

Player/Stage: User Manual

About Player/Stage

[image: sempre use alt para descreve a imagem p um deficiente visual]
[image: sempre use alt para descreve a imagem p um deficiente visual]

Warning

This document is for users only. If you want to build, configure, or add features to your Donnie, please refer to the Donnie Assistive Robot: Developer Manual [http://donnie-manual.readthedocs.io/en/latest/index.html]

Donnie is an assistive technology project, whose objective is to use robotics to facilitate programming teaching to visually impaired students.
It is divided in two main parts:

	The construction and fine-tuning of the titular mobile robot, Donnie;

	The project’s software stack, including an intuitive parser/interpreter and a robot simulation environment;

The project is in its second version, developed in the Laboratório de Sistemas Autônomos (LSA [http://lsa-pucrs.github.io]) of the Pontific Catholic University of Rio Grande do Sul (PUCRS), Brazil.

	How to Use Player/Stage

	TABLE OF CONTENTS
	Change Log

	1.1 - A Note on Installing Player/Stage

	1.2 - A Note about TRY IT OUT sections

	1.3 - TRY IT OUT (Preparation)

	1.4 - TRY IT OUT

	2.1 - Important File Types

	2.2 - Interfaces, Drivers and Devices

	3.1 - Building an Empty World
	3.1.1 - Models

	3.1.2 - Describing the Player/Stage Window

	3.1.3 - Making a Basic Worldfile

	3.2 - Building a Robot
	3.2.1 - Sensors and Devices

	3.2.2 - An Example Robot

	3.2.3 - Building Other Stuff

	4.1 - Device Addresses

	4.2 - Putting the Configuration File Together
	4.3 - TRY IT OUT (driving a robot)

	5.1 Types of controllers

	5.2 Example Controllers

	5.3 Wrap your code!

	6.1 - Getting Started
	TRY IT OUT (Minimal C++ Controller)

	6.2 - Connecting to the Server and Proxies With Your Code
	6.2.1 - Setting Up Connections: an Example.

	6.3 - Interacting with Proxies
	6.3.1 - Position2dProxy

	6.3.2 - RangerProxy

	6.3.3 - BlobfinderProxy

	6.3.4 - GripperProxy

	6.3.5 - SimulationProxy

	6.4 - General Useful Commands
	6.4.1 - Read()

	6.4.2 - GetGeom()

	6.5 - Using Proxies: Case Study 1: using C++ for a Trash-Zapping Robot
	6.5.1 - The Control Architecture

	6.5.2 - Beginning the Code

	6.5.3 - Wander

	6.5.4 - Obstacle Avoidance

	6.4.5 - Move To Item

	6.5.6 - Collect Item

	6.6 - Case Study 2: Simulating Multiple Robots
	7.6.1 - Each robot on it’s own port

	7.6.2 - Each interface on it’s own index

	7.1 - Getting Started
	TRY IT OUT (Minimal C Controller)

	7.2 - Connecting to the Server and Proxies With Your Code
	7.2.1 - Setting Up Connections: an Example.

	7.3 - Interacting with Proxies
	7.3.1 - position2dproxy

	7.3.2 - rangerproxy

	7.3.3 - BlobfinderProxy

	7.3.4 - GripperProxy

	7.3.5 - SimulationProxy

	7.4 - General Useful Commands
	7.4.1 - read()

	7.4.2 - getgeom()

	7.5 - Using Proxies: Case Study: using C for a Trash-Zapping Robot
	7.5.1 - The Control Architecture

	7.5.2 - Beginning the Code

	7.5.3 - Wander

	7.5.4 - Obstacle Avoidance

	7.4.5 - Move To Item

	7.5.6 - Collect Item

	7.6 - Simulating Multiple Robots
	7.6.1 - Each robot on it’s own port

	7.6.2 - Each interface on it’s own index

	8.1 - Coding in Python with playercpp.py
	8.1.1 - Setting up playercpp.py interface

	TRY IT OUT

	8.2 Connecting to the Server and Proxies With Your Code
	8.2.1 - Setting Up Connections: an Example

	8.3 Interacting with Proxies
	8.3.1 Position2dProxy

	8.3.2 RangerProxy

	8.3.3 BlobfinderProxy

	8.3.4 - GripperProxy

	8.3.5 - SimulationProxy

	8.4 General Useful Commands
	8.4.1 - Read()

	8.4.2 - GetGeom()

	8.5 Case Study 1: Using Python for a Trash-Zapping Robot

	8.6 Case Study 2: Simulating Multiple Robots
	8.6.1 - Each robot on it’s own port

	8.6.2 - Each interface on it’s own index

	9.1 - Coding in Python with playerc.py
	9.1.1 - Setting up playerc.py interface

	TRY IT OUT

	9.2 Connecting to the Server and Proxies With Your Code
	9.2.1 - Setting Up Connections: an Example

	9.3 Interacting with Proxies
	9.3.1 position2dproxy

	9.3.2 rangerproxy

	9.3.3 BlobfinderProxy

	9.3.4 - GripperProxy

	9.3.5 - SimulationProxy

	9.4 General Useful Commands
	9.4.1 - read()

	9.4.2 - GetGeom()

	9.5 Case Study 1: Using Python for a Trash-Zapping Robot

	9.6 Case Study 2: Simulating Multiple Robots

	10.1 - Definition of a Player Interface

	10.2 - When to Create a New Interface

	10.3 - How an Interface is Created

	10.4 - Creating an Interface
	10.4.1 - Creating the Message Type

	10.4.2 - Creating the PlayerC Proxy

	10.4.3 - Creating the PlayerCpp Proxy

	10.5 - Compiling the Interface

	10.6 - TRY IT OUT

	11.1 - Definition of a Player Device Driver

	11.2 - The Architecture of a Player Device Driver

	11.2 - Compiling the Player Device Driver
	11.2.1 - Driver Depedencies

	11.2.2 - Compiling the Player Device Driver as a Stand-Alone driver

	11.2.3 - Compiling the Player Device Driver as part of Player distribution

	11.3 - TRY IT OUT

Papers

If you are using Donnie and/or its software on your research projects, please cite our papers:

@inproceedings{oliveira2017teaching,
 title={Teaching Robot Programming Activities for Visually Impaired Students: A Systematic Review},
 author={Oliveira, Juliana Damasio and de Borba Campos, M{\'a}rcia and de Morais Amory, Alexandre and Manssour, Isabel Harb},
 booktitle={International Conference on Universal Access in Human-Computer Interaction},
 pages={155--167},
 year={2017},
 organization={Springer}
}

@inproceedings{guilherme2017donnie,
 title={Donnie Robot: Towards an Accessible And Educational Robot for Visually Impaired People},
 author={Guilherme H. M. Marques, Daniel C. Einloft, Augusto C. P. Bergamin, Joice A. Marek, Renan G. Maidana Marcia B. Campos, Isabel H. Manssour, Alexandre M. Amory},
 booktitle={Latin American Robotics Symposium (LARS)},
 year={2017}
}

Disclaimer

Donnie and its software are protected under the MIT [http://opensource.org/licences/MIT] License:

Copyright 2018, Laboratório de Sistemas Autônomos

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Feedback

Don’t hesitate to ask about additional info or the next guides, and also if you find some mistakes, please let us know.
Issues and push requests can be done on github [http://github.com/lsa-pucrs/donnie-assistive-robot-sw].

How to Use Player/Stage

6th Edition

Using Player 3.0.2 and Stage 4.1.1 (development versions)

Kevin Nickels, Jennifer Owen, Alexandre Amory

2 July 2017

A user manual for the Player/Stage robot simulator.

This document is intended as a guide for anyone learning Player/Stage
for the first time. It explains the process of setting up a new
simulation environment and how to then make your simulation do
something, using a case study along the way. Whilst it is aimed at
Player/Stage users, those just wishing to use Player on their robot may
also find sections of this document useful (particularly the parts about
coding with Player).

If you have any questions about using Player/Stage there is a guide to
getting help from the Player community at
http://playerstage.sourceforge.net/wiki/Getting_help

This edition of the manual uses the development versions of Player and
Stage. They can be found at https://github.com/playerproject/player.git
and at https://github.com/rtv/Stage.git . The build process for player
and stage is described in
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/install.html
and http://rtv.github.io/Stage/install.html

There are only minor changes from v4.1.0 to this version of the manual.
Versions older than that contain significant changes are are now
outdated. Other versions of this manual are available at

	master/latest - Using very latest code from github.com
-player-3.0.2-svn and
Stage [http://player-stage-manual.readthedocs.org/en/latest/]
(RTD)

	v4.1.0/stable - Using latest stable releases - player-3.0.2 and
stage-4.1.1 [http://player-stage-manual.readthedocs.org/en/stable/]
(RTD)

	v4.0.0 - Using player-3.0.2 and
stage-4.1.1 [http://player-stage-manual.readthedocs.org/en/v4.0.0/]
(PDF)

	v2.0.0 - Using player-3.0.2 and
stage-3.2.x [http://player-stage-manual.readthedocs.org/en/v2.0.0/]
(PDF)

TABLE OF CONTENTS

	Introduction

	The Basics

	Building a World

	Writing a Configuration (.cfg) File

	Getting Your Simulation to Run Your Code

	Controllers (C++)

	Controllers (C)

	Controllers (Py-libplayercpp)

	Controllers (Py-libplayerc)

	Building a New Interface (C/C++)

	Building a New Driver (C/C++)

Change Log

	3 July 2017 forked by LSA (Laboratório de Sistemas
Autônomos) to include updated instructions for the
build process and instruction to create new drivers and interfaces.

	15 Sept 2015 forked off development version of manual

	7 Aug 2015 released v4.1.0 covering stable versions

	30 June 2015 updating markdown for
readthedocs.org [http://readthedocs.org]

	18 May 2015 began migration from LaTeX to MARKDOWN on
GitHub [http://github.com]

	August 2013 updated manual to Stage 4.1.1

	1st August 2013 Source code made available online

	16th April 2010 updated manual to Stage 3.2.2

	10th July 2009 original manual covering Stage versions 2.1.1 and
3.1.0

 2.1 - Important File Types

 3.1 - Building an Empty World

 4.1 - Device Addresses

 5.1 Types of controllers

 6.1 - Getting Started

 In this chapter, C++ is used to demonstrate how to write external
controllers. Since Player interacts with controlling code over network
sockets, it’s pretty easy to control robots (physical or simulated) with
other languages as well. Player officially supports C++, C, and Python
(see
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__clientlibs.html).
There are also Third party
libraries [http://playerstage.sourceforge.net/wiki/PlayerClientLibraries]
with support for clients ranging from Smalltalk to Java to MATLAB.

First, I’ll present serveral examples of how to interface with different
sensors and actuators, then I’ll present two case studies showing these
interfaces in action.

6.1 - Getting Started

In order to compile your C++ program you use the following commands (in
Linux):

g++ -o example0 `pkg-config --cflags playerc++` example0.cc `pkg-config --libs playerc++`

That will compile a program to a file called example0 from the C++
code file example0.cc.

An even easier and more general way is to make a Makefile that
explains how to compile your code for you. The details of
Makefiles [http://www.gnu.org/software/make/manual/make.html] are
beyond the scope of this manual, but a minimal
example [http://github.com/NickelsLab/Player-Stage-Manual/blob/master/code/Ch6.1/Makefile]
is given in the tutorial files that came with this manual. If you have
this Makefile in the same directory as your code, you can just type
make file and if the make program finds file.cc it will just “do
the right thing”.

TRY IT OUT (Minimal C++ Controller)

This is a minimal controller, written in C++, almost identical to the
one distributed with player. It goes forward and does very simple
collision avoidance based on the sonars.

Read through the code before executing.

6.2 - Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player header
file. Assuming Player/Stage is installed correctly on your machine then
this can be done with the line

#include <libplayerc++/playerc++.h>

Next we need to establish a Player Client, which will interact with the
Player server for you. To do this we use the line:

PlayerClient client_name(hostname, port);

What this line does is declare a new object which is a PlayerClient
called client_name which connects to the Player server at the given
address. The hostname and port is like that discussed in Section 4.1
-Device Address. If your code is running on
the same computer (or robot) as the Player server you wish to connect to
then the hostname is “localhost” otherwise it will be the IP address of
the computer or robot. The port is an optional parameter usually only
needed for simulations, it will be the same as the port you gave in the
.cfg file. This is only useful if your simulation has more than one
robot in and you need your code to connect to both robots. So if you
gave your first robot port 6665 and the second one 6666 (like in the
example of Section 4.2 - Putting the Configuration File
Together)
then you would need two PlayerClients, one connected to each robot, and
you would do this with the following code:

PlayerClient robot1("localhost", 6665);
PlayerClient robot2("localhost", 6666);

If you are only using one robot and in your .cfg file you said that it
would operate on port 6665 then the port parameter to the PlayerClient
class is not needed.

Once we have established a PlayerClient we should connect our code to
the device proxies so that we can exchange information with them. Which
proxies you can connect your code to is dependent on what you have put
in your configuration file. For instance if your configuration file says
your robot is connected to a laser but not a camera you can connect to
the laser device but not the camera, even if the robot (or robot
simulation) has a camera on it.

Proxies take the name of the interface which the drivers use to talk to
Player. Let’s take part of the Bigbob example configuration file from
Section 4.2 - Putting the Configuration File
Together):

driver
(
 name "stage"
 provides ["position2d:0"
 "ranger:0"
 "blobfinder:0"
 "ranger:1"]
)

Here we’ve told the Player server that our “robot” has devices which use
the position2d, ranger, and blobfinder interfaces. In our code then, we
should connect to the position2d, ranger, and blobfinder proxies like
so:

Position2dProxy positionProxy_name(&client_name,index);
RangerProxy sonarProxy_name(&client_name,index);
BlobfinderProxy blobProxy_name(&client_name,index);
RangerProxy laserProxy_name(&client_name,index);

A full list of which proxies Player supports can be found in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html].
They all follow the convention of being named after the interface they
use.

In the above case Proxy_name is the name you want to give to the
proxy object, client_name is the name you gave the PlayerClient
object earlier and index is the index that the device was given in
your configuration file (probably 0).

6.2.1 - Setting Up Connections: an Example.

For an example of how to connect to the Player sever and device proxies
we will use the example configuration file developed in Section 4.2
-Putting the Configuration File
Together.
For convenience this is reproduced below:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "worldfile_name.world"
)

driver
(
 name "stage"
 provides ["6665:position2d:0"
 "6665:ranger:0"
 "6665:blobfinder:0"
 "6665:ranger:1"]
 model "bob1"
)

To set up a PlayerClient and then connect to proxies on that server we
can use principles discussed in this section to develop the following
code:

#include <stdio.h>
#include <libplayerc++/playerc++.h>

int main(int argc, char *argv[])
{
 using namespace PlayerCc; /*need to do this line in c++ only*/

 PlayerClient robot("localhost");

 Position2dProxy p2dProxy(&robot,0);
 RangerProxy sonarProxy(&robot,0);
 BlobfinderProxy blobProxy(&robot,0);
 RangerProxy laserProxy(&robot,1);

 //some control code
 return 0;
}

6.3 - Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the
device it connects to. This means that each proxy will have different
commands depending on what it controls.

In Player version 3.0.2 there are 39 different proxies which you can
choose to use, many of which are not applicable to Player/Stage. This
manual will not attempt to explain them all, a full list of avaliable
proxies and their functions is in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html],
although the returns, parameters and purpose of the proxy function are
not always explained.

The following few proxies are probably the most useful to anyone using
Player or Player/Stage.

6.3.1 - Position2dProxy

The Position2dProxy is the number one most useful proxy there is. It
controls the robot’s motors and keeps track of the robot’s odometry
(where the robot thinks it is based on how far its wheels have moved).

6.3.1.1 - SetSpeed()

The SetSpeed command is used to tell the robot’s motors how fast to
turn. There are two different SetSpeed commands that can be called, one
is for robots that can move in any direction and the other is for robots
with differential or car-like drives.

	SetSpeed(double XSpeed, double YSpeed, double YawSpeed)

	SetSpeed(double XSpeed, double YawSpeed)

	SetCarlike(double XSpeed, double DriveAngle)

 7.1 - Getting Started

 In Chapter 6 only C++ was used as an example.
Since Player interacts with controlling code over network sockets, it’s
pretty easy to control robots (physical or simulated) with other
languages as well. Player officially supports C++, C, and Python (see
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__clientlibs.html).
There are also Third party
libraries [http://playerstage.sourceforge.net/wiki/PlayerClientLibraries]
with support for clients ranging from Smalltalk to Java to MATLAB.

In this chapter, I will review the same examples given in Chapter
6 for C++, hilighting the differences in the new
language. Then, I will provide a new version of the Trash Zapping
Robot
for each.

7.1 - Getting Started

If you are coding in C use the following command to compile:

gcc -o simple `pkg-config --cflags playerc` simple.c `pkg-config --libs playerc`

An even easier and more general way is to make a Makefile that
explains how to compile your code for you. The details of
Makefiles [http://www.gnu.org/software/make/manual/make.html] are
beyond the scope of this manual, but an example is given in the tutorial
files that came with this manual. If you have this Makefile in the
same directory as your code, you can just type make file and the
make program will search for file.c and “do the right thing”.

TRY IT OUT (Minimal C Controller)

This is a minimal controller, written in C, almost identical to the one
distributed with player. It goes forward and does very simple collision
avoidance based on the sonars.

Read through the code before executing.

7.2 - Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player header
file. Assuming Player/Stage is installed correctly on your machine then
this can be done with the line

#include <libplayerc/playerc.h>

Next we need to establish a Player Client, which will interact with the
Player server for you. To do this we use the lines:

playerc_client_t *client;
client = playerc_client_create(NULL, "localhost", 6665);

What this does is declare a new object which is a playerc_client called
client which connects to the Player server at the given address. The
hostname and port is like that discussed in Section 4.1 - Device
Address. If your code is running on the same
computer (or robot) as the Player server you wish to connect to then the
hostname is “localhost” otherwise it will be the IP address of the
computer or robot. The port is an optional parameter usually only needed
for simulations, it will be the same as the port you gave in the .cfg
file. This is only useful if your simulation has more than one robot in
and you need your code to connect to both robots. So if you gave your
first robot port 6665 and the second one 6666 (like in the example of
Section 4.2 - Putting the Configuration File
Together)
then you would need two player clients, one connected to each robot, and
you would do this with the following code:

client1 = playerc_client_create(NULL, "localhost", 6665);
client2 = playerc_client_create(NULL, "localhost", 6666);

If you are only using one robot and in your .cfg file you said that it
would operate on port 6665 then the port parameter to the player client
constructor is not needed.

Once we have established a player client we should connect our code to
the device proxies so that we can exchange information with them. Which
proxies you can connect your code to is dependent on what you have put
in your configuration file. For instance if your configuration file says
your robot is connected to a laser but not a camera you can connect to
the laser device but not the camera, even if the robot (or robot
simulation) has a camera on it.

Proxies take the name of the interface which the drivers use to talk to
Player. Let’s take part of the Bigbob example configuration file from
Section 4.2 - Putting the Configuration File
Together):

driver
(
 name "stage"
 provides ["position2d:0"
 "ranger:0"
 "blobfinder:0"
 "ranger:1"]
)

Here we’ve told the Player server that our “robot” has devices which use
the position2d, ranger, and blobfinder interfaces. In our code then, we
should connect to the position2d, ranger, and blobfinder proxies like
so:

position2d_name = playerc_position2d_create(client_name, index);
playerc_position2d_subscribe(position2d_name, PLAYER_OPEN_MODE);

ranger_name = playerc_ranger_create(client_name,index);
playerc_ranger_subscribe(ranger_name,PLAYER_OPEN_MODE);

blobfinder_name = playerc_blobfinder_create(client_name,index);
playerc_blobfinder_subscribe(blobfinder_name,PLAYER_OPEN_MODE);

A full list of which proxies PlayerC supports can be found in the
Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__playerc__proxies.html]
they all follow the convention of being named after the interface they
use. In the above case proxy_name is the name you want to give to
the proxy object, client_name is the name you gave the
playerc_client object earlier and index is the index that the
device was given in your configuration file (probably 0).

7.2.1 - Setting Up Connections: an Example.

For an example of how to connect to the Player sever and device proxies
we will use the example configuration file developed in Section 4.2
-Putting the Configuration File
Together.
For convenience this is reproduced below:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "worldfile_name.world"
)

driver
(
 name "stage"
 provides ["6665:position2d:0"
 "6665:ranger:0"
 "6665:blobfinder:0"
 "6665:ranger:1"]
 model "bob1"
)

To set up a player client and then connect to proxies on that server we
can use principles discussed in this section to develop the following
code:

#include <stdio.h>
#include <libplayerc/playerc.h>

int main(int argc, char *argv[])
{
 playerc_client_t *robot;

 /* Create a client and connect it to the server. */
 robot = playerc_client_create(NULL, "localhost", 6665);
 if (0 != playerc_client_connect(robot)) return -1;

 /* Create and subscribe to a position2d device. */
 p2dProxy = playerc_position2d_create(robot, 0);
 if (playerc_position2d_subscribe(p2dProxy, PLAYER_OPEN_MODE)) return -1;

 /* Create and subscribe to a ranger (sonar) device. */
 sonarProxy = playerc_ranger_create(robot, 0);
 if (playerc_ranger_subscribe(sonarProxy, PLAYER_OPEN_MODE)) return -1;

 /* Create and subscribe to a blobfinder device. */
 BlobfinderProxy = playerc_blobfinder_create(robot, 0);
 if (playerc_blobfinder_subscribe(BlobfinderProxy, PLAYER_OPEN_MODE)) return -1;

 /* Create and subscribe to a ranger (laser) device. */
 laserProxy = playerc_ranger_create(robot, 1);
 if (playerc_ranger_subscribe(laserProxy, PLAYER_OPEN_MODE)) return -1;

 /*some control code */
 return 0;
}

7.3 - Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the
device it connects to. This means that each proxy will have different
commands depending on what it controls. In Player version 3.0.2 there
are 39 different proxies which you can choose to use, many of which are
not applicable to Player/Stage. This manual will not attempt to explain
them all, a full list of avaliable proxies and their functions is in the
Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__playerc__proxies.html],
although the returns, parameters and purpose of the proxy function is
not always explained.

The following few proxies are probably the most useful to anyone using
Player or Player/Stage.

7.3.1 - position2dproxy

The position2dproxy is the number one most useful proxy there is. It
controls the robot’s motors and keeps track of the robot’s odometry
(where the robot thinks it is based on how far its wheels have moved).

7.3.1.1 - SetSpeed ()

The SetSpeed command is used to tell the robot’s motors how fast to
turn. There are three different SetSpeed commands that can be called,
one is for robots that can move in any direction (omnidirectional), one
is for for robots with differential drive (i.e. one drive wheel on each
side), and the last for car-like drives.

	playerc_position2d_set_cmd_vel (playerc_position2d_t *device, double XSpeed, double YSpeed, double YawSpeed, int state)

	playerc_position2d_set_cmd_vel_head (playerc_position2d_t *device, double XSpeed, double YSpeed, double YawHeading, int state)

	playerc_position2d_set_cmd_car (playerc_position2d_t *device, double XSpeed, double SteerAngle)

 8.1 - Coding in Python with playercpp.py

 In Chapter 6 only C++ was used as an example.
Since Player interacts with controlling code over network sockets, it’s
pretty easy to control robots (physical or simulated) with other
languages as well. Player officially supports C++, C, and Python (see
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__clientlibs.html).
There are also Third party
libraries [http://playerstage.sourceforge.net/wiki/PlayerClientLibraries]
with support for clients ranging from Smalltalk to Java to MATLAB.

In this chapter, I will review the same examples given in Chapter
6 for C++, hilighting the differences in the
new language.

Then, I will provide a new version of the case studies Trash Zapping
Robot
and Simulating Multiple
Robots
for each.

8.1 - Coding in Python with playercpp.py

8.1.1 - Setting up playercpp.py interface

The C++ bindings are NOT made by default in player. You’ll need to
configure and compile player locally to make these - how to do this is
well beyond the scope of this manual, but an overall procedure can be
found
here. [http://playerstage.sourceforge.net/doc/Player-cvs/player/install.html]

To see if the bindings are available, and to locate where they are, type

locate playercpp.py

and observe the path with site-packages in it’s name.

TRY IT OUT

8.2 Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player
interface file. Assuming Player/Stage is installed correctly on your
machine then this can be done with the line

from playercpp import *

Next we need to establish a Player Client, which will interact with the
Player server for you. To do this we use the line:

robot = PlayerClient("localhost");

What this does is declare a new object which is a PlayerClient called
robot which connects to the Player server at the given address. The
hostname and port is like that discussed in Section 4.1 - Device
Address. If your code is running on the same
computer (or robot) as the Player server you wish to connect to then the
hostname is “localhost” otherwise it will be the IP address of the
computer or robot. The port is an optional parameter usually only needed
for simulations, it will be the same as the port you gave in the .cfg
file. This is only useful if your simulation has more than one robot in
and you need your code to connect to both robots. So if you gave your
first robot port 6665 and the second one 6666 (like in the example of
Section 4.2 - Putting the Configuration File
Together)
then you would need two PlayerClients, one connected to each robot, and
you would do this with the following code:

robot1 = PlayerClient("localhost",6665);
robot2 = PlayerClient("localhost",6666);

If you are only using one robot and in your .cfg file you said that it
would operate on port 6665 then the port parameter to the PlayerClient
class is not needed.

Once we have established a PlayerClient we should connect our code to
the device proxies so that we can exchange information with them. Which
proxies you can connect your code to is dependent on what you have put
in your configuration file. For instance if your configuration file says
your robot is connected to a laser but not a camera you can connect to
the laser device but not the camera, even if the robot (or robot
simulation) has a camera on it.

Proxies take the name of the interface which the drivers use to talk to
Player. Let’s take part of the Bigbob example configuration file from
Section 4.2 - Putting the Configuration File
Together):

driver
(
 name "stage"
 provides ["position2d:0"
 "ranger:0"
 "blobfinder:0"
 "ranger:1"]
)

Here we’ve told the Player server that our “robot” has devices which use
the position2d, ranger, and blobfinder interfaces. In our code then, we
should connect to the position2d, ranger, and blobfinder proxies like
so:

positionProxy_name = Position2dProxy (client_name,index)
sonarProxy_name = RangerProxy (client_name,index)
blobProxy_name = BlobfinderProxy (client_name,index)
laserProxy_name = RangerProxy (client_name,index)

A full list of which proxies Player supports can be found in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html].
They all follow the convention of being named after the interface they
use.

In the above case Proxy_name is the name you want to give to the
proxy object, client_name is the name you gave the PlayerClient
object earlier and index is the index that the device was given in
your configuration file (probably 0).

8.2.1 - Setting Up Connections: an Example

For an example of how to connect to the Player sever and device proxies
we will use the example configuration file developed in Section 4.2
-Putting the Configuration File
Together.
For convenience this is reproduced below:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "worldfile_name.world"
)

driver
(
 name "stage"
 provides ["6665:position2d:0"
 "6665:ranger:0"
 "6665:blobfinder:0"
 "6665:ranger:1"]
 model "bob1"
)

To set up a PlayerClient and then connect to proxies on that server we
can use principles discussed in this section to develop the following
code:

from playercpp import *

robot = PlayerClient("localhost");
p2dProxy = Position2dProxy(robot,0);
sonarProxy = RangerProxy(robot,0);
blobProxy = BlobfinderProxy(robot,0);
laserProxy = RangerProxy(robot,1);

some control code
return 0;

8.3 Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the
device it connects to. This means that each proxy will have different
commands depending on what it controls.

In Player version 3.0.2 there are 39 different proxies which you can
choose to use, many of which are not applicable to Player/Stage. This
manual will not attempt to explain them all, a full list of avaliable
proxies and their functions is in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/classPlayerCc_1_1ClientProxy.html],
although the returns, parameters and purpose of the proxy function are
not always explained.

The following few proxies are probably the most useful to anyone using
Player or Player/Stage.

8.3.1 Position2dProxy

The Position2dProxy is the number one most useful proxy there is. It
controls the robot’s motors and keeps track of the robot’s odometry
(where the robot thinks it is based on how far its wheels have moved).

8.3.1.1 - SetSpeed ()

The SetSpeed command is used to tell the robot’s motors how fast to
turn. There are three different SetSpeed commands that can be called,
one is for robots that can move in any direction (omnidirectional), one
is for for robots with differential drive (i.e. one drive wheel on each
side), and the last for car-like drives.

	SetSpeed(XSpeed, YSpeed, YawSpeed)

	SetSpeed(XSpeed, YawSpeed)

	SetCarlike(XSpeed, DriveAngle)

 9.1 - Coding in Python with playerc.py

 In Chapter 6 only C++ was used as an example.
Since Player interacts with controlling code over network sockets, it’s
pretty easy to control robots (physical or simulated) with other
languages as well. Player officially supports C++, C, and Python (see
http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__clientlibs.html).
There are also Third party
libraries [http://playerstage.sourceforge.net/wiki/PlayerClientLibraries]
with support for clients ranging from Smalltalk to Java to MATLAB.

In this chapter, I will review the same examples given in Chapter
7 for Python, hilighting the differences in the
new language.

Then, I will provide a new version of the case studies Trash Zapping
Robot
and Simulating Multiple
Robots
for each.

9.1 - Coding in Python with playerc.py

9.1.1 - Setting up playerc.py interface

The C bindings are made by default in player. To check to see if the
bindings are available, and to locate where they are, type

locate playerc.py

and observe the path with site-packages in it’s name.

TRY IT OUT

9.2 Connecting to the Server and Proxies With Your Code

The first thing to do within your code is to include the Player
interface file. Assuming Player/Stage is installed correctly on your
machine then this can be done with the line

from playerc import *

Next we need to establish a Player Client, which will interact with the
Player server for you. To do this we use the line:

robot = playerc_client(None, 'localhost',6665)

What this does is declare a new object which is a playerc_client called
robot which connects to the Player server at the given address. The
hostname and port is like that discussed in Section 4.1 - Device
Address. If your code is running on the same
computer (or robot) as the Player server you wish to connect to then the
hostname is “localhost” otherwise it will be the IP address of the
computer or robot. The port will be the same as the port you gave in the
.cfg file. So if you gave your first robot port 6665 and the second one
6666 (like in the example of Section 4.2 - Putting the Configuration
File
Together)
then you would need two player client, one connected to each robot, and
you would do this with the following code:

robot1 = playerc_client(None, 'localhost',6665)
robot2 = playerc_client(None, 'localhost',6666)

Unlike in C, even if you are only using one robot and in your .cfg file
you still need to specify the port parameter.

Once we have established a player client we should connect our code to
the device proxies so that we can exchange information with them. Which
proxies you can connect your code to is dependent on what you have put
in your configuration file. For instance if your configuration file says
your robot is connected to a laser but not a camera you can connect to
the laser device but not the camera, even if the robot (or robot
simulation) has a camera on it.

Proxies take the name of the interface which the drivers use to talk to
Player. Let’s take part of the Bigbob example configuration file from
Section 4.2 - Putting the Configuration File
Together):

driver
(
 name "stage"
 provides ["position2d:0"
 "ranger:0"
 "blobfinder:0"
 "ranger:1"]
)

Here we’ve told the Player server that our “robot” has devices which use
the position2d, ranger, and blobfinder interfaces. In our code then, we
should connect to the position2d, ranger, and blobfinder proxies like
so:

position2d_name = playerc_position2d_create(client_name, index);
playerc_position2d_name.subscribe(position2d_name, PLAYER_OPEN_MODE);

sonar_name = playerc_ranger_create(client_name,index);
playerc_sonar_name.subscribe(sonar_name,PLAYER_OPEN_MODE);

blobfinder_name = playerc_blobfinder_create(client_name,index);
playerc_blobfinder_name.subscribe(blobfinder_name,PLAYER_OPEN_MODE);

laser_name = playerc_ranger_create(client_name,index);
playerc_laser_name.subscribe(laser_name,PLAYER_OPEN_MODE);

A full list of which proxies PlayerC supports can be found in the
Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__playerc__proxies.html]
They all follow the convention of being named after the interface they
use.

In the above case Proxy_name is the name you want to give to the
proxy object, client_name is the name you gave the player client
object earlier and index is the index that the device was given in
your configuration file (probably 0).

9.2.1 - Setting Up Connections: an Example

For an example of how to connect to the Player sever and device proxies
we will use the example configuration file developed in Section 4.2
-Putting the Configuration File
Together.
For convenience this is reproduced below:

driver
(
 name "stage"
 plugin "stageplugin"

 provides ["simulation:0"]

 # load the named file into the simulator
 worldfile "worldfile_name.world"
)

driver
(
 name "stage"
 provides ["6665:position2d:0"
 "6665:ranger:0"
 "6665:blobfinder:0"
 "6665:ranger:1"]
 model "bob1"
)

To set up a player client and then connect to proxies on that server we
can use principles discussed in this section to develop the following
code:

from playerc import *

Make proxies for Client, blobfinder
robot = playerc_client(None, 'localhost', 6665)
if robot.connect():
 raise Exception(playerc_error_str())

p = playerc_position2d(robot,0)
if p.subscribe(PLAYERC_OPEN_MODE):
 raise Exception(playerc_error_str())

s = playerc_ranger(robot,0)
if s.subscribe(PLAYERC_OPEN_MODE):
 raise Exception(playerc_error_str())

bf = playerc_blobfinder(robot,0);
if bf.subscribe(PLAYERC_OPEN_MODE):
 raise Exception(playerc_error_str())

l = playerc_ranger(robot,1)
if l.subscribe(PLAYERC_OPEN_MODE):
 raise Exception(playerc_error_str())

some control code
return 0;

9.3 Interacting with Proxies

As you may expect, each proxy is specialised towards controlling the
device it connects to. This means that each proxy will have different
commands depending on what it controls.

In Player version 3.0.2 there are 39 different proxies which you can
choose to use, many of which are not applicable to Player/Stage. This
manual will not attempt to explain them all, a full list of avaliable
proxies and their functions is in the Player
manual [http://playerstage.sourceforge.net/doc/Player-3.0.2/player/group__playerc__proxies.html],
although the returns, parameters and purpose of the proxy function is
not always explained.

The following few proxies are probably the most useful to anyone using
Player or Player/Stage.

9.3.1 position2dproxy

The position2dproxy is the number one most useful proxy there is. It
controls the robot’s motors and keeps track of the robot’s odometry
(where the robot thinks it is based on how far its wheels have moved).

9.3.1.1 - SetSpeed ()

The SetSpeed command is used to tell the robot’s motors how fast to
turn. There are three different SetSpeed commands that can be called,
one is for robots that can move in any direction (omnidirectional), one
is for for robots with differential drive (i.e. one drive wheel on each
side), and the last for car-like drives.

	set_cmd_vel (XSpeed, YSpeed, YawSpeed, int state)

	set_cmd_vel_head (XSpeed, YSpeed, YawHeading, state)

	set_cmd_car (XSpeed, SteerAngle)

 10.1 - Definition of a Player Interface

 11.1 - Definition of a Player Device Driver

 Index

Index

 <no title>

 Redirect to
documents [http://player-stage-manual.readthedocs.org/en/latest]

_images/ghost_original.png

_images/ghost_woutline.png
The £t Yow Cock Hlp

e e e

_images/final_robot_and_stuff.png

_images/final_robot_build_wsensors.png

_images/helloworld.png
e View Run Help

=
3
2
1
=a 23
2
-3
-4
0m 125 000msec [1.0] ;

_images/orange_and_bob.png

_images/gui_nonose_example.png
Edit View Clock Help

:03.800 (sim/real:0.94) subs:0 Stagev2.1.1

_images/gui_nose_example.png
Edit View Clock Help

:03.500 (sim/real:0.93) subs:0 Stagev2.1.1

_images/simpleworld.png
om 00s O0wssc [20,0] [PALSED]

_images/writing.png
Hello World!

_images/cartesian_grid_wpolars.png
180°
-180°

90° -270° /2
S

270° -90° 312

_images/circle.png

_images/bigbob_laser.png
0.125

0.25

0.625

_images/bigbob_sonars.png

_images/finalEmptyWorld.png

_images/yaw_examples.png
File Edit View Clock Help

Time: 0:0:00:32.600 (sim/real:0.93) subs:0 Stage v2

nav.xhtml

 Table of Contents

 		
 Player/Stage: User Manual

 		
 How to Use Player/Stage

 		
 TABLE OF CONTENTS

 		
 Change Log

 		
 1.1 - A Note on Installing Player/Stage

 		
 1.2 - A Note about TRY IT OUT sections

 		
 1.3 - TRY IT OUT (Preparation)

 		
 1.4 - TRY IT OUT

 		
 2.1 - Important File Types

 		
 2.2 - Interfaces, Drivers and Devices

 		
 3.1 - Building an Empty World

 		
 3.1.1 - Models

 		
 3.1.2 - Describing the Player/Stage Window

 		
 3.1.3 - Making a Basic Worldfile

 		
 3.2 - Building a Robot

 		
 3.2.1 - Sensors and Devices

 		
 3.2.1.1 - camera

 		
 3.2.1.2 - blobfinder

 		
 3.2.1.3 - fiducial

 		
 3.2.1.4 - ranger sensor

 		
 3.2.1.5 - ranger device

 		
 3.2.1.6 - gripper

 		
 3.2.1.7 - position

 		
 3.2.2 - An Example Robot

 		
 3.2.2.1 - The Robot’s Body

 		
 TRY IT OUT (Position Model)

 		
 3.2.2.2 - Adding Teeth

 		
 TRY IT OUT (BigBob with Teeth)

 		
 3.2.2.3 - Yaw Angles

 		
 TRY IT OUT (Different Origin)

 		
 3.2.2.4 - Drive

 		
 3.2.2.5 - The Robot’s Sensors

 		
 TRY IT OUT (driving a robot)

 		
 TRY IT OUT (blobfinder)

 		
 TRY IT OUT (Bigbob in environment)

 		
 3.2.3 - Building Other Stuff

 		
 oranges

 		
 Juice Cartons

 		
 Putting objects into the world

 		
 TRY IT OUT (full worldfile)

 		
 4.1 - Device Addresses

 		
 4.2 - Putting the Configuration File Together

 		
 4.3 - TRY IT OUT (driving a robot)

 		
 5.1 Types of controllers

 		
 5.2 Example Controllers

 		
 5.3 Wrap your code!

 		
 6.1 - Getting Started

 		
 TRY IT OUT (Minimal C++ Controller)

 		
 6.2 - Connecting to the Server and Proxies With Your Code

 		
 6.2.1 - Setting Up Connections: an Example.

 		
 6.3 - Interacting with Proxies

 		
 6.3.1 - Position2dProxy

 		
 6.3.1.1 - SetSpeed()

 		
 6.3.1.2 - GetSpeed ()

 		
 6.3.1.3 - Get_Pos ()

 		
 TRY IT OUT (GetSetPositions)

 		
 6.3.1.4 - SetMotorEnable()

 		
 6.3.2 - RangerProxy

 		
 6.3.3 - BlobfinderProxy

 		
 TRY IT OUT (blobfinder)

 		
 6.3.4 - GripperProxy

 		
 TRY IT OUT (gripper)

 		
 6.3.5 - SimulationProxy

 		
 6.3.5.1 - Get/Set Pose

 		
 TRY IT OUT (GetSetPose)

 		
 6.3.5.2 - Get/Set Property

 		
 TRY IT OUT (GetSetProperty)

 		
 6.4 - General Useful Commands

 		
 6.4.1 - Read()

 		
 6.4.2 - GetGeom()

 		
 6.5 - Using Proxies: Case Study 1: using C++ for a Trash-Zapping Robot

 		
 6.5.1 - The Control Architecture

 		
 6.5.2 - Beginning the Code

 		
 6.5.3 - Wander

 		
 6.5.4 - Obstacle Avoidance

 		
 6.4.5 - Move To Item

 		
 6.5.6 - Collect Item

 		
 6.6 - Case Study 2: Simulating Multiple Robots

 		
 7.6.1 - Each robot on it’s own port

 		
 7.6.2 - Each interface on it’s own index

 		
 7.1 - Getting Started

 		
 TRY IT OUT (Minimal C Controller)

 		
 7.2 - Connecting to the Server and Proxies With Your Code

 		
 7.2.1 - Setting Up Connections: an Example.

 		
 7.3 - Interacting with Proxies

 		
 7.3.1 - position2dproxy

 		
 7.3.1.1 - SetSpeed ()

 		
 7.3.1.2 - GetSpeed ()

 		
 7.3.1.3 - Get_Pos ()

 		
 TRY IT OUT (GetSetPositions)

 		
 7.3.1.4 - Motor Enable

 		
 7.3.2 - rangerproxy

 		
 7.3.3 - BlobfinderProxy

 		
 TRY IT OUT (blobfinder)

 		
 7.3.4 - GripperProxy

 		
 TRY IT OUT (gripper)

 		
 7.3.5 - SimulationProxy

 		
 7.3.5.1 - Get/Set Pose

 		
 TRY IT OUT (GetSetPose)

 		
 7.3.5.2 - Get/Set Property

 		
 TRY IT OUT (GetSetProperty)

 		
 7.4 - General Useful Commands

 		
 7.4.1 - read()

 		
 7.4.2 - getgeom()

 		
 7.5 - Using Proxies: Case Study: using C for a Trash-Zapping Robot

 		
 7.5.1 - The Control Architecture

 		
 7.5.2 - Beginning the Code

 		
 7.5.3 - Wander

 		
 7.5.4 - Obstacle Avoidance

 		
 7.4.5 - Move To Item

 		
 7.5.6 - Collect Item

 		
 7.6 - Simulating Multiple Robots

 		
 7.6.1 - Each robot on it’s own port

 		
 7.6.2 - Each interface on it’s own index

 		
 8.1 - Coding in Python with playercpp.py

 		
 8.1.1 - Setting up playercpp.py interface

 		
 TRY IT OUT

 		
 8.2 Connecting to the Server and Proxies With Your Code

 		
 8.2.1 - Setting Up Connections: an Example

 		
 8.3 Interacting with Proxies

 		
 8.3.1 Position2dProxy

 		
 8.3.1.1 - SetSpeed ()

 		
 8.3.1.2 - Get_Speed ()

 		
 8.3.1.3 - Get_Pos ()

 		
 8.3.1.4 - SetMotorEnable()

 		
 8.3.2 RangerProxy

 		
 8.3.3 BlobfinderProxy

 		
 TRY IT OUT (blobfinder)

 		
 8.3.4 - GripperProxy

 		
 TRY IT OUT (gripper)

 		
 8.3.5 - SimulationProxy

 		
 8.3.5.1 - Get/Set Pose

 		
 TRY IT OUT (GetSetPose)

 		
 8.3.5.2 - Get/Set Property

 		
 TRY IT OUT (GetSetProperty)

 		
 8.4 General Useful Commands

 		
 8.4.1 - Read()

 		
 8.4.2 - GetGeom()

 		
 8.5 Case Study 1: Using Python for a Trash-Zapping Robot

 		
 8.6 Case Study 2: Simulating Multiple Robots

 		
 8.6.1 - Each robot on it’s own port

 		
 8.6.2 - Each interface on it’s own index

 		
 9.1 - Coding in Python with playerc.py

 		
 9.1.1 - Setting up playerc.py interface

 		
 TRY IT OUT

 		
 9.2 Connecting to the Server and Proxies With Your Code

 		
 9.2.1 - Setting Up Connections: an Example

 		
 9.3 Interacting with Proxies

 		
 9.3.1 position2dproxy

 		
 9.3.1.1 - SetSpeed ()

 		
 9.3.1.2 - GetSpeed ()

 		
 9.3.1.3 - Get_Pos ()

 		
 9.3.1.4 - Motor Enable()

 		
 9.3.2 rangerproxy

 		
 9.3.3 BlobfinderProxy

 		
 TRY IT OUT (blobfinder)

 		
 9.3.4 - GripperProxy

 		
 TRY IT OUT (gripper)

 		
 9.3.5 - SimulationProxy

 		
 9.3.5.1 - Get/Set Pose

 		
 TRY IT OUT (GetSetPose)

 		
 9.3.5.2 - Get/Set Property

 		
 TRY IT OUT (GetSetProperty)

 		
 9.4 General Useful Commands

 		
 9.4.1 - read()

 		
 9.4.2 - GetGeom()

 		
 9.5 Case Study 1: Using Python for a Trash-Zapping Robot

 		
 9.6 Case Study 2: Simulating Multiple Robots

 		
 10.1 - Definition of a Player Interface

 		
 10.2