
plume Documentation
Release 0.1.0

James Ramm

Apr 08, 2018

Contents

1 Plume 3
1.1 Features . 3
1.2 Example . 3
1.3 Design . 4

2 Installation 5
2.1 Stable release . 5
2.2 From sources . 5

3 User Guide 7
3.1 Schemas . 7
3.2 Resources . 9
3.3 Recipes . 11

4 API Reference 13
4.1 Schemas and fields . 13
4.2 Resources and hooks . 15
4.3 Storage . 17
4.4 Connecting to a database . 17

5 Contributing 19
5.1 Types of Contributions . 19
5.2 Get Started! . 20
5.3 Pull Request Guidelines . 21
5.4 Tips . 21

6 Credits 23
6.1 Development Lead . 23
6.2 Contributors . 23

7 History 25
7.1 0.1.0 (2017-09-25) . 25

8 Indices and tables 27

Python Module Index 29

i

ii

plume Documentation, Release 0.1.0

Plume is a library to help you create Falcon API’s backed by MongoDB.

Using plume, you can make schemas which are backed by MongoDB. Plume also provides default Falcon resources
which provide full CRUD functionality for your schemas.

Contents:

Contents 1

plume Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Plume

A library to help you make Falcon web apps backed by MongoDB.

1.1 Features

• Simple interface to MongoDB using marshmallow schemas. This allows a single document definition which
also provides serialization and validation

• Easy filtering/projection of documents per request

• Useful extra fields for Schemas (Choice, Slug, MongoId, Password. . .)

• Standard Resource classes for creating a full CRUD JSON API for REST collections and items.

• Resource classes for generic file uploads. They can be configured to use different storage backends, and validate
different content types

1.2 Example

The following example creates a basic JSON API for a representation of a user.

from datetime import datetime
from plume import create_app, schema, Collection, Item
from plume.connection import connect
from plume.fields import Slug
from marshmallow import fields, Schema

class UserSchema(schema.MongoSchema):
name = fields.Str(required=True)
email = fields.Email(required=True)
created = fields.DateTime(

missing=lambda: datetime.utcnow().isoformat(),
default=lambda: datetime.utcnow().isoformat()

3

https://pypi.python.org/pypi/plume
https://travis-ci.org/JamesRamm/plume
https://landscape.io/github/JamesRamm/plume/master
https://falconframework.org/
http://marshmallow.readthedocs.io/en/latest/index.html

plume Documentation, Release 0.1.0

)
profile = fields.Nested("ProfileSchema")
slug = Slug(populate_from='name')

class ProfileSchema(Schema):
"""Example of nesting a schema.
In mongodb, this will be a nested document
"""
biography = fields.Str()
profile_image = fields.Url(load_from='profileImage', dump_to='profileImage')

def get_app(database_name='myapp')
"""Creates the falcon app.
We pass the database name so we can use a different db for testing
"""
Connect to the database *before* making schema instance.
The ``connect`` function takes the same arguments as pymongo's
``MongoClient``. Here we connect to localhost.
connect(database_name)
user = UserSchema()
resources = (Collection(user, '/users'), Item(user, '/users/{email}'))
return create_app(resources)

Name this file app.py and run it with gunicorn:

gunicorn 'app:get_app()'

1.3 Design

Plume intends to be a light and transparent library. It should compliment and enhance Falcon & MongoDB usage but
not get in the way of custom development. To this end I have a small number of rules:

• No magic. Like falcon itself, it should be easy to follow inputs to outputs. To this end we have a few soft rules
such as:

– Avoid mixins. Mixins introduce implicit dependencies and make it harder to reason about code.

– Don’t mess with metaclasses and double underscore methods without good reason. There is often an
easier, clearer way to achieve the same result.

• No reinvention. We try to use well proven existing solutions before rolling our own. Hence the use of
marshmallow for the ORM/serialization framework.

• No hijacking. Plume is complimentary or an ‘add-on’ to Falcon. It does not replace direct usage of Falcon (what
you might expect from a framework). It solves some common use cases and provides some useful tools. When
you want to do something unsupported and go direct to falcon, it doesnt get in your way.

4 Chapter 1. Plume

CHAPTER 2

Installation

2.1 Stable release

To install plume, run this command in your terminal:

$ pip install plume

This is the preferred method to install plume, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for plume can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/JamesRamm/plume

Or download the tarball:

$ curl -OL https://github.com/JamesRamm/plume/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/JamesRamm/plume
https://github.com/JamesRamm/plume/tarball/master

plume Documentation, Release 0.1.0

6 Chapter 2. Installation

CHAPTER 3

User Guide

Contents:

3.1 Schemas

Plume builds upon marshmallow’s Schema class both for serialization and as a lightweight ‘ODM’ (Object-Document
Mapper) to MongoDB. If you are not familiar with marshmallow, take a look at the documentation.

A plume schema is defined exactly like a marshmallow schema except it inherits from MongoSchema. This provides
a few new methods which will both materialize schema data to the database and get documents from the database.

MongoSchema uses pymongo in order to deliver data to and from the database. To keep this efficient, the pymongo
integration is simmple and streamlined, with pymongo objects being readily accessible from various MongoSchema
methods. As such it is worth being familiar with pymongo if you need to do more complex database logic.

Here is an example of defining a schema:

from plume import schema
from marshmallow import fields

class Person(schema.MongoSchema):

name = fields.Str()
email = fields.Str(required=True)

Like a regular marshmallow schema, you can call dumps and loads to serialize and deserialize data. You can do
this safely with no impact on the database (just like marshamllow). In order to save/get data from the database, Plume
provides new methods and resource classes to work directly with these methods.

Since the schema will be backed by MongoDB, we must connect before creating an instance:

from plume import connection

Without arguments we connect to the default database on localhost

7

http://marshmallow.readthedocs.io/en/latest/index.html
https://api.mongodb.com/python/current/index.html
https://api.mongodb.com/python/current/index.html

plume Documentation, Release 0.1.0

client = connect()
person = Person()

3.1.1 Database constraints

Plume schemas have support for creating constraints on the database. These are defined in the Meta options class:

import simplejson
from plume import schema
from marshmallow import fields

class Person(schema.MongoSchema):

class Meta:
json_module = simplejson
constraints = (('email', {'unique': True}), ('name', {}))

name = fields.Str()
email = fields.Str(required=True)

The constraints are specified as an iterable of 2-tuples, each comprising a ‘key’ and a dictionary of keyword arguments
passed directly to pymongos’ create_index. This requires you to know a little about how create_indexworks
but has the advantage of being able to easily and transparently support all indexing possibilities.

3.1.2 Nested Documents & Relations

You can represent nested documents using marshmallows Nested field. The schema you intend to nest can just
inherit directly from Schema since the parent schema will handle its’ creation:

import simplejson
from plume import schema
from marshmallow import fields, Schema

class Person(schema.MongoSchema):

class Meta:
json_module = simplejson
constraints = (('email', {'unique': True}), ('name', {}))

name = fields.Str()
email = fields.Str(required=True)
profile = fields.Nested('Profile')

class Profile(Schema):

biography = fields.Str()
...

MongoDB does not support foreign keys, nor does pymongo create abstractions for relations such as many to many,
one to one etc. In my view, this is a good thing. Handling relations at the app level allows for a more app-specific
implementation. It allows us to:

• Keep apps completely decoupled at the database level, making it easier to drop certain schemas for different
situations. E.g. if we were to split our app into microservices, switch to using a 3rd party service for some part

8 Chapter 3. User Guide

https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.create_index

plume Documentation, Release 0.1.0

of the app or simply refactor into a different structure

• We generally know more about what is and isn’t acceptable to be missing/broken at an app level. I have often had
to deal with painful migrations due to complex relationships between apps, when the front-end could actually
be easily modified to be agnostic as to whether some data appears or not.

• We can choose which field of the related data to use for our relation. For example, imagine we are representing
a client-supplier relationship. The supplier has a list of clients they deal with. We may decide as a first iteration
that we only wish to simply let the supplier see a list of client emails. We can simply use a List field and
embed the emails right in the supplier schema. We have represented the relationship but we don’t need any
complex joins and lookups to fetch the data. At a later date we may wish to give the client a full profile. We can
simply keep the suppliers list of emails and create a new schema representing a client profile, with an index on
the email field. The front-end can now - either work as normal (just showing a list of emails), or make a second
call to fetch the client profile for each email. You might then decide there is little business value in having the
client profile, so lets try dropping it for a month and get some feedback. All this kind of stuff is much easier to
do when you handle relations at app level rather than database level.

In short, define your relations and rules within your app.

3.1.3 Further Usage

• Plume supplies a small number of extra fields for use with your schemas, such as Choice, Slug and
MongoId.

• If you wish to interact with the pymongo collection instance directly, you can call get_collection on
any class inheriting from MongoSchema.

• By implementing the get_filter method on your schema class, you can provide per request filtering. Cou-
pled with appropriate middleware, this can let you restrict/modify the queryset by user characteristics.

3.2 Resources

Default Collection and Item resources are provided to easily provide endpoints for your schemas. Each resource
has the following features:

• Schema instances are passed into the resource for it to work on

• URI template is encapsulated in the resource

• Restricting the HTTP methods it will handle

• Changing the content types it will accept

• Custom error handlers for schema validation errors

A Collection resource by default provides POST and GET handlers, with GET returning a JSON list of the
requested resource. An Item

Using the Person schema we created in the previous chapter, we can declare our resources:

from plume import Collection, Item

person = Person()

resources = (
Collection(person, '/people'),
Item(person, '/people/{name}')

)

3.2. Resources 9

plume Documentation, Release 0.1.0

With the resources ready, you can use a factory function to create a Falcon app:

from plume import create_app

``application`` is an instance of ``falcon.API``
application = create_app(resources)

All create_app does is instantiate an app and call Falcons’ add_route for each resource in the given list.

3.2.1 File Storage

Plume also provides basic FileCollection and FileItem resource classes, specifically intended for serving and
accepting file data. As with Collection and Item resources, you can configure the uri template, allowed content
types and HTTP methods. You also expected to pass a storage class to the resource. This is essentially the same as in
the Falcon tutorial.

The storage class should provide save, open and list methods. save and open are fairly clear and are as
explained in the falcon tutorial. list should return the URL’s of all available files in the store.

Plume provides a basic file store - plume.FileStore which can be used.

All this makes it easy to add file handling. Expanding the resources example:

import os
from plume import Collection, Item, FileCollection, FileItem, FileStore

Setup the storage
path = os.path.dirname(__file__)
store = FileStore(path)

person = Person()

resources = (
Collection(person, '/people'),
Item(person, '/people/{name}'),
FileCollection(store), # The uri_template argument defaults to ``/files``
FileItem(store)

)

Handling files in schemas

If you come from django, you might be expecting some sort of FileField you can declare on a schema. Plume
does not provide this; This keeps your file storage logic completely separate from the rest of the app, meaning you
could potentially swap out your file store for a GridFS backed store, or switch to a completely different service for
hosting files.

I reccomend that you declare files as Url fields on your schema, with the relative=True parameter set.

The other advantage over tighter coupling is that your file fields could simply be a URL to an entirely different website
(e.g. some stock image provider, or a facebook profile picture).

There are disadvantages which we need to overcome:

• You now need to make 2 requests from a client. One to upload the file and one to update the resource with the file url.

(It is a matter of some debate as to whether this should in fact be considered the best practice for REST API’s since
multipart form data is not truly JSON or XML)

10 Chapter 3. User Guide

https://falcon.readthedocs.io/en/stable/user/tutorial.html#serving-images

plume Documentation, Release 0.1.0

• Plume offers no validation or method by which to link a file upload to a subsequent patch request other than
what the client tells it. E.g. imagine a client successfully uploads the file but the patch to update the resource
with the new URL goes wrong. To overcome this, you could take a look at ‘Resumable Uploads’. We will be
looking at whether Plume can provide any nice api to help with this in the future.

3.3 Recipes

3.3.1 Wrapping serialized results

By default, the output from serialization is simply a JSON object (if serializing a single model) or array (for many
models). e.g.:

[
{

'name': 'John Cleese',
'email': 'john.cleese@fake.com'

},

{
'name': 'Michael Palin',
'email': 'micahel.palin@fake.com'

}
]

However, we may wish to return a ‘wrapped’ response, e.g:

{
'meta': {},
'errors': [],
'data': [

{
'name': 'John Cleese',
'email': 'john.cleese@fake.com'

},

{
'name': 'Michael Palin',
'email': 'micahel.palin@fake.com'

}
]

}

We can use marshmallows’ post_dump decorator to achieve this in our schema:

class Person(MongoSchema):

name = field.Str()
email = field.Str()

@post_dump(pass_many=True)
def wrap_with_envelope(self, data, many):

return {data: data, meta: {...}, errors: [...]}

3.3. Recipes 11

plume Documentation, Release 0.1.0

3.3.2 Filtering output per user

We want to filter/modify the responses of GET requests depending on the connected user.

You can provide a get_filter method on the schema definition which accepts a falcon Request object and
returns a dictionary of keyword arguments compatible with pymongos’ find method:

class MySchema(MongoSchema):

...

def get_filter(self, req):
return {

'filter': {<the desired filter params>},
'projection': (<subset of fields to include in the returned documents>)

}

In order to customise get_filter for each user, the Request object needs to have some useful information
attached. This is where we would make use of Falcons’ middleware in order to attach information about the user. For
example, you could use falcon-auth to add the user to your request. A ‘loader’ function for falcon-auth (see the
falcon-auth readme) might look something like:

We can now access req.context['user'] in our get_filter:

class MySchema(MongoSchema):

Username of the 'owner' of this document
owner = fields.Str()

...

def get_filter(self, req):
user = req.context['user']
if user
return {

'filter': {'owner': user['username']},
}

12 Chapter 3. User Guide

https://github.com/loanzen/falcon-auth

CHAPTER 4

API Reference

4.1 Schemas and fields

Inherit from MongoSchema to start creating schemas which are materialized to MongoDB. A MongoSchema is just
a marshmallow schema with extra functions to give it ORM-like abilities. Connect to MongoDB and provide a base
schema which will save deserialized data to a collection

The connections to mongodb are cached. Inspired by MongoEngine

class plume.schema.MongoSchema(*args, **kwargs)
A Marshmallow schema backed by MongoDB

When data is loaded (deserialized) it is saved to a mongodb document in a collection matching the Schema name
(and containing app - similar to Django table names)

This enables marshmallow to behave as an ORM to MongoDB

MongoSchema does not override any marshmallow methods. Instead it provides new methods which are
recognised by plumes ‘Resource’ classes. Therefore, the database will not be affected if you call dump/dumps

or load/loads

Note: Currently we attempt to create the database constraints when the schema is initialized. Therefore, you
must connect to a database first.

OPTIONS_CLASS
alias of MonogSchemaOpts

count()
Wraps pymongo’s count for this collection.

Returns the count of all documents in the collection

delete(filter_spec)
Delete an existing document

find(*args, **kwargs)
Wraps pymongo’s find for this collection

13

plume Documentation, Release 0.1.0

get(filter_spec, *args, **kwargs)
Wraps pymongo’s find_one for this collection

get_collection()
Return the pymongo collection associated with this schema.

get_filter(req)
Create a MongoDB filter query for this schema based on an incoming request. It is intended that this
method be overridden in child classes to provide per-request filtering on GET requests.

Parameters req (falcon.Request) – processed

Returns

A dictionary containing keyword arguments which can be passed directly to pymongos’
find method. defaults to an empty dictionary (no filters applied)

Return type dict

patch(filter_spec, data, jsonpatch=False)
‘Patch’ (update) an existing document

Parameters

• filter_spec (dict) – The pymongo filter spec to match a single document to be
updated

• data – JSON data to be validated, deserialized and used to update a document. By
default, JSON data is expected to be expressed using MongoDB update operators (https://
docs.mongodb.com/manual/reference/operator/update/) By passing jsonpatch=True
data can be formatted according to the JSONPatch specification (http://jsonpatch.com/).
This support is experimental

• jsonpatch (boolean, False) – Enable experimental support for jsonpatch. In this
case, data should follow the jsonpatch format

post(data)
Creates a new document in the mongodb database.

Uses marshmallows’ loads method to validate and complete incoming data, before saving it to the
database.

Parameters data (str) – JSON data to be validated against the schema

Returns

Tuple of (data, errors) containing the validated & deserialized data dict and any errors.

Return type validated

put(filter_spec, data)
‘Put’ (replace) an existing document

See documentation for MongoSchema.patch

Some useful fields for using marshmallow as a MongoDB ORM are also provided.

class plume.fields.Choice(choices=None, *args, **kwargs)
The input value is validated against a set of choices passed in the field definition. Upon serialization, the full
choice list along with the chosen value is returned (in a dict). Only the chosen value should be passed in
deserialization.

14 Chapter 4. API Reference

https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/reference/operator/update/
http://jsonpatch.com/

plume Documentation, Release 0.1.0

class plume.fields.MongoId(default=<marshmallow.missing>, attribute=None, load_from=None,
dump_to=None, error=None, validate=None, required=False,
allow_none=None, load_only=False, dump_only=False, miss-
ing=<marshmallow.missing>, error_messages=None, **metadata)

Represents a MongoDB object id

Serializes the ObjectID to a string and deserializes to an ObjectID

class plume.fields.Password(password_checker=<class ’passlib.handlers.sha2_crypt.sha256_crypt’>,
*args, **kwargs)

Password field

class plume.fields.Slug(populate_from=None, *args, **kwargs)
Represents a slug. Massages the input value to a lowercase string without spaces.

4.2 Resources and hooks

Resource classes for creating a JSON restful API.

class plume.resource.Collection(schema, uri_template, content_types=’application/json’,
methods=(’get’, ’post’), error_handler=<function ba-
sic_error_handler>)

Generic class for listing/creating data via a schema

Remembering that the @ operator is just syntactic sugar, if we want to apply a decorator we could do it with
minimal effort like this:

resource = Collection(. . .) resource.on_post = falcon.before(my_function)(resource.on_post)

Alternatively, we could create a subclass:

class MyResource(Collection): on_post = falcon.before(my_function)(Collection.on_post.__func__)

Also note that when overriding, you will need to manually add back the content type validation for the _post
method if appropriate.

Parameters

• schema (plume.schema.MongoSchema) – An instance of a MongoSchema child
class on which the Collection instance should operate.

• uri_template (str) – See plume.resource.PlumeResource

• content_types (tuple or list) – See plume.resource.PlumeResource.
Defaults to 'application/json'

• methods (str) – See plume.resource.PlumeResource. Defaults to ('get',
'post')

• error_handler (callable) – See plume.resource.PlumeResource.

class plume.resource.FileCollection(store, uri_template=’/files’, content_types=None, meth-
ods=(’get’, ’post’))

Collection for posting/listing file uploads.

By default, all content types are allowed - usually you would want to limit this, e.g. just allow images by passing
('image/png', 'image/jpeg')

class plume.resource.FileItem(store, uri_template=’/files/{name}’, content_types=None, meth-
ods=(’get’,))

Item resource for interacting with single files

4.2. Resources and hooks 15

plume Documentation, Release 0.1.0

class plume.resource.Item(schema, uri_template, content_types=’application/json’, meth-
ods=(’get’, ’patch’, ’put’, ’delete’), error_handler=<function ba-
sic_error_handler>, use_jsonpatch=False)

Generic class for getting/editing a single data item via a schema

Parameters

• schema (plume.schema.MongoSchema) – An instance of a MongoSchema child
class on which the Item instance should operate.

• uri_template (str) – See plume.resource.PlumeResource

• content_types (tuple or list) – See plume.resource.PlumeResource.
Defaults to 'application/json'

• methods (str) – See plume.resource.PlumeResource. Defaults to ('get',
'put', 'patch', 'delete')

• error_handler (callable) – See plume.resource.PlumeResource.

class plume.resource.PlumeResource(uri_template, content_types=(’application/json’,),
methods=(’get’, ’patch’, ’put’, ’delete’, ’post’),
error_handler=<function basic_error_handler>,
use_jsonpatch=False, schema=None)

Base class used for setting a uri_template, allowed content types and HTTP methods provided.

By encapsulating the URI, we can provide factory methods for routing, allowing us to specify the resource and
its’ uri in one place

HTTP handler methods (on_<method> in falcon) are dynamically assigned in order to allow Resource in-
stances to be created for with different sets of requiremets. (E.g. create a read-only collection by only passing
('get',) when instantiating). This explains why the method handlers below are not named on_<method>
but simple _<method>.

Allowed content types are passed for the same reason. A sub class could check these using the
validated_content_type hooks. This is mostly useful for file uploads (see FileCollection or
FileItem) where you might wish to restrict content types (e.g. images only)

Parameters

• uri_template (str) – A URI template for this resource which will be used when rout-
ing (using the plume.create_app factory function) and for setting Location headers.

• content_types (tuple, set or list) – List of allowed content_types. This
is not used by default. Instead, decorate desired handler methods with @fal-
con.before(validate_content_type). A set is reccomended as the validation performs an
exclusion (not in) operation

• methods (tuple or list) – List of HTTP methods to allow.

• error_handler (callable) – A function which is responsible for handling val-
idation errors returned by a marshmallow schema. Defaults to plume.resource.
basic_error_handler

uri_template
The URI template for this resource

plume.resource.basic_error_handler(error_dict)
Handle an error dictionary returned by a marshmallow schema.

This basic handler either returns a 409 conflict error if the error dictionary indicates a duplicate key, or a 400
bad request error with the error dictionary attached.

Hooks for working with a PlumeResource

16 Chapter 4. API Reference

plume Documentation, Release 0.1.0

plume.hooks.validate_content_type(req, resp, resource, params)
Validate the content type of a PlumeResource

4.3 Storage

plume.storage.unique_id()
Simplistic unique ID generation. The returned ID is just the current timestamp (in ms) converted to hex

4.4 Connecting to a database

Connect to MongoDB and provide a base schema which will save deserialized data to a collection

The connections to mongodb are cached. Inspired by MongoEngine

plume.connection.connect(database=’default’, alias=’default’, **kwargs)
Connect to a database or retrieve an existing connection

plume.connection.disconnect(alias=’default’)
Close the connection with a given alias.

plume.connection.get_database(alias=’default’)
Get an existing database

4.3. Storage 17

plume Documentation, Release 0.1.0

18 Chapter 4. API Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

5.1 Types of Contributions

5.1.1 Report Bugs

Report bugs at https://github.com/JamesRamm/plume/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

5.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

5.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” is open to whoever wants to
implement it.

19

https://github.com/JamesRamm/plume/issues

plume Documentation, Release 0.1.0

5.1.4 Write Documentation

plume could always use more documentation, whether as part of the official plume docs, in docstrings, or even on the
web in blog posts, articles, and such.

5.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/JamesRamm/plume/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.2 Get Started!

Ready to contribute? Here’s how to set up plume for local development.

1. Fork the plume repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/plume.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv plume
$ cd plume/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 plume tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

20 Chapter 5. Contributing

https://github.com/JamesRamm/plume/issues

plume Documentation, Release 0.1.0

5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-ci.org/
JamesRamm/plume/pull_requests and make sure that the tests pass for all supported Python versions.

5.4 Tips

To run a subset of tests:

$ py.test tests.test_plume

5.3. Pull Request Guidelines 21

https://travis-ci.org/JamesRamm/plume/pull_requests
https://travis-ci.org/JamesRamm/plume/pull_requests

plume Documentation, Release 0.1.0

22 Chapter 5. Contributing

CHAPTER 6

Credits

6.1 Development Lead

• James Ramm <jamessramm@gmail.com>

6.2 Contributors

None yet. Why not be the first?

23

mailto:jamessramm@gmail.com

plume Documentation, Release 0.1.0

24 Chapter 6. Credits

CHAPTER 7

History

7.1 0.1.0 (2017-09-25)

• First release on PyPI.

25

plume Documentation, Release 0.1.0

26 Chapter 7. History

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

27

plume Documentation, Release 0.1.0

28 Chapter 8. Indices and tables

Python Module Index

p
plume.connection, 17
plume.fields, 14
plume.hooks, 16
plume.resource, 15
plume.schema, 13
plume.storage, 17

29

plume Documentation, Release 0.1.0

30 Python Module Index

Index

B
basic_error_handler() (in module plume.resource), 16

C
Choice (class in plume.fields), 14
Collection (class in plume.resource), 15
connect() (in module plume.connection), 17
count() (plume.schema.MongoSchema method), 13

D
delete() (plume.schema.MongoSchema method), 13
disconnect() (in module plume.connection), 17

F
FileCollection (class in plume.resource), 15
FileItem (class in plume.resource), 15
find() (plume.schema.MongoSchema method), 13

G
get() (plume.schema.MongoSchema method), 13
get_collection() (plume.schema.MongoSchema method),

14
get_database() (in module plume.connection), 17
get_filter() (plume.schema.MongoSchema method), 14

I
Item (class in plume.resource), 15

M
MongoId (class in plume.fields), 14
MongoSchema (class in plume.schema), 13

O
OPTIONS_CLASS (plume.schema.MongoSchema at-

tribute), 13

P
Password (class in plume.fields), 15

patch() (plume.schema.MongoSchema method), 14
plume.connection (module), 17
plume.fields (module), 14
plume.hooks (module), 16
plume.resource (module), 15
plume.schema (module), 13
plume.storage (module), 17
PlumeResource (class in plume.resource), 16
post() (plume.schema.MongoSchema method), 14
put() (plume.schema.MongoSchema method), 14

S
Slug (class in plume.fields), 15

U
unique_id() (in module plume.storage), 17
uri_template (plume.resource.PlumeResource attribute),

16

V
validate_content_type() (in module plume.hooks), 16

31

	Plume
	Features
	Example
	Design

	Installation
	Stable release
	From sources

	User Guide
	Schemas
	Resources
	Recipes

	API Reference
	Schemas and fields
	Resources and hooks
	Storage
	Connecting to a database

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2017-09-25)

	Indices and tables
	Python Module Index

