
PMG Queue Documentation
Release 3.0.0

Christopher Davis

Feb 05, 2018

Contents

1 Contents 3
1.1 Messages . 3
1.2 Producers . 4
1.3 Consumers . 5
1.4 Message Handlers . 10
1.5 Drivers & Internals . 13

2 Installation & Examples 17

3 READ THIS: Glossary & Core Concepts 19

i

ii

PMG Queue Documentation, Release 3.0.0

pmg/queue is a production ready queue framework that powers many internal projects at PMG.

It’s simple and extensible a number of features we’ve found to be the most useful including automatic retries and
multi-queue support.

Contents 1

https://www.pmg.com/

PMG Queue Documentation, Release 3.0.0

2 Contents

CHAPTER 1

Contents

1.1 Messages

Messages are objects that implement the PMG\Queue\Message interface. These objects are meant to be serializable
and contain everything you need for a handler to do its job.

A message to send an alert to a user might look something like this:

1.1.1 Example Message

<?php
use PMG\Queue\Message;

final class SendAlert implements Message
{

private $userId;

public function __construct($userId)
{

$this->userId = $userId;
}

public function getUserId()
{

return $this->userId;
}

}

Because messages are serialized to be put in a persistent backend they shouldn’t include objects that require state. In
the example above the message just contains a user’s identifier rather than the full object. The handler would then
look up the user.

See Consumers and Producers for more information about handlers and messages fit into the system as a whole.

3

PMG Queue Documentation, Release 3.0.0

1.2 Producers

Producers add messages to a driver backed for the consumer to pick up and handle.

interface Producer

Namespace PMG\Queue

send(PMG\Queue\Message $message)
Send a message to a driver backend.

Parameters

• $message – The message to send into the queue

Throws PMG\Queue\Exception\QueueNotFound if the message can’t be routed to an appropri-
ate queue.

The default producer implementation takes a driver and a router as its constructor arguments and uses the router
(explained below) to send its messages into a drivers specific queue.

<?php

use PMG\Queue\DefaultProducer;
use PMG\Queue\Router\SimpleRouter;

$router = new SimpleRouter('queueName');

/** @var PMG\Queue\Driver $driver */
$producer = new DefaultProducer($driver, $router);

1.2.1 Routers

pmg/queue is built with multi-queue support in in mind. To accomplish that on the producer side of things an
implementation of PMG\Queue\Router is used.

interface Router

Namespace PMG\Queue

queueFor(PMG\Queue\Message $message)
Looks a queue name for a given message.

Parameters

• $message – the message to route

Returns A string queue name if found, null otherwise.

Return type string or null

Routing all Message to a Single Queue

Use PMG\Queue\SimpleRouter, which takes a queue name in the constructor and always returns it.

<?php
use PMG\Queue\Router\SimpleRouter;

// all message will go in the "queueName" queue
$router = new SimpleRouter('queueName');

4 Chapter 1. Contents

PMG Queue Documentation, Release 3.0.0

Routing Messages Based on Their Name

Use PMG\Queue\MappingRouter, which takes a map of message name => queue name pairs to its constructor.

<?php

use PMG\Queue\Router\MappingRouter;

$router = new MappingRouter([
// the `SendAlert` message will go into the `Alerts` queue
'SendAlert' => 'Alerts',

]);

Falling Back to a Default Queue

To avoid QueueNotFound exceptions, it’s often a good idea to use PMG\Queue\Router\FallbackRouter.

<?php

use PMG\Queue\DefaultProducer;
use PMG\Queue\SimpleMessage;
use PMG\Queue\Router\FallbackRouter;
use PMG\Queue\Router\MappingRouter;

$router = new FallbackRouter(new MappingRouter([
'SendAlert' => 'Alerts',

]), 'defaultQueue');

$producer = new DefaultProducer($driver, $router);

// goes into the `Alerts` queue
$producer->send(new SimpleMessage('SendAlert'));

// goes into `defaultQueue`
$producer->send(new SimpleMessage('OtherThing'));

1.3 Consumers

Implementations of PMG\Queue\Consumer pull message out of a driver backend and handle (process) them in
some way. The default consumer accomplishes this a message handler.

In all cases $queueName in the consume should correspond to queues into which your producer put messages.

interface Consumer

Namespace PMG\Queue

run($queueName, MessageLifecycle $lifecycle=null)
Consume and handle messages from $queueName indefinitely.

Parameters

• $queueName (string) – The queue from which the messages will be processed.

1.3. Consumers 5

PMG Queue Documentation, Release 3.0.0

• $lifecycle (MessageLifecycle|null) – An optional message lifecycle.

Throws PMG\Queue\Exception\DriverError If some things goes wrong with the un-
derlying driver. Generally this happens if the persistent backend goes down or is unreachable.
Without the driver the consumer can’t do its work.

Returns An exit code

Return type int

once($queueName, MessageLifecycle $lifecycle=null)
Consume and handle a single message from $queueName

Parameters

• $queueName (string) – The queue from which the messages will be processed.

• $lifecycle (MessageLifecycle|null) – An optional message lifecycle.

Throws PMG\Queue\Exception\DriverError If some things goes wrong with the underlying
driver. Generally this happens if the persistent backend goes down or is unreachable. Without
the driver the consumer can’t do its work.

Returns True or false to indicate if the message was handled successfully. null if no message
was handled.

Return type boolean or null

stop(int $code)
Used on a running consumer this will tell it to gracefully stop on its next iteration.

Parameters

• $code (int) – The exit code to return from run

The script to run your consumer might look something like this. Check out the handlers documentation for more
information about what $handler is below.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Driver\MemoryDriver;

$driver = new MemoryDriver();

/** @var PMG\Queue\MessageHandler $handler */
$consumer = new DefaultConsumer($driver, $handler);

exit($consumer->run(isset($argv[1]) ? $argv[1] : 'defaultQueue'));

1.3.1 Retrying Messages

When a message fails – by throwing an exception or returns false from a MessageHandler – the consumer puts it
back in the queue to retry up to 5 times by default. This behavior can be adjusted by providing a RetrySpec as the
third argument to DefaultConsumers constructor. pmg/queue provides a few by default.

Retry specs look at PMG\Queue\Envelope instances, not raw messages. See the internals documentation for more
info about them.

interface RetrySpec

Namespace PMG\Queue

6 Chapter 1. Contents

PMG Queue Documentation, Release 3.0.0

canRetry(PMG\Queue\Envelope $env)
Inspects an envelop to see if it can retry again.

Parameters

• $env – The message envelope to check

Returns true if the message can be retried, false otherwise.

Return type boolean

Limited Retries

Use PMG\\Queue\\Retry\\LimitedSpec.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Retry\LimitedSpec;

// five retries by default. This is what the consumer does automatically
$retry = new LimitedSpec();

// Or limit to a specific number of retries
$retry = new LimitedSpec(2);

// $driver and $handler as above
$consumer = new DefaultConsumer($driver, $handler, $retry);

Never Retry a Message

Sometimes you don’t want to retry a message, for those cases use PMG\\Queue\\Retry\\NeverSpec.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Retry\NeverSpec;

$retry = new NeverSpec();

// $driver and $handler as above
$consumer = new DefaultConsumer($driver, $handler, $retry);

1.3.2 Logging

When something goes wrong DefaultConsumer logs it with a PSR-3 Logger implementation. The default is to
use a NullLogger, but you can provide your own logger as the fourth argument to DefaultConsumer’s constructor.

<?php

use PMG\Queue\DefaultConsumer;

$monolog = new Monolog\Logger('yourApp');

// $driver, $handler, $retry as above
$consumer = new DefaultConsumer($driver, $handler, $retry, $monolog);

1.3. Consumers 7

http://www.php-fig.org/psr/psr-3/

PMG Queue Documentation, Release 3.0.0

1.3.3 Using Message Lifecycles

A MessageLifecycle implementation provides a look into a message as it moves through the consumer. The goal
is to allow an application to hook into a consumer processing to take actions they want. Say an application requires
sending a notification when a message fails and will not be retried.

<?php

use PMG\Queue\Lifecycle\NullLifecycle;
use App\Notifications\Notifier;
use App\Notifications\Notification;

// NullLifecycle provides all the lifecycle methods, so only what's
// required can be implemented here.
class NotifyingLifecycle extends NullLifecycle
{

/** @var Notifier */
private $notifier;

// constructor, etc

public function failed(Message $message, Consumer $consumer)
{

$this->notifier->send(new Notification(sprintf(
'%s message failed',
$message->getName()

)));
}

}

This custom lifecycle can be passed into Consumer::run or Consumer::once.

<?php

/** @var PMG\Queue\Consumer $consumer */
$consumer->run('someQueue', new NotifyingLifecycle(/* ... */));

Lifecycles Don’t Know About Queue Names

This is on purpose. Because lifecycle objects are passed into consumers at the same time as the queue name, it’s up
to the implementation to decide if they care about that detail. If the implementation does care, it can take the queue
name as a constructor argument.

We’ve found at PMG that most times queue name is a detail that simply does not matter to the application itself. It’s
just a way to distribute work.

Provided Message Lifecycles

A NullLifecycle, mentioned above, that does nothing. This makes a convenient base class to extend and imple-
ment what methods your application requires.

Additionally there are a few other provided MessageLifecycle implementations.

DelegatingLifecycle proxies to multiple child lifecycles. Use this to compose other lifecycles together. In
the example below, both NotifyingLifecycle and SomeOtherLifecycle would be called for each stage
through which the message moves.

8 Chapter 1. Contents

PMG Queue Documentation, Release 3.0.0

<?php

use PMG\Queue\Lifecycle\DelegatingLifecycle;

$lifecycle = new DelegatingLifecycle(
new NotifyingLifecycle(/* ... */), // see above
new SomeOtherLifecycle()

);

// Or create from an array
$lifecycle = DelegatingLifecycle::fromArray([

new NotifyingLifecycle(/* ... */),
new SomeOtherLifecycle(),

]);

MappingLifecycle proxies to other lifecycles based on the incoming message name. Use this if spe-
cific MessageLifecycle implementations need to fire for specific messages. In the example below
NotifyingLifecycle would track messageA through its lifecycle and SomeOtherLifecycle would track
messageB. Any other message would fallback to FallbackLifecycle.

<?php

use PMG\Queue\Lifecycle\MappingLifecycle;

// can use an array or `ArrayAccess` implementation here
$lifecycle = new MappingLifecycle([

'messageA' => new NotifyingLifecycle(/* ... */),
'messageB' => new SomeOtherLifecycle(),

], new FallbackLifecycle());

// or omit the fallback and it will default to `NullLifecycle`
// and do nothing.
$lifecycle = new MappingLifecycle([

'messageA' => new NotifyingLifecycle(/* ... */),
'messageB' => new SomeOtherLifecycle(),

]);

These two implementations could be combined as well.

<?php

use PMG\Queue\Lifecycle\DelegatingLifecycle;
use PMG\Queue\Lifecycle\MappingLifecycle;

$lifecycle = new DelegatingLifecycle(
new FooLifecycle(),
new MappingLifecycle([

'messageA' => new DelegatingLifecycle(
new BarLifecycle(),
new BazLifecycle()

),
])

);

1.3. Consumers 9

PMG Queue Documentation, Release 3.0.0

1.3.4 Build Custom Consumers

Extend PMG\\Queue\\AbstractConsumer to make things easy and implement the once method. Here’s an
example that decorates another Consumer with events.

<?php

use PMG\Queue\AbstractConsumer;
use PMG\Queue\Consumer;
use PMG\Queue\Message;
use Symfony\Component\EventDispatcher\Event;
use Symfony\Component\EventDispatcher\EventDispatcherInterface;

final class EventingConsumer extends AbstractConsumer
{

/** @var Consumer */
private $wrapped;

/** @var EventDispatcherInterface $events */

// constructor that takes a consumer and dispatcher to set the props ^

public function once($queueName)
{

$this->events->dispatch('queue:before_once', new Event());
$this->wrapped->once($queueName);
$this->events->disaptch('queue:after_once', new Event());

}
}

1.4 Message Handlers

A message handler is used by DefaultConsumer to do the actual work of processing a message. Handlers imple-
ment PMG\Queue\MessageHandler which accepts a message and a set of options from the the consumer as its
arguments.

Every single message goes through a single handler. It’s up to that handler to figure out how to deal with each message
appropriately.

interface MessageHandler

Namespace PMG\Queue

An object that can handle (process or act upon) a single message.

handle(PMG\Queue\Message $handle, array $options=[])
Parameters

• $handle – The message to handle.

• $options – A set of options from the consumer.

Returns A boolean indicated whether the message was handled successfully.

Return type boolean

10 Chapter 1. Contents

PMG Queue Documentation, Release 3.0.0

1.4.1 Callable Handler

The simplest handler could just be a callable that invokes the provided callback with the message.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Message;
use PMG\Queue\Driver\MemoryDriver;
use PMG\Queue\Handler\CallableHandler;

$handler = new CallableHandler(function (Message $msg) {
switch ($msg->getName()) {

case 'SendAlert':
sendAnAlertSomehow($msg);
break;

case 'OtherMessage':
handleOtherMessageSomehow($msg);
break;

}
});

$consumer = new DefaultConsumer(new MemoryDriver(), $handler);

1.4.2 Multiple Handlers with Mapping Handler

The above switch statement is a lot of boilerplaint, so PMG provies a mapping handler that looks up callables for a
message based on its name. For example, here’s a callable for the send alert message.

<?php

final class SendAlertHandler
{

private $users;
private $mailer;

public function __construct(UserRepository $users, \Swift_Mailer $mailer)
{

$this->users = $users;
$this->mailer = $mailer;

}

public function __invoke(SendAlert $message)
{

$user = $this->users->getByIdentifierOrError($message->getUserId());

$this->mailer->send(
\Swift_Message::newInstance()

->setTo([$user->getEmail()])
->setFrom(['help@example.com'])
->setSubject('Hello')
->setBody('World')

);
}

}

1.4. Message Handlers 11

https://github.com/AgencyPMG/queue-mapping-handler

PMG Queue Documentation, Release 3.0.0

Now pull in the mapping handler with composer require pmg/queue-mapping-handler and we can in-
tegrate the callable above with it.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Handler\MappingHandler;

$handler = MappingHandler::fromArray([
'SendAlert' => new SendAlertHandler(/*...*/),
//'OtherMessage' => new OtherMessageHandler()
// etc

]);

/** @var PMG\Queue\Driver $driver */
$consumer = new DefaultConsumer($driver, $handler);

1.4.3 Using Tactician to Handle Messages

Tactician is a command bus from The PHP League. You can use it to do message handling with the queue.

composer install pmg/queue-tactician

Use the same command bus with each message.

<?php

use League\Tactician\CommandBus;
use PMG\Queue\DefaultConsumer;
use PMG\Queue\Handler\TaticianHandler;

$handler = new TacticianHandler(new CommandBus(/* ... */));

/** @var PMG\Queue\Driver $driver */
$consumer = new DefaultConsumer($driver, $handler);

Alternative, you can create a new command bus to handle each message with CreatingTacticianHandler. This is useful
if you’re using forking child processes to handle messages.

<?php

use League\Tactician\CommandBus;
use PMG\Queue\DefaultConsumer;
use PMG\Queue\Handler\CreatingTaticianHandler;

$handler = new TacticianHandler(function () {
return new CommandBus(/* ... */);

});

/** @var PMG\Queue\Driver $driver */
$consumer = new DefaultConsumer($driver, $handler);

1.4.4 Handling Messages in Separate Processes

To handle messages in a forked process use the PcntlForkingHandler decorator.

12 Chapter 1. Contents

https://tactician.thephpleague.com/

PMG Queue Documentation, Release 3.0.0

<?php

use PMG\Queue\Handler\MappingHandler;
use PMG\Queue\Handler\PcntlForkingHandler;

// create an actual handler
$realHandler = MappingHandler::fromArray([

// ...
]);

// decorate it with the forking handler
$handler = new PcntlForkingHandler($realHandler);

Forking is useful for memory management, but requires some consideration. For instance, database connections might
need to be re-opened in the forked process. In such cases, the best bet is to simply create the resources on demand.
that’s why the TaticianHandler above takes a factory callable by default.

In cases where a process fails to fork, a PMG\Queue\Exception\CouldNotFork exception will be thrown and
the consumer will exit with an unsuccessful status code. Your process manager (supervisord, upstart, systemd, etc)
should be configured to restart the consumer when that happens.

1.5 Drivers & Internals

Behind the scenes consumers and producers use driver and envelopes to do their work.

1.5.1 Drivers

Drivers are the queue backend hidden behind the PMG\Queue\Driver interface. pmg/queue comes with two
drivers built in: memory and pheanstalk (beanstalkd).

Drivers have method for enqueuing and dequeueing messages as well as methods for acknowledging a message is
complete, retrying a message, or marking a message as failed.

1.5.2 Envelopes

Envelopes wrap up messages to allow drivers to add additional metadata. One example of such metadata is a retry
count that the consumers may use to determine if a message should be retried. The pheanstalk driver implements its
own envelop class so it can track the beanstalkd job identifier for the message.

Drivers are free to do whatever they need to do as long as their envelope implements PMG\Queue\Envelope.

1.5.3 Driver Implementations

The core pmg/queue library provides a in memory driver and PMG maintains a driver for beanstalkd that uses the
pheanstalk library.

The Memory Driver & Testing

The memory driver is provided to make prototyping and testing easy. It uses SplQueue instances and only keeps
messages in memory.

1.5. Drivers & Internals 13

https://github.com/AgencyPMG/queue-pheanstalk/tree/master/examples
https://github.com/pda/pheanstalk
http://php.net/manual/en/class.splqueue.php

PMG Queue Documentation, Release 3.0.0

<?php
use PMG\Queue\DefaultConsumer;
use PMG\Queue\Driver\MemoryDriver;

// ...

$driver = new MemoryDriver();

// $handler instanceof PMG\Queue\MessageHandler
$consumer = new DefaultConsumer($driver, $handler);

The memory driver is not very useful outside of testing. For instance, while doing end to end tests, you may want to
switch out your producers library to use the memory driver then verify the expected messages when into it.

<?php
use PMG\Queue\Driver\MemoryDriver;

class SomeTest extends \PHPUnit_Framework_TestCase
{

const TESTQ = 'TestQueue';

/** @var MemoryDriver $driver */
private $driver;

public function testSomething()
{

// imagine some stuff happened before this, now we need to verify that

$envelope = $this->driver->dequeue(self::TESTQ);

$this->assertNotNull($envelope);
$msg = $envelope->unwrap();
$this->assertInstanceOf(SendAlert::class, $msg);
$this->assertEquals(123, $msg->getUserId());

}

}

Pheanstalk Driver

The pheanstalk driver is backed by beanstalkd and is a persistent driver: messages persist across multiple requests or
queue runs.

To use it, use composer to install pmg/queue-pheanstalk and pass an instance of Pheanstalk\Pheanstalk
and a serializer to its constructor.

<?php
use Pheanstalk\Pheanstalk;
use PMG\Queue\Driver\PheanstalkDriver;
use PMG\Queue\Driver\Serializer\NativeSerializer;

$driver = new PheanstalkDriver(
new Pheanstalk('localhost', 11300),
NativeSerializer::fromSigningKey('this is a key used to sign messages')

);

See the pheanstalk driver repository for more information and examples.

14 Chapter 1. Contents

http://kr.github.io/beanstalkd/
https://github.com/AgencyPMG/queue-pheanstalk#quick-example

PMG Queue Documentation, Release 3.0.0

1.5.4 Serializers

Persistent drivers require some translation from envelopes and messages to something the persistent backend can
store. Similarly, whatever is stored in the queue backend needs to be turned back into a message. Serializers make
that happen.

All serializers implements PMG\Queue\Serializer\Serializer and one implementation is provied by de-
fault: NativeSerializer.

NativeSerializer uses PHP’s build in serialize and unserialize functions. Serialized envelopes are
base64 encoded and signed (via a Signer). The signature is a way to authenticate the message: make sure it came
from a known source and hasn’t been tampered with

<?php
use PMG\Queue\Signer\HmacSha256;
use PMG\Queue\Serializer\NativeSerializer;

$serializer = new NativeSerializer(new HmacSha256('super secret key'));
// identical to...
$serializer = NativeSerializer::fromSigningKey('super secret key');

// ...

Should want to use ext-libsodium or the built in libsodium support in PHP 7.2+ there is also a
SodiumCryptoAuth signer.

<?php
use PMG\Queue\Signer\SodiumCryptoAuth;
use PMG\Queue\Serializer\NativeSerializer;

$serializer = new NativeSerializer(new SodiumCryptoAuth(
'aKeyThatIsExactly32characterLong' // or sodium complains

));

// ...

Allowed Classes in PHP 7

NativeSerializer supports PHP 7’s allowed_classes option in unserialize to whitelist classes. Just
pass an array of message class names as the second argument to NativeSerializer’s constructor.

Because drivers have their own envelope classes, the pheanstalk driver (or any other drivers that extend
PMG\Queue\Driver\AbstractPersistanceDriver) provides a static allowedClassesmethod that re-
turns an array of envelope classes to whitelist.

<?php
use PMG\Queue\Serializer\NativeSerializer;
use PMG\Queue\Driver\PheanstalkDriver;

$serializer = new NativeSerializer('YourSecretKeyHere', array_merge([
// your message classes
SendAlert::class,
// ...

], PheanstalkDriver::allowedClasses()));

1.5. Drivers & Internals 15

PMG Queue Documentation, Release 3.0.0

1.5.5 Implementing Your Own Drivers

Persistent drivers are not required to use serializers (or anything else), but if they do
PMG\Queue\Driver\AbstractPersistanceDriver provides helpers for the usage of serializers.

16 Chapter 1. Contents

CHAPTER 2

Installation & Examples

You should require the driver library of your choice with composer rather than pmg/queue directly. If you’re
planning to use beanstalkd as your backend:

composer require pmg/queue-pheanstalk:~1.0

See the core examples directory on the pheanstalk examples for some code samples on gluing everything together.

17

https://getcomposer.org/
https://github.com/AgencyPMG/Queue/tree/master/examples
https://github.com/AgencyPMG/queue-pheanstalk/tree/master/examples

PMG Queue Documentation, Release 3.0.0

18 Chapter 2. Installation & Examples

CHAPTER 3

READ THIS: Glossary & Core Concepts

• A message is a serializable object that goes into the queue for later processing.

• A producer adds messages to the queue backend via a driver and a router.

• A consumer pulls messages out of the queue via driver and processes them via handlers.

• A driver is PHP representation of the queue backend. There is an in memory driver included in this library as
an example (and for testing), and an implementation of a beanstalkd driver available.

• A router is used by a producer to look up the correct queue for a message.

• A message handler is used by the default consumer to actually do the work of processing a message

• An envelope is used internally to wrap up messages with retry information as well as metadata specific to
drivers. Users need not worry about this unless they are implementing their own driver.

19

http://kr.github.io/beanstalkd/
https://github.com/AgencyPMG/queue-pheanstalk

PMG Queue Documentation, Release 3.0.0

20 Chapter 3. READ THIS: Glossary & Core Concepts

Index

C
canRetry() (RetrySpec method), 6
Consumer (interface), 5

H
handle() (MessageHandler method), 10

M
MessageHandler (interface), 10

O
once() (Consumer method), 6

P
Producer (interface), 4

Q
queueFor() (Router method), 4

R
RetrySpec (interface), 6
Router (interface), 4
run() (Consumer method), 5

S
send() (Producer method), 4
stop() (Consumer method), 6

21

	Contents
	Messages
	Producers
	Consumers
	Message Handlers
	Drivers & Internals

	Installation & Examples
	READ THIS: Glossary & Core Concepts

