
plasmic Documentation
Release 0.1.0

The Meme Factory, Inc.

April 15, 2016

Contents

1 Contents 3
1.1 Why Yet Another Config Syntax? . 3
1.2 More About Syntax . 3

2 Indices and tables 5

i

ii

plasmic Documentation, Release 0.1.0

Plasmic parses a very Python-like mini-language to produce a dictionary. This allows Python programs to be config-
ured using a Python-like language.

Here is a sample configuration:

{section1:
{key1: "value1",
key2: 2},

section2:
{key1: "othervalue",
key3: 3.0
subsection1:
{key4: (1, 2, 3)
key5: {"foo": "meta",

"bar": "syntactic"}
}

}
}

The Plasmic language consists of dictionaries, tuples, and literal values. Plasmic dictionary keys must be literal values.
Plasmic dictionary values can be literal values and, nested when desired, tuples and plasmic dictionaries.

Plasmic also does interpolation. This allows values to be designated once and used in multiple places within a config-
uration. Plasmic replaces reference to configuration keys with the key’s value.

The recommended suffix for files written in the Plasmic language is: .pcf

Contents 1

plasmic Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Contents

1.1 Why Yet Another Config Syntax?

The short answer is “Because there’s nothing like Python’s syntax for expressing Python data.” Some syntaxes don’t
attempt to map to Python data types, your program must manually handle type conversion. Other syntaxes are se-
rializations of data expressed in other languages. These are more expressive, both in data type and data structure
complexity, but because they are syntaxes designed to express data it remains for an interpolation mechanism to be
tacked on. Python syntax is the ideal choice for Python data representation and manipulation.

Plus, Python exposes it’s own internals making it easy to write powerful Python-like parsers that are, at the same time,
safe. Plasmic configuration files may look like Python but they cannot be abused to execute arbitrary code or, for that
matter, any sort of code at all.

1.2 More About Syntax

The plasmic Python-like language contains almost no expression evaluation. The single, optional, expression allowed
is a string.Formmatter.format() formatting syntax used for interpolation – the insertion of of data into
values by reference to Plasmic dictionary keys.

As a convenience all dictionary entries keyed by symbols have their keys converted to the lower case string equivalent.
The following 2 examples are equivalent:

Note: The following is here only as an example. It is bad practice in Plasmic to write symbols containing upper case
letters.

A configuration with symbols for keys:

{section1:
{key1: "value1",
key2: 2},

Section2:
{Key1: "othervalue",
KEY3: 3.0}

}

The identical configuration with strings for keys:

{"section1":
{"key1": "value1",

3

plasmic Documentation, Release 0.1.0

"key2": 2},
"section2":
{"key1": "othervalue",
"key3": 3.0}

}

Although the symbols are written in mixed case the end result is a dictionary keyed with strings in lower case.

4 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5

	Contents
	Why Yet Another Config Syntax?
	More About Syntax

	Indices and tables

