Plone Training Documentation
Publicacion 1.2.5a

Plone Community

sept. 28, 2017

Indice general

1. About Plone Trainings 3

2. Trainings 9

Plone Training Documentation, Publicacion 1.2.5a

A collection of trainings developed and created by the Plone Community.

indice general 1

Plone Training Documentation, Publicacion 1.2.5a

2 indice general

CcAPiTULO 1

About Plone Trainings

Plone Training is a collection of different trainings, developed and created by the Plone Community.

About Mastering Plone

This training was created by Philip Bauer and Patrick Gerken of starzel.de to create a canonical training for future
Plone developers. The aim is that anyone with the appropriate knowledge can give a training based on it and contribute
to it. It is published as Open Source on github and training.plone.org.

If you want to inquire the original authors about organizing a training please contact them at team @starzel.de.

Upcoming Trainings

If you want to have a training near you please ask for trainings on https://community.plone.org

Previous Trainings

The Mastering Plone Training was so far held publicly at the following occasions:
= Ploneconf 2016 in Boston
= October 2015, Bucharest
= March 2015, Munich
= Plone Conference 2014, Bristol
= June 2014, Caracas
= May 2014, Munich
= PythonBrasil/Plone Conference 2013, Brasilia
= PyCon DE 2012, Leipzig
= Plone Conference 2012, Arnheim

= PyCon De 2011, Leipzig

https://training.plone.org
https://www.starzel.de
https://github.com/plone/training
https://training.plone.org/
mailto:team@starzel.de
https://community.plone.org
https://2016.ploneconf.org/
https://www.starzel.de/leistungen/training/
https://twitter.com/hellfish2/status/476906131970068480
https://www.starzel.de/blog/mastering-plone
http://2013.pythonbrasil.org.br/

Plone Training Documentation, Publicacion 1.2.5a

Trainers

The following trainers have given trainings based on Mastering Plone:

Philip Bauer Philip Bauer is a web developer from Munich who fell in love with Plone in 2005 and since then
works almost exclusively with Plone. A historian by education he drifted towards creating websites in the 90’s
and founded the company Starzel.de in 2000. He is a member of the Plone foundation, loves teaching and is
dedicated to Open Source. Among other Plone-related projects he started creating the Mastering Plone Training
so that everyone can become a Plone-Developer.

Patrick Gerken Patrick Gerken works with Python since 2002. He started working with pure Zope applications and
now develops mainly with Plone, Pyramid and Javascript as well as doing what is called DevOps. He works at
Zumtobel Group.

Steve McMahon Steve McMahon is a long-time Plone community member, contributor and trainer. He is the creator
of PloneFormGen and maintainer of the Unified installer. Steve also wrote several chapters of Practical Plone
and is an experienced speaker and instructor.

Steffen Lindner Steffen Lindner started developing Plone in 2006. He worked on small Plone sites and also with
huge intranet sites. As Open Source / Free Software developer he joined the Plone core developer team 2011
and works at Starzel.de.

Fulvio Casali Fulvio Casali has been working almost exclusively with Plone since 2008. He struggled for years to
find his way around the source code of Plone when there was no documentation and no trainings, and feels
passionate about helping users and developers become proficient. He loves participating in Plone community
events, and organized two strategic Plone sprints on the northwest coast of the USA and helped galvanized the
developer community there.

Johannes Raggam Johannes Raggam from Graz/Austria works most of the time with a technology stack based
around Python, Plone, Pyramid and Javascript. As an active Open Source / Free Software developer he be-
lieves in the power of collaborative work. He is a BlueDynamics Alliance Partner and Plone Core Contributor
since 2009, a member of the Plone Framework Team since 2012 and Plone Foundation member.

Franco Pellegrini Franco Pellegrini is a software developer from Cordoba, Argentina. He started developing Plone
in 2005 in a small software company, and as an independent contractor since 2011. He believes in free software
philosophy, and so, he has been a Plone core developer since 2010 and Framework Team member since 2012.

Fred van Dijk Fred, from Rotterdam the Netherlands, has been exposed to Plone early on as a user. In 2007 he joined
Zest Software to work on and with Plone and Python web apps full time. He can focus on the business side,
helping users decide on which features are most valuable to develop or when to stick with standard functionality.
He also gives training on using and administering the CMS. On the IT side he has plenty technical knowledge
to work on code, system administration and do project management in a team of developers.

Leonardo Caballero Leonardo J. Caballero G. of Maracaibo, Venezuela, is a Technical Director at Covantec R.L.
and Conectivo C.A. Leonardo maintains the Spanish translations of more than 49 Plone Add-ons as well as
Spanish-language documentation for Plone itself. He has contributed several Plone Add-ons that are part of
PloneGov. Currently serving the Plone Board as a Plone Ambassador, Leonardo has also served as an Advisory
Board member and has spoken at or helped organize Plone and open-source events throughout South America.

Using the documentation for a training

Feel free to organize a training yourself. Please be so kind to contribute any bug fixes or enhancements you made to
the documentation for your training.

The training is rendered using sphinx and builds in two flavors:

default The verbose version used for the online documentation and for the trainer. Build it in sphinx with make
html or use the online version.

4 Capitulo 1. About Plone Trainings

Plone Training Documentation, Publicacion 1.2.5a

presentation A abbreviated version used for the projector during a training. It should use more bullet points than
verbose text. Build it in sphinx with make presentation.

Nota: By prefixing an indented block of text or code with . . only:: presentation you can control that this
block is used for the presentation version only.

To hide a block from the presentation versionuse .. only:: not presentation

Content without a prefix will be included in both versions.

The readthedocs theme

We slightly tweaked readthedocs theme in _static/custom. css so that it works better with projectors:
= We start hiding the navigation bar much earlier so that it does not interfere with the text.

= We enlarge the default width of the content-area.

Exercises

Some additional javascript shows hidden solutions for exercises by clicking.

Just prepend the solution with this markup:

admonition:: Solution
:class: toggle

Here is a full example:

Exercise 1

AAAAAAAAAN

Your mission, should you choose to accept it...

admonition:: Solution
:class: toggle

To save the world with only seconds to spare do the following:
code-block:: python

from plone import api

It will be rendered like this:

Exercise 1

Your mission, should you choose to accept it...

Solution

To save the world with only seconds to spare do the following:

1.1. About Mastering Plone 5

Plone Training Documentation, Publicacion 1.2.5a

from plone import api

Building the documentation locally

Dependencies

Please make sure that you have Enchant installed, this is needed for spell-checking.

Install Enchant on OS X:

’brew install enchant

Install Enchant on Ubuntu:

sudo apt-get install enchant

To build the documentation follow these steps:

git clone https://github.com/plone/training.git --recursive
cd training

virtualenv —--python=python2.7

source bin/activate

Uy Ay

Now install dependencies and build.

$ pip install -r requirements.txt
$ make html

You can now open the output from _build/html/index.html. To build the presentation version use make
presentation instead of make html. You can open the presentation at presentation/index.html.

Build new

$ git clone https://github.com/plone/training.git --recursive
$ cd training

$ virtualenv —--python=python2.7

$ source bin/activate

$ pip install -r requirements.txt

$ make html

Now you can open documentation with your web-bowser.

If you use OS X you can just do:

’$ open _build/html/index.html

In the case of Linux, Ubuntu for example you can do:

’$ firefox _build/html/index.html

Nota: If you do not use Firefox but Chrome, please replace firefox with google-chrome e.g

6 Capitulo 1. About Plone Trainings

https://www.abisource.com/projects/enchant/

Plone Training Documentation, Publicacion 1.2.5a

$ google-chrome _build/html/index.html

Update existing

git pull

source bin/activate

make html

open _build/html/index.html

v W A

Technical set up to do before a training (as a trainer)

= Prepare a mailserver for the user registration mail (See Configure a Mailserver)

= [If you do only a part of the training (Advanced) prepare a database with the steps of the previous sections.
Be aware that the file- and blobstorage in the Vagrant box is here: /home/vagrant/var/ (not at the buildout path
/vagrant/buildout/)

Upgrade the vagrant and buildout to a new Plone-version
» In https://github.com/collective/training_buildout change buildout.cfg to extend from the new versions.cfg on
http://dist.plone.org/release

= Check if we should to update any versions in https://github.com/collective/training_buildout/blob/master/
versions.cfg

= Commit and push the changes to the training_buildout

= Modify the vagrant-setup by modifying plone_training_config/manifests/plone.pp. Set the
new Plone-version as $plone_version in line 3.

= Test the vagrant-setup it by creating a new vagrant-box using the new config.

= Create a new zip-file of all files in plone_training_config and move it to _static:

$ cd plone_training_config
$ zip -r plone_training config.zip =
$ mv plone_training_config.zip ../_static/

Commit and push the changes to https://github.com/plone/training

Train the trainer

If you are a trainer there is a special mini training about giving technical trainings. We really want this material to be
used, re-used, expanded and improved by Plone trainers world wide. These chapters don’t contain any Plone specific
advice, there’s background, theory, check lists and tips for anyone trying to teach technical subjects.

./trainthetrainer/index
Contributing

Everyone is very welcome to contribute. Minor bug fixes can be pushed directly in the repository, bigger changes
should made as pull-requests and discussed previously in tickets.

1.1. About Mastering Plone 7

https://github.com/collective/training_buildout
https://github.com/collective/training_buildout/blob/master/buildout.cfg
http://dist.plone.org/release
https://github.com/collective/training_buildout/blob/master/versions.cfg
https://github.com/collective/training_buildout/blob/master/versions.cfg
https://github.com/plone/training
https://github.com/plone/training
https://github.com/plone/training/pulls/

Plone Training Documentation, Publicacion 1.2.5a

License

The Mastering Plone Training is licensed under a Creative Commons Attribution 4.0 International License.
Make sure you have filled out a Contributor Agreement.

If you haven’t filled out a Contributor Agreement, you can still contribute. Contact the Documentation team, for
instance via the mailinglist or directly send a mail to plone-docs @lists.sourceforge.net Basically, all we need is your
written confirmation that you are agreeing your contribution can be under Creative Commons. You can also add
in a comment with your pull request “I, <full name>, agree to have this published under Creative Commons 4.0
International BY”.

8 Capitulo 1. About Plone Trainings

https://creativecommons.org/licenses/by/4.0/
https://plone.org/foundation/contributors-agreement
https://sourceforge.net/p/plone/mailman/plone-docs/
mailto:plone-docs@lists.sourceforge.net

CAPITULO 2

Trainings

Mastering Plone Development Mastering Plone is a training intended for people who are new to Plone or want to
learn about the best practices of Plone development. In the course of the training you will learn how to build a
custom website with plenty of features. Html and python-knowledge is required.

“Through-the-web’ Plone customization Create custom content types, a design for a website, layouts for homepages
and content types, and custom application logic. All in the browser!

Mastering Plone Theming Create a Diazo-based theme as a Plone add-on.
Mastering Plone Workflow How to create and make optimum use of custom Plone workflows

JavaScript for Plone Developers Learn best practices in Javascript development, how to develop and test your own
patterns, and how to integrate your custom Javascript applications with Plone. Technologies will include NPM,
Grunt, Patternslib and React.

Automating Plone Deployment How to automate deployment of Plone servers, whether it’s one server or 100.

Plone Training Solr How to add enterprise-grade search to your Plone site.

Mastering Plone Development

This is the documentation for the “Mastering Plone” training.

Mastering Plone is intended as a week-long training for people who are new to Plone or want to learn about the current
best practices of Plone development. It can be split in two trainings:

= A beginner training (2 to 3 days) that covers chapters 1-18.
= An advanced training (3 to 5 days) that covers the rest.
At conferences a shortended 2-day version of the advanced training with a slightly modified order is held.

Contents:
Introduction

Who are you?

Tell us about yourselves:
= Name, company, country...

= What is your Plone experience?

Plone Training Documentation, Publicacion 1.2.5a

What is your web development experience?

What are your expectations for this tutorial?

What is your favorite text editor?
= If this training will include the development chapters:

* Do you know the HTML of the output of this?

<div class="hiddenStructure"
tal:repeat="num python:range(l, 10, 5)"
tal:content="structure num"
tal:omit-tag="">
This is some weird shxt!
</div>

The answer is:

’1 6

* Do you know what the following would return?:

’[(i.Title, i.getURL()) for i in context.getFolderContents ()]

What will we do?

Some technologies and tools we use during the training:
= For the beginning training:
* Virtualbox
* Vagrant
e Ubuntu linux
* Through-the-web (TTW)
¢ Buildout
e A little XML

A little Python
= For the advanced chapters:
* Git
¢ GitHub
¢ Try Git (Nice introduction to git and github)
* TAL
« METAL
« ZCML
¢ Python
* Dexterity

¢ Viewlets

10 Capitulo 2. Trainings

https://www.virtualbox.org/
https://www.vagrantup.com/
https://www.ubuntu.com/
http://www.buildout.org/en/latest/
https://git-scm.com/
https://github.com
https://try.github.io/levels/1/challenges/1
https://www.python.org

Plone Training Documentation, Publicacion 1.2.5a

* JQuery
e Testing

¢ References/Relations

What will we not do?

We will not cover the following topics:

Other

Archetypes

Portlets

z3c.forms

Theming

118n and locales

Deployment, Hosting and Caching
grok

topics are only covered lightly:
Zope Component Architecture
GenericSetup

Z0ODB

Security

Permissions

Performance and Caching

What to expect

At the end of the first two days of training, you’ll know many of the tools required for Plone installation, integration and
configuration. You’ll be able to install add-on packages and will know something about the technologies underlying

Plone

and their histories.

At the end of the second two days, you won’t be a complete professional Plone-programmer, but you will know some
of the more powerful features of Plone and should be able to construct a more complex website with custom themes
and packages. You should also be able to find out where to look for instructions to do tasks we did not cover. You will
know most of the core technologies involved in Plone programming.

If you want to become a professional Plone developer or a highly sophisticated Plone integrator you should definitely
read Martin Aspeli’s book and then re-read it again while actually doing a complex project.

Classroom Protocol

Nota:

= Stop us and ask questions when you have them!

= Tell us if we speak too fast, too slow or not loud enough.

= One of us is always there to help you if you are stuck. Please give us a sign if you are stuck.

2.1. Mastering Plone Development

11

http://jquery.com/
https://docs.plone.org/external/plone.app.testing/docs/source/index.html
https://docs.plone.org/external/plone.app.dexterity/docs/advanced/references.html
https://docs.plone.org/old-reference-manuals/archetypes/index.html
https://docs.plone.org/old-reference-manuals/portlets/index.html
https://docs.plone.org/develop/plone/forms/z3c.form.html
https://docs.plone.org/adapt-and-extend/theming/index.html
https://docs.plone.org/develop/plone/i18n/index.html
https://docs.plone.org/manage/deploying/index.html
https://docs.plone.org/develop/addons/components/index.html
https://docs.plone.org/develop/addons/components/genericsetup.html
https://docs.plone.org/develop/plone/persistency/index.html
https://docs.plone.org/develop/plone/security/index.html
https://docs.plone.org/develop/plone/security/permissions.html
https://docs.plone.org/manage/deploying/testing_tuning/performance/index.html
https://www.packtpub.com/web-development/professional-plone-4-development

Plone Training Documentation, Publicacion 1.2.5a

We’ll take some breaks, the first one will be at XX.

Where is food, restrooms

Someone please record the time we take for each chapter (incl. title)

Someone please write down errors

Contact us after the training: team @starzel.de

Questions to ask:

= What did you just say?

Please explain what we just did again?

How did that work?

Why didn’t that work for me?

Is that a typo?
Questions __not__ to ask:
= Hypotheticals: What happens if I do X?
= Research: Can Plone do Y?
= Syllabus: Are we going to cover Z in class?
= Marketing questions: please just don’t.
= Performance questions: Is Plone fast enough?
= Unpythonic: Why doesn’t Plone do it some other way?
= Show off: Look what I just did!

Documentation

Follow the training at https://training.plone.org/5

Nota: You can use this presentation to copy & paste the code but you will memorize more if you type yourself.

Further Reading
= Martin Aspeli: Professional Plone4 Development
= Practical Plone
= Zope Page Templates Reference

Installation & Setup

Installing Plone

The following table shows the Python versions required by Plone from version 3.x to 5.0.x:

12 Capitulo 2. Trainings

mailto:team@starzel.de
https://training.plone.org/5
https://www.packtpub.com/web-development/professional-plone-4-development
https://www.packtpub.com/web-development/practical-plone-3-beginners-guide-building-powerful-websites
http://docs.zope.org/zope2/zope2book/AppendixC.html

Plone Training Documentation, Publicacion 1.2.5a

Plone | Python
3.x 2.4

40x |26

4.1.x 2.6

4.2.x 2.6 0r2.7
4.3.x 2.7

50x |27

(Hopefully you won’t have to deal with any Plone sites older than version 3.x.)

Plone 5.x requires a working Python 2.7 and several other system tools that not every OS provides. Therefore the
installation of Plone is different on every system. Here are some ways that Python can be used:

= use a Python that comes pre-installed in your operating system (most Linux Distributions and Mac OS X have
one)

= use the python buildout

= building Linux packages

= homebrew (Mac OS X)

= PyWin32 (Windows)
Mac OS X 10.8 - 10.10 and Ubuntu 14.04 come with a working default Python 2.7 built in. These are the lucky ones.
Most developers use their primary system to develop Plone. For complex setups they often use Linux virtual machines.

= OS X: Use the python buildout to compile python and homebrew for some missing Linux tools.

= Linux: Depending on your Linux flavor you might have to build python yourself and install some tools.

= Windows: Alan Runyan (one of Plone’s founders) uses it. A downside: Plone seems to be running much slower
on Windows.

Plone offers multiple options for being installed:
1. Unified installers (all ‘nix, including OS X)
2. A Vagrant/VirtualBox install kit (all platforms)
3. A VirtualBox Appliance
4. Use your own Buildout
You can download all of these at https://plone.org/download

For the training we’ll use option 2 and 4 to install and run Plone. We’ll create our own Buildout and extend it as we
wish. But we will do so in a vagrant machine. For your own first experiments we recommend option 1 or 2 (if you
have a Windows laptop or encounter problems). Later on you should be able to use your own Buildout (we’ll cover
that later on).

Ver también:

» https://docs.plone.org/manage/installing/installation.html

Hosting Plone

If you want to host a real live Plone site yourself then running it from your laptop is not a viable option.
You can host Plone...
= with one of many professional hosting providers

= on a virtual private server

2.1. Mastering Plone Development 13

https://github.com/collective/buildout.python
http://mxcl.github.io/homebrew/
https://plone.org/download
https://docs.plone.org/manage/installing/installation.html
http://plone.com/providers

Plone Training Documentation, Publicacion 1.2.5a

= on dedicated servers
= on heroku you can run Plone for free using the Heroku buildpack for Plone
= in the cloud (e.g. using Amazon EC2 or Codio.com)
Ver también:
= Plone Installation Requirements: https://docs.plone.org/manage/installing/requirements.html
= Run Plone on a 5$ plan: https://www.stevemcmahon.com/steves-blog/plone-on-5-a-month

= Where to host Plone: https://old.plone.org/documentation/fag/where-can-i-host-my-plone-site

Production Deployment
The way we’re setting up a Plone site during this class may be adequate for a small site — or even a very large one
that’s not very busy — but you’re likely to want to do much more if you’re using Plone for anything demanding.

= Using a production web server like Apache or Nginx for URL rewriting, SSL and combining multiple, best-of-
breed solutions into a single web site.

= Reverse proxy caching with a tool like Varnish to improve site performance.

= Load balancing to make best use of multiple core CPUs and even multiple servers.

= Optimizing cache headers and Plone’s internal caching schemes with plone.app.caching.
And, you’ll need to learn strategies for efficient backup and log file rotation.

All these topics are introduced in Guide to deploying and installing Plone in production.

Instalando Plone para el entrenamiento

Keep in mind that you need a fast internet connection during installation since you’ll have to download a lot of data!

Advertencia: If you feel the desire to try out both methods below (with Vagrant and without), make sure you use
different t raining directories! The two installations do not coexist well.

Installing Plone without vagrant

Advertencia: If you are not used to running Plone on your laptop skip this part and continue with Instalar
VirtualBox.

If you are experienced with running Plone on your own laptop, we encourage you to do so because you will have
certain benefits:

= You can use the editor you are used to.
= You can use omelette to have all the code of Plone at your fingertips.
= You do not have to switch between different operating systems during the training.

If you feel comfortable, please work on your own machine with your own Python. But please make sure that you have
a system that will work, since we don’t want you to lose valuable time!

14 Capitulo 2. Trainings

https://www.heroku.com
https://github.com/plone/heroku-buildpack-plone
http://blog.dbain.com/2014/04/install-plone-in-under-5-minutes-on.html
https://docs.plone.org/manage/installing/requirements.html
https://www.stevemcmahon.com/steves-blog/plone-on-5-a-month
https://old.plone.org/documentation/faq/where-can-i-host-my-plone-site
https://docs.plone.org/manage/deploying/index.html

Plone Training Documentation, Publicacion 1.2.5a

Nota: If you also want to follow the JavaScript training and install the JavaScript development tools, you need NodeJS
installed on your development computer.

Nota: Please make sure you have your system properly prepared and installed all necessary prerequisites. For example,
on Ubuntu/Debian, you need to install the following:

sudo apt-get install python-setuptools python-virtualenv python-dev build-essential |,
—~libssl-dev libxml2-dev libxsltl-dev libbz2-dev libjpeg62-dev

sudo apt-get install libreadline-dev wv poppler-utils

sudo apt-get install git

For more information or in case of problems see the official installation instructions.

Set up Plone for the training like this if you use your own OS (Linux or Mac):

$ mkdir training

$ cd training

$ git clone https://github.com/collective/training_buildout.git buildout
$ cd buildout

$ virtualenv —--python=python2.7 py27

Now you can run the buildout for the first time:

$./py27/bin/python bootstrap.py
$./bin/buildout

This will take some time and produce a lot of output because it downloads and configures Plone. Once it is done you
can start your instance with

$./bin/instance fg

The output should be similar to:

2015-09-24 15:51:02 INFO ZServer HTTP server started at Thu Sep 24 15:51:02 2015
Hostname: 0.0.0.0
Port: 8080

2015-09-24 15:51:05 WARNING PrintingMailHost Hold on to your hats folks, I'm a-patchin

v
—

2015-09-24 15:51:05 WARNING PrintingMailHost

kA hkhk kA hk kA Ak Ak kA h kA bk hk kA ko hkhk Ak hhkhkhkhk ko kA ko hkhkhk ko hk kA ko ko hkhkhhkhkhhkhk Ak hkhhkhkhkhhkhkrhhkhkrhhkhkdxhkhkx*x*
Monkey patching MailHosts to print e-mails to the terminal.

This is instead of sending them.

NO MAIL WILL BE SENT FROM ZOPE AT ALL!

Turn off debug mode or remove Products.PrintingMailHost from the eggs

or remove ENABLE_PRINTING_MAILHOST from the environment variables to

return to normal e-mail sending.

See https://pypi.python.org/pypi/Products.PrintingMailHost

KA A A A A AR A AR A A A A A A A A A A A A A A A AR A A A A A A A A A A A A A I A AR A A A A A A A A AR A A I A A I A A A IR AR KA,k kK

2.1. Mastering Plone Development 15

https://nodejs.org/en/download/
https://docs.plone.org/manage/installing/installation.html

Plone Training Documentation, Publicacion 1.2.5a

2015-09-24 15:51:05 INFO ZODB.blob (54391) Blob directory ' .../buildout/var/
—blobstorage®™ is unused and has no layout marker set. Selected “bushy’ layout.
2015-09-24 15:51:05 INFO ZODB.blob (54391) Blob temporary directory '.../buildout/var/

—blobstorage/tmp' does not exist. Created new directory.
.../.buildout/eggs/plone.app.multilingual-3.0.11-py2.7.egg/plone/app/multilingual/
—browser/migrator.py:11: DeprecationWarning: LanguageRootFolder: LanguageRootFolders,,
—~should be migrate to DexterityContainers

from plone.app.multilingual.content.lrf import LanguageRootFolder
2015-09-24 15:51:09 INFO Plone OpenlID system packages not installed, OpenID support,,
—not available
2015-09-24 15:51:11 INFO PloneFormGen Patching plone.app.portlets,
—ColumnPortletManagerRenderer to not catch Retry exceptions
2015-09-24 15:51:11 INFO Zope Ready to handle requests

If the output says INFO Zope Ready to handle requests then you are in business.

If you point your browser at http://localhost:8080 you see that Plone is running. There is no Plone site yet - we will
create one in chapter 6.

Now you have a working Plone site up and running and can continue with the next chapter. You can stop the running
instance anytime using ctrl + c.

Advertencia: If there is an error message you should either try to fix it or use vagrant and continue in this chapter.

Installing Plone with vagrant
In order not to waste too much time with installing and debugging the differences between systems, we use a vir-

tual machine (Ubuntu 16.04) to run Plone during the training. We rely on Vagrant and VirtualBox to give the same
development environment to everyone.

Vagrant is a tool for building complete development environments. We use it together with Oracle’s VirtualBox to
create and manage a virtual environment.

Instalar VirtualBox

Vagrant uses Oracle’s VirtualBox to create virtual environments. Here is a link directly to the download page: https:
/lwww.virtualbox.org/wiki/Downloads. We use VirtualBox 5.0.x

Instalar y configurar Vagrant

Get the latest version from https://www.vagrantup.com/downloads.html for your operating system and install it.

Nota: In Windows there is a bug in the recent version of Vagrant. Here are the instructions for how to work around
the warning Vagrant could not detect VirtualBox! Make sure VirtualBox is properly
installed.

Now your system has a command vagrant that you can run in the terminal.

16 Capitulo 2. Trainings

http://localhost:8080
https://www.vagrantup.com
https://www.virtualbox.org
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html

Plone Training Documentation, Publicacion 1.2.5a

Nota: You don’t need to install NodeJS as mentioned in the previous section. Our Vagrant configuration already
does that for you.

First, create a directory in which you want to do the training.

Advertencia: If you already have a training directory because you followed the Installing Plone without
vagrant instructions above, you should either delete it, rename it, or use a different name below.

$ mkdir training
$ cd training

Setup Vagrant to automatically install the current guest additions. You can choose to skip this step if you encounter
any problems with it.

$ vagrant plugin install vagrant-vbguest

Now download plone_training config.zip and copy its contents into your training directory.

$ wget https://raw.githubusercontent.com/plone/training/master/_static/plone_training_
—config.zip
$ unzip plone_training_config.zip

The training directory should now hold the file Vagrant file and the directory manifests which again contains
several files.

Now start setting up the VM that is configured in Vagrantfile:

$ vagrant up

This takes a veeeeery loooong time (between 10 minutes and 1h depending on your internet connection and system
speed) since it does all the following steps:

= downloads a virtual machine (Official Ubuntu Server 16.04 LTS, also called “Xenial Xerus™)
= establece la mdquina virtual

= actualiza la maquina virtual

= installs various system-packages needed for Plone development

= downloads and unpacks the buildout-cache to get all the eggs for Plone

= clones the training buildout into /vagrant/buildout

= construye Plone usando los paquetes eggs en el directorio del buildout-cache

Nota: Sometimes this stops with the message:

Skipping because of failed dependencies

If this happens or you have the feeling that something has gone wrong and the installation has not finished correctly
for some reason you need to run the following command to repeat the process. This will only repeat steps that have
not finished correctly.

’$ vagrant provision

2.1. Mastering Plone Development 17

Plone Training Documentation, Publicacion 1.2.5a

You can do this multiple times to fix problems, e.g. if your network connection was down and steps could not finish
because of this.

Nota: If while bringing vagrant up you get an error similar to:

ssh_exchange_identification: read: Connection reset by peer

The configuration may have stalled out because your computer’s BIOS requires virtualization to be enabled.
Check with your computer’s manufacturer on how to properly enable virtualization. See: https://teamtreehouse.com/
community/vagrant-ssh-sshexchangeidentification-read-connection-reset-by-peer

Once Vagrant finishes the provisioning process, you can login to the now running virtual machine.

$ vagrant ssh

Nota: If you use Windows you’ll have to login with putty. Connect to vagrant@127.0.01 at port 2222. User and
password are vagrant.

You are now logged in as the user vagrant in /home /vagrant. We’ll do all steps of the training as this user.

Instead we use our own Plone instance during the training. It is in /vagrant /buildout/. Start it in foreground
with . /bin/instance f£q.

ubuntu@training:~$ cd /vagrant/buildout/

ubuntu@training:/vagrant/buildout$ bin/instance fg

2017-09-28 09:19:21 INFO ZServer HTTP server started at Thu Sep 28 09:19:21 2017
Hostname: 0.0.0.0
Port: 8080

2017-09-28 09:19:24 INFO Products.PloneFormGen gpg_subprocess initialized, using /usr/

—bin/gpg

2017-09-28 09:19:24 WARNING PrintingMailHost Hold on to your hats folks, I'm a-patchin

2017-09-28 09:19:24 WARNING PrintingMailHost

kA Kk kA Ak hhk Ak hh kA hhkhkhkhhk bk hhk kA bk hkhkhkhk kA Ak hhkhkhkhk kA hkhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhhhkrhkhkhkhkhkhkkhhhkkxkx*k
Monkey patching MailHosts to print e-mails to the terminal.

This is instead of sending them.

NO MAIL WILL BE SENT FROM ZOPE AT ALL!

Turn off debug mode or remove Products.PrintingMailHost from the eggs

or remove ENABLE_PRINTING_MAILHOST from the environment variables to

return to normal e-mail sending.

See https://pypi.python.org/pypi/Products.PrintingMailHost

Ak hkhkhkhkhkhhhkhhhkhhhkhkhhkhkh bk bk hkhkhkhrhkhkr kb kb hk bk bk hh bk hkh bk bk bk hkhkh kb rhkhkrhkhkhhkhkhhhkhhkhkhxtk
/home/ubuntu/buildout-cache/eggs/plone.app.dexterity—-2.3.7-py2.7.egg/plone/app/
—dexterity/__init__ _.py:14: DeprecationWarning: Name clash, now use '_' as usal. Will

—be removed in Plone 5.2
DeprecationWarning)

18 Capitulo 2. Trainings

https://teamtreehouse.com/community/vagrant-ssh-sshexchangeidentification-read-connection-reset-by-peer
https://teamtreehouse.com/community/vagrant-ssh-sshexchangeidentification-read-connection-reset-by-peer
http://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
mailto:vagrant@127.0.01

Plone Training Documentation, Publicacion 1.2.5a

/home/ubuntu/buildout-cache/eggs/plone.app.multilingual-5.0.3-py2.7.egg/plone/app/
—multilingual/browser/migrator.py:11: DeprecationWarning: LanguageRootFolder:
—LanguageRootFolders should be migrate to DexterityContainers

from plone.app.multilingual.content.lrf import LanguageRootFolder
/home/ubuntu/buildout-cache/eggs/plone.portlet.collection-3.1-py2.7.egg/plone/portlet/
—collection/collection.py:2: DeprecationWarning: isDefaultPage is deprecated. Import,
—from Products.CMFPlone instead

from plone.app.layout.navigation.defaultpage import isDefaultPage
2017-09-28 09:19:28 INFO Plone OpenID system packages not installed, OpenID support,,
—not available
2017-09-28 09:19:30 INFO PloneFormGen Patching plone.app.portlets,
—ColumnPortletManagerRenderer to not catch Retry exceptions
2017-09-28 09:19:30 INFO Zope Ready to handle requests

Nota: In rare cases when you are using OSX with an UTF-8 character set starting Plone might fail with the following
error:

ValueError: unknown locale: UTF-8

In that case you have to put the localized keyboard and language settings in the .bash_profile of the vagrant user to
your locale (like en_US.UTF-8 or de_DE.UTF-38)

export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8

Now the Zope instance we’re using is running. You can stop the running instance anytime using ctrl + c.

If it doesn’t, don’t worry, your shell isn’t blocked. Type reset (even if you can’t see the prompt) and press RETURN,
and it should become visible again.

If you point your local browser at http://localhost:8080 you see that Plone is running in vagrant. This works becau-
se VirtualBox forwards the port 8080 from the guest system (the vagrant Ubuntu) to the host system (your normal
operating system). There is no Plone site yet - we will create one in chapter 6.

The Buildout for this Plone is in a shared folder. This means we run it in the vagrant box from /vagrant /buildout
but we can also access it in our own operating system and use our favorite editor. You will find the directory buildout
in the directory t raining that you created in the very beginning next to Vagrantfile and manifests.

Nota: The database and the python packages are not accessible in your own system since large files cannot ma-
ke use of symlinks in shared folders. The database lies in /home/ubuntu/var, the python packages are in
/home/ubuntu/packages.

If you have any problems or questions please mail us at team @starzel.de or create a ticket at https://github.com/plone/
training/issues.

¢Qué hace Vagrant?

Installation is done automatically by vagrant and puppet. If you want to know which steps are actually done please see
the chapter what_vagrant_does.

Nota: Vagrant Care and Handling

Keep in mind the following recommendations for using your Vagrant virtualboxes:

2.1. Mastering Plone Development 19

http://localhost:8080
mailto:team@starzel.de
https://github.com/plone/training/issues
https://github.com/plone/training/issues

Plone Training Documentation, Publicacion 1.2.5a

Use the vagrant suspend or vagrant halt commands to put the virtualbox to “sleep” or to “power it
off” before attempting to start another Plone instance anywhere else on your machine, if it uses the same port.
That’s because vagrant “reserves” port 8080, and even if you stopped Plone in vagrant, that port is still in use by
the guest OS.

If you are done with a vagrant box, and want to delete it, always remember to run vagrant destroy on
it before actually deleting the directory containing it. Otherwise you’ll leave its “ghost” in the list of boxes
managed by vagrant and possibly taking up disk space on your machine.

See vagrant help for all available commands, including suspend, halt, destroy, up, ssh and
resume.

The Case Study

For this training we will build a website for a fictional Plone conference.

Background

The Plone conference takes place every year and all Plone developers at least try to go there.

Requirements

Here are some requirements that we want to meet when the site is done:

As a visitor I want to find current information on the conference.

As a visitor I want to register for the conference.

As a visitor [want to see the talks and sort them by my preferences.

As a speaker [want to be able to submit talks.

As a speaker I want to see and edit my submitted talks.

As an organizer I want to see a list of all proposed talks.

As an organizer I want to have an overview about how many people registered.
As a jury member I want to vote on talks.

As a jury member I want to decide which talks to accept, and which not.

Note that all of our requirements connect roles with capabilities. This is important because we’ll want to limit the
capabilities to those to whom we assign particular roles.

The Features of Plone

In-depth user-manual: https://docs.plone.org/

See also: https://docs.plone.org/working-with-content/index.html

20

Capitulo 2. Trainings

https://docs.plone.org/
https://docs.plone.org/working-with-content/index.html

Plone Training Documentation, Publicacion 1.2.5a

Starting and Stopping Plone

We control Plone with a small script called “instance”:

$./bin/instance fg

This starts Plone in foreground mode so that we can see what it is doing by monitoring console messages. This is
an important development method. Note that when Plone is started in foreground mode, it is also automatically in
development mode. Development mode gives better feedback, but is much slower, particularly on Windows.

You can stop it by pressing ctrl + c.

Apart from the fg command the instance script offers several more commands. ./bin/instance help shows the list of
available commands, bin/instance help <command> will give a short help for each command. Some commands you
will use rather often are:

./bin/instance fg

./bin/instance start

./bin/instance stop

./bin/instance debug

./bin/instance run myscript.py
./bin/instance adduser name password

v Ay A

Depending on your computer, it might take up to a minute until Zope will tell you that it’s ready to serve requests. On
a decent laptop it should be running in under 15 seconds.

A standard installation listens on port 8080, so lets have a look at our Zope site by visiting http://localhost:8080
As you can see, there is no Plone site yet!

We have a running Zope with a database but no content. But luckily there is a button to create a Plone site. Click on
that button (login: admin, password: admin). This opens a form to create a Plone site. Use P1one as the site id.

You now have the option to select some add-ons before you create the site. Since we will use Dexterity from the
beginning we select Dexterity-based Plone Default Types. This way even the initial content on our page will be built
with Dexterity using the add-on plone.app.contenttypes which is the default in Plone 5.

You will be automatically redirected to the new site.

Nota: Plone has many message boxes. They contain important information. Read them and make sure you understand
them!

Exercises

Exercise 1

Open the bin/instance script in your favorite editor. Now let’s say you want Plone to listen on port 9080 instead of the
default 8080. Looking at the script, how could you do this?

Solution

At the end of the bin/instance script, you’ll see the following code:

if name = '__main '

sys.exit (plone.recipe.zope2instance.ctl.main(

2.1. Mastering Plone Development 21

http://localhost:8080

Plone Training Documentation, Publicacion 1.2.5a

['-C', '"/home/vagrant/training/buildout/parts/instance/etc/zope.conf']
+ sys.argv[l:]))

The second to last line points to the configuration file your Plone instance is using. An absolute path is used so it might
differ depending on the installation method. Open the zope.conf file in your editor and look for the section:

<http-server>
address 8080
</http-server>

Change the address to 9080 and restart your instance.

Exercise 2

Knowing that bin/instance debug basically offers you a Python prompt, how would you start to explore Plone?

Solution

Use locals() or locals().keys() to see Python objects available in Plone

Exercise 3

The app object you encountered in the previous exercise can be seen as the root of Plone. Once again using Python,
can you find your newly created Plone site?

Solution

app.__dict__.keys() will show app‘s attribute names - there is one called Plone, this is your Plone site object. Use
app.Plone to access and further explore it.

Nota: Plone and its objects are stored in an object database, the ZODB. You can use bin/instance debug as a database
client (in the same way e.g. psql is a client for PostgreSQL). Instead of a special query language (like SQL) you simply
use Python to access and manipulate ZODB objects. Don’t worry if you accidentally change objects in bin/instance
debug - you would have to commit your changes explicitly to make them permanent. The Python code to do so is:

>>> import transaction
>>> transaction.commit ()

You have been warned.

Walkthrough of the Ul

Let’s see what is there...
= header:
* logo: with a link to the front page

e searchbox: search (with live-search)

22 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

navigation: The global navigation

banner: A banner. Only visible on the front page.

portal-columns: a container holding:

e portal-column-one: portlets (configurable boxes with tools like navigation, news etc.)

e portal-column-content: the content and the editor

e portal-column-two: portlets

= portal-footer: portlets for the footer, site actions, and colophon

» edit-zone: a vertical bar on the left side of the browser window with editing options for the content
These are also the CSS classes of the respective divs. If you want to do theming, you’ll need them.
On the edit bar, we find options affecting the current context...

= folder contents

= edit

= view

= add

= state

= qactions

= display

= manage portlets

= history

= sharing

m rules

= user actions

Some edit bar options only show when appropriate; for example, folder contents and add are only shown for Folders.
rules is currently invisible because we have no content rules available.

Users

Let’s create our first users within Plone. So far we used the admin user (admin:admin) configured in the buildout.
This user is often called “Zope root” and is not managed in Plone but only by Zope. Therefore the user is missing
some features like email and full name and won’t be able to use some of Plone’s features. But the user has all possible
permissions. As with the root user of a server, it’s bad practice to make unnecessary use of Zope root. Use it to create
Plone sites and their initial users, but not much else.

You can also add Zope users via the terminal by entering:

$./bin/instance adduser <someusername> <supersecretpassword>

That way you can access databases you get from customers where you have no Plone user.

To add a new user in Plone, click on the user icon at the bottom of the left vertical bar and then on Site setup. This is
Plone’s control panel. You can also access it by browsing to http://localhost:8080/Plone/ @ @overview-controlpanel

Click on Users and Groups and add a user. If we had configured a mail server, Plone could send you a mail with a link
to a form where you can choose a password. (Or, if you have Products.PrintingMailHost in your buildout, you can see

2.1. Mastering Plone Development 23

http://localhost:8080/Plone/@@overview-controlpanel

Plone Training Documentation, Publicacion 1.2.5a

the email scrolling by in the console, just the way it would be sent out.) We set a password here because we haven’t
yet configured a mail server.

Make this user with your name an administrator.

Then create another user called testuser. Make this one a normal user. You can use this user to see how Plone
looks and behaves to users that have no admin permissions.

Now let’s see the site in 3 different browsers with three different roles:
= as anonymous
= as editor

= as admin

Configure a Mailserver
We have to configure a mailserver since later we will create some content rules that send emails when new content is
put on our site.

= Server: localhost

= Username: leave blank

= Password: leave blank

= Site ‘From’ name: Your name

= Site ‘From’ address: Your email address

Click on Save and send test e-mail. Since we have configured PrintingMailHost, you will see the mail content in the
console output of your instance. Plone will not actually send the email to the receivers address.

Content-Types

Edit a page:

Edit front-page
s Title Plone Conference 2015,Bucharest
= Summary Tutorial
m Text ...
Create a site structure:
= Add a folder “The Event” and in it add:
* Folder “Talks”
* Folder “Training”

* Folder “Sprint”

In /news: Add a News Item “Conference Website online!” with some image

In /news: Add a News Item “Submit your talks!”

In /events: Add an Event “Deadline for talk submission” Date: 2015/08/10

Add a Folder “Register”

Delete the Folder “Users”

24 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Add a Folder “Intranet”

The default Plone content types are:

Collection
Event

File
Folder
Image
Link
News Item

Page

Nota: Please keep in mind that we use plone.app.contenttypes for the training, which are the default in Plone 5.
Therefore the types are based on Dexterity and slightly different from the types that you will find in a default Plone
4.3.x site.

Folders

Go to ‘the-event’

explain the difference between title, ID, and URL

explain /folder_contents

change the order of items

explain bulk actions

dropdown “display”

default pages

Add a page to ‘the-event’: “The Event” and make it the default page

Collections

add a new collection: “all content that has pending as wf_state”.

explain the default collection for events at http://localhost:8080/Plone/events/aggregator/edit
explain Topics

mention collection portlets

multi-path queries

constraints, e.g. /Plone/folder::1

Content Rules

Create new rule “a new talk is in town’!

New content in folder “Talks” -> Send Mail to reviewers.

2.1. Mastering Plone Development 25

https://docs.plone.org/external/plone.app.contenttypes/docs/README.html
http://localhost:8080/Plone/events/aggregator/edit

Plone Training Documentation, Publicacion 1.2.5a

History

Show and explain; mention versioning and its relation to types.

Manage members and groups

= add/edit/delete Users

= roles

= groups
* Add group “Editors” and add the user ‘editor’ to it
e Add group: orga

* Add group: jury and add user ‘jurymember’ to it.

Workflows

Take a look at the state drop down on the edit bar on the homepage. Now, navigate to one of the folders just added.
The homepage has the status published and the new content is private.

Let’s look at the state transitions available for each type. We can make a published item private and a private item
published. We can also submit an item for review.

Each of these states connects roles to permissions.
= In published state, the content is available to anonymous visitors;

= In private state, the content is only viewable by the author (owner) and users who have the can view role
for the content.

A workflow state is an association between a role and one or more permissions. Moving from one state to another is
a transition. Transitions (like submit for review) may have actions — such as the execution of a content
rule or script — associated with them.

A complete set of workflow states and transitions makes up a workflow. Plone allows you to select among several
pre-configured workflows that are appropriate for different types of sites. Individual content types may have their own
workflow. Or, and this is particularly interesting, they may have no workflow. In that case, which initially applies to
file and image uploads, the content object inherits the workflow state of its container.

Nota: An oddity in all of the standard Plone workflows: a content item may be viewable even if its container is not.
Making a container private does not automatically make its contents private.

Read more at: https://docs.plone.org/working-with-content/collaboration-and-workflow/index.html

Working copy

Published content, even in an intranet setting, can pose a special problem for editing. It may need to be reviewed before
changes are made available. In fact, the original author may not even have permission to change the document without
review. Or, you may need to make a partial edit. In either case, it may be undesirable for changes to be immediately
visible.

Plone’s working copy support solves this problem by adding a check-out/check-in function for content — available on
the actions menu. A content item may be checked out, worked on, then checked back in. Or it may abandoned if the
changes weren’t acceptable. Not until check in is the new content visible.

26 Capitulo 2. Trainings

https://docs.plone.org/working-with-content/collaboration-and-workflow/index.html

Plone Training Documentation, Publicacion 1.2.5a

While it’s shipped with Plone, working copy support is not a common need. So, if you need it, you need to activate it
via the add-on packages configuration page. Unless activated, check-in/check-out options are not visible.

Nota: Working Copy Support has limited support for Dexterity content types. The limitation is that there are some
outstanding issues with folderish items that contain many items. See: plone/Products. CMFPlone#665

Placeful workflows

You may need to have different workflows in different parts of a site. For example, we created an intranet folder. Since
this is intended for use by our conference organizers — but not the public — the simple workflow we wish to use for
the rest of the site will not be desirable.

Plone’sWorkflow Policy Support package gives you the ability to set different workflows in different sections
of a site. Typically, you use it to set a special workflow in a folder that will govern everything under that folder. Since
it has effect in a “place” in a site, this mechanism is often called “Placeful Workflow”.

As with working-copy support, Placeful Workflow ships with Plone but needs to be activated via the add-on confi-
guration page. Once it’s added, a Policy option will appear on the state menu to allow setting a placeful workflow
policy.

The Anatomy of Plone

In this part you will:

= Learn a bit about the history of Plone.
Topics covered:

= CMF

= Zope

= Pyramid

= Bluebream

Python, Zope, CMF, Plone ... — how does all that fit together?

Zope2

= Zope is a web application framework that Plone runs on top of.
= The majority of Zope’s code is written in Python, like everything else written on top of it.
= It serves applications that communicate with users via http.

Before Zope, there usually was an Apache server that would call a script and give the request as an input. The script
would then just print HTML to the standard output. Apache returned that to the user. Opening database connections,
checking permission constraints, generating valid HTML, configuring caching, interpreting form data and everything
else: you have to do it on your own. When the second request comes in, you have to do everything again.

Jim Fulton thought that this was slightly tedious. So he wrote code to handle requests. He believed that site content
is object-oriented and that the URL should somehow point directly into the object hierarchy, so he wrote an object-
oriented database, called ZODB.

2.1. Mastering Plone Development 27

https://github.com/plone/Products.CMFPlone/issues/665
http://www.zodb.org/en/latest/

Plone Training Documentation, Publicacion 1.2.5a

The ZODB is a fully ACID compliant database with automatic transactional integrity. It automatically maps traversal
in the object hierarchy to URL paths, so there is no need to “wire” objects or database nodes to URLs. This gives Plone
its easy SEO-friendly URLs.

Traversal through the object database is security checked at every point via very fine grained access-control lists.
One missing piece is important and complicated: Acquisition.

Acquisition is a kind of magic. Imagine a programming system where you do not access the file system and where
you do not need to import code. You work with objects. An object can be a folder that contains more objects, an
HTML page, data, or another script. To access an object, you need to know where the object is. Objects are found by
paths that look like URLSs, but without the domain name. Now Acquisition allows you to write an incomplete path. An
incomplete path is a relative path, it does not explicitly state that the path starts from the root, it starts relative to where
the content object is — its context. If Zope cannot resolve the path to an object relative to your code, it tries the same
path in the containing folder. And then the folder containing the folder.

This might sound weird, what do I gain with this?

You can have different data or code depending on your context. Imagine you want to have header images differing
for each section of your page, sometimes even differing for a specific subsection of your site. So you define a path
header_image and put a header image at the root of your site. If you want a folder with a different header image,
you put the header image into this folder. Please take a minute to let this settle and think about what this allows you to
do.

= contact forms with different e-mail addresses per section
= different CSS styles for different parts of your site
= One site, multiple customers, everything looks different for each customer.

As with all programming magic, acquisition exacts a price. Zope code must be written carefully in order to avoid
inheriting side effects via acquisition. The Zope community expresses this with the Python (Monty) maxim: Beware
the Spammish Acquisition.

Basically this is Zope.
Ver también:
= http://www.zope.org/en/latest/world.html

= http://docs.zope.org/zope2/zope2book/

Content Management Framework

= CMF (Content Management Framework) is add-on for Zope to build Content Management Systems (like Plone).

After many websites were successfully created using Zope, a number of recurring requirements emerged, and some
Zope developers started to write CMF, the Content Management Framework.

The CMF offers many services that help you to write a CMS based on Zope. Most objects you see in the ZMI are part
of the CMF somehow.

The developers behind CMF do not see CMF as a ready to use CMS. They created a CMS Site which was usable out
of the box, but made it deliberately ugly, because you have to customize it anyway.

We are still in prehistoric times here. There were no eggs (Python packages), Zope did not consist of 100 independent
software components but was one big file set.

Many parts of Plone are derived from the CMF, but it’s a mixed heritage. The CMF is an independent software project,
and has often moved more slowly than Plone. Plone is gradually eliminating dependence on most parts of the CMF.

28 Capitulo 2. Trainings

https://en.wikipedia.org/wiki/ACID
http://www.zope.org/en/latest/world.html
http://docs.zope.org/zope2/zope2book/
http://old.zope.org/Products/CMF/index.html/

Plone Training Documentation, Publicacion 1.2.5a

Zope Toolkit / Zope3

= Zope 3 was originally intended as a rewrite of Zope from the ground up.
= Plone uses parts of it provided by the Zope Toolkit (ZTK).
Unfortunately, only few people started to use Zope 3, nobody migrated to Zope 3 because nobody knew how.

But there were many useful things in Zope 3 that people wanted to use in Zope 2, thus the Zope community adapted
some parts so that they could use them in Zope 2. Sometimes, a wrapper of some sort was necessary, these usually are
being provided by packages from the five namespace. (Zope 2 + Zope 3 = “five”)

To make the history complete, since people stayed on Zope 2, the Zope community renamed Zope 3 to Bluebream, so
that people would not think that Zope 3 was the future. It wasn’t anymore.

Zope Component Architecture (ZCA)

The Zope Component Architecture, which was developed as part of Zope 3, is a system which allows for component
pluggability and complex dispatching based on objects which implement an interface (a description of a functionality).
It is a subset of the ZTK but can be used standalone. Plone makes extensive use of the ZCA in its codebase.

Pyramid

= Pyramid is a Python web application development framework that is often seen as the successor to Zope.

= [tdoes less than Zope, is very pluggable and uses the Zope Component Architecture “under the hood” to perform
view dispatching and other application configuration tasks.

You can use it with a relational Database instead of ZODB if you want, or you can use both databases or none of them.

Apart from the fact that Pyramid was not forced to support all legacy functionality, which can make things more
complicated, the original developer had a very different stance on how software must be developed. While both Zope
and Pyramid have good test coverage, Pyramid has good documentation; something that was very neglected in Zope,
and at times in Plone too.

Whether the component architecture is better in Pyramid or not we don’t dare say, but we like it more. But maybe it’s
just because it was documented.

Ver también:

» https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html
Exercise
Definition of the PYTHON_PATH makes up most of the bin/instance script’s code. Look at the package list (and

maybe also the links provided in the respective sections of this chapter). Try to identify 3 packages that belong to the
original Zope2, 3 packages from CMF, 3 Zope Toolkit packages and 3 packages from the ZCA.

Solution
= Zope2: Zope2, ZODB, Acquistion, AccessControl, ...

s CMF: Products.CMFCore, Products.CMFUid, Products. CMFEditions, ... Products. DCWorkflow doesn’t fit the
pattern but is a very important part of the CMF

= ZTK: zope.browser, zope.container, zope.pagetemplate, .. You <can find a complete list
herehttps://dist.plone.org/versions/zopetoolkit-1-0-8-zopeapp-versions.cfg

2.1. Mastering Plone Development 29

https://zopetoolkit.readthedocs.io/en/latest/
https://zopecomponent.readthedocs.io/en/latest/
https://trypyramid.com
https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/zca.html
https://docs.pylonsproject.org/projects/pyramid/en/latest/index.html

Plone Training Documentation, Publicacion 1.2.5a

= ZCA: zope.component, zope.interface, zope.event

What’s New in Plone 5

If you are already used to Plone 5 you could skip this section.

Default Theme

The new default theme is called Barceloneta
It is a Diazo theme, meaning it uses plone.app.theming to insert the output of Plone into static html/css.

It uses html5, so it uses <header>, <nav>, <aside>, <section>, <article> and <footer> for semantic
html.

The theme is mostly built with LESS (lots of it!) and uses the same grid system as bootstrap. This means you can use
css classes like col-xs-12 col-sm-9 to control the width of elements for different screen-sizes. If you prefer a
different grid-system (like foundation) over bootstrap you can adapt the theme to use that.

The index.html and rules.xml are actually not that complicated. Have a look at them.

The following example from rules.xml makes sure that the banner saying “Welcome! Plone 5 rocks!” is only
visible on the frontpage:

<!-- include view @@hero on homepage only —-->

<after css:theme="#mainnavigation-wrapper"
css:content=".principal”
href="/@@hero"
css:if-content="body.template-document_view.section-front-page" />

The browser-view @@hero (you can find it by searching all ZCML-files for name="hero") is only included when
the body-tag of the current page has the css-classes template—document_view and section-front-page.

New Ul and widgets
The green edit bar is replaced by a toolbar that is located on the left or top and can be expanded. The design of the
toolbar is pretty isolated from the theme and it should not break if you use a different theme.
The widgets where you input data are also completely rewritten.
= We now use the newest TinyMCE

= The tags (keywords) widget and the widgets where you input usernames now use select2 autocomplete to give
a better user experience

= The related-items widget is a complete rewrite

Folder Contents

The view to display the content of a folder is new and offers many new features:
= configurable table columns
= changing properties of multiple items at once

= querying (useful for folders with a lot of content)

30 Capitulo 2. Trainings

https://github.com/plone/plonetheme.barceloneta/
http://lesscss.org/
http://getbootstrap.com/css/#grid
http://foundation.zurb.com/sites/docs/grid.html
https://github.com/plone/plonetheme.barceloneta/blob/master/plonetheme/barceloneta/theme/index.html
https://github.com/plone/plonetheme.barceloneta/blob/master/plonetheme/barceloneta/theme/rules.xml
http://select2.github.io

Plone Training Documentation, Publicacion 1.2.5a

= persistent selection of items

Content Types

All default types are based on Dexterity. This means you can use behaviors to change their features and edit them
through the web. Existing old content can be migrated to these types.

Resource Registry

The resource registry allows you to configure and edit the static resources (js, css) of Plone. It replaces the old javascript
and css registries. And it can be used to customize the theme by changing the variables used by LESS or overriding
LESS files.

Chameleon template engine

Chameleon is the new rendering engine of Plone 5. It offers many improvements:

Old syntax:

<hl tal:attributes="title view/title"
tal:content="view/page_name">
</h1l>

New (additional) syntax:

<hl title="S${view/title}">
${view/page_name}
</hl>

Template debugging:

You can now put a full-grown pdb in a template.

<?python import pdb; pdb.set_trace() ?>

For debugging check out the variable econtext, it holds all the current elements.

You can also add real Python blocks inside templates.

<?python
from plone import api

catalog = api.portal.get_tool ('portal_catalog')

results = []

for brain in catalog(portal_ type='Folder'):
results.append (brain.getURL())

2>

<1li tal:repeat="result results">
S{result}
</1li>

2.1. Mastering Plone Development 31

https://chameleon.readthedocs.io/en/latest/

Plone Training Documentation, Publicacion 1.2.5a

Don’t overdo it!

Control panel

= You can finally upload a logo in @@site-controlpanel.
= All control panels were moved to z3c.form
= Many small improvements

Date formatting on the client side

Using the js library moment.js the formatting of dates was moved to the client.

<ul class="pat-moment"
data-pat-moment="selector:1i; format:calendar; ">
${python:context.created () .ISO() }</1i>
<1i>2015-10-22T12:10:00-05:00</1i>

returns

= Today at 3:24 PM

= 10/22/2015
plone.app.multilingual

plone.app.multilingual is the new default add-on for sites in more than one language.

New portlet manager

plone.footerportlets is a new place to put portlets. The footer (holding the footer, site_actions, colophon) is
now built from portlets. This means you can edit the footer TTW.

There is also a useful new portlet type Actions used for displaying the site_actions.

Remove portal_skins

Many of the old skin templates were replaced by real browser views.

Configuring and Customizing Plone “Through The Web”

Advertencia:

This chapter has not yet been updated for Plone 5!

32 Capitulo 2. Trainings

https://github.com/plone/plone.app.multilingual

Plone Training Documentation, Publicacion 1.2.5a

The Control Panel

The most important parts of Plone can be configured in the control panel.
= Click on the portrait/username in the toolbar
» Click Site Setup

We’ll explain every page and mention some of the actions you can perform here.

General

—

Date and Time
Language
Mail
Navigation
Site

Add-ons
Search

Discussion

© ® N A » N

Theming

-
e

Social Media

—_
—

. Syndication

. TinyMCE

—_
[\

Content

1. Content Rules
Editing

Image Handling
Markup

Content Settings

AN

Dexterity Content Types

Users

1. Users and Groups

Security

1. HTML Filtering
2. Security

3. Errors

2.1. Mastering Plone Development 33

Plone Training Documentation, Publicacion 1.2.5a

Advanced

1. Maintenance
2. Management Interface
3. Caching

4. Configuration Registry
5. Resource Registries

Below the links you will find information on your Plone, Zope and Python Versions and an indicator as to whether
you’re running in production or development mode.

Change the logo

Let’s change the logo.
= Download a ploneconf logo: https://www.starzel.de/plone-tutorial/ploneconf-logo-2014
= Go to http://localhost:8080/Plone/ @ @site-controlpanel
= Upload the Logo.

Ver también:

https://docs.plone.org/adapt-and-extend/change- the-logo.html

Portlets

In the toolbar under More options you can open the configuration for the different places where you can have portlets.
= UI fit for smart content editors
= Various types
= Portlet configuration is inherited
= Managing
= Ordering/weighting
= The future: may be replaced by tiles
» @@manage-portlets
Example:
= Go to http://localhost:8080/Plone/ @ @manage-portlets
= Add a static portlet “Sponsors” on the right side.
= Remove the news portlet and add a new one on the left side.
= Go to the training folder: http://localhost:8080/Plone/the-event/training and click Manage portlets
= Add a static portlet. “Featured training: Become a Plone-Rockstar at Mastering Plone!”
= Use the toolbar to configure the portlets of the footer:
 Hide the portlets “Footer” and “Colophon”.

* Add a “Static text portlet” enter “Copyright 2015 by Plone Community”.

34 Capitulo 2. Trainings

https://www.starzel.de/plone-tutorial/ploneconf-logo-2014
http://localhost:8080/Plone/@@site-controlpanel
https://docs.plone.org/adapt-and-extend/change-the-logo.html
http://localhost:8080/Plone/@@manage-portlets
http://localhost:8080/Plone/the-event/training

Plone Training Documentation, Publicacion 1.2.5a

» Use “Insert > Special Character” to add a real © sign.

* You could turn that into a link to a copyright page later.

Viewlets

Portlets save data, Viewlets usually don’t. Viewlets are often used for UI-Elements and have no nice UI to customize

them.

@@manage-viewlets

Viewlets have no nice Ul

Not aimed at content editors

Not locally addable, no configurable inheritance.

Usually global (depends on code)

Will be replaced by tiles?

The code is much simpler (we’ll create one tomorrow).

Live in viewlet managers, can be nested (by adding a viewlet that contains a viewlet manager).
TTW reordering only within the same viewlet manager.

The code decides when it is shown and what it shows.

ZMI (Zope Management Interface)

Go to http://localhost:8080/Plone/manage

Zope is the foundation of Plone. Here you can access the inner workings of Zope and Plone alike.

Nota: Here you can easily break your site so you should know what you are doing!

We only cover three parts of customization in the ZMI now. Later on when we added our own code we’ll come back
to the ZMI and will look for it.

At some point you’ll have to learn what all those objects are about. But not today.

Actions (portal_actions)

Actions are mostly links. But really flexible links.
Actions are configurable ttw and through code.

These actions are usually iterated over in viewlets and displayed.

Examples:

Links in the Footer (site_actions)

Actions Dropdown (folder_buttons)

Actions have properties like:

description

url

2.1. Mastering Plone Development 35

http://localhost:8080/Plone/manage

Plone Training Documentation, Publicacion 1.2.5a

= 118n-domain
= condition

= permissions

site_actions

These are the links at the bottom of the page:
= Site Map
= Accessibility
= Contact
= Site Setup
We want a new link to legal information, called “Imprint”.
» Goto site_actions (we know that because we checked in @@manage-viewlets)

Add a CMF Action imprint

Set URL to string:${portal_url}/imprint

Leave condition empty

Set permission to View

= Save
explain

= Check if the link is on the page

= Create new Document Imprint and publish
Ver también:

https://docs.plone.org/develop/plone/functionality/actions.html

Global navigation

= The horizontal navigation is called portal_tabs

» Go to portal_actions — portal_tabs Link

s Edit index_html
Where is the navigation?
The navigation shows content-objects, which are in Plone’s root. Plus all actions in portal_tabs.
Explain & edit index_html
Configuring the navigation itself is done elsewhere: http://localhost:8080/Plone/ @ @navigation-controlpanel
If time explain:

= user > undo (cool!)

= user > login/logout

36 Capitulo 2. Trainings

https://docs.plone.org/develop/plone/functionality/actions.html
http://localhost:8080/Plone/portal_actions/portal_tabs/manage_main
http://localhost:8080/Plone/@@navigation-controlpanel

Plone Training Documentation, Publicacion 1.2.5a

Skins (portal_skins)

Inportal_skins we can change certain images, CSS-files and templates.
= portal_skins is deprecated technology

= Plone 5 got rid of most files that lived in portal_skins.

Change some CSS

= Go to ZMI

» Gotoportal_skins

» Gotoplone_styles

» GotoploneCustom.css
= Click customize

The CSS you add to this file is instantly active on the site.

portal_view_customizations
Change the footer

» Gotoportal_view_customizations
= Search plone. footer, click and customize

= Replace the content with the following

<div il8n:domain="plone"
id="portal-footer">
<p>© 2016 by me! |

Contact us

</p>
</div>

Ver también:

https://docs.plone.org/adapt-and-extend/theming/templates_css/skin_layers.html

CSS Registry (portal_css)

deprecated (See the chapter on theming)

Further tools in the ZMI

There are many more notable items in the ZMI. We’ll visit some of them later.
m acl_users

» error_log

2.1. Mastering Plone Development 37

https://docs.plone.org/adapt-and-extend/theming/templates_css/skin_layers.html

Plone Training Documentation, Publicacion 1.2.5a

portal_properties (deprecated)

portal_setup

portal_workflow

portal_catalog

Summary

You can configure and customize a lot in Plone through the web. The most important options are accessible in the Plone
control panel but some are hidden away in the ZMI. The amount and presentation of information is overwhelming but
you’ll get the hang of it through a lot of practice.

Theming

We don’t do any real theming during the training. We’ll just explain the options you have.

If you really want to learn about theming see https://docs.plone.org/adapt-and-extend/theming/index.html and the
Training Mastering Plone Theming

Extending Plone

In this part you will:

= Get an overview over the technologies used to extend Plone
Topics covered:

= Skin folders

= GenericSetup

= Component Architecture

= ZCML
Zope is extensible and so is Plone.

If you want to install an add-on, you are going to install an Egg — a form of Python package. Eggs consist of Python
files together with other needed files like page templates and the like and a bit of metadata, bundled to a single archive
file.

There is a huge variety of Plone-compatible packages available. See Plone.org add-on listing. The source repository
for many public Plone add-ons is the GitHub Collective. You may also create your own packages or maintain custom
repositories.

Eggs are younger than Zope. Zope needed something like eggs before there were eggs, and the Zope developers wrote
their own system. Old, outdated Plone systems contain a lot of code that is not bundled in an egg. Older code did not
have metadata to register things, instead you needed a special setup method. We don’t need this method but you might
see it in other code. It is usually used to register Archetypes code. Archetypes is the old content type system. Instead,
we use the new content type system Dexterity.

Extension technologies

How do you extend Plone?

This depends on what type of extension you want to create.

38 Capitulo 2. Trainings

http://localhost:8080/Plone/@@overview-controlpanel
http://localhost:8080/Plone/@@overview-controlpanel
http://localhost:8080/Plone/manage
https://docs.plone.org/adapt-and-extend/theming/index.html
https://plone.org/download/add-ons/
https://github.com/collective

Plone Training Documentation, Publicacion 1.2.5a

= You can create extensions with new types of objects to add to your Plone site. Usually these are contenttypes.

= You can create an extension that changes or extends functionality. For example to change the way Plone displays
search results, or to make pictures searchable by adding a converter from jpg to text.

Skin Folders

Do you remember Acquisition? The Skin Folders extends the concepts of Acquisition. Your Plone site has a folder
named portal_skins. This folder has a number of sub folders. The portal skins folder has a property that
defines in which order Plone searches for attributes or objects in each sub folder.

The Plone logo is in a skin folder.
By default, your site has a custom folder, and items are first searched for in that folder.

To customize the logo, you copy it into the custom folder, and change it there. This way you can change templates,
CSS styles, images and behavior, because a container may contain Python scripts.

Skin-folder style customization may be accomplished TTW via the ZMI, or with add-on packages. Many older-style
packages create their own skin folder and add it to the skin layer for Plone when installed.

Advertencia: This is deprecated technology.

GenericSetup

The next thing is GenericSetup. As the name clearly implies, GenericSetup is part of CMF.
GenericSetup is tough to master, I am afraid.

GenericSetup lets you define persistent configuration in XML files. GenericSetup parses the XML files and updates
the persistent configuration according to the configuration. This is a step you have to run on your own!

You will see many objects in Zope or the ZMI that you can customize through the web. If they are well behaving, they
can export their configuration via GenericSetup and import it again.

Typically you use GenericSetup to change workflows or add new content type definitions.

GenericSetup profiles may also be built into Python packages. Every package that is listed on the add-on package list
inside a Plone installation has a GS profile that details how it fits into Plone. Packages that are part of Plone itself may
have GS profiles, but are excluded from the active/inactive listing.

Component Architecture

The last way to extend Plone is via Components.
A bit of history is in order.
When Zope started, object-oriented design was the silver bullet.

Object-oriented design is good at modeling inheritance, but breaks down when an object has multiple aspects that are
part of multiple taxonomies.

Some object-oriented programming languages like Python handle this through multiple inheritance. But it’s not a good
way to do it. Zope objects have more than 10 base classes. Too many namespaces makes code that’s hard to maintain.
Where did that method/attribute come from?

After a while, XML and Components became the next silver bullet (Does anybody remember J2EE?).

2.1. Mastering Plone Development 39

Plone Training Documentation, Publicacion 1.2.5a

Based on their experiences with Zope in the past, Zope developers thought that a component system configured via
XML might be the way to go to keep the code more maintainable.

As the new concepts were radically different from the old Zope concepts, the Zope developers renamed the new project
to Zope 3. But it did not gain traction, the community somehow renamed it to Bluebream and this died off.

But the component architecture itself is quite successful and the Zope developers extracted it into the Zope Toolkit.
The Zope toolkit is part of Zope, and Plone developers use it extensively.

This is what you want to use.

What are components, what is ZCML

What is the absolute simplest way to extend functionality?
Monkey Patching.
It means that you change code in other files while my file gets loaded.

If you want to have an extensible registry of icons for different contenttypes, you could create a global dictionary, and
whoever implements a new icon for a different content type would add an entry to my dictionary during import time.

This approach, like subclassing via multiple inheritance, does not scale. Multiple plugins might overwrite each other,
you would explain to people that they have to reorder the imports, and then, suddenly, you will be forced to import
feature A before B, B before C and C before A, or else your application won’t work.

The Zope Component Architecture with its ZCML configuration is an answer to these problems.

With ZCML you declare utilities, adapters and browser views in ZCML, which is an XML dialect. ZCML stands for
Zope Component Markup Language.

Components are differentiated from one another by the interfaces (formal definitions of functionality) that they require
or provide.

During startup, Zope reads all these ZCML statements, validates that there are not two declarations trying to register
the same components and only then registers everything. All components are registered by interfaces required and
provided. Components with the same interfaces may optionally also be named.

This is a good thing. ZCML is, by the way, only one way to declare your configuration.

Grok provides another way, where some Python magic allows you to use decorators to register Python classes and
functions as components. You can use ZCML and Grok together if you wish.

Some like Grok because it allows you to do nearly everything in your Python source files. No additional XML wiring
required. If you’re XML-allergic, Grok is your ticket to Python nirvana.

Not everybody loves Grok. Some parts of the Plone community think that there should only be one configuration
language, others are against adding the relative big dependency of Grok to Plone. One real problem is the fact that
you cannot customize components declared with grok with jbot (which we’ll discuss later). Grok is not allowed in the
Plone core for these reasons.

The choice to Grok or not to Grok is yours to make. In any case, if you start to write an extension that is reusable,
convert your grok declarations to ZCML to get maximum acceptance.

Personally, I just find it cumbersome but even for me as a developer it offers a nice advantage: thanks to ZCML, I
hardly ever have a hard time to find what and where extensions or customizations are defined. For me, ZCML files are
like a phone book.

Extend Plone With Add-On Packages

= There are more than 2,000 add-ons for Plone. We will cover only a handful today.

40 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

= Using them saves a lot of time
= The success of a project often depends on finding the right add-on

= Their use, usefulness, quality and complexity varies a lot

Some notable add-ons

Products.PloneFormGen A form generator.

collective.disqus Integrates the Disqus commenting platform API into Plone
collective.plonetruegallery Photo galleries with a huge selection of various js-libraries.
plone.app.mosaic Layout solution to easily create complex layouts through the web.
collective.geo Flexible bundle of add-ons to geo-reference content and display in maps
collective.mailchimp Allows visitors to subscribe to mailchimp newsletters
eea.facetednavigation Create faceted navigation and searches through the web.
collective.lineage Microsites for Plone - makes subfolders appear to be autonomous Plone sites
Products.Doormat A flexible doormat

collective.behavior.banner Add decorative banners and sliders
plone.app.multilingual Allows multilingual sites by translating content.

Rapido Allows developers with a little knowledge of HTML and a little knowledge of Python to implement custom
elements and insert them anywhere they want.

Plomino Powerful and flexible web-based application builder for Plone

Advertencia: Some add-ons may not yet run under Plone 5 and will have to be updated to be compatible.

How to find add-ons

= https://plone.org/download/add-ons
= https://pypi.python.org/pypi - use the search form!
= https://github.com/collective >1200 repos
= https://github.com/plone >260 repos
= https://community.plone.org - ask the community
= google (e.g. Plone+Slider)
= ask in irc and on the mailing list
Ver también:

= A talk on finding and managing add-ons: https://www.youtube.com/watch?v=Sc6NkqaSjqw

Installing Add-ons

Installation is a two-step process.

2.1. Mastering Plone Development 41

https://docs.plone.org/develop/plone/forms/ploneformgen.html
https://pypi.python.org/pypi/collective.disqus/
https://pypi.python.org/pypi/collective.plonetruegallery
https://github.com/plone/plone.app.mosaic
http://collectivegeo.readthedocs.io/en/latest/
https://pypi.python.org/pypi/collective.mailchimp
https://pypi.python.org/pypi/eea.facetednavigation/
https://pypi.python.org/pypi/collective.lineage
https://pypi.python.org/pypi/Products.Doormat
https://github.com/collective/collective.behavior.banner
https://pypi.python.org/pypi/plone.app.multilingual
https://rapidoplone.readthedocs.io/en/latest/
http://plomino.net/
https://plone.org/download/add-ons
https://pypi.python.org/pypi
https://github.com/collective
https://github.com/plone
https://community.plone.org
http://lmgtfy.com/?q=plone+slider
https://www.youtube.com/watch?v=Sc6NkqaSjqw

Plone Training Documentation, Publicacion 1.2.5a

Making the add-on packages available to Zope

First, we must make the add-on packages available to Zope. This means that Zope can import the code. Buildout is
responsible for this.

Look at the buildout.cfgqgfilein /vagrant /buildout.

Nota: If you’re using our Vagrant kit, the Plone configuration is available in a folder that is shared between the
host and guest operating systems. Look in your Vagrant install directory for the buildout folder. You may edit
configuration files using your favorite text editor in the host operating system, then switch into your virtual machine
to run buildout on the guest operating system.

In the section [instance] there is a variable called eggs, which has a list of eggs as a value. For example:

eggs =
Plone
Products.PloneFormGen
plone.app.debugtoolbar

You add an egg by adding a new line containing the package name to the configuration. You must write the egg name
indented: this way, buildout understands that the current line is part of the last variable and not a new variable.

If you add new add-ons here you will have to run buildout and restart the site:

$ bin/buildout
$ bin/instance fg

Now the code is available from within Plone.

Installing add-ons in your Plone Site

Your Plone site has not yet been told to use the add-on. For this, you have to activate the add-on in your Plone Site.

Nota: Why the extra step of activating the add-on package? You may have multiple Plone sites in a single Zope
installation. It’s common to want to activate some add-ons in one site, others in another.

In your browser, go to Site Setup (shortcut: add /@@overview-controlpanel to the Plone site URL), and open
the Add-ons Panel. You will see that you can install the add-ons there.

Install PloneFormGen now.
This is what happens: The GenericSetup profile of the product gets loaded. This does things like:
= Configuring new actions
= Registering new contenttypes
= Registering css and js files
= Creating some content/configuration objects in your Plone site.

Let’s have a look at what we just installed.

42 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

PloneFormGen

There are many ways to create forms in Plone:
= Pure: html and python in a view
= Framework: z3c.form, formlib, deform
= TTW: Products.PloneFormGen

The basic concept of PloneFormGen is that you build a form by adding a Form Folder, to which you add form fields
as content items. Fields are added, deleted, edited and moved just as with any other type of content. Form submissions
may be automatically emailed and/or saved for download. There are many add-ons to PloneFormGen that provide
additional field types and actions.

Let’s build a registration form:
= Activate PloneFormGen for this site via the add-on configuration panel in site setup
= Add an object of the new type ‘Form Folder’ in the site root. Call it “Registration”
= Save and view the result, a simple contact form that we may customize
= Click in QuickEdit
= Remove field “Subject”
= Add fields for food preference and shirt size
= Add a DataSave Adapter

» Customize the mailer

Nota: Need CAPTCHAs? Add the collective.recaptcha package to your buildout and PFG will have a
CAPTCHA field.

Need encryption? Add GPG encryption to your system, add a GPG configuration for the Plone daemon user that
includes a public key for the mail targets, and you’ll be able to encrypt email before sending.

Think PFG is too complicated for your site editors? Administrators (and we’re logged in as an administrator) see lots
of more complex options that are invisible to site editors.

By the way, while PloneFormGen is good at what it does, it is not a good model for designing your own extensions. It
was created before the Zope Component Architecture became widely used. The authors would write it much differently
if they were starting from scratch.

Nota: collective.easyform is a alternative form-generator that uses dexterity. It is still under development.

Add Photo Gallery with collective.plonetruegallery
To advertise the conference we want to show some photos showing past conferences and the city where the conference
is taking place.

Instead of creating new contenttypes for galleries, it integrates with the Plone functionality to choose different views
for folderish contenttypes.

https://pypi.python.org/pypi/collective.plonetruegallery

= Activate the add-on

2.1. Mastering Plone Development 43

https://pypi.python.org/pypi/collective.easyform
https://pypi.python.org/pypi/collective.plonetruegallery

Plone Training Documentation, Publicacion 1.2.5a

Enable the behavior Plone True Gallery on the type Folder: http://localhost:8080/Plone/
dexterity-types/Folder/ @ @behaviors

Add a folder /the—-event/location

Upload some photos from lorempixel.com

Enable the view galleryview

Internationalization

Plone can run the same site in many different languages.
We’re not doing this with the conference site since the lingua franca of the Plone community is English.
We would use the built-in addon https://pypi.python.org/pypi/plone.app.multilingual for this.

Building a multi-lingual site requires activating plone.app.multilingual, but no add-on is necessary to build
a site in only one language. Just select a different site language when creating a Plone site, and all text in the user-
interface will be switched to that language.

Summary
We are now able to customize and extend many parts of our website. We can even install extensions that add new
functionality.
But:
= Can we submit talks now?
= Can we create lists with the most important properties of each talk?
= Can we allow a jury to vote on talks?

We often have to work with structured data. Up to a degree we can do all this TTW, but at some point we run into
barriers. In the next part of the training, we’ll teach you how to break through these barriers.

Dexterity I: “Through The Web”

In this part you will:

= Create a new content type called Talk.
Topics covered:

= Content types

= Archetypes and Dexterity

= Fields

= Widgets

What is a content type?
A content type is a kind of object that can store information and is editable by users. We have different content types

to reflect the different kinds of information about which we need to collect and display information. Pages, folders,
events, news items, files (binary) and images are all content types.

44 Capitulo 2. Trainings

http://localhost:8080/Plone/dexterity-types/Folder/@@behaviors
http://localhost:8080/Plone/dexterity-types/Folder/@@behaviors
https://pypi.python.org/pypi/plone.app.multilingual

Plone Training Documentation, Publicacion 1.2.5a

It is common in developing a web site that you’ll need customized versions of common content types, or perhaps even
entirely new types.

Remember the requirements for our project? We wanted to be able to solicit and edit conference talks. We could use
the Page content type for that purpose. But we need to make sure we collect certain bits of information about a talk
and we couldn’t be sure to get that information if we just asked potential presenters to create a page. Also, we’ll want
to be able to display talks featuring that special information, and we’ll want to be able to show collections of talks. A
custom content type will be ideal.

The makings of a Plone content type

Every Plone content type has the following parts:
Schema A definition of fields that comprise a content type; properties of an object.

FTI The “Factory Type Information” configures the content type in Plone, assigns it a name, an icon, additional
features and possible views to it.

Views A view is a representation of the object and the content of its fields that may be rendered in response to a
request. You may have one or more views for an object. Some may be visual — intended for display as web
pages — others may be intended to satisfy AJAX requests and render content in formats like JSON or XML.

Dexterity and Archetypes - A Comparison

There are two content frameworks in Plone:
= Dexterity: new and the coming default.
= Archetypes: old, tried and tested. Widespread, used in many add-ons.
= Plone 4.x: Archetypes is the default, with Dexterity available.

= Plone 5.x: Dexterity is the default, with Archetypes available.

For both, add and edit forms are created automatically from a schema.
What are the differences?
= Dexterity: New, faster, modular, no dark magic for getters and setters.
= Archetypes had magic setter/getter - use talk.getAudience () for the field audience.
= Dexterity: fields are attributes: talk.audience instead of talk.getAudience ().
“Through The Web” or TTW, i.e. in the browser, without programming:
= Dexterity has a good TTW story.
= Archetypes has no TTW story.
= UML-modeling: ArchGenXML for Archetypes, agx for Dexterity
Approaches for Developers:
» Schema in Dexterity: TTW, XML, Python. Interface = schema, often no class needed.
= Schema in Archetypes: Schema only in Python.
= Dexterity: Easy permissions per field, easy custom forms.
= Archetypes: Permissions per field are hard, custom forms even harder.
= If you have to program for old sites you need to know Archetypes!

» [f starting fresh, go with Dexterity.

2.1. Mastering Plone Development 45

https://docs.plone.org/old-reference-manuals/archgenxml/index.html
http://agx.me

Plone Training Documentation, Publicacion 1.2.5a

Extending:

= Dexterity has Behaviors: easily extendable. Just activate a behavior TTW and your content type is e.g. transla-
table (plone.app.multilingual).

= Archetypes has archetypes.schemaextender. Powerful but not as flexible.

We have only used Dexterity for the last few years. We teach Dexterity and not Archetypes because it’s more accessible
to beginners, has a great TTW story and is the future.

Views:
= Both Dexterity and Archetypes have a default view for content types.
= Browser Views provide custom views.

= You can generate views for content types in the browser without programming (using the
plone.app.mosaic Add-on).

Display Forms.

Modifying existing types

= Go to the control panel http://localhost:8080/Plone/ @ @dexterity-types

= Inspect some of the existing default types.

= Select the type News Item and add a new field Hot News of type Yes/No
= In another tab, add a News Item and you’ll see the new field.

= Go back to the schema-editor and click on Edit XML Field Model.

= Note that the only field in the XML schema of the News Item is the one we just added. All others are provided
by behaviors.

= Edit the form-widget-type so it says:

<form:widget type="z3c.form.browser.checkbox.SingleCheckBoxFieldWidget"/>

= Edit the News Item again. The widget changed from a radio field to a check box.
= The new field Hot News is not displayed when rendering the News Item. We’ll take care of this later.
Ver también:

https://docs.plone.org/external/plone.app.contenttypes/docs/README.html#extending-the-types

Creating content types TTW
In this step we will create a content type called Talk and try it out. When it’s ready we will move the code from the
web to the file system and into our own add-on. Later we will extend that type, add behaviors and a viewlet for Talks.
= Add new content type “Talk” and some fields for it:

* Add new field “Type of talk”, type “Choice”. Add options: talk, keynote, training.

* Add new field “Details”, type “Rich Text” with a maximal length of 2000.

* Add new field “Audience”, type “Multiple Choice”. Add options: beginner, advanced, pro.

* Check the behaviors that are enabled: Dublin Core metadata, Name from title. Do we need them all?

= Test the content type.

46 Capitulo 2. Trainings

http://localhost:8080/Plone/@@dexterity-types
http://localhost:8080/Plone/dexterity-types/News%20Item/@@modeleditor
https://docs.plone.org/external/plone.app.contenttypes/docs/README.html#extending-the-types

20

21

22

23

24

25

26

27

28

29

36

37

38

39

40

41

42

43

44

Plone Training Documentation, Publicacion 1.2.5a

= Return to the control panel http://localhost:8080/Plone/ @ @ dexterity-types
= Extend the new type: add the following fields:

* “Speaker”, type: “Text line”

e “Email”, type: “Email”

* “Image”, type: “Image”, not required

» “Speaker Biography”, type: “Rich Text”
= Test again.

Here is the complete XML schema created by our actions:

<model xmlns:lingua="http://namespaces.plone.org/supermodel/lingua"
xmlns:users="http://namespaces.plone.org/supermodel /users"
xmlns:security="http://namespaces.plone.org/supermodel/security"
xmlns:marshal="http://namespaces.plone.org/supermodel /marshal"
xmlns:form="http://namespaces.plone.org/supermodel/form"
xmlns="http://namespaces.plone.org/supermodel/schema">

<schema>
<field name="type_of_talk" type="zope.schema.Choice">
<description/>
<title>Type of talk</title>
<values>

<element>Talk</element>
<element>Training</element>
<element>Keynote</element>
</values>
</field>
<field name="details" type="plone.app.textfield.RichText">
<description>Add a short description of the talk (max. 2000 characters)</
—description>
<max_length>2000</max_length>
<title>Details</title>

</field>
<field name="audience" type="zope.schema.Set">
<description/>

<title>Audience</title>
<value_type type="zope.schema.Choice">
<values>
<element>Beginner</element>
<element>Advanced</element>
<element>Professionals</element>
</values>
</value_type>
</field>
<field name="speaker" type="zope.schema.TextLine">
<description>Name (or names) of the speaker</description>
<title>Speaker</title>
</field>
<field name="email" type="plone.schema.email.Email">
<description>Adress of the speaker</description>
<title>Email</title>

</field>
<field name="image" type="plone.namedfile.field.NamedBlobImage">
<description/>

<required>False</required>
<title>Image</title>

2.1. Mastering Plone Development

47

http://localhost:8080/Plone/@@dexterity-types

45

46

47

48

49

50

51

53

Plone Training Documentation, Publicacion 1.2.5a

</field>
<field name="speaker_biography" type="plone.app.textfield.RichText">
<description/>

<max_length>1000</max_length>
<required>False</required>
<title>Speaker Biography</title>
</field>
</schema>
</model>

Moving contenttypes into code
It’s awesome that we can do so much through the web. But it’s also a dead end if we want to reuse this content type in
other sites.

Also, for professional development, we want to be able to use version control for our work, and we’ll want to be able
to add the kind of business logic that will require programming.

So, we’ll ultimately want to move our new content type into a Python package. We’re missing some skills to do that,
and we’ll cover those in the next couple of chapters.

Ver también:
= Dexterity Developer Manual
= The standard behaviors

Exercises

Exercise 1

Modify Pages to allow uploading an image as decoration (like News Items do).

Solution
= Go to the dexterity control panel (http://localhost:8080/Plone/ @ @dexterity-types)
= Click on Page (http://127.0.0.1:8080/Plone/dexterity-types/Document)
= Select the tab Behaviors (http://127.0.0.1:8080/Plone/dexterity-types/Document/ @ @behaviors)
= Check the box next to Lead Image and save.

The images are displayed above the title.

Exercise 2

Create a new content type called Speaker and export the schema to a XML File. It should contain the following fields:
= Title, type: “Text Line”
= Email, type: “Email”
= Homepage, type: “URL” (optional)
= Biography, type: “Rich Text” (optional)

48 Capitulo 2. Trainings

https://docs.plone.org/external/plone.app.dexterity/docs/index.html
https://docs.plone.org/external/plone.app.dexterity/docs/reference/standard-behaviours.html
http://localhost:8080/Plone/@@dexterity-types
http://127.0.0.1:8080/Plone/dexterity-types/Document
http://127.0.0.1:8080/Plone/dexterity-types/Document/@@behaviors

Plone Training Documentation, Publicacion 1.2.5a

Company, type: “Text Line” (optional)
Twitter Handle, type: “Text Line” (optional)
IRC Handle, type: “Text Line” (optional)

= Image, type: “Image” (optional)

Do not use the DublinCore or the Basic behavior since a speaker should not have a description (unselect it in the

Behaviors tab).

We could use this content type later to convert speakers into Plone users. We could then link them to their talks.

Solution

The schema should look like this:

<model xmlns:
:users="http://namespaces.plone.org/supermodel /users"
xmlns:

xmlns

xmlns

xmlns:

lingua="http://namespaces.plone.org/supermodel/lingua"

security="http://namespaces.plone.org/supermodel/security"

:marshal="http://namespaces.plone.org/supermodel /marshal"

form="http://namespaces.plone.org/supermodel/form"

xmlns="http://namespaces.plone.org/supermodel/schema">

<schema>

<field name="title" type="zope.schema.TextLine">
<title>Name</title>

</field>

<field name="email" type="plone.schema.email.Email">
<title>Email</title>

</field>

<field name="homepage" type="zope.schema.URI">
<required>False</required>
<title>Homepage</title>

</field>

<field name="biography" type="plone.app.textfield.RichText">
<required>False</required>
<title>Biography</title>

</field>

<field name="company" type="zope.schema.TextLine">
<required>False</required>
<title>Company</title>

</field>

<field name="twitter_handle" type="zope.schema.TextLine">
<required>False</required>
<title>Twitter Handle</title>

</field>

<field name="irc_name" type="zope.schema.TextLine">
<required>False</required>
<title>IRC Handle</title>

</field>

<field name="image" type="plone.namedfile.field.NamedBlobImage">
<required>False</required>
<title>Image</title>

</field>

</schema>
</model>

Ver también:

2.1. Mastering Plone Development

49

Plone Training Documentation, Publicacion 1.2.5a

= Dexterity XML

= Model-driven types

Buildout |

In this part you will:
= Learn about Buildout
Topics covered:
= Buildout
= Recipes
= Buildout Configuration
= mr.developer
Buildout composes your application for you, according to your rules.

To compose your application you must define the eggs you need, which version, what configuration files Buildout
has to generate for you, what to download and compile, and so on. Buildout downloads the eggs you requested and
resolves all dependencies. You might need five different eggs, but in the end, Buildout has to install 300 eggs, all with
the correct version in order to resolve all the dependencies.

Buildout does this without touching your system Python or affecting any other package. The commands created by
buildout bring all the required packages into the Python environment. Each command it creates may use different
libraries or even different versions of the same library.

Plone needs folders for logfiles, databases and configuration files. Buildout assembles all of this for you.

You will need a lot of functionality that Buildout does not provide out of the box, so you’ll need several extensions.
Some extensions provide new functionality, like mr.developer, the best way to manage your checked out sources.

Syntax

The syntax of Buildout configuration files is similar to classic ini files. You write a parameter name, an equals sign
and the value. If you enter another value in the next line and indent it, Buildout understands that both values belong to
the parameter name, and the parameter stores all values as a list.

A Buildout consists of multiple sections. Sections start with the section name in square brackets. Each section declares
a different part of your application. As a rough analogy, your Buildout file is a cookbook with multiple recipes.

There is a special section, called [buildout]. This section can change the behavior of Buildout itself. The variable
parts defines which of the existing sections should actually be used.

Recipes

Buildout itself has no idea how to install Zope. Buildout is a plugin based system, it comes with a small set of plugins
to create configuration files and download eggs with their dependencies and the proper version. To install a Zope site,
you need a third-party plugin. The plugins provide new recipes that you have to declare and configure in their own
respective sections.

One example is the section

50 Capitulo 2. Trainings

https://docs.plone.org/external/plone.app.dexterity/docs/reference/dexterity-xml.html
https://docs.plone.org/external/plone.app.dexterity/docs/model-driven-types.html#model-driven-types
https://pypi.python.org/pypi/zc.buildout

Plone Training Documentation, Publicacion 1.2.5a

[instance]
recipe = plone.recipe.zope2instance
user = admin:admin

This uses the python package plone.recipe.zope2instance to create and configure the Zope 2 instance which we use to
run Plone. All the lines after recipe = xyz are the configuration of the specified recipe.

Ver también:

http://www.buildout.org/en/latest/docs/recipelist.html

References
Buildout allows you to use references in the configuration. A variable declaration may not only hold the variable value,
but also a reference to where to look for the variable value.

If you have a big setup with many Plone sites with minor changes between each configuration, you can generate a
template configuration, and each site references everything from the template and overrides just what needs to be
changed.

Even in smaller buildouts this is a useful feature. We are using collective.recipe.omelette. A very practical recipe that
creates a virtual directory that eases the navigation to the source code of each egg.

The omelette recipe needs to know which eggs to reference. We want the same eggs that our instance uses, so we
reference the eggs of the instance instead of repeating the whole list.

Another example: Say you create configuration files for a webserver like nginx, you can define the target port for the
reverse proxy by looking it up from the zope2instance recipe.

Configuring complex systems always involves a lot of duplication of information. Using references in the buildout
configuration allows you to minimize these duplications.

A real life example

Let us walk through the buildout . cfg for the training and look at some important variables:

[buildout]

extends =
http://dist.plone.org/release/5.0.6/versions.cfg
versions.cfg

extends—cache = extends-cache

extensions = mr.developer

Tell mr.developer to ask before updating a checkout.
always—checkout = true

show-picked-versions = true

sources = sources

The directory this buildout is in. Modified when using vagrant.
buildout_dir = ${buildout:directory}

We want to checkouts these eggs directly from GitHub
auto-checkout =

ploneconf.site
starzel.votable_behavior

parts =

2.1. Mastering Plone Development 51

https://pypi.python.org/pypi/plone.recipe.zope2instance
http://www.buildout.org/en/latest/docs/recipelist.html
https://pypi.python.org/pypi/collective.recipe.omelette

Plone Training Documentation, Publicacion 1.2.5a

checkversions
codeintel
instance
mrbob
packages
robot

test

zopepy

eggs =
Plone
Pillow

development tools
z3c. jbot
plone.reload
Products.PDBDebugMode
plone.app.debugtoolbar
Products.PrintingMailHost

TTW Forms (based on Archetypes)
Products.PloneFormGen

The addon we develop in the training
ploneconf.site

Voting on content
starzel.votable_behavior

zcml =

test-eggs +=
ploneconf.site [test]

[instance]

recipe = plone.recipe.zope2instance

user = admin:admin

http-address = 8080

debug-mode = on

verbose-security = on

deprecation-warnings = on

eggs = ${buildout:eggs}

zcml = ${buildout:zcml}

file-storage = ${buildout:buildout_dir}/var/filestorage/Data.fs
blob-storage = ${buildout:buildout_dir}/var/blobstorage

[test]
recipe = zc.recipe.testrunner
eggs = ${buildout:test-eggs}
defaults = ['--auto-color', '-vvv']
[robot]
recipe = zc.recipe.egg
eggs =
${buildout:test-eggs}
Pillow

plone.app.robotframework[ride, reload, debug]

52 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

[packages]

recipe = collective.recipe.omelette

eggs = ${buildout:eggs}

location = ${buildout:buildout_dir}/packages

[codeintel]
recipe = corneti.recipes.codeintel
eggs = ${buildout:eggs}

[checkversions]
recipe = zc.recipe.egg
eggs = z3c.checkversions [buildout]

[zopepy]
recipe = zc.recipe.egg
eggs = ${buildout:eggs}
interpreter = zopepy
scripts =
zopepy
plone—-generate—-gruntfile
plone-compile-resources

[mrbob]
recipe = zc.recipe.egg
eggs =

mr.bob

bobtemplates.plone

[sources]

ploneconf.site = git https://github.com/collective/ploneconf.site.git
—pushurl=git@github.com:collective/ploneconf.site.git

starzel.votable_behavior = git https://github.com/collective/starzel.votable_behavior.
—git pushurl=git://github.com/collective/starzel.votable_behavior.git

When you run . /bin/buildout without any arguments, Buildout will look for this file.

Let us look closer at some variables.

extends =
http://dist.plone.org/release/5.0.6/versions.cfg

This line tells Buildout to read another configuration file. You can refer to configuration files on your computer or to
configuration files on the Internet, reachable via http. You can use multiple configuration files to share configurations
between multiple Buildouts, or to separate different aspects of your configuration into different files. Typical examples
are version specifications, or configurations that differ between different environments.

eggs =
Plone
Pillow

development tools
z3c. jbot
plone.reload
Products.PDBDebugMode
plone.app.debugtoolbar
Products.PrintingMailHost

TTW Forms (based on Archetypes)

2.1. Mastering Plone Development 53

Plone Training Documentation, Publicacion 1.2.5a

Products.PloneFormGen

The addon we develop in the training
ploneconf.site

Voting on content
i starzel.votable_behavior

zcml =

test-eggs +=
ploneconf.site [test]

This is the list of eggs that we configure to be available for Zope. These eggs are put in the python path of the script
bin/instance with which we start and stop Plone.

The egg P1one is a wrapper without code. Among its dependencies is Products . CMFPlone which is the egg that
is at the center of Plone.

The rest are add-ons we already used or will use later. The last eggs are commented out so they will not be installed
by Buildout.

The file versions.cfg thatis included by the extends = ... statement holds the version pins:
[versions]

dev tools

mr.developer = 1.34

Products.PDBDebugMode = 1.3.1

corneti.recipes.codeintel = 0.3

plone.app.debugtoolbar = 1.1.1
z3c.jbot = 0.7.2
Products.PrintingMailHost = 1.0

pins for some Addons
Products.PloneFormGen = 1.8.1
Products.PythonField = 1.1.3
#

This is another special section. By default buildout will look for version pins in a section called [versions]. This
is why we included the file versions.cfg.

Hello mr.developer!

There are many more important things to know, and we can’t go through them all in detail but I want to focus on one
specific feature: mr . developer

With mr . developer you can declare which packages you want to check out from which version control system
and which repository URL. You can check out sources from git, svn, bzr, hg and maybe more. Also, you can say that
some sources are in your local file system.

mr.developer comes with a command, . /bin/develop. You can use it to update your code, to check for
changes and so on. You can activate and deactivate your source checkouts. If you develop your extensions in eggs with
separate checkouts, which is a good practice, you can plan releases by having all source checkouts deactivated, and
only activate them when you write changes that require a new release. You can activate and deactivate eggs via the
develop command or the Buildout configuration. You should always use the Buildout way. Your commit serves as
documentation.

54 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Extensible

You might have noticed that most if not all functionality is only available via plugins. One of the things that Buildout
excels at without any plugin is the dependency resolution. You can help Plone in dependency resolution by declaring
exactly which version of an egg you want. This is only one use case. Another one is much more important: If you want
to have a repeatable Buildout, one that works two months from now also, you must declare all your egg versions. Else
Buildout might install newer versions.

Be McGuyver
As you can see, you can build very complex systems with Buildout. It is time for some warnings. Be selective in your
recipes. Supervisor is a program to manage running servers, and it’s pretty good. There is a recipe for it.

The configuration for this recipe is more complicated than the supervisor configuration itself! By using this recipe,
you force others to understand the recipe’s specific configuration syntax and the supervisor syntax. For such cases,
collective.recipe.template is a better match.

Another problem is error handling. Buildout tries to install a weird dependency you do not actually want? Buildout
will not tell you where it is coming from.

If there is a problem, you can always run Buildout with —v to get more verbose output, sometimes it helps.

$./bin/buildout -v

If strange egg versions are requested, check the dependencies declaration of your eggs and your version pinnings. Here
is an invaluable shell command that allows you to find all packages that depend on a particular egg and version:

$ grep your.egg.name.here /home/vagrant/buildout—-cache/eggs/*.egg/EGG-INFO/requires.
—txt

Put the name of the egg with a version conflict as the first argument. Also, change the path to the buildout cache folder
according to your installation (the vagrant buildout is assumed in the example).

Some parts of Buildout interpret egg names case sensitively, others don’t. This can result in funny problems.

Always check out the ordering of your extends, always use the annotate command of Buildout to see if it interprets
your configuration differently than you. Restrict yourself to simple Buildout files. You can reference variables from
other sections, you can even use a whole section as a template. We learned that this does not work well with complex
hierarchies and had to abandon that feature.

In the chapter Buildout I1: Getting Ready for Deployment we will have a look at a production-ready buildout for Plone
that has many useful features.

Ver también:

Buildout-Documentation http://docs.buildout.org/en/latest/contents.html

Troubleshooting https://docs.plone.org/manage/troubleshooting/buildout.html

A minimal buildout for Plone 5 https://github.com/collective/minimalplone5

A minimal buildout for Plone 4 https://github.com/collective/minimalplone4

The buildout of the unified installer has some valuable documentation as inline-comment
= https://github.com/plone/Installers- UnifiedInstaller/blob/master/buildout_templates/buildout.cfg
= https://github.com/plone/Installers- UnifiedInstaller/blob/master/base_skeleton/base.cfg
= https://github.com/plone/Installers- UnifiedInstaller/blob/master/base_skeleton/develop.cfg

mr.developer https://pypi.python.org/pypi/mr.developer/

2.1. Mastering Plone Development 55

https://pypi.python.org/pypi/collective.recipe.template
http://docs.buildout.org/en/latest/contents.html
https://docs.plone.org/manage/troubleshooting/buildout.html
https://github.com/collective/minimalplone5
https://github.com/collective/minimalplone4
https://github.com/plone/Installers-UnifiedInstaller/blob/master/buildout_templates/buildout.cfg
https://github.com/plone/Installers-UnifiedInstaller/blob/master/base_skeleton/base.cfg
https://github.com/plone/Installers-UnifiedInstaller/blob/master/base_skeleton/develop.cfg
https://pypi.python.org/pypi/mr.developer/

Plone Training Documentation, Publicacion 1.2.5a

Write Your Own Add-Ons to Customize Plone

Get the code!

Get the code for this chapter (More info):

git checkout eggsl

In this part you will:
= Create a custom Python package ploneconf. site to hold all the code
= Modify buildout to install that package

Topics covered:
» mr.bob and bobtemplates.plone

» the structure of eggs

Creating the package

Our own code has to be organized as a Python package, also called egg. An egg is a zip file or a directory that follows
certain conventions. We are going to use bobtemplates.plone to create a skeleton project. We only need to fill in the
blanks.

We create and enter the src directory (src is short for sources) and call a script called mrbob from our buildout’s
bin directory:

$ mkdir src # (if src does not exist already)
$ cd src
$../bin/mrbob -0 ploneconf.site bobtemplates:plone_addon

We have to answer some questions about the add-on. We will press Enter (i.e. choosing the default value) for all
questions except 3 (where you enter your GitHub username if you have one) and 5 (Plone version), where we enter
5.0.6:

—-—> What kind of package would you like to create? Choose between 'Basic', 'Dexterity
', and 'Theme'. [Basic]:

—-—> Author's name [Philip Bauer]:

——> Author's email [bauer@starzel.de]:

——> Author's GitHub username: fulv

—-—> Package description [An add-on for Plone]:
——> Plone version [5.0.5]: 5.0.6

Generated file structure at /vagrant/buildout/src/ploneconf.site

If this is your first egg, this is a very special moment. We are going to create the egg with a script that generates a
lot of necessary files. They all are necessary, but sometimes in a subtle way. It takes a while to understand their full
meaning. Only last year I learned and understood why I should have a MANIFEST . in file. You can get along without
one, but trust me, you get along better with a proper manifest file.

56 Capitulo 2. Trainings

https://pypi.python.org/pypi/bobtemplates.plone

Plone Training Documentation, Publicacion 1.2.5a

Inspecting the package

In src there is now a new folder ploneconf.site and in there is the new package. Let’s have a look at some of
the files:

bootstrap-buildout.py,buildout.cfg, travis.cfqg, .travis.yml, .coveragerc You can ig-
nore these files for now. They are here to create a buildout only for this egg to make testing it easier. Once
we start writing tests for this package we will have another look at them.

README . rst, CHANGES . rst, CONTRIBUTORS . rst, docs/ The documentation, changelog, the list of contri-
butors and the license of your egg goes in here.

setup.py This file configures the package, its name, dependencies and some metadata like the author’s name and
email address. The dependencies listed here are automatically downloaded when running buildout.

src/ploneconf/site/ The package itself lives inside a special folder structure. That seems confusing
but is necessary for good testability. Our package contains a namespace package called ploneconf.site
and because of this there is a folder ploneconf with a _ _init_ .py and in there another folder
site and in there finally is our code. From the buildout’s perspective our code is in your buildout
directory/src/ploneconf.site/src/ploneconf/site/real code

Nota: Unless discussing the buildout we will from now on silently omit these folders when describing files and
assume that your buildout directory/src/ploneconf.site/src/ploneconf/site/ is the root
of our package!

configure.zcml (src/ploneconf/site/configure.zcml) The phone book of the distribution. By
reading it you can find out which functionality is registered using the component architecture.

setuphandlers.py (src/ploneconf/site/setuphandlers.py) This holds code that is automatically
run when installing and uninstalling our add-on.

interfaces.py (src/ploneconf/site/interfaces.py) Here a browserlayer is defined in a straightfor-
ward python class. We will need it later.

testing.py This holds the setup for running tests.
tests/ This holds the tests.

browser/ This directory is a python package (because ithasa ___init__ .py) and will by convention hold most
things that are visible in the browser.

browser/configure.zcml The phonebook of the browser package. Here views, resources and overrides are
registered.

browser/overrides/ This add-on is already configured to allow overriding existing default Plone templates.

browser/static/ A directory that holds static resources (images/css/js). The files in here will be accessible
through URLs like ++resource++ploneconf.site/myawesome.css

profiles/default/ This folder contains the GenericSetup profile. During the training we will put some XML
files here that hold configuration for the site.

profiles/default/metadata.xml Version number and dependencies that are auto-installed when installing
our add-on.

Including the package in Plone

Before we can use our new package we have to tell Plone about it. Look at buildout.cfg and see how
ploneconf.site isincluded in auto-checkout, eggs and test:

2.1. Mastering Plone Development 57

https://www.python.org/dev/peps/pep-0420/

Plone Training Documentation, Publicacion 1.2.5a

auto-checkout +=
ploneconf.site
starzel.votable_behavior

parts =
checkversions
codeintel
instance
mrbob
packages
robot
test

zopepy

eggs =
Plone
Pillow

development tools
z3c. jbot
plone.api
plone.reload
Products.PDBDebugMode
plone.app.debugtoolbar
Products.PrintingMailHost

TTW Forms (based on Archetypes)
Products.PloneFormGen

The add-on we develop in the training
ploneconf.site

Voting on content
starzel.votable_behavior

zcml =

test—-eggs +=
ploneconf.site [test]

This tells Buildout to add the egg ploneconf.site. The sources for this eggs are defined in the section
[sources] at the bottom of buildout.cfg.

[sources]

ploneconf.site = git https://github.com/collective/ploneconf.site.git
—pushurl=git@github.com:collective/ploneconf.site.git

starzel.votable_behavior = git https://github.com/collective/starzel.votable_behavior.
—gilt pushurl=git://github.com/collective/starzel.votable_behavior.git

This tells buildout not to download it from pypi but to do a checkout from GitHub put the code in
src/ploneconf.site

Nota: The package ploneconf. site is now downloaded from GitHub and automatically in the branch master

Nota: If you do not want to use the prepared package for ploneconf.site from GitHub but write it yourself (we suggest

58 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

you try that) then add the following instead:

[sources]
ploneconf.site = fs ploneconf.site path=src
starzel.votable_behavior = git https://github.com/collective/starzel.votable_behavior.

—git pushurl=git://github.com/collective/starzel.votable_behavior.git

This tells buildout to expect ploneconf.site in src/plonecont.site. The directive f£s allows you to add eggs on
the filesystem without a version control system.

Now run buildout to reconfigure Plone with the updated configuration:

$./bin/buildout

After restarting Plone with . /bin/instance £g the new add-on ploneconf. site is available for install like
PloneFormGen or Plone True Gallery.

We will not install it now since we did not add any of our own code or configuration yet. Let’s do that next.

Return to Dexterity: Moving contenttypes into Code

Get the code!

Get the code for this chapter (More info):

git checkout export_code

In this part you will:
= Move the Talk type into ploneconf.site
= Improve the schema and the FTI
Topics covered:
= FTI
= type definitions with generic setup
= XML schema
= more widgets

Remember the 7alk content type that we created through-the-web with Dexterity? Let’s move that new content type
into our add-on package so that it may be installed in other sites without TTW manipulation.

Steps:
= Return to the Dexterity control panel
= Export the Talk Type Profile and save the file
= Delete the 7alk from the site before installing it from the file system

= Extract the files from the exported tar file and add them to our add-on package in profiles/default/

Nota: From the buildout directory perspective thatis src/ploneconf.site/src/ploneconf/site/profiles/default/

2.1. Mastering Plone Development 59

Plone Training Documentation, Publicacion 1.2.5a

The file profiles/default/types.xml tells Plone that there is a new content type defined in file talk . xml.

<?xml version="1.0"?>
<object name="portal_ types" meta_type="Plone Types Tool">
<property name="title">Controls the available contenttypes in your portal</property>
<object name="talk" meta_type="Dexterity FTI"/>
<!-— —%- more types can be added here —x— ——>
</object>

Upon installing, Plone reads the file profiles/default/types/talk.xml and registers a new type in
portal_types (you can find and inspect this tool in the ZMI!) with the information taken from that file.

<?xml version="1.0"?>
<object name="talk" meta_type="Dexterity FTI" il8n:domain="plone"
xmlns:118n="http://xml.zope.org/namespaces/il8n">
<property name="title" il8n:translate="">Talk</property>
<property name="description" il8n:translate="">None</property>
<property name="icon_expr">string:${portal_url}/document_icon.png</property>
<property name="factory">talk</property>
<property name="add view_expr">string:${folder_url}/++add++talk</property>
<property name="link target"></property>
<property name="immediate view">view</property>
<property name="global allow">True</property>
<property name="filter content_ types">True</property>
<property name="allowed_content_types"/>
<property name="allow_discussion">False</property>
<property name="default view">view</property>
<property name="view_methods">
<element value="view"/>
</property>
<property name="default view_ fallback">False</property>
<property name="add permission">cmf.AddPortalContent</property>
<property name="klass">plone.dexterity.content.Container</property>
<property name="behaviors">
<element value="plone.app.dexterity.behaviors.metadata.IDublinCore"/>
<element value="plone.app.content.interfaces.INameFromTitle"/>
</property>
<property name="schema"></property>
<property
name="model_source">< ?xml version='1l].0' encoding='utf8'?>
<model xmlns:lingua="http://namespaces.plone.org/supermodel/lingua" xmlns:users=
—"http://namespaces.plone.org/supermodel/users" xmlns:form="http://namespaces.plone.
—org/supermodel/form" xmlns:il8n="http://xml.zope.org/namespaces/il18n" xmlns:
—security="http://namespaces.plone.org/supermodel/security" xmlns:marshal="http://
—namespaces.plone.org/supermodel/marshal" xmlns="http://namespaces.plone.org/
—»supermodel/schema">
&1t ; schemaé>
< field name="type_of_talk" type="zope.schema.Choice">
<description/>
<title> Type of talk</title>
<valuesé>
<element> Talk&alt; /elementéagt;
<elementé> Training< /elementéagt;
<elementé>Keynote< /elementéagt;
&1t; /valueséagt;
< /fieldagt;
< field name="details" type="plone.app.textfield.RichText">
<description>Add a short description of the talk (max. 2000,
—characters) < /descriptioné>

60 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

<max_lengthé>2000&1lt; /max_length>
<title>Details< /title>

< /fieldéegt;

&1lt; field name="audience" type="zope.schema.Set">
<description/>

<title>Audience< /titleagt;
&1lt;value_type type="zope.schema.Choice">
<valuesé>
<element>Beginneré< /elementé>
<elementé> Advancedé< /elementé>
<element>Professionalsé< /elementé>
< /valuesé>
< /value_typeé>

< /fieldagt;

< field name="speaker" type="zope.schema.TextLine">
<description>Name (or names) of the speakeré</description>
<title> Speaker< /title>

< /fieldéegt;

< field name="email" type="plone.schema.email.Email">
<descriptioné>Adress of the speakeré</description>
<title>Email< /title>

< /fieldéagt;

< field name="image" type="plone.namedfile.field.NamedBlobImage">
<description/>

< required>False< /requiredéagt;
<title> Image< /title>

< /fieldéegt;

&1lt; field name="speaker_biography" type="plone.app.textfield.RichText">
<description/>

<max_length>1000&1t; /max_lengthé>
< required>False< /requiredéagt;
<title> Speaker Biographyé< /titleé>
< /fieldagt;
&1lt; /schema>
&1lt; /model> </property>

<property name="model file"></property>

<property name="schema_policy">dexterity</property>

<alias from=" (Default)" to="(dynamic view)"/>

<alias from="edit" to="QRedit"/>

<alias from="sharing" to="@Esharing"/>

<alias from="view" to="(selected layout)"/>
<action title="View" action_id="view" category="object" condition_expr=""
description="" icon_expr="" link_target="" url_expr="string:${object_url}"

visible="True">
<permission value="View"/>

</action>
<action title="Edit" action_id="edit" category="object" condition_expr=""
description="" icon_expr="" link_target=""

url_expr="string:${object_url}/edit" visible="True">
<permission value="Modify portal content"/>
</action>
</object>

Now our package has some real contents. So, we’ll need to reinstall it (if installed before).
= Restart Plone.

= Re-install ploneconf.site (deactivate and activate).

2.1. Mastering Plone Development 61

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Plone Training Documentation, Publicacion 1.2.5a

= Test the type by adding an object or editing one of the old ones.
= Look at how the talks are presented in the browser.
The escaped inline xml is simply too ugly to look at. You should move it to a separate file!

Create a new folder content in the main directory (from the buildout directory perspective that is
src/ploneconf.site/src/ploneconf/site/content/). Inside add an empty file __init__ .py and
a file talk.xml that contains the real XML (copied from http://localhost:8080/Plone/dexterity-types/talk/@ @
modeleditor and beautified with some online XML formatter (http://Imgtfy.com/?q=xml+formatter))

<?xml version='1l.0' encoding='utf8'?>
<model xmlns="http://namespaces.plone.org/supermodel/schema"

xmlns: form="http://namespaces.plone.org/supermodel/form"
xmlns:118n="http://xml.zope.org/namespaces/118n"
xmlns:lingua="http://namespaces.plone.org/supermodel/lingua"
xmlns:marshal="http://namespaces.plone.org/supermodel /marshal"
xmlns:security="http://namespaces.plone.org/supermodel/security"
xmlns:users="http://namespaces.plone.org/supermodel /users">

<schema>
<field name="type_of_talk" type="zope.schema.Choice">
<description/>
<title>Type of Talk</title>
<values>

<element>Talk</element>
<element>Training</element>
<element>Keynote</element>
</values>
</field>
<field name="details" type="plone.app.textfield.RichText">
<description>Add a short description of the talk (max. 2000 characters)</
—description>/>
<max_length>2000</max_length>
<title>Details</title>

</field>
<field name="audience" type="zope.schema.Set">
<description/>

<title>Audience</title>
<value_type type="zope.schema.Choice">
<values>
<element>Beginner</element>
<element>Advanced</element>
<element>Professional</element>
</values>
</value_type>
</field>
<field name="speaker" type="zope.schema.TextLine">
<description>Name (or names) of the speaker</description>/>
<title>Speaker</title>
</field>
<field name="email" type="plone.schema.email.Email">
<description>Adress of the speaker</description>/>
<title>Email</title>

</field>
<field name="image" type="plone.namedfile.field.NamedBlobImage">
<description/>

<required>False</required>
<title>Image</title>
</field>

62 Capitulo 2. Trainings

http://localhost:8080/Plone/dexterity-types/talk/@@modeleditor
http://localhost:8080/Plone/dexterity-types/talk/@@modeleditor
http://lmgtfy.com/?q=xml+formatter

48

49

50

51

53

54

22

Plone Training Documentation, Publicacion 1.2.5a

<field name="speaker_biography" type="plone.app.textfield.RichText">
<description/>
<max_length>1000</max_length>
<required>False</required>
<title>Speaker Biography</title>

</field>

</schema>
</model>

Now remove the ugly model_source and instead point to the new XML file in the FTI by using the property
model_ file:

<property name="model_ source"></property>
<property name="model_file">ploneconf.site.content:talk.xml</property>

ploneconf.site.content:talk.xml points to a file talk.xml to be found in the Python path
ploneconf.site.content.The __init__ .py is needed to turn the folder content into a Python package.
It is best-practice to add schemas in this folder, and in later chapters you will add new types with pythons-schemata in
the same folder.

Nota: The default types of Plone 5 also have an xml schema like this since that allows the fields of the types to be
editable trough the web! Fields for types with a python schema are not editable ttw.

Changing a widget

Dexterity XML is very powerful. By editing it (not all features have a UI) you should be able to do everything you can
do with a Python schema. Sadly not every feature also is exposed in the Ul of the dexterity schema editor. For example
you cannot yet change the widgets or permissions for fields in the UI. We need to do this in the xml- or python-schema.

Our talks use a dropdown for type_of_talk and a multiselect for audience. Radio-buttons and checkboxes would be the
better choice here. Modify the XML to make that change happen:

<?xml version="1.0" encoding="UTF-8"?>
<model xmlns="http://namespaces.plone.org/supermodel/schema"
xmlns: form="http://namespaces.plone.org/supermodel/form"
xmlns:118n="http://xml.zope.org/namespaces/il18n"
xmlns:lingua="http://namespaces.plone.org/supermodel/lingua"
xmlns:marshal="http://namespaces.plone.org/supermodel/marshal"
xmlns:security="http://namespaces.plone.org/supermodel/security"
xmlns:users="http://namespaces.plone.org/supermodel /users">
<schema>
<field name="type_of_talk" type="zope.schema.Choice"
form:widget="z3c.form.browser.radio.RadioFieldWidget">
<description />
<title>Type of talk</title>
<values>
<element>Talk</element>
<element>Training</element>
<element>Keynote</element>
</values>
</field>
<field name="details" type="plone.app.textfield.RichText">
<description>Add a short description of the talk (max. 2000 characters)</
—description>
<max_length>2000</max_length>

2.1. Mastering Plone Development 63

https://docs.plone.org/external/plone.app.dexterity/docs/reference/dexterity-xml.html

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

Plone Training Documentation, Publicacion 1.2.5a

<title>Details</title>
</field>
<field name="audience" type="zope.schema.Set"
form:widget="z3c.form.browser.checkbox.CheckBoxFieldWidget">
<description />
<title>Audience</title>
<value_type type="zope.schema.Choice">
<values>
<element>Beginner</element>
<element>Advanced</element>
<element>Professionals</element>
</values>
</value_type>
</field>
<field name="speaker" type="zope.schema.TextLine">
<description>Name (or names) of the speaker</description>
<title>Speaker</title>
</field>
<field name="email" type="plone.schema.email.Email">
<description>Adress of the speaker</description>
<title>Email</title>
</field>
<field name="image" type="plone.namedfile.field.NamedBlobImage">
<description />
<required>False</required>
<title>Image</title>
</field>
<field name="speaker_biography" type="plone.app.textfield.RichText">
<description />
<max_length>1000</max_length>
<required>False</required>
<title>Speaker Biography</title>
</field>

</schema>

</model>

Protect fields with permissions

We also want to have a add a new field room to show where a talk will take place. Our case-study says the speakers
will submit the talks online. How should they know in which room the talk will take place (if it got accepted at all)?
So we need to hide this field from them by requiring a permission that they do not have.

Let’s assume the prospective speakers will not have the permission to review content (i.e. edit submitted content and
publish it) but the organizing commitee has. You can then protect the field using the permission Review portal content
in this case the name of the permission-utility for this permission: cmf.ReviewPortalContent.

We only want to prevent writing, not reading, so we’ll only manage the write-permission:

<?xml version="1.0" encoding="UTF-8"?>

<model xmlns="http://namespaces.plone.org/supermodel/schema"

xmlns: form="http://namespaces.plone.org/supermodel/form"
xmlns:118n="http://xml.zope.org/namespaces/i18n"
xmlns:lingua="http://namespaces.plone.org/supermodel/lingua"
xmlns:marshal="http://namespaces.plone.org/supermodel /marshal"
xmlns:security="http://namespaces.plone.org/supermodel/security"
xmlns:users="http://namespaces.plone.org/supermodel /users">

<schema>

64

Capitulo 2.

Trainings

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Plone Training Documentation, Publicacion 1.2.5a

<field name="type_of_talk" type="zope.schema.Choice"
form:widget="z3c.form.browser.radio.RadioFieldWidget">
<description />
<title>Type of talk</title>
<values>
<element>Talk</element>
<element>Training</element>
<element>Keynote</element>
</values>
</field>
<field name="details" type="plone.app.textfield.RichText">
<description>Add a short description of the talk (max. 2000 characters)</
—description>
<max_length>2000</max_length>
<title>Details</title>
</field>
<field name="audience"
type="zope.schema.Set"
form:widget="z3c.form.browser.checkbox.CheckBoxFieldWidget">
<description />
<title>Audience</title>
<value_type type="zope.schema.Choice">
<values>
<element>Beginner</element>
<element>Advanced</element>
<element>Professionals</element>
</values>
</value_type>
</field>
<field name="room"
type="zope.schema.Choice"
form:widget="z3c.form.browser.radio.RadioFieldWidget"
security:write—-permission="cmf.ReviewPortalContent">
<description></description>
<required>False</required>
<title>Room</title>
<values>
<element>101</element>
<element>201</element>
<element>Auditorium</element>
</values>
</field>
<field name="speaker" type="zope.schema.TextLine">
<description>Name (or names) of the speaker</description>
<title>Speaker</title>
</field>
<field name="email" type="plone.schema.email.Email">
<description>Adress of the speaker</description>
<title>Email</title>
</field>
<field name="image" type="plone.namedfile.field.NamedBlobImage">
<description />
<required>False</required>
<title>Image</title>
</field>
<field name="speaker_biography" type="plone.app.textfield.RichText">
<description />
<max_length>1000</max_length>

2.1. Mastering Plone Development 65

67

68

69

70

Plone Training Documentation, Publicacion 1.2.5a

<required>False</required>
<title>Speaker Biography</title>
</field>
</schema>
</model>

Ver también:
= https://docs.plone.org/external/plone.app.dexterity/docs/reference/dexterity-xml.html

= https://github.com/plone/plone.autoform/blob/master/plone/autoform/supermodel.txt

Exercise 1

Create a new package called collective.behavior.myfeature. Inspect the directory structure of this packa-
ge. Delete it after you are done.

Solution

$ cd src
$../bin/mrbob -0 collective.behavior.myfeature bobtemplates:plone_addon

Many packages that are part of Plone and some add-ons use a nested namespace such as
plone.app.contenttypes.

Exercise 2

Go to the ZMI and look for the definition of the new Talk content type in portal_types. Now deactivate Implicitly
addable? and save. Go back to the site. Can you identify what this change has caused? And why is that useful?

Solution
Go to http://localhost:8080/Plone/portal _types/talk/manage_propertiesForm

When disabling Implicitly addable you can no longer add Talks any more unless you change some container like the
type Folder: Enable Filter contenttypes? for it and add 7alk to the items that are allowed.

With this method you can prevent content that only makes sense inside some defined structure to show up in places
where they do not belong.

The equivalent setting for disabling Implicitly addable in Talk .xml is:

<property name="global allow">False</property>

Views |

Get the code!

Get the code for this chapter (More info):

66 Capitulo 2. Trainings

https://docs.plone.org/external/plone.app.dexterity/docs/reference/dexterity-xml.html
https://github.com/plone/plone.autoform/blob/master/plone/autoform/supermodel.txt
http://localhost:8080/Plone/portal_types/talk/manage_propertiesForm

Plone Training Documentation, Publicacion 1.2.5a

git checkout views_1

In this part you will:

= Register a view

= Create and use a template for the view
Topics covered:

= zcml

A simple browser view

Before writing the talk view itself we step back and talk a little about views and templates.

A view in Plone is usually a BrowserView. It can hold a lot of cool python code but we will first focus on the

template.

Edit the file browser/configure. zcml and register a new view called training:

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:browser="http://namespaces.zope.org/browser"
xmlns:plone="http://namespaces.plone.org/plone"
118n_domain="ploneconf.site">

<!-- Set overrides folder for Just—-a-Bunch-Of-Templates product
<include package="z3c.jbot" file="meta.zcml" />
<browser: jbot
directory="overrides"
layer="ploneconf.site.interfaces.IPloneconfSitelLayer"

/>

<!-- Publish static files ——>

<browser:resourceDirectory
name="ploneconf.site"
directory="static"

/>

<browser:page
name="training"
for:"*ﬂ
template="templates/training.pt"
permission="zope2.View"

/>

</configure>

——>

Add afile browser/templates/training.pt

<hl>Hello World</hl>

= Restart Plone and open http://localhost:8080/Plone/ @ @training.
= You should now see “Hello World”.

We now have everything in place to learn about page templates.

2.1. Mastering Plone Development

67

http://localhost:8080/Plone/@@training

Plone Training Documentation, Publicacion 1.2.5a

Nota: The view training has no python class registered for it but only a template. It acts as if it had an empty
python class inheriting from Products.Five.browser.BrowserView but the way that happens is actually
quite a bit of magic...

Page Templates

Get the code!

Get the code for this chapter (More info):

git checkout zpt

In this part you will:

= [earn to write page templates
Topics covered:
= TAL and TALES
= METAL
= Chameleon
Page Templates are HTML files with some additional information, written in TAL, METAL and TALES.
Page templates must be valid xml.
The three languages are:
= TAL: “Template Attribute Language”
» Templating XML/HTML using special attributes
» Using TAL we include expressions within html
= TALES: “TAL Expression Syntax”
¢ defines the syntax and semantics of these expressions
= METAL: “Macro Expansion for TAL”
« this enables us to combine, re-use and nest templates together

TAL and METAL are written like html attributes (href, src, title). TALES are written like the values of html attributes.
A typical TAL attribute looks like this:

<title tal:content="context/title">
The Title of the content
</title>

It’s used to modify the output:

’<p tal:content="string:I love red">I love blue</p> ‘

results in:

’<p>I love red</p> ‘

68 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Let’s try it. Open the file training. pt and add:

<html>
<body>

<p>red</p>

</body>
</html>

TAL and TALES

Let’s add some magic and modify the <p>-tag:

’<p tal:content="string:blue">red</p>

This will result in:

’ <p>blue</p>

Without restarting Plone open http://localhost:8080/Plone/ @ @training.

The same happens with attributes. Replace the <p>-line with:

<a href="http://www.mssharepointconference.com"
tal:define="a_fine_url string:https://www.ploneconf.org/"
tal:attributes="href a_fine_url"
tal:content="string:An even better conference">
A sharepoint conference

results in:

An even better conference

We used three TAL-Attributes here. This is the complete list of TAL-attributes:

tal:

tal

tal:

tal:
tal:
tal:

tal:

tal

define define variables. We defined the variable a_ fine_url to the string “https://www.ploneconf.org/*

:content replace the content of an element. We replaced the default content above with “An even better con-

ference”

attributes dynamically change element attributes. We set the HTML attribute href to the value of the
variable a_ fine_url

condition tests whether the expression is true or false, and outputs or omits the element accordingly.
repeat repeats an iterable element, in our case the list of talks.

replace replace the content of an element, like tal: content does, but removes the element only leaving
the content.

omit—-tag remove an element, leaving the content of the element.

:on—error handle errors.

2.1.

Mastering Plone Development 69

http://localhost:8080/Plone/@@training
https://www.ploneconf.org/

Plone Training Documentation, Publicacion 1.2.5a

python expressions

So far we only used one TALES expression (the string: bit). Let’s use a different TALES expression now. With
python: we can use python code. A simple example:

<p tal:define="title context/title"
tal:content="python:title.upper() ">
A big title

</p>

And another:

<p tal:define="talks python:['Dexterity for the win!"',
'Deco 1is the future',
'A keynote on some weird topic',
'The talk that I did not submit']"
tal:content="python:talks[0]">
A talk
</p>

With python expressions
= you can only write single statements

= you could import things but you should not (example: tal:define="something
modules/Products.PythonScripts/something;).

tal:condition

tal:condition tests whether the expression is true or false.
= If it’s true, then the tag is rendered.
= If it’s false then the tag and all its children are removed and no longer evaluated.
= We can reverse the logic by prepending a not : to the expression.

Let’s add another TAL Attribute to our above example:

’tal:condition:"talks"

We could also test for the number of talks:

’tal:condition:"python:len(talks) >= 1"

or if a certain talk is in the list of talks:

’tal:condition:"python:'Deco is the future' in talks"

tal:repeat

Let’s try another attribute:

<p tal:define="talks python:['Dexterity for the win!'"',
'Deco is the future',
'A keynote on some weird topic',
'The talk that I did not submit']"

70 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

tal:repeat="talk talks"
tal:content="talk">
A talk

</p>

tal:repeat repeats an iterable element, in our case the list of talks.

We change the markup a little to construct a list in which there is an <1 1> for every talk:

<ul tal:define="talks python:['Dexterity for the win!",
'Deco 1is the future',
'A keynote on some weird topic',
'The talk that I did not submit']">
<1li tal:repeat="talk talks"
tal:content="talk">
A talk
</1i>
<1li tal:condition="not:talks">
Sorry, no talks yet.
</1li>

path expressions

Regarding TALES so far we used string: or python: or only variables. The next and most common expression
are path expressions. Optionally you can start a path expression with path:

Every path expression starts with a variable name. It can either be an object like context, view or template or a
variable defined earlier like talk.

After the variable we add a slash / and the name of a sub-object, attribute or callable. The / is used to end the name
of an object and the start of the property name. Properties themselves may be objects that in turn have properties.

<p tal:content="context/title"></p>

We can chain several of those to get to the information we want.

<p tal:content:"context/REQUEST/form"></p>

This would return the value of the form dictionary of the HTTPRequest object. Useful for form handling.

The | (“or”) character is used to find an alternative value to a path if the first path evaluates to nothing or does not
exist.

’<p tal:content="context/title | context/id"></p>

This returns the id of the context if it has no title.

’<p tal:replace="talk/average_rating | nothing"></p>

This returns nothing if there is no ‘average rating’ for a talk. What will not work is
tal:content="python:talk['average_rating'] or ''".Who knows what this would yield?

We’ll get KeyError: 'average_rating'.Itis very bad practice to use | too often since it will swallow errors
like a typo in tal:content="talk/averange_ratting | nothing" and you might wonder why there
are no ratings later on...

You can’t and should not use it to prevent errors like a try/except block.

2.1. Mastering Plone Development 71

Plone Training Documentation, Publicacion 1.2.5a

There are several built-in variables that can be used in paths:

The most frequently used one is nothing which is the equivalent to None

<p tal:replace="nothing">
this comment will not be rendered
</p>

A dict of all the available variables is econtext

<dl tal:define="path_variables_dict econtext">
<tal:vars tal:repeat="variable path_variables_dict">
<dt>${variable}</dt>
<dd>${python:path_variables_dict[variable] }</dd>
</tal:vars>
</d1>

Nota: In Plone 4 that used to be CONTEXTS

<dl tal:define="path_variables_dict CONTEXTS">
<tal:vars tal:repeat="variable path_variables_dict">
<dt tal:content="variable"></dt>
<dd tal:content="python:path_variables_dict [variable]"></dd>
</tal:vars>
</d1>

Useful for debugging :-)

Pure TAL blocks

We can use TAL attributes without HTML Tags. This is useful when we don’t need to add any tags to the markup

Syntax:

<tal:block attribute="expression">some content</tal:block>

Examples:

<tal:block define="id template/id">

'.;b tal:content="id">The id of the template

;}éalzblock>

<tal:news condition="python:context.portal_ type == 'News Item'">

This text is only visible if the context is a News Item
</tal:news>

handling complex data in templates

Let’s move on to a little more complex data. And to another TAL attribute:

tal:replace replace the content of an element and removes the element only leaving the content.

72 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Example:

<p>
<img tal:define="tag string:"
tal:replace="tag">
</p>

this results in:

<p>

</p>

tal:replace drops its own base tag in favor of the result of the TALES expression. Thus the original <img-. . .
> is replaced. But the result is escaped by default.

To prevent escaping we use structure

<p>
<img tal:define="tag string:"
tal:replace="structure tag">
</p>

Now let’s emulate a typical Plone structure by creating a dictionary.

<table tal:define="talks python:[{'title':'Dexterity for the win!",

'subjects': ('content-types', 'dexterity')},
{'title':'Deco 1is the future',
'subjects': ('layout', 'deco')},
{'title':'The State of Plone',
'subjects': ('keynote',) 1},
{'"title':'Diazo designs dont suck!',
'subjects': ('design', 'diazo', 'xslt')}
]m>
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

<tr tal:repeat="talk talks">
<td tal:content="talk/title">A talk</td>
<td tal:define="subjects talk/subjects">
<span tal:repeat="subject subjects"
tal:replace="subject">

</td>
</tr>
</table>

We emulate a list of talks and display information about them in a table. We’ll get back to the list of talks later when
we use the real talk objects that we created with dexterity.

To complete the list here are the TAL attributes we have not yet used:
tal:omit-tag Omit the element tag, leaving only the inner content.
tal:on-error handle errors.

When an element has multiple TAL attributes, they are executed in this order:

1. define

2.1. Mastering Plone Development 73

Plone Training Documentation, Publicacion 1.2.5a

condition
repeat
content or replace

attributes

AN

omit-tag

Plone 5
Plone 5 uses a new rendering engine called Chameleon. Using the integration layer five.pt it is fully compatible with
the normal TAL syntax but offers some additional features:

You can use ${...} as short-hand for text insertion in pure html effectively making tal:content and
tal:attributes obsolete. Here are some examples:

Plone 4 and Plone 5:

<a tal:attributes="href string:${context/absolute_url}?ajax_load=1;
class python:context.portal_type.lower () .replace("' ', "")"
tal:content="context/title">
The Title of the current object

Plone 5 (and Plone 4 with five.pt) :

)

<a href="${context/absolute_url}?ajax_load=1"

class="${python:context.portal_type.lower().replace(' ', '"")}">
S{python:context.title}

You can also add pure python into the templates:

<div>
<?python
someoptions = dict (
id=context.id,
title=context.title)
2>
This object has the id "${python:someoptions['id']}"" and the title "${python:
—someoptions['title']}".
</div>

Exercise 1

Modify the following template and one by one solve the following problems: :

<table tal:define="talks python:[{'title': 'Dexterity is the new default!’',
'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'wviews'),
'url': 'https://www.youtube.com/watch?v=0QSNufxaYblM
"1},
{'"title': 'The State of Plone',
'subjects': ('keynote',) 1},
{'title': 'Diazo is a powerful tool for theming!',

74 Capitulo 2. Trainings

https://chameleon.readthedocs.io/en/latest/
https://pypi.python.org/pypi/five.pt

21

22

23

24

25

26

20

21

22

23

24

25

Plone Training Documentation, Publicacion 1.2.5a

'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates-—
—in-plone-5"}
JUs
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

<tr tal:repeat="talk talks">
<td tal:content="talk/title">A talk</td>
<td tal:define="subjects talk/subjects">
<span tal:repeat="subject subjects"
tal:replace="subject">

</td>
</tr>
</table>

1. Display the subjects as comma-separated.

Solution
<table tal:define="talks python:[{'title': 'Dexterity is the new default!',
'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'wviews'),
'url': 'https://www.youtube.com/watch?v=QSNufxaYblM
! } 14
{'title': 'The State of Plone',
'subjects': ('keynote',) },
{'title': 'Diazo is a powerful tool for theming!',
'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates—
—in-plone-5"}
1>
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

<tr tal:repeat="talk talks">
<td tal:content="talk/title">A talk</td>
<td tal:define="subjects talk/subjects">

</td>
</tr>
</table>

2. Turn the title in a link to the URL of the talk if there is one.

Solution

2.1. Mastering Plone Development 75

20

21

22

23

24

25

26

27

28

29

30

Plone Training Documentation, Publicacion 1.2.5a

<table tal:define="talks python:[{'title': 'Dexterity is the new default!’',
'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'views'),
'url': 'https://www.youtube.com/watch?v=QSNufxaYblM
="'},
{"title': 'The State of Plone',
'subjects': ('keynote',) 1},
{'title': 'Diazo 1is a powerful tool for theming!’',
'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates-—
—in-plone-5"}
JUs
<tr>
<th>Title</th>
<th>Topics</th>
</tr>
<tr tal:repeat="talk talks">
<td>
<a tal:attributes="href talk/url | nothing"
tal:content="talk/title">
A talk

</td>
<td tal:define="subjects talk/subjects">

</td>
</tr>
</table>

3. If there is no URL, turn it into a link to a google search for that talk’s title:

Solution
<table tal:define="talks python:[{'title': 'Dexterity is the new default!',
'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'wviews'),
'url': 'https://www.youtube.com/watch?v=QSNufxaYblM
! } ’
{'"title': 'The State of Plone',
'subjects': ('keynote',) 1},
{'title': 'Diazo is a powerful tool for theming!',
'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates-
—in-plone-5"}
1>
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

76 Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

29

31

20

21

22

23

24

25

26

Plone Training Documentation, Publicacion 1.2.5a

<tr tal:repeat="talk talks">

<a tal:define="google_url string:https://www.google.com/search?g=${talk/

<td>
—title}"
tal:attributes="href talk/url |
tal:content="talk/title">
A talk

</td>

google_url"

<td tal:define="subjects talk/subjects">

<span tal:replace="python:"',

</td>
</tr>
</table>

'.join (subjects) ">

4. Add alternating the CSS classes ‘odd’ and ‘even’ to the <tr>. (repeat . <name of item in loop>.odd
is True if the ordinal index of the current iteration is an odd number)

Use some CSS to test your solution:

<style type="text/css">
tr.odd {background-color:
</style>

#ddd; }

Solution

<table tal:define="talks python:[{'title':

'Dexterity is the new default!',

'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'wviews'),
'url': 'https://www.youtube.com/watch?v=QSNufxaYblM
‘—"}I
{'title': 'The State of Plone’',
'subjects': ('keynote',) 1},
{'title': 'Diazo is a powerful tool for theming!’',
'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates-
—in-plone-5"'}
1>
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

<tr tal:repeat="talk talks"
tal:attributes="class python:
<td>

'odd'

if repeat.talk.odd else 'even'">

<a tal:define="google_url string:https://www.google.com/search?g=${talk/

—~title};

tal:attributes="href talk/url |

"

tal:content="talk/title">
A talk

google_url;

2.1. Mastering Plone Development

77

27

28

29

30

31

32

33

34

20

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

</td>

<td tal:define="subjects talk/subjects">

</td>

</tr>
</table>

5. Only use python expressions.

Solution
<table tal:define="talks python:[{'title': 'Dexterity is the new default!’',
'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'views'),
'url': 'https://www.youtube.com/watch?v=QSNufxaYblM
="'},
{"title': 'The State of Plone',
'subjects': ('keynote',) 1},
{'title': 'Diazo is a powerful tool for theming!',
'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates-
—in-plone-5"}
S
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

<tr tal:repeat="talk python:talks"
tal:attributes="class python: 'odd' if repeat.talk.odd else 'even'">
<td>
<a tal:attributes="href python:talk.get ('url', 'https://www.google.com/
—search?g=%s' % talk['title'])"
tal:content="python:talk['title']">
A talk

</td>
<td tal:content="python:', '.join(talk['subjects'])">
</td>
</tr>
</table>

6. Use the new syntax of Plone 5

Solution
<table tal:define="talks python:[{'title': 'Dexterity is the new default!',
'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'wviews'),

78 Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

'url': 'https://www.youtube.com/watch?v=QSNufxaYblM
‘—"}r
{'title': 'The State of Plone',
'subjects': ('keynote',) },
{'title': 'Diazo is a powerful tool for theming!',
'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates-
—in-plone-5"}
1>
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

<tr tal:repeat="talk python:talks"
class="${python: 'odd' if repeat.talk.odd else 'even'}">
<td>
<a href="${python:talk.get ('url', 'https://www.google.com/search?g=%s' $%_
—talk['title']) }">
${python:talk['title"']}

</td>
<td>
S{python:', '.Join(talk['subjects'])}
</td>
</tr>
</table>

7. Sort the talks alphabetically by title

Solution
<table tal:define="talks python:[{'title': 'Dexterity is the new default!',
'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'wviews'),
'url': 'https://www.youtube.com/watch?v=QSNufxaYblM
! } ’
{'"title': 'The State of Plone’',
'subjects': ('keynote',) 1},
{'title': 'Diazo is a powerful tool for theming!',
'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates-
—in-plone-5"}
1>
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

<?python from operator import itemgetter ?>

2.1. Mastering Plone Development 79

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

<tr tal:repeat="talk python:sorted(talks, key=itemgetter('title'))"
class="${python: 'odd' if repeat.talk.odd else 'even'}">
<td>
<a href="${python:talk.get ('url', 'https://www.google.com/search?qgq=%s' %
—talk['title']) }">
${python:talk['title']}

</td>
<td>
${python:"', '.join(talk['subjects'])}
</td>
</tr>
</table>

METAL and macros

Why is our output so ugly? How do we get our html to render in Plone the UI?
We use METAL (Macro Extension to TAL) to define slots that we can fill and macros that we can reuse.

We add to the <htm1> tag:

metal:use-macro="context/main_template/macros/master"

And then wrap the code we want to put in the content area of Plone in:

<metal:content-core fill-slot="content-core">

</metal:content—-core>

This will put our code in a section defined in the main_template called “content-core”.
The template should now look like below when we exlude the last exercise.

Here also added the css-class listing to the table. It is one of many css-classes used by Plone that you can reuse in your
projects:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en"
metal :use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">

<body>

<metal:content—-core fill-slot="content-core">

<table class="listing"

tal:define="talks python:[{'title': 'Dexterity is the new default!',

'subjects': ('content-types', 'dexterity')},

{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'views'),
'url': 'https://www.youtube.com/watch?v=QSNufxaYblM

‘—"}r

{'"title': 'The State of Plone',
'subjects': ('keynote',) 1},

{'title': 'Diazo is a powerful tool for theming!',
'subjects': ('design', 'diazo', 'xslt')},

{'"title': 'Magic templates in Plone 5',

80 Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

29

30

40
41
o)
43

44

Plone Training Documentation, Publicacion 1.2.5a

'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates-
—in-plone-5"'},
IR
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

<tr tal:repeat="talk python:talks"
class="${python: 'odd' if repeat.talk.odd else 'even'}">
<td>
<a href="${python:talk.get ('url', 'https://www.google.com/search?g=%s' %
—talk['title']) } ">
${python:talk['title']}

</td>
<td>
${python:"', '.join(talk['subjects'])}
</td>
</tr>
</table>

—

</metal:content-core>

</body>
</html>

macros in browser views

Define a macro in a new file macros.pt

<div metal:define-macro="my_macro">
<p>I can be reused</p>
</div>

Register it as a simple BrowserView in zcml:

<browser :page
for:"*"
name="abunchofmacros"
template="templates/macros.pt"
permission="zope2.View"

/>

Reuse the macro in the template training.pt:

<div metal:use-macro="context/Q@@abunchofmacros/my_macro">
Instead of this the content of the macro will appear...
</div>

‘Which is the same as:

<div metal:use-macro="python:context.restrictedTraverse ('abunchofmacros') ['my_macro']
">

Instead of this the content of the macro will appear...

2.1. Mastering Plone Development 81

Plone Training Documentation, Publicacion 1.2.5a

</div>

Restart your Plone instance from the command line, and then open http://localhost:8080/Plone/ @ @training to see this
macro being used in our @ @training browser view template.

Accessing Plone from the template

In our template we have access to the context object on which the view is called on, the browser view itself (i.e. all
python methods we’ll put in the view later on), the request and response objects and with these we can get almost
anything.

In templates we can also access other browser views. Some of those exist to provide easy access to methods we often
need:

tal:define="context_state context/Q@@plone_context_state;
portal_state context/(@@plone_portal_ state;
plone_tools context/E@plone_tools;
plone_view context/@@plone;"

@Q@plone_context_state The BrowserView plone.app.layout.globals.context.ContextState
holds useful methods having to do with the current context object such as is_default_page ()

Q@plone_portal_state The BrowserView plone.app.layout.globals.portal.PortalState
holds methods for the portal like portal_url ()

@@plone_tools The BrowserView plone.app.layout.globals.tools.Tools gives access to the most
important tools like plone_tools/catalog

These are very widely used and there are many more.

What we missed

There are some things we did not cover so far:
tal:condition="exists:expression" checks if an object or an attribute exists (seldom used)
tal:condition="nocall:context" to explicitly not call a callable.

If we refer to content objects, without using the nocall: modifier these objects are unnecessarily rendered in memory
as the expression is evaluated.

il8n:translate and i18n:domain the strings we put in templates can be translated automatically.

There is a lot more about TAL, TALES and METAL that we have not covered. You’ll only learn it if you keep reading,
writing and customizing templates.

Ver también:
» https://docs.plone.org/adapt-and-extend/theming/templates_css/template_basics.html
= Using Zope Page Templates: http://docs.zope.org/zope2/zope2book/ZPT.html
= Zope Page Templates Reference: http://docs.zope.org/zope2/zope2book/AppendixC.html

= https://chameleon.readthedocs.io/en/latest/

82 Capitulo 2. Trainings

http://localhost:8080/Plone/@@training
https://docs.plone.org/adapt-and-extend/theming/templates_css/template_basics.html
http://docs.zope.org/zope2/zope2book/ZPT.html
http://docs.zope.org/zope2/zope2book/AppendixC.html
https://chameleon.readthedocs.io/en/latest/

Plone Training Documentation, Publicacion 1.2.5a

Customizing Existing Templates

Get the code!

Get the code for this chapter (More info):

git checkout zpt_2

In this part you will:
= Customize existing templates
Topics covered:
= omelette/packages
= 7z3c.jbot
= date-formatting and the moment pattern
= listings
= gkins

To dive deeper into real Plone data we now look at some existing templates and customize them.

The view for News ltems

We want to show the date a News Item is published. This way people can see at a glance if they are looking at current
or old news.

To do this we will customize the template that is used to render News Items.

We use z3c.jbot for overriding templates. The package already has the necessary configuration in
browser/configure.zcml.

Find the file newsitem.pt in packages/plone/app/contenttypes/browser/templates/ (in va-
grant this directory is in /home/vagrant /packages, otherwise it is in your buildout directory).

The file looks like this:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal"
xmlns:metal="http://xml.zope.org/namespaces/metal"
xmlns:118n="http://xml.zope.org/namespaces/i18n"
lang="en"
metal:use-macro="context/main_template/macros/master"
il8n:domain="plone">

<body>

<metal:content-core fill-slot="content-core">
<metal:content-core define-macro="content-core"
tal:define="toc context/table_of_contents|nothing; ">
<div id="parent-fieldname-text"
tal:condition="context/text"
tal:content="structure python:context.text.output_relative_to(view.context)"
tal:attributes="class python: toc and 'pat-autotoc' or ''" />
</metal:content—-core>
</metal:content—-core>

2.1. Mastering Plone Development 83

Plone Training Documentation, Publicacion 1.2.5a

</body>
</html>

Note the following:

= Like almost all Plone templates, it uses metal:use-macro="context/main_template/macros/master” to use the
main_template

= This template fills the same slot content-core as the template you created in the last chapter. This means the
heading and description are displayed by the main_template.

= The image and image caption that is provided by the behavior is not part of the template.

Copy that file into the folder browser/overrides/ of our package. If you use vagrant you’d have to use:

cp /home/vagrant/packages/plone/app/contenttypes/browser/templates/newsitem.pt /
—vagrant/buildout/src/ploneconf.site/src/ploneconf/site/browser/overrides/

= Rename the new file from newsitem.pttoplone.app.contenttypes.browser.templates.newsitem.pt.
z3c. jbot allows you to override templates by putting a file inside a special directory with a canonical name
(i.e. the path of the file separated by . plus the original filename).

= Restart Plone
Now Plone will use the new file to override the original one.

Edit the new file plone.app.contenttypes.browser.templates.newsitem.pt and insert the follo-
wing before the <div id="parent-fieldname-text"..:

<p tal:content="python: context.Date()">
The current Date
</p>

Since we use Plone 5 and Chameleon we could also write:

<p>
${python: context.Date() }
</p>

= Open an existing news item in the browser

This will show something like: 2015-02-21T12:01:31+01:00. Not very user-friendly. Let’s extend the code
and use one of many helpers Plone offers.

<p>
${python: plone_view.toLocalizedTime (context.Date())}
</p>

This will render Feb 21,2015.

» plone_view is the BrowserView Products.CMFPlone.browser.ploneview.Plone and it is defi-
ned in the main_template (Products/CMFPlone/browser/templates/main_template.pt)
of Plone 5 like this plone_view context/@@plone; and thus always available.

= The method toLocalizedTime () runs a date object through Plone’s translation_service and re-
turns the Date in the current locales format, thus transforming 2015-02-21T12:01:31+01:00 to Feb
21,2015.

The same in a slightly different style:

84 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

<p tal:define="toLocalizedTime nocall:context/@@plone/toLocalizedTime;
date python:context.Date ()"
tal:content="python:toLocalizedTime (date) ">
The current Date in its local short format
</p>

Here we first get the Plone view and then the method toLocalizedTime () and we use nocall: to prevent the
method toLocalizedTime () from being called, since we only want to make it available for later use.

Nota: On older Plone versions using Archetypes we used python:context.toLocalizedTime (context.Date (), longFo
That called the Python script toLocalizedTime. py inthe Folder Products/CMFPlone/skins/plone_scripts/.

That folder plone_scripts holds a multitude of useful scripts that are still widely used. But they are all deprecated
and most of them are gone in Plone 5 and replaced by proper Python methods in BrowserViews.

We could also leave the formatting to the frontend. Plone 5 comes with the moment pattern that uses the library
moment.js to format dates. Try the relative calendar format:

<p class="pat-moment"
data-pat—-moment="format:calendar">
${python: context.Date() }
</p>

Now we should see the date in a user-friendly format like Today at 12:01 PM. Experiment with other formats
such as calendar and LT.

The Summary View

We use the view “Summary View” to list news releases. They should also have the date. The template associated with
that view is 1isting_summary.pt.

Let’s look for the template folder_summary_view.pt:

plone/app/contenttypes/browser/templates/listing_summary.pt

The file looks like this:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
xmlns:tal="http://xml.zope.org/namespaces/tal"
xmlns:metal="http://xml.zope.org/namespaces/metal"
xmlns:118n="http://xml.zope.org/namespaces/i118n"
lang="en"
metal:use-macro="context/main_template/macros/master"
il8n:domain="plone">

<body>

<metal:content-core fill-slot="content-core">
<metal:block use-macro="context/@@listing_view/macros/content-core">

<metal:entries fill-slot="entries">
<metal:block use-macro="context/@@listing_view/macros/entries">
<metal:entry fill-slot="entry">

<article class="tileItem" tal:define="obj item/getObject">
<h2 class="tileHeadline" metal:define-macro="listitem">

2.1. Mastering Plone Development 85

http://plone.github.io/mockup/dev/#pattern/moment
http://plone.github.io/mockup/dev/#pattern/moment

Plone Training Documentation, Publicacion 1.2.5a

<a class="summary url"
tal:attributes="href item_link;
title item_type"
tal:content="item_title">
Item Title

</h2>

<div metal:use-macro="context/Q@@listing_view/macros/document_byline"></div>

<div class="tilelImage"
tal:condition="item_has_image"
tal:attributes="class python: 'tileImage' if item_description else
—'tileImageNoFloat'">
<a tal:attributes="href item_link">
<img tal:define="scales obj/@@images;
scale python:scales.scale('image', 'thumb')"
tal:replace="structure python:scale and scale.tag() or None" />

</div>

<div class="tileBody" tal:condition="item_description">

description

</div>

<div class="tileFooter">
<a tal:attributes="href item_link"
il8n:translate="read_more">
Read More…

</div>

<div class="visualClear"></—— ——></div>
</article>
</metal:entry>
</metal :block>

</metal:entries>

</metal :block>
</metal:content-core>

</body>
</html>

Note the following:

» Unlike newsitem.pt the file does not display data from a context but obviously pre-defined variables like
item, item_link, item_type or item_description.

= It reuses multiple macros of a view context/@ @listing_view.
= The variables are most likely defined in the macro entries of that view.
Copyittobrowser/overrides/ andrenameittoplone.app.contenttypes.browser.templates.listing_summas:

Add the following after line 28:

86 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

<p tal:condition="python:item_type == 'News Item'">
${python:plone_view.toLocalizedTime (item.Date()) }
</p>

After you restart the instance and look at the new folder again you’ll see the dates. z3c. jbot needs a restart to pick
up the new file. When you only change a existing override you don’t have to restart.

The addition renders the date of the respective objects that the template iterates over (hence it eminstead of context
since context would be either a collection aggregating the news items or a folder containing a news item).

The date is only displayed if the variable item_type is News Item.
Let’s take a closer look at that template. How does it know that i tem_type is the name of the content type?

The first step to uncovering that secret is line 14 of 1isting_summary.pt:

<metal:block use-macro="context/@@listing_view/macros/entries">

use-macro tells Plone to reuse the macro entries from the view listing view. That view is
defined in packages/plone/app/contenttypes/browser/configure.zcml. It uses the template
plone/app/contenttypes/browser/templates/listing.pt. That makes overriding that much easier.

That template 11 sting.pt defines the slot entries like this:

<metal:listingmacro define-macro="listing">
<tal:results define="batch view/batch">
<tal:listing condition="batch">
<div class="entries" metal:define-slot="entries">
<tal:entries repeat="item batch" metal:define-macro="entries">
<tal:block tal:define="ob7j item/getObject;

item_url item/getURL;
item_id item/getId;
item_title item/Title;
item_description item/Description;
item_type item/PortalType;
item_modified item/ModificationDate;
item_created item/CreationDate;
item_icon item/getIcon;
item_type_class python:'contenttype-' + view.

—normalizeString (item_type);
item_wf_state item/review_state;
item_wf_state_class python:'state-' + view.

—normalizeString (item_wf_state);
item_creator item/Creator;
item_link python:item_type in view.use_view_action_

—and item_url+'/view' or item_url;
item_has_image python:view.has_image (ob7j);
item_is_event python:view.is_event (obj) ">

Here the item_type is defined as item_type item/PortalType. Let’s dig a little deeper and find out what
itemand PortalType are.

tal:repeat="item batch" tells the template to iterate over an iterable batch which is defined as batch
view/batch.

view is always the BrowserView for which the template is registered. In our case this is either
plone.app.contenttypes.browser.collection.CollectionView if you called that view on a co-

2.1. Mastering Plone Development 87

Plone Training Documentation, Publicacion 1.2.5a

llection, or plone.app.contenttypes.browser.folder.FolderView for folders. You might remember
that both are defined in configure.zcml

Luckily the first is a class that inherits from the second:

class CollectionView (FolderView) :

batch () is a method in FolderView that turns results into batches. results exists in both classes. This
means, in case the item we are looking at is a collection, the method results () of CollectionView, will be
used; and in case it’s a folder, the one in FolderView.

So batch is a list of items. The way it is created is actually pretty complicated and makes use of a couple of
packages to create a filtered (through plone.app.querystring) list of optimized representations (through
plone.app.contentlisting) of items. For now it is enough to know that item represents one of the items

in the list of News Items.

The template 11 sting_summary . pt is extraordinary in its heavy use of nested macros. Most of the templates you
will write are much simpler and easier to read.

It can be hard to understand templates as complicated as these, but there is help to be found if you know Python: use
pdb to debug templates line by line.

Add the following to line 29 just before our additions:

<?python import pdb; pdb.set_trace() ?>

When you reload the page and look at the terminal you see you have the pdb console and can inspect the template at
its current state by looking at the variable econtext. You can now simply look up what item ‘ and ‘PortalType are:

(pdb) pp econtext

[...]

'context': <Collection at /Plone/news/aggregator>,

'context_state': <Products.Five.metaclass.ContextState object at 0x10b7£50d0>,
'default': <object object at 0x100294c50>,

'dummy': None,

'here': <Collection at /Plone/news/aggregator>,

'isRTL': False,

'"item': <plone.app.contentlisting.catalog.CatalogContentListingObject instance at /
—~Plone/news/hot-news>,

'item_created': '2016-10-08T15:04:17+02:00",

'item_creator': 'admin',

[...]

(pdb) item = econtext['item']

(pdb) item

<plone.app.contentlisting.catalog.CatalogContentListingObject instance at /Plone/news/

—hot—-news>

As discovered above, item is ainstance of plone.app.contentlisting.catalog.CatalogContentListingObject.
It has several methods and properties:

(pdb) pp dir(item)
[...]

'Language’,
'ModificationDate’',
'PortalType’,
'Publisher’,
'ReviewStateClass',
'Rights’',

[...]

88 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

PortalType is a method that returns the name of the items content-type.

(pdb) item.PortalType ()
'News Item'

Nota: In Plone 4 without plone.app.contenttypes the template to customize would be
folder_summary_view.pt, a skin template for Archetypes that can be found in the fol-
der Products/CMFPlone/skins/plone_content/. The customized template would be
Products.CMFPlone.skins.plone_content.folder_ summary_view.pt.

The Archetypes template for News Items is newsitems_view.pt from the same folder. The customized template
would then have to be named Products.CMFPlone.skins.plone_content.newsitems_view.pt.

Keep in mind that not only the names and locations have changed but also the content and the logic behind them!

Finding the right template
We changed the display of the listing of news items at http://localhost:8080/Plone/news. But how do we know which
template to customize?

If you don’t know which template is used by the page you’re looking at, you can make an educated guess. Start a
debug session or use plone.app.debugtoolbar.

1. We could check the HTML with Firebug and look for a structure in the content area that looks unique. We could
also look for the CSS class of the body

<body class="template-summary_view portaltype-collection site-Plone section-news_
—subsection-aggregator icons-on userrole—anonymous" dir="1ltr">

The class template-summary_view tells us that the name of the view (but not necessarily the name of the
template) is summary_view. So we could search all x . zcm1-Files for name="summary_view" or search
all templates called summary_view.pt and probably find the view and also the corresponding template. But
only probably because it would not tell us if the template is already being overridden.

A foolproof way to verify your guess is to modify the template and reload the page. If your modification shows
up you obviously found the correct file.

2. The safest method is using plone. app.debugtoolbar. We already have it in our buildout and only need
to install it. It adds a “Debug” dropdown menu on top of the page. The section “Published” shows the complete
path to the template that is used to render the page you are seeing.

3. The debug session to find the template is a little more complicated. Since we have
Products.PDBDebugMode in our buildout we can call /pdb on our page. We cannot put a pdb in
the templates since we do not know (yet) which template to put the pdb in.

The object that the URL points to is by default self.context. But the first problem is that the URL we’re
seeing is not the URL of the collection we want to modify. This is because the collection is the default page of
the folder news.

(Pdb) self.context
<Folder at /Plone/news>
(Pdb) obj = self.context.aggregator

(Pdb) obj
<Collection at /Plone/news/aggregator>
(Pdb) context_state = obj.restrictedTraverse('l@@plone_context_state')

(Pdb) template_id = context_state.view_template_id()
(Pdb) template_id

2.1. Mastering Plone Development 89

http://localhost:8080/Plone/news

Plone Training Documentation, Publicacion 1.2.5a

'summary_view'

(Pdb) view = obj.restrictedTraverse ('summary_view')

(Pdb) view

<Products.Five.metaclass.SimpleViewClass from /Users/philip/.cache/buildout/eggs/
—plone.app.contenttypes—1.1b2-py2.7.egg/plone/app/contenttypes/browser/templates/
—summary_view.pt object at 0x10b00cd90>

view.index.filename
u'/Users/philip/workspace/training_without_vagrant/src/ploneconf.site/ploneconf/
—site/browser/template_overrides/plone.app.contenttypes.browser.templates.

—summary_view.pt'

Now we see that we already customized the template.

Here is a method that could be used in a view or viewlet to display that path:

def get_template_path(self) :
context_state = api.content.get_view(
'plone_context_state', self.context, self.request)
view_template_id = context_state.view_template_id()
view = self.context.restrictedTraverse (view_template_id)
return view.index.filename

skin templates

Why don’t we always only use templates? Because we might want to do something more complicated than get an
attribute from the context and render its value in some html tag.

There is a deprecated technology called ‘skin templates’ that allows you to simply add some page template (e.g.
‘old_style_template.pt’) to a certain folder in the ZMI or your egg and you can access it in the browser by opening a
url like http://localhost:8080/Plone/old_style_template and it will be rendered. But we don’t use it and you too should
not, even though these skin templates are still all over Plone.

Since we use plone.app.contenttypes we do not encounter many skin templates when dealing with content
any more. But more often than not you’ll have to customize an old site that still uses skin templates.

Skin templates and Python scripts in portal_skins are deprecated because:

= they use restricted Python

they have no nice way to attach Python code to them

they are always callable for everything (they can’t easily be bound to an interface)

Summary

Overriding templates with z3c . jbot is easy.
Understanding templates can be hard.
Use plone.app.debugtoolbar and pdb; they are there to help you.

Skin templates are deprecated; you will probably only encounter them when you work on Plone 4.

Views Il: A Default View for “Talk”

90

Capitulo 2. Trainings

http://localhost:8080/Plone/old_style_template

Plone Training Documentation, Publicacion 1.2.5a

Get the code!

Get the code for this chapter (More info):

git checkout views_2

In this part you will:

= Register a view with a python class

= Write a template used in the default view for talks
Topics covered:

= View classes

= BrowserView and DefaultView

= displaying data from fields

View Classes

Earlier we wrote a demo view which we also used to experiment with page templates. Now we are going to enhance
that view so that it will have some python code, in addition to a template. Let us have a look at the zcml and the code.

browser/configure.zcml

<configure xmlns="http://namespaces.zope.org/zope"
xmlns:browser="http://namespaces.zope.org/browser"
118n_domain="ploneconf.site">

<browser:page
name="demoview"
for:"*"

class=".views.DemoView"

template="templates/training.pt"

permission="zope2.View"

/>

</configure>

We are adding a file called views.py in the browser folder.

browser/views.py

from Products.Five.browser import BrowserView

class DemoView (BrowserView) :

"mm This does nothing so far
mrmmn

def the_title(self):
return u'A list of great trainings:'

In the template t raining.pt we can now use this view as view and access all its methods and properties:

<h2 tal:content="python: view.the_title()" />

The logic contained in that file can now be moved to the class:

2.1. Mastering Plone Development 91

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

Plone Training Documentation, Publicacion 1.2.5a

—#— coding: utf-8 —*-—
from Products.Five.browser import BrowserView
from operator import itemgetter

class DemoView (BrowserView) :
H""A demo listing"""

def the_title(self):
return u'A list of talks:'

def talks(self):

results = []
data = [
{'title': 'Dexterity is the new default!’',
'subjects': ('content-types', 'dexterity')},
{'title': 'Mosaic will be the next big thing.',
'subjects': ('layout', 'deco', 'views'),
'url': 'https://www.youtube.com/watch?v=QSNufxaYblM'},
{'title': 'The State of Plone',
'subjects': ('keynote',)},
{'title': 'Diazo is a powerful tool for theming!’',
'subjects': ('design', 'diazo', 'xslt')},
{'title': 'Magic templates in Plone 5',
'subjects': ('templates', 'TAL'),
'url': 'http://www.starzel.de/blog/magic-templates—in-plone-5"'},

for item in data:

try:
url = item['url']
except KeyError:
url = 'https://www.google.com/search?g=%s' % item['title']

talk = dict(
title=item['title'],
subjects="', '.Jjoin(item['subjects']),
url=url
)
results.append(talk)
return sorted(results, key=itemgetter ('title'))

And the template will now be much simpler.

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en"
metal:use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">

<body>

<metal:content-core fill-slot="content-core">
<h2 tal:content="python: view.the_title()" />

<table class="listing">
<tr>
<th>Title</th>
<th>Topics</th>
</tr>

92 Capitulo 2.

Trainings

20

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

<tr tal:repeat="talk python:view.talks()">
<td>

${python:talk['title"']}

</td>
<td>
S{python:talk['subjects']}
</td>
</tr>
</table>

</metal:content—-core>

</body>
</html>

The default view

Using a view you can now create a nice view for talks in views . py. First we will not write any methods for view but

instead access the fields from the talk-schema as context. <fieldname>.

Register a view talkview in browser/configure.zcml:

<browser:page
name="talkview"

for="«%"
layer="zope.interface.Interface"
class=".views.TalkView"

template="templates/talkview.pt"
permission="zope2.View"

/>

browser/views.py

class TalkView (BrowserView) :
""m The default view for talks"""

Add the template templates/talkview.pt:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en"
metal:use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">

<body>
<metal:content—-core fill-slot="content-core">

<p>Suitable for <em tal:content="python: ', '.join(context.subject)">

</p>

<div tal:condition="python: context.details"

tal:content="structure python: context.details.output"

<div tal:content="python: context.speaker">
User
</div>
</metal:content—core>

/>

2.1. Mastering Plone Development

93

Plone Training Documentation, Publicacion 1.2.5a

</body>
</html>

After a restart, we can test our view by going to a talk and adding /falkview to the url.

Using helper-methods from DefaultView

Dexterity comes with a nice helper-class suited for views of content-types: The DefaultView base class in
plone.dexterity. It only works for Dexterity Objects and has some very useful properties available to the tem-
plate:

= view.w is a dictionary of all the display widgets, keyed by field names. This includes widgets from alternative
fieldsets.

» view.widgets contains a list of widgets in schema order for the default fieldset.
= view.groups contains a list of fieldsets in fieldset order.

» view.fieldsets contains a dict mapping fieldset name to fieldset

= On a fieldset (group), you can access a widget list to get widgets in that fieldset

You can now change the TalkView to use that

from plone.dexterity.browser.view import DefaultView

class TalkView (DefaultView) :
"mrm The default view for talks

mmn

The template templates/talkview.pt still works but now you can modify it to use the pattern
view/w/<fieldname>/render to render the widgets:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
lang="en"
metal:use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">
<body>
<metal:content-core fill-slot="content-core">
<p>Suitable for <em tal:replace="structure view/w/audience/render">

</p>
<div tal:content="structure view/w/details/render" />

<div tal:content="context/speaker">
User
</div>
</metal:content-core>
</body>
</html>

After a restart, we can test the modified view by going to a talk and adding /talkview to the url.
We should tell Plone that the talkview should be used as the default view for talks instead of the built-in view.

This is a configuration that you can change during runtime and is stored in the database, as such it is also managed by
GenericSetup profiles.

94 Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

open profiles/default/types/talk.xml:

<property name="default_view">talkview</property>
<property name="view_methods">

<element value="talkview"/>

<element value="view"/>
</property>

We will have to either reinstall our add-on or run the GenericSetup import step t ypeinfo so Plone learns about the
change.

Nota: To change it ttw got to the ZMI (http://localhost:8080/Plone/manage), go to portal_types and select the
type for which the new view should be selectable (talk). Now add t alkview to the list Available view methods. Now
the new view is available in the menu Display. To make it the default view enter it in Default view method.

Let’s improve the talkview to show all the info we want.

templates/talkview.pt:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en"
metal:use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">
<body>
<metal:content-core fill-slot="content-core">

<p>

Talk

suitable for

Audience

</p>

<div tal:content="structure view/w/details/render">
Details
</div>

<div class="newsImageContainer">
<img tal:condition="python:getattr (context, 'image', None)"
tal:attributes="src string:${context/absolute_url}/QRimages/image/
<~thumb" />
</div>

<div>
<a class="email-1link" tal:attributes="href string:mailto:${context/email}

">
<strong tal:content="context/speaker">
Jane Doe

<div tal:content="structure view/w/speaker_biography/render">
Biography

</div>

2.1. Mastering Plone Development 95

http://localhost:8080/Plone/manage

Plone Training Documentation, Publicacion 1.2.5a

</div>

</metal:content-core>
</body>
</html>

Exercise

Add the new choice field “room” to the Talk type (TTW) and display it below Audience in the browser view, it should

contain the following data:
= Title: Room

» Possible values: Room 101, Room 102, Auditorium

Solution
= Go to http://localhost:8080/Plone/dexterity-types/talk/@ @fields and add the new field
= Add the new HTML below the audience part:

<p>

Room

</p>

Behind the scenes

from Products.Five.browser import BrowserView

class DemoView (BrowserView) :

def _ _init__ (self, context, request):
self.context = context
self.request = request

def _ call__ (self):
Implement your own actions

This renders the template that was registered in zcml like this:
template="templates/training.pt"

return super (DemoView, self).__call__ ()

If you don't register a template in zcml the Superclass of

DemoView will have no __call___-method!

In that case you have to call the template like this:

from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile
class DemoView (BrowserView) :

template = ViewPageTemplateFile('templates/training.pt')

def __call (self):

return self.template()

Do you remember the term MultiAdapter? The browser page is just a MultiAdapter. The ZCML statement

browser :page registers a Mult iAdapter and adds additional things needed for a browser view.

96 Capitulo 2. Trainings

http://localhost:8080/Plone/dexterity-types/talk/@@fields

Plone Training Documentation, Publicacion 1.2.5a

An adapter adapts things, a Mult iAdapter adapts multiple things.

When you enter a url, Zope tries to find an object for it. At the end, when Zope does not find any more objects but
there is still a path item left, or there are no more path items, Zope looks for an adapter that will reply to the request.

The adapter adapts the request and the object that Zope found with the URL. The adapter class gets instantiated with
the objects to be adapted, then it gets called.

The code above does the same thing that the standard implementation would do. It makes context and request
available as variables on the object.

I have written down these methods because it is important to understand some important concepts.

The __init__ () method gets called while Zope is still trying to find a view. At that phase, the security has not been
resolved. Your code is not security checked. For historical reasons, many errors that happen in the __init__ ()
method can result in a page not found error instead of an exception.

Use the __init__ () method to do as little as possible, if at all. Instead, you have the guarantee that the
__call__ () method is called before anything else (but after the __init__ () method). It has the security checks
in place and so on.

From a practical standpoint, consider the __call__ () method your __init__ () method, the biggest difference
is that this method is supposed to return the HTML already. Let your base class handle the HTML generation.

Ver también:

https://docs.plone.org/develop/plone/views/browserviews.html

Views llI: A Talk List

Get the code!

Get the code for this chapter (More info):

git checkout views_3

In this part you will:
= Write a python class to get all talks from the catalog
= Write a template to display the talks
= Improve the table
Topics covered:
= BrowserView

= plone.api

portal_catalog

brains and objects

tables

Now we don’t want to provide information about one specific item but on several items. What now? We can’t look at
several items at the same time as context.

2.1. Mastering Plone Development 97

https://docs.plone.org/develop/plone/views/browserviews.html

20

21

22

23

24

25

Plone Training Documentation, Publicacion 1.2.5a

Using portal_catalog

Let’s say we want to show a list of all the talks that were submitted for our conference. We can just go to the folder
and select a display method that suits us. But none does because we want to show the target audience in our listing.

So we need to get all the talks. For this we use the python class of the view to query the catalog for the talks.

The catalog is like a search engine for the content on our site. It holds information about all the objects as well as some
of their attributes like title, description, workflow_state, keywords that they were tagged with, author, content_type, its
path in the site etc. But it does not hold the content of “heavy” fields like images or files, richtext fields and fields that
we just defined ourselves.

It is the fast way to get content that exists in the site and do something with it. From the results of the catalog we can
get the objects themselves but often we don’t need them, but only the properties that the results already have.

browser/configure.zcml

<browser:page

name="talklistview"

for="+"
layer="zope.interface.Interface"
class=".views.TalkListView"
template="templates/talklistview.pt"
permission="zope2.View"

/>

browser/views.py

from Products.Five.browser import BrowserView

from plone import api
from plone.dexterity.browser.view import DefaultView

class TalkListView (BrowserView) :

mrmA list of talks

mon

def talks(self):
results = []
brains = api.content.find(context=self.context,
for brain in brains:
talk = brain.getObject ()
results.append ({
'title': brain.Title,
'description': brain.Description,
'url': brain.getURL(),
'audience': ', '.Jjoin(talk.audience),
'type_of talk': talk.type_of_talk,
'speaker': talk.speaker,
'uuid': brain.UID,
})

return results

portal_type='talk')

We query the catalog with two parameters. The catalog returns only items for which both apply:

m context=self.context

m portal_type='talk'

98

Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

We pass a object as context to query only for content in the current path. Otherwise we’d get all talks in the whole site.
If we moved some talks to a different part of the site (e.g. a sub-conference for universities with a special talk list) we
might not want so see them in our listing. We also query for the portal_type so we only find talks.

Nota: We use the method find () in plone.api to query the catalog. It is one of many convenience-methods
provided as a wrapper around otherwise more complex api’s. If you query the catalog direcly you’d have to first get
the catalog, and pass it the path for which you want to find items:

portal_catalog = api.portal.get_tool ('portal catalog')
current_path = '/'.join(self.context.getPhysicalPath())
brains = portal_catalog(path=current_path, portal_type='talk')

We iterate over the list of results that the catalog returns us.

We create a dictionary that holds all the information we want to show in the template. This way we don’t have to put
any complex logic into the template.

brains and objects
Objects are normally not loaded into memory but lie dormant in the ZODB Database. Waking objects up can be slow,
especially if you’re waking up a lot of objects. Fortunately our talks are not especially heavy since they are:

= dexterity-objects which are lighter than their archetypes brothers

= relatively few since we don’t have thousands of talks at our conference

We want to show the target audience but that attribute of the talk content type is not in the catalog. This is why we
need to get to the objects themselves.

We could also add a new index to the catalog that will add ‘audience’ to the properties of brains, but we should weigh
the pros and cons:

= talks are important and thus most likely always in memory

= prevent bloating of catalog with indexes

Nota: The code to add such an index would look like this:

from plone.indexer.decorator import indexer
from ploneconf.site.talk import ITalk

@indexer (ITalk)
def talk_audience (object, **kw):
return object.audience

We’d have to register this factory function as a named adapter in the configure.zcml. Assuming you’ve put the
code above into a file named indexers.py

<adapter name="audience" factory=".indexers.talk_audience" />

We will add some indexers later on.

Why use the catalog at all? It checks for permissions, and only returns the talks that the current user may see. They
might be private or hidden to you since they are part of a top secret conference for core developers (there is no such
thing!).

2.1. Mastering Plone Development 99

Plone Training Documentation, Publicacion 1.2.5a

Most objects in Plone act like dictionaries, so you can do context .values () to get all its contents.

For historical reasons some attributes of brains and objects are written differently.

>>> obj = brain.getObject ()

>>> obj.title
u'Talk-submission is open!'

>>> brain.Title == obj.title
True
>>> brain.title == obj.title
False

Who can guess what brain.title will return since the brain has no such attribute?

Nota: Answer: Acquisition will get the attribute from the nearest parent. brain.__parent___is<CatalogTool
at /Plone/portal_catalog>. The attribute title of the portal_catalog is ‘Indexes all content in the
site’.

Acquisition can be harmful. Brains have no attribute ‘getLayout’ brain.getLayout ():

>>> brain.getLayout ()
'folder_listing'

>>> obj.getLayout ()
'newsitem_view'

>>> brain.getLayout
<bound method PloneSite.getLayout of <PloneSite at /Plone>>

The same is true for methods:

>>> obj.absolute_url ()
'http://localhost:8080/Plone/news/talk—-submission—-is-open'

>>> brain.getURL() == obj.absolute_url ()

True

>>> brain.getPath() == '/'.join(obj.getPhysicalPath())
True

Querying the catalog

The are many catalog indexes to query. Here are some examples:

>>> portal_catalog = getToolByName (self.context, 'portal catalog')
>>> portal_catalog(Subject=('cats', 'dogs'))

[]

>>> portal_catalog(review_state='pending')

L]

Calling the catalog without parameters returns the whole site:

>>> portal_catalog()
[<Products.ZCatalog.Catalog.mybrains object at 0x1085al1f0>, <Products.ZCatalog.
—Catalog.mybrains object at 0x1085al2c0>, <Products.ZCatalog.Catalog.mybrains object

20

I W Ba Wo N i D] 4 v e D | P | 1 s 1o 4 I W B a Wo Nl P
at UXITUoooarozo~>y TTrogucCtT ST 4ACatarogr-Catarog - myoTraTiT OO JECT at UXTuooJarto

100 Capitulo 2. Trainings

https://docs.plone.org/develop/plone/searching_and_indexing/indexing.html

Plone Training Documentation, Publicacion 1.2.5a

Ver también:

https://docs.plone.org/develop/plone/searching_and_indexing/query.html

Exercises

Since you now know how to query the catalog it is time for some exercise.

Exercise 1

Add a method get_news () to TalkListView that returns a list of brains of all News Items that are published and

sort them in the order of their publishing-date.

Solution

def get_news (self):

portal_catalog = api.portal.get_tool ('portal catalog')
return portal_catalog(

portal_type='News Item',

review_state="'published',

sort_on='effective',

Exercise 2

Add a method that returns all published keynotes as objects.

Solution

def keynotes(self):

portal_catalog = api.portal.get_tool ('portal catalog')
brains = portal_catalog(
portal_type='Talk',
review_state="published")
results = []
for brain in brains:
There is no catalog-index for type_of_talk so we must check
the objects themselves.
talk = brain.getObject ()
if talk.type_of_talk == 'Keynote':
results.append(talk)
return results

The template for the listing

Next you create a template in which you use the results of the method ‘talks’.

2.1. Mastering Plone Development

101

https://docs.plone.org/develop/plone/searching_and_indexing/query.html

20

21

22

23

24

25

26

27

28

29

30

Plone Training Documentation, Publicacion 1.2.5a

Try to keep logic mostly in python. This is for two reasons:

Readability: It’s much easier to read python than complex tal-structures

Speed: Python-code is faster than code executed in templates. It’s also easy to add caching to methods.

DRY: In Python you can reuse methods and easily refactor code. Refactoring TAL usually means having to do big

changes in the html-structure which results in incomprehensible diffs.
The MVC-Schema does not directly apply to Plone but look at it like this:
Model: the object
View: the template

Controller: the view

The view and the controller are very much mixed in Plone. Especially when you look at some of the older code of
Plone you’ll see that the policy of keeping logic in python and representation in templates was not always enforced.

But you should nevertheless do it! You’ll end up with more than enough logic in the templates anyway.

Add this simple table to templates/talklistview.pt:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en"
metal:use-macro
il8n:domain="ploneconf.site">
<body>
<metal:content-core fill-slot="content-core">
<table class="listing"
id="talks"
tal:define="talks python:view.talks () ">
<thead>
<tr>
<th>Title</th>
<th>Speaker</th>
<th>Audience</th>
</tr>
</thead>
<tbody>
<tr tal:repeat="talk talks">
<td>
<a href=""
tal:attributes="href python:talk['url'];

title python:talk['description']"

tal:content="python:talk['title']">
The 7 sins of plone-development

</td>
<td tal:content="python:talk['speaker']">
Philip Bauer
</td>
<td tal:content="python:talk['audience']">
Advanced
</td>
</tr>
<tr tal:condition="not:talks">
<td colspan=3>
No talks so far :—(
</td>
</tr>
</tbody>

="context/main_template/macros/master"

102

Capitulo 2. Trainings

40

41

42

43

Plone Training Documentation, Publicacion 1.2.5a

</table>

</metal:content-core>
</body>
</html>

Again we use class="1isting" to give the table a nice style.
There are some some things that need explanation:

tal:define="talks python:view.talks ()" This defines the variable falks. We do thins since we reuse
it later and don’t want to call the same method twice. Since TAL’s path expressions for the lookup of values in
dictionaries is the same as for the attributes of objects and methods of classes we can write view/talks as
we could view/someattribute. Handy but sometimes irritating since from looking at the page template
alone we often have no way of knowing if something is an attribute, a method or the value of a dict.

tal:repeat="talk talks" This iterates over the list of dictionaries returned by the view. Each talk is one
of the dictionaries that are returned by this method.

tal:content="python:talk['speaker']" ‘speaker’ is a key in the dict ‘talk’. We could also write
tal:content="talk/speaker"

tal:condition="not:talks" Thisis afallback if no talks are returned. It then returns an empty list (remember
results = []7)

Nota: We could also write python:not talks like we could also write tal:repeat="talk
python:talks" for the iteration. For simple cases as these path-statements are sometimes fine. On the other hand:
If talks would be a callable we woul need to use nocall:talks, so maybe it would be better to always use
python:.

Exercise

Modify the view to only use path-expressions. This is not best-practice but there is plenty of code in Plone and in
Addons so you have to know how to use them.

Solution

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en"
metal :use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">
<body>
<metal:content-core fill-slot="content-core">
<table class="listing" id="talks"
tal:define="talks view/talks">

<thead>
<tr>
<th>Title</th>
<th>Speaker</th>
<th>Audience</th>
</tr>
</thead>
<tbody>
<tr tal:repeat="talk talks">
<td>
<a href=""

2.1. Mastering Plone Development 103

20

21

22

23

24

25

26

27

28

29

30

Plone Training Documentation, Publicacion 1.2.5a

tal:attributes="href talk/url;
title talk/description"
tal:content="talk/title">
The 7 sins of plone-development

</td>
<td tal:content="talk/speaker">
Philip Bauer
</td>
<td tal:content="talk/audience">
Advanced
</td>
</tr>
<tr tal:condition="not:talks">
<td colspan=3>
No talks so far :—(
</td>
</tr>
</tbody>
</table>

</metal:content—-core>
</body>
</html>

Setting a custom view as default view on an object

We don’t want to always have to append /@@talklistview to our folder to get the view. There is a very easy way
to set the view to the folder using the ZMI.

If we append /manage_propertiesForm we can set the property “layout” to talklistview.

To make views configurable so that editors can choose them we have to register the view for the content type at hand
in its FTI. To enable it for all folders we add a new file profiles/default/types/Folder.xml

<?xml version="1.0"?>

<object name="Folder">

<property name="view_methods" purge="False">
<element value="talklistview"/>

</property>

</object>

After re-applying the typeinfo profile of our add-on (or simply reinstalling it) the content type “Folder” is extended
with our additional view method and appears in the display dropdown.

The purge="False" appends the view to the already existing ones instead of replacing them.

Summary

We created a nice listing, that can be called at any place in the website.

Testing in Plone

104 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Get the code!

Get the code for this chapter (More info):

git checkout testing

In this chapter we:
= Write tests
Topics covered:
= Testing best practices

= Internals of Plone

Types of tests

Plone is using some common terminology for types of tests you might have heard elsewhere. But in Plone, these terms
are usually used to differentiate the technical difference between the types of test.

Unit tests

These match the normal meaning the most. Unit tests test a unit in isolation. That means there is no database, no
component architecture and no browser. This means the code is very fast and it can mean that you can’t test all that
much if your code mostly interacts with other components.

A unit test for a browser view would create an instance of the view directly. That means it is your responsibility to
provide a proper context and a proper request. You can’t really test user-dependent behavior because you just mock
a Request object imitating a user or not. This code might be broken with the next version of Plone without the test
failing.

On the other hand, testing a complex rule with many different outcomes is still best tested in a unit test, because they
are very fast.

Integration tests

Integration tests in Plone mean you have a real database and your component architecture. You can identify an inte-
gration test by the layer it is using which is based on a layer with integration in its name. We will explain shortly what
a layer is.

Integration tests also means your test is still quite fast, because the transaction mechanisms are used for test isolation.
What does that mean? After each test, the transaction gets canceled and you have the database in the same state as
before. It still takes a while to set up the test layer, but running each test is quite fast. But this also means you cannot
commit a transaction. Most code does not commit transactions and this is not an issue.

Functional tests

Functional tests in Plone have a real database and a component architecture, like Integration tests. In addition, you can
simulate a browser in python code. When this browser tries to access a page, the complete transaction machinery is
in use. For this to work, the test layer wraps the database into a demostorage. A Demostorage is for demonstration. A
demostorage wraps a regular storage. When something gets written into the database, the demostorage stores it into
memory or temporary fields. On reading it either returns what has been saved in memory or what is in the underlaying

2.1. Mastering Plone Development 105

Plone Training Documentation, Publicacion 1.2.5a

storage. After each test, the demostorage is wiped. This should make it nearly as fast as integration tests, but there is
an additional overhead, when requests get through the transaction machinery. Also, the browser is pure python code.
It knows nothing about javascript. You cannot test your javascript code with functional tests

Acceptance tests

Acceptance tests are usually tests that can assert that an application would pass the requirements the customer gave.
This implies that acceptance tests test the complete functionality and that they either allow the customer to understand
what is being tested or at least clearly map to business requirements. In Plone, acceptance tests are tests written with
the so called robot framework. Here you write tests in something resembling a natural language and which is driven
by a real web browser. This implies you can also test Javascript. This is the slowest form of testing but also the most
complete. Also, acceptance tests aren’t limited to the original form of acceptance tests, but also for normal integration
tests.

Javascript tests

So far, it looks like we only have acceptance tests for testing javascript. Acceptance tests are also very new. This
means we had no test story for testing javascript. In Plone 5, we have the mockup framework to write javascript
components and the mockup framework provides also scaffolding for testing Javascript with xxx. While these tests
use a real browser of some sort, they fall into the category of unit tests, because you have no database Server available
to generate proper html.

Doctests

Doctests are a popular way to write tests in documentation. Doctests parse documentation for code that has special
formatting and runs the code and compares it with the output suggested in the documentation. Doctests are hard to
debug, because there is no easy way to use a debugger in doctests. Doctests have a bad reputation, because when
it came around, people thought they could write documentation and tests in one go. This resulted in packages like
zope.component, where the documentation on pypi slowly transforms into half sentences split up by 5-10 lines of code
testing an obscure feature that the half sentence does not properly explain. In Plone, this form of testing is not very
common. We would like to transform our documentation to be testable with doctests.

Writing tests

Writing tests is an art. If your testsuite needs half an hour to run, it loses a lot of value. If you limit yourself to unit tests
and fake everything, you miss many bugs, either because Plone works differently than what you thought, or the next
Plone versions run differently from today’s. On the other hand, integration tests are not only slower, but often create
test failures far away from the actual error in the code. Not only do the tests run more slowly, it also takes longer to
debug why they fail. Here are some good rules to take into account.

If you need to write many test cases for a browser view, you might want to factor this out into a component of its own,
in such a way that this component can easily be tested with unit tests. If, for example, you have a list view that shall
do a specific way of sorting, depending on gender, language and browser of a user, write a component that takes a list
of names to sort, gender, language and browser as strings. This code can easily be tested for all combinations in unit
tests, while extracting gender, language and browser from a request object takes only a few functional tests.

Try not to mock code. The mocked code you generate mocks Plone in the version you are using today. The next version
might work differently.

Do not be afraid to rewrite your code for better testability. It pays off.

106 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

If you have highly complex code, think about structuring code and data structures in such a way that they have no side
effects. For one customer I wrote a complex ruleset of about 400 lines of code. A lot of small methods that have no
side effects. It took a bit to write that code and corresponding tests, but as of today this code did not have a single
failure.

Steal from others. Unfortunately, it sometimes takes an intrinsic knowledge to know how to test some functionality.
Some component functionality that is automatically handled by the browser must be done by hand. And the component
documentation has been referenced in this chapter as a terrible example already. So, copy your code from somewhere
else.

Normally, you write a test that tests one thing only. Don’t be afraid to break that rule when necessary. If, for example,
you built some complex logic that involves multiple steps, don’t shy away from writing a longer test showing the
normal, good case. Add lots of comments explaining in each step what is happening, why and how. This helps other
developers and the future you.

Plone tests

Plone is a complex system to run tests in. Because of this, we use a functionality from zope.testrunner: layers. We
use the well known unittest framework which exhibits the same ideas as nearly every unittest framework out there. In
addition for test setups we have the notion of layers. A layer is a test setup that can be shared. This way, you can run
tests from 20 different testsuites but not each testsuite sets up their own complete Plone site. Instead, you use a Layer,
and the testrunner takes care that every testsuite sharing a layer are run together.

Usually, you create three layers on your own, an integration layer, a functional layer and an acceptance test layer. If
you were to test code that uses the Solr search engine, you’d use another layer that starts and stops solr between tests.
But most of the time you just use the default layers you copied from somewhere or that mr.bob gave you.

By convention, layers are defined in a module testing in your module root, ie my.code.testing. Your test
classes should be in a folder named tests

Getting started

Mr.bob already created the testing layers. We will go through them now.

Next, it adds a method for testing that your add-on gets properly installed. This might seem stupid, but it isn’t if
you take into account that in plone land, things change with new releases. Having a GenericSetup profile installing
Javascript files contains the assumption that the package wants a javascript file available in Plone. This assumption is
explained in the syntax of the current Plone. By testing that the result is met, the Javascript file really is available, we
spell out that assumption more clearly. The person that wants to make your package work 5 years from now, knows
now that the result in his browser might be related to a missing file. Even if he does not understand the semantics from
the old Plone on how to register js files, he has a good starting point on what to do to make this package compatible.

This is why it makes sense to write these tedious tests.

If nothing else matches, test_setup.py is the right location for anything GenericSetup related. In Write Your Own
Add-Ons to Customize Plone we created a content type. It is time to test this.

We are going to create a test module named test_talk:

from pkg resources import resource_stream

from plone.app.testing import SITE_OWNER_NAME

from plone.app.testing import SITE_OWNER_PASSWORD

from plone.app.testing import TEST_USER_ID

from plone.app.testing import setRoles

from plone.dexterity.interfaces import IDexterityFTI

from plone.testing.z2 import Browser

from ploneconf.site.testing import PLONECONF_SITE_FUNCTIONAL_TESTING

2.1. Mastering Plone Development 107

20

21

22

23

24

25

26

27

28

29

30

32

33

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Plone Training Documentation, Publicacion 1.2.5a

from ploneconf.site.testing import PLONECONF_SITE_INTEGRATION_TESTING
from zope.component import createObject

from zope.component import queryUtility

import unittest

class TalkIntegrationTest (unittest.TestCase):
layer = PLONECONF_SITE_INTEGRATION_TESTING

def setUp(self):
self.portal = self.layer['portal']
setRoles (self.portal, TEST_USER_ID, ['Manager'])

def test_fti(self):
fti = queryUtility (IDexterityFTI, name='talk')
self.assertTrue (fti)

def test_schema (self):
fti = queryUtility (IDexterityFTI, name='talk')
schema = fti.lookupSchema ()
self.assertTrue (schema)
self.assertEqual (ITalk, schema)

def test_factory(self):
fti = queryUtility (IDexterityFTI, name='talk')
factory = fti.factory
talk = createObject (factory)
self.assertTrue (ITalk.providedBy (talk))
self.assertTrue (talk)

def test_adding(self):
self.portal.invokeFactory('talk', 'talk'")
self.assertTrue(self.portal.talk)
self.assertTrue (ITalk.providedBy (self.portal.talk))

class TalkFunctionalTest (unittest.TestCase) :
layer = PLONECONF_SITE_FUNCTIONAL_TESTING

def setUp(self):
app = self.layer['app']
self.portal = self.layer['portal']
self.request = self.layer['request']
self.portal_url = self.portal.absolute_url()

Set up browser
self.browser = Browser (app)
self.browser.handleErrors = False
self.browser.addHeader (
'Authorization',
'Basic ¢s:%s' % (SITE_OWNER_NAME, SITE_OWNER_PASSWORD,)

def test_add_task(self):
self .browser.open (self.portal_url + '/++add++talk')
ctrl = self.browser.getControl

108 Capitulo 2. Trainings

67

68

69

70

71

72

3

74

75

76

7

78

79

81

82

84

85

87

88

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Plone Training Documentation, Publicacion 1.2.5a

ctrl (name="form.widgets.IDublinCore.title") .value = "My Talk"
ctrl (name="form.widgets.IDublinCore.description") .value = \
"This is my talk"

ctrl (name="form.widgets.type_of_talk").value = ["Talk"]

ctrl (name="form.widgets.details") .value = "Long awesome talk"
ctrl (name="form.widgets.audience:1ist") .value = ["Advanced"]

ctrl (name="form.widgets.speaker") .value = "Team Banzai"

ctrl (name="form.widgets.email") .value = "banzailexample.com"

img_ctrl = ctrl (name="form.widgets.image")

img_ctrl.add_file(resource_stream(__name__ , 'plone.png'),
'image/png', 'plone.png')
ctrl (name="form.widgets.speaker_biography") .value = \
"Team Banzai is awesome, we are on Wikipedia!"

ctrl ("Save").click ()
talk = self.portal['my-talk']
self.assertEqual ('My Talk', talk.title)
self.assertEqual ('This is my talk',talk.description)
self.assertEqual ('Talk', talk.type_of_talk)
self.assertEqual ('Long awesome talk', talk.details.output)
self.assertEqual ({'Advanced'}, talk.audience)
self.assertEqual ('Team Banzai', talk.speaker)
self.assertEqual ((491, 128), talk.image.getImageSize())
self.assertEqual ('

talk.speaker_biography.output)

def test_view_task(self):
setRoles (self.portal, TEST_USER_ID, ['Manager'])
self.portal.invokeFactory (
"talk",
id="my-talk",
title="My Talk",

import transaction
transaction.commit ()
self.browser.open(self.portal_url + '/my-talk')

self.assertTrue('My Talk' in self.browser.contents)

Team Banzail i1s awesome, we are on Wikipedia!',

In Views I we created a new view. We have to test this! This time, though, we are going to test it with a browser, too.

First, we add a simple test for the custom template in our Functional Test layer

def test_custom_template(self):
setRoles (self.portal, TEST_USER_ID, ['Manager'])
self.portal.invokeFactory (
"talk",
id="my-talk",
title="My Talk",

import transaction
transaction.commit ()

2.1. Mastering Plone Development

109

Plone Training Documentation, Publicacion 1.2.5a

self.browser.open(self.portal_url + '/training')

self.assertIn('Dexterity for the win', self.browser.contents)
self.assertIn('Deco is the future', self.browser.contents)
self.assertIn('The State of Plone', self.browser.contents)

(

self.assertIn('Diazo designs are great', self.browser.contents)

Exercise 1

We already wrote a talklistview and it is untested! We like to write unit tests first. But if you look at the Talklistview,
you notice that you’d have to mock the portal_catalog, the context, and complex results from the catalog. I wrote
earlier that it is ok to rewrite code to make it better testable. But in this example look at what you would test if you
mocked everything mentioned above. You would test that your code iterates over a mocked list of mocked items,
restructuring mocked attributes. There is not much sense in that. If you did some calculation, like ratings, things might
look different, but not in this case.

We can write an integration test. We should test the good case, and edge cases. The simplest test we can write is a test
where no talks exist.

Then we can create content. Looking through the code, we do not want the talks list to render results for documents.
So add a a document. Also, the code does not want to render results for a document out of the current context. So
create a folder and use this as a context. Then add a talk outside of this folder. The method iterates over audiences,
make sure that you have at least one talk that has multiple audiences and check for that. Some advanced thing. Should
you ever use an improved search system like collective.solr, results might get batched automatically. Check that if you
have 101 talks, that you also get back 101 talks. Think about what you want to check in your results. Do you want to
make a one to one comparison? How would you handle UUIDs?

A test creating 101 talks can be slow. It tests an edge case. There is a trick: create a new TestCase Class, and set an
attribute 1evel with the value of 2. This test will then only be run when you run the tests with the argument —a 2 or
-—all

Solution
1 def test_talklist (self):
2 view = api.content.get_view(name='talklistview',
3 context=self.portal,
4 request=self.request)
5 api.content.create(container=self.portal,
6 type='talk',
7 id='talk"',
8 title="A Talk")
9 talks = view.talks ()
10 self.assertEquals (1, len(talks))
11 self.assertEquals(['start',
12 'audience',
13 'speaker’',
14 'description',
15 'title',
16 'url',
17 'type_of_talk',
18 'room',
19 'uuid'],
20 talks[0] .keys())
21
2 def test_talklist_multipleaudiences (self):

110 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

view = api.content.get_view(name='talklistview',
context=self.portal,
request=self.request)
api.content.create (container=self.portal,
type='talk',
id="'talk"',
title="'A Talk")
self.portal.talk.audience = ['alpha', 'beta']
notify (ObjectModifiedEvent (self.portal.talk))
talks = view.talks ()
self.assertEquals (1, len(talks))
self.assertEquals('alpha, beta', talks[O0]['audience'])

def test_talklist_filtering(self):
api.content.create(container=self.portal,
type='talk',
id='talk",
title='A Talk'")
api.content.create (container=self.portal,
type='Folder',
id='talks—-folder',
title='A talks Folder')
api.content.create (container=self.portal['talks-folder'],
type='talk"',
id='talk"',
title="'A Talk'")
api.content.create (container=self.portal['talks-folder'],
type="'Document',
id='a Document',
title='A Document')
view = api.content.get_view(name='talklistview',

context=self.portal['talks—-folder'],

request=self.request)
talks = view.talks ()
self.assertEquals (1, len(talks))
self.assertEquals('A Talk', talks[0]['title'])

class SlowTalkIntegrationTest (unittest.TestCase) :

layer = PLONECONF_SITE_INTEGRATION_TESTING

Il
N

level

def setUp(self):
self.portal = self.layer['portal']
self.request = self.layer|['request']
setRoles (self.portal, TEST_USER_ID, ['Manager'])

def test_talklist_many_results(self):
view = api.content.get_view(name='talklistview',
context=self.portal,
request=self.request)
for i in range (101):
api.content.create (container=self.portal,
type='talk"',
id="'talk_{}'.format (i),
title="'Talk {}'.format (i))

2.1. Mastering Plone Development

111

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

Plone Training Documentation, Publicacion 1.2.5a

81 talks = view.talks ()
82 self.assertEquals (101, len(talks))
83 self.assertTrue (16, len(talks[-1]['uuid']l))

Robot tests

Finally, we write a robot test:

EXAMPLE ROBOT TESTS

Run this robot test stand-alone:
$ bin/test -s plonetraining.testing -t test_talk.robot —--all
Run this robot test with robot server (which is faster):

1) Start robot server:

e o Sk S HE R S S S HE S e

$ bin/robot-server --reload-path src plonetraining.testing.testing.PLONETRAINING_
—TESTING_ACCEPTANCE_TESTING

2) Run robot tests:
$ bin/robot src/plonetraining/testing/tests/robot/test_talk.robot

See the http://docs.plone.org for further details (search for robot
framework) .

e o

* K x Settlngs R R I i S I S R I I S R I S S b S b S S I S b S b e S R I S b I b b S b b S b b S b b S 2

Resource plone/app/robotframework/selenium.robot
Resource plone/app/robotframework/keywords.robot

Library Remote ${PLONE_URL}/RobotRemote

Test Setup Open test browser
Test Teardown Close all browsers

*xkk TEST CASES Hkhkkhhhrhhhhhhhhkhkkhhk Ak hhhhhkk kX Ak hhhhhhkk kA kA hkhhhkhkkkkxkkkkkkkkkx*x

Scenario: As a site administrator I can add a Talk
Given a logged-in site administrator
and an add talk form

When I type 'My Talk' into the title field
and I type 'Awesome talk' into the details field
and I type 'Team Banzai' into the speakers field
and I type 'banzai@example.com' into the email field
and I submit the form
Then a talk with the title 'My Talk' has been created

112 Capitulo 2. Trainings

47

48

49

50

52

53

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

103

104

Plone Training Documentation, Publicacion 1.2.5a

Scenario: As a site administrator I can view a Talk

Given a logged-in site administrator
and a talk 'My Talk'

When I go to the talk view

Then I can see the talk title 'My Talk'

Scenario: As a visitor I can view the new talk list

When I go to the talk list view
Then I can see a talk about 'Diazo designs are great'

* K Kx Keywords KK AR KA AR A AR AR A AR A AR A A A A AR A AR A AR A AR A AR AR A AR A AR A A A A AR A AR A AR A AR Ak, K

——— Glven ———— T oo

a logged-in site administrator

Enable autologin as Site Administrator

an add talk form

Go To ${PLONE_URL}/++add++talk

talk 'My Talk'
Create content type=talk id=my-talk title=My Talk

type '${title}' into the title field
Input Text name=form.widgets.IDublinCore.title ${title}

type 'S${details}' into the details field
Select frame form-widgets-details_ifr
Input text tinymce ${details}

Unselect Frame

type 'S${speaker}' into the speakers field
Input Text name=form.widgets.speaker ${speaker}

type 'S${email}' into the email field
Input Text name=form.widgets.email ${email}

submit the form
Click Button Save

go to the talk view
Go To ${PLONE_URL}/my-talk
Wait until page contains Site Map

go to the talk list view
Go To S${PLONE_URL}/demoview
Wait until page contains Site Map

talk with the title '${title}' has been created
Wait until page contains Site Map
Page should contain ${title}

2.1. Mastering Plone Development 113

Plone Training Documentation, Publicacion 1.2.5a

105 Page should contain Item created
106
107 | I can see the talk title '${title}’
108 Wait until page contains Site Map
109 Page should contain ${title}

110
11 I can see a talk about '${topic}'

12 Wait until page contains Site Map
113 Page should contain ${topic}

When you run your tests, you might notice that the robot tests didn’t run. This is a feature activated by the robot layer,
because robot tests can be quite slow. If you run your tests with . /bin/test --all your robot tests will run. Now
you will realize that you cannot work any more because a browser window pops up all the time.

There are 3 possible workarounds:

= install the headless browser, Phantomjs. Then run the tests with an environment variable
ROBOT_BROWSER=phantomjs bin/test --all This did not work for me btw.

» Install xvfb, a framebuffer. You wont see the browser then. After installing, start xvfb like this: Xvfb
:99.0 —-screen 0 1024x768x24. Then run your tests, declaring to connect to the non-default X Ser-
ver: DISPLAY=:99.0 bin/test --all

= Install Xephyr, it is also a framebuffer, but visible in a window. Start it the same way as you start Xvfb.
The first method, with Phantomjs, will throw failures with our tests, unfortunately.

For debugging, you can run the test like this ROBOT SELENIUM RUN_ON_ FAILURE=Debug bin/test
——all. This will stop the test at the first failure and you end up in an interactive shell where you can try various
Robot Framework commands.

More information

For more in-depth information and reference see
= plone.app.testing documentation.

= plone.testing package

Behaviors

Get the code!

Get the code for this chapter (More info):

git checkout behaviors_1

In this part you will:

= Add another field to talks by using a behavior
Topics covered:

= Behaviors

You can extend the functionality of your dexterity object by writing an adapter that adapts your dexterity object to add
another feature or aspect.

114 Capitulo 2. Trainings

https://docs.plone.org/external/plone.app.testing/docs/source/index.html
https://pypi.python.org/pypi/plone.testing

Plone Training Documentation, Publicacion 1.2.5a

But if you want to use this adapter, you must somehow know that an object implements that. Also, adding more fields
to an object would not be easy with such an approach.

Dexterity Approach

Dexterity has a solution for it, with special adapters that are called and registered by the name behavior.
A behavior can be added to any content type through the web and at runtime.

All default views (e.g. the add- and edit-forms) know about the concept of behaviors and when rendering forms, the
views also check whether there are behaviors referenced with the current context and if these behaviors have a schema
of their own, these fields get shown in addition.

Names and Theory

The name behavior is not a standard term in software development. But it is a good idea to think of a behavior as an
aspect. You are adding an aspect to your content type and you want to write your aspect in such a way that it works
independently of the content type on which the aspect is applied. You should not have dependencies to specific fields
of your object or to other behaviors.

Such an object allows you to apply the Open/closed principle to your dexterity objects.

Practical example

So, let us write our own small behavior.

In the future, we want our presentation to be represented in Lanyrd (a Social Conference Directory - Lanyrd.com) too.
For now we will just provide a link so that visitors can collaborate easily with the Lanyrd site.

So for now, our behavior just adds a new field for storing the url to Lanyrd.

We want to keep a clean structure, so we create a behaviors directory first, and include it into the zcml declarations
of our configure.zcml.

<include package=".behaviors" />

Then, we add an empty behaviors/__init__ .pyand abehaviors/configure.zcml containing

Advanced reference

It can be a bit confusing when to use factories or marker interfaces and when not to.

If you do not define a factory, your attributes will be stored directly on the object. This can result in clashes with
other behaviors.

You can avoid this by using the plone.behavior.AnnotationStorage factory. This stores your attributes
in an Annotation. But then you must use a marker interface if you want to have custom viewlets, browser views or
portlets.

Without it, you would have no interface against which you could register your views.

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:plone="http://namespaces.plone.org/plone"
118n_domain="ploneconf.site">

2.1. Mastering Plone Development 115

https://en.wikipedia.org/wiki/Open/closed_principle
https://docs.plone.org/develop/plone/misc/annotations.html#annotations

20

21

22

23

Plone Training Documentation, Publicacion 1.2.5a

<plone:behavior
title="Social Behavior"
description="Adds a link to lanyrd"
provides=".social.ISocial"

/>

</configure>

And abehaviors/social.py containing:

—*— coding: utf-8 —x-—

from plone.autoform.interfaces import IFormFieldProvider
from plone.supermodel import directives

from plone.supermodel import model

from zope import schema

from zope.interface import alsoProvides

class ISocial (model.Schema) :

directives.fieldset (
'social',
label=u'Social',
fields=('lanyrd',),

lanyrd = schema.URT (
title=u"Lanyrd link",
description=u"Add URL",
required=False,

alsoProvides (ISocial, IFormFieldProvider)

Let’s go through this step by step.

1. We register a behavior in behaviors/configure.zeml. We do not say for which content type this behavior is valid.

You do this through the web or in the GenericSetup profile.

2. We create a marker interface in behaviors/social.py for our behavior and make it also a schema containing the
fields we want to declare. We could just define schema fields on a zope.interface class, but we use an extended

form from plone.supermodel, else we could not use the fieldset features.

3. We also add a fieldset so that our fields are not mixed with the normal fields of the object.

4. We add a normal URI schema field to store the URI to lanyrd.

5. We mark our schema as a class that also implements the [FormFieldProvider interface. This is a marker interface,

we do not need to implement anything to provide the interface.

Adding it to our talk

We could add this behavior now via the plone control panel. But instead, we will do it directly and properly in our

GenericSetup profile
We must add the behavior to profiles/default/types/talk.xml:

116

Capitulo 2. Trainings

https://docs.plone.org/external/plone.app.dexterity/docs/schema-driven-types.html#schema-interfaces-vs-other-interfaces
https://docs.plone.org/develop/addons/schema-driven-forms/customising-form-behaviour/fieldsets.html?highlight=fieldset
http://docs.zope.org/zope.schema/fields.html#uri
https://docs.plone.org/external/plone.app.dexterity/docs/advanced/custom-add-and-edit-forms.html?highlight=iformfieldprovider#edit-forms

Plone Training Documentation, Publicacion 1.2.5a

<?xml version="1.0"?>
<object name="talk" meta_type="Dexterity FTI" il8n:domain="plone"
xmlns:118n="http://xml.zope.org/namespaces/i18n">

<property name="behaviors">
<element value="plone.app.dexterity.behaviors.metadata.IDublinCore"/>
<element value="plone.app.content.interfaces.INameFromTitle"/>
<element value="ploneconf.site.behaviors.social.ISocial"/>
</property>

</object>

Writing Viewlets

Get the code!

Get the code for this chapter (More info):

git checkout viewlets_1

In this part you will:
= Display data from a behavior in a viewlet
Topics covered:

= Viewlets

A viewlet for the social behavior

A viewlet is not a view but a snippet of HTML and logic that can be put in various places in the site. These places are
called viewletmanager.

= Inspect existing viewlets and their managers by going to http://localhost:8080/Plone/ @ @manage-viewlets.

We already customized a viewlet (colophon.pt). Now we add a new one.

Viewlets don’t save data (portlets do)

Viewlets have no user interface (portlets do)

Social viewlet

Let’s add a link to the site that uses the information that we collected using the social behavior.

We register the viewlet in browser/configure.zcml.

<browser:viewlet
name="social"
for="ploneconf.site.behaviors.social.ISocial"
manager="plone.app.layout.viewlets.interfaces.IBelowContentTitle"
class=".viewlets.SocialViewlet"
layer="zope.interface.Interface"
template="templates/social_viewlet.pt"

2.1. Mastering Plone Development 117

http://localhost:8080/Plone/@@manage-viewlets

Plone Training Documentation, Publicacion 1.2.5a

permission="zope2.View"

/>

for,manager, layer and permission are constraints that limit the contexts in which the viewlet is loaded and
rendered, by filtering out all the contexts that do not match those constraints.

This registers a viewlet called social. It is visible on all content that implements the interface ISocial from our
behavior. It is also good practice to bind it to a specific 1ayer, so it only shows up if our add-on is actually installed.
We will return to this in a later chapter.

The viewlet class SocialViewlet is expected in a file browser/viewlets.py.

from plone.app.layout.viewlets import ViewletBase

class SocialViewlet (ViewletBase) :
pass

This class does nothing except rendering the associated template (That we have yet to write)

Let’s add the missing template templates/social_viewlet.pt.

<div id="social-links">
<a href="#"
class="lanyrd-1link"
tal:define="1link view/lanyrd_link"
tal:condition="1ink"
tal:attributes="href link">
See this talk on Lanyrd!

</div>

As you can see this is not a valid HTML document. That is not needed, because we don’t want a complete view here,
just a html snippet.

There is a tal:define statement, querying for view/lanyrd_link. Same as for views, viewlets have access to
their class in page templates, as well.

We have to extend the Social Viewlet now to add the missing attribute:

Why not to access context directly
In this example, ISocial (self.context) does return the context directly. It is still good to use this idiom for
two reasons:

1. It makes it clear that we only want to use the ISocial aspect of the object

2. If we decide to use a factory, for example to store our attributes in an annotation, we would not get back our
context, but the adapter.

Therefore in this example you could simply write return self.context.lanyrd.

from plone.app.layout.viewlets import ViewletBase
from ploneconf.site.behaviors.social import ISocial

class SocialViewlet (ViewletBase) :

def lanyrd_link(self):

118 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

adapted = ISocial (self.context)
return adapted.lanyrd

So far, we
= register the viewlet to content that has the ISocial Interface.
= adapt the object to its behavior to be able to access the fields of the behavior

= return the link
Exercise 1
Register a viewlet ‘number_of _talks’ in the footer that is only visible to admins (the permission you are looking for is

cmf .ManagePortal). Use only a template (no class) to display the number of talks already submitted. Hint: Use
Acquisition to get the catalog (You know, you should not do this but there is plenty of code out there that does it...)

Solution

Register the viewlet in browser/configure.zcml

<browser:viewlet
name="number_of_talks"
for="«"

manager="

plone.app.layout.viewlets.interfaces.IPortalFooter"
layer="zope.interface.Interface"
template="templates/number_of_talks.pt"
permission="cmf.ManagePortal"

/>

For the for and layer-parameters * is shorthand for zope.interface.Interface and the same effect as
omitting them: The viewlet will be shown for all types of pages and for all Plone sites within your Zope instance.

Add the template browser/templates/number_of_talks.pt:

<div class="number_ of talks"
tal:define="catalog python:context.portal_catalog;
talks python:len(catalog(portal_type='talk'));">
There are talks.
</div>

python:context.portal_catalog will return the catalog through Acquisition. Be careful if you want to use
path expressions: content /portal_catalog calls the catalog (and returns all brains). You need to prevent this
by using nocall:content/portal_catalog.

Relying on Acquisition is a bad idea. It would be much better to use the helper view plone_tools from
plone/app/layout/globals/tools.py to get the catalog.

<div class="number of talks"
tal:define="catalog context/@@plone_tools/catalog;
talks python:len(catalog(portal_type='talk'));">
There are talks.
</div>

context/Q@@plone_tools/catalog traverses to the view plone_tools and calls its method catalog ().
In python it would look like this:

2.1. Mastering Plone Development 119

Plone Training Documentation, Publicacion 1.2.5a

<div class="number of talks"

tal:define="catalog python:context.restrictedTraverse ('plone_tools') .catalog();

talks python:len(catalog(portal_type='talk'));">
There are talks.
</div>

It is not a good practice to query the catalog within a template since even simple logic like this should live in Python.

But it is very powerful if you are debugging or need a quick and dirty solution.

In Plone 5 you could even write it like this:

<?python

from plone import api
catalog = api.portal.get_tool ('portal_catalog')
talks_amount = len(catalog(portal_type='talk'))

2>
<div class="number_ of_ talks">

There are ${talks_amount} talks.
</div>

Exercise 2

Register a viewlet ‘days_to_conference’ in the header. Use a class and a template to display the number of days until
the conference. You get bonus points if you display it in a nice format (think “In 2 days” and “Last Month”) by using

either javascript or a python library.

Solution

In configure.zcml:

<browser:viewlet
name="days_to_conference"
for="x"
manager="plone.app.layout.viewlets.interfaces.IPortalHeader"
layer="x"
class=".viewlets.DaysToConferenceViewlet"
template="templates/days_to_conference.pt"
permission="zope2.View"

/>

Inviewlets.py:

from plone.app.layout.viewlets import ViewletBase
from datetime import datetime
import arrow

CONFERENCE_START_DATE = datetime (2015, 10, 12)

class DaysToConferenceViewlet (ViewletBase) :

def date(self):

120

Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

return CONFERENCE_START_DATE

def human (self):
return arrow.get (CONFERENCE_START_DATE) .humanize ()

Setting the date in python is not very user-friendly. In the chapter Manage Settings with Registry, Controlpanels and
Vocabularies you learn how store global configuration and easily create controlpanels.

Andin templates/days_to_conference.pt:

<div class="days_to_conf">
S{python: view.human () }
</div>

Or using the moment pattern in Plone 5:

<div class="pat-moment"
data-pat-moment="format: relative">
${python: view.date ()}

</div>

Programming Plone

In this part you will:
= Learn about the right ways to do something in code in Plone.
= [earn to debug
Topics covered:
= Debugging
= Plone API

= Portal tools

plone.api

The most important tool nowadays for plone developers is the add-on plone.api that covers 20 % of the tasks any Plone
developer does 80 % of the time. If you are not sure how to handle a certain task be sure to first check if plone.api has
a solution for you.

The API is divided in five sections. Here is one example from each:
= Content: Create content
» Portal: Send E-Mail
= Groups: Grant roles to group
m Users: Get user roles
» Environment: Switch roles inside a block

plone.api is a tool for integrators and developers that is included when you install Plone, though for technical reasons
it is not used by Plone itself.

2.1. Mastering Plone Development 121

https://docs.plone.org/develop/plone.api/docs/index.html
https://docs.plone.org/develop/plone.api/docs/content.html#create-content
https://docs.plone.org/develop/plone.api/docs/portal.html#send-e-mail
https://docs.plone.org/develop/plone.api/docs/group.html#grant-roles-to-group
https://docs.plone.org/develop/plone.api/docs/user.html#get-user-roles
https://docs.plone.org/develop/plone.api/docs/env.html#switch-roles-inside-a-block

Plone Training Documentation, Publicacion 1.2.5a

In existing code you’ll often encounter methods that don’t mean anything to you. You’ll have to use the source to find
out what they do.

Some of these methods will be replaced by plone.api in the future:
m Products.CMFCore.utils.getToolByName () ->api.portal.get_tool ()

m zope.component.getMultiAdapter () ->api.content.get_view()

portal-tools

Some parts of Plone are very complex modules in themselves (e.g. the versioning machinery of
Products.CMFEditions). Some of them have an API that you will have to learn sooner or later.

Here are a few examples:

portal_catalog unrestrictedSearchResults () returns search results without checking if the current user
has the permission to access the objects.

uniqueValuesFor () returns all entries in an index
portal_setup runAllExportSteps () generates a tarball containing artifacts from all export steps.
portal_quickinstaller isProductInstalled () checks if a product is installed.

Usually the best way to learn about the API of a tool is to look in the interfaces.py in the respective package
and read the docstrings.

Debugging
Here are some tools and techniques we often use when developing and debugging. We use some of them in various
situations during the training.

tracebacks and the log The log (and the console when running in foreground) collects all log messages Plone prints.
When an exception occurs Plone throws a traceback. Most of the time the traceback is everything you need to
find out what is going wrong. Also adding your own information to the log is very simple.

pdb The python debugger pdb is the single most important tool for us when programming. Just add import pdb;
pdb.set_trace () in your code and debug away!

Since Plone 5 you can even add it to templates: add <?python import pdb; pdb.set_trace() 2>
to a template and you end up in a pdb shell on calling the template. Look at the variable econtext to see what
might have gone wrong.

ipdb Enhanced pdb with the power of IPython, e.g. tab completion, syntax highlighting, better tracebacks and intros-
pection. It also works nicely with Products.PDBDebugMode.

Products.PDBDebugMode An add-on that has two killer features.

Post-mortem debugging: throws you in a pdb whenever an exception occurs. This way you can find out what
is going wrong.

pdb view: simply adding /pdb to a url drops you in a pdb session with the current context as self.context.
From there you can do just about anything.

Debug mode When starting Plone using . /bin/instance debug you’ll end up in an interactive debugger.

plone.app.debugtoolbar An add-on that allows you to inspect nearly everything. It even has an interactive console,
a tester for TALES-expressions and includs a reload-feature like plone.reload.

plone.reload An add-on that allows to reload code that you changed without restarting the site. It is also used by
plone.app.debugtoolbar.

122 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Products.PrintingMailHost An add-on that prevents Plone from sending mails. Instead, they are logged.

Products.enablesettrace or Products.Ienablesettrace Add-on that allows to use pdb and ipdb in Python skin scripts.
Very useful when debugging legacy code.

verbose—-security = on An option for the recipe plone.recipe.zope2instance that logs the detailed
reasons why a user might not be authorized to see something.

./bin/buildout annotate An option when running buildout that logs all the pulled packages and versions.

Sentry Sentry is an error logging application you can host yourself. It aggregates tracebacks from many sources and
(here comes the killer feature) even the values of variables in the traceback. We use it in all our production sites.

zopepy Buildout can create a python shell for you that has all the packages from your Plone site in its python path.
Add the part like this:

[zopepy]

recipe = zc.recipe.egg
eggs = ${instance:eggs}
interpreter = zopepy

IDEs and Editors

In this part you will:

= [earn about Editors
Topics covered:

= Many editors

Plone consists of more than 20.000 files! You need a tool to manage that. No development environment is complete
without a good editor.

People pick editors themselves. Use whatever you are comfortable and productive with. These are the most used
editors in the Plone community:

= Sublime
» PyCharm
= Wing IDE
= PyDev for Eclipse
= Aptana Studio
= vim
= emacs
» Textmate
Some features that most editors have in one form or another are essential when developing with Plone.

= Find in project (SublimeText 3: cmd + shift + f)

Find files in Project (SublimeText 3: cmd + t)

Find methods and classes in Project (SublimeText 3: cmd + shift + r)

Goto Definition (SublimeText3 with codeintel: alt + click)

Powerful search & replace

2.1. Mastering Plone Development 123

https://github.com/getsentry/sentry
https://www.sublimetext.com/
http://www.jetbrains.com/pycharm/
http://wingide.com/
http://www.pydev.org/
http://www.eclipse.org/
http://www.aptana.com/products/studio3.html
http://macromates.com/

Plone Training Documentation, Publicacion 1.2.5a

The capability of performing a full text search through the complete Plone code is invaluable. Thanks to omelette, an
SSD and plenty of RAM you can search through the complete Plone code base in 3 seconds.

Nota: Some Editors/IDE’s have to be extend to be fully featured. Here are some packages we recommend when using
Sublime Text 3:

= SublimeCodelntel (Goto Definition)

= BracketHighlighter

= GitGutter

= FileDiffs

= SublimeLinter with SublimeLinter-flakes ...
= INI (syntax for ini-Files)

= SideBarEnhancements

= MacTerminal

= SyncedSideBar

Dexterity Types II: Growing Up

Get the code!

Get the code for this chapter (More info):

git checkout dexterity_2

The existing talks are still lacking some functionality we want to use.
In this part we will:

= add a marker interface to our talk type,

= create custom catalog indexes,

= query the catalog for them,

= enable some more default features for our type.

Add a marker interface to the talk type

Marker Interfaces

The content type Talk is not yet a first class citizen because it does not implement its own interfa-
ce. Interfaces are like nametags, telling other elements who and what you are and what you can do.
A marker interface is like such a nametag. The talks actually have an auto-generated marker interface
plone.dexterity.schema.generated.Plone_0_talk.

One problem is that the name of the Plone instance P1one is part of that interface name. If you now moved these
types to a site with another name the code that uses these interfaces would no longer find the objects in question.

To create a real name-tag we add anew Interface to interfaces.py:

124 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

—x— coding: utf-8 —*-—
"""Module where all interfaces, events and exceptions live."""

from zope.publisher.interfaces.browser import IDefaultBrowserLayer

from zope.interface import Interface

class IPloneconfSitelLayer (IDefaultBrowserLayer) :
"""Marker interface that defines a browser layer."""

class ITalk(Interface):
"""Marker interface for Talks"""

ITalk is a marker interface. We can bind Views and Viewlets to content that provide these interfaces. Lets see how
we can provide this Interface. There are two solutions for this.

1. Let them be instances of a class that implements this Interface.
2. Register this interface as a behavior and enable it on talks.

The first option has an important drawback: only new talks would be instances of the new class. We would either have
to migrate the existing talks or delete them.

So let’s register the interface as a behavior in behaviors/configure.zcml

<plone:behavior
title="Talk"
description="Marker interface for talks to be able to bind views to."
provides="..interfaces.ITalk"

/>

And enable it on the type in profiles/default/types/talk.xml

<property name="behaviors">
<element value="plone.app.dexterity.behaviors.metadata.IDublinCore"/>
<element value="plone.app.content.interfaces.INameFromTitle"/>
<element value="ploneconf.site.behaviors.social.ISocial"/>
<element value="ploneconf.site.interfaces.ITalk"/>
</property>

Either reinstall the add-on, apply the behavior by hand or run an upgrade step (see below) and the interface will be
there.

Then we can safely bind the talkview to the new marker interface.

<browser:page
name="talkview"
for="ploneconf.site.interfaces.ITalk"
layer="zope.interface.Interface"
class=".views.TalkView"
template="templates/talkview.pt"
_n

permission="zope2.View"

/>

Now the /talkview can only be used on objects that implement said inter-
facee. We can now also query the catalog for objects providing this interface
catalog (object_provides="ploneconf.site.interfaces.ITalk") (). The talklistview
and the demoview do not get this constraint since they are not only used on talks.

2.1. Mastering Plone Development 125

Plone Training Documentation, Publicacion 1.2.5a

Nota: Just for completeness sake, this is what would have to happen for the first option (associating the ITalk
interface with a Talk class):

= Create a new class that inherits fromplone.dexterity.content.Container and implements the mar-
ker interface.

from plone.dexterity.content import Container
from ploneconf.site.interfaces import ITalk
from zope.interface import implementer

@implementer (ITalk)
class Talk (Container) :
"mr"class for Talks"""

= Modify the class for new talks in profiles/default/types/talk.xml

2 | <property name="add_permission">cmf.AddPortalContent</property>
3 | <property name="klass">ploneconf.site.content.talk.Talk</property>
4 |<property name="behaviors">

= Create an upgrade step that changes the class of the existing talks. A reuseable method to do such a thing is in
plone.app.contenttypes.migration.dxmigration.migrate_base_class_to_new_class.

Upgrade steps

When projects evolve you sometimes want to modify various things while the site is already up and brimming with
content and users. Upgrade steps are pieces of code that run when upgrading from one version of an add-on to a newer
one. They can do just about anything. We will use an upgrade-step to enable the new behavior instead of reinstalling
the addon.

We will create an upgrade step that:

= runs the typeinfo step (i.e. loads the GenericSetup configuration storedinprofiles/default/types.xml
and profiles/default/types/... so we don’t have to reinstall the add-on to have our changes from
above take effect) and

= cleans up the talks that might be scattered around the site in the early stages of creating it. We will move all talks
to a folder talks (unless they already are there).

Upgrade steps can be registered in their own ZCML file to prevent cluttering the main configure.zcml. Include a
new upgrades.zcml inour configure.zcml by adding:

<include file="upgrades.zcml" />

Create upgrades.zcml:

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:118n="http://namespaces.zope.org/il18n"
xmlns:genericsetup="http://namespaces.zope.org/genericsetup"
118n_domain="ploneconf.site">

<genericsetup:upgradeStep
title="Update and cleanup talks"

126 Capitulo 2. Trainings

https://github.com/plone/plone.app.contenttypes/blob/master/plone/app/contenttypes/migration/dxmigration.py#L130

20

21

22

23

24

25

26

27

28

29

30

Plone Training Documentation, Publicacion 1.2.5a

description="Update typeinfo and move talks to a folder 'talks'"
source="1000"

destination="1001"
handler="ploneconf.site.upgrades.upgrade_site"

sortkey="1"
profile="ploneconf.site:default"
/>

</configure>

The upgrade step bumps the version number of the GenericSetup profile of ploneconf.site from 1000 to 1001.
The version is stored in profiles/default/metadata.xml. Change it to

<version>1001</version>

GenericSetup now expects the code as a method upgrade_site () in the file upgrades.py. Let’s create it.

—#+— coding: utf-8 —#-—
from plone import api

import logging

default_profile = 'profile-ploneconf.site:default'’
logger = logging.getLogger (__name__)

def upgrade_site (setup):
setup.runImportStepFromProfile (default_profile, 'typeinfo')
portal = api.portal.get ()
Create a folder 'The event' if needed
if 'the-event' not in portal:
event_folder = api.content.create(
container=portal,
type='Folder',
id='the-event',
title=u'The event')
else:
event_folder = portal['the-event']

Create folder 'Talks' inside 'The event' if needed
if 'talks' not in event_folder:
talks_folder = api.content.create(
container=event_folder,
type='Folder',
id="talks"',
title=u'Talks")
else:
talks_folder = event_folder['talks']
talks_url = talks_folder.absolute_url ()

Find all talks
brains = api.content.find(portal_type='talk")
for brain in brains:
if talks_url in brain.getURL() :
Skip if the talk is already somewhere inside the target-folder
continue
obj = brain.getObject ()
logger.info ('Moving {} to {}'.format (

2.1. Mastering Plone Development 127

42

43

44

45

46

47

Plone Training Documentation, Publicacion 1.2.5a

obj.absolute_url(), talks_folder.absolute_url()))
Move talk to the folder '/the-event/talks'
api.content.move (

source=obj,

target=talks_folder,

safe_id=True)

Note:
» Upgrade-steps get the tool portal_setup passed as their argument.
» The portal_setup tool has a method runImportStepFromProfile ()
= We create the needed folder-structure if it does not exists.

After restarting the site we can run the step:

= Go to the Add-ons control panel http://localhost:8080/Plone/prefs_install_products_form. There should now be
a new section Upgrades and a button to upgrade from 1000 to 1001.

= Run the upgrade step by clicking on it.

On the console you should see logging messages like:

INFO ploneconf.site.upgrades Moving http://localhost:8080/Plone/old-talkl to http://
—localhost:8080/Plone/the-event/talks

Alternatively you also select which upgrade steps to run like this:
= In the ZMI go to portal_setup
= Go to the tab Upgrades
= Select ploneconf.site from the dropdown and click Choose profile
= Run the upgrade step.
Ver también:

https://docs.plone.org/develop/addons/components/genericsetup.html#id 1

Nota: Upgrading from an older version of Plone to a newer one also runs upgrade steps from the package
plone.app.upgrade. You should be able to upgrade a clean site from 2.5 to 5.0 with one click.

For an example see the upgrade-step to Plone 5.0al https://github.com/plone/plone.app.upgrade/blob/master/plone/
app/upgrade/v50/alphas.py#L37

Add a browserlayer
A browserlayer is another such marker interface. Browserlayers allow us to easily enable and disable views and other
site functionality based on installed add-ons and themes.

Since we want the features we write only to be available when ploneconf . site actually is installed we can bind
them to a browserlayer.

Our package already has a browserlayer (added by bobtemplates.plone). See interfaces.py:

—*— coding: utf-8 —#-
"""Module where all interfaces, events and exceptions live."""

128 Capitulo 2. Trainings

http://localhost:8080/Plone/prefs_install_products_form
https://docs.plone.org/develop/addons/components/genericsetup.html#id1
https://github.com/plone/plone.app.upgrade/blob/master/plone/app/upgrade/v50/alphas.py#L37
https://github.com/plone/plone.app.upgrade/blob/master/plone/app/upgrade/v50/alphas.py#L37

Plone Training Documentation, Publicacion 1.2.5a

from zope.publisher.interfaces.browser import IDefaultBrowserLayer
from zope.interface import Interface

class IPloneconfSitelLayer (IDefaultBrowserLayer) :
"""Marker interface that defines a browser layer."""

class ITalk(Interface):
"""Marker interface for Talks"""

It is enabled by GenericSetup when installing the package since it is registered in the
profiles/default/browserlayer.xml

<?xml version="1.0" encoding="UTF-8"?>
<layers>
<layer
name="ploneconf.site"
interface="ploneconf.site.interfaces.IPloneconfSitelLayer"
/>

</layers>

We should bind all views to it. Here is an example using the talkview.

<browser:page
name="talklistview"

for="x"
layer="..interfaces.IPloneconfSitelLayer"
class=".views.TalkListView"

template="templates/talklistview.pt"
permission="zope2.View"

/>

Note the relative Python path interfaces.IPloneconfSitelayer. It is equivalent to the absolute path
ploneconf.site.interfaces.IPloneconfSitelayer.

Ver también:

https://docs.plone.org/develop/plone/views/layers.html

Exercise

Do you need to bind the Social viewlet from the chapter ‘Writing Viewlets’ to this new browser layer?

Solution

No, it would make no difference since the viewlet is already bound to the marker interface
ploneconf.site.behaviors.social.ISocial.

Add catalog indexes

In the talklistview we had to wake up all objects to access some of their attributes. That is OK if we don’t have
many objects and they are light dexterity objects. If we had thousands of objects this might not be a good idea.

Instead of loading them all into memory we will use catalog indexes to get the data we want to display.

2.1. Mastering Plone Development 129

https://docs.plone.org/develop/plone/views/layers.html

Plone Training Documentation, Publicacion 1.2.5a

Add anew file profiles/default/catalog.xml

<?xml version="1.0"?>
<object name="portal catalog">
<index name="type_of_talk" meta_type="FieldIndex">
<indexed_attr value="type_ of_ talk"/>
</index>
<index name="speaker" meta_type="FieldIndex">
<indexed_attr value="speaker"/>
</index>
<index name="audience" meta_type="KeywordIndex">
<indexed_attr value="audience"/>
</index>

<column value="audience" />

<column value="type_of_talk" />

<column value="speaker" />
</object>

This adds new indexes for the three fields we want to show in the listing. Note that audience is a KeywordIndex
because the field is multi-valued, but we want a separate index entry for every value in an object.

The column . . entries allow us to display the values of these indexes in the tableview of collections.

Nota: Until Plone 4.3.2 adding indexes in catalog.xml was harmful because reinstalling the add-on purged the
indexes! See https://www.starzel.de/blog/a-reminder-about-catalog-indexes.

= Reinstall the add-on

= Go to http://localhost:8080/Plone/portal _catalog/manage_catalogAdvanced to update the catalog

= Go to http://localhost:8080/Plone/portal_catalog/manage_catalogIndexes to inspect and manage the new indexes
Ver también:

https://docs.plone.org/develop/plone/searching_and_indexing/indexing.html

Nota: The new indexes are still empty. We’ll have to reindex them. To do so by hand go to http://localhost:8080/
Plone/portal_catalog/manage_catalogIndexes, select the new indexes and click Reindex. We could also rebuild the
whole catalog by going to the advanced-tab and clicking Clear and Rebuild. For large sites that can take a long time.

We could also write an upgrade step to enable the catalog-indexes and reindex all talks:

def add_some_indexes (setup) :
setup.runImportStepFromProfile (default_profile, 'catalog')
for brain in api.content.find(portal_type='talk'):
obj = brain.getObject ()
obj.reindexObject (idxs=["'type_of_ talk', 'speaker', 'audience'])

Query for custom indexes

The new indexes behave like the ones that Plone has already built in:

>>> (Pdb) from Products.CMFCore.utils import getToolByName
>>> (Pdb) catalog = getToolByName (self.context, 'portal catalog')
>>> (Pdb) catalog(type_of_talk='Keynote')

130 Capitulo 2. Trainings

https://www.starzel.de/blog/a-reminder-about-catalog-indexes
http://localhost:8080/Plone/portal_catalog/manage_catalogAdvanced
http://localhost:8080/Plone/portal_catalog/manage_catalogIndexes
https://docs.plone.org/develop/plone/searching_and_indexing/indexing.html
http://localhost:8080/Plone/portal_catalog/manage_catalogIndexes
http://localhost:8080/Plone/portal_catalog/manage_catalogIndexes

Plone Training Documentation, Publicacion 1.2.5a

[<Products.ZCatalog.Catalog.mybrains object at 0x10737b9%a8>, <Products.ZCatalog.
—Catalog.mybrains object at 0x10737b9%a8>]

>>> (Pdb) catalog(audience=('Advanced', 'Professionals'))
[<Products.ZCatalog.Catalog.mybrains object at 0x10737b870>, <Products.ZCatalog.
—Catalog.mybrains object at 0x10737b940>, <Products.ZCatalog.Catalog.mybrains object
—at 0x10737b%a8>]

>>> (Pdb) brain = catalog(type_of_talk='Keynote') [0]

>>> (Pdb) brain.speaker

u'David Glick'

We now can use the new indexes to improve the talklistview so we don’t have to wake up the objects any more. Instead
we use the brains’ new attributes.

class TalkListView (BrowserView) :
mrno A Jist of talks

mmn

def talks(self):
results = []
brains = api.content.find(context=self.context, portal_type='talk')
for brain in brains:
results.append ({
'title': brain.Title,
'description': brain.Description,
'url': brain.getURL(),

'audience': ', '.Jjoin(brain.audience or []),
'type_of_talk': brain.type_of_talk,
'speaker': brain.speaker,

'uuid': brain.UID,

})

return results

The template does not need to be changed and the result in the browser did not change, either. But when listing a large
number of objects the site will now be faster since all the data you use comes from the catalog and the objects do not
have to be loaded into memory.

Add collection criteria

To be able to search content in collections using these new indexes we would have to register them as criteria for the
querystring widget that collections use. As with all features make sure you only do this if you really need it!

Add anew file profiles/default/registry.xml

<registry>
<records interface="plone.app.querystring.interfaces.IQueryField"
prefix="plone.app.querystring.field.audience">
<value key="title">Audience</value>
<value key="description">A custom speaker index</value>
<value key="enabled">True</value>
<value key="sortable">False</value>
<value key="operations">
<element>plone.app.querystring.operation.string.is</element>
</value>
<value key="group">Metadata</value>
</records>
<records interface="plone.app.querystring.interfaces.IQueryField"
prefix="plone.app.querystring.field.type_of_talk">

2.1. Mastering Plone Development 131

20

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

<value key="title">Type of Talk</value>
<value key="description">A custom index</value>
<value key="enabled">True</value>
<value key="sortable">False</value>
<value key="operations">
<element>plone.app.querystring.operation.string.is</element>
</value>
<value key="group">Metadata</value>
</records>
<records interface="plone.app.querystring.interfaces.IQueryField"
prefix="plone.app.querystring.field.speaker">
<value key="title">Speaker</value>
<value key="description">A custom index</value>
<value key="enabled">True</value>
<value key="sortable">False</value>
<value key="operations">
<element>plone.app.querystring.operation.string.is</element>
</value>
<value key="group">Metadata</value>
</records>
</registry>

Ver también:

https://docs.plone.org/develop/plone/functionality/collections.html#add-new-collection-criteria-new-style-plone-app-collection-install

Add versioning through GenericSetup

Configure the versioning policy and a diff-view for talks through GenericSetup.

Add new file profiles/default/repositorytool.xml

<?xml version="1.0"7?>
<repositorytool>
<policymap>
<type name="talk">
<policy name="at_edit_autoversion"/>
<policy name="version_on_revert"/>
</type>
</policymap>
</repositorytool>

Add new file profiles/default/diff_tool.xml

<?xml version="1.0"?>
<object>
<difftypes>
<type portal_type="talk">
<field name="any" difftype="Compound Diff for Dexterity types"/>
</type>
</difftypes>
</object>

Finally you need to activate the versioning behavior on the content type. Edit
profiles/default/types/talk.xml:

132 Capitulo 2. Trainings

https://docs.plone.org/develop/plone/functionality/collections.html#add-new-collection-criteria-new-style-plone-app-collection-installed

Plone Training Documentation, Publicacion 1.2.5a

<property name="behaviors">

<element value="plone.app.dexterity.behaviors.metadata.IDublinCore"/>
<element value="plone.app.content.interfaces.INameFromTitle"/>

<element value="ploneconf.site.behaviors.social.ISocial"/>

<element value="ploneconf.site.interfaces.ITalk"/>

<element value="plone.app.versioningbehavior.behaviors.IVersionable" />
</property>

Nota: There is currently a bug that breaks showing diffs when multiple-choice fields were changed.

Summary

The talks are now grown up:
= They provide a interface to which you can bind features like views
= Some fields are indexed in the catalog making the listing faster
= Talks are now versioned

= You wrote your first upgrade-step to move the talks around: Whopee!

Custom Search

If the chapters about views seem complex, the custom search add-ons shown below might be a great alternative until
you feel comfortable writing views and templates. Here are two addons that allow you to add custom searches and
content listings through the web in Plone.

eea.facetednavigation

eea.facetednavigation is a full-featured and a very powerful addon to improve search within large collections of items.
No programming skills are required to configure it since the configuration is done TTW. It lets you gradually select and
explore different facets (metadata/properties) of the site content and narrow down you search quickly and dynamically.

» Install eea.facetednavigation
= Enable it on a new folder “Discover talks” by clicking on Actions > Enable faceted navigation.
= Click on the Faceted > Configure to configure it through the web.
* Select ‘Talk’ for Portal type, hide Results per page
* Add a checkboxes widget to the left and use the catalog index Audience for it.
* Add a select widget for speaker
¢ Add a radio widget for type_of_talk
Examples:
= https://www.dipf.de/en/research/projects
= https://www.mountaineers.org/learn/courses-clinics-seminars

= https://www.dyna-jet.com/hochdruckreiniger

2.1. Mastering Plone Development 133

https://pypi.python.org/pypi/eea.facetednavigation/
https://www.dipf.de/en/research/projects
https://www.mountaineers.org/learn/courses-clinics-seminars
https://www.dyna-jet.com/hochdruckreiniger

Plone Training Documentation, Publicacion 1.2.5a

Ver también:

We use the new catalog indexes to provide the data for the widgets and search the results. For other use cases we
could also use either the built-in vocabularies (https://pypi.python.org/pypi/plone.app.vocabularies) or create custom
vocabularies for this.

= Custom vocabularies ttw using Products. AT VocabularyManager

= Programming using Vocabularies: https://docs.plone.org/external/plone.app.dexterity/docs/advanced/
vocabularies.html

collective.portlet.collectionfilter
A more light-weight solution for custom searches and faceted navigation is collective.portlet.collectionfilter. By default

it allows you to search among the results of a collection and/or filter the results by keywords, author or type. It can
also be extended quite easily to allow additional filters (like audience).

Turning Talks into Events

Get the code!

Get the code for this chapter (More info):

git checkout events

We forgot something: A list of talks is great especially if you can sort it by your preferences. But if a visitor decides
he wants to actually go to see a talk he needs to know when it will take place.

We need a schedule and for this we need to store the information when a talk will happen.
Luckily the default type Event is based on reusable behaviors from the package plone.app.event.
In this chapter we will

= enable this behavior for talks

= display the date in the talkview and talklistview

First we enable the behavior IEventBasic for talks in profiles/default/types/talk.xml

<property name="behaviors">
<element value="plone.app.dexterity.behaviors.metadata.IDublinCore"/>
<element value="plone.app.content.interfaces.INameFromTitle"/>
<element value="ploneconf.site.behavior.social.ISocial"/>
<element value="ploneconf.site.interfaces.ITalk"/>
<element value="plone.app.event.dx.behaviors.IEventBasic"/>
</property>

After we activate the behavior by hand or reinstalled the add-on we will now have some additional fields for start
and end.

To display the new field we reuse a default event summary view as documented in http://ploneappevent.readthedocs.
io/en/latest/development.html#reusing-the-event-summary-view-to-list-basic-event-information

Edit browser/templates/talkview.pt

134 Capitulo 2. Trainings

https://pypi.python.org/pypi/plone.app.vocabularies
https://pypi.python.org/pypi/Products.ATVocabularyManager
https://docs.plone.org/external/plone.app.dexterity/docs/advanced/vocabularies.html
https://docs.plone.org/external/plone.app.dexterity/docs/advanced/vocabularies.html
https://pypi.python.org/pypi/collective.portlet.collectionfilter
http://ploneappevent.readthedocs.io/en/latest/development.html#reusing-the-event-summary-view-to-list-basic-event-information
http://ploneappevent.readthedocs.io/en/latest/development.html#reusing-the-event-summary-view-to-list-basic-event-information

20

21

22

23

24

25

26

27

28

29

31

32

34

35

37

38

39

40

41

Plone Training Documentation, Publicacion 1.2.5a

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en"
metal:use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">
<body>
<metal:content-core fill-slot="content-core" tal:define="widgets view/w">

<tal:eventsummary replace="structure context/Q@fevent_summary"/>

<p>

Talk

suitable for

Audience

</p>

<div tal:content="structure widgets/details/render">
Details
</div>

<div class="newsImageContainer">
<img tal:condition="python:getattr (context, 'image',6 None)"
tal:attributes="src string:${context/absolute_url}/QRimages/image/
—thumb" />
</div>

<div>
<a class="email-1link" tal:attributes="href string:mailto:${context/email}
>
<strong tal:content="context/speaker">
Jane Doe

<div tal:content="structure widgets/speaker_biography/render">
Biography
</div>
</div>

</metal:content-core>
</body>
</html>

Similar to the field room the problem now appears that speakers submitting their talks should not be able to set a
time and day for their talks. Sadly it is not easy to modify permissions of fields provided by behaviors (unless we
write the bahvior ourselves). At least in this case we can take the easy way out since the field does not contain secret
information: We will simply hide the fields from contributors using css and show them for reviewers. We will do so in
chapter Resources when we add some css-files.

Modify browser/static/ploneconf.css and add:

body.userrole-contributor #formfield-form-widgets—IEventBasic-start,

body.userrole-contributor #formfield-form-widgets—-IEventBasic—-end > =,

body.userrole—-contributor #formfield-form-widgets—-IEventBasic-whole_day,

body.userrole-contributor #formfield-form-widgets—IEventBasic-open_end {
display: none;

2.1. Mastering Plone Development 135

Plone Training Documentation, Publicacion 1.2.5a

body.userrole-reviewer #formfield-form-widgets—-IEventBasic-start,

body.userrole-reviewer #formfield-form-widgets-IEventBasic-end > x,

body.userrole-reviewer #formfield-form-widgets—-IEventBasic-whole_day,

body.userrole-reviewer #formfield-form-widgets—-IEventBasic—-open_end {
display: block;

You should also display the start-date of a talk in the talklist. Modify browser/templates/talklistview.pt

[...]

<td tal:content="python:talk['audience']">
Advanced

</td>

<td class="pat-moment"
data-pat-moment="format:calendar"
tal:content="python:talk['start']">
Time

</td>

<td tal:content="python:talk['room']">
101

</td>

[...]

Exercise 1

Find out where event_summary comes from and describe how you could override it.

Solution

Use your editor or grep to search all zcml-files in the folder packages for the string name="event_summary"

$ grep -sirn --include *.zcml 'name="event_summary"' ./packages
. /packages/plone/app/event /browser/configure.zcml:66: name="event_summary"
./packages/plone/app/event /browser/configure.zcml:75: name="event_summary"

The relevant registration is:

<browser:page
for="plone.event.interfaces.IEvent"
name="event_summary"
class=".event_summary.EventSummaryView"
template="event_summary.pt"
permission="zope2.View"
layer="..interfaces.IBrowserLayer"

/>

So there is a class plone.app.event.browser.event_summary.EventSummaryView and
a template event_summary.pt that could be overridden with z3c.jbot by copying it as
plone.app.event.browser.event_summary.pt in browser/overrides.

Exercise 2

Find out where the event behavior is defined and which fields it offers.

136 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Solution

The id with which the behavior is registered in Talk.xml is a Python
path. So plone.app.event.dx.behaviors.IEventBasic can be found in
packages/plone.app.event/plone/app/event/dx/behaviors.py

class IEventBasic (model.Schema, IDXEvent) :
""" Basic event schema.
won
start = schema.Datetime (
title=_(
u'label_event_start',
default=u'Event Starts'
) 14
description=_(
u'help_event_start',
default=u'Date and Time, when the event begins.'
)
required=True,
defaultFactory=default_start

end = schema.Datetime (

title=_(
u'label_event_end',
default=u'Event Ends'

)

description=_(
u'help_event_end’,
default=u'Date and Time, when the event ends.'

)I

required=True,

defaultFactory=default_end

whole_day = schema.Bool (

title=_(
u'label_event_whole_day',
default=u'Whole Day'

)I

description=_(
u'help_event_whole_day',
default=u'Event lasts whole day.'

)!

required=False,

default=False

open_end = schema.Bool (

title=_(
u'label_event_open_end',
default=u'Open End’'

)!

description=_(
u'help_event_open_end',
default=u"This event is open ended."

)I

required=False,

2.1. Mastering Plone Development 137

Plone Training Documentation, Publicacion 1.2.5a

default=False
)

Note how it uses defaultFactory to set an initial value.

User Generated Content

Get the code!

Get the code for this chapter (More info):

git checkout user_generated_content

How do prospective speakers submit talks? We let them register on the site and grant right to create talks. For this we
go back to changing the site through-the-web.

In this chapter we:
= allow self-registration
= constrain types on the talk folder
= grant local roles

= create a custom workflow for talks

Self-registration

= Go to the Security control panel at http://localhost:8080/Plone/ @ @security-controlpanel and Enable self-
registration

= Leave “Enable User Folders” off unless you want a community site.
Constrain types

= On the talk folder select Restrictions. .. from the Add new menu. Only allow to add talks.

Grant local roles

= Go to Sharing and grant the role Can add to the group logged-in users. Now every user can add content in this
folder (and only this folder).

Now all logged-in users can create and submit talks in this folder with the permission of the default workflow.

A custom workflow for talks

We still need to fix a problem: Authenticated users can see all talks, even the ones of other users in the private state.
Since we don’t want this we will create a modified workflow for talks. The new workflow will only let them see and
edit talks they created themselves and not the ones of other users.

= Go to the ZMI — portal_workflow

138 Capitulo 2. Trainings

http://localhost:8080/Plone/@@security-controlpanel
http://localhost:8080/Plone/the-event/talks/folder_constraintypes_form

Plone Training Documentation, Publicacion 1.2.5a

= See how talks have the same workflow as most content, namely (Default)

= Go to the tab Contents, check the box next to simple_publication_workflow, click copy and paste.

= Rename the new workflow from copy_of _simple_publication_workflow to talks_workflow.

= Edit the workflow by clicking on it: Change the Title to Talks Workflow.

= Click on the tab States and click on private to edit this state. In the next view select the tab Permissions.

= Find the table column for the role Contributor and remove the permissions for Access contents information and
View. Note that the Owner (i.e. the Creator) still has some permissions.

= Do the same for the state pending

= Go back to portal_workflow and set the new workflow talks_workflow for talks. Click Change and
then Update security settings.

Nota: The add-on plone.app.workflowmanager provides a much nicer user-interface for this. The problem is you need
a big screen for it and it can be pretty confusing as well.

Done.

Move the changes to the file system
We don’t want to do these steps for every new conference by hand so we move the changes into our package.
Import/Export the Workflow

= export the GenericSetup step Workflow Tool in http://localhost:8080/Plone/portal_setup/manage_exportSteps.

= drop the file workflows.xml into profiles/default an clean out everything that is not related to talks.

<?xml version="1.0"7?>
<object name="portal workflow" meta_type="Plone Workflow Tool">
<object name="talks_workflow" meta_type="Workflow"/>
<bindings>

<type type_id="talk">

<bound-workflow workflow_id="talks_workflow"/>

</type>

</bindings>
</object>

» dropworkflows/talks_workflow/definition.xmlinprofiles/default/workflows/talks_workflow/
The other files are just definitions of the default-workflows and we only want things in our package that changes
Plone.

Enable self-registration

To enable self-registration you need to change the global setting that controls this option. Most global setting are stored
in the registry. You can modify it by adding following to profiles/default/registry.xml:

<record name="plone.enable_self_ reg">
<value>True</value>
</record>

2.1. Mastering Plone Development 139

https://pypi.python.org/pypi/plone.app.workflowmanager
http://localhost:8080/Plone/portal_setup/manage_exportSteps

20
21
22
23
24
25
26
27
28

29

Plone Training Documentation, Publicacion 1.2.5a

Grant local roles

Since the granting of local roles applies only to a certain folder in the site we would not always write code for it but do
it by hand. But for testability and repeatability (there is a conference every year!) we should create the initial content
structure automatically.

So let’s make sure some initial content is created and configured on installing the package.
To run arbitrary code during the installation of a package we use a post_handler

Our package already has such an method registered in configure.zcml. It will be automatically run when (re-
)installing the add-on.

<genericsetup:registerProfile
name="default"
title="ploneconf.site"
directory="profiles/default"
description="Installs the ploneconf.site add-on."
provides="Products.GenericSetup.interfaces.EXTENSION"
post_handler=".setuphandlers.post_install"

/>

This makes sure the method post_install () in setuphandlers.py is executed after the installation. The
method already exists doing nothing. You need to extend it to do what we want.

—*— coding: utf-8 —x-—

from plone import api

from Products.CMFPlone.interfaces import constrains

from Products.CMFPlone.interfaces import INonInstallable
from zope.interface import implementer

import logging

logger = logging.getlLogger (__name__)
PROFILE_ID = 'profile-ploneconf.site:default’

@implementer (INonInstallable)
class HiddenProfiles (object) :

def getNonInstallableProfiles(self):
"""Hide uninstall profile from site-creation and quickinstaller"""
return |
'ploneconf.site:uninstall’,

def post_install (context):
"""post install script"""
Do something at the end of the installation of this package.
portal = api.portal.get ()
set_up_content (portal)

def set_up_content (portal):
"""Create and configure some initial content.
Part of this code is taken from upgrades.py

mmn

Create a folder 'The event' if needed

140 Capitulo 2. Trainings

https://docs.plone.org/develop/addons/components/genericsetup.html#custom-installer-code-setuphandlers-py

40

41

42

43

44

45

46

47

48

49

50

60

61

62

63

64

65

66

67

68

69

70

Plone Training Documentation, Publicacion 1.2.5a

if 'the-event' not in portal:
event_folder = api.content.create
container=portal,
type='Folder',
id='the-event',
title=u'The event')
else:
event_folder = portal['the-event']
Create folder 'Talks'
if 'talks' not in event_folder:
talks_folder = api.content.create(
container=event_folder,
type='Folder',
id='talks',
title=u'Talks")

inside

else:
talks_folder =

"The event'

if needed

event_folder['talks']

Allow logged-in users to create content

api.group.grant_roles (
groupname="'AuthenticatedUsers',
roles=["'Contributor'],
obj=talks_folder)

Constrain addable types to talk
behavior =
behavior
behavior.
behavior.

constrains.ISelectableConstrainTypes (talks_folder)
.setConstrainTypesMode (constrains.ENABLED)
setLocallyAllowedTypes (['talk'])
setImmediatelyAddableTypes (['talk'])

logger.info ('Added and configured {0}'.format (talks_folder.absolute_url()))

def uninstall (context) :

"""Uninstall script"""

Do something at the end of the uninstallation of this package.

Once we reinstall our package a folder talks is created with the appropriate local roles and constraints.

We wrote similar code to create the folder The Event in Upgrade steps. We need it to make sure a sane structure gets

created when we create a new site by hand or in tests.

You would usually create a list of dictionaries containing the type, parent and title plus optionally layout, workflow
state etc. to create an initial structure. In some projects it could also make sense to have a separate profile besides
default which might be called demo or content that creates an initial structure and maybe another testing

that creates dummy content (talks, speakers etc) for tests.

Exercise 1

Create a profile content that runs its own post_handler in setuphandlers.py.

Solution

Register the profile and the upgrade step in configure.zcml

2.1. Mastering Plone Development

141

20

21

22

23

24

25

26

27

28

29

30

32

33

35

36

Plone Training Documentation, Publicacion 1.2.5a

<genericsetup:registerProfile
name="content"
title="PloneConf Site initial content"
directory="profiles/content"
description="Extension profile for PloneConf Talk to add initial content"
provides="Products.GenericSetup.interfaces.EXTENSION"
post_handler=".setuphandlers.post_content"

/>

Also add aprofiles/content/metadata.xml so the default profile gets automatically installed when insta-
lling the content profile.

<metadata>
<version>1000</version>
<dependencies>
<dependency>profile-ploneconf.site:default</dependency>
</dependencies>
</metadata>

Add the structure you wish to create as a list of dictionaries in setuphandlers.py:

STRUCTURE = [
{
'type': 'Folder',
'title': u'The Event',
'id': 'the-event',
'description': u'Plone Conference 2020',
'default_page': 'frontpage-for-the-event',
'state': 'published',
'"children': [{
'type': 'Document',
'title': u'Frontpage for the-event',
'id': 'frontpage-for-the-event',
'state': 'published',
}I
{
'type': 'Folder',
'title': u'Talks',
'id': 'talks',
'layout': 'talklistview',
'state': 'published',
}I
{
'type': 'Folder',
'title': u'Training',
'id': 'training',
'state': 'published’',
}I
{
'type': 'Folder',
'title': u'Sprint’',
'id': 'sprint',
'state': 'published',
}I

'type': 'Folder',

142 Capitulo 2. Trainings

38

39

40

41

)

43

44

45

46

47

48

49

50

52

53

55

56

58

59

60

61

62

63

64

65

66

67

68

69

70

Plone Training Documentation, Publicacion 1.2.5a

'title': u'Talks',
'id': 'talks',
'description': u'Submit your talks here!’',
'state': 'published',
'layout': '@@talklistview',
'allowed_types': ['talk'],
'"local _roles': [{
'group': 'AuthenticatedUsers',
'roles': ['Contributor']

1y

'type': 'Folder',
'title': u'News',
'id': 'news',
'description': u'News about the Plone Conference',
'state': 'published',
'children': [{
'type': 'News Item',
'title': u'Submit your talks!',
'id': 'submit-your-talks',
'description': u'Task submission is open',
'state': 'published', }
] r

'type': 'Folder',
'title': u'Events',
'id': 'events',
'description': u'Dates to keep in mind',
'state': 'published',
}’

Add the method content () to setuphandlers.py. We pointed to that when registering the import step. And

add some fancy logic to create the content from STRUCTURE.

from zope.lifecycleevent import modified

def post_content (context) :
portal = api.portal.get ()
for item in STRUCTURE:
_create_content (item, portal)

def _create_content (item_dict, container, force=False):
if not force and container.get(item_dict['id'], None) is not None:
return

Extract info that can't be passed to api.content.create
layout = item_dict.pop('layout', None)

default_page = item_dict.pop('default_page', None)
allowed_types = item_dict.pop('allowed types', None)
local_roles = item_dict.pop('local_roles', [1)

children = item_dict.pop('children', [])

state = item_dict.pop('state', None)

2.1. Mastering Plone Development

143

22

23

24

25

26

27

28

29

30

40

41

42

43

44

45

46

47

48

49

51

52

Plone Training Documentation, Publicacion 1.2.5a

new = api.content.create(
container=container,
safe_id=True,
*xltem_dict
)
logger.info('Created {0} at {1}'.format (new.portal_type, new.absolute_url()))

if layout is not None:
new.setLayout (layout)
if default_page is not None:
new.setDefaultPage (default_page)
if allowed_types is not None:
_constrain (new, allowed_types)
for local_role in local_roles:
api.group.grant_roles (
groupname=local_role['group'],
roles=local_role['roles'],
obj=new)
if state is not None:
api.content.transition (new, to_state=state)

modified (new)

call recursively for children

for subitem in children:
_create_content (subitem, new)

def _constrain(context, allowed_types):
behavior = constrains.ISelectableConstrainTypes (context)
behavior.setConstrainTypesMode (constrains.ENABLED)
behavior.setLocallyAllowedTypes (allowed_types)
behavior.setImmediatelyAddableTypes (allowed_types)

A huge benefit of this implementation is that you can add any object-attribute as a new item to
item_dict. plone.api.content.create () will then set these on the new objects. This way you
can also populate fields like text (using plone.app.textfield.RichTextValue) or image (using
plone.namedfile.file.NamedBlobImage).

Resources

Get the code!

Get the code for this chapter (More info):

git checkout resources

We have not yet talked about CSS and Javascript. At the moment these are considered static resources.

You can declare and access static resources with special urls. The configure.zcml of our package already has a decla-
ration for a resource-folder static.

<plone:static
name="ploneconf.site"
type="plone"

144 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

directory="static"

/>

All files we put in the static folder can be accessed via the url http://localhost:8080/Plone/++plone++ploneconf.
site/the_real_filename.css

Another feature of this folder ist that the resouces you put in there are editable and overrideable in the browser using
the overrides-tab of the resource registry.

Let’s create a file ploneconf.css in the stat ic folder with some CSS:

header #portal-header #portal-searchbox .searchSection ({
display: none;

body.userrole-contributor #formfield-form-widgets—-IEventBasic-start,

body.userrole-contributor #formfield-form-widgets—-IEventBasic—-end > ~,

body.userrole-contributor #formfield-form-widgets—IEventBasic-whole_day,

body.userrole-contributor #formfield-form-widgets—-IEventBasic-open_end {
display: none;

body.userrole-reviewer #formfield-form-widgets—IEventBasic-start,

body.userrole-reviewer #formfield-form-widgets—-IEventBasic-end > x,

body.userrole-reviewer #formfield-form-widgets—IEventBasic-whole_day,

body.userrole-reviewer #formfield-form-widgets—-IEventBasic—-open_end {
display: block;

The css is not very exciting. It hides the only in current section below the search-box (we could also overwrite the
viewlet, but ...). It also hides the event-fields we added in Turning Talks into Events from people submitting their talks.
For exiting css you take the training Mastering Plone Theming.

If we now access http://localhost:8080/Plone/++plone++ploneconf.site/ploneconf.css we see our css-file.

Also add aploneconf. js in the same folder but leave it empty for now. You could add some JavaScript to that file
later.

How do our JavaScript and CSS files get used when visiting the page? So far the new files are accessible in the browser
but we want Plone to use them every time we access the page. Adding them directly into the HTML is not a good
solution, having many CSS and JS files slows down the page loading.

For this we need to register a bundle that contains these files. Plone will then make sure that all files that are part of
this bundle are also deployed. We need to register our resources with GenericSetup.

Open the file profiles/default/registry.xml and add the following:

<!-- the plonconf bundle —-->
<records prefix="plone.bundles/ploneconf-bundle"
interface='Products.CMFPlone.interfaces.IBundleRegistry'>
<value key="resources">
<element>ploneconf-main</element>
</value>
<value key="enabled">True</value>
<value key="compile">True</value>
<value key="csscompilation">++plone++ploneconf.site/ploneconf.css</value>
<value key="jscompilation">++plone++ploneconf.site/ploneconf. js</value>
<value key="last_compilation"></value>
</records>

2.1. Mastering Plone Development 145

http://localhost:8080/Plone/++plone++ploneconf.site/the_real_filename.css
http://localhost:8080/Plone/++plone++ploneconf.site/the_real_filename.css
http://localhost:8080/Plone/++plone++ploneconf.site/ploneconf.css

Plone Training Documentation, Publicacion 1.2.5a

The resources that are part of the registered bundle will now be deployed with every request.

For more infos please see https://docs.plone.org/adapt-and-extend/theming/resourceregistry.html or https://training.
plone.org/5/theming/adv-resource-registry.html.

Using Third-Party Behaviors

Advertencia: Skip this since collective.behavior.banner is not yet compatible with Plone 5.

Add teaser with collective.behavior.banner

There are a lot of add-ons in Plone for sliders/banners/teasers. We thought there should be a better one and created
collective.behavior.banner.

HOW STANDARDS PROLFERATE:
(e AC CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)
7! RiDICULOLS! SOON:
WE NEED To DEVELOP

SITUATION: || EUIVERSAL TR0 || GITUATION:

THERE ARE USE CASES. e THERE ARE
4 COMPETING \ il 5 COMPETING
STANDPRDS. O STANDARDS.

Like many add-ons it has not yet been released on pypi but only exists as code on github.

The training buildout has a section [sources] that tells buildout to download a specific add-on not from pypi but
from some code repository (usually github):

[sources]

collective.behavior.banner = git https://github.com/collective/collective.behavior.
—banner.git pushurl=git@github.com:collective/collective.behavior.banner.git
—rev=af2dclf21b23270e4b8583cf04eb8e962adedc4dd

Pinning the revision saves us from being surprised by changes in the code we might not want.

After adding the source, we need to add the egg to buildout:

eggs =
Plone

146 Capitulo 2. Trainings

https://docs.plone.org/adapt-and-extend/theming/resourceregistry.html
https://training.plone.org/5/theming/adv-resource-registry.html
https://training.plone.org/5/theming/adv-resource-registry.html

Plone Training Documentation, Publicacion 1.2.5a

collective.behavior.banner

Andrerun . /bin/buildout

Install the add-on

Create a new dexterity content type Banner with only the behavior Banner enabled.

Create a folder called banners

Add two banners into that folder using images taken from lorempixel.com

Add the Behavior S1ider to the default content type Page (Document)

Edit the front-page and link to the new banners.

Dexterity Types lll: Python

Get the code!

Get the code for this chapter (More info):

git checkout dexterity_3

Without sponsors, a conference would be hard to finance! Plus it is a good opportunity for Plone companies to advertise
their services. But sponsors want to be displayed in a nice way according to the size of their sponsorship.

In this part we will:

= create the content type sponsor that has a Python schema,

= create a viewlet that shows the sponsor logos sorted by sponsoring level.
The topics we cover are:

= Python schema for Dexterity

= schema hint and directives

= field permissions

= image scales

= caching

The Python schema

First we create the schema for the new type. Instead of XML, we use Python this time. In chapter Return to Dexterity:
Moving contenttypes into Code you already created a folder content withanempty __init__ .py init. We don’t
need to register that folder in configure.zcml since we don’t need a content/configure.zcml (at least
not yet).

Now add a new file content /sponsor.py.

—*— coding: utf-8 —#-

from plone.app.textfield import RichText

from plone.autoform import directives

from plone.namedfile import field as namedfile

2.1. Mastering Plone Development 147

20
21

22
23
24
25
26
27
28

29

31

32

34

35

37

38

40
41

o)
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58

59

Plone Training Documentation, Publicacion 1.2.5a

from plone.supermodel import model

from plone.supermodel.directives import fieldset
from ploneconf.site import _

from z3c.form.browser.radio import RadioFieldWidget
from zope import schema

from zope.schema.vocabulary import SimpleTerm

from zope.schema.vocabulary import SimpleVocabulary

LevelVocabulary = SimpleVocabulary (
[SimpleTerm(value=u'platinum', title=_(u'Platinum Sponsor')),
SimpleTerm(value=u'gold', title=_(u'Gold Sponsor')),
SimpleTerm(value=u'silver', title=_(u'Silver Sponsor')),
SimpleTerm(value=u'bronze', title=_(u'Bronze Sponsor'))]

)

class ISponsor (model.Schema) :
"""Dexterity Schema for Sponsors

mon

directives.widget (level=RadioFieldWidget)

level = schema.Choice(
title=_(u'Sponsoring Level'),
vocabulary=LevelVocabulary,
required=True

text = RichText (
title=_(u'Text"),
required=False

url = schema.URI (
title=_(u'Link"),
required=False

fieldset ('Images', fields=['logo', 'advertisement'])
logo = namedfile.NamedBlobImage (

title=_(u'Logo"),

required=False,

advertisement = namedfile.NamedBlobImage (
title=_(u'Advertisement (Gold-sponsors and above)'),
required=False,

directives.read_permission (notes='cmf.ManagePortal')
directives.write_permission (notes='cmf.ManagePortal')
notes = RichText (
title=_(u'Secret Notes (only for site-—-admins) '),
required=False

Some things are notable here:

148

Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

Plone Training Documentation, Publicacion 1.2.5a

= The fields in the schema are mostly from zope.schema. A reference of available fields is at https://docs.
plone.org/external/plone.app.dexterity/docs/reference/fields.html

» Indirectives.widget (level=RadioFieldWidget) we change the default widget for a Choice field
from a dropdown to radio-boxes. An incomplete reference of available widgets is at https://docs.plone.org/
external/plone.app.dexterity/docs/reference/widgets.html

» LevelVocabulary is used to create the options used in the field 1evel. This way we could easily translate

the displayed value.
» fieldset ('Images', fields=["'logo', 'advertisement']) moves the two image fields to anot-
her tab.

» directives.read_permission(...) sets the read and write permission for the field notes to users
who can add new members. Usually this permission is only granted to Site Administrators and Managers. We
use it to store information that should not be publicly visible. Please note that obj.notes is still accessible in
templates and Python. Only using the widget (like we do in the view later) checks for the permission.

= We use no grok here.

Ver también:

= All available Fields

= Schema-driven types with Dexterity

» Form schema hints and directives

The FTI

Second we create the FTI for the new type in profiles/default/types/sponsor.xml

<?xml version="1.0"7?>

<object name="sponsor" meta_type="Dexterity FTI"

il8n:domain="plone"

xmlns:i18n="http://xml.zope.org/namespaces/i18n">

<property
<property

name="title" il8n:translate="">Sponsor</property>
name="description" il8n:translate=""></property>

<property name="icon_expr">string:${portal_url}/document_icon.png</property>
<property name="factory">sponsor</property>
<property name="add_view_expr">string:${folder_url}/++add++sponsor</property>
<property name="link_target"></property>
<property name="immediate view">view</property>
<property name="global allow">True</property>
<property name="filter_content_types">True</property>
<property name="allowed_content_types"/>
<property name="allow_discussion">False</property>
<property name="default_view">view</property>
<property name="view_methods">
<element value="view"/>
</property>
<property name="default view_fallback">False</property>
<property name="add permission">cmf.AddPortalContent</property>
<property name="klass">plone.dexterity.content.Container</property>
<property name="behaviors">
<element value="plone.app.dexterity.behaviors.metadata.IDublinCore"/>
<element value="plone.app.content.interfaces.INameFromTitle"/>
</property>
<property name="schema">ploneconf.site.content.sponsor.ISponsor</property>
<property name="model_source"></property>

<property name="model file"></property>

2.1. Mastering Plone Development

149

https://docs.plone.org/external/plone.app.dexterity/docs/reference/fields.html
https://docs.plone.org/external/plone.app.dexterity/docs/reference/fields.html
https://docs.plone.org/external/plone.app.dexterity/docs/reference/widgets.html
https://docs.plone.org/external/plone.app.dexterity/docs/reference/widgets.html
https://docs.plone.org/external/plone.app.dexterity/docs/reference/fields.html#field-types
https://docs.plone.org/external/plone.app.dexterity/docs/schema-driven-types.html#schema-driven-types
https://docs.plone.org/external/plone.app.dexterity/docs/reference/form-schema-hints.html

29

30

31

32

33

34

35

36

37

38

40

4

42

43

44

Plone Training Documentation, Publicacion 1.2.5a

<property name="schema_policy">dexterity</property>
<alias from=" (Default)" to="(dynamic view)"/>
<alias from="edit" to="QRedit"/>

<alias from="sharing" to="@@sharing"/>

<alias from="view" to="(selected layout)"/>
<action title="View" action_id="view" category="object" condition_expr=""
description="" icon_expr="" link_target="" url_expr="string:${object_url}"

visible="True">
<permission value="View"/>
</action>
<action title="Edit" action_id="edit" category="object" condition_expr=""
description="" icon_expr="" link_target=""
url_expr="string:${object_url}/edit" visible="True">
<permission value="Modify portal content"/>
</action>
</object>

Then we register the FTTin profiles/default/types.xml

<?xml version="1.0"?>
<object name="portal types" meta_type="Plone Types Tool">

<property name="title">Controls the available contenttypes in your portal</property>
<object name="talk" meta_type="Dexterity FTI"/>

<object name="sponsor" meta_type="Dexterity FTI"/>

<!--— —%— more types can be added here —*—- ——>
</object>

After reinstalling our package we can create the new type.

Exercise 1

Sponsors are containers but they don’t need to be. Turn them into items by changing their class to
plone.dexterity.content.Item.

Solution

Simply modify the property k1ass in the FTI and reinstall.

<property name="klass">plone.dexterity.content.Item</property>

The view
We use the default view provided by dexterity for testing since we will only display the sponsors in a viewlet and not
in their own page.

But we could tweak the default view with some CSS to make it less ugly. Add the following to
resources/ploneconf.css:

.template-view.portaltype—-sponsor .named-image-widget img {
width: 100%;
height: auto;

.template-view.portaltype-sponsor fieldset#folder-listing {

150 Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

display: none;

Nota: If we really want a custom view for sponsors it could look like this.

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en"
metal:use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">
<body>
<metal:content-core fill-slot="content-core">
<h3 tal:content="structure view/w/level/render">
Level
</h3>

<div tal:content="structure view/w/text/render">
Text
</div>

<div class="newsImageContainer">
<a tal:attributes="href context/url">
<img tal:condition="python:getattr (context, 'logo', None)"
tal:attributes="src string:${context/absolute_url}/QRimages/logo/preview
/>

</div>

<div>
<a tal:attributes="href context/url">
Website

<img tal:condition="python:getattr (context, 'advertisement', None)"
tal:attributes="src string:${context/absolute_url}/QRimages/advertisement/

wpreview" />

<div tal:condition="python: 'notes' in view.w"
tal:content="structure view/w/notes/render">
Notes
</div>

</div>
</metal:content-core>
</body>
</html>

Note how we handle the field with special permissions: tal:condition="python: 'notes' in view.w"
checks if the convenience-dictionary w (provided by the base class DefaultView) holds the widget for the field
notes. If the current user does not have the permission cmf .ManagePortal it will be omitted from the dictionary
and get an error since notes would not be a key in w. By first checking if it’s missing we work around that.

The viewlet

Instead of writing a view you will have to display the sponsors at the bottom of the website in a viewlet.

Register the viewlet in browser/configure.zcml

2.1. Mastering Plone Development 151

20
21

2
23
24
25
2
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
)
43
44
45

46

Plone Training Documentation, Publicacion 1.2.5a

<browser:viewlet
name="sponsorsviewlet"
manager="plone.app.layout.viewlets.interfaces.IPortalFooter"

for="x"
layer="..interfaces.IPloneconfSiteLayer"
class=".viewlets.SponsorsViewlet"

template="templates/sponsors_viewlet.pt"
permission="zope2.View"

/>

Add the viewlet class in browser/viewlets.py

—#— coding: utf-8 —#-—

from collections import OrderedDict

from plone import api

from plone.app.layout.viewlets.common import ViewletBase
from plone.memoize import ram

from ploneconf.site.behaviors.social import ISocial

from ploneconf.site.content.sponsor import LevelVocabulary
from random import shuffle

from time import time

class SocialViewlet (ViewletBase) :

def lanyrd_link(self):
adapted = ISocial (self.context)
return adapted.lanyrd

class SponsorsViewlet (ViewletBase) :

@ram.cache (lambda *args: time() // (60 = 60))
def _sponsors(self):
results = []
for brain in api.content.find(portal_type='sponsor'):

obj = brain.getObject ()

scales = api.content.get_view(
name="'images"',
context=ob7j,
request=self.request)

scale = scales.scale(
'logo"',
width=200,
height=80,
direction="'down")

tag = scale.tag() if scale else None

if not tag:
only display sponsors with a logo
continue

results.append ({
'title': obj.title,
'description': obj.description,
'tag': tag,
'url': obj.url or obj.absolute_url (),
'level': obj.level

1)

return results

152

Capitulo 2. Trainings

47

48

49

50

52

53

55

56

58

59

60

61

62

63

Plone Training Documentation, Publicacion 1.2.5a

def sponsors(self):
sponsors = self._sponsors/()
if not sponsors:
return
results = OrderedDict ()
levels = [i.value for i in LevelVocabulary]
for level in levels:
level_sponsors = []
for sponsor in sponsors:
if level == sponsor['level']:
level_sponsors.append (sponsor)
if not level_sponsors:

continue
shuffle(level_sponsors)
results[level] = level_sponsors

return results

= _sponsors () returns a list of dictionaries containing all necessary info about sponsors.

= We create the complete img tag using a custom scale (200x80) using the view images from
plone.namedfile. This actually scales the logos and saves them as new blobs.

» In sponsors () we return an ordered dictionary of randomized lists of dicts (containing the information on
sponsors). The order is by sponsor-level since we want the platinum-sponsors on top and the bronze-sponsors at
the bottom. The randomization is for fairness among equal sponsors.

_sponsors () is cached for an hour using plone.memoize. This way we don’t need to keep all sponsor objects in
memory all the time. But we’d have to wait for up to an hour until changes will be visible.

Instead we should cache until one of the sponsors is modified by using a callable _sponsors_cachekey () that
returns a number that changes when a sponsor is modified.

def _sponsors_cachekey (method, self):
brains = api.content.find(portal_type='sponsor')
cachekey = sum([int (i.modified) for i in brains])
return cachekey

@ram.cache (_sponsors_cachekey)
def _sponsors(self):
catalog = api.portal.get_tool('portal_ catalog')

Ver también:
» Guide to Caching
» Cache decorators

= Image Scaling

The template for the viewlet

Add the template browser/templates/sponsors_viewlet.pt

<div metal:define-macro="portal_sponsorbox"
il8n:domain="ploneconf.site">
<div id="portal-sponsorbox" class="container"

2.1. Mastering Plone Development 153

https://docs.plone.org/manage/deploying/performance/decorators.html#timeout-caches
https://docs.plone.org/manage/deploying/caching/index.html
https://docs.plone.org/manage/deploying/performance/decorators.html
https://docs.plone.org/develop/plone/images/content.html#creating-scales

20

21

22

23

24

25

26

27

Plone Training Documentation, Publicacion 1.2.5a

tal:define="sponsors view/sponsors;"
tal:condition="sponsors">
<div class="row">
<h2>We our sponsors</h2>
</div>
<div tal:repeat="level sponsors"
tal:attributes="id python:'level-' + level"
class="row">
<h3 tal:content="python: level.capitalize()">
Gold
</h3>
<tal:images tal:define="items python:sponsors[level];"
tal:repeat="item items">
<div class="sponsor">
<a href=""
tal:attributes="href python:item['url'];
title python:item['title'];">

</div>
</tal:images>
</div>
</div>

</div>

You can now add some CSS in browser/static/ploneconf.css to make it look OK.

.sponsor {
display: inline-block;
margin: 0 lem lem 0;

.sponsor:hover {
box-shadow: 0 0 8px #000;
-moz-box—-shadow: 0 0 8px #000;
~-webkit-box-shadow: 0 0 8px #000;

Exercise 2

Turn the content type Speaker from Exercise 2 of the first chapter on dexterity into a Python-based type.
When we’re done, it should have the following fields:

= title

= email

= homepage

= biography

= company

= twitter_name

= irc_name

= image

154 Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

29

30

31

33

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Plone Training Documentation, Publicacion 1.2.5a

Do not use the IBasic or IDublinCore behavior to add title and description. Instead add your own field title
and give it the title Name.

Solut;

ion

—%— coding: utf-8 —#*-—

from
from
from
from
from
from
from
from
from

plone
plone

plone

.app.textfield import RichText
.app.vocabularies.catalog import CatalogSource
plone.
.namedfile import field as namedfile
plone.

autoform import directives

supermodel import model

ploneconf.site import _
z3c.relationfield.schema import RelationChoice
z3c.relationfield.schema import RelationList

zope import schema

class ISpeaker (model.Schema) :
"""Dexterity-Schema for Speaker

mmn

first_name = schema.TextLine (
title=_(u'First Name'),

last_name = schema.TextLine (
title=_(u'Last Name'),

email

schema.TextLine (

title=_(u'E-Mail'),
required=False,

homepage = schema.URI (
title=_(u'Homepage'),
required=False,

biography = RichText (
title=_(u'Biography'),
required=False,

company = schema.TextLine (
title=_(u'Company'),
required=False,

twitter_name = schema.TextLine (
title=_(u'Twitter—-Name'),
required=False,

irc_name = schema.TextLine (
title=_(u'IRC-Name'),
required=False,

2.1. Mastering Plone Development

155

54

55

56

57

58

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Plone Training Documentation, Publicacion 1.2.5a

image =

namedfile.NamedBlobImage (

title=_(u'Image'),
required=False,

Register the type in profiles/default/types.xml

<?xml version="1.0"?>
<object name="portal types" meta_type="Plone Types Tool">

<property

name="title">Controls the available contenttypes in your portal</property>

<object name="talk" meta_type="Dexterity FTI"/>
<object name="sponsor" meta_type="Dexterity FTI"/>
<object name="speaker" meta_type="Dexterity FTI"/>
<!-— —%- more types can be added here —x— ——>

</object>

The FTI goes in profiles/default/types/speaker.xml. Again we use Item as the base-class:

<?xml version="1.0"?>

<object name="speaker" meta_type="Dexterity FTI"

il8n:domain="plone"

xmlns:118n="http://xml.zope.org/namespaces/il8n">

<property
<property
<property
<property
<property
<property
<property
<property

name="title" il8n:translate="">Speaker</property>
name="description" il8n:translate=""></property>
name="icon_expr">string:${portal_url}/document_icon.png</property>
name="factory">speaker</property>
name="add_view_expr">string:${folder_url}/++add++speaker</property>
name="link_ target"></property>

name="immediate view">view</property>
name="global_allow">True</property>

<property name="filter_ content_types">True</property>
<property name="allowed_content_types"/>
<property name="allow_discussion">False</property>
<property name="default view">view</property>
<property name="view_methods">
<element value="view"/>
</property>
<property name="default view_fallback">False</property>

<property name="add_permission">cmf.AddPortalContent</property>
<property name="klass">plone.dexterity.content.Item</property>
<property name="behaviors">
<element value="plone.app.dexterity.behaviors.metadata.IBasic"/>
<element value="plone.app.content.interfaces.INameFromTitle"/>
</property>
<property name="schema">ploneconf.site.content.speaker.ISpeaker</property>

<property

name="model_source"></property>

<property name="model file"></property>
<property name="schema_policy">dexterity</property>
<alias from=" (Default)" to="(dynamic view)"/>

<alias from="edit" to="@@edit"/>
<alias from="sharing" to="@@sharing"/>
<alias from="view" to="(selected layout)"/>

<action title="View"
description=""

—_nn

action_id="view" category="object" condition_expr=

icon_expr="" link_target="" url_expr="string:${object_url}"

visible="True">
<permission value="View"/>

</action>

<action title="Edit"

action_id="edit" category="object" condition_expr=""

156

Capitulo 2. Trainings

40

41

42

43

44

20

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

description="" icon_expr=""

link_target=""

url_expr="string:${object_url}/edit" visible="True">
<permission value="Modify portal content"/>

</action>
</object>

After reinstalling the package the new type is usable.

Exercise 3

This is more of a Python exercise. The gold- and bronze sponsors should also have a bigger logo than the others. Give

the sponsors the following logo-sizes without using CSS.
= Platinum: 500x200
= Gold: 350x150
= Silver: 200x80
= Bronze: 150x60

Solution

—*— coding: utf-8 —x-—

from collections import OrderedDict

from plone import api

from plone.app.layout.viewlets.common import ViewletBase
from plone.memoize import ram

from ploneconf.site.behaviors.social import ISocial

from ploneconf.site.content.sponsor import LevelVocabulary
from random import shuffle

LEVEL_SIZE_MAPPING = {

'platinum': (500, 200),
'gold': (350, 150),
'silver': (200, 80),
'bronze': (150, 60),

class SocialViewlet (ViewletBase) :

def lanyrd_link(self):
adapted = ISocial (self.context)
return adapted.lanyrd

class SponsorsViewlet (ViewletBase):

def _sponsors_cachekey (method, self):
brains =
cachekey =
return cachekey

sum ([int (i.modified)

@ram.cache (_sponsors_cachekey)
def _sponsors(self):

api.content.find(portal_type='sponsor')
for i in brains])

2.1. Mastering Plone Development

157

39

40

41

42

43

44

45

46

47

48

49

51

52

54

55

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Plone Training Documentation, Publicacion 1.2.5a

results = []
for brain in api.content.find(portal_type='sponsor'):
obj = brain.getObject ()
scales = api.content.get_view (
name="images"',
context=obj,
request=self.request)
width, height = LEVEL_SIZE_MAPPING[obj.level]
scale = scales.scale(
'logo"',
width=width,
height=height,
direction="'down'")
tag = scale.tag() if scale else None
if not tag:
only display sponsors with a logo
continue
results.append ({
'title': obj.title,

'description': obj.description,
'tag': tag,
'url': obj.url or obj.absolute_url (),

'level': obj.level

P

return results

def sponsors(self):
sponsors = self._sponsors()
if not sponsors:
return
results = OrderedDict ()
levels = [i.value for i in LevelVocabulary]
for level in levels:
level_sponsors = []
for sponsor in sponsors:
if level == sponsor['level']:
level_sponsors.append (sponsor)
if not level_sponsors:

continue
shuffle (level_sponsors)
results[level] = level_sponsors

return results

Relations

You can model relationships between content items by placing them in a hierarchy (a folder speakers containing the
(folderish) speakers and within each speaker the talks) or by linking them to each other in Richtext-Fields. But where
would you store a talk that two speakers give together?

Relations allow developers to model relationships between objects without a links or a hierarchy. The behavior
plone.app.relationfield.behavior.IRelatedItems provides the field Related Items in the tab Ca-
tegorization. That field simply says a is somehow related to b.

By using custom relations you can model your data in a much more meaningful way.

158 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Creating relations in a schema

Relate to one item only.

from plone.app.vocabularies.catalog import CatalogSource
from z3c.relationfield.schema import RelationChoice
from z3c.relationfield.schema import RelationList

evil_mastermind = RelationChoice (
title=_(u'The Evil Masterimind'),
vocabulary='plone.app.vocabularies.Catalog',
required=False,

Relate to multiple items.

from z3c.relationfield.schema import RelationChoice
from z3c.relationfield.schema import RelationList

minions = RelationList (
title=_(u'Minions"'),
default=[],
value_type=RelationChoice (
vocabulary='"plone.app.vocabularies.Catalog',
)

required=False,

We can see that the code for the behavior IRelatedItems does exactly the same.

Instead of using a named vocabulary we can also use source:

from plone.app.vocabularies.catalog import CatalogSource
from z3c.relationfield.schema import RelationChoice
from z3c.relationfield.schema import RelationList

minions = RelationList (
title=_(u'Talks by this speaker'),
value_type=RelationChoice (
title=_(u'Talks"),
source=CatalogSource (portal_type=['one_eyed _minion', 'minion'])),
required=False,

To CatalogSource you can pass the same argument that you use for catalog-queries. This makes it very flexible to
limit relateable items by type, path, date etc.

For even more flexibility you can create your own dynamic vocabularies.

Accessing and displaying related items

One would think that it would be the easiest approach to simply use the render-method of the default-widget like
we did in the chapter “Views II: A Default View for “Talk™”. Sadly that is wrong. Adding the approriate code to te
template:

would only render the UIDs of the related items:

This is not very useful but anyway it is very likely that you want to control closely how to render these items.

2.1. Mastering Plone Development 159

https://github.com/plone/plone.app.relationfield/blob/master/plone/app/relationfield/behavior.py
https://docs.plone.org/external/plone.app.dexterity/docs/advanced/vocabularies.html#dynamic-sources

Plone Training Documentation, Publicacion 1.2.5a

So we add a method to the view to return the related items so that we’re able to render anyway we like.

def minions(self):
"""Returns a list of brains of related items."""
results = []
catalog = api.portal.get_tool ('portal_catalog')
for rel in self.context.underlings:
if rel.isBroken():
skip broken relations
continue
query by path so we don't have to wake up any objects
brains = catalog(path={'query': rel.to_path, 'depth': 0})
results.append(brains[0])
return results

Weuse rel.to_path () and use the items path to query the catalog for its catalog-entry. This is much more efficient
than using rel.to_object () since we don’t have to wake up any objects. Setting depth to 0 will only return
items with exactly this path, so it will always return a list with one item.

Nota: Using the path sounds a little complicated and it would indeed be more convenient if a RelationItem would
contain the UID (so we can query the catalog for that) or if the portal_catalog would index the IntId. But
that’s the way it is for now.

For reference look at how the default viewlet displays the information for related items stored by the behavior
IRelatedItems. See how it does exactly the same in related2brains. This is the Python-path for the viewlet:
plone.app.layout.viewlets.content.ContentRelatedItems This is the file-path for the template:
plone/app/layout/viewlets/document_relateditems.pt

Creating Relationfields through the web

It is surprisingly easy to create RelationFields through the web

= In the dexterity schema-editor add a new field and select Relation List or Relation Choice, depending on wether
you want to relate to multiple items or not.

= When configuring the field you can even select the content-type the relation should be limited to.
When you click on Edit xml field model you will see the fields in the xml-schema:

RelationChoice:

<field name="boss" type="z3c.relationfield.schema.RelationChoice">
<description/>
<required>False</required>
<title>Boss</title>

</field>

RelationList:

<field name="underlings" type="z3c.relationfield.schema.RelationList">

<description/>
<required>False</required>
<title>Underlings</title>
<value_type type="z3c.relationfield.schema.RelationChoice">

<title il8n:translate="">Relation Choice</title>

<portal_type>

<element>Document</element>

160 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

<element>News Item</element>
</portal_type>
</value_type>
</field>

The stack
Relations are based on zc.relation. This package allows to store transitive and intransitive relationships. It allows for
complex relationships and searches along them. Because of this functionality, the package is a bit complicated.

The package zc.relation provides its own catalog, a relation catalog. This is a storage optimized for the queries needed.
zc.relation is sort of an outlier with regards to zope documentation. It has extensive documentation, with a good level
of doctests for explaining things.

You can use zc.relation to store the objects and its relations directly into the catalog. But the additional packages that
make up the relation functionality don’t use the catalog this way.

We want to work with schemas to get auto generated forms. The logic for this is provided by the package
z3c.relationfield. This package contains the RelationValue object and everything needed to define a relation schema,
and all the code that is necessary to automatically update the catalog.

A RelationValue Object does not reference all objects directly. For the target, it uses an id it gets from the Intld Utility.
This id allows direct recovery of the object. The source object stores it directly.

Widgets are provided by plone.app.z3cform and some converters are provided by plone.app.relationfield. The widget
that Plone uses can also store objects directly. Because of this, the following happens when saving a relation via a
form:

1. The html shows some nice representation of selectable objects.
When the user submits the form, selected items are submitted by their UUIDs.
The Widget retrieves the original object with the UUID.

Some datamanager gets another unique ID from an IntID Tool.

A

The same datamanager creates a RelationValue from this id, and stores this relation value on the source object.
6. Some Event handlers update the catalogs.
You could delete a Relation like this delattr(rel.from_object, rel.from_attribute)

This is a terrible idea by the way, because when you define in your schema that one can store multiple RelationValues,
your Relation is stored in a list on this attribute.

Relations depend on a lot of infrastructure to work. This infrastructure in turn depends a lot on event handlers being
thrown properly. When this is not the case things can break. Because of this, there is a method isBroken which you can
use to check if the target is available.

There are alternatives to using Relations. You could instead just store the UUID of an object. But using real relations
and the catalog allows for very powerful things. The simplest concrete advantage is the possibility to see what links to
your object.

The builtin linkintegrity-feature of Plone 5 is also built using relations.
RelationValues
RelationValue objects have a fairly complete API. For both target and source, you can receive the Intld, the object and

the path. On a RelationValue, the terms source and target aren’t used. Instead, they are from and fo. So the API for
getting the target is:

2.1. Mastering Plone Development 161

https://pypi.python.org/pypi/zc.relation/
https://pypi.python.org/pypi/z3c.relationfield/

Plone Training Documentation, Publicacion 1.2.5a

m fo_id
= fo_path
= fo_object

In addition, the relation value knows under which attribute it has been stored as from_attribute. It is usually the name
of the field with which the relation is created. But it can also be the name of a relation that is created by code, e.g.
linkintegrity-relations (isReferencing) or the relation between a working copy and the original (iterate-working-copy).

Accessing relations and backrelations from code

If you want to find out what objects are related to each other, you use the relation catalog. Here is a convenience-method
that allows you to find all kinds of relations.

from zc.relation.interfaces import ICatalog

from zope.component import getUtility

from zope.intid.interfaces import IIntIds

from plone.app.linkintegrity.handlers import referencedRelationship

def example_get_backlinks (obj) :
backlinks = []
for rel in get_backrelations (attribute=referencedRelationship):
if rel.isBroken{():
backlinks.append(dict (href="",
title='broken reference',
relation=rel.from_attribute))
else:
obj = rel.from_object
backlinks.append(dict (href=obj.absolute_url(),
title=obj.title,
relation=rel.from_attribute))
return backlinks

def get_relations(obj, attribute=None, backrefs=False):
"""Get any kind of references and backreferences"""
int_id = get_intid(obj)
if not int_id:
return retval

relation_catalog = getUtility(ICatalog)
if not relation_catalog:
return retval

query = {}

if attribute:
Constrain the search for certain relation-types.
query['from_attribute'] = attribute

if backrefs:

query['to_id'] = int_id
else:

query['from_id'] = int_id

return relation_catalog.findRelations (query)

162 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

def get_backrelations (obj, attribute=None) :
return get_relations (obj, attribute=attribute, backrefs=True)

def get_intid(obj):
"""Return the intid of an object from the intid-catalog"""
intids = component.queryUtility (IIntIds)
if intids is None:
return
check that the object has an intid, otherwise there's nothing to be done
try:
return intids.getId(obj)
except KeyError:
The object has not been added to the ZODB yet
return

Manage Settings with Registry, Controlpanels and Vocabularies

Get the code!

Get the code for this chapter (More info):

git checkout registry

In this part you will:

= Store a custom setting in a registry

= Create a controlpanel using z3c.form to allow setting that value
Topics covered:

= plone.app.registry

= controlpanels

The Registry

The registry is used to get and set values stored in records. Each record contains the actual value, as well as a field that
describes the record in more detail. It has a nice dict-like API.

All global settings in Plone 5 are stored in the registry.

The registry itself is provided by plone.registry and the UI to interact with it by plone.app.registry

Almost all settings in /plone_control_panel are actually stored in the registry and can be modified using its
UI directly.

Open http://localhost:8080/Plone/portal_registry and filter for displayed_types. You see can modify the content
types that should be shown in the navigation and site map. The values are the same as in http://localhost:8080/Plone/
@ @navigation-controlpanel but the later form is customized for usability.

A setting

Let’s store two values in the registry:

2.1. Mastering Plone Development 163

https://pypi.python.org/pypi/plone.registry
https://pypi.python.org/pypi/plone.app.registry
http://localhost:8080/Plone/portal_registry
http://localhost:8080/Plone/@@navigation-controlpanel
http://localhost:8080/Plone/@@navigation-controlpanel

Plone Training Documentation, Publicacion 1.2.5a

= The date of the conference
= [s talk submission open or closed
You cannot create values ttw, instead they need to be registered using Generic Setup.
Open the file profiles/default/registry.xml. You already registered several new settings in there:
= You enabled self registration
= You stored a site-logo
= You registered additional criteria useable for Collections

Adding the following code to registry.xml. This creates a new value in the registry upon installation of the
package.

<record name="ploneconf.talk_ submission_open">
<field type="plone.registry.field.Bool">
<title>Allow talk submission</title>
<description>Allow the submission of talks for anonymous users</description>
<required>False</required>
</field>
<value>False</value>
</record>

When creating a new site a lot of settings are created in the same way. See https://github.com/plone/Products.
CMFPlone/blob/master/Products/CMFPlone/profiles/dependencies/registry.xml to see how Products.CMFPlone
registers values.

<record name="ploneconf.date_of_conference">
<field type="plone.registry.field.Date">
<title>First day of the conference</title>
<required>False</required>
</field>
<value>2016-10-17</value>
</record>

Accessing and modifying values in the registry

In python you can access the registry like this:

from plone.registry.interfaces import IRegistry
from zope.component import getUtility

registry = getUtility (IRegistry)

start = registry.get ('ploneconf.date_of_conference')

plone.api holds methods to make this even easier:

from plone import api
api.portal.get_registry_record('ploneconf.date_of conference')
api.portal.set_registry_record('ploneconf.talk submission_open', True)

Add a custom controlpanel

When you want to add a custom controlpanel it is usually more convenient to register the fields not manually like
above but as field in a schema, similar to a content-types schema.

164 Capitulo 2. Trainings

https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/profiles/dependencies/registry.xml
https://github.com/plone/Products.CMFPlone/blob/master/Products/CMFPlone/profiles/dependencies/registry.xml

Plone Training Documentation, Publicacion 1.2.5a

For this you define a interface for the schema and a view that auto-generates a form from the schema.

browser/configure.zcml add:

In

<browser:page
name="ploneconf-controlpanel"
for="Products.CMFPlone.interfaces.IPloneSiteRoot"

class=".controlpanel.PloneconfControlPanelView"
permission="cmf.ManagePortal"
/>

Add a file browser/controlpanel.py:

—#— coding: utf—-8 —*-—

from datetime import date

from plone.app.registry.browser.controlpanel import ControlPanelFormWrapper
from plone.app.registry.browser.controlpanel import RegistryEditForm

from plone.z3cform import layout

from zope import schema

from zope.interface import Interface

class IPloneconfControlPanel (Interface) :

date_of_conference = schema.Date (
title=u'First day of the conference',
required=False,
default=date (2016, 10, 17),

talk_submission_open = schema.Bool (
title=u'Allow talk submission',
description=u'Allow the submission of talks for anonymous user',
default=False,
required=False,

class PloneconfControlPanelForm(RegistryEditForm) :
schema = IPloneconfControlPanel
schema_prefix = "ploneconf"
label = u'Ploneconf Settings'

PloneconfControlPanelView = layout.wrap_form/(
PloneconfControlPanelForm, ControlPanelFormWrapper)

With this way of using fields you don’t have to register the values in registry.xml, instead you have to register

the interface:

<records interface="ploneconf.site.browser.controlpanel.IPloneconfControlPanel"
prefix="ploneconf" />

After reinstalling the package (to load the registry-entry) you can access the controlpanel at http://localhost:8080/

Plone/@ @ploneconf-controlpanel.

To make it show up in the general controlpanel at http://localhost:8080/Plone/ @ @ overview-controlpanel you have to

register it with GenericSetup. Add a file profiles/default/controlpanel . xml:

2.1. Mastering Plone Development 165

http://localhost:8080/Plone/@@ploneconf-controlpanel
http://localhost:8080/Plone/@@ploneconf-controlpanel
http://localhost:8080/Plone/@@overview-controlpanel

Plone Training Documentation, Publicacion 1.2.5a

<?xml version="1.0"?>
<object name="portal controlpanel">
<configlet
title="Ploneconf Settings"
action_id="ploneconf-controlpanel"
applId="ploneconf-controlpanel"
category="Products"
condition_expr=""
icon_expr=""
url_expr="string:${portal_url}/@@ploneconf-controlpanel"
visible="True">
<permission>Manage portal</permission>
</configlet>
</object>

Again, after applying the profile (reinstall the package or write a upgrade-step) your controlpanel shows up in http:
/Nocalhost:8080/Plone/ @ @ overview-controlpanel.

Vocabularies

Do you remember the field rooms? We provided several options to chose from. But who says that the next conference
will have the same rooms? These values should be configurable by the admin. The admin could go to the dexterity-
controlpanel and change the values but we will use a different approach. We will allow the rooms to be added in the
controlpanel and use these values in the talk-schema by registering a vocabulary.

Add anew field to IPloneconfControlPanel:

rooms = schema.Tuple (
title=u'Available Rooms for the conference',
default=(u'101', u'201'", u'Auditorium'"),
missing_value=None,
required=False,
value_type=schema.TextLine ()

Create a file vocabularies.py and write the vocabulary:

—#— coding: utf-8 —*-—

from plone import api

from plone.il8n.normalizer.interfaces import IIDNormalizer
from zope.component import queryUtility

from zope.interface import implementer

from zope.schema.interfaces import IVocabularyFactory

from zope.schema.vocabulary import SimpleVocabulary

@implementer (IVocabularyFactory)
class RoomsVocabularyFactory (object) :

def _ call_ (self, context):

values = api.portal.get_registry_record('ploneconf.rooms')
normalizer = queryUtility (IIDNormalizer)
items = [(normalizer.normalize (i), i) for i in values]

return SimpleVocabulary.fromItems (items)

RoomsVocabulary = RoomsVocabularyFactory ()

Note:

166 Capitulo 2. Trainings

http://localhost:8080/Plone/@@overview-controlpanel
http://localhost:8080/Plone/@@overview-controlpanel

Plone Training Documentation, Publicacion 1.2.5a

» RoomsVocabulary is a instance of RoomsVocabularyFactory.

= We normalize values to create a vocabulary since the value of a SimpleVocabulary has to be ASCII. We use one
of many useful normalizers that Plone provides.

Register a vocabulary in configure. zcml as ploneconf.site.vocabularies.Rooms:

<utility
name="ploneconf.site.vocabularies.Rooms"
component="ploneconf.site.vocabularies.RoomsVocabulary" />

Use the vocabulary in the talk-schema. Edit content /talk.xml

<field name="room"
type="zope.schema.Choice"
form:widget="z3c.form.browser.radio.RadioFieldWidget"
security:write-permission="cmf.ReviewPortalContent">
<description></description>
<title>Room</title>
<vocabulary>ploneconf.site.vocabularies.Rooms</vocabulary>

</field>

Now a admin can configure the rooms available for the conference. We could use the same pattern for the fields
type_of _talk and audience.

Ver también:

https://docs.plone.org/external/plone.app.dexterity/docs/advanced/vocabularies.html

Nota: In a python-schema that would look like this:

directives.widget (room=RadioFieldWidget)

room = schema.Choice (
title=_ (u'Room'"),
vocabulary='ploneconf.site.vocabularies.Rooms',
required=False,

Creating a Dynamic Front Page

Get the code!

Get the code for this chapter (More info):

git checkout frontpage

In this chapter we will:

= Create a standalone view used for the front page
= Show dynamic content
= Use ajax to load content

= Embed tweets about ploneconf

2.1. Mastering Plone Development 167

https://docs.plone.org/external/plone.app.dexterity/docs/advanced/vocabularies.html

20

21

22

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

The topics we cover are:

= Standalone views

Querying the catalog by date
= DRY
= Macros

= patterns

The Front Page

Register the view in browser/configure.zcml:

<browser:page
name="frontpageview"
for="x"

layer="ploneconf.site.interfaces.IPloneconfSiteLayer"

class=".frontpage.FrontpageView"
template="templates/frontpageview.pt"
permission="zope2.View"

/>

Add the view to a file browser/frontpage.py. We want a list of all talks that happen today.

—#— coding: utf-8 —#-—
from plone import api
from Products.Five.browser import BrowserView

import datetime

class FrontpageView (BrowserView) :
"""The view of the conference frontpage

mmon

def talks(self):
"""Get todayls talkS"""

results = []
today = datetime.date.today ()
brains = api.content.find(

portal_type='talk',
sort_on='start"',
sort_order="'descending',

for brain in brains:
if brain.start.date() == today:
results.append ({
'"title': brain.Title,

'description': brain.Description,

'url': brain.getURL(),

'audience': ', '.join(brain.audience or
'type_of_talk': brain.type_of_talk,
'speaker': brain.speaker,

"room': brain.room,

'start': brain.start,

[n,

168

Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

b

return results

= We do not constrain the search to a certain folder to also find the party and the sprints.
= With if brain.start.date() == today: we testif the talk is today.

= [t would be more effective to query the catalog for events that happen in the daterange between today and
tomorrow:

1 |today = datetime.date.today ()
> |tomorrow = today + datetime.timedelta (days=1)

3 |date_range_query = {'query': (today, tomorrow), 'range': 'min:max'}
4 |brains = api.content.find(

5 portal_type='talk',

6 start=date_range_qguery,

7 sort_on='start',

8 sort_order="ascending'

» The sort_on="start' sorts the results returned by the catalog by start-date.

= Byremoving the portal_type="'talk' from the query you could include other events in the schedule (like
the party or sightseeing-tours). But you’d have to take care to not create AttributeErrors by accessing fields
that are specific to talk. To work around that use speaker = getattr (brain, 'speaker',None) and
testing with 1f speaker is not None:

= The rest is identical to what the talklistview does.

The template

Create the template browser/templates/frontpageview.pt (for now without talks). Display the rich text
field to allow the frontpage to be edited.

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en"
metal :use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">

<body>

<metal:content-core fill-slot="content-core">
<div id="parent-fieldname-text"
tal:condition="python: getattr (context, 'text', None)"
tal:content="structure python:context.text.output_relative_to(view.context)" /
>

</metal:content—-core>

</body>
</html>

Now you could add the whole code that we used for the talklistview again. But instead we go D.R.Y. and reuse the
talklistview by turning it into a macro.

Edit browser/templates/talkslistview.pt and wrap the list in a macro definition:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en"
metal:use-macro="context/main_template/macros/master"

2.1. Mastering Plone Development 169

20
21
22
23
24
25

26
27
28

29

31

32

34

35

37

38

40
41
o)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59

Plone Training Documentation, Publicacion 1.2.5a

il8n:domain="ploneconf.site">
<body>
<metal:content-core fill-slot="content-core">

<metal:talklist define-macro="talklist">
<table class="listing"
id="talks"
tal:define="talks python:view.talks () ">
<thead>
<tr>
<th>Title</th>
<th>Speaker</th>
<th>Audience</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr tal:repeat="talk talks">
<td>
<a href=""
class="pat-contentloader"
data-pat-contentloader="url:${python:talk['url']}?ajax_load=1;content:
—f#content;target:.talkinfo > "
tal:attributes="href python:talk['url'];
title python:talk['description']"
tal:content="python:talk['title']">
The 7 sins of plone-development

</td>
<td tal:content="python:talk['speaker']">
Philip Bauer
</td>
<td tal:content="python:talk['audience']">
Advanced
</td>
<td class="pat-moment"
data-pat-moment="format:calendar"
tal:content="python:talk['start']">
Time
</td>
<td tal:content="python:talk['room']">
101
</td>
</tr>
<tr tal:condition="not:talks">
<td colspan=5>
No talks so far :—(
</td>
</tr>
</tbody>
</table>
<div class="talkinfo"></div>
</metal:talklist>

</metal:content—-core>
</body>
</html>

170 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Now use that macro in browser/templates/frontpageview.pt

<div class="col-1lg-6">
<h2>Todays Talks</h2>
<div metal:use-macro="context/@@talklistview/talklist">
Instead of this the content of the macro will appear...

</div>
</div>
Calling that macro in python looks like this metal:use-macro="python:

context.restrictedTraverse ('talklistview') ['talklist']"

Nota: In talklistview.pt the call view/talks" calls the method talks () from the browser view
TalkListView to get the talks. Reused as a macro on the frontpage it now uses the method talks ()
by the frontpageView to get a different list! It is not always smart to do that since you might want
to display other data. E.g. for a list of todays talks you don’t want show the date but only the time using
data-pat-moment="format:LT" Also this frontpage will probably not win a beauty-contest. But that’s not
the task of this training.

Exercise 1

Change the link to open the talk-info in a modal.

Solution

<a href=""
class="pat-plone-modal"
tal:attributes="href string:${talk/url};
title talk/description"
tal:content="talk/title">
The 7 sins of plone development

Twitter

You might also want to embed a twitter feed into the page. Luckily twitter makes it easy to do that. When you browse
to the twitter docs and learn how to create the appropriate snippet of code and paste it in the template wrapped in a
<div class="col-1g-6">...</div> to have the talklist next to the feeds:

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en"
metal :use-macro="context/main_template/macros/master"
il8n:domain="ploneconf.site">

<body>

<metal:content-core fill-slot="content-core">
<div id="parent-fieldname-text"
tal:condition="python: getattr (context, 'text', None)"

tal:content="structure python:context.text.output_relative_to(view.context)" />

<div class="col-1g-6">

2.1. Mastering Plone Development 171

https://plone.github.io/mockup/dev/#pattern/modal
https://dev.twitter.com/web/embedded-timelines/search

Plone Training Documentation, Publicacion 1.2.5a

<h2>Todays Talks</h2>
<div metal:use-macro="context/@@talklistview/talklist">
Instead of this the content of the macro will appear...
</div>
</div>

<div class="col-1g-6">
<a class="twitter-timeline" href="https://twitter.com/search?g=ploneconf" data-
—widget-1d="786311347323535360">Tweets about ploneconf
<script>!function(d, s, id) {var js, fjs=d.getElementsByTagName (s) [0],p=/"http:/.
—test (d.location)?'http': ' 'https';if(!d.getElementById(id)) {js=d.createElement (s); js.
—id=1id; js.src=p+"://platform.twitter.com/widgets.js"; fjs.parentNode.
—insertBefore (Js, £js); }} (document, "script", "twitter-wijs"); </script>
</div>

</metal:content—-core>

</body>
</html>

Activating the view

The view is meant to be used with documents (or any other type that has a rich text field ‘text’). The easiest way to
use it is setting it as the default view for the Document that is currently the default page for the portal. By default that
document has the id front-page.

You can either access it directly at http://localhost:8080/Plone/front-page or by disabling the default page for the
portal and it should show up in the navigation. Try out the new view like this: http://localhost:8080/Plone/front-page/
frontpageview.

To set that view by hand as the default view for front-page in the ZMI: http://localhost:8080/Plone/front-page/
manage_propertiesForm. Add a new property layout and setitto frontpageview.

Done. This way you can still use the button Edit to edit the frontpage.
Ver también:

» Querying by date: https://docs.plone.org/develop/plone/searching_and_indexing/query.html#querying-by-date

Creating Reusable Packages

We already created the package ploneconf . site much earlier.
In this part you will:

= Build your own standalone egg.
Topics covered:

= mr.bob

Now you are going to create a feature that is completely independent of the ploneconf site and can be reused in other
packages.

To make the distinction clear, this is not a package from the namespace ploneconf but from starzel.
We are going to add a voting behavior.

For this we need:

172 Capitulo 2. Trainings

http://localhost:8080/Plone/front-page
http://localhost:8080/Plone/front-page/frontpageview
http://localhost:8080/Plone/front-page/frontpageview
http://localhost:8080/Plone/front-page/manage_propertiesForm
http://localhost:8080/Plone/front-page/manage_propertiesForm
https://docs.plone.org/develop/plone/searching_and_indexing/query.html#querying-by-date

Plone Training Documentation, Publicacion 1.2.5a

A behavior that stores its data in annotations

A viewlet to present the votes

A bit of javascript
A bit of css

Some helper views so that the Javascript code can communicate with Plone

We move to the src directory and again use a script called mrbob from our project’s bin directory and the template
from bobtemplates.plone to create the package.

S mkdir src
$ cd src
$../bin/mrbob -0 starzel.votable_behavior bobtemplates:plone_addon

We press Enter to all questions except our personal data and the Plone version. Here we enter 5. 0a3.

More Complex Behaviors

In this part you will:
= Write an annotation
Topics covered:

= Annotation Marker Interfaces

Using Annotations
We are going to store the information in an annotation. Not because it is needed but because you will find code that
uses annotations and need to understand the implications.

Annotations in Zope/Plone mean that data won’t be stored directly on an object but in an indirect way and with
namespaces so that multiple packages can store information under the same attribute, without colliding.

So using annotations avoids namespace conflicts. The cost is an indirection. The dictionary is persistent so it has to be
stored separately. Also, one could give attributes a name containing a namespace prefix to avoid naming collisions.

Using Schema

The attribute where we store our data will be declared as a schema field. We mark the field as an omitted field
(using schema directive similar to read_permission or widget), because we are not going to create z3c. form
widgets for entering or displaying them. We do provide a schema, because many other packages use the schema
information to get knowledge of the relevant fields.

For example, when files were migrated to blobs, new objects had to be created and every schema field was copied. The
code can’t know about our field, except if we provide schema information.

Writing Code

To start, we create a directory behavior with an empty behavior/__init__ .py file.
Next we must, as always, register our ZCML.

First, add the information that there will be another ZCML file in configure.zcml

2.1. Mastering Plone Development 173

https://pypi.python.org/pypi/zope.annotation/4.2.0

Plone Training Documentation, Publicacion 1.2.5a

<configure xmlns="...">

<include package=".behavior" />

</configure>

Next, create behavior/configure.zcml

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:plone="http://namespaces.plone.org/plone">

<plone:behavior

title="Voting"

description="Allow voting for an item"
provides="starzel.votable_behavior.interfaces.IVoting"
factory=".voting.Vote"
marker="starzel.votable_behavior.interfaces.IVotable"

/>

</configure>

There are some important differences to our first behavior:

» There is a marker interface

= There is a factory

The factory is a class that provides the behavior logic and gives access to the attributes we provide. Factories in
Plone/Zope land are retrieved by adapting an object to an interface. If you want your behavior, you would write
IVoting (object)

But in order for this to work, your object may not be implementing the I'Voting interface, because if it did,
IVoting (object) would return the object itself! If I need a marker interface for objects providing my beha-
vior, I must provide one, for this we use the marker attribute. My object implements IVotable and because of this,
we can write views and viewlets just for this content type.

The interfaces need to be written, in our case into a file interfaces.py:

encoding=utf-8

from
from
from
from
from
from
from
from

plone
plone

plone.
plone.
plone.

import api

.autoform import directives

autoform.interfaces import IFormFieldProvider
supermodel import model
supermodel .directives import fieldset

zope import schema
zope.interface import alsoProvides
zope.interface import Interface

class IVotablelayer (Interface):

"""Marker interface for the Browserlayer

mmn

Ivotable is the marker interface for contenttypes who support
class IVotable (Interface):
pass

this behavior

174

Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

29

30

39

40

41

42

43

44

45

46

47

48

49

51

52

54

55

56

57

58

59

60

61

63

64

66

67

Plone Training Documentation, Publicacion 1.2.5a

This 1s the behaviors interface. When doing IVoting(object), you receive an
adapter
class IVoting (model.Schema) :
if not api.env.debug_mode() :
directives.omitted("votes")
directives.omitted ("voted")

fieldset (
'debug’,
label=u'debug',
fields=('votes', 'voted'),

votes = schema.Dict (title=u"Vote info",
key_type=schema.TextLine (title=u"Voted number"),
value_type=schema.Int (title=u"Voted so often"),
required=False)

voted = schema.List (title=u"Vote hashes",
value_type=schema.TextLine (),
required=False)

def vote (request):
mrmn
Store the vote information, store the request hash to ensure
that the user does not vote twice

mnn

def average_vote():

mnn

Return the average voting for an item

moon

def has_votes():

mmon

Return whether anybody ever voted for this item
mmn

def already_voted(request) :

mmn

Return the information wether a person already voted.

This is not very high level and can be tricked out easily
mmrn

def clear():

mnn

Clear the votes. Should only be called by admins

mnn

alsoProvides (IVoting, IFormFieldProvider)

This is a lot of code. The IVotableLayer we will need later for viewlets and browser views. Let’s add it right here.
The I'Votable interface is the simple marker interface. It will only be used to bind browser views and viewlets to
contenttypes that provide our behavior, so no code needed.

The IVoting class is more complex, as you can see. While IVoting is just an interface, we use
plone.supermodel .model.Schema for advanced dexterity features. Zope.schema provides no means for hi-
ding fields. The directives form.omitted from plone.autoform allow us to annotate this additional informa-
tion so that the autoform renderers for forms can use the additional information.

2.1. Mastering Plone Development 175

23

24

25

26

27

Plone Training Documentation, Publicacion 1.2.5a

We make this omit conditional. If we run Plone in debug mode, we will be able to see the internal data in the edit form.

‘We create minimal schema fields for our internal data structures. For a small test, I removed the form omitted directives
and opened the edit view of a talk that uses the behavior. After seeing the ugliness, I decided that I should provide at
least minimum of information. Titles and required are purely optional, but very helpful if the fields won’t be omitted,
something that can be helpful when debugging the behavior. Later, when we implement the behavior, the votes and
voted attributes are implemented in such a way that you can’t just modify these fields, they are read only.

Then we define the API that we are going to use in browser views and viewlets.

The last line ensures that the schema fields are known to other packages. Whenever some code wants all schemas from
an object, it receives the schema defined directly on the object and the additional schemata. Additional schemata are
compiled by looking for behaviors and whether they provide the IFormFieldProvider functionality. Only then
the fields are known as schema fields.

Now the only thing that is missing is the behavior, which we must put into behavior/voting.py

encoding=utf-8

from hashlib import md5

from persistent.dict import PersistentDict

from persistent.list import PersistentList

from zope.annotation.interfaces import IAnnotations

KEY = "starzel.votable_behavior.behavior.voting.Vote"

class Vote (object) :
def _ init_ (self, context):

self.context = context

annotations = IAnnotations (context)

if KEY not in annotations.keys{():

annotations[KEY] = PersistentDict ({

"voted": PersistentList (),
'votes': PersistentDict ()
})

self.annotations = annotations[KEY]

@property

def votes(self):
return self.annotations['votes']

@property
def voted(self):
return self.annotations|['voted']

Inour __init__ method we get annotations from the object. We look for data with a specific key.

The key in this example is the same as what I would get with __name__+Vote.__name__ . But we won’t create a
dynamic name, this would be very clever and clever is bad.

By declaring a static name, we won’t run into problems if we restructure the code.

You can see that we initialize the data if it doesn’t exist. We work with PersistentDict and PersistentList. To understand
why we do this, it is important to understand how the ZODB works.

Ver también:

The ZODB can store objects. It has a special root object that you will never touch. Whatever you store there, will
be part of the root object, except if it is an object subclassing persistent.Persistent Then it will be stored
independently.

176 Capitulo 2. Trainings

23

24

25

26

27

28

29

Plone Training Documentation, Publicacion 1.2.5a

Zope/ZODB Persistent objects note when you change an attribute on it and mark itself as changed. Changed objects
will be saved to the database. This happens automatically. Each request begins a transaction and after our code runs and
the Zope Server is preparing to send back the response we generated, the transaction will be committed and everything
we changed will be saved.

Now, if have a normal dictionary on a persistent object, and you will only change the dictionary, the persistent object
has no way to know if the dictionary has been changed. This happens from time to time.

So one solution is to change the special attribute _p_changed to True on the persistent object, or to use a Persis-
tentDict. That is what we are doing here.

An important thing to note about PersistentDict and PersistentList is that they cannot handle write conflicts. What
happens if two users rate the same content independently at the same time? In this case, a database conflict will occur
because there is no way for Plone to know how to handle the concurrent write access. Although this is rather unlikely
during this training, it is a very common problem on high traffic websites.

You can find more information in the documentation of the ZODB, in particular Rules for Persistent Classes

Next we provide the internal fields via properties. Using this form of property makes them read only properties, as we
did not define write handlers. We don’t need them so we won’t add them.

As you have seen in the Schema declaration, if you run your site in debug mode, you will see an edit field for these
fields. But trying to change these fields will throw an exception.

Let’s continue with this file:

def _hash(self, request):
mmn
This hash can be tricked out by changing IP addresses and might allow
only a single person of a big company to vote
mmn
hash_ = md5 ()
hash_.update (request.getClientAddr ())
for key in ["User—-Agent", "Accept-Language",
"Accept-Encoding"] :
hash_ .update (request.getHeader (key))
return hash_.hexdigest ()

def vote(self, vote, request):
if self.already_voted(request) :
raise KeyError ("You may not vote twice")

vote = int (vote)
self.annotations|['voted'].append(self._hash (request))
votes = self.annotations|['votes']
if vote not in votes:

votes[vote] = 1
else:

votes[vote] += 1

def average_vote(self):
if not has_votes(self):

return 0
total_votes = sum(self.annotations|['votes'].values())
total_points = sum([vote x count for (vote, count) in

self.annotations['votes'].items ()])
return float (total_points) / total_votes

def has_votes (self):
return len(self.annotations.get ('votes', [])) != 0

2.1. Mastering Plone Development 177

https://github.com/plone/Products.CMFEditions/commit/5c07c72bc8701cf28c9cc68ad940186b9e296ddf
http://www.zodb.org/en/latest/guide/writing-persistent-objects.html

Plone Training Documentation, Publicacion 1.2.5a

def already_voted(self, request):
return self._hash(request) in self.annotations|['voted']

def clear (self):

annotations = IAnnotations (self.context)

annotations[KEY] = PersistentDict ({'voted': PersistentList (),
'votes': PersistentDict () })

self.annotations = annotations[KEY]

We start with a little helper method which is not exposed via the interface. We don’t want people to vote twice. There
are many ways to ensure this and each one has flaws.

We chose this way to show you how to access information from the request the browser of the user sent to us. First,
we get the ip of the user, then we access a small set of headers from the user’s browser and generate an mdS checksum
of this.

The vote method wants a vote and a request. We check the preconditions, then we convert the vote to an integer, store
the request to voted and the votes into the votes dictionary. We just count there how often any vote has been given.

Everything else is just python.

Exercises
Exercise 1

Refactor the voting behavior so that it uses BTrees instead of PersistentDict and PersistentList. Use OOBTree to replace
PersistentDict and OIBTree to replace PersistentList.

Solution

change behavior/voting.py

encoding=utf-8

from hashlib import md5

from BTrees.OOBTree import OOBTree

from BTrees.OIBTree import OIBTree

from zope.annotation.interfaces import IAnnotations

KEY = "starzel.votable_behavior.behavior.voting.Vote"

class Vote (object) :

def _ init_ (self, context):

self.context = context

annotations = IAnnotations (context)

if KEY not in annotations.keys():
annotations [KEY] = OOBTree ()
annotations[KEY] ['voted'] = OIBTree ()
annotations[KEY] ['votes'] = OOBTree ()

self.annotations = annotations[KEY]

def vote(self, vote, request):
if self.already_voted(request):
raise KeyError ("You may not vote twice")

178 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

vote = int (vote)
self.annotations['voted'].insert (
self._hash (request),
len(self.annotations['voted']))
votes = self.annotations|['votes']
if vote not in votes:
votes[vote] = 1
else:
votes[vote] += 1

def clear (self):

annotations = IAnnotations (self.context)

annotations [KEY] = OOBTree ()

annotations [KEY] ['voted'] = OIBTree()

annotations [KEY] ['votes'] = OOBTree ()

self.annotations = annotations[KEY]
Exercise 2

Write a unit test that simulates concurrent voting. The test should raise a ConflictError on the original voting behavior
implementation. The solution from the first exercise should pass. Look at the file ZODB/ConflictResolution.txt in the
ZODB3 egg for how to create a suitable test fixture for conflict testing. Look at the test code in zope.annotation for how
to create annotatable dummy content. You will also have to write a ‘request’ dummy that mocks the getClientAddr

and getHeader methods of Zope’s HTTP request object to make the _hash method of the voting behavior work.

Solution

There are no tests for starzel.votablebehavior at all at the moment. But you can refer to chapter 22
for how to setup unit testing for a package. Put the particular test for this exercise into a file named
starzel.votable_behavior/starzel/votable_behavior/tests/test_voting. Remember you
need an empty __init__ .py file in the tests directory to make testing work. You also need to add star-

zel.votable_behavior to test-eggs in buildout . cf£g and re-run buildout.

import unittest

import tempfile

import ZODB

import transaction

from persistent import Persistent

from zope.interface import implements

from zope.annotation.interfaces import IAttributeAnnotatable
from zope.annotation.attribute import AttributeAnnotations

class Dummy (Persistent) :
implements (IAttributeAnnotatable)

class RequestDummy (object) :
def _ _init__ (self, ip, headers=None) :

self.ip = ip
if headers is not None:

2.1. Mastering Plone Development

179

20

21

22

23

2

25

26

27

28

29

31

32

34

35

37

38

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Plone Training Documentation, Publicacion 1.2.5a

self.headers = headers
else:
self.headers = {
'User—Agent': 'foo',
'Accept-Language': 'bar',
'Accept-Encoding': 'baz'

}

def getClientAddr (self):
return self.ip

def getHeader (self, key):
return self.headers[key]

class VotingTests (unittest.TestCase) :

def test_voting_conflict (self):

from starzel.votable behavior.behavior.voting import Vote

dbname = tempfile.mktemp ()

db = ZODB.DB (dbname)

tm_A = transaction.TransactionManager ()

conn_A = db.open(transaction_manager=tm_A)

p_A = conn_A.root () ['voting'] = Vote (AttributeAnnotations (Dummy ()))

tm_ A.commit ()

Now get another copy of 'p' so we can make a conflict.
Think of ‘conn_ A (connection A) as one thread, and
‘conn_B' (connection B) as a concurrent thread. ‘P A
is a view on the object in the first connection, and “p_B’
is a view on *the same persistent object+ in the second connection.
tm_B = transaction.TransactionManager ()
conn_B = db.open (transaction_manager=tm_B)
pP_B = conn_B.root () ['voting']
assert p_A.context.obj._p_oid == p_B.context.obj._p_oid
Now we can make a conflict, and see it resolved (or not)
request_A = RequestDummy ('192.168.0.1")
p_A.vote(l, request_A)
request_B = RequestDummy ('192.168.0.5")
p_B.vote (2, request_B)
tm_B.commit ()
tm_A.commit ()

#
#
#
#

A Viewlet for the Votable Behavior
Voting Viewlet

In this part you will:

= write the viewlet template

= add jquery include statements

= saving the vote on the object using annotations
Topics covered:

= Viewlets

180 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

= Javascript inclusion
Earlier we added the logic that saves votes on the objects. We now create the user interface for it.

Since we want to use the UI on more than one page (not only the talk view but also the talk listing) we need to put it
somewhere.

= To handle the user input we don’t use a form but links and ajax.
= The voting itself is a fact handled by another view

We register the viewlet in browser/configure.zcml.

<configure xmlns="http://namespaces.zope.org/zope"
xmlns:browser="http://namespaces.zope.org/browser">

<browser:viewlet
name="voting"
for="starzel.votable_behavior.interfaces.IVoting"
manager="plone.app.layout.viewlets.interfaces.IBelowContentTitle"
layer="..interfaces.IVotableLayer"
class=".viewlets.Vote"
template="templates/voting viewlet.pt"
permission="zope2.View"

/>

</configure>

We extend the file browser/viewlets.py

from plone.app.layout.viewlets import common as base

class Vote (base.ViewletBase) :
pass

This will add a viewlet to a slot below the title and expect a template voting_viewlet.pt in a folder
browser/templates.

Let’s create the file browser/templates/voting_viewlet .pt without any logic

<div class="voting">
Wanna vote? Write code!
</div>

<script type="text/Jjavascript">
jg (document) . ready (function () {
// please add some jQuery-magic
})i
</seript>

= restart Plone

= show the viewlet

2.1. Mastering Plone Development 181

20

21

22

23

24

25

26

27

28

29

30

Plone Training Documentation, Publicacion 1.2.5a

Writing the Viewlet code

Update the viewlet to contain the necessary logic in browser/viewlets

from plone.app.layout.viewlets import common as base
from Products.CMFCore.permissions import ViewManagementScreens
from Products.CMFCore.utils import getToolByName

from starzel.votable behavior.interfaces import IVoting

class Vote (base.ViewletBase) :

vote = None
is_manager = None

def update (self):
super (Vote, self) .update()

if self.vote is None:
self.vote = IVoting(self.context)
if self.is_manager is None:
membership_tool = getToolByName (self.context, 'portal_membership')
self.is_manager = membership_tool.checkPermission (
ViewManagementScreens, self.context)

def voted(self):
return self.vote.already_voted(self.request)

def average (self):
return self.vote.average_vote()

def has_votes(self):
return self.vote.has_votes /()

The template

And extend the template in browser/templates/voting_viewlet.pt

<tal:snippet omit-tag="">
<div class="voting">
<div id="current_rating" tal:condition="viewlet/has_votes">
The average vote for this talk is 200
</div>
<div id="alreadyvoted" class="voting_option">
You already voted this talk. Thank you!
</div>
<div id="notyetvoted" class="voting_option">
What do you think of this talk?
<div class="votes">+1 0
— -1
</div>
</div>
<div id="no_ratings" tal:condition="not: viewlet/has_votes">
This talk has not been voted yet. Be the first!
</div>
<div id="delete_votings" tal:condition="viewlet/is_manager">

182 Capitulo 2. Trainings

20

21

22

23

24

25

26

27

28

29

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Plone Training Documentation, Publicacion 1.2.5a

Delete all votes
</div>
<div id="delete_votings2" class="areyousure warning"
tal:condition="viewlet/is_manager"
>
Are you sure?
</div>
<a href="#" class="hiddenStructure" id="context_url"
tal:attributes="href context/absolute_ url">

</div>
<script type="text/Jjavascript">
$ (document) . ready (function () {
starzel_votablebehavior.init_voting_viewlet ($(".voting"));
1)
</script>
</tal:snippet>

We have many small parts, most of which will be hidden by javascript unless needed. By providing all this status
information in HTML, we can use standard translation tools to translate. Translating strings in javascript requires extra

work.

We need some css that we store in static/starzel_votablebehavior.css

.voting {
float: right;
border: 1lpx solid #ddd;
background-color: #DDDDDD;
padding: 0.5em lem;

.voting .voting option {
display: none;

.areyousure {
display: none;

.voting div.votes span {
border: 0 solid #DDDDDD;
cursor: pointer;
float: left;
margin: 0 0.2em;
padding: 0 0.5em;

.votes {
display: inline;
float: right;

.voting #voting_plus {
background-color: LimeGreen;

.voting #voting neutral {
background-color: yellow;

2.1. Mastering Plone Development

183

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Plone Training Documentation, Publicacion 1.2.5a

.voting #voting negative {
background-color: red;

The javascript code

To make it work in the browser, some javascript static/starzel_votablebehavior. js

/+global location: false, window: false, jQuery: false */
(function ($, starzel_votablebehavior) ({
"use strict";
starzel_votablebehavior.init_voting_viewlet = function (context) {
var notyetvoted = context.find("#notyetvoted"),
alreadyvoted = context.find("#alreadyvoted"),
delete_votings = context.find("#delete_votings"),
delete_votings2 = context.find("#delete votings2");

if (context.find("#voted").length !== 0) {
alreadyvoted.show () ;
} else {

notyetvoted.show () ;

function vote (rating) {
return function inner_vote () {
$.post (context.find ("#context_url") .attr('href') + '/vote', {
rating: rating
}, function () {
location.reload();
1)y
}i

context.find("#voting_plus").click (vote(1l));

context.find ("#voting_neutral") .click (vote (0));
context.find("#voting negative") .click (vote(-1));
delete_votings.click (function () {

delete_votings2.toggle();
1) i
delete_votings2.click (function () {
$.post (context.find ("#context_url").attr ("href") + "/clearvotes",
—function () {
location.reload();
}) i
1) i
}i

} (jQuery, window.starzel_ votablebehavior = window.starzel_votablebehavior || {}));

This js code adheres to crockfort jshint rules, so all variables are declared at the beginning of the method. We show
and hide quite a few small html elements here.

184 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Writing 2 simple view helpers

Our javascript code communicates with our site by calling views that don’t exist yet. These Views do not need to
render html, but should return a valid status. Exceptions set the right status and aren’t being shown by javascript, so

this will suit us fine.

As you might remember, the vote method might return an exception, if somebody votes twice. We do not catch this

exception. The user will never see this exception.
Ver también:

Catching exceptions contain a gotcha for new developers.

try:
something ()
except:
fix_something ()

Zope claims some exceptions for itself. It needs them to work correctly.

For example, if two requests try to modify something at the same time, one request will throw an exception, a

ConflictError.

Zope catches the exception, waits for a random amount of time, and tries to process the request again, up to three

times. If you catch that exception, you are in trouble, so don’t do that. Ever.

As so often, we must extend browser/configure.zcml:

<browser:page
name="vote"
for="starzel.votable_behavior.interfaces.IVotable"

layer="..interfaces.IVotableLayer"
class=".vote.Vote"
permission="zope2.View"

/>

<browser :page
name="clearvotes"
for="starzel.votable_behavior.interfaces.IVotable"

layer="..interfaces.IVotableLayer"
class=".vote.ClearVotes"
permission="zope2.ViewManagementScreens"
/>

Then we add our simple views into the file browser/vote.py

from zope.publisher.browser import BrowserPage

from starzel.votable behavior.interfaces import IVoting

class Vote (BrowserPage) :

def _ _call__(self, rating):
voting = IVoting(self.context)
voting.vote (rating, self.request)

2.1. Mastering Plone Development

185

Plone Training Documentation, Publicacion 1.2.5a

return "success"

class ClearVotes (BrowserPage) :

def _ call_ (self):
voting = IVoting(self.context)
voting.clear ()
return "success"

A lot of moving parts have been created. Here is a small overview:

Helper View for deleting all votes

modifies

[Votable object odifies

reads

Voting Viewlet

Making Our Package Reusable

In this part you will:

= Add Permissions
Topics covered:

= Permissions

The package contains some problems.

Helper View for Voting

loads

manipulates

= No permission settings, Users can’t customize who and when users can vote

= We do things, but don’t trigger events. Events allow others to react.

Adding permissions

Permissions have a long history, there are two types of permissions.
In Zope2, a permission was just a string.

In ZTK, a permission is an object that gets registered as a Utility.

We must support both, in some cases we have to reference the permission by their Zope2 version, in some by their

ZTK Version.

Luckily, there is a zcml statement to register a permission both ways in one step.

Ver también:

IS Code

186

Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

The configuration registry was meant to solve a problem, but we will now stumble over a problem that did not get
resolved properly.

Our permission is a utility. Our browser views declare this permission as a requirement for viewing them.

When our browser views get registered, the permissions must exist already. If you try to register the permissions after
the views, Zope won’t start because it doesn’t know about the permissions.

Let’s modify the file configure.zcml

<configure xmlns="...">
<includeDependencies package="." />

<permission
id="starzel.votable_behavior.view_vote"
title="starzel.votable behavior: View Vote"

/>
<permission

id="starzel.votable_behavior.do_vote"
title="starzel.votable behavior: Do Vote"

/>

<include package=".browser" />

</configure>

In some places we have to reference the Zope 2 permission strings. It is best practice to provide a static variable for
this.

We provide thisin __init__ .py

DoVote = 'starzel.votable behavior: Do Vote'
ViewVote = 'starzel.votable_behavior: View Vote'

Using our permissions

As you can see, we created two permissions, one for voting, one for viewing the votes.
If a user is not allowed to see the votes, she does not need access to the vote viewlet.
While we are at it, if a user can’t vote, she needs no access to the helper view to actually submit a vote.

We can add this restriction to browser/configure.zcml

<configure
xmlns="http://namespaces.zope.org/zope"
xmlns:browser="http://namespaces.zope.org/browser"
118n_domain="starzel.votable_behavior">

<browser:viewlet
name="voting"
for="starzel.votable_behavior.interfaces.IVotable"
manager="plone.app.layout.viewlets.interfaces.IBelowContentTitle

template="templates/voting_viewlet.pt"

2.1. Mastering Plone Development 187

20

21

22

23

24

25

26

Plone Training Documentation, Publicacion 1.2.5a

layer="..interfaces.IVotableLayer"
class=".viewlets.Vote"
permission="starzel.votable_behavior.view_vote"

/>

<browser:page
name="vote"
for="starzel.votable_behavior.interfaces.IVotable"
layer="..interfaces.IVotableLayer"
class=".vote.Vote"
permission="starzel.votable_behavior.do_vote"

/>

</configure>

We are configuring components, so we use the component name of the permission, which is the id part of the decla-
ration we added earlier.

Ver también:
So, what happens if we do not protect the browser view to vote?

The person could still vote, by handcrafting the URL. Browser Views run code without any restriction, it is your job
to take care of security.

But... if a person has no access to the object at all, maybe because the site is configured that Anonymous users cannot
access private objects, the unauthorized users will not be able to submit a vote.

That is because Zope checks security permissions when trying to find the right object. If it can’t find the object due to
security constraints not met, no view ill ever be called, because that would have been the next step.

We now protect our views and viewlets. We still show the option to vote though.
We must add a condition in our page template, and we must provide the condition information in our viewlet class.

Lets move on to browser/viewlets.py

from starzel.votable behavior import DoVote
class Vote (base.ViewletBase) :

can_vote = None

def update (self):

if self.is_manager is None:
membership_tool = getToolByName (self.context, 'portal membership')
self.is_manager = membership_tool.checkPermission (
ViewManagementScreens, self.context)
self.can_vote = membership_tool.checkPermission (
DoVote, self.context)

188 Capitulo 2. Trainings

21

22

Plone Training Documentation, Publicacion 1.2.5a

And the template in browser/templates/voting_viewlet.pt

<tal: Snippet omit—t ag:u s
<div class="voting">

<div id="notyetvoted" class="voting_option"
tal:condition="view/can_vote">
What do you think of this talk?
<div class="votes">+1 0
— -1
</div>
</div>
<div id="no_ratings" tal:condition="not: view/has_votes">
This talk has not been voted yet.<span tal:omit-tag="" tal:condition="view/can_
—vote"> Be the first!
</div>

</div>

</tal:snippet>

Sometimes subtle bugs come up because of changes. In this case I noticed that I should only prompt people to vote if
they are allowed to vote!

Provide defaults

Are we done yet? Who may vote now?
We have to tell that someone.

Who has which permissions is managed in Zope. This is persistent, and persistent configuration is handled by Gene-
ricSetup.

The persistent configuration is managed in another file: profiles/default/rolemap.xml

<?xml version="1.0"?>
<rolemap>
<permissions>
<permission name="starzel.votable_behavior: View Vote" acquire="True">
<role name="Anonymous"/>
</permission>
<permission name="starzel.votable_behavior: Do Vote" acquire="True">
<role name="Anonymous"/>
</permission>
</permissions>
</rolemap>

2.1. Mastering Plone Development 189

Plone Training Documentation, Publicacion 1.2.5a

Using starzel.votable_behavior in ploneconf.site

In this part you will:

= Integrate your own third party package into your site.
Topics covered:

= Permissions

= Workflows

Get the code!

Get the code for this chapter (More info) using this command in the buildout directory:

TODO

= We want to use the votable behavior, so that our reviewers can vote.
= To show how to use events, we are going to auto-publish talks that have reached a certain rating.
= We are not going to let everybody vote everything.

First, we must add our package as a dependency to ploneconf.site.

We do this in two locations. The egg description setup.py needs starzel.votable_behavior as a depen-
dency. Else no source code will be available.

The persistent configuration needs to be installed when we install our site. This is configured in GenericSetup.

We start by editing setup.py

zip_safe=False,

install_requires=|[
'setuptools’,
'plone.app.dexterity [relations]',
'plone.app.relationfield',
'plone.namedfile [blobs]',
'starzel.votable_behavior',
—x— Extra requirements: —+%

]I

Next up we modify profiles/default/metadata.xml

<metadata>
<version>1002</version>
<dependencies>
<dependency>profile-starzel.votable_behavior:default</dependency>
</dependencies>
</metadata>

... only:: not presentation

What a weird name. profile- is a prefix you will always need nowadays. Then comes the egg name, and
the part after the colon is the name of the profile. The name of the profile is defined in zcml. So far I've
stumbled over only one package where the profile directory name was different than the GenericSetup
Profile name.

190 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

Now the package is there, but nothing is votable. That is because no content type declares to use this
behavior. We can add this behavior via the control panel, export the settings and store it in our egg. Let’s
just add it by hand now.

To add the behavior to talks, we do this in profiles/default/types/talk.xml

Nota: After changing the metadata.xml you have to restart your site since unlike other GenericSetup XML files
that file is cached.

Managing dependencies in metadata.xml is good practice. We can’t rely on re-
membering what we’d have to do by hand. In Plone 4 we should also have added
<dependency>profile-plone.app.contenttypes:plone-content</dependency> like the
documentation for plone.app.contenttypes recommends.

Read more: https://docs.plone.org/develop/addons/components/genericsetup.html#dependencies

<property name="behaviors">
<element value="plone.app.dexterity.behaviors.metadata.IDublinCore"/>
<element value="plone.app.content.interfaces.INameFromTitle"/>
<element value="starzel.votable_behavior.interfaces.IVoting"/>
</property>

... only:: not presentation
Now you can reinstall your Plone site.

Everybody can now vote on talks. That’s not what we wanted. We only want reviewers to vote on pending
Talks. This means the permission has to change depending on the workflow state. Luckily, workflows can
be configured to do just that. Since Talks already have their own workflow we also won’t interfere with
other content.

First, we have to tell the workflow that it will be managing more permissions. Next, for each state we have
to configure which role has the two new permissions.

That is a very verbose configuration, maybe you want to do it in the web interface and export the settings.
Whichever way you choose, it is easy to make a simple mistake. I will just present the XML way here.

The config for the Workflow is in profiles/default/workfows/talks_workflow.xml

<?xml version="1.0"?>
<dc-workflow workflow_id="talks_workflow" title="Talks Workflow" description=" -,
—Simple workflow that is useful for basic web sites. - Things start out as private,_
—and can either be submitted for review, or published directly. - The creator of a_
—content item can edit the item even after it is published." state_variable="review_
—state" initial_state="private" manager_bypass="False">

<permission>Access contents information</permission>

<permission>Change portal events</permission>

<permission>Modify portal content</permission>

<permission>View</permission>

<permission>starzel.votable_behavior: View Vote</permission>
<permission>starzel.votable_behavior: Do Vote</permission>

<state state_id="pending" title="Pending review">

<description>Waiting to be reviewed, not editable by the owner.</description>

<permission-map name="starzel.votable_behavior: View Vote" acquired="False">
<permission-role>Site Administrator</permission-role>
<permission-role>Manager</permission-role>
<permission-role>Reviewer</permission-role>

</permission-map>

2.1. Mastering Plone Development 191

https://docs.plone.org/external/plone.app.contenttypes/docs/README.html#installation-as-a-dependency-from-another-product
https://docs.plone.org/develop/addons/components/genericsetup.html#dependencies

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

Plone Training Documentation, Publicacion 1.2.5a

<permission-map name="starzel.votable_behavior: Do Vote" acquired="False">
<permission-role>Site Administrator</permission-role>
<permission-role>Manager</permission-role>
<permission-role>Reviewer</permission-role>

</permission—-map>

</state>

<state state_id="private" title="Private">

<description>Can only be seen and edited by the owner.</description>

<permission-map name="starzel.votable_behavior: View Vote" acquired="False">
<permission-role>Site Administrator</permission-role>
<permission-role>Manager</permission-role>

</permission-map>

<permission-map name="starzel.votable_behavior: Do Vote" acquired="False">
<permission-role>Site Administrator</permission-role>
<permission-role>Manager</permission-role>

</permission-map>

</state>

<state state_id="published" title="Published">

<description>Visible to everyone, editable by the owner.</description>

<permission-map name="starzel.votable_behavior: View Vote" acquired="False">
<permission-role>Site Administrator</permission-role>
<permission-role>Manager</permission-role>

</permission-map>

<permission-map name="starzel.votable behavior: Do Vote" acguired="False">

</permission—-map>

</state>

</dc-workflow>

We have to reinstall our product again.

But this time, this is not enough. Permissions get updated on workflow changes. As long as a workflow change didn’t
happen, the talks have the same permissions as ever.

Luckily, there is a button for that in the ZMI Workflow view Update security settings.

After clicking on this, only managers and Reviewers can see the Voting functionality.

Lastly, we add our silly function to auto-approve talks.

You quickly end up writing many event handlers, so we put everything into a directory for eventhandlers.
For the events we need an event s directory.

Create the event s directory and add an empty events/__init__ .py file.

Next, register the events directory in configure.zcml

<include package=".events" />

Now write the ZCML configuration for the events into events/configure.zcml

<configure
xmlns="http://namespaces.zope.org/zope">

<subscriber

192 Capitulo 2. Trainings

Plone Training Documentation, Publicacion 1.2.5a

for="starzel.votable_behavior.interfaces.IVotable
zope.lifecycleevent.IObjectModifiedEvent"

handler=".votable.votable_update"

/>

</configure>

This looks like a MultiAdapter. We want to get notified when an I'Votable object gets modified. Our method will receive
the votable object and the event itself.

And finally, our event handler in events/votable.py

from plone.api.content import transition
from plone.api.content import get_state
from starzel.votable_behavior.interfaces import IVoting

def votable_update (votable_object, event):
votable = IVoting(votable_object)
if get_state(votable_object) == 'pending':
if votable.average_vote() > 0.5:
transition(votable_object, transition='publish')

We are using a lot of plone api here. Plone API makes the code a breeze. Also, there is nothing really interesting.
We will only do something if the workflow state is pending and the average vote is above 0.5. As you can see, the
transition Method does not want the target state, but the transition to move the state to the target state.

There is nothing special going on.

Releasing Your Code

= zest.releaser
= pypi-test egg deployment

We finally have some working code! Depending on your policies, you need repeatable deployments and definitive
versions of software. That means you don’t just run your production site with your latest source code from your source
repository. You want to work with eggs.

Making eggs is easy, making them properly not so much. There are a number of good practices that you should ensure.
Let’s see. You want to have a sensible version number. By looking at the version number alone one should get a good
idea how many changes there are (semantic version number scheme). Of course you always document everything, but
for upgrades it is even more important to have complete changelog