

Pipeliner Documenation

	Requirements
	Testing Nextflow

	Installing Anaconda

	Pre-Packaged Conda Environment
	Yaml File

	Setting up Pipeliner

	Basic Usage
	Framework Stucture

	Pipeline Configuration
	Config Inheritance

	Data Input and Output

	Basic Options

	Providing an Index

	Starting from Bams

	Temporary Files

	Skipping Steps

	Process Configuration
	Descriptive Arguments

	Xargs

	Ainj

	Pipeline Execution

	Output and Results
	Sample Folders

	Expression Matrix

	Bam Files

	Alignment Index

	Reports

	Pipeline Structure
	Configuration File
	File Paths

	Executor and Compute Resources

	Pipeline Options and Parameters

	Pipeline Script

	Template Processes

	Output

	Existing Pipelines
	RNA-seq
	Check Reads check_reads

	Genome Indexing hisat_indexing/star_indexing

	Pre-Quality Check pre_fastqc

	Pre-MultiQC pre_multiqc

	Read Trimming trim_galore

	Read Mapping hisat_mapping/star_mapping

	Reformat Reference gtftobed

	Mapping Quality rseqc

	Quantification counting

	Expression Matrix expression_matrix

	Expression Features expression_features

	Expression Set expression_set

	Summary Report multiqc

	scRNA-seq
	Check Reads check_reads

	Genome Indexing hisat_indexing/star_indexing

	Quality Check fastqc

	Whitelist whitelist

	Extract extract

	Read Mapping hisat_mapping/star_mapping

	Reformat Reference gtftobed

	Mapping Quality rseqc

	Quantification counting

	Summary Report multiqc

	DGE
	Quantification counting

	Expression Matrix expression_matrix

	Sample Renaming rename_samples

	Summary Report multiqc

	Extending Pipelines
	General Workflow

	Configuration Inheritance

	Template Process Injections

	Testing Module

Requirements

The Pipeliner framework requires Nextflow and Anaconda. Nextflow can be used on any POSIX compatible system (Linux, OS X, etc). It requires BASH and Java 8 (or higher) [http://www.oracle.com/technetwork/java/javase/downloads/index.html] to be installed. Third-party software tools used by individual pipelines will be installed and managed through a Conda virtual environment.

Testing Nextflow

Before continuuing, test to make sure your environment is compatible with a Nextflow executable.

Note

You will download another one later when you clone the repository

Make sure your Java installation is version 8 or higher:

java -version

Create a new directory and install/test Nextflow:

mkdir nf-test
cd nf-test
curl -s https://get.nextflow.io | bash
./nextflow run hello

Output:

N E X T F L O W ~ version 0.31.0
Launching `nextflow-io/hello` [sad_curran] - revision: d4c9ea84de [master]
[warm up] executor > local
[4d/479eec] Submitted process > sayHello (4)
[a8/4bc038] Submitted process > sayHello (2)
[17/5be64e] Submitted process > sayHello (3)
[ee/0d879f] Submitted process > sayHello (1)
Hola world!
Ciao world!
Hello world!
Bonjour world!

Installing Anaconda

Pipeliner uses virtual environments managed by Conda, which is available through Anaconda [https://www.continuum.io/downloads]. Download the distribution pre-packaged with Python 2.7.

Make sure conda is installed and updated:

conda --version
conda update conda

Tip

If this is your first time working with Conda, you may need to edit your configuration paths to ensure Anaconda is invoked when calling conda

Pre-Packaged Conda Environment

Yaml File

Clone Pipeliner:

git clone https://github.com/montilab/pipeliner

Environment for Linux:

conda env create -f pipeliner/envs/linux_env.yml

Environment for OS X:

conda env create -f pipeliner/envs/osx_env.yml

Note

Copies of pre-compiled binaries are hosted/maintained at https://anaconda.org/Pipeliner/repo

Warning

For those installing on the Shared Computing Cluster (SCC) at Boston University, instructions on how to setup a private conda environment can be here [https://github.com/montilab/pipeliner/blob/master/scripts/mkenv.sh].

Setting up Pipeliner

Tip

It is recommended to clone Pipeliner to a directory path that does not contain spaces

With all prerequisites, one can quickly setup Pipeliner by cloning the repository, configuring local paths to toy datasets, activating the conda environment, and downloading the Nextflow executable:

Clone Pipeliner
git clone https://github.com/montilab/pipeliner

Activate conda environment
source activate pipeliner

Configure local paths to toy datasets
python pipeliner/scripts/paths.py

Move to pipelines directory
cd pipeliner/pipelines

Download nextflow executable
curl -s https://get.nextflow.io | bash

Run RNA-seq pipeline with toy data
./nextflow rnaseq.nf -c rnaseq.config

The output should look like this:

N E X T F L O W ~ version 0.31.1
Launching `rnaseq.nf` [nasty_pauling] - revision: cd3f572ab2
[warm up] executor > local
[31/1b2066] Submitted process > pre_fastqc (ggal_alpha)
[23/de6d60] Submitted process > pre_fastqc (ggal_theta)
[7c/28ee53] Submitted process > pre_fastqc (ggal_gamma)
[97/9ad6c1] Submitted process > check_reads (ggal_alpha)
[ab/c3eedf] Submitted process > check_reads (ggal_theta)
[2d/050633] Submitted process > check_reads (ggal_gamma)
[1d/f3af6d] Submitted process > pre_multiqc
[32/b1db1d] Submitted process > hisat_indexing (genome_reference.fa)
[3b/d93c6d] Submitted process > trim_galore (ggal_alpha)
[9c/3fa50b] Submitted process > trim_galore (ggal_theta)
[62/25fce0] Submitted process > trim_galore (ggal_gamma)
[66/ccc9db] Submitted process > hisat_mapping (ggal_alpha)
[28/69fff5] Submitted process > hisat_mapping (ggal_theta)
[5c/5ed2b6] Submitted process > hisat_mapping (ggal_gamma)
[b4/e559ab] Submitted process > gtftobed (genome_annotation.gtf)
[bc/6f490c] Submitted process > rseqc (ggal_alpha)
[71/80aa9e] Submitted process > rseqc (ggal_theta)
[17/ca0d9f] Submitted process > rseqc (ggal_gamma)
[d7/7d391b] Submitted process > counting (ggal_alpha)
[df/936854] Submitted process > counting (ggal_theta)
[11/143c2c] Submitted process > counting (ggal_gamma)
[31/4c11f9] Submitted process > expression_matrix
[1f/3af548] Submitted process > multiqc
Success: Pipeline Completed!

Basic Usage

Framework Stucture

Pipeline is a framework with various moving parts to support the development of multiple sequencing pipelines. The following is a simplified example of its directory structure:

/pipeliner
 ├── /docs
 ├── /envs
 ├── /scripts
 ├── /tests
 └── /pipelines
 ├── /configs
 ├── /scripts
 ├── /templates
 ├── /toy_data
 ├── /rnaseq.nf
 └── /rnaseq.config

	docs

	Markdown and Restructured Text documentaion files associated with Pipeliner and existing pipelines

	envs

	Yaml files and scripts required to reproduce Conda environments

	scripts

	Various helper scripts for framework setup and maintenance

	tests

	Python testing module for multi-pipeline automatic test execution and reporting

	pipelines/configs

	Base config files inherited by pipeline configurations

	pipelines/scripts

	Various helper scripts for pipeline processes

	pipelines/templates

	Template processes inherited by pipeline workflows

	pipelines/toy_data

	Small datasets for rapid development and testing of pipelines. These datasets are modifications from original RNA-seq [https://github.com/nextflow-io/rnatoy/tree/master/data/ggal] and scRNA-seq [http://cf.10xgenomics.com/samples/cell-exp/1.3.0/hgmm_100/hgmm_100_fastqs.tar] datasets.

	pipelines/rnaseq.nf

	Nextflow script for the RNA-seq pipeline

	pipelines/rnaseq.config

	Configuration file for the RNA-seq pipeline

Pipeline Configuration

Note

These examples are applicable to all pipelines

In the previous section, we gave instructions for processing the RNA-seq toy dataset. In that example, the configuration options were all preset, however with real data, these settings must be reconfigured. Therefore the configuration file is typically the first thing a user will have to modify to suit their needs. The following is a screenshot of the first half of the RNA-seq configuration file.

[image: _images/Fig_Basic_Configuration.png]

Config Inheritance

Line 1: Configuration files can inherit basic properties that are reused across many pipelines. We have defined several inheritable configuration files that are reused repeatedly. These include configs for running pipelines on local machines, Sun Grid Engine clusters, in Docker environments, and on AWS cloud computing.

Data Input and Output

Lines 9-15 All data paths are defined in the configuration file. This includes specifying where incoming data resides as well as defining where to output all data produced by the pipeline.

Basic Options

Lines 17-19 These are pipeline specific parameters that make large changes to how the data is processed.

Providing an Index

Lines 25-27 A useful feature of a pipeline is the ability to use an existing alignment index.

Starting from Bams

Lines 29-30 Another useful feature of a pipeline is the ability to skip pre-processing steps and start directly from the bam files. This allows users to start their pipeline from the counting step.

Temporary Files

Lines 33-34 By default, bam files are saved after alignment for future use. This can be useful, however these files are quite large and serve only as an intermediate step. Therefore, users can opt-out of storing them.

Skipping Steps

Lines 36-41 Users can skip entire pipeline steps and mix and match options that suit their need. Note that not all combination of steps are compatible.

Process Configuration

While the first half of the configuration is dedicated to controlling the pipeline, the second half is dedicated to modifying specific steps. We call these process-specific settings or parameters.

[image: _images/Fig_Advanced_Configuration.png]

Descriptive Arguments

Variables for common parameters used in each process are explicitly typed out. For example, trim_galore.quality refers to the quality threshold used by Trim Galore and feature_counts.id refers to the gene id that Feature Counts refers to in the gtf file header. These variable names match the same variable names given in the original documentation of each tool. Therefore, one can refer to their individual documentation for more information.

Xargs

Because some software tools have hundreds of arguments, they cannot all be listed in the configuration file. Therefore, another variable called xargs can be used to extend the flexibility of each tool. Users can add additional arguments as a string that will be injected into the shell command.

Ainj

Sometimes, users may want to add additional processing steps to a process without modifying the pipeline script or template directly. This can be done with the variable called ainj that injects a secondary shell command after the original template process.

Pipeline Execution

When the configuration file is set, run the pipeline with:

./nextflow rnaseq.nf -c rnaseq.config

If the pipeline encounters an error, start from where it left off with:

./nextflow rnaseq.nf -resume -c rnaseq.config

Warning

If running Pipeliner on a high performance cluster environment such as Sun Grid Engine, ensure that Nextflow is initially executed on a node that allows for long-running processes.

Output and Results

One the pipeline has finished, all results will be directed to a single output folder specified in the configuration file.

[image: _images/Fig_Results_Output.png]

Sample Folders

Each sample contains its own individual folder that holds temporary and processed data that was created by each process. In the screenshot, one can see the gene counts file specific to sample ggal_gamma that was generated by HTSeq.

Expression Matrix

The expression matrix folder contains the final count matrix as well as other normalized gene by sample matrices.

Bam Files

If the configuration file is set to store bam files, they will show up in the results directory.

Alignment Index

If an alignment index is built from scratch, it will be saved to the results directory so that it can be reused during future pipeline runs.

Reports

After a successful run, two reports are generated. A report conducted using the original data before any pre-processing steps as well as a final report run after the entire pipeline has finished. This allows one to see any potential issues that existed in the data before the pipeline as well as if those issues were resolved after the pipeline.

Pipeline Structure

The file paths for all data fed to a pipeline are specified in the configuration file. To ease the development process, Pipeline includeds toy datasets for each of the pipelines. This example will cover the RNA-seq pipeline.

Note

Data for this pipeline is located in pipelines/toy_data/rna-seq

	Users must provide the following files:

	
	Sequencing files or alignment files

	Comma-delimited file containing file paths to reads/bams

	Genome reference file

	Genome annotation file

Configuration File

The configuration file is where all file paths are specified and pipeline processes are paramaterized. The configuration can be broken into three sections, including file paths, executor and compute resources, and pipeline options and parameters.

File Paths

The configuration file specifies where to find all of the input data. Additionally, it provides a path to an output directory where the pipeline will output results. The following is a typical example for the RNA-seq configuration file:

indir = "/Users/anthonyfederico/pipeliner/pipelines/toy_data/rna-seq"
outdir = "/Users/anthonyfederico/pipeliner/pipelines/rna-seq-results"
fasta = "${params.indir}/genome_reference.fa"
gtf = "${params.indir}/genome_annotation.gtf"
reads = "${params.indir}/ggal_reads.csv"

Executor and Compute Resources

An abstraction layer between Nextflow and Pipeliner logic enables platform independence and seamless compatibility with high performance computing executors. This allows users to execute pipelines on their local machine or through a computing cluster by simply specifying in the configuration file.

Pipeliner provides two base configuration files that can be inherited depending if a pipeline is being executing using local resources or a Sun Grid Engine (SGE) queuing system.

If the latter is chosen, pipeline processes will be automatically parallelized. Additionally, each individual process can be allocated specific computing resource instructions when nodes are requested.

Local config example:

process {
 executor = 'local'
}

Cloud computing config example:

process {
 executor = 'sge'
 scratch = true

 $trim_galore.clusterOptions = "-P montilab -l h_rt=24:00:00 -pe omp 8"
 $star_mapping.clusterOptions = "-P montilab -l h_rt=24:00:00 -l mem_total=94G -pe omp 16"
 $counting.clusterOptions = "-P montilab -l h_rt=24:00:00 -pe omp 8"
 $expression_matrix.clusterOptions = "-P montilab -l h_rt=24:00:00 -pe omp 8"
 $multiqc.clusterOptions = "-P montilab -l h_rt=24:00:00 -pe omp 8"
}

Pipeline Options and Parameters

The rest of the configuration file is dedicated to the different pipeline options and process parameters that can be specified. Some important examples include the following:

General pipeline parameters
aligner = "hisat"
quantifier = "htseq"

Process-specific parameters
htseq.type = "exon"
htseq.mode = "union"
htseq.idattr = "gene_id"
htseq.order = "pos"

Pipeline Script

Template Processes

Pipelines written in Nextflow consist of a series of processes. Processes specify data I/O and typically wrap around third-party software tools to process this data. Processes are connected through channels – asynchronous FIFO queues – which manage the flow of data throughout the pipeline.

Processes have the following basic structure:

process <name> {

 input:
 <process inputs>

 output:
 <process outputs>

 script:
 <user script to be executed>
}

Often, the script portion of the processes are reused by various sequencing pipelines. To help standardize pipeline development and ensure good practices are propogated to all pipelines, template processes are defined and inherited by pipeline processes.

Note

Templates are located in pipelines/templates

For example, these two processes execute the same code:

Without inheritance
process htseq {

 input:
 <process inputs>

 output:
 <process outputs>

 script:
 '''
 samtools view ${bamfiles} | htseq-count - ${gtf} \\
 --type ${params.htseq.type} \\
 --mode ${params.htseq.mode} \\
 --idattr ${params.htseq.idattr} \\
 --order ${params.htseq.order} \\
 > counts.txt
 '''
}

With inheritance
process htseq {

 input:
 <process inputs>

 output:
 <process outputs>

 script:
 template 'htseq.sh'
}

Output

The RNA-seq pipeline output has the following basic structure:

/pipeliner/RNA-seq
└── /results
 │
 ├── /sample_1
 │ ├── /trimgalore | Trimmed Reads (.fq.gz) for sample_1
 │ ├── /fastqc
 │ ├── /rseqc
 │ └── /htseq
 │
 ├── /alignments | Where (.bams) are saved
 ├── /aligner
 │ └── /index | Index created and used during mapping
 │
 ├── /expression_matrix | Aggregated count matrix
 ├── /expression_set | An expression set (.rds) object
 ├── /reports | Aggregated report across all samples pre/post pipeliner
 └── /logs | Process-related logs

Each sample will have its own directory with sample-specific data and results for each process. Additionally, sequencing alignment files and the indexed reference genome will be saved for future use if specified. Summary reports pre/post-workflow can be found inside the reports directory.

Existing Pipelines

Contents:

	RNA-seq
	Check Reads check_reads

	Genome Indexing hisat_indexing/star_indexing

	Pre-Quality Check pre_fastqc

	Pre-MultiQC pre_multiqc

	Read Trimming trim_galore

	Read Mapping hisat_mapping/star_mapping

	Reformat Reference gtftobed

	Mapping Quality rseqc

	Quantification counting

	Expression Matrix expression_matrix

	Expression Features expression_features

	Expression Set expression_set

	Summary Report multiqc

	scRNA-seq
	Check Reads check_reads

	Genome Indexing hisat_indexing/star_indexing

	Quality Check fastqc

	Whitelist whitelist

	Extract extract

	Read Mapping hisat_mapping/star_mapping

	Reformat Reference gtftobed

	Mapping Quality rseqc

	Quantification counting

	Summary Report multiqc

	DGE
	Quantification counting

	Expression Matrix expression_matrix

	Sample Renaming rename_samples

	Summary Report multiqc

RNA-seq

Check Reads check_reads

	input

	List of read files (.fastq)

	output

	None

	script

	Ensures correct format of sequencing read files

Genome Indexing hisat_indexing/star_indexing

	input

	Genome reference file (.fa) | Genome annotation file (.gtf)

	output

	Directory containing indexed genome files

	script

	Uses either STAR or HISAT2 to build an indexed genome

Pre-Quality Check pre_fastqc

	input

	List of read files (.fastq)

	output

	Report files (.html)

	script

	Uses FastQC to check quality of read files

Pre-MultiQC pre_multiqc

	input

	Log files (.log)

	output

	Summary report file (.html)

	script

	Uses MultiQC to generate a summary report

Read Trimming trim_galore

	input

	List of read files (.fastq)

	output

	Trimmed read files (.fastq) | Report files (.html)

	script

	Trims low quality reads with TrimGalore and checks quality with FastQC

Read Mapping hisat_mapping/star_mapping

	input

	List of read files (.fastq) | Genome annotation file (.gtf) | Directory containing indexed reference genome files

	output

	A list of alignment files (.bam) | Log files (.log)

	script

	Uses either STAR or HISAT2 to align reads to a reference genome

Reformat Reference gtftobed

	input

	Genome annotation file (.gtf)

	output

	Genome annotation file (.bed)

	script

	Converts genome annotation file from GTF to BED format

Mapping Quality rseqc

	input

	A list of alignment files (.bam)

	output

	Report files (.txt)

	script

	Uses RSeQC to check quality of alignment files

Quantification counting

	input

	A list of alignment files (.bam) | Genome annotation file (.gtf)

	output

	Read counts (.txt) | Log files (.txt)

	script

	Uses either StringTie, HTSeQ, or featureCounts to quantify reads

Expression Matrix expression_matrix

	input

	A list of count files (.txt)

	output

	An expression matrix (.txt)

	script

	Reformats a list of count files into a genes x samples matrix

Expression Features expression_features

	input

	Genome annotation file (.gtf) | An expression matrix (.txt)

	output

	Gene feature data (.txt)

	script

	Parses the genome annotation file for gene feature data

Expression Set expression_set

	input

	An expression matrix (.txt) | Gene feature data (.txt) | Sample phenotypic data (.txt)

	output

	An expression set object (.rds)

	script

	Creates an expression set object with eData, fData, and pData attributes

Summary Report multiqc

	input

	Log files and summary reports from all processes

	output

	A summary report (.html)

	script

	Uses MultiQC to generate a summary report

scRNA-seq

Check Reads check_reads

	input

	List of read files (.fastq)

	output

	None

	script

	Ensures correct format of sequencing read files

Genome Indexing hisat_indexing/star_indexing

	input

	Genome reference file (.fa) | Genome annotation file (.gtf)

	output

	Directory containing indexed genome files

	script

	Uses either STAR or HISAT2 to build an indexed genome

Quality Check fastqc

	input

	List of read files (.fastq)

	output

	Report files (.html)

	script

	Uses FastQC to check quality of read files

Whitelist whitelist

	input

	List of read files (.fastq)

	output

	A table of white listed barcodes (.txt)

	script

	Uses UMI-tools to extract and identify true cell barcodes

Extract extract

	input

	List of read files (.fastq) | A table of white listed barcodes (.txt)

	output

	Extracted read files (.fastq)

	script

	Uses UMI-tools to extract barcode from reads and append to read name

Read Mapping hisat_mapping/star_mapping

	input

	List of read files (.fastq) | Genome annotation file (.gtf) | Directory containing indexed reference genome files

	output

	A list of alignment files (.bam) | Log files (.log)

	script

	Uses either STAR or HISAT2 to align reads to a reference genome

Reformat Reference gtftobed

	input

	Genome annotation file (.gtf)

	output

	Genome annotation file (.bed)

	script

	Converts genome annotation file from GTF to BED format

Mapping Quality rseqc

	input

	A list of alignment files (.bam)

	output

	Report files (.txt)

	script

	Uses RSeQC to check quality of alignment files

Quantification counting

	input

	A list of alignment files (.bam) | Genome annotation file (.gtf)

	output

	Read counts (.txt) | Log files (.txt)

	script

	Uses featureCounts to quantify reads

Summary Report multiqc

	input

	Log files and summary reports from all processes

	output

	A summary report (.html)

	script

	Uses MultiQC to generate a summary report

DGE

Quantification counting

	input

	A list of alignment files (.bam) | Genome annotation file (.gtf)

	output

	Read counts (.txt) | Log files (.txt)

	script

	Uses featureCounts to quantify reads

Expression Matrix expression_matrix

	input

	A list of count files (.txt)

	output

	An expression matrix (.txt)

	script

	Reformats a list of count files into a genes x samples matrix

Sample Renaming rename_samples

	input

	An expression matrix (.txt)

	output

	An expression matrix (.txt)

	script

	Renames samples in expression matrix based on a user-supplied table

Summary Report multiqc

	input

	Log files and summary reports from all processes

	output

	A summary report (.html)

	script

	Uses MultiQC to generate a summary report

Extending Pipelines

General Workflow

The framework provides multiple resources for the user to extend and create sequencing pipelines. The first is toy datasets for all available pipelines including sequencing files, alignment files, genome reference and annotation files, as well as phenotypic data. Additionally, there are pre-defined scripts, processes, and configuration files that can be inherited and easily modified for various pipelines. Together, users can rapidly develop flexible and scalable pilelines. Lastly, there is a testing module enabling users to frequently test a series of different configurations with each change to the codebase.

Configuration Inheritance

An important property of configuration files is that they are inheritable. This allows developers to focus soley on the configuration components that are changing with each pipeline execution. Typically there are four components of a configuration file including the following.

Executor parameters:

process {
 executor = "local"
}

Input data file paths:

indir = "/Users/anthonyfederico/pipeliner/pipelines/toy_data/rna-seq"
outdir = "/Users/anthonyfederico/pipeliner/pipelines/rna-seq-results"

Pipeline parameters:

aligner = "hisat"
quantifier = "htseq"

Process-specific parameters:

htseq.type = "exon"
htseq.mode = "union"
htseq.idattr = "gene_id"
htseq.order = "pos"

When developing, typically the only parameters that will be changing are pipeline parameters when testing the full scope of flexibility. Therefore, the development configuration file will look something like the following:

// paired / hisat / featurecounts

includeConfig "local.config"
includeConfig "dataio.config"

paired = true
aligner = "hisat"
quantifier = "featurecounts"
skip.counting = false
skip.rseqc = false
skip.multiqc = false
skip.eset = false

includeConfig "parameters.config"

Template Process Injections

Note

Sometimes it’s better to create a new template rather than heavily modify an existing one

Each pipeline is essentially a series of modules - connected through minimal Nextflow scripting - that execute pre-defined template processes. While templates are generally defined to be applicable to multiple pipelines and are parameterized in a configuration file, they have two additional components contributing to their flexibility.

The following is an example of a template process for the third-party software tool featureCounts:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 featureCounts \\

 # Common flags directly defined by the user
 -T ${params.feature_counts.cpus} \\
 -t ${params.feature_counts.type} \\
 -g ${params.feature_counts.id} \\

 # Flags handled by the pipeline
 -a ${gtf} \\
 -o "counts.raw.txt" \\

 # Arguments indirectly defined by the user
 ${feature_counts_sargs} \\

 # Extra arguments
 ${params.feature_counts.xargs} \\

 # Input data
 ${bamfiles};

 # After injection
 ${params.feature_counts.ainj}

	Lines 4-6

	These are common keyword arguments that can be set to string/int/float types by the user and passed directly from the configuration file to the template. The params prefix in the variable means it is initialized in the configuration file.

	Lines 9-10

	These are flags that are typically non-dynamic and handled interally by the pipeline.

	Line 13

	These are common flags that must be indirectly defined by the user. For example, featurCounts requires a -p flag for paired reads. Because params.paired is a boolean, it makes more sense for the pipeline to create a string of supplemental arguments indirectly defined by the configuration file.

feature_counts_sargs = ""
if (params.paired) {
 feature_counts_sargs = feature_counts_sargs.concat("-p ")
}

	Line 16

	These are uncommmon keyword arguments or flags that can be pass directly from the configuration file to the template. Because some software tools can include hundreds of arguments, we explicitly state common arguments, but allow the user to additionally insert any unlimited number of additional arguments to maximize flexibility.

For example, the user might want to perform a one-off test of the pipeline where they remove duplicate reads and only count fragments that have a length between 50-600 base pairs. These options can be injected into the template by simply defining params.feature_counts.xargs = "--ignoreDup -d 50 -D 600" in the configuration file.

	Line 19

	These are required arguments such as input data handled interally by the pipeline.

	Line 22

	These are code injections - typically one-liner cleanup commands - that can be injected after the main script of a template. For example, the output of featureCounts is a genes x samples matrix and the user may want to try sorting rows by gene names. Setting params.feature_counts.ainj to "sort -n -k1,1 counts.raw.txt > counts.raw.txt;" would accomplish such a task.

After parameterization, the final result would look something like this:

	1
2
3
4
5
6

	 featureCounts -T 1 -t "exon" -g "gene_id" \
 -a "path/to/reference_annotation.gtf" \
 -o "counts.raw.txt" \
 -p --ignoreDup -d 50 -D 600 \
 s1.bam s2.bam s3 bam;
 sort -n -k1,1 counts.raw.txt > counts.raw.txt;

Testing Module

Each major change to a pipeline should be followed with a series of tests. Because pipelines are so flexible, it’s infeasible to manually test even a limited set of typical configurations. To solve this problem we include an automated testing module.

Users can automatically test a series of configuration files by specifying a directory of user-defined tests:

/pipeliner
 └── /tests
 └── /configs
 └── /rnaseq
 ├── /t1.config
 ├── /t2.config
 └── /t3.config

To run these series of tests, users can execute python pipeliner/tests/test.py rnaseq which will search for the directory pipeliner/tests/configs/rnaseq and automatically pair and run each configuration file with a pipeline script named rnaseq.nf.

Note

The directory name of tests must be the same as the pipeline script they are paired with

Warning

You must execute test.py from the /pipelines directory because Nextflow requires its executable to be in the working directory. Therefore the testing command will look like python ../tests/test.py rnaseq

Index

 _images/Fig_Results_Output.png
v

v

v

9 expression_matrix
count_expression_matrix.xt

9 goalalpha

9 goal_gamma

v Mhtseq

ggal_gamma.counts.txt

> Mrseqc

> I trimgalore

9 ggal theta

I hisat_bams.
ggal_alpha.bam
ggal_theta.bam
gal_gamma.bam

I hisat_index

> B index

I pre_fastac

I reports

v I8 post pipeliner
 muliac_report htm

> B8 mutiae data
» [pre_pipeliner

_static/ajax-loader.gif

_images/Fig_Advanced_Configuration.png
=N

8 7
49 trin_galore.quality

s0 trin_galore. custon_adaptors
51 trin_galore.adapterl

52 trin_galore.adapter2

53 trin_galore.xargs

54

55 /1 Wisat Aligner

56 7

57 hisat_indexing. cpus
s8 hisat_mapping. cpus

59 hisat_mapping.mp .
60 hisat_mapping. sp b
61 hisat_mapping. rdg H
62 hisat_mapping. rfg b
63

64 11 star Aligner

65 7

66 star_indexing.sjdb_overhang
67 star_indexing. cpus

68 star_mapping. cpus

69 star_mapping. twopasshode.

70 star_mapping. outfilter_multimap_nmax

71 star_mapping. outfilter_mismatch_nmax

72 star_mapping. outfilter_mismatch_relmax

73 star_mapping.align_intron_min

74 star_mapping.align_intron_max 100000
75 star_mapping.align_mates_gapmax 100000
76 star_mapping.align_sjoverhang_nin 1

77

78 11 Heseq

79 7

80 htseq. type xon
81 htseq.mode nion"
82 htseq. idattr ene_id"
83 htseq.order os'
84 htseq.xargs

85 htseq.ainj

86

87 11 Feature Counts

88 7

89 feature_counts. xon"
9 feature_counts. ene_id"
o1 feature_counts.

92 feature_counts

93

94 11 stringtie

95 7

9% stringtie.xargs

97 stringtie.ainj

98

| oo

_images/Fig_Basic_Configuration.png
1 includeConfig 'configs/local.config
2

3 params {

3

5 17 -

6 71 standard Parameters

7 -

8

s /Users/anthonyfederico/Desktop/pipeliner/pipelines/toy_data/rnaseq"
10 /Users/anthonyfederico/Desktop/pipeliner/pipelines/rnaseq_results
1

12 fasta {parans. indir}/genome_reference. fa"

13 gtf {parans. indir}/genome_annotation.gtf

14 reads {parans. indir}/ggal_reads.csv"

15 phenotypes = "${parans. indir}/ggal_phenotypes. txt"

16

17 paired = true 11 are reads paired or single end?

18 aligner 71 choose aligning process ["star" or “hisat
19 quantifier D /7 choose counting process [“stringtie" or “htseq" or “featurecounts"]
20

21 " - -

2 71 Process Skipping

23 17 -

2

25 index.use_existing = false

26 index.path = "${parans.indir}/alignnent_indices/hisat_index/index/part"
27 /findex.path = "${parans.indir}/alignnent_indices/star_index/inde

28

29 bans. use_existing = false

38 bans.path = "${parans.indir}/ggal_bams.csv"

31

32 7/ Keep Temporary Files

33 fastqs.save = false

34 bans.save = true

35

36 skip. check_reads = false

37 skip.pre_qc = false

38 skip. counting false

39 skip. rseqc false

a0 skip.multiqc false

a1 skip.eset = true

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Pipeliner Documenation

 		
 Requirements

 		
 Testing Nextflow

 		
 Installing Anaconda

 		
 Pre-Packaged Conda Environment

 		
 Yaml File

 		
 Setting up Pipeliner

 		
 Basic Usage

 		
 Framework Stucture

 		
 Pipeline Configuration

 		
 Config Inheritance

 		
 Data Input and Output

 		
 Basic Options

 		
 Providing an Index

 		
 Starting from Bams

 		
 Temporary Files

 		
 Skipping Steps

 		
 Process Configuration

 		
 Descriptive Arguments

 		
 Xargs

 		
 Ainj

 		
 Pipeline Execution

 		
 Output and Results

 		
 Sample Folders

 		
 Expression Matrix

 		
 Bam Files

 		
 Alignment Index

 		
 Reports

 		
 Pipeline Structure

 		
 Configuration File

 		
 File Paths

 		
 Executor and Compute Resources

 		
 Pipeline Options and Parameters

 		
 Pipeline Script

 		
 Template Processes

 		
 Output

 		
 Existing Pipelines

 		
 RNA-seq

 		
 Check Reads check_reads

 		
 Genome Indexing hisat_indexing/star_indexing

 		
 Pre-Quality Check pre_fastqc

 		
 Pre-MultiQC pre_multiqc

 		
 Read Trimming trim_galore

 		
 Read Mapping hisat_mapping/star_mapping

 		
 Reformat Reference gtftobed

 		
 Mapping Quality rseqc

 		
 Quantification counting

 		
 Expression Matrix expression_matrix

 		
 Expression Features expression_features

 		
 Expression Set expression_set

 		
 Summary Report multiqc

 		
 scRNA-seq

 		
 Check Reads check_reads

 		
 Genome Indexing hisat_indexing/star_indexing

 		
 Quality Check fastqc

 		
 Whitelist whitelist

 		
 Extract extract

 		
 Read Mapping hisat_mapping/star_mapping

 		
 Reformat Reference gtftobed

 		
 Mapping Quality rseqc

 		
 Quantification counting

 		
 Summary Report multiqc

 		
 DGE

 		
 Quantification counting

 		
 Expression Matrix expression_matrix

 		
 Sample Renaming rename_samples

 		
 Summary Report multiqc

 		
 Extending Pipelines

 		
 General Workflow

 		
 Configuration Inheritance

 		
 Template Process Injections

 		
 Testing Module

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

