

plone.jsonapi.routes

Welcome to plone.jsonapi.routes documentation. This documentation is divided
in different parts. I recommend that you get started with Installation
and then head over to the Quickstart. Please check out the API
documentation for internals about plone.jsonapi.routes.

Table of Contents:

	Installation
	Buildout

	JSONView

	Advanced Rest Client

	Quickstart
	Environment

	Version

	Content Routes

	UID Route

	API
	Concept

	Base URL

	Resources

	Operations

	Search Resource

	User Resource

	Parameters

	Response Format

	The API Module

	Authentication
	Login

	Logout

	Basic Authentication

	Customizing
	Adding a custom route provider

	Adding a custom data adapter

	Adding a custom data manager

	Adding a custom field manager

	Adding a custom catalog tool

	Adding a custom catalog query adapter

	CRUD
	Unified API

	Response Format

	GET

	CREATE

	UPDATE

	DELETE

	CUT

	COPY

	PASTE

	Dexterity Content
	Security

	Example
	Get content by uid

	Get content by path

	Get content by parent_path and id

	Copy/Cut/Paste content

	Search contents

	Delete contents

	Get the portal object

	Get folder contents

	Get the full object

	Useful Links
	Plone

	plone.jsonapi.routes

	plone.jsonapi.core

	Contributors

	License

	Changelog
	0.9.3 - 2017-05-14

	0.9.2 - 2017-05-12

	0.9.1 - 2017-04-20

	0.9.0 - 2017-01-12

	0.8.9 - 2017-01-11

	0.8.8 - 2017-01-10

	0.8.7 - 2017-01-10

	0.8.6 - 2016-04-08

	0.8.5 - 2016-04-08

	0.8.4 - 2016-01-14

	0.8.3 - 2015-09-14

	0.8.2 - 2015-09-09

	0.8.1 - 2015-09-06

	0.8 - 2015-07-20

	0.7 - 2015-07-09

	0.6 - 2015-02-22

	0.5 - 2015-02-20

	0.4 - 2015-01-13

	0.3 - 2014-10-14

	0.2 - 2014-03-05

	0.1 - 2014-01-23

Installation

This package depends on two external libraries, plone.jsonapi.core [https://pypi.python.org/pypi/plone.jsonapi.core] and
plone.api [https://pypi.python.org/pypi/plone.api]. The first one is the core framework which takes care of the
dispatching of requests and route registration. The latter one is a simplified
API to the Plone [http://plone.org] CMS.

Buildout

The simplest way to install plone.jsonapi.routes is to add it to the buildout
configuration:

[buildout]

...

[instance]
...
eggs =
 ...
 plone.jsonapi.routes

Run the buildout and your Plone site will become RESTful [http://en.wikipedia.org/wiki/Representational_state_transfer].

The routes for the standard Plone [http://plone.org] content types get registered on startup.
The following URL should be available after startup:

http://localhost:8080/Plone/@@API/plone/api/1.0

JSONView

Use the JSONView Plugin for your browser to view the generated JSON in a more
comfortable way. You can find the extensions here:

	Firefox: https://addons.mozilla.org/de/firefox/addon/jsonview

	Chrome: https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc?hl=en

Advanced Rest Client

Use this Chrome Plugin to send POST request to the Plone JSON API. You can
find it here:

https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo

Quickstart

This section gives a good introduction about plone.jsonapi.routes [https://pypi.python.org/pypi/plone.jsonapi.routes]. It assumes
you already have Plone [http://plone.org] and plone.jsonapi.routes [https://pypi.python.org/pypi/plone.jsonapi.routes] installed. Since all the
coming examples are executed directly in Google Chrome, it assumes that you have
also installed JSONView [https://chrome.google.com/webstore/detail/jsonview] and the Advanced Rest Client [https://chrome.google.com/webstore/detail/advanced-rest-client] Application (see
Installation for details)

Environment

The Plone site is hosted on http://localhost:8080/Plone. The JSON API is
therefore located at http://localhost:8080/Plone/@@API/plone/api/1.0. Make
sure your Plone site is located on the same URL, so you can directly click on
the links within the exapmles.

Version

The version route prints out the current version of plone.jsonapi.routes.

http://localhost:8080/Plone/@@API/plone/api/1.0/version

{
 url: "http://localhost:8080/Plone/@@API/plone/api/1.0/version",
 date: "2017-05-12",
 version: "0.9.2",
 _runtime: 0.0001528865814208984
}

Note

The runtime indicates the time spent in milliseconds until the
response is prepared.

Content Routes

These Resources are automatically generated for all available content
types in Plone.

Each content route is located at the Base URL, e.g.

	http://localhost:8080/Plone/@@API/plone/api/1.0/folder

	http://localhost:8080/Plone/@@API/plone/api/1.0/image

	http://localhost:8080/Plone/@@API/plone/api/1.0/file

	http://localhost:8080/Plone/@@API/plone/api/1.0/document

	http://localhost:8080/Plone/@@API/plone/api/1.0/collection

	http://localhost:8080/Plone/@@API/plone/api/1.0/<myportaltype>

The name of each of these content routes is transformed to lower case, so it is
also perfectly ok to call these Resources like so:

	http://localhost:8080/Plone/@@API/plone/api/1.0/Folder

	http://localhost:8080/Plone/@@API/plone/api/1.0/Image

	http://localhost:8080/Plone/@@API/plone/api/1.0/File

	http://localhost:8080/Plone/@@API/plone/api/1.0/Document

	http://localhost:8080/Plone/@@API/plone/api/1.0/Collection

	http://localhost:8080/Plone/@@API/plone/api/1.0/<MyPortalType>

Calling a content route like this will return a JSON format similar to this:

{
 count: 14,
 pagesize: 25,
 items: [
 {},
 {},
 {},
 {},
 ...
],
 page: 1,
 _runtime: 0.0038590431213378906,
 next: null,
 pages: 1,
 previous: null
}

The Response Format in plone.jsonapi.routes content URLs is always the
same. The top level keys (data after the first {) are meta informations
about the gathered data.

The items list will contain the list of catalog results for the portal type
requested. This means that each result contains just the metadata available in
the catalog. Therfore, no object is “waked up” to retrieve the data at this stage.
This is because of the APIs two step concept, which postpones expensive
opreations, until the user really wants it.

All items are batched to increase performance of the API. The count number
returns the total number objects found, while the page number returns the
number of pages in the batch, which can be navigated with the next and
previous links.

New in version 0.3: The result is now always batched. This means you get
the items split up into batches onto multiple sites.

Getting the Full Data

To get all data from an object, you can either add the complete=True
parameter, or you can request the data with the object UID.

	http://localhost:8080/Plone/@@API/plone/api/1.0/folder?complete=True

	http://localhost:8080/Plone/@@API/plone/api/1.0/image/<uid>

	http://localhost:8080/Plone/@@API/plone/api/1.0/<uid>

The requested content(s) is now loaded by the API and all fields were gathered.

Note

Please keep in mind that large data sets with the ?complete=True
Parameter might increase the loading time significantly.

Special Case: Files and Images

	http://localhost:8080/Plone/@@API/plone/api/1.0/file

	http://localhost:8080/Plone/@@API/plone/api/1.0/image

New in version 0.2: The object data contains now the base64 encoded file with the size and
mimetype information.

New in version 0.7: You can pass in a filename in the JSON body to set the name of the file
created. If omitted, the id or title will be used.

New in version 0.8: You can pass in a mimetype key to manually set the content type of the
file. If omitted, the content type will be guessed by the filename.
Default: application/octet-stream

New in version 0.8: The response data contains now the filename and the download url.

To create a new file in the portal, you have to HTTP POST to the create route:

http://localhost:8080/Plone/@@API/plone/api/1.0/file/create

The HTTP POST payload can look like this:

{
 "title": "Test.docx",
 "description": "A Word File",
 "filename": "test.docx",
 "parent_path": "/Plone/folder",
 "file":"UEsDBBQABgAIAAA..."
}

The file key in the HTTP POST payload contains the base64 encoded content of
the file/image.

UID Route

To fetch the full data of an object immediately, it is also possible to append
the UID of the object directly on the root URL of the API, e.g.:

	http://localhost:8080/Plone/@@API/plone/api/1.0/553ce5b2c55847a08dea2a7016a0e11a

	http://localhost:8080/Plone/@@API/plone/api/1.0/document/c79c878703194ee78944c36dedd7b26d

Note

The given UID might seem different on your machine.

The response will give the data in the root of the JSON data, e.g.:

{
 "uid": "553ce5b2c55847a08dea2a7016a0e11a",
 "contributors": [],
 "file": "http://localhost:8080/Plone/w7614.pdf/@@download/file/w7614.pdf",
 "_runtime": 0.010680913925170898,
 "exclude_from_nav": false,
 "id": "w7614.pdf",
 "api_url": "http://localhost:8080/Plone/@@API/plone/api/1.0/file/553ce5b2c55847a08dea2a7016a0e11a",
 "title": "w7614.pdf",
 "parent_id": "Plone",
 "subjects": null,
 "author": "admin",
 "parent_url": "http://localhost:8080/Plone/@@API/plone/api/1.0/plonesite/0",
 "description": "",
 "tags": [],
 "portal_type": "File",
 "expires": null,
 "relatedItems": [],
 "parent_uid": "0",
 "effective": null,
 "language": "",
 "rights": "",
 "url": "http://localhost:8080/Plone/w7614.pdf",
 "created": "2017-05-12T12:47:38+02:00",
 "modified": "2017-05-12T12:47:38+02:00",
 "allow_discussion": null,
 "creators": [
 "admin"
]
}

API

This part of the documentation covers all resources (routes) provided by
plone.jsonapi.routes [https://pypi.python.org/pypi/plone.jsonapi.routes]. It also covers all the request parameters that can be
applied to these resources to refine the results.

Concept

The Plone JSON API aims to be as fast as possible. So the concept of the API
is to postpone expensive operations until the user really requests it. To do
so, the API was built with a two step architecture.

An expensive operation is basically given, when the API needs to “wake up”
an object to retrieve all its field values. This means the full object has to be
loaded from the Database (ZODB) into the memory (RAM).

The two step architecture retrieves only the fields of the catalog results
in the first step. Only if the user requests the API URL of a specific object,
the object will be loaded and all the fields of the object will be returned.

Note

Since version 0.3, you can add a complete=yes paramter to bypass
the two step behavior and retrieve the full object data immediately.

Base URL

After installation, the Plone API routes are available below the
plone.jsonapi.core root URL (@@API) with the base /plone/api/1.0.

Example: http://localhost:8080/Plone/@@API/plone/api/1.0/api.json

Note

Please see the documentation of plone.jsonapi.core for the root URL.

There is also an overview of the registered routes, e.g.

http://localhost:8080/Plone/@@API/plone/api/1.0/api.json

Resources

	URL Schema:	<BASE URL>/<RESOURCE>/<OPERATION>/<uid:optional>

A resource is equivalent with the portal type name in Plone.

This means that all portal types are fully supported by the API simply by adding
the portal type to the end of the base url, e.g.:

	http://localhost:8080/Plone/@@API/plone/api/1.0/Folder

	http://localhost:8080/Plone/@@API/plone/api/1.0/Image

	http://localhost:8080/Plone/@@API/plone/api/1.0/File

Note

Lower case portal type names are also supported.

Operations

The API understands the basic CRUD [http://en.wikipedia.org/wiki/CRUD]
operations on the content resources. Only the VIEW operation is accessible
via a HTTP GET request. All other operations have to be sent via a HTTP POST
request.

	OPERATION
	URL
	METHOD

	VIEW
	<BASE URL>/<RESOURCE>/<uid:optional>
	GET

	CREATE
	<BASE URL>/<RESOURCE>/create/<uid:optional>
	POST

	UPDATE
	<BASE URL>/<RESOURCE>/update/<uid:optional>
	POST

	DELETE
	<BASE URL>/<RESOURCE>/delete/<uid:optional>
	POST

New in version 0.9.1.

The API is now fully aware of all registered portal types in Plone.
Each resource is now equivalent to the portal type name.

It is also possible now to get all contents by UID directly from the base url,
e.g.: http://localhost:8080/Plone/@@API/plone/api/1.0/<uid>

Search Resource

The search route omits the portal type and is therefore capable to search for
any content type within the portal.

The search route accepts all available indexes which are defined in the portal
catalog tool, e.g.:

	http://localhost:8080/Plone/@@API/plone/api/1.0/search

Returns all contents, which were indexed by the catalog.

	http://localhost:8080/Plone/@@API/plone/api/1.0/search?id=test

Returns contents which match the given value of the id parameter.

User Resource

The API is capable to find Plone users, e.g.:

	http://localhost:8080/Plone/@@API/plone/api/1.0/users

	http://localhost:8080/Plone/@@API/plone/api/1.0/users/current

	http://localhost:8080/Plone/@@API/plone/api/1.0/users/<username>

{
 "count": 1,
 "pagesize": 25,
 "items": [
 {
 "username": "ramon",
 "visible_ids": false,
 "authenticated": false,
 "api_url": "http://localhost:8080/Plone/@@API/plone/api/1.0/users/ramon",
 "roles": [
 "Member",
 "Authenticated"
],
 "home_page": "",
 "description": "",
 "wysiwyg_editor": "",
 "location": "",
 "error_log_update": 0,
 "language": "",
 "listed": true,
 "groups": [
 "AuthenticatedUsers"
],
 "portal_skin": "",
 "fullname": "Ramon Bartl",
 "login_time": "2000-01-01T00:00:00",
 "email": "rb@ridingbytes.com",
 "ext_editor": false,
 "last_login_time": "2000-01-01T00:00:00"
 }
],
 "page": 1,
 "_runtime": 0.008383989334106445,
 "next": null,
 "pages": 1,
 "previous": null
}

The results come as well as batches of 25 items per default. It is also possible
to get a higher or lower number of users per batch with the ?limit=n request
parameter, e.g.:

http://localhost:8080/Plone/@@API/plone/api/1.0/users?limit=1

Note

This route lists all users for authenticated users only.

The username current is reserved to fech the current logged in user:

http://localhost:8080/Plone/@@API/plone/api/1.0/users/current

Overview

	Resource
	Action
	Description

	users
	<username>,current
	Resource for Plone Users

	auth
	
	Basic Authentication

	login
	
	Login with __ac_name and __ac_password

	logout
	
	Deauthenticate

Parameters

	URL Schema:	<BASE URL>/<RESOURCE>?<KEY>=<VALUE>&<KEY>=<VALUE>

All content resources accept to be filtered by request parameters.

	Key
	Value
	Description

	q
	searchterm
	Search the SearchableText index for the given query string

	path
	/physical/path
	Specifiy a physical path to only return results below it.
See how to Query by path [http://docs.plone.org/develop/plone/searching_and_indexing/query.html#query-by-path] in the Plone docs [http://docs.plone.org/develop/plone/searching_and_indexing/query.html#query-by-path] for details.

	depth
	0..n
	Specify the depth of a path query. Only relevant when using
the path parameter.

	limit
	1..n
	Limit the results to the given limit number.
This will return batched results with x pages and n items per page

	sort_on
	catalog index
	Sort the results by the given index

	sort_order
	asc / desc
	Sort ascending or descending (default: ascending)

	sort_limit
	1..n
	Limit the result set to n items.
The portal catalog will only return n items.

	complete
	yes/y/1/True
	Flag to return the full object results immediately.
Bypasses the two step behavior of the API

	children
	yes/y/1/True
	Flag to return the folder contents of a folder below the children key
Only visible if complete flag is true or if an UID is provided

	workflow
	yes/y/1/True
	Flag to include the workflow data below the workflow key

	filedata
	yes/y/1/True
	Flag to include the base64 encoded file

	recent_created
	today, yesterday
this-week, this-month
this-year
	Specify a recent created date range, to find all items created within
this date range until today.
This uses internally ‘range’: ‘min’ query.

	recent_modified
	today, yesterday
this-week, this-month
this-year
	Specify a recent modified date range, to find all items modified within
this date range until today.
This uses internally ‘range’: ‘min’ query.

	sharing
	yes/y/1/True
	Flag to include the sharing rights. Only visible if complete flag is
true.

Using Plone Indexes

It is also possible to use the Plone catalog indexes directly as request
parameters.

New in version 0.4: Support for DateIndex, KeywordIndex and BooleanIndex.
Support for ‘recent_modified’ and ‘recent_created’ literals.

Note

Custom added indexes can also be used, as long as they accept a
single string value as query.

Query Records

It is also possible to use the ZPublisher query record format.

Example

http://localhost:8080/Plone/@@API/plone/api/1.0/folders?created.query:record:list:date=2015-01-02&created.range:record=min

New in version 0.5: Support for ZPublisher query record format added.

Sharing

It is also possible to check the sharing settings for objects

Example:

http://localhost:8080/Plone/@@API/plone/api/1.0/folders/<uid:required>?sharing=y
http://localhost:8080/Plone/@@API/plone/api/1.0/folders?sharing=y&complete=y

Response:

{
 "sharing": {
 "inherit": false,
 "role_settings": [
 {
 "disabled": false,
 "id": "AuthenticatedUsers",
 "login": null,
 "roles": {
 "Contributor": false,
 "Editor": false,
 "Reader": false,
 "Reviewer": false
 },
 "title": "Logged-in users",
 "type": "group"
 }
]
 }
}

Update inherit role settings:

http://localhost:8080/Plone/@@API/plone/api/1.0/update/<uid:required>

{
 "sharing": {
 "inherit": false,
 "role_settings": [
 {
 "disabled": false,
 "id": "AuthenticatedUsers",
 "login": null,
 "roles": {
 "Contributor": false,
 "Editor": false,
 "Reader": false,
 "Reviewer": false
 },
 "title": "Logged-in users",
 "type": "group"
 }
]
 }
}

Note

You can pass in the same format as you got from the API

New in version 0.8.4: Support sharing permissions of objects

Response Format

The response format is for all resources the same.

{
 count: 1, // number of found items
 pagesize: 25, // items per page
 items: [// List of all item objexts
 {
 id: "front-page", // item data
 ...
 }
],
 page: 1, // current page
 _runtime: 0.00381, // calculation time to generate the data
 next: null, // URL to the next batch
 pages: 1, // number of total pages
 previous: null // URL to the previous batch
}

	count

	The number of found items – can be more than displayed on one site

	pagesize

	Number of items per page

	items

	List of found items – only catalog brain keys unless you add a
complete=yes parameter to the request or request an URL with an UID at
the end.

	page

	The current page of the batched result set

	_runtime

	The time in milliseconds needed to generate the data

	next

	The URL to the next batch

	pages

	The number of pages in the batch

	previous

	The URL to the previous batch

The API Module

	import:	from plone.jsonapi.routes import api

	doc:	Provides core functionality to all other modules

Authentication

Since version 0.8 (see: Changelog) the API provides a simple way to
authenticate a user with Plone.

Login

	URL Schema:	<BASE URL>/login?__ac_name=<username>&__ac_password=<password>

The response will set the __ac cookie for further cookie authenticated requests.

Note

Currently only cookie authentication works. Other PAS plugins might
not work as expected.

Example

http://localhost:8080/Plone/@@API/plone/api/1.0/login?__ac_name=admin&__ac_password=admin

Response

{
 url: "http://localhost:8080/Plone/@@API/plone/api/1.0/users",
 count: 1,
 _runtime: 0.0019960403442382812,
 items: [
 {
 username: "admin",
 authenticated: true,
 last_login_time: "",
 roles: [
 "Manager",
 "Authenticated"
],
 url: "http://localhost:8080/Plone/@@API/plone/api/1.0/users/admin",
 email: null,
 groups: [],
 fullname: null,
 id: "admin",
 login_time: ""
 }
]
}

Logout

	URL Schema:	<BASE URL>/logout

The response will expire the __ac cookie for further requests.

Example

http://localhost:8080/Plone/@@API/plone/api/1.0/logout

Response

{
 url: "http://localhost:8080/Plone/@@API/plone/api/1.0/users",
 _runtime: 0.0009028911590576172,
 success: true
}

Basic Authentication

	URL Schema:	<BASE URL>/auth

If the reqeust is not authenticated, this route will raise an unauthorized
response with status code 401. Browsers should display the Basic Authentication
login.
Example

http://localhost:8080/Plone/@@API/plone/api/1.0/auth

Customizing

This package is built to be extended. You can either use the Zope Component
Architecture and provide an specific Adapter to control what is being returned
by the API or you simply write your own route provider.

This section will show how to build a custom route provider for an example
content type. It will also show how to write and register a custom data adapter
for this content type. It is even possible to customize how the fields of a
specific content type can be accessed or modified.

Adding a custom route provider

Each route provider shipped with this package, provides the basic CRUD
functionality to get, create, delete and update the resource handled.

The same functionality can be used to provide this behavior for custom content
types. All neccessary functions are located in the api module within this
package.

CRUD
from plone.jsonapi.routes.api import get_batched
from plone.jsonapi.routes.api import create_items
from plone.jsonapi.routes.api import update_items
from plone.jsonapi.routes.api import delete_items

route dispatcher
from plone.jsonapi.core.browser.router import add_route

GET
@add_route("/todos", "todos", methods=["GET"])
@add_route("/todos/<string:uid>", "todos", methods=["GET"])
def get(context, request, uid=None):
 """ get all todos
 """
 return get_batched("Todo", uid=uid, endpoint="todo")

New in version 0.3: The standard GET route returns now the results for all resoures batched.
This behavior is provided by the get_batched function.

Note

The prior get_items function, which returns all items in an array,
is still provided, but not recommended due to performance issues.

New in version 0.9.0: You can specify an own query and pass it to the get_batched or
get_items funciton of the api. This gives full control over the executed
query on the catalog. Please see the docs/Readme.rst doctest for more
details.

Note

Other keywords (except uid) are ignored, if the query keyword is
detected.

The upper example registers a function named get with the add_route
decorator. This ensures that this function gets called when the /todos route
is called, e.g. http://localhost:8080/Plone/@@API/todo.

The second argument of the decorator is the endpoint, which is kind of the
registration key for our function. The last argument is the methods we would
like to handle here. In this case we’re only interested in GET requests.

All route providers get always the context and the request as the first two
arguments. The uid keyword argument is passed in, when a UID was appended to
the URL, e.g http://localhost:8080/Plone/@@API/todo/a3f3f9efd0b4df190d16ea63d.

The get_batched function we call inside our function will do all the heavy
lifting for us. We simply need to pass in the portal_type as the first
argument, the UID and the endpoint.

To be able to create, update and delete our Todo content type, it is
neccessary to provide the following functions as well. The behavior is analogue
to the upper example but as there is no need for batching, the functions return
a Python <list> instead of a complete mapping as above.

ACTIONS = "create,update,delete,cut,copy,paste"

http://werkzeug.pocoo.org/docs/0.11/routing/#builtin-converters
http://werkzeug.pocoo.org/docs/0.11/routing/#custom-converters
@route("/<any(" + ACTIONS + "):action>",
 "plone.jsonapi.routes.action", methods=["POST"])
@route("/<any(" + ACTIONS + "):action>/<string(maxlength=32):uid>",
 "plone.jsonapi.routes.action", methods=["POST"])
@route("/<string:resource>/<any(" + ACTIONS + "):action>",
 "plone.jsonapi.routes.action", methods=["POST"])
@route("/<string:resource>/<any(" + ACTIONS + "):action>/<string(maxlength=32):uid>",
 "plone.jsonapi.routes.action", methods=["POST"])
def action(context, request, action=None, resource=None, uid=None):
 """Various HTTP POST actions

 Case 1: <action>
 <Plonesite>/@@API/plone/api/1.0/<action>

 Case 2: <action>/<uid>
 -> The actions (cut, copy, update, delete) will performed on the object identified by <uid>
 -> The actions (create, paste) will use the <uid> as the parent folder
 <Plonesite>/@@API/plone/api/1.0/<action>/<uid>

 Case 3: <resource>/<action>
 -> The "target" object will be located by a location given in the request body (uid, path, parent_path + id)
 -> The actions (cut, copy, update, delete) will performed on the target object
 -> The actions (create) will use the target object as the container
 <Plonesite>/@@API/plone/api/1.0/<resource>/<action>

 Case 4: <resource>/<action>/<uid>
 -> The actions (cut, copy, update, delete) will performed on the object identified by <uid>
 -> The actions (create) will use the <uid> as the parent folder
 <Plonesite>/@@API/plone/api/1.0/<resource>/<action>
 """

 # Fetch and call the action function of the API
 func_name = "{}_items".format(action)
 action_func = getattr(api, func_name, None)
 if action_func is None:
 api.fail(500, "API has no member named '{}'".format(func_name))

 portal_type = api.resource_to_portal_type(resource)
 items = action_func(portal_type=portal_type, uid=uid)

 return {
 "count": len(items),
 "items": items,
 "url": api.url_for("plone.jsonapi.routes.action", action=action),
 }

Adding a custom data adapter

The data returned by the API for each content type is extracted by the IInfo
Adapter. This Adapter simply extracts all field values from the content.

To customize how the data is extracted from the content, you have to register an
adapter for a more specific interface on the content.

This adapter has to implement the IInfo interface.

from plone.jsonapi.routes.interfaces import IInfo

class TodoAdapter(object):
 """ A custom adapter for Todo content types
 """
 interface.implements(IInfo)

 def __init__(self, context):
 self.context = context

 def to_dict(self):
 return {} # whatever data you need

 def __call__(self):
 # just implement it like this, don't ask x_X
 return self.to_dict()

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for my custom content type -->
 <adapter
 for="plone.todo.interfaces.ITodo"
 factory=".adapters.TodoAdapter"
 />

</configure>

Adding a custom data manager

The data sent by the API for each content type is set by the IDataManager
Adapter. This Adapter has a simple interface:

class IDataManager(interface.Interface):
 """ Field Interface
 """

 def get(name):
 """ Get the value of the named field with
 """

 def set(name, value):
 """ Set the value of the named field
 """

 def json_data(name, default=None):
 """ Get a JSON compatible structure from the value
 """

To customize how the data is set to each field of the content, you have to
register an adapter for a more specific interface on the content.
This adapter has to implement the IDataManager interface.

Note

The json_data function is called by the Data Provider Adapter
(IInfo) to get a JSON compatible return Value, e.g.:
DateTime(‘2017/05/14 14:46:18.746800 GMT+2’) -> “2017-05-14T14:46:18+02:00”

Important

Please be aware that you have to implement security for field
level access on your own.

from zope.annotation import IAnnotations
from persistent.dict import PersistentDict
from plone.jsonapi.routes.interfaces import IDataManager

class TodoDataManager(object):
 """ A custom data manager for Todo content types
 """
 interface.implements(IDataManager)

 def __init__(self, context):
 self.context = context

 @property
 def storage(self):
 return IAnnotations(self.context).setdefault('plone.todo', PersistentDict())

 def get(self, name):
 self.storage.get("name")

 def set(self, name, value):
 self.storage["name"] = value

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for my custom content type -->
 <adapter
 for="plone.todo.interfaces.ITodo"
 factory=".adapters.TodoDataManager"
 />

</configure>

Adding a custom field manager

The default data managers (IDataManager) defined in this package know how to
set and get the values from fields. But sometimes it might be useful to be
more granular and know how to set and get a value for a specific field.

Therefore, plone.jsonapi.routes introduces Field Managers (IFieldManager),
which adapt a field.

This Adapter has a simple interface:

class IFieldManager(interface.Interface):
 """A Field Manager is able to set/get the values of a single field.
 """

 def get(instance, **kwargs):
 """Get the value of the field
 """

 def set(instance, value, **kwargs):
 """Set the value of the field
 """

 def json_data(instance, default=None):
 """Get a JSON compatible structure from the value
 """

To customize how the data is set to each field of the content, you have to
register a more specific adapter to a field.

This adapter has to implement then the IFieldManager interface.

Note

The json_data function is called by the Data Manager Adapter
(IDataManager) to get a JSON compatible return Value, e.g.:
DateTime(‘2017/05/14 14:46:18.746800 GMT+2’) -> “2017-05-14T14:46:18+02:00”

Note

The json_data method is defined on context level (IDataManger) as
well as on field level (IFieldManager). This is to handle objects
w/o fields, e.g. Catalog Brains, Portal Object etc. and Objects which
contain fields and want to delegate the JSON representation to the
field.

Important

Please be aware that you have to implement security for field
level access on your own.

class DateTimeFieldManager(ATFieldManager):
 """Adapter to get/set the value of DateTime Fields
 """
 interface.implements(IFieldManager)

 def set(self, instance, value, **kw):
 """Converts the value into a DateTime object before setting.
 """
 try:
 value = DateTime(value)
 except SyntaxError:
 logger.warn("Value '{}' is not a valid DateTime string"
 .format(value))
 return False

 self._set(instance, value, **kw)

 def json_data(self, instance, default=None):
 """Get a JSON compatible value
 """
 value = self.get(instance)
 return api.to_iso_date(value) or default

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for AT DateTime Field -->
 <adapter
 for="Products.Archetypes.interfaces.field.IDateTimeField"
 factory=".fieldmanagers.DateTimeFieldManager"
 />

</configure>

Adding a custom catalog tool

New in version 0.9.1: You can specify an own catalog tool which performs your custom query.

All search is done through a catalog adapter. This adapter has to provide at
least a search method. The others are optional, but recommended.

class ICatalog(interface.Interface):
 """ Plone catalog interface
 """

 def search(query):
 """ search the catalog and return the results
 """

 def get_catalog():
 """ get the used catalog tool
 """

 def get_indexes():
 """ get all indexes managed by this catalog
 """

 def get_index(name):
 """ get an index by name
 """

 def to_index_value(value, index):
 """ Convert the value for a given index
 """

To customize the catalog tool to get full control of the search, you have to
register an catalog adapter for a more specific interface on the portal. This
adapter has to implement the ICatalog interface.

from zope import interface
from plone.jsonapi.routes.interfaces import ICatalog
from plone.jsonapi.routes import api

class Catalog(object):
 """Plone catalog adapter
 """
 interface.implements(ICatalog)

 def __init__(self, context):
 self._catalog = api.get_tool("portal_catalog")

 def search(self, query):
 """search the catalog
 """
 catalog = self.get_catalog()
 return catalog(query)

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for a custom catalog adapter -->
 <adapter
 for=".interfaces.ICustomPortalMarkerInterface"
 factory=".catalog.Catalog"
 />

</configure>

Adding a custom catalog query adapter

New in version 0.9.1: You can specify an own query adapter, which builds a query for the catalog adapter.

All search is done through a catalog adapter. The ICatalogQuery adapter
provides a suitable query usable for the ICatalog adapter. It should at least
provide a make_query method.

class ICatalogQuery(interface.Interface):
 """ Plone catalog query interface
 """

 def make_query(**kw):
 """ create a new query or augment an given query
 """

To customize a custom catalog tool to perform a search, you have to
register an catalog adapter for a more specific interface on the portal.
This adapter has to implement the ICatalog interface.

from zope import interface
from plone.jsonapi.routes.interfaces import ICatalogQuery

class CatalogQuery(object):
 """Catalog query adapter
 """
 interface.implements(ICatalogQuery)

 def __init__(self, catalog):
 self.catalog = catalog

 def make_query(self, **kw):
 """create a query suitable for the catalog
 """
 query = {"sort_on": "created", "sort_order": "descending"}
 query.update(kw)
 return query

Register the adapter in your configure.zcml file for your special interface:

<configure
 xmlns="http://namespaces.zope.org/zope">

 <!-- Adapter for a custom query adapter -->
 <adapter
 for=".interface.ICustomCatalogInterface"
 factory=".catalog.CatalogQuery"
 />

</configure>

CRUD

Each content route provider shipped with this package, provides the basic CRUD
Operations functionality to get, create, delete and update the
resource handled.

New in version 0.8.1: Added route providers to cut, copy and paste contents

Unified API

	URL Schema:	<BASE URL>/<OPERATION>/<uid:optional>

There is a convenient and unified way to fetch the content without knowing the
resource. This unified resource is directly located at the Base URL.

Response Format

The response format of the unified get API differs from the default
Response Format and omits the items list. The content information is
directly provided in the root of the returned JSON object.
Therefore it is only suitable to return a single object.

{
 _runtime: 0.00381,
 uid: "7455c9b14e3c48c9b0be19ca6a142d50",
 tags: [],
 portal_type: "Document",
 id: "front-page",
 description: "Welcome to Plone",
 api_url: "http://localhost:8080/Plone/@@API/plone/api/1.0/documents/7455c9b14e3c48c9b0be19ca6a142d50",
 effective: "1000-01-01T00:00:00+02:00",
 title: "Welcome to Plone",
 url: "http://localhost:8080/Plone/front-page",
 created: "2014-10-14T20:22:19+02:00",
 modified: "2014-10-14T20:22:19+02:00",
 type: "Document"
}

GET

The get route will return the content located at the given UID.

http://localhost:8080/Plone/@@API/plone/api/1.0/get/<uid:optional>

The given optional UID defines the target object to get. You can omit this UID
and specify the path to the object with a request parameter.

Example

Getting an object by its physical path:

http://localhost:8080/Plone/@@API/plone/api/1.0/get?path=/Plone/folder

Or you can specify the parent path and the id of the object

http://localhost:8080/Plone/@@API/plone/api/1.0/get?parent_path=/Plone&id=folder

New in version 0.4: Adding 0 or the string portal as UID returns the portal Object.

New in version 0.9.1: The get route is now obsolete. Please use the base url to retrieve a content by uid, e.g.:
http://localhost:8080/Plone/@@API/plone/api/1.0/<uid>

CREATE

The create route will create the content inside the container located at the
given UID.

http://localhost:8080/Plone/@@API/plone/api/1.0/create/<uid:optional>

The given optional UID defines the target container. You can omit this UID
and specify all the information in the HTTP POST body.

Example

This example shows possible variations of a HTTP POST body sent to the JSON
API with the header Content-Type: application/json set.

{
 portal_type: "Document", // mandatory
 id: "test", // mandatory if title is not set
 title: "test", // mandatory if id is not set
 parent_uid: "7455c9b14e3c48c9b0be19ca6a142d50", // you can specify the UID for the parent folder
 parent_path: "/Plone/folder", // or the physical path of the parent container
 ...
}

UPDATE

The update route will update the content located at the given UID.

http://localhost:8080/Plone/@@API/plone/api/1.0/update/<uid:optional>

The given optional UID defines the object to update. You can omit this UID and
specify all the information in the HTTP POST body.

Example

{
 uid: "7455c9b14e3c48c9b0be19ca6a142d50", // you can either specify the UID
 path: "/Plone/folder/test", // or the physical path to the object
 id: "test", // or the id and the path of the parent container
 parent_path: "/Plone/folder",
 ...
}

DELETE

The delete route will delete the content located at the given UID.

http://localhost:8080/Plone/@@API/plone/api/1.0/delete/<uid:optional>

The given optional UID defines the object to delete. You can omit this UID and
specify all the information in the HTTP POST body.

Example

Delete an object by its physical path:

http://localhost:8080/Plone/@@API/plone/api/1.0/delete?path=/Plone/folder

Or you can specify the parent path and the id of the object

http://localhost:8080/Plone/@@API/plone/api/1.0/delete?parent_path=/Plone&id=folder

Or you can specify these information in the request body:

{
 uid: "7455c9b14e3c48c9b0be19ca6a142d50", // you can either specify the UID
 path: "/Plone/folder/test", // or the physical path to the object
 id: "test", // or the id and the path of the parent container
 parent_path: "/Plone/folder",
 ...
}

CUT

The cut route will cut the content located at the given UID.

http://localhost:8080/Plone/@@API/plone/api/1.0/cut/<uid:optional>

The given optional UID defines the object to cut. You can omit this UID and
specify all the information either in the HTTP POST body or as request arguments.

Example

Cut an object by its physical path:

http://localhost:8080/Plone/@@API/plone/api/1.0/cut?path=/Plone/folder

Or you can specify the parent path and the id of the object

http://localhost:8080/Plone/@@API/plone/api/1.0/cut?parent_path=/Plone&id=folder

Or you can specify these information in the request body:

{
 uid: "7455c9b14e3c48c9b0be19ca6a142d50", // you can either specify the UID
 path: "/Plone/folder/test", // or the physical path to the object
 id: "test", // or the id and the path of the parent container
 parent_path: "/Plone/folder",
 ...
}

COPY

The copy route will copy the content located at the given UID.

http://localhost:8080/Plone/@@API/plone/api/1.0/copy/<uid:optional>

The given optional UID defines the object to copy. You can omit this UID and
specify all the information either in the HTTP POST body or as request arguments.

Example

Copy an object by its physical path:

http://localhost:8080/Plone/@@API/plone/api/1.0/copy?path=/Plone/folder

Or you can specify the parent path and the id of the object

http://localhost:8080/Plone/@@API/plone/api/1.0/copy?parent_path=/Plone&id=folder

Or you can specify these information in the request body:

{
 uid: "7455c9b14e3c48c9b0be19ca6a142d50", // you can either specify the UID
 path: "/Plone/folder/test", // or the physical path to the object
 id: "test", // or the id and the path of the parent container
 parent_path: "/Plone/folder",
 ...
}

PASTE

The paste route will paste the previous cutted/copied content to the location
identified by the given UID.

http://localhost:8080/Plone/@@API/plone/api/1.0/paste/<uid:optional>

The given optional UID defines the target object (usually a folder). You can
omit this UID and specify all the information either in the HTTP POST body or
as request arguments.

Example

Paste to a target identified by its physical path:

http://localhost:8080/Plone/@@API/plone/api/1.0/paste?path=/Plone/folder

Or you can specify the parent path and the id of the object

http://localhost:8080/Plone/@@API/plone/api/1.0/paste?parent_path=/Plone&id=folder

Or you can specify these information in the request body:

{
 uid: "7455c9b14e3c48c9b0be19ca6a142d50", // you can either specify the UID
 path: "/Plone/folder/test", // or the physical path to the object
 id: "test", // or the id and the path of the parent container
 parent_path: "/Plone/folder",
 ...
}

Dexterity Content

New in version 0.7: Added Dexterity Data Manager (see: datamanagers.py)

New in version 0.9.2: Added Zope Schema Field Manager (see: fieldmanagers.py)

Dexterity Content Types are handled by a Data Manager (IDataManager) and a
Field Manager (IFieldManager) respectively. Also see Adding a custom data manager.
Integrators just have to add route providers for their Dexterity Content Types
(see: Adding a custom route provider) and the JSON API should handle the heavy lifting.

Security

plone.jsonapi.routes checks only the permission on the content object to be
at least cmf.ModifyPortalContent. Checks on the field level will be added in
future versions.

Example

This section provides some common examples how to use plone.jsonapi.routes.

Get content by uid

Getting an object by its UID:

http://localhost:8080/Plone/@@API/plone/api/1.0/3762908a5d2c4917b9d2dbaf2a9be1cc

Get content by path

Getting a content by its physical path:

http://localhost:8080/Plone/@@API/plone/api/1.0/get?path=/Plone/folder

Get content by parent_path and id

Get a content by specifying the parent path and the id:

http://localhost:8080/Plone/@@API/plone/api/1.0/get?parent_path=/Plone&id=folder

Copy/Cut/Paste content

Contents can be copied or cutted to the clipboard to paste it later somewhere
else. This example shows how to copy a folder located in Plone with the
physical path /Plone/folder.

You can either cut or copy by the parent_path & id pair:

http://localhost:8080/Plone/@@API/plone/api/1.0/copy?parent_path=/Plone&id=folder

http://localhost:8080/Plone/@@API/plone/api/1.0/cut?parent_path=/Plone&id=folder

Or you can simply take the physical path by specifying the path:

http://localhost:8080/Plone/@@API/plone/api/1.0/copy?path=/Plone/folder

http://localhost:8080/Plone/@@API/plone/api/1.0/cut?path=/Plone/folder

Or if you know the UID, you can use the uid parameter:

http://localhost:8080/Plone/@@API/plone/api/1.0/copy/3762908a5d2c4917b9d2dbaf2a9be1cc

http://localhost:8080/Plone/@@API/plone/api/1.0/cut/3762908a5d2c4917b9d2dbaf2a9be1cc

After you cutted or copied the content, you can paste it by providing the
target folder in the known way.

If you would like to paste it in the portal root, just use the UID 0 or the path of
your Plone site:

http://localhost:8080/Plone/@@API/plone/api/1.0/paste/0

http://localhost:8080/Plone/@@API/plone/api/1.0/paste?path=/Plone

Search contents

To search all contents of the portal, you can utilize the search route:

http://localhost:8080/Plone/@@API/plone/api/1.0/search

The search results can be refined by using request parameters, e.g.:

http://localhost:8080/Plone/@@API/plone/api/1.0/search?q=test

http://localhost:8080/Plone/@@API/plone/api/1.0/search?q=test&limit=10

http://localhost:8080/Plone/@@API/plone/api/1.0/search?q=test&limit=10&portal_type=Folder

http://localhost:8080/Plone/@@API/plone/api/1.0/search?q=test&limit=10&portal_type=Folder&Creator=admin

Basically, you can use any defined index of your Plone site.

There are some convenience keys like q for the SearchableText index.
See Parameters for further details.

Delete contents

It is possible to delete contents from your Plone site with the delete route.
See CRUD for details.

You can either delete by the parent_path & id pair:

http://localhost:8080/Plone/@@API/plone/api/1.0/delete?parent_path=/Plone&id=folder

Or you can simply take the physical path by specifying the path:

http://localhost:8080/Plone/@@API/plone/api/1.0/delete?path=/Plone/folder

Or if you know the UID, you can use the uid parameter:

http://localhost:8080/Plone/@@API/plone/api/1.0/delete/3762908a5d2c4917b9d2dbaf2a9be1cc

It is even possible to delete multiple objects. This can be done by sending the
data in a list within the POST body. See CRUD for mode details.

Note

The API do not allow to delete the portal object (UID=0)

Get the portal object

To fetch the portal object you can use the plonesite route:

http://localhost:8080/Plone/@@API/plone/api/1.0/plonesite

Get folder contents

If you are interested in the contents of a folderish content type, you can
append the children=yes request parameter to the url:

http://localhost:8080/Plone/@@API/plone/api/1.0/plonesite?children=yes

this will add a children list to the response which includes all contents of
the requested object. This can actually be done with any route provider.

Get the full object

The API is designed in a two step architecture, see the API doc:Concept. Therefore
only the catlog brain results are returned in the first step.

You can bypass this step by specifying the complete=yes request parameter.

Note

The complete=yes parameter also affects the child nodes

Note

It is not recommended to use the complete flag, as it is significant slower.

Useful Links

This section contains a collection of useful links to the project and its
dependent packages.

Plone

	Plone Website [http://plone.org]

	plone.api @ pypi [https://pypi.python.org/pypi/plone.api]

plone.jsonapi.routes

	plone.jsonapi.routes @ pypi [https://pypi.python.org/pypi/plone.jsonapi.routes]

	plone.jsonapi.routes @ GitHub [https://github.com/collective/plone.jsonapi.routes]

	plone.jsonapi.routes Issues [https://github.com/collective/plone.jsonapi.routes/issues]

plone.jsonapi.core

	plone.jsonapi.core @ pypi [https://pypi.python.org/pypi/plone.jsonapi.core]

	plone.jsonapi.core @ GitHub [https://github.com/collective/plone.jsonapi.core]

	plone.jsonapi.core Issues [https://github.com/collective/plone.jsonapi.cores/issues]

Contributors

Thanks to all the contributors!

	José Dinuncio [jdinuncio]

	Jian Aijun [jianaijun]

	Jan Müller [jan-mue]

	Percy Barboza

	Gagaro [Gagaro]

	Mauro Amico [mamico]

	Thomas Clement Mogensen [tmog]

	Alessandro Pisa [ale-rt]

License

Copyright (c) 2013 - 2017 Ramon Bartl (RIDING BYTES - http://ridingbytes.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Changelog

0.9.3 - 2017-05-14

Changes

	IDataManager contain now a json_data method to return a JSON suitable
return structure or delegate to the IFieldManager.json_data method.
Please see section “Customizing” in the documentation for more details.

	Added support for z3c.relationfield.interfaces.IRelationList fields

	Added support for plone.app.textfield.interfaces.IRichText fields

	Added support for plone.app.blob.interfaces.IBlobField fields

	More code cleanup and refactoring (coming closer to a robust 1.0.0 release!)

0.9.2 - 2017-05-12

Changes

	Added IFieldManager adapter to get and set the value on field level.

	Removed build number from version route JSON response.

	Content route improved.

	API refactored.

	Improved users route.

	Updated documentation

0.9.1 - 2017-04-20

Changes

	Added ICatalog and ICatalogQuery adapter for full search control. See docs for usage.

	Removed query module in favor of the new adapters.

	Removed multiple catalog query functionality. Please define a custom ICatalog adapter if you need it.

	Added generic route provider for all portal_types.
N.B. The old-style route providers, e.g. folders, documents etc., are now obsolete.
Please use the lower portal type name instead, e.g. folder, docuememt ...

	The users route shows now more details of the users and results are now batched.

	Removed default getObjPositionInParent sorting. Please specify explicitly via sort_on.

	UID of the plone site is now ‘0’ instead of 0.

	Huge code refactoring and cleanup.

0.9.0 - 2017-01-12

Changes

	API mthods get_items and get_batched accept now keyword paramters.
Keywords can be catalog indexes, e.g. id=document-1 or a complete catalog
query objejt, e.g. query={‘portal_type’: ‘Document’}.

	Changed get_contents method to use the search functionality from the
query module.

	More doctests added

0.8.9 - 2017-01-11

Changes

	Catalog to query can now be set via the catalog request parameter.

	Optimized search logic

	Fixed issue with multiple portal_type parameters in request

	Code Refactoring

	More tests

0.8.8 - 2017-01-10

Changes

	Handle catalog queries for multiple contents, which might be located in
different catalogs.

	Fixed an issue where the batch navigation did not show more results when using
multiple portal_type request parameters.

0.8.7 - 2017-01-10

Changes

	Handle Reference Fields: Reference fields containing a reference can be
updated with a dictionary, e.g.:

{
 uid: <UID of a content containing a reference field>,
 ReferenceField: {
 "title": "New Title"
 }
}

	Added module underscore to the tests suite

	Validation for the entire object added

	Get the catalog to query from Archtype Tool and default to portal_catalog

	Use explicit namespace in route providers

	Handle Reference Fields (Fields containing and ImplicitAcquisitionWrapper object)

	Added ZCML directive to enable/disable route registrations (default enabled):

<!-- Disable route registration -->
<plone:jsonapi
 register_api_routes="False"
/>

	Version route is now part of the standard route providers

	Dropped AdvancedQuery handling

0.8.6 - 2016-04-08

Fix for broken release 0.8.5

0.8.5 - 2016-04-08

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/59: API URL for non standard content types

	https://github.com/collective/plone.jsonapi.routes/issues/60: Add a namespace to the route registrations

	https://github.com/collective/plone.jsonapi.routes/issues/63: handle richtext fields

	https://github.com/collective/plone.jsonapi.routes/issues/82: Plone 5 CSFR Protection

	https://github.com/collective/plone.jsonapi.routes/issues/80: Tests for Plone 5

	https://github.com/collective/plone.jsonapi.routes/issues/77: Problem with creating files

	https://github.com/collective/plone.jsonapi.routes/issues/62: ‘reference_catalog’ not found

	https://github.com/collective/plone.jsonapi.routes/pull/75: Fix api invocation on the zope root

	https://github.com/collective/plone.jsonapi.routes/pull/74: Reuse and improve code to check if a parameter in the request has a True value

	https://github.com/collective/plone.jsonapi.routes/pull/73: Using specifiers to format string (helps compatibility with Python 2.6, improves code readability)

0.8.4 - 2016-01-14

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/pull/66: api routes: sharing (docs)

	https://github.com/collective/plone.jsonapi.routes/pull/65: api routes: sharing (code)

	https://github.com/collective/plone.jsonapi.routes/pull/61: Use IConstrainTypes adapters for dexterity content

API CHANGES

	Sharing information can be displayed for objects. Use ?sharing=yes

0.8.3 - 2015-09-14

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/58: Unit tests: add tests for adapter module

	https://github.com/collective/plone.jsonapi.routes/issues/57: API Change: workflow data optional

	https://github.com/collective/plone.jsonapi.routes/issues/54: Let complete flag overrule “uid rule”

	https://github.com/collective/plone.jsonapi.routes/issues/53: Unit tests: add tests for api module

API CHANGES

	File data not included by default anymore. Use ?filedata=yes

	Workflow data not included by default anymore. Use ?workflow=yes

	Workflow data is now located at the key workflow

	The complete flag can be now negated, even if the full object is displayes ?complete=no

	The state key is removed – use review_state instead

	Parent URL data included now for brain results

0.8.2 - 2015-09-09

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/52: Handle field unauthorized errors in the GET API

	https://github.com/collective/plone.jsonapi.routes/issues/51: Default Data Adapters missing

0.8.1 - 2015-09-06

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/50: API route throws error

	https://github.com/collective/plone.jsonapi.routes/pull/37: Include custom metadata columns

	https://github.com/collective/plone.jsonapi.routes/pull/37: Include custom metadata columns

	https://github.com/collective/plone.jsonapi.routes/issues/49: Setting the ID throws a traceback

	https://github.com/collective/plone.jsonapi.routes/issues/48: Implement cut/copy/paste routes

	https://github.com/collective/plone.jsonapi.routes/issues/46: Route Provider portal throws TypeError

	https://github.com/collective/plone.jsonapi.routes/issues/47: ZCML directive to enable AdvancedQuery if installed

ENHANCEMENTS

	API actions to cut/copy/paste contents

	New route provider plonesites

	Support for catalog brain schema

0.8 - 2015-07-20

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/45: Add authentication routes

	https://github.com/collective/plone.jsonapi.routes/issues/44: Add the filename to the JSON data

	https://github.com/collective/plone.jsonapi.routes/issues/43: API: Intermediate Folder creation

	https://github.com/collective/plone.jsonapi.routes/issues/41: Field Type Validation

	https://github.com/collective/plone.jsonapi.routes/issues/42: ContentType for Dexterity Files CT

0.7 - 2015-07-09

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/9: Handle Dexterity Behavior fields

	https://github.com/collective/plone.jsonapi.routes/issues/38: Filename handling

	https://github.com/collective/plone.jsonapi.routes/issues/36: Mime Type handling

OTHER CHANGES

	Updated Documentation

	Request module: Added helper functions

	Travis CI integration

0.6 - 2015-02-22

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/33: Image detail URL throws error

	https://github.com/collective/plone.jsonapi.routes/issues/34: Failed POST request return HTTP 200

	https://github.com/collective/plone.jsonapi.routes/issues/35: DataManager does not check field permissions

0.5 - 2015-02-20

CLOSED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/32: Add documentation for the new ZPublisher record behavior

	https://github.com/collective/plone.jsonapi.routes/issues/31: Change default sort order to ascending

	https://github.com/collective/plone.jsonapi.routes/pull/30: fix standard query ignoring sort_on and sort_order

	https://github.com/collective/plone.jsonapi.routes/issues/27: querying does not support ZPublisher record format

	https://github.com/collective/plone.jsonapi.routes/issues/25: Add support for Plone 4.2

OTHER CHANGES

	Added batch adapter

	Added more tests

0.4 - 2015-01-13

FIXED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/22: Absoulte url is missing in update/create response

	https://github.com/collective/plone.jsonapi.routes/issues/21: Image Route throws an error

ENHANCEMENTS

	https://github.com/collective/plone.jsonapi.routes/issues/20: Support query for DateTime Indexes

	https://github.com/collective/plone.jsonapi.routes/issues/23: Support query for created/modified DateTime ranges

OTHER CHANGES

	added IDataManager field data manager

	added /auth route to enforce a basic auth

	added a custom exception class to set the right response status

	added recent_modified and recent_created handling

	added unittests for the api and request module

	no more request passing anymore - all handled by the request module now

0.3 - 2014-10-14

FIXED ISSUES

	https://github.com/collective/plone.jsonapi.routes/issues/16: Files can not be created/updated with base64 encoded data

	https://github.com/collective/plone.jsonapi.routes/issues/10: Fails on NamedBlobFile dexterity fields

	https://github.com/collective/plone.jsonapi.routes/pull/11: Typo in brain adapter

	https://github.com/collective/plone.jsonapi.routes/issues/14: Missing UIDs for complete objects

ENHANCEMENTS

	https://github.com/collective/plone.jsonapi.routes/issues/12: Add batching

	https://github.com/collective/plone.jsonapi.routes/issues/13: Add a flag to return the full fledged object results immediately

	https://github.com/collective/plone.jsonapi.routes/issues/19: Need to do a GET on a file using file path without using uid

	https://github.com/collective/plone.jsonapi.routes/issues/18: destination handling

	https://github.com/collective/plone.jsonapi.routes/issues/3: Add buildout configs inside package

DOCUMENTATION

	https://github.com/collective/plone.jsonapi.routes/issues/2: Sphinx documentation started

0.2 - 2014-03-05

FIXED ISSUES

	https://github.com/ramonski/plone.jsonapi.routes/issues/5: Dexterity support

	https://github.com/ramonski/plone.jsonapi.routes/issues/4: Update on UID Urls not working

	https://github.com/ramonski/plone.jsonapi.routes/issues/1: Started with some basic browsertests

API CHANGES

	API root url provided.

	Image and file fields are now rendered as a nested structure, e.g:

{
 data: b64,
 size: 42,
 content_type: "image/png"
}

	Workflow info is provided where possible, e.g:

{
 status: "Private",
 review_state: "private",
 transitions: [
 {
 url: ".../content_status_modify?workflow_action=submit",
 display: "Puts your item in a review queue, so it can be published on the site.",
 value: "submit"
 },
],
 workflow: "simple_publication_workflow"
}

0.1 - 2014-01-23

	first public release

Index

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		plone.jsonapi.routes

 		Installation

 		Buildout

 		JSONView

 		Advanced Rest Client

 		Quickstart

 		Environment

 		Version

 		Content Routes

 		Getting the Full Data

 		Special Case: Files and Images

 		UID Route

 		API

 		Concept

 		Base URL

 		Resources

 		Operations

 		Search Resource

 		User Resource

 		Overview

 		Parameters

 		Using Plone Indexes

 		Query Records

 		Sharing

 		Response Format

 		The API Module

 		Authentication

 		Login

 		Logout

 		Basic Authentication

 		Customizing

 		Adding a custom route provider

 		Adding a custom data adapter

 		Adding a custom data manager

 		Adding a custom field manager

 		Adding a custom catalog tool

 		Adding a custom catalog query adapter

 		CRUD

 		Unified API

 		Response Format

 		GET

 		Example

 		CREATE

 		Example

 		UPDATE

 		Example

 		DELETE

 		Example

 		CUT

 		Example

 		COPY

 		Example

 		PASTE

 		Example

 		Dexterity Content

 		Security

 		Example

 		Get content by uid

 		Get content by path

 		Get content by parent_path and id

 		Copy/Cut/Paste content

 		Search contents

 		Delete contents

 		Get the portal object

 		Get folder contents

 		Get the full object

 		Useful Links

 		Plone

 		plone.jsonapi.routes

 		plone.jsonapi.core

 		Contributors

 		License

 		Changelog

 		0.9.3 - 2017-05-14

 		0.9.2 - 2017-05-12

 		0.9.1 - 2017-04-20

 		0.9.0 - 2017-01-12

 		0.8.9 - 2017-01-11

 		0.8.8 - 2017-01-10

 		0.8.7 - 2017-01-10

 		0.8.6 - 2016-04-08

 		0.8.5 - 2016-04-08

 		0.8.4 - 2016-01-14

 		0.8.3 - 2015-09-14

 		0.8.2 - 2015-09-09

 		0.8.1 - 2015-09-06

 		0.8 - 2015-07-20

 		0.7 - 2015-07-09

 		0.6 - 2015-02-22

 		0.5 - 2015-02-20

 		0.4 - 2015-01-13

 		0.3 - 2014-10-14

 		0.2 - 2014-03-05

 		0.1 - 2014-01-23

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

