

Plugemin

Plugemin

[image: Travis-CI Build Status (for Linux)]
 [https://travis-ci.org/iLoveTux/plugemin][image: Documentation Status]
 [http://plugemin.readthedocs.io/en/latest/?badge=latest]plugemin is a simple utility which uses the amazing jinja2 templating engine
and structured data such as XML, JSON or CSV to plug values into templates
many times. Think of a form letter, but endlessly useful. With this you
can render plain text, HTML, XML, JSON or even Python or C. Anything is
possible as long as it is plain text (UTF is supported) in the end.

plugemin was initially designed to template commands which were to be sent over
SSH to target systems.

Getting Started

These instructions will get you a copy of the project up and running
on your local machine for development and testing purposes.

Prerequisites

You will need the following software installed:

	Python >= 2.7

	jinja2

	lxml

lxml is the only one which needs a compiler to install. If this is an issue,
I would recomend the great
Anaconda Python Distribution [https://www.continuum.io/downloads]
which includes all the prerequisites installed by default.

Installing

You can install the latest stable version with the following command:

$ pip install plugemin

or for the latest development version, you can use the following command:

$ pip install git+https://github.com/ilovetux/plugemin.git

Running the tests

In order to run the tests, you will need to clone the repository and kick off
the tests with a single command. All of that can be done with the following
commands:

$ git clone https://github.com/ilovetux/plugemin
$ cd plugemin
$ python setup.py nosetests

That’s it, the tests should pass, if they don’t please open an
issue [https://github.com/ilovetux/plugemin/issues] and be sure to include:

	The commands you ran to get your results

	The versions of Python, lxml and jinja2 you have installed

	What Operating system

	Any details which would cause your setup to be considered non-standard
such as running an obscure version of Linux

Basic Usage

Plugemin will look for templates in a series of locations and take a
structured data format as input. It will render the template with each
piece of data.

Example

in C:\plugemin\templates\backup-delete.j2:

cp {{src}} {{dst}}
rm {{src}}

in C:\tmp\files.csv:

src,dst
/var/log/*,/tmp/.
/usr/var/log/*,/tmp/.
/var/www/*,/tmp/.

Then you can use the following command:

C:\> plugemin -t backup-delete.j2 -d C:\plugemin\files.csv
cp /var/log/* /tmp/.
rm /var/log/*
cp /usr/var/log/* /tmp/.
rm /usr/var/log/*
cp /var/www/* /tmp/.
rm /var/www/*

Contributing

Please read
CONTRIBUTING.rst [https://github.com/iLoveTux/plugemin/blob/master/contributing.rst]
for details on our code of conduct, and the process for submitting pull
requests to us.

Versioning

We use SemVer [http://semver.org/] for versioning. For the versions
available, see the
tags on this repository [https://github.com/ilovetux/plugemin/tags].

Authors

	iLoveTux [https://github.com/ilovetux]

See also the list of
contributors [https://github.com/iLoveTux/plugemin/blob/master/contributors]
who participated in this project.

License

This project is licensed under the GPL Version 3 or later, please see
the LICENSE [https://github.com/iLoveTux/plugemin/blob/master/LICENSE]
file for details

Acknowledgments

	Hat tip to anyone who’s code was used (Jinja2, lxml and Python)

	Brian Kearney and James Brennan for the inspiration to build this utility

	Anyone listed in the contributors file

	Everyone who helps us by submitting issues and pull requests

	Readme
	Plugemin

	CLI

	plugins
	CsvInput

	JsonInput

	Creating your own plugins

	API

Readme

Plugemin

[image: Travis-CI Build Status (for Linux)]
 [https://travis-ci.org/iLoveTux/plugemin][image: Documentation Status]
 [http://plugemin.readthedocs.io/en/latest/?badge=latest]plugemin is a simple utility which uses the amazing jinja2 templating engine
and structured data such as XML, JSON or CSV to plug values into templates
many times. Think of a form letter, but endlessly useful. With this you
can render plain text, HTML, XML, JSON or even Python or C. Anything is
possible as long as it is plain text (UTF is supported) in the end.

plugemin was initially designed to template commands which were to be sent over
SSH to target systems.

Getting Started

These instructions will get you a copy of the project up and running
on your local machine for development and testing purposes.

Prerequisites

You will need the following software installed:

	Python >= 2.7

	jinja2

	lxml

lxml is the only one which needs a compiler to install. If this is an issue,
I would recomend the great
Anaconda Python Distribution [https://www.continuum.io/downloads]
which includes all the prerequisites installed by default.

Installing

You can install the latest stable version with the following command:

$ pip install plugemin

or for the latest development version, you can use the following command:

$ pip install git+https://github.com/ilovetux/plugemin.git

Running the tests

In order to run the tests, you will need to clone the repository and kick off
the tests with a single command. All of that can be done with the following
commands:

$ git clone https://github.com/ilovetux/plugemin
$ cd plugemin
$ python setup.py nosetests

That’s it, the tests should pass, if they don’t please open an
issue [https://github.com/ilovetux/plugemin/issues] and be sure to include:

	The commands you ran to get your results

	The versions of Python, lxml and jinja2 you have installed

	What Operating system

	Any details which would cause your setup to be considered non-standard
such as running an obscure version of Linux

Basic Usage

Plugemin will look for templates in a series of locations and take a
structured data format as input. It will render the template with each
piece of data.

Example

in C:\plugemin\templates\backup-delete.j2:

cp {{src}} {{dst}}
rm {{src}}

in C:\tmp\files.csv:

src,dst
/var/log/*,/tmp/.
/usr/var/log/*,/tmp/.
/var/www/*,/tmp/.

Then you can use the following command:

C:\> plugemin -t backup-delete.j2 -d C:\plugemin\files.csv
cp /var/log/* /tmp/.
rm /var/log/*
cp /usr/var/log/* /tmp/.
rm /usr/var/log/*
cp /var/www/* /tmp/.
rm /var/www/*

Contributing

Please read
CONTRIBUTING.rst [https://github.com/iLoveTux/plugemin/blob/master/contributing.rst]
for details on our code of conduct, and the process for submitting pull
requests to us.

Versioning

We use SemVer [http://semver.org/] for versioning. For the versions
available, see the
tags on this repository [https://github.com/ilovetux/plugemin/tags].

Authors

	iLoveTux [https://github.com/ilovetux]

See also the list of
contributors [https://github.com/iLoveTux/plugemin/blob/master/contributors]
who participated in this project.

License

This project is licensed under the GPL Version 3 or later, please see
the LICENSE [https://github.com/iLoveTux/plugemin/blob/master/LICENSE]
file for details

Acknowledgments

	Hat tip to anyone who’s code was used (Jinja2, lxml and Python)

	Brian Kearney and James Brennan for the inspiration to build this utility

	Anyone listed in the contributors file

	Everyone who helps us by submitting issues and pull requests

CLI

This document describes the Command Line Interface to plugemin. plugemin can be
used to populate and render templates based on data passed in.

Basically, it takes a template as an argument with an optional argument
for the data (which defaults to stdin). The template will be rendered
for each line of data.

The input format is parsed using plugins. The following plugins are included
by default with plugemin:

	CsvInput: Reads a CSV, assumes that first row is a header

	JsonInput: Reads JSON, assumes that each line is a JSON document

	XmlInput: Reads XML, assumes that each line is an XML document and that
there is just one level of children for the root node

Examples:

$ cat input.csv | plugemin -t template.j2
$ cat input.json | plugemin -t template.j2 -p JsonInput
$ cat input.xml | plugemin -t template.j2 -p XmlInput

$ plugemin -t template.j2 -d input.csv
$ plugemin -t template.j2 -d input.json -p JsonInput
$ plugemin -t template.j2 -d input.xml -p XmlInput

plugins

This document will describe how to use and create plugins for plugemin.

plugemin plugins are used to parse input data. The following are the plugins
which come bundled with plugemin by default:

	CsvInput

	JsonInput

	XmlInput

CsvInput

The CsvInput parses a CSV file assuming the first line is a header.

Below is a simplified version of the CsvInput implementation:

class CsvInput(object):
 def __init__(self, data):
 if os.path.isfile(data):
 with open(data, "r") as fp:
 data = fp.readlines()
 self.parser = csv.DictReader(data)

 def __iter__(self):
 for row in self.parser:
 yield row

JsonInput

The JsonInput parses input where each line is a JSON document.

Below is a simplified version of the JsonInput plugin:

class JsonInput(object):
 def __init__(self, data):
 if os.path.isfile(data):
 with open(data, "r") as fp:
 data = fp.readlines()
 self.data = data

 def __iter__(self):
 for document in self.data:
 yield json.loads(document)

Creating your own plugins

In order to create a plugin for parsing data, you will simply make a class
with an __init__ method takes an argument called data. data is
meant to be an iterator yielding lines for processing. The plugin should then
yield a dict representing relevant values from each line.

We will make a plugin which takes lines of three space delimited values
representing name, age and gender. We will then make two templates one which
outputs a html page describing each person and another which outputs a friendly
letter to each person. This demo is supposed to showcase some of the more useful
features of plugemin and to help you get started using it.

Please consider the following directory structure:

.
├── custom_input
│ ├── custom_input.py
│ └── __init__.py
├── test
│ └── test_custom_input.py
└── setup.py

Please consider the following code from custom_input.py:

class CustomInput(object):
 def __init__(self, data):
 self.data = data

 def __iter__(self):
 name, age, gender = line.split()
 for line in data:
 yield {"name": name, "age": int(age), "gender": gender}

That is all that is required for this plugin. With this, you can now ingest your
custom data type and use the data to fill in the blanks on some templates.

Note: You would probably in real-world use, perform some error handling and
validation. It would probably help to also define a couple of custom exceptions.

Next, we need to make a setup.py which will register our plugin with plugemin
(the important piece is in the entry_points):

import sys
from setuptools import setup

tests_require = ["nose>=1.0"]
if sys.version_info < (3,0):
 tests_require = ["nose>=1.0", "mock"]

setup(
 name="plugemin-CustomPlugin",
 version="0.1.0",
 author="anon",
 author_email="anon@email.com",
 description="A plugemin plugin for parsing my custom data type",
 license="GPLv3",
 keywords="template reports",
 url="http://github.com/anon/plugemin-CustomPlugin",
 packages=['custom_input'],
 install_requires=["plugemin"],
 entry_points={
 "plugemin.InputPlugin": [
 "CustomInput=custom_plugin:CustomInput",
]
 },
 test_suite="nose.collector",
 tests_require=tests_require,
 classifiers=[
 "Development Status :: 4 - Beta",
 "Topic :: Utilities",
 "License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
],
)

In order to make use of our plugin we will have to craft a template, we
will draft two templates (described above).

First consider our sample data:

alice 23 female
bob 32 male

Please consider the html template below, we will call this
profile.html.j2:

<div class="person" id="person-{{name}}">
 <h1>{{name}}</h1>
 <p>A {{gender}} of {{age}} years of age.</p>
</div>

Now, please consider the output of the following command:

$ plugemin -t profile.html.j2 -d data.txt

<div class="person" id="person-alice">
 <h1>alice</h1>
 <p>A female of 23 years of age.</p>
</div>

<div class="person" id="person-bob">
 <h1>bob</h1>
 <p>A male of 32 years of age.</p>
</div>

Let’s try one more example template because it would be a shame if we could
only do one thing with our data.

Please consider hello-letter.j2:

Dear {{name}}:

We appreciate you taking the time to complete our survey.

We have recorded that your name is {{name}}, your age is {{age}} and
your gender is {{gender}}.

If any of this is incorrect, please notify us at our email.

Now consider the following command:

$ plugemin -t hello-letter.j2 -d data.txt

Dear alice:

We appreciate you taking the time to complete our survey.

We have recorded that your name is alice, your age is 23 and
your gender is female.

If any of this is incorrect, please notify us at our email.

Dear bob:

We appreciate you taking the time to complete our survey.

We have recorded that your name is bob, your age is 32 and
your gender is male.

If any of this is incorrect, please notify us at our email.

Now for this to be useful, we would probably pipe the output which might
send off the emails.

Thank you for taking the time to read our documentation, please check back as
we will try to keep this documentation up to date.

API

Index

 nav.xhtml

 Table of Contents

 		Plugemin

 		Readme

 		Plugemin

 		Getting Started

 		Contributing

 		Versioning

 		Authors

 		License

 		Acknowledgments

 		CLI

 		plugins

 		CsvInput

 		JsonInput

 		Creating your own plugins

 		API

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

