

Playlabs: the obscene ansible distribution for shadow hackers & friends

Playlabs provides a convenient wrapper for the ansible-playbook command and
provides a set of ansible roles made to work together, and to orchestrate
containers as much as possible and let only network level provisioning happen
on hosts themselves, and combines straigthforward ansible patterns to install a
docker orchestrated paas infra to prototype products for development to
small-size production.

Pre-beta state: works for me, but parts are being rewriten independently until
it’s clean enough and declared stable, documentation is still in progress and
so are tests.

Contents:

	Playlabs: the obscene ansible distribution
	Install playlabs

	Quick start

	playlabs init

	playlabs install

	User and groups management
	Pre-requisite

	Adding a new user

	Removing users

	Applying users

	Reference

	Hosts inventory
	Pre-requisite

	Adding a new host

	Setting host groups

	Managing infra variables in the inventory
	Global variables

	Role variables

	Role structure

	Project variables

	Project plugins variable

	Plugin variables

	Projects deployments and lifecycles
	Pre-requisite

	Deploying a docker image

	Deployments

	Project plugins

	Operations

	CLI Options

Indices and tables

	Index

	Module Index

	Search Page

Playlabs: the obscene ansible distribution

Playlabs combines simple ansible patterns with packaged roles to create a
docker orchestrated paas to prototype products for development to production.

Playlabs does not deal with HA, for HA you will need to do the ansible plugins
yourself, or use kubernetes … but Playlabs will do everything else, even
configure your own sentry or kubernetes servers !

DISCLAMER: maybe it even works for you, but that’s far from garanteed so far.

Install playlabs

Install with:

pip3 install --user -e git+https://yourlabs.io/oss/playlabs#egg=playlabs

Run the ansible-playbook wrapper command without argument to see the quick
getting started commands:

~/.local/bin/playlabs

Quick start

You have a new host and you need your user to be installed with your public
key, passwordless sudo, and secure SSH. The first command to run on a new host
is playlabs init, ie.:

playlabs init root@1.2.3.4

all options are ansible options are proxied
playlabs init @somehost --ask-become-pass

example with a typical openstack vm
playlabs init ubuntu@somehost --ask-become-pass

Now your user can install roles:

playlabs install ssh,docker,firewall,nginx @somehost

And deploy a project, examples:

playlabs @somehost deploy image=betagouv/mrs:master
playlabs @somehost deploy
 image=betagouv/mrs:master
 plugins=postgres,django,uwsgi
 backup_password=foo
 prefix=ybs
 instance=hack
 env.SECRET_KEY=itsnotasecret
playlabs @somehost deploy
 prefix=testenv
 instance=$CI_BRANCH
 image=$CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

If you have that work, creating an inventory is the way to move on, wether you
want to version configuration, add a deploy user for your CI, configure a
secret backup password, add ssh-keys …:

playlabs scaffold ./your-inventory

Read on this README for gory details if you are already an Ansible user and
only need to know about the patterns we’re using playlabs for.

A more extensive and user-friendly documentation is in the docs sub-directory
of playlabs and online @ https://playlabs.rtfd.io thanks to RTFD :)

playlabs init

Initializing means going from a naked system to a system with your own user,
ssh key, dotfiles, sudo access, secure sshd, and all necessary dependencies to
execute ansible, such as python3. It will also install your friend account if
you have an ansible inventory repository where you store your friend list in
yml.

You might need to pass extra options to ansible in some cases, for example if
your install provides a passworded sudo, add --ask-sudo-pass or put the
password in the CLI, since initializing will remove

playlabs init @somehost
playlabs init user:pass@somehost
playlabs init user@somehost --ask-sudo-pass
playlabs init root@somehost

playlabs install

If you want to deploy your project, then you need to install the paas which
consists of three roles: docker, firewall, and nginx. The nginx role sets up
two containers, nginx-proxy that watches the docker socket and introspects
docker container environment variables, such as VIRTUAL_HOST, to reconfigure
itself, it even supports uWSGI. The other container is nginx-letsencrypt, that
shares a cert volume with the nginx-proxy container, and watches the docker
socket for containers and introspect variables such as LETSENCRYPT_EMAIL, to
configure the certificates.

Remember the architecture:

	nginx-proxy container recieves requests,

	nginx-letsencrypt container generates certificates,

	other docker containers have environment variables necessary for the above

The CLI itself is pretty straightforward:

playlabs install docker,firewall,nginx @somehost # the paas for the project role
playbabs install sendmail,netdata,mailcatcher,gitlab @staging
playbabs install sendmail,netdata,sentry user@production

The difference between traditionnal roles and playlabs roles, is that in
playlabs they strive to have stuff running inside docker to leverage the
architecture of the nginx proxy.

Playlabs can configure sendmail of course, but also has roles providing
full-featured docker based mailservers or mailcatcher instances for your dev,
training or staging environments for example.

This approach comes from migrating away from “building in production” to
“building immutable tested chroots”, away from “pet” to “cattle”.

But if you’re already an ansible hacker you’re better off with ansible to do a
lot more than than what docker-compose has to offer, such as managing users
and roles, on your SDN as in your apps.

In fact, you will see role that consist of a single docker ansible module call,
but the thing is that you can spawn it in one command and have it integrated
with the rest of your server, and even rely on ansible to provision
fine-grained RBAC in your own apps.

User and groups management

The main feature of playlabs is your inventory, it’s meant to make it easy for
you to manage users and users to manage themselves on your infra & external
services. For example, playlabs could provision ssh and ldap on an ldap server,
but so far we haven’t provisioned ldap servers with playlabs because we have
playlabs … wait wut ?

Anyway, when you’re onboarding a hacker you can point them to your inventory
repository url and also this documentation with the mission to add themselve.

Pre-requisite

Clone the inventory repository that you have been given if any. If it doesn’t
work, make sure that the git server knows your ssh public key if authenticating
with SSH.

If you haven’t been given an inventory repository to clone, create one with the scaffolt command (note that you can have as many inventories as you want):

playlabs scaffold your-inventory

Adding a new user

The users list and roles are defined in a YAML document that would be located
in your repository at path group_vars/all/users.yml. Ansible offers a wide
range of possibilities so it might also be elsewhere, but that’s the convention
used in the default playlabs inventory that you can generate with the
playlabs scaffold command.

SSH Public key

Playlabs will use the SSH key it finds in the keys/ inventory of the
inventory repository. You can set it up as such:

generate a key if you don't have any
ssh-keygen -t ed25519 -a 100

create a branch for adding your user
git checkout -b $USER

copy the public key to the keys subdirectory of the inventory repo
if you have generated your key with the above it will be
cp ~/.ssh/id_ed25519.pub keys/$USER

add to the inventory repository
git add keys/$USER

Then, read on the adding your user to the user list.

YAML user list

In the users.yml file, add a list item to the users variable. You should really
use your local username if you want to have a nicer playlabs experience.

users:
 # ...
 - name: yourusername
 email: your@email.com
 roles:
 ssh: sudo

Add your modification with git and push it in a branch, then you can create a
merge request on gitlab or whatever you use, ie:

git add -p group_vars/all/users.yml
git commit -m "Add $USER"
git push origin $USER

Kubernetes provisioning

Add k8s: clusten-admin or cluster-admin: k8s to the user roles
ie.:

- name: jcarmack
 roles:
 ssh: sudo
 k8s: cluster-admin

Then, playlabs install ssh,k8s @hostname for example will add that user to
ssh with sudo and make it a cluster-admin. It will create a signed certificate
in the home directory of the user that they will be able to scp back and use to
authenticate as cluster-admin with kubectl.

Password and secret variables

Secret content is handled with the ansible-vault command. You need to store
your vault password in a file that will not be added to the inventory
repository. The convention in playlabs is to name the file .vault. Then,
ansible will recognize it with the --vault-id .vault command line argument.

Create a password for yourself:

ansible-vault create passwords/$USER
or, automated:
echo -n your password | ansible-vault encrypt --vault-id .vault > passwords/$USER

SSH will not accept password authentication with playlabs by default, however
your password will be useable with the rest of services installed with
playlabs, even custom projects if their plugin support it, which is the case of
the Django plugin, thanks to djcli [https://yourlabs.io/oss/djcli].

Removing users

To remove a user, remove it from the users variables and then add its
username to the users_remove list of group_vars/all/users.yml ie.:

users_remove:
- usernametodelete

Applying users

To apply users, you can run the playlabs install ssh @host command that
will execute the SSH role, setting up the SSH users.

If you already have a host inventory.yml then you don’t need to specify the
hosts on the command line: all hosts that are in the ssh group will benefit
from a playlabs install ssh call.

The convention accross playlabs is to have a tag named users so that we can
also run roles partially in order to only update users with little efforts.

Reference

The users YAML document in the default repository serves as reference:

This YAML document defines a list of users for playlabs ansible playbooks.
You can have an automated job that will update users for example with
`playlabs install ssh` and then users will get their credentials deployed on
git push.
#
You need the ansible vault password in cleartext a file that will not be
tracked in git to edit secret variables such as passwords. You should create
this file with the ``.vault`` name at the root of your inventory repository
clone then you can use ansible-vault commands with the ``--vault-id .vault``
argument ie.::
#
echo -n your password | ansible-vault encrypt --vault-id .vault > passwords/hacker
ansible-vault view --vault-id .vault passwords/hacker
ansible-vault rekey --vault-id .vault passwords/hacker

users:
- name: hacker
 email: hacker1337@example.pcom
 roles:
 netdata: [sysadmin, domainadmin, dba, webmaster, proxyadmin]
 ssh: [sudo]
 # superuser on all project instances
 project: [superuser]
 # setting role on group works both ways: don't have groups and roles with
 # the same name
 superuser:
 - ci
 - project-staging
 - sentry

The example inventory provides one deploy user, than has no sudo
access, except for the backup scripts that it cannot write.
He has an ssh account because playlabs found a key in keys/deploy.pub.
For deploy user, we have a key without password, that is supposed to be
crypted with ansible-vault before commit:
#
$ ssh-keygen -t ed25519 -a 100 -f keys/deploy
$ echo -n your vault password > .vault
$ ansible-vault encrypt --vault-id .vault keys/deploy
- name: deploy
 sudo:
 - /home/*/backup.sh
 - /home/*/docker-run.sh

The productowner user does not have ssh access because it does not have a
public key in keys/productowner.pub.
#
However, productowner have a password to pass through htaccess security, for
roles and projects that have it enabled.
#
To generate your own crypted password run this command:
#
$ echo -n your vault password > .vault
$ echo -n password | ansible-vault encrypt --vault-id .vault > passwords/yourproductowner
- name: productowner
 superuser:
 - project-staging

Playlabs will remove users in this list
users_remove:
- name: olduser

Name of the user that will be able to write /home/service/docker-image
deploy_user: deploy

Hosts inventory

While running playlabs with @hostname arguments is nice to experiment with,
it won’t scale with many machines nor will be convenient to automate playlabs
calls. Most roles require an inventory to be really fun.

Pre-requisite

Clone the inventory repository that you have been given if any. If it doesn’t
work, make sure that the git server knows your ssh public key if authenticating
with SSH.

If you haven’t been given an inventory repository to clone, create one with the
scaffolt command (note that you can have as many inventories as you want):

playlabs scaffold your-inventory

Adding a new host

Hosts are defined in the inventory.yml file of the inventory repository,
use the all variable to add them in no specific group:

all:
 hosts:
 yourhost.com: # adds a host with no extra option
 otherhost:
 fqdn: yourdomain.tld
 ansible_port: 22
 ansible_host: 123.12.12.23

Setting host groups

You can link hosts to groups in the children variable of the
inventory.yml YAML document. For example, if you want playlabs install
ssh,netdata without argument (for CI likely) to apply on otherhost, then
this will work:

children:
 netdata-ssh:
 hosts:
 otherhost

Managing infra variables in the inventory

Global variables

Variables that are used by convention accross roles:

letsencrypt_uri=https...
letsencrypt_email=your@...

Role variables

Base variable are defined in playlabs/roles/rolename/vars/main.yml and start
with the rolename_, they can be overridden in your inventory’s
group_vars/all/rolename.yml.

The base variable will default to the same variable without the rolename_
prefix:

Set project_image project role variable from the command line
image=your/image:tag

Role structure

Default roles live in playlabs/roles and share the standard directory
structure with ansible roles [https://docs.ansible.com/ansible/2.5/user_guide/playbooks_reuse_roles.html],
that you can scaffold with the ansible-galaxy tool.

Playlabs use roles as alternatives as docker-compose when possible, rather than
polluting the host with many services.

Project variables

The project role base variables calculate to be overridable by prefix/instance:

project_{image,*} base value references project_staging_{image,*} from inventory
instance=staging

project_{image,*} base value references mrs_production_{image,*} from inventory
instance=production prefix=mrs

Project plugins variable

The project role has a special plugins variable that can be overridden in the
usual way, but it will also try to find it by introspecting the docker image
for the PLAYLABS_PLUGINS env var ie:

ENV PLAYLABS_PLUGINS postgres,django,uwsgi,sentry

Plugin variables

Plugin variables are loaded by the project role for each plugin that it loads
if any.

Base plugin variables start with project_pluginname_ and the special
project_pluginname_env variable should be a dict, they will be all merged to
add environment variables to the project container, project_env will be a merge
of all them plugin envs.

Plugin env vars should preferably use overridable variables.

Projects deployments and lifecycles

WIP doc

Pre-requisite

You need a sudo access on the remote machine, which can typically be obtained
with the playlabs init command ie.:

playlabs init root@1.2.3.4

all options are ansible options are proxied, so this also works
playlabs init @somehost --ask-become-pass

The ssh, docker and firewall playlabs roles must be installed on the server:

playlabs install ssh,docker,firewall,nginx @somehost

Deploying a docker image

Examples:

playlabs @somehost deploy image=betagouv/mrs:master
playlabs @somehost deploy
 image=betagouv/mrs:master
 plugins=postgres,django,uwsgi
 backup_password=foo
 prefix=ybs
 instance=hack
 env.SECRET_KEY=itsnotasecret
playlabs @somehost deploy
 prefix=testenv
 instance=$CI_BRANCH
 image=$CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

Deployments

The project role is made to be generic and cover infrastructure needs to
develop a project, from development to production. Spawn an environment, here
with an example image this repo is tested against:

playlabs @yourhost deploy betagouv/mrs:master '{"env":{"SECRET_KEY" :"itsnotasecret"}}'

It will use the IP address by default if ansible finds it, set the dns with the
dns option dns=yourdns.com, or set it in project_staging_dns yaml
variable of your-inventory/group_vars/all/project.yml.

This is because the default prefix is project and the default instance is
staging. Let’s learn a new way of specifiying variables, add to your
variables:

yourproject_production_image: yourimage:production
yourproject_production_env:
 SECRET_KEY: itsnotsecret
 # the above value could be encrypted with ansible-vault s_encrypt

Then you can deploy as such:

playlabs @yourhost deploy prefix=yourproject instance=production

If you configure yourhost in your inventory, in group “yourproject-production”,
then you don’t have to specify the host anymore:

playlabs @yourhost project prefix=$CI_PROJECT instance=$CI_BRANCH

Project plugins

PostgreSQL or Django or uWSGI support are provided through project plugins,
which you may activate as such:

	specify -p postgres,uwsgi,django

	configure yourprefix_yourinstance_plugins=[postgres, uwsgi, django]

	add to Dockerfile ENV PLAYLABS_PLUGINS postgres,uwsgi,django

The order of plugins matters, having postgres first ensures postgres is started
before the project image.

Plugins are directories located at the root of playlabs repo, but at some point
we can imagine loading them from the image itself.

Plugins contain the following:

	vars.yml: variables that are auto-loaded

	deploy.pre.yml: tasks to execute before deploy of the project image

	deploy.post.yml: tasks to execute after deploy of the project image

	backup.pre.sh: included in backup.sh template before the backup

	backup.post.sh: included in backup.sh template before the backup

	restore.pre.sh: included in restore.sh template before the restore

	restore.post.sh: included in restore.sh template before the restore

Default plugins live in playlabs/plugins and have the following files:

	backup.pre.sh take files out of containers and add them to the $backup
variable

	backup.post.sh clean up files you have taken out after the backup has been
done

	restore.pre.sh clear the place where you want to extract data from the
restic backup repository

	restore.post.sh load new data and clean after the project was restarted in
the snapshot version,

	deploy.pre.yml ansible tasks to execute before project deployment, ie. spawn
postgres

	deploy.post.yml ansible tasks to execute after project deployment, ie.
create users from inventory

	vars.yml plugin variables declaration

Operations

By default, it happens in /home/yourprefix-yourinstance. Contents depend on the
activated plugins.

In the /home/ directory of the role or project there are scripts:

	docker-run.sh standalone command to start the project container, feel free
to have on that one

	backup.sh cause a secure backup, upload with lftp if inventory defines dsn

	restore.sh recovers the secure backup repository
with lftp if inventory desfines dsn. Without argument` list snapshots. With a
snapshot argument` proceed to a restore of that snapshot including project
image version and plugin data

	prune.sh removes un-needed old backup snapshots

	log logs that playlabs rotates for you, just fill in log files, it will do
a copy truncate though, but works until you need prometheus or something

For backups to enable, you need to set backup_password, either with -e, either
through yourpefix_yourinstance_backup_password.

The restic repository is encrypted, if you set the lftp_dsn or
yourprefix_yourinstance_lftp_dsn then it will use lftp to mirror them. If you
trash the local restic repository, and run restore.sh, then it will fetch the
repository with lftp.

CLI Options

Some of the variables you can like

-e key=value # set variable "key" to "value"
-e '{"key":"value"}' # same in json
-i path/to/inventory_script.ext # load any numbers of inventory variables
-i 1.2.4.4, # add a host by ip to this play
--limit 1.2.4.4, # limit play execution to these hosts
--user your-other-user # specify a particular username
--noroot # don't try becoming root automatically

Note : all ansible-playbook arguments should work.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Playlabs: the obscene ansible distribution for shadow hackers & friends

 		
 Playlabs: the obscene ansible distribution

 		
 Install playlabs

 		
 Quick start

 		
 playlabs init

 		
 playlabs install

 		
 User and groups management

 		
 Pre-requisite

 		
 Adding a new user

 		
 SSH Public key

 		
 YAML user list

 		
 Kubernetes provisioning

 		
 Password and secret variables

 		
 Removing users

 		
 Applying users

 		
 Reference

 		
 Hosts inventory

 		
 Pre-requisite

 		
 Adding a new host

 		
 Setting host groups

 		
 Managing infra variables in the inventory

 		
 Global variables

 		
 Role variables

 		
 Role structure

 		
 Project variables

 		
 Project plugins variable

 		
 Plugin variables

 		
 Projects deployments and lifecycles

 		
 Pre-requisite

 		
 Deploying a docker image

 		
 Deployments

 		
 Project plugins

 		
 Operations

 		
 CLI Options

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

