200 -C 1.0 "+" -parallels "+dparallel[0]+" ");

The basic options are:

• inputfile: Path to the design matrix file, which must be present/visible to all machines. We strongly recom-
mend providing the full path name to the data file.

• max_iter: maximum number of iterationsThe following options are available for advanced users, who wish
to control the dynamic scheduling algorithm used in the linear solver:

• dparallel: the number of parameters to schedule per iteration. Increasing this can improve performance, but
only up to a point.

• C: is a SVM penalty parameter, which should be larger than 0.

74 Chapter 16. Support Vector Machine

CHAPTER 17

Multi-class Logistic Regression

Multi-class logistic regression, or Multinomial Logistic Regression (MLR) generalizes binary logistic regression to
handle settings with multiple classes. It can be applied directly to multiclass classification problem, or used within
other models (e.g. the last layer of a deep neural network). Our MLR app is implemented on the Bösen system.

Performance

Using 8 machines (16 cores each), the MLR application converges in approximately 20 iterations or 6 minutes, on the
MNIST dataset (8M samples, 784 feature dimensions, taking 19GB of hard disk space as libsvm format).

Preliminaries

MLR uses the ml module in Bösen. If you followed the installation instructions, this should already be built, but if
not, go to bosen/ and run

make ml_lib

Quick Start

PMLS MLR can be found in bosen/app/mlr. From this point on, all instructions will assume you are in bosen/
app/mlr. After building the main PMLS libraries (as explained earlier in this manual), you can build the MLR app
from bosen/app/mlr by running

make -j2

This will put the MLR binaries in the subdirectory bin.

We now turn to the run scripts. A template is provided for you:

75

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m

PMLS Documentation, Release

cp script/launch.py.template script/launch.py

Make it executable
chmod +x script/launch.py

Launch it through ssh.
./script/launch.py

The last command launches 4 threads on local node (single node) using a subset of the Covertype dataset. You should
see something like

37 370 0.257692 0.618548 520 0.180000 50 6.85976
38 380 0.261538 0.61826 520 0.180000 50 7.03964
39 390 0.257692 0.616067 520 0.180000 50 7.22944
40 400 0.253846 0.61287 520 0.180000 50 7.41488
40 400 0.253846 0.61287 520 0.180000 50 7.43618
I0701 00:35:00.550900 9086 mlr_engine.cpp:298] Final eval: 40 400 train-0-1: 0.
→˓253846 train-entropy: 0.61287 num-train-used: 520 test-0-1: 0.180000 num-test-used:
→˓50 time: 7.43618
I0701 00:35:00.551867 9086 mlr_engine.cpp:425] Loss up to 40 (exclusive) is saved to
→˓/home/wdai/petuum-yarn/app/mlr/out.loss in 0.000955387
I0701 00:35:00.552652 9086 mlr_sgd_solver.cpp:160] Saved weight to /home/wdai/petuum-
→˓yarn/app/mlr/out.weight
I0701 00:35:00.553907 9031 mlr_main.cpp:150] MLR finished and shut down!

The numbers will be slightly different as it’s executed indeterministically with multi-threads. The evaluations are
saved to output/out.loss and model weights saved to output/out.weight.

Use HDFS

MLR supports HDFS read and output. You need to build Bösen with HAS_HDFS = -DHAS_HADOOP in bosen/
defns.mk. See the YARN/HDFS page for detailed instructions.

Rebuild the binary if you rebuilt the library with Hadoop enabled (under bosen/app/mlr):

make clean all

Let’s copy the demo data to HDFS, where /path/to/mlr_data/ should be replaced:

hadoop fs -mkdir -p /path/to/mlr_data/
hadoop fs -put datasets/covtype.scale.t* /path/to/mlr_data/

quickly verify
hadoop fs -ls /path/to/mlr_data/

Change a few paths in script/launch.py, where <ip>:<port> points to HDFS (You can find them on the
HDFS web UI):

"train_file": "hdfs://<ip>:<port>/path/to/mlr_data/covtype.scale.train.small"
"trest_file": "hdfs://<ip>:<port>/path/to/mlr_data/covtype.scale.test.small"
"output_file_prefix": "hdfs://<ip>:<port>/path/to/mlr_data/out"

Also uncomment this line in script/launch.py:

cmd += "export CLASSPATH=`hadoop classpath --glob`:$CLASSPATH; "

76 Chapter 17. Multi-class Logistic Regression

https://archive.ics.uci.edu/ml/datasets/Covertype

PMLS Documentation, Release

to add hadoop path. Older hadoop might not have hadoop classpath --glob. You need to make sure the class
path is set appropriately.

Then launch it as before:

./script/launch.py

Check the result
hadoop fs -cat /path/to/mlr_data/out.loss

Use Yarn

We will launch job through Yarn and read/output to HDFS. Make sure you’ve built Yarn by running gradle build
under bosen/src/yarn and have HDFS enabled in bosen/defns.mk like before.

Remove the outputs from previous runs:

hadoop fs -rm /path/to/mlr_data/out.*

Create run script from template

cp script/run_local.py.template script/run_local.py

In scripts/run_local.py, set train_file, test_file, output_file_prefix as previously de-
scribed in the Use HDFS section. Also set the app_dir to the absolute path, e.g., /path/to/bosen/app/mlr.
Then launch it:

chmod +x script/launch_on_yarn.py

script/launch_on_yarn.py will call script/run_local.py
./script/launch_on_yarn.py

You can monitor the job progress in Yarn’s WebUI. There you can also find the application ID (e.g.,
application_1431548686685_0240). You can then get the stderr/stdout outputs:

yarn logs -applicationId application_1431548686685_0240

There you should see similar output as before. As before, you can check the results by hadoop fs -cat /path/
to/mlr_data/out.loss.

Data Format

MLR accepts both libsvm format (good for data with sparse features) and dense binary format (for dense features).
Here we focus on libsvm. The covtype data set (datasets/covtype.scale.train.small) uses libsvm and
looks like:

2 1:0.341596 2:0.637566 3:3.05741 4:1.32943 5:1.22779 6:0.909315 7:-2.65783 8:0.
→˓995448 9:1.89365 10:-0.596055 13:1 47:1
1 1:0.195157 2:0.771602 3:-0.680908 4:2.20452 5:1.22779 6:2.26125 7:-0.379156 8:1.
→˓24836 9:1.05749 10:2.58174 11:1 43:1

where the first column is the class label and the rest are feature_id:feature_value pairs. Each data file is
associated with a meta data. For example, the covtype training data has meta file datasets/covtype.scale.
train.small.meta with the following fields:

17.5. Use Yarn 77

PMLS Documentation, Release

• num_train_total: Number of training data.

• num_train_this_partition: Number of training data in this partition (different from num_train_total if partitioned)

• feature_dim: Number of features.

• num_labels: Number of classes.

• format: Data format: libsvm or bin.

• feature_one_based: 1 if feature id starts at 1 instead of 0.

• label_one_based: 1 if class label starts at 1 instead of 0.

• snappy_compressed: 1 if the file is compressed by Snappy which often leads to 2~4x reduction in size.

Similarly, the covtype test data has meta file datasets/covtype.scale.test.small.meta with the follow-
ing fields:

• num_data: Number of test data

• num_test: Number of data to use in test

• feature_dim: Number of features

• num_labels: Number of classes.

• format: Data format: libsvm or bin.

• feature_one_based: 1 if feature id starts at 1 instead of 0.

• label_one_based: 1 if class label starts at 1 instead of 0.

• snappy_compressed: 1 if the file is compressed by Snappy which often leads to 2~4x reduction in size.

Synthetic Data

While we are on the topic of data, let’s look at the synthetic data generator which was built in previous make. An exam-
ple script is provided for generating sparse synthetic data in scripts/run_gen_data.py. The parameters in the
scripts are explained in the source code’s flag definitions bosen/app/mlr/src/tools/gen_data_sparse.
cpp. In particular, num_train, feature_dim, nnz_per_col will primarily determine the size of your data set.
The generation mechanism is well documented in the header comment in the source code if you are interested in how
multi-class sparse data is generated. The generator will automatically output both the data file and the associated meta
data required by MLR to make it easy for MLR to consume.

You can run it with default parameters:

python script/run_gen_data.py

and find the data at datasets/lr2_dim10_s100_nnz10.x1.libsvm.X.0.

MLR Details

With the data in place, let’s look at the input parameters for MLR in script/launch.py (similar set of parameters
are also in script/run_local.py which is for Yarn.):

• Input Files:

78 Chapter 17. Multi-class Logistic Regression

https://code.google.com/p/snappy/
https://code.google.com/p/snappy/

PMLS Documentation, Release

– train_file="covtype.scale.train.small": Training file. This assumes the existence of
two files: datasets/covtype.scale.train.small and the meta file datasets/covtype.
scale.train.small.meta.

– test_file="covtype.scale.test.small": Test file, analogous to train_file. Optional if
perfor_test=false.

– global_data=true: true to let all client machines read the same file. false to use partitioned data
set where each machine reads from a partition named train_file.X, X being the machine ID (0 to
num_machines - 1).

– perform_test=true: true to perform test. test_file is ignored / not required if
perform_test=false.

• Initialization:

– use_weight_file=false: true to continue from a previous run.

– weight_file=: When use_weight_file=true, weight_file is the file output by previous
run, e.g. output/mlr.covtype.scale.train.small.S0.E40.M1.T4/mlr_out.weight
generated from Quick Start above. weight_File is ignored if use_weight_file=false.

• Execution Parameteres:

– num_epochs=40: Number of passes over the entire data set.

– num_batches_per_epoch=300: Number of mini-batches in each epoch. We clock the parameter
server at the end of each mini-batch.

– learning_rate=0.01: Learning rate for gradient in stochastic gradient descent.

– decay_rate=0.95: We use multiplicative decay, i.e., learning rate at epoch t is
learning_rate*decay_rate^t.

– num_batches_per_eval=300: Evaluate (approximately) the training (and test er-
ror if perform_test=true) every num_batches_per_eval. Usually set to
num_batches_per_epoch to evaluate after each epoch.

– num_train_eval=10000: Number of training examples used to evaluate the intermediate training
error. The final evaluation will use all training example.

– num_test_eval=20: Number of test examples used to evaluate the approximate training error.

– lambda=0: L2 regularization parameter

– init_lr and lr_decay_rate: Learning rate is init_lr*lr_decay_rate^T where T is the
epoch number.

• System Parameters: <<<<<<< HEAD

– hostfile="scripts/localserver": Machine file. See Configuration page for more details.
=======

– hostfile="scripts/localserver": Machine file. See Configuration Files for PMLS Apps

45f3aef19b7152701f51e72148f0f2008fe1e7c2 *
num_app_threads=4: Number of applica-
tion worker threads. * staleness=0: Stal-
eness for the weight table (the main table). *
num_comm_channels_per_client=1: The number
of threads running server and back ground communication.
Usually 1~2 is good enough.

17.8. MLR Details 79

PMLS Documentation, Release

Terminating the MLR app

The MLR app runs in the background, and outputs its progress to standard error. If you need to terminate the app
before it finishes, just run

python scripts/kill_mlr.py <petuum_ps_hostfile>

80 Chapter 17. Multi-class Logistic Regression

CHAPTER 18

Home

Foreword - please read

Parallel ML System (PMLS) is a distributed machine learning framework. It takes care of the difficult system “plumb-
ing work”, allowing you to focus on the ML. PMLS runs efficiently at scale on research clusters and cloud compute
like Amazon EC2 and Google GCE.

The PMLS project is organized into 4 open-source (BSD 3-clause license) Github repositories:

• Bösen (C++ bounded-async key-value store)

• Strads (C++ model-parallel scheduler)

• JBösen (Java bounded-async key-value store)

• PMLS-Caffe (Deep Learning framework)

To install Bösen and Strads, please continue reading this manual. If you have a Java environment and want to use
JBösen, please start here. If you wish to use PMLS-Caffe for Deep Learning, please go here.

PMLS Bösen/Strads v1.1 manual

1. Quickstart

(a) Detailed Installation Instructions

(b) Configuration and Machine Files for PMLS Apps

(c) Running on Hadoop clusters with YARN/HDFS

(d) Frequently Asked Questions

2. ML Applications

(a) Topic Models

i. Latent Dirichlet Allocation (topic modeling)

81

https://github.com/sailing-pmls/bosen
https://github.com/sailing-pmls/strads
https://github.com/sailing-pmls/jbosen
https://github.com/sailing-pmls/pmls-caffe
https://github.com/sailing-pmls/jbosen/wiki
https://github.com/sailing-pmls/pmls-caffe/wiki

PMLS Documentation, Release

ii. MedLDA (supervised topic modeling)

(b) Deep Learning

i. PMLS-Caffe: Distributed Deep Learning Framework on PMLS

ii. General-purpose Deep Neural Network (DNN)

A. DNN for Speech Recognition

(c) Matrix Factorization and Sparse Coding

i. Matrix Factorization (collaborative filtering)

ii. Non-negative Matrix Factorization (NMF)

iii. Sparse Coding

(d) Regression

i. Lasso Regression

(e) Metric Learning

i. Distance Metric Learning

(f) Clustering

i. K-means Clustering

(g) Classification

i. Random Forest

ii. Logistic Regression

iii. SVM (Newly added in v1.1)

iv. Multi-class Logistic Regression

3. Programming API

(a) Bosen Bounded-Async Key-Value Store

(b) Strads Model-Parallel Scheduler (Coming soon)

Introduction to PMLS

PMLS is a distributed machine learning framework. It takes care of the difficult system “plumbing work”, allowing
you to focus on the ML. PMLS runs efficiently at scale on research clusters and cloud compute like Amazon EC2 and
Google GCE.

PMLS provides essential distributed programming tools to tackle the challenges of ML at scale: Big Data (many
data samples), and Big Models (very large parameter and intermediate variable spaces). To address these challenges,
PMLS provides two key platforms:

• Bösen, a bounded-asynchronous key-value store for Data-Parallel ML algorithms

• Strads, a scheduler for Model-Parallel ML algorithms

Unlike general-purpose distributed programming platforms, PMLS is designed specifically for ML algorithms. This
means that PMLS takes advantage of data correlation, staleness, and other statistical properties to maximize the per-
formance for ML algorithms.

ML programs are built around update functions that are iterated repeatedly until convergence, as the following diagram
illustrates:

82 Chapter 18. Home

https://github.com/sailing-pmls/pmls-caffe/wiki
http://pmls.readthedocs.io/en/latest/strads-api.md

PMLS Documentation, Release

The update function takes the data and model parameters as input, and outputs a change to the model parameters.
Data parallelism divides the data among different workers, whereas model parallelism divides the parameters among
different workers. Both styles of parallelism can be found in modern ML algorithms: for example, Sparse Coding via
Stochastic Gradient Descent is a data-parallel algorithm, while Lasso regression via Coordinate Descent is a model-
parallel algorithm. The PMLS Bösen and Strads systems are built to enable data-parallel and model-parallel styles,
respectively.

Key PMLS features

• Runs on compute clusters and cloud compute, supporting up to 100s of machines

• Bösen, a bounded-asynchronous distributed key-value store for data-parallel ML programming

– Bösen uses the Stale Synchronous Parallel consistency model, which allows asynchronous-like perfor-
mance that outperforms MapReduce and bulk synchronous execution, yet does not sacrifice ML algorithm
correctness

• Strads, a dynamic scheduler for model-parallel ML programming

– Strads performs fine-grained scheduling of ML update operations, prioritizing computation on the parts of
the ML program that need it most, while avoiding unsafe parallel operations that could hurt performance

• Programming interfaces for C++ and Java

• YARN and HDFS support, allowing execution on Hadoop clusters

• ML library with 10+ ready-to-run algorithms

– Newer algorithms such as discriminative topic models, deep learning, distance metric learning and sparse
coding

– Classic algorithms such as logistic regression, k-means, and random forest

Support and Bug reports

For support, or to report a bug, please send email to pmls-support@googlegroups.com. Please provide your name and
affiliation; we do not support anonymous inquiries.

18.4. Key PMLS features 83

	PMLS Bösen and Strads Installation
	Foreword and Supported Operating Systems
	Obtaining PMLS
	Compiling PMLS
	Compiling PMLS Bösen with cmake
	Very important: Setting up password-less SSH authentication
	Shared directories
	Network ports to open
	Cloud compute support
	Getting started with applications

	Configuration
	Make sure password-less SSH is set up correctly
	Bösen and Strads
	Bösen configuration files
	I want to run on my local machine
	My cluster does not have shared directories
	Caution - Please Read!
	Strads configuration files
	I want to run on my local machine
	My cluster does not have shared directories

	PMLS YARN+HDFS support
	Preliminaries
	Recompiling Bösen
	Which applications are supported?
	Troubleshooting

	Frequently asked questions
	Latent Dirichlet Allocation (LDA)
	Introduction to LDA
	Performance
	Quick start
	Input data format
	Output format
	Program options

	MedLDA
	Performance
	Installation
	Data Preparation
	Running MedLDA
	Configuration and using multiple machines
	Command line flags

	Deep Neural Network
	Performance
	Quick start
	Making predictions
	Input data format
	Creating synthetic data
	Running the Deep Neural Network Application
	Format of DNN Configuration File
	Terminating the DNN app
	File IO from HDFS
	Use Yarn to launch DNN app

	Deep Neural Network for Speech Recognition
	Installation
	The Whole Pipeline
	Running the Deep Neural Network application
	Input data format
	Format of DNN Configuration File
	Output format
	Terminating the DNN app

	Matrix Factorization
	Performance
	Quick start
	Input data format
	Output format
	Program options

	Non-negative Matrix Factorization (NMF)
	Introduction to NMF
	Quick Start
	Data format
	Creating synthetic data
	Running the NMF application
	Terminating the NMF app
	Data partitioning
	File IO from HDFS
	Use Yarn to launch NMF app

	Sparse Coding
	Performance
	Quick Start
	Data format
	Creating synthetic data
	Running the Sparse Coding application
	Terminating the Sparse Coding app
	Data partitioning
	File IO from HDFS
	Use Yarn to launch Sparse Coding app

	Lasso and Logistic Regression
	Performance
	Input data format
	Output format
	Machine configuration
	Program Options

	Distance Metric Learning
	Performance
	Quick start
	Running the Distance Metric Learning Application
	Format of DML Configuration File
	Input data format
	Output model format
	Terminate DML app
	File IO from HDFS
	Use Yarn to launch DML app

	K-Means Clustering
	Quick Start
	Use HDFS
	Use Yarn
	Input Format
	Setting up machines
	Common Parameters
	Center Initialization
	Output
	References

	Random Forest
	Quick Start
	Use HDFS
	Use Yarn
	Input format
	Setting up machines
	Common parameters
	Save prediction to file
	Save trained trees to file
	Load trained trees from file
	Finish up

	Support Vector Machine
	Performance
	Input data format
	Output format
	Machine configuration
	Program Options

	Multi-class Logistic Regression
	Performance
	Preliminaries
	Quick Start
	Use HDFS
	Use Yarn
	Data Format
	Synthetic Data
	MLR Details
	Terminating the MLR app

	Home
	Foreword - please read
	PMLS Bösen/Strads v1.1 manual
	Introduction to PMLS
	Key PMLS features
	Support and Bug reports

