

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pinyto-Cloud 1.0-alpha1 documentation

Welcome to the documentation of the cloud component of Pinyto

pinyto-cloud is the software you want to install on your server. There are applications for your clients to
connect to the Pinyto cloud which are not covered in this documentation. If you are confused by this
structure go to https://pinyto.de and read the introduction there.

Contents:

	Introduction
	Structure

	Administration
	Users

	Public Keys

	Sessions

	The user’s code
	Assembly

	ApiFunction

	Job

	Registration

	Authentication

	Logout

	Key Management

	Assembly Management
	save_assembly

	delete_assembly

	list_own_assemblies

	list_all_assemblies

	get_assembly_source

	install_assembly

	uninstall_assembly

	list_installed_assemblies

	Urls

	Keyserver
	Administration-API
	Urls

	Database
	Wrapper-Service

	Default-API

	Database statistics

	Assemblies
	Installing assemblies

	Calling Assemblies

	Executing Jobs

	The Sandbox

	Services
	Response Helper

	Factory

	Http

	ParseHtml

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pinyto-Cloud 1.0-alpha1 documentation

Introduction

Pinyto is your own private and secure database. You decide which data is used for which application
and how the data is processed even before it reaches the device. It achieves that with a document
based database (MongoDB) which saves your data in the structure you want it to have. You can access
your data through Assemblies which process and prepare your data at the server before it gets
transferred to an app on a device. It is up to you which Assemblies you want to install and you can
even create your own Assemblies by programming them in Python. This structure lets you expose the
minimum of your data to achieve just what you want. Assemblies can also do things on their own like
searching for data on the internet to complete your saved datasets computationally on the server.
This structure lets your apps feel smart because they can access the information they need while
keeping your data in your control. Assemblies are always OpenSource and you can read their sourcecode
if you want to know what they are doing.

Pinyto is designed as a framework to make our vision of a personal cloud accessible for you. We
provide some webapps and applications for your devices to show how Pinyto is meant to be used and
what it is capable of. They may also be useful as they are.

Structure

There are two main parts of the Pinyto-Cloud component hosted on your server:

	The Django application talking to your database and executing code from the assemblies.

	The Webapps which are hosted on the server.

The Django application is structured in six Django-Apps:

	pinytoCloud is the main app which contains the settings.py and the main urls.py. Its models.py
contains all the models used for administration of your personal cloud. This data is saved in the
SQL-database specified in settings.py. Your user-data does not live in this database. views.py
contains the views used for administration of the cloud including registration and authentication.

	keyserver contains models and views which are needed to access the cloud with username and
password. Pinyto normally uses public-key-authentication which is not usable for webapps. The
keyserver does the public-key-authentication for all users who supply the correct credentials. The
models in this app store private keys and password hashes for user accounts.

	database wraps all calls to the document based database used to store the data. It uses pymongo
but adds some functionality specific for Pinyto.

	service contains helpers which can be called from assemblies to perform certain tasks. As
assemblies are very limited in their ability to process data all the work is done in those services.

	api_prototype contains the views handling all requests concerning api-calls and jobs at
assemblies. If necessary a sandbox is initialized and code from the assemblies is executed there.

	api contains trusted assemblies which are executed without a sandbox. This is generally not
necessary but can improve the performance of assembly calls and job execution.

The Webapps are structured in folders matching the name of the assembly. For example the files for the
“pinyto/Todo” assembly live in /webapps/pinyto/Todo/. Every webapp is a separate application which
is bootstrapped with its index.html. At the moment all Webapps are based on Angular.js and are
structured like typical Angular applications.

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pinyto-Cloud 1.0-alpha1 documentation

Administration

Pinyto uses two separate databases to store data. The SQL database is used for user accounts,
public-keys, code from assemblies and so on. The real data user store inside of Pinyto is
stored in a document-based database described in database. This section is about
the database models and view functions used for registration, authentication and
administration.

In Pinyto all api calls accept only json data for parameters and payload data. Every request except
registration and authentication must contain a “token” which identifies the current user and her
permissions. An example would be {"token": "12323A38B3", "name": "test", "author": "mustermann"}.

Users

Users are saved in this class:

As users need to get initialized with empty budgets a function is needed which is hooked into the
post_init signal from Django:

Public Keys

Users have one public key for each device they use to connect to the cloud. This class saves the
key:

Sessions

If a user authenticates at the cloud a session is created. Each session has a random token which has
to be present at all requests a user makes.

The user’s code

Users can write their own assemblies and they are stored in the following objects. The Assembly class
stores the basic information about the assembly while ApiFunction an Job store the code.

Assembly

ApiFunction

Job

Registration

Registering new accounts is done in the register function in views.py.

Although the register function does the real work it does not accept a Django request object as parameter
and is therefore not fit to be called by the url dispatcher. For this task the register_request function
exists which accepts a request object and can easily be referenced in the url configuration. It internally
calls register after extracting relevant the request data.

Registration requests must supply json-encoded data with a “username” and “key_data” while the key_data
itself consists of a “N” and “e” value. Supply the numbers as strings.

Example: {"username": "MaxMustermann", "key_data": {"N": "123456789123456789213456", "e": "54263"}}
For a real key N must be a much bigger number.

Authentication

Similar to the registration the authentication also consists of two functions. The real work is done in
authenticate:

The matching function which accepts requests and which is wired into the url config is:

The authentication request needs a “username” and a “key_hash” which identifies the public key used for
authentication. The key_hash consists of the first 10 bytes of a sha256 hash of (N+e).

Authenticate returns a challenge for this request containing an encrypted token and a signature of this
token signed with the key of the server. The client can check the signature to verify the identity of
the server. The client also decrypts the token with the private key matching the public key which was used
for the hash in the request. By encrypting the token the server makes sure that only the client which
possesses the private key can decrypt the token and use it for authentication.

Authenticate starts a session with a token which is transmitted with every request and which is used to
identify the client and ensure that no attacker can access api functions without a correct token. If an
attacker reads the token he can make requests as he likes as long as the session is active. Because of
that the whole connection must be secured with https and the client must make sure the token is not
accessed by malware.

Logout

logout only needs a “token”.

Key Management

There are four functions for the key management. list_keys lists all public keys of the user:

Each key listed by this function should match a device used for Pinyto. The first key is usually the one
used by webapps like the backoffice.

If a key is to be added register_new_key is called:

The function accepts “key_data” with a “N” and “e” encoded as strings.

Keys can also be deleted:

delete_key expects a “key_hash” with the first 10 bytes of a sha256 hash of (str(N)+str(e)).

Keys can be deactivated and deactivated again. For this functionality there is only one function which
accepts the state:

The function needs a “key_hash” which identifies the key and an “active_state” as a boolean.

Assembly Management

Assemblies in Pinyto belong to a user but any user can install them. So it is important to distinguish
between the assemblies owned by the user which she can edit and the ones owned by other users which can
only be installed and deinstalled.

save_assembly

If a user wants to save a new assembly she can use this function:

save_assembly accepts all the data defining an assembly in one big json datastructure:

	“original_name” is the name the assembly had. If the original_name does not specify an assembly of
the user a new assembly is created using the data from “data”.

	
	“data” contains the data of the assembly as it should be after it is saved to the database.

	
	“name” is the new name of the assembly.

	“description” is the new description.

	
	“api_functions” is a list of dictionaries containing:

	
	“name” - the name of the function

	“code” - the code of the function

	
	“jobs” is a list of dictionaries containing:

	
	“name” - the name of the job

	“code” - the code of the job

	“schedule” - an integer defining how many minutes the cloud should wait until running the job
again. 0 means the job is run only once.

save_assembly returns {"success": true} if the assembly is saved.

delete_assembly

Call delete_assembly with a “name” defining an existing assembly of this user.

delete_assembly returns {"success": true} if the assembly is deleted.

list_own_assemblies

list_all_assemblies

This function lists all assemblies, the ones of the user and all assemblies which could be installed by the user,

get_assembly_source

In many cases the description of an assembly is not sufficient for the user to decide if she can safely install
the assembly. With the following function the complete sourcecode of the assembly can be loaded:

The assembly is specified with an “author” and a “name”. If written as a combination it is author/name.

install_assembly

If the user decides that an assembly is useful and not harmful she can install the assembly with
install_assembly.

The assembly is specified with an “author” and a “name”. If written as a combination it is author/name.

uninstall_assembly

The assembly is specified with an “author” and a “name”. If written as a combination it is author/name.

list_installed_assemblies

This function lists only the installed assemblies of the user.

Urls

Below is the main URL configuration in pinytoCloud/urls.py which also includes the urls from keyserver and
the api calls handeled in api_prototype.

	
pinytoCloud.urls.urlpatterns

	

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

from django.conf.urls import include, url
from pinytoCloud.views import authenticate_request, logout, list_keys, set_key_active, delete_key, register_new_key
from pinytoCloud.views import register_request, list_own_assemblies, save_assembly, delete_assembly
from pinytoCloud.views import list_installed_assemblies, list_all_assemblies, install_assembly, uninstall_assembly
from pinytoCloud.views import get_assembly_source, home
from database.views import statistics, store
from api_prototype.views import api_call

urlpatterns = [
 url(r'^authenticate$', authenticate_request, name='authenticate'),
 url(r'^logout$', logout, name='logout'),
 url(r'^list_keys$', list_keys, name='list_keys'),
 url(r'^set_key_active$', set_key_active, name='set_key_active'),
 url(r'^delete_key$', delete_key, name='delete_key'),
 url(r'^register_new_key$', register_new_key, name='register_new_key'),
 url(r'^register$', register_request, name='register'),
 url(r'^list_own_assemblies$', list_own_assemblies, name='list_own_assemblies'),
 url(r'^save_assembly$', save_assembly, name='save_assembly'),
 url(r'^delete_assembly$', delete_assembly, name='delete_assembly'),
 url(r'^list_installed_assemblies$', list_installed_assemblies, name='list_installed_assemblies'),
 url(r'^list_all_assemblies$', list_all_assemblies, name='list_all_assemblies'),
 url(r'^install_assembly$', install_assembly, name='install_assembly'),
 url(r'^uninstall_assembly$', uninstall_assembly, name='uninstall_assembly'),
 url(r'^get_assembly_source$', get_assembly_source, name='get_assembly_source'),
]

urlpatterns += [
 url(r'^keyserver/', include('keyserver.urls')),
]

urlpatterns += [
 url(r'^(?P<user_name>\w+)/(?P<assembly_name>\w+)/store$', store, name='store'),
 url(r'^statistics$', statistics, name='statistics'),
]

urlpatterns += [
 url(r'^(?P<user_name>\w+)/(?P<assembly_name>\w+)/(?P<function_name>\w+)$', api_call, name='api_call'),
]

urlpatterns += [
 url(r'^.*', home, name='home'),
]

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pinyto-Cloud 1.0-alpha1 documentation

Keyserver

The Keyserver is integrated into Pinyto to support webapps. Normally Pinyto uses public-key authentication
which is more secure than username and password. However this method needs clients which create private
and public key pairs and store the private key securely. For webapps this approach is simply not possible.
To solve this the Keyserver stands in between webapps and the cloud and saves one private key for each
username and password. If a webapp wants to authenticate it can send the users credentials to the keyserver
which does the authentication with the stored key if the credentials are correct. The keyserver sends the
decrypted token which is ready to use over an https connection to the webapp. The webapp can use this token
for all requests in this session.

Administration-API

Similar to the administration of the cloud does the keyserver provide an API to
administer the Accounts.

register function expects a “username” and a “password” in the request data.

authenticate function expects a “username” and a “password” in the request data.

change_password function expects the new password as “password” in the request data.

Urls

	
keyserver.urls.urlpatterns

	

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

from django.conf.urls import url
from keyserver.views import authenticate, register, change_password

urlpatterns = [
 url(r'^authenticate$', authenticate, name='keyserver_authenticate'),
 url(r'^register$', register, name='keyserver_register'),
 url(r'^change_password$', change_password, name='change_password'),
]

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pinyto-Cloud 1.0-alpha1 documentation

Database

Wrapper-Service

Pinyto internally uses pymongo to access the MongoDB [http://www.mongodb.org/] database on the server.
Because of the restrictive sandbox architecture a wrapper service for the database interface is used which
basically exposes the most used functionality of pymongo to the assemblies. For security reasons no direct
access to pymongo could be allowed because Pinyto must make sure the data of other users stays untouched.

	
class service.database.CollectionWrapper(collection, assembly_name, only_own_data=True)[source]

	This wrapper is user to expose the db to the users assemblies.

	
count(query)[source]

	Use this function to get a count from the database.

	Parameters:	query (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Returns:	The number of documents matching the query

	Return type:	int [http://docs.python.org/library/functions.html#int]

	
find(query, skip=0, limit=0, sorting=None, sort_direction='asc')[source]

	Use this function to read from the database. This method
encodes all fields beginning with _ for returning a valid
json response.

	Parameters:	
	query (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	skip (int [http://docs.python.org/library/functions.html#int]) – Count of documents which should be skipped in the query. This is useful for pagination.

	limit (int [http://docs.python.org/library/functions.html#int]) – Number of documents which should be returned. This number is of course the maximum.

	sorting (str [http://docs.python.org/library/functions.html#str]) – String identifying the key which is used for sorting.

	sort_direction (str [http://docs.python.org/library/functions.html#str]) – ‘asc’ or ‘desc’

	Returns:	The list of found documents. If no document is found the list is empty.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
find_distinct(query, attribute)[source]

	Return a list representing the diversity of a given attribute in
the documents matched by the query.

	Parameters:	
	query (str [http://docs.python.org/library/functions.html#str]) – json

	attribute (str [http://docs.python.org/library/functions.html#str]) – String describing the attribute

	Returns:	A list of values the attribute can have in the set of documents described by the query

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
find_document_for_id(document_id)[source]

	Find the document with the given ID in the database. On
success this returns a single document.

	Parameters:	document_id (string [http://docs.python.org/library/string.html#module-string]) –

	Returns:	The document with the given _id

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
find_documents(query, skip=0, limit=0, sorting=None, sort_direction='asc')[source]

	Use this function to read from the database. This method
returns complete documents with _id fields. Do not use this
to construct json responses!

	Parameters:	
	query (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	skip (int [http://docs.python.org/library/functions.html#int]) – Count of documents which should be skipped in the query. This is useful for pagination.

	limit (int [http://docs.python.org/library/functions.html#int]) – Number of documents which should be returned. This number is of course the maximum.

	sorting (str [http://docs.python.org/library/functions.html#str]) – String identifying the key which is used for sorting.

	sort_direction (str [http://docs.python.org/library/functions.html#str]) – ‘asc’ or ‘desc’

	Returns:	The list of found documents. If no document is found the list is empty.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
insert(document)[source]

	Inserts a document. If the given document has a ID the
ID is removed and a new ID will be generated. Time will
be set to now.

	Parameters:	document (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Returns:	The ObjectId of the insrted document

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
remove(document)[source]

	Deletes the document. The document must have a valid _id

	Parameters:	document (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	
save(document)[source]

	Saves the document. The document must have a valid _id

	Parameters:	document (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Returns:	The ObjectId of the insrted document

	Return type:	str [http://docs.python.org/library/functions.html#str]

For coders the helpers used in this service may be of interest:

	
service.database.encode_underscore_fields(data)[source]

	Removes _id

	Parameters:	data (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
service.database.encode_underscore_fields_list(data_list)[source]

	Removes _id for every dict in the list

	Parameters:	data_list (list [http://docs.python.org/library/functions.html#list]) –

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
service.database.inject_object_id(query)[source]

	Traverses all fields of the query dict and converts all ‘_id’ to ObjectId instances.

	Parameters:	query (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

Default-API

Some API functions are used in nearly every assembly. To prevent users from writing the same code over and over
some default functions for assemblies are implemented and can be called by every assembly.

Warning

Default API-functions hide explicitly defined functions in the assembly with the same name at the moment. This
may change in future versions where assemblies can overwrite default functionality.

Database statistics

The database app also exposes an API-function for loading database statistics of the user. The statistics are:

	‘time_budget’: Sum of all the CPU time (in seconds) used by the user.

	‘storage_budget’: Integral over the storage the user user over time. The value is in bytes*seconds.

	‘current_storage’: The amount of of storage (in bytes) the user uses at the moment.

	‘last_calculation’: Timestamp of the last time the budgets were calculated. This is needed if the frontend
tries to calculate the storage budget up to the current time.

	‘assembly_count’: Number of assemblies the user owns.

	‘installed_assemblies_count’: Number of assemblies the user has installed.

	‘all_assemblies_count’: Number of assemblies available for the user.

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pinyto-Cloud 1.0-alpha1 documentation

Assemblies

Assemblies are the key element of Pinyto as they empower the user to do with her data as she likes. Users
can write their own assemblies but they also can install assemblies from other users. If those other users
update their assembly the user automatically uses the new version without having to change anything.

Warning

It is crucial that users can trust the authors of the assemblies they have installed. They can check
the sourcecode of the all assemblies as they install them but if an update changes the assembly the
user gets no notification and the changed assembly may leak or delete data.

Users can prevent that by forking assemblies of other users which makes the assembly in the state as it
is one of their own. By doing that their assembly does not change if the original author changes her
assembly and the user can be sure that no harmful code is executed. This method has the downside that
updates with bugfixes or new features do not get installed automatically. The user may delete the forked
assembly in case of a good update and fork the original again. The usability of this procedure could be
improved in future versions.

Installing assemblies

If you run your own Pinyto server there are two ways to install new assemblies. The first possibility is to
store them in your database. You may want to create user accounts to have telling names for the assemblies.
For example for the assembly pinyto/Todo a user with the name “pinyto” must be present.

If you check out a new version of Pinyto there might be new default assemblies in the api module. With this
version come three bundled assemblies:

	pinyto/DocumentsAdmin is used for the backoffice to let you browse all your documents there.

	pinyto/Todo is the assembly for the example app for Pinyto which is a simple TODO-list.

	bborsalino/Librarian is an assembly for a app used to manage the books in your flat. This assembly
uses a job which completes incomplete data for books by asking a publicly available database. This could be
a good example for your next assembly because the TODO-app does not need a job.

The assemblies in the api module provide data migrations which insert the user and the assembly itself into
the database.

Normally the code of every assembly gets executed in a seccomp secured sandbox. Using the sandbox might decrease
the performance of the assembly execution. So Pinyto gives administrators the opportunity to install assemblies
as Django apps inside the api module. If an assembly is called and a directly installed assembly in the
api module is found the code from there gets executed without a sandbox. In order to have this working
an assembly with the same name has to exist in the database.

Warning

A bad admin could trick users in thinking that an assembly is not harmful by having different code saved
in the database than in the Django app in api. We considered this a minor threat because if your admin
wants to harm you she could do all sorts of bad things to your data. It is certainly best to have an admin
you can trust. If you do not trust your admin become your own admin on your own server.

If you write an assembly inside of api make sure to insert the correct code of the assembly in the data
migration.

For users there is no visible difference between assemblies executed in the sandbox and assemblies executed
directly. If you have benchmarks showing how big the difference is please share them.

Calling Assemblies

Assemblies are called with the api_call view in the api_prototype module.

api_call checks in the api module if there is a directly executable version of the assembly. If there
is none load_api is called.

Executing Jobs

API calls can save documents of different type. The “type”: “job” is special as it is the type of a document
describing a scheduled job. A job scheduled this way gets executed immediately after the request saving the
document is finished. The scheduling document must have the following structure:

	“type”: “job”

	“data”: A dictionary containing the following attributes and data:
	“assembly_user”: The username of the author of the assembly.

	“assembly_name”: The name of the assembly.

	“job_name”: The name of the job.

After each finished request Django calls check_for_jobs.

The Sandbox

The Pinyto sandbox is used if safely_exec is called.

safely_exec starts a process and executes sandbox there.

The process executing sandbox creates a new instance of SecureHost. The initialization of this class
forks the sandbox process into two parts:

	The host process which has access to the database the request and the services.

	The child which has only a pipe to communicate to the host process. All open file descriptors in the child
process get closed and the database, request and service objects get replaced by sandbox versions. Those
sandbox versions of the services have the same signatures but communicate only to the host process which
asks the real services for answers which get returned into the child process. This is done because the
sandbox is secured using seccomp and seccomp only allows reading an writing to already open file
descriptors. The access to any other function of the kernel is blocked by the kernel. If the exec call
in the child process tries to do anything other than calculations with the data in its memory or
communication to the services over the pipe to the host process it will get terminated by the kernel.

There are some helper functions and classes which may be relevant for understanding how the sandbox works:

	
api_prototype.sandbox_helpers.libc_exit(n=1)[source]

	Invoke _exit(2) system call.

	Parameters:	n (int [http://docs.python.org/library/functions.html#int]) –

	
api_prototype.sandbox_helpers.read_exact(fp, n)[source]

	Read only the specified number of bytes

	Parameters:	
	fp (file [http://docs.python.org/library/functions.html#file]) – file pointer

	n (int [http://docs.python.org/library/functions.html#int]) – number of bytes to read

	Return type:	bytes

	
api_prototype.sandbox_helpers.write_exact(fp, s)[source]

	Write only the specified number of bytes

	Parameters:	
	fp (file [http://docs.python.org/library/functions.html#file]) – file pointer

	s (bytes) – string to write and not a byte more than that

	
api_prototype.sandbox_helpers.write_to_pipe(pipe, data_dict)[source]

	Writes the data_dict to the give pipe.

	Parameters:	
	pipe (socket.Socket) – one part of socket.socketpair()

	data_dict (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	
api_prototype.sandbox_helpers.read_from_pipe(pipe)[source]

	Reads a json string from the pipe and decodes the json of that string.

	Parameters:	pipe (socket.Socket) – one part of socket.socketpair()

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
api_prototype.sandbox_helpers.escape_all_objectids_and_datetime(conv_dict)[source]

	This function escapes all ObjectId objects to make the dict json serializable.

	Parameters:	conv_dict (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	
api_prototype.sandbox_helpers.unescape_all_objectids_and_datetime(conv_dict)[source]

	This function reverses the escape of all ObjectId objects done by escape_all_objectids_and_datetime.

	Parameters:	conv_dict (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	
api_prototype.sandbox_helpers.piped_command(pipe, command_dict)[source]

	Writes the command_dict to the pipe end reads the answer.

	Parameters:	
	pipe (socket.Socket) – one part of socket.socketpair()

	command_dict (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	
class api_prototype.sandbox_helpers.NoResponseFromHostException[source]

	This is a custom exception which gets returned if no valid response is returned.

	
class api_prototype.models.SandboxCollectionWrapper(child_pipe)[source]

	This wrapper is user to expose the db to the users assemblies.
This is the class with the same methods to be used in the sandbox.

	
count(query)[source]

	Use this function to get a count from the database.

	Parameters:	query (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Returns:	The number of documents matching the query

	Return type:	int [http://docs.python.org/library/functions.html#int]

	
find(query, skip=0, limit=0, sorting=None, sort_direction='asc')[source]

	Use this function to read from the database. This method
encodes all fields beginning with _ for returning a valid
json response.

	Parameters:	
	query (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	skip (int [http://docs.python.org/library/functions.html#int]) – Count of documents which should be skipped in the query. This is useful for pagination.

	limit (int [http://docs.python.org/library/functions.html#int]) – Number of documents which should be returned. This number is of course the maximum.

	sorting (str [http://docs.python.org/library/functions.html#str]) – String identifying the key which is used for sorting.

	sort_direction (str [http://docs.python.org/library/functions.html#str]) – ‘asc’ or ‘desc’

	Returns:	The list of found documents. If no document is found the list is empty.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
find_distinct(query, attribute)[source]

	Return a list representing the diversity of a given attribute in
the documents matched by the query.

	Parameters:	
	query (str [http://docs.python.org/library/functions.html#str]) – json

	attribute (str [http://docs.python.org/library/functions.html#str]) – String describing the attribute

	Returns:	A list of values the attribute can have in the set of documents described by the query

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
find_document_for_id(document_id)[source]

	Find the document with the given ID in the database. On
success this returns a single document.

	Parameters:	document_id (string [http://docs.python.org/library/string.html#module-string]) –

	Returns:	The document with the given _id

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
find_documents(query, skip=0, limit=0, sorting=None, sort_direction='asc')[source]

	Use this function to read from the database. This method
returns complete documents with _id fields. Do not use this
to construct json responses!

	Parameters:	
	query (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	skip (int [http://docs.python.org/library/functions.html#int]) – Count of documents which should be skipped in the query. This is useful for pagination.

	limit (int [http://docs.python.org/library/functions.html#int]) – Number of documents which should be returned. This number is of course the maximum.

	sorting (str [http://docs.python.org/library/functions.html#str]) – String identifying the key which is used for sorting.

	sort_direction (str [http://docs.python.org/library/functions.html#str]) – ‘asc’ or ‘desc’

	Returns:	The list of found documents. If no document is found the list is empty.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
insert(document)[source]

	Inserts a document. If the given document has a ID the
ID is removed and a new ID will be generated. Time will
be set to now.

	Parameters:	document (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Returns:	The ObjectId of the insrted document

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
remove(document)[source]

	Deletes the document. The document must have a valid _id

	Parameters:	document (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	
save(document)[source]

	Saves the document. The document must have a valid _id

	Parameters:	document (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Returns:	The ObjectId of the insrted document

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
class api_prototype.models.SandboxRequestPost(child_pipe)[source]

	This wrapper is used to expose Django’s request object to the users assemblies.
This class implements the most used methods of the request object.

This class is used to emulate request.POST

	
get(param)[source]

	Returns the specified param

	Parameters:	param (str [http://docs.python.org/library/functions.html#str]) –

	
class api_prototype.models.SandboxRequest(child_pipe)[source]

	This wrapper is user to expose Django’s request object to the users assemblies.
This class implements the most used methods of the request object.

	
init_body()[source]

	This needs to be called after the seccomp process is initialized to fill in valid body data for the request.

	
class api_prototype.models.CanNotCreateNewInstanceInTheSandbox(class_name)[source]

	This Exception is thrown if a script wants to create an object of a class
that can not be created in the sandbox.

	
class api_prototype.models.Factory(pipe_child_end)[source]

	Use this factory to create objects in the sandboxed process. Just
pass the class name to the create method.

	
create(class_name, *args)[source]

	This method will create an object of the class of classname
with the arguments supplied after that. If the class can not
be created in the sandbox it throws an Exception.

	Parameters:	
	class_name (str [http://docs.python.org/library/functions.html#str]) –

	args – additional arguments

	Returns:	Objects of the type specified in class_name

	Return type:	Object

	
class api_prototype.models.SandboxParseHtml(pipe_child_end, html)[source]

	This wrapper is user to expose html parsing functionality to the sandbox.
This is the ParseHtml class with the same methods to be used in the sandbox.

	
contains(descriptions)[source]

	Use this function to check if the html contains the described tag.
The descriptions must be a list of python dictionaries with
{'tag': 'tagname', 'attrs': dict}

	Parameters:	descriptions (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Return type:	boolean

	
find_element_and_collect_table_like_information(descriptions, searched_information)[source]

	If you are retrieving data from websites you might need to get the contents
of a table or a similar structure. This is the function to get that information.
The descriptions must be a list of python dictionaries with
{'tag': 'tag name', 'attrs': dict}. The last description in this list will
be used for a findAll of that element. This should select all the rows of the
table you want to read.
specify all the information you are searching for in searched_information in the
following format: {'name': {'search tag': 'td', 'search attrs': dict,
'captions': ['list', 'of', 'captions'], 'content tag': 'td', 'content attrs': dict},
'next name': ...}

	Parameters:	
	descriptions (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	searched_information (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
find_element_and_get_attribute_value(descriptions, attribute)[source]

	Use this function to find the described tag and return the value from
attribute if the tag is found. Returns empty string if the tag or the
attribute is not found.
The descriptions must be a list of python dictionaries with
{'tag': 'tag name', 'attrs': dict}

	Parameters:	
	descriptions (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	attribute (str [http://docs.python.org/library/functions.html#str]) –

	Returns:	string or list if attribute is class

	
class api_prototype.models.SandboxHttp(pipe_child_end)[source]

	This wrapper is user to expose http requests to the sandbox.
This is the Http class with the same methods to be used in the sandbox.

	
get(url)[source]

	This issues a http request to the supplied url and returns
the response as a string. If the request fails an empty
string is returned.

	Parameters:	url – Url with http:// or https:// at the beginning

	Type:	str

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
post(url, data)[source]

	This issues a http request to the supplied url and returns
the response as a string. If the request fails an empty
string is returned.

	Parameters:	
	url (str [http://docs.python.org/library/functions.html#str]) – Url with http:// or https:// at the beginning

	data (dict [http://docs.python.org/library/stdtypes.html#dict]) – payload data

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
class api_prototype.sandbox_helpers.EmptyRequest[source]

	This class is used for processing jobs. They need request.body but it can be empty.

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pinyto-Cloud 1.0-alpha1 documentation

Services

Assemblies can only access some services explicitly exposed to them because the sandbox can not allow arbitrary
calls to any library. The services integrated in Pinyto also try to be easy and pleasurable to use.

The database wrapper is already explained in the Database section.

Response Helper

Most requests in pinyto expect a response in the form of a HttpResponse object with type “application/json” and
a JSON encoded string as payload. Because this is so common an easy to use helper function is used:

	
service.response.json_response(data)[source]

	Returns the json as string with correct mimetype.

@param data: dict
@return: HttpResponse

Factory

In assemblies it is not allowed to include python modules or classes. Service classes can be instantiated using
the Factory class which is accessible.

	
class service.models.Factory[source]

	Use this factory to create objects in outside the sandboxed
process. Just pass the class name to the create method.

	
static create(class_name, *args)[source]

	This method will create an object of the class of classname
with the arguments supplied after that. If the class can not
be created in the sandbox it throws an Exception. The Exception
gets thrown even if this is not executed inside the sandbox
because every code should be executable in the sandbox.

	Parameters:	
	class_name (str [http://docs.python.org/library/functions.html#str]) –

	args – additional arguments

	Returns:	Objects of the type specified in class_name

	Return type:	Object

The factory can create the following classes:

	Http

	ParseHtml

Http

Http uses internally the requests library from Apache.

	
class service.http.Http[source]

	Objects of this class can be used to connect to remote websites.

	
static get(url)[source]

	This issues a http request to the supplied url and returns
the response as a string. If the request fails an empty
string is returned.

	Parameters:	url – Url with http:// or https:// at the beginning

	Type:	str

	Return type:	str [http://docs.python.org/library/functions.html#str]

	
static post(url='', data=None)[source]

	This issues a http request to the supplied url and returns
the response as a string. If the request fails an empty
string is returned.

For the params do not forget to add an @ to the beginning of each param name.

	Parameters:	
	url (str [http://docs.python.org/library/functions.html#str]) – Url with http:// or https:// at the beginning

	data (dict [http://docs.python.org/library/stdtypes.html#dict]) – payload data

	Return type:	str [http://docs.python.org/library/functions.html#str]

ParseHtml

ParseHtml is based on BeautifulSoup version 4. The interface is quite different as the wrapper does not use
a fluid interface.

	
class service.parsehtml.ParseHtml(html)[source]

	Use this service to get information from html documents.

	
contains(descriptions)[source]

	Use this function to check if the html contains the described tag.
The descriptions must be a list of python dictionaries with
{'tag': 'tagname', 'attrs': dict}

	Parameters:	descriptions (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Return type:	boolean

	
find_element_and_collect_table_like_information(descriptions, searched_information)[source]

	If you are retrieving data from websites you might need to get the contents
of a table or a similar structure. This is the function to get that information.
The descriptions must be a list of python dictionaries with
{'tag': 'tag name', 'attrs': dict}. The last description in this list will
be used for a findAll of that element. This should select all the rows of the
table you want to read.
specify all the information you are searching for in searched_information in the
following format: {'name': {'search tag': 'td', 'search attrs': dict,
'captions': ['list', 'of', 'captions'], 'content tag': 'td', 'content attrs': dict},
'next name': ...}

	Parameters:	
	descriptions (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	searched_information (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	
find_element_and_get_attribute_value(descriptions, attribute)[source]

	Use this function to find the described tag and return the value from
attribute if the tag is found. Returns empty string if the tag or the
attribute is not found.
The descriptions must be a list of python dictionaries with
{'tag': 'tag name', 'attrs': dict}

	Parameters:	
	descriptions (dict [http://docs.python.org/library/stdtypes.html#dict]) –

	attribute (str [http://docs.python.org/library/functions.html#str]) –

	Returns:	string or list if attribute is class

For this class the extract_content function from service.xml might become handy.

	
service.parsehtml.extract_content(tag)[source]

	Takes a tag and returns the string content without markup.

	Parameters:	tag – BeautifulSoup Tag

	Return type:	str [http://docs.python.org/library/functions.html#str]

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pinyto-Cloud 1.0-alpha1 documentation

 Python Module Index

 a |
 d |
 k |
 p |
 s

 			

 		
 a	

 	[image: -]
 	
 api_prototype	

 	
 	
 api_prototype.models	

 	
 	
 api_prototype.sandbox	

 	
 	
 api_prototype.sandbox_helpers	

 	
 	
 api_prototype.seccomp_process	

 	
 	
 api_prototype.views	

 			

 		
 d	

 	[image: -]
 	
 database	

 	
 	
 database.views	

 			

 		
 k	

 	[image: -]
 	
 keyserver	

 	
 	
 keyserver.models	

 	
 	
 keyserver.urls	

 	
 	
 keyserver.views	

 			

 		
 p	

 	[image: -]
 	
 pinytoCloud	

 	
 	
 pinytoCloud.models	

 	
 	
 pinytoCloud.urls	

 	
 	
 pinytoCloud.views	

 			

 		
 s	

 	[image: -]
 	
 service	

 	
 	
 service.database	

 	
 	
 service.http	

 	
 	
 service.models	

 	
 	
 service.parsehtml	

 	
 	
 service.response	

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Pinyto-Cloud 1.0-alpha1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | N
 | P
 | R
 | S
 | U
 | W

A

 	

 	api_prototype.models (module)

 	api_prototype.sandbox (module)

 	api_prototype.sandbox_helpers (module), [1]

 	

 	api_prototype.seccomp_process (module)

 	api_prototype.views (module)

C

 	

 	CanNotCreateNewInstanceInTheSandbox (class in api_prototype.models)

 	CollectionWrapper (class in service.database)

 	contains() (api_prototype.models.SandboxParseHtml method)

 	

 	(service.parsehtml.ParseHtml method)

 	

 	count() (api_prototype.models.SandboxCollectionWrapper method)

 	

 	(service.database.CollectionWrapper method)

 	create() (api_prototype.models.Factory method)

 	

 	(service.models.Factory static method)

D

 	

 	database.views (module)

E

 	

 	EmptyRequest (class in api_prototype.sandbox_helpers)

 	encode_underscore_fields() (in module service.database)

 	encode_underscore_fields_list() (in module service.database)

 	

 	escape_all_objectids_and_datetime() (in module api_prototype.sandbox_helpers)

 	extract_content() (in module service.parsehtml)

F

 	

 	Factory (class in api_prototype.models)

 	

 	(class in service.models)

 	find() (api_prototype.models.SandboxCollectionWrapper method)

 	

 	(service.database.CollectionWrapper method)

 	find_distinct() (api_prototype.models.SandboxCollectionWrapper method)

 	

 	(service.database.CollectionWrapper method)

 	find_document_for_id() (api_prototype.models.SandboxCollectionWrapper method)

 	

 	(service.database.CollectionWrapper method)

 	

 	find_documents() (api_prototype.models.SandboxCollectionWrapper method)

 	

 	(service.database.CollectionWrapper method)

 	find_element_and_collect_table_like_information() (api_prototype.models.SandboxParseHtml method)

 	

 	(service.parsehtml.ParseHtml method)

 	find_element_and_get_attribute_value() (api_prototype.models.SandboxParseHtml method)

 	

 	(service.parsehtml.ParseHtml method)

G

 	

 	get() (api_prototype.models.SandboxHttp method)

 	

 	(api_prototype.models.SandboxRequestPost method)

 	(service.http.Http static method)

H

 	

 	Http (class in service.http)

I

 	

 	init_body() (api_prototype.models.SandboxRequest method)

 	inject_object_id() (in module service.database)

 	

 	insert() (api_prototype.models.SandboxCollectionWrapper method)

 	

 	(service.database.CollectionWrapper method)

J

 	

 	json_response() (in module service.response)

K

 	

 	keyserver.models (module)

 	keyserver.urls (module)

 	

 	keyserver.views (module)

L

 	

 	libc_exit() (in module api_prototype.sandbox_helpers)

N

 	

 	NoResponseFromHostException (class in api_prototype.sandbox_helpers)

P

 	

 	ParseHtml (class in service.parsehtml)

 	pinytoCloud.models (module)

 	pinytoCloud.urls (module)

 	

 	pinytoCloud.views (module)

 	piped_command() (in module api_prototype.sandbox_helpers)

 	post() (api_prototype.models.SandboxHttp method)

 	

 	(service.http.Http static method)

R

 	

 	read_exact() (in module api_prototype.sandbox_helpers)

 	read_from_pipe() (in module api_prototype.sandbox_helpers)

 	

 	remove() (api_prototype.models.SandboxCollectionWrapper method)

 	

 	(service.database.CollectionWrapper method)

S

 	

 	SandboxCollectionWrapper (class in api_prototype.models)

 	SandboxHttp (class in api_prototype.models)

 	SandboxParseHtml (class in api_prototype.models)

 	SandboxRequest (class in api_prototype.models)

 	SandboxRequestPost (class in api_prototype.models)

 	save() (api_prototype.models.SandboxCollectionWrapper method)

 	

 	(service.database.CollectionWrapper method)

 	

 	service.database (module)

 	service.http (module)

 	service.models (module)

 	service.parsehtml (module), [1]

 	service.response (module)

U

 	

 	unescape_all_objectids_and_datetime() (in module api_prototype.sandbox_helpers)

 	

 	urlpatterns (in module keyserver.urls)

 	

 	(in module pinytoCloud.urls)

W

 	

 	write_exact() (in module api_prototype.sandbox_helpers)

 	

 	write_to_pipe() (in module api_prototype.sandbox_helpers)

 Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

 _modules/service/http.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 		Module code »

 Source code for service.http

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

import requests
from requests.exceptions import RequestException, ConnectionError, HTTPError

[docs]class Http():
 """
 Objects of this class can be used to connect to remote websites.
 """
 def __init__(self):
 pass

 @staticmethod
[docs] def get(url):
 """
 This issues a http request to the supplied url and returns
 the response as a string. If the request fails an empty
 string is returned.

 :param url: Url with http:// or https:// at the beginning
 :type: str
 :rtype: str
 """
 try:
 response = requests.get(url)
 except RequestException or ConnectionError or HTTPError:
 return ""
 if response.status_code != requests.codes.ok:
 return ""
 return response.text

 @staticmethod
[docs] def post(url="", data=None):
 """
 This issues a http request to the supplied url and returns
 the response as a string. If the request fails an empty
 string is returned.

 For the params do not forget to add an @ to the beginning of each param name.

 :param url: Url with http:// or https:// at the beginning
 :type url: str
 :param data: payload data
 :type data: dict
 :rtype: str
 """
 try:
 response = requests.post(url, data=data)
 except RequestException or ConnectionError or HTTPError:
 return ""
 if response.status_code != requests.codes.ok:
 return ""
 return response.text

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

_modules/service/xml.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 		Module code »

 Source code for service.xml

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

from bs4 import NavigableString

[docs]def extract_content(tag):
 """
 Takes a tag and returns the string content without markup.

 :param tag: BeautifulSoup Tag
 :rtype: str
 """
 content = ''
 if not tag:
 return content
 for c in tag.contents:
 if not isinstance(c, NavigableString):
 content += extract_content(c)
 else:
 content += ' ' + str(c) + ' '
 return ' '.join(content.split())

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 All modules for which code is available

		api_prototype.models

		api_prototype.sandbox_helpers

		service.database

		service.http

		service.models

		service.parsehtml

		service.response

		service.xml

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

_modules/api_prototype/sandbox_helpers.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 		Module code »

 Source code for api_prototype.sandbox_helpers

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

import cffi
import os
import json
import struct
from pymongo.son_manipulator import ObjectId
from datetime import datetime
from time import mktime

_ffi = cffi.FFI()
_ffi.cdef('void _exit(int);')
_libc = _ffi.dlopen(None)

[docs]def libc_exit(n=1):
 """
 Invoke _exit(2) system call.

 :param n:
 :type n: int
 """
 _libc._exit(n)

[docs]def read_exact(fp, n):
 """
 Read only the specified number of bytes

 :param fp: file pointer
 :type fp: file
 :param n: number of bytes to read
 :type n: int
 :rtype: bytes
 """
 buf = b''
 while len(buf) < n:
 buf2 = os.read(fp.fileno(), n)
 if not buf2:
 libc_exit(123)
 buf += buf2
 return buf

[docs]def write_exact(fp, s):
 """
 Write only the specified number of bytes

 :param fp: file pointer
 :type fp: file
 :param s: string to write and not a byte more than that
 :type s: bytes
 """
 done = 0
 while done < len(s):
 written = os.write(fp.fileno(), s[done:])
 if not written:
 libc_exit(123)
 done += written

[docs]def write_to_pipe(pipe, data_dict):
 """
 Writes the data_dict to the give pipe.

 :param pipe: one part of socket.socketpair()
 :type pipe: socket.Socket
 :param data_dict:
 :type data_dict: dict
 """
 data_json = json.dumps(data_dict).encode('utf-8')
 write_exact(pipe, struct.pack('>L', len(data_json)))
 write_exact(pipe, data_json)

[docs]def read_from_pipe(pipe):
 """
 Reads a json string from the pipe and decodes the json of that string.

 :param pipe: one part of socket.socketpair()
 :type pipe: socket.Socket
 :rtype: dict
 """
 sz, = struct.unpack('>L', read_exact(pipe, 4))
 return json.loads(str(read_exact(pipe, sz), encoding='utf-8'))

[docs]def escape_all_objectids_and_datetime(conv_dict):
 """
 This function escapes all ObjectId objects to make the dict json serializable.

 :param conv_dict:
 :type conv_dict: dict
 """
 for key in conv_dict.keys():
 if type(conv_dict[key]) == dict:
 conv_dict[key] = escape_all_objectids_and_datetime(conv_dict[key])
 elif type(conv_dict[key]) == ObjectId:
 conv_dict[key] = {'ObjectId': str(conv_dict[key])}
 elif type(conv_dict[key]) == datetime:
 conv_dict[key] = {'Datetime': mktime(conv_dict[key].timetuple())}
 return conv_dict

[docs]def unescape_all_objectids_and_datetime(conv_dict):
 """
 This function reverses the escape of all ObjectId objects done by escape_all_objectids_and_datetime.

 :param conv_dict:
 :type conv_dict: dict
 """
 for key in conv_dict.keys():
 if type(conv_dict[key]) == dict:
 if 'ObjectId' in conv_dict[key]:
 conv_dict[key] = ObjectId(conv_dict[key]['ObjectId'])
 elif 'Datetime' in conv_dict[key]:
 conv_dict[key] = datetime.fromtimestamp(conv_dict[key]['Datetime'])
 else:
 conv_dict[key] = unescape_all_objectids_and_datetime(conv_dict[key])
 return conv_dict

[docs]def piped_command(pipe, command_dict):
 """
 Writes the command_dict to the pipe end reads the answer.

 :param pipe: one part of socket.socketpair()
 :type pipe: socket.Socket
 :param command_dict:
 :type command_dict: dict
 """
 write_to_pipe(pipe, command_dict)
 answer = read_from_pipe(pipe)
 if 'response' in answer:
 return answer['response']
 else:
 raise NoResponseFromHostException(
 str(command_dict) + ' returned no valid response. ' +
 'This means the host process lacks an implementation for this command.')

[docs]class NoResponseFromHostException(Exception):
 """
 This is a custom exception which gets returned if no valid response is returned.
 """

[docs]class EmptyRequest():
 """
 This class is used for processing jobs. They need request.body but it can be empty.
 """
 def __init__(self):
 self.body = ""

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

_static/plus.png

_modules/service/models.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 		Module code »

 Source code for service.models

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

from api_prototype.models import CanNotCreateNewInstanceInTheSandbox
from service.parsehtml import ParseHtml
from service.http import Http

[docs]class Factory():
 """
 Use this factory to create objects in outside the sandboxed
 process. Just pass the class name to the create method.
 """

 def __init__(self):
 pass

 @staticmethod
[docs] def create(class_name, *args):
 """
 This method will create an object of the class of classname
 with the arguments supplied after that. If the class can not
 be created in the sandbox it throws an Exception. The Exception
 gets thrown even if this is not executed inside the sandbox
 because every code should be executable in the sandbox.

 :param class_name:
 :type class_name: str
 :param args: additional arguments
 :return: Objects of the type specified in class_name
 :rtype: Object
 """
 if class_name == 'ParseHtml':
 return ParseHtml(*args)
 elif class_name == 'Http':
 return Http()
 raise CanNotCreateNewInstanceInTheSandbox(class_name)

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

_modules/service/database.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 		Module code »

 Source code for service.database

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

from pymongo.son_manipulator import ObjectId
from pymongo.errors import InvalidId
from pymongo import ASCENDING, DESCENDING
from datetime import datetime

[docs]class CollectionWrapper(object):
 """
 This wrapper is user to expose the db to the users assemblies.
 """
 def __init__(self, collection, assembly_name, only_own_data=True):
 self.db = collection
 self.assembly_name = assembly_name
 self.only_own_data = only_own_data

[docs] def find(self, query, skip=0, limit=0, sorting=None, sort_direction='asc'):
 """
 Use this function to read from the database. This method
 encodes all fields beginning with _ for returning a valid
 json response.

 :param query:
 :type query: dict
 :param skip: Count of documents which should be skipped in the query. This is useful for pagination.
 :type skip: int
 :param limit: Number of documents which should be returned. This number is of course the maximum.
 :type limit: int
 :param sorting: String identifying the key which is used for sorting.
 :type sorting: str
 :param sort_direction: 'asc' or 'desc'
 :type sort_direction: str
 :return: The list of found documents. If no document is found the list is empty.
 :rtype: list
 """
 if self.only_own_data:
 query['assembly'] = self.assembly_name
 return encode_underscore_fields_list(self.find_documents(
 inject_object_id(query),
 skip=skip,
 limit=limit,
 sorting=sorting,
 sort_direction=sort_direction
))

[docs] def count(self, query):
 """
 Use this function to get a count from the database.

 :param query:
 :type query: dict
 :return: The number of documents matching the query
 :rtype: int
 """
 if self.only_own_data:
 query['assembly'] = self.assembly_name
 try:
 count = self.db.find(inject_object_id(query)).count()
 except InvalidId:
 count = -1
 return count

[docs] def find_documents(self, query, skip=0, limit=0, sorting=None, sort_direction='asc'):
 """
 Use this function to read from the database. This method
 returns complete documents with _id fields. Do not use this
 to construct json responses!

 :param query:
 :type query: dict
 :param skip: Count of documents which should be skipped in the query. This is useful for pagination.
 :type skip: int
 :param limit: Number of documents which should be returned. This number is of course the maximum.
 :type limit: int
 :param sorting: String identifying the key which is used for sorting.
 :type sorting: str
 :param sort_direction: 'asc' or 'desc'
 :type sort_direction: str
 :return: The list of found documents. If no document is found the list is empty.
 :rtype: list
 """
 if self.only_own_data:
 query['assembly'] = self.assembly_name
 if sort_direction == 'desc':
 sort_direction = DESCENDING
 else:
 sort_direction = ASCENDING
 if sorting:
 return self.db.find(inject_object_id(query), skip=skip, limit=limit, sort=[(sorting, sort_direction)])
 else:
 return self.db.find(inject_object_id(query), skip=skip, limit=limit)

[docs] def find_document_for_id(self, document_id):
 """
 Find the document with the given ID in the database. On
 success this returns a single document.

 :param document_id:
 :type document_id: string
 :return: The document with the given _id
 :rtype: dict
 """
 if self.only_own_data:
 return self.db.find_one(inject_object_id({'_id': document_id, 'assembly': self.assembly_name}))
 else:
 return self.db.find_one(inject_object_id({'_id': document_id}))

[docs] def find_distinct(self, query, attribute):
 """
 Return a list representing the diversity of a given attribute in
 the documents matched by the query.

 :param query: json
 :type query: str
 :param attribute: String describing the attribute
 :type attribute: str
 :return: A list of values the attribute can have in the set of documents described by the query
 :rtype: list
 """
 if self.only_own_data:
 query['assembly'] = self.assembly_name
 return self.db.find(inject_object_id(query)).distinct(attribute)

[docs] def save(self, document):
 """
 Saves the document. The document must have a valid _id

 :param document:
 :type document: dict
 :return: The ObjectId of the insrted document
 :rtype: str
 """
 document['assembly'] = self.assembly_name
 if not isinstance(document['_id'], ObjectId):
 document['_id'] = ObjectId(document['_id'])
 return str(self.db.save(document))

[docs] def insert(self, document):
 """
 Inserts a document. If the given document has a ID the
 ID is removed and a new ID will be generated. Time will
 be set to now.

 :param document:
 :type document: dict
 :return: The ObjectId of the insrted document
 :rtype: str
 """
 if '_id' in document:
 del document['_id']
 document['time'] = datetime.utcnow()
 document['assembly'] = self.assembly_name
 return str(self.db.insert(document))

[docs] def remove(self, document):
 """
 Deletes the document. The document must have a valid _id

 :param document:
 :type document: dict
 """
 if self.only_own_data:
 self.db.remove(spec_or_id=inject_object_id({"_id": document['_id'], 'assembly': self.assembly_name}))
 else:
 self.db.remove(spec_or_id=inject_object_id({"_id": document['_id']}))

[docs]def encode_underscore_fields(data):
 """
 Removes _id

 :param data:
 :type data: dict
 :rtype: dict
 """
 converted = {}
 for key in data:
 if key[0] != '_':
 if key == 'time':
 converted[key] = str(data[key])
 else:
 converted[key] = data[key]
 else:
 converted[key] = str(data[key])
 return converted

[docs]def encode_underscore_fields_list(data_list):
 """
 Removes _id for every dict in the list

 :param data_list:
 :type data_list: list
 :rtype: list
 """
 converted_list = []
 for item in data_list:
 converted_list.append(encode_underscore_fields(item))
 return converted_list

[docs]def inject_object_id(query):
 """
 Traverses all fields of the query dict and converts all '_id' to ObjectId instances.

 :param query:
 :type query: dict
 :rtype: dict
 """
 if isinstance(query, list):
 for index, value in enumerate(query):
 if isinstance(value, dict) or isinstance(value, list):
 query[index] = inject_object_id(value)
 else:
 for key in query:
 if key == '_id' and not isinstance(query[key], ObjectId):
 query[key] = ObjectId(query[key])
 if isinstance(query[key], dict) or isinstance(query[key], list):
 query[key] = inject_object_id(query[key])
 return query

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

_modules/api_prototype/models.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 		Module code »

 Source code for api_prototype.models

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

from api_prototype.sandbox_helpers import piped_command
from api_prototype.sandbox_helpers import escape_all_objectids_and_datetime
from api_prototype.sandbox_helpers import unescape_all_objectids_and_datetime

[docs]class SandboxCollectionWrapper(object):
 """
 This wrapper is user to expose the db to the users assemblies.
 This is the class with the same methods to be used in the sandbox.
 """

 def __init__(self, child_pipe):
 self.child = child_pipe

[docs] def find(self, query, skip=0, limit=0, sorting=None, sort_direction='asc'):
 """
 Use this function to read from the database. This method
 encodes all fields beginning with _ for returning a valid
 json response.

 :param query:
 :type query: dict
 :param skip: Count of documents which should be skipped in the query. This is useful for pagination.
 :type skip: int
 :param limit: Number of documents which should be returned. This number is of course the maximum.
 :type limit: int
 :param sorting: String identifying the key which is used for sorting.
 :type sorting: str
 :param sort_direction: 'asc' or 'desc'
 :type sort_direction: str
 :return: The list of found documents. If no document is found the list is empty.
 :rtype: list
 """
 return piped_command(self.child, {'db.find': {
 'query': query,
 'skip': skip,
 'limit': limit,
 'sorting': sorting,
 'sort_direction': sort_direction
 }})

[docs] def count(self, query):
 """
 Use this function to get a count from the database.

 :param query:
 :type query: dict
 :return: The number of documents matching the query
 :rtype: int
 """
 return int(piped_command(self.child, {'db.count': {'query': query}}))

[docs] def find_documents(self, query, skip=0, limit=0, sorting=None, sort_direction='asc'):
 """
 Use this function to read from the database. This method
 returns complete documents with _id fields. Do not use this
 to construct json responses!

 :param query:
 :type query: dict
 :param skip: Count of documents which should be skipped in the query. This is useful for pagination.
 :type skip: int
 :param limit: Number of documents which should be returned. This number is of course the maximum.
 :type limit: int
 :param sorting: String identifying the key which is used for sorting.
 :type sorting: str
 :param sort_direction: 'asc' or 'desc'
 :type sort_direction: str
 :return: The list of found documents. If no document is found the list is empty.
 :rtype: list
 """
 return [unescape_all_objectids_and_datetime(item) for item in piped_command(
 self.child,
 {
 'db.find_documents': {
 'query': query,
 'skip': skip,
 'limit': limit,
 'sorting': sorting,
 'sort_direction': sort_direction
 }
 }
)]

[docs] def find_document_for_id(self, document_id):
 """
 Find the document with the given ID in the database. On
 success this returns a single document.

 :param document_id:
 :type document_id: string
 :return: The document with the given _id
 :rtype: dict
 """
 return unescape_all_objectids_and_datetime(
 piped_command(
 self.child,
 {'db.find_document_for_id': escape_all_objectids_and_datetime({'document_id': document_id})}
)
)

[docs] def find_distinct(self, query, attribute):
 """
 Return a list representing the diversity of a given attribute in
 the documents matched by the query.

 :param query: json
 :type query: str
 :param attribute: String describing the attribute
 :type attribute: str
 :return: A list of values the attribute can have in the set of documents described by the query
 :rtype: list
 """
 return piped_command(self.child, {'db.find_distinct': {'query': query, 'attribute': attribute}})

[docs] def save(self, document):
 """
 Saves the document. The document must have a valid _id

 :param document:
 :type document: dict
 :return: The ObjectId of the insrted document
 :rtype: str
 """
 document = escape_all_objectids_and_datetime(document)
 return piped_command(self.child, {'db.save': {'document': document}})

[docs] def insert(self, document):
 """
 Inserts a document. If the given document has a ID the
 ID is removed and a new ID will be generated. Time will
 be set to now.

 :param document:
 :type document: dict
 :return: The ObjectId of the insrted document
 :rtype: str
 """
 document = escape_all_objectids_and_datetime(document)
 return piped_command(self.child, {'db.insert': {'document': document}})

[docs] def remove(self, document):
 """
 Deletes the document. The document must have a valid _id

 :param document:
 :type document: dict
 """
 document = escape_all_objectids_and_datetime(document)
 return piped_command(self.child, {'db.remove': {'document': document}})

[docs]class SandboxRequestPost(object):
 """
 This wrapper is used to expose Django's request object to the users assemblies.
 This class implements the most used methods of the request object.

 This class is used to emulate request.POST
 """

 def __init__(self, child_pipe):
 self.child = child_pipe

 def __getitem__(self, item):
 """
 This enables array-like access
 """
 return piped_command(self.child, {'request.post.get': {'param': item}})

[docs] def get(self, param):
 """
 Returns the specified param

 :param param:
 :type param: str
 """
 return piped_command(self.child, {'request.post.get': {'param': param}})

[docs]class SandboxRequest(object):
 """
 This wrapper is user to expose Django's request object to the users assemblies.
 This class implements the most used methods of the request object.
 """

 def __init__(self, child_pipe):
 self.child = child_pipe
 self.POST = SandboxRequestPost(child_pipe)
 self.body = b""

[docs] def init_body(self):
 """
 This needs to be called after the seccomp process is initialized to fill in valid body data for the request.
 """
 self.body = piped_command(self.child, {'request.body': {}}).encode('utf-8')

[docs]class CanNotCreateNewInstanceInTheSandbox(Exception):
 """
 This Exception is thrown if a script wants to create an object of a class
 that can not be created in the sandbox.
 """
 def __init__(self, class_name):
 self.class_name = class_name

 def __str__(self):
 return "Objects of type " + self.class_name + "can not be instanciated in the sandbox."

[docs]class Factory():
 """
 Use this factory to create objects in the sandboxed process. Just
 pass the class name to the create method.
 """

 def __init__(self, pipe_child_end):
 self.pipe_child_end = pipe_child_end

[docs] def create(self, class_name, *args):
 """
 This method will create an object of the class of classname
 with the arguments supplied after that. If the class can not
 be created in the sandbox it throws an Exception.

 :param class_name:
 :type class_name: str
 :param args: additional arguments
 :return: Objects of the type specified in class_name
 :rtype: Object
 """
 if class_name == 'ParseHtml':
 return SandboxParseHtml(self.pipe_child_end, *args)
 elif class_name == 'Http':
 return SandboxHttp(self.pipe_child_end)
 raise CanNotCreateNewInstanceInTheSandbox(class_name)

[docs]class SandboxParseHtml():
 """
 This wrapper is user to expose html parsing functionality to the sandbox.
 This is the ParseHtml class with the same methods to be used in the sandbox.
 """

 def __init__(self, pipe_child_end, html):
 self.child = pipe_child_end
 self.target = piped_command(self.child, {'parsehtml.init': {'html': html}})

[docs] def contains(self, descriptions):
 """
 Use this function to check if the html contains the described tag.
 The descriptions must be a list of python dictionaries with
 ``{'tag': 'tagname', 'attrs': dict}``

 :param descriptions:
 :type descriptions: dict
 :rtype: boolean
 """
 return piped_command(
 self.child,
 {'parsehtml.contains': {
 'target': self.target,
 'descriptions': descriptions}})

[docs] def find_element_and_get_attribute_value(self, descriptions, attribute):
 """
 Use this function to find the described tag and return the value from
 attribute if the tag is found. Returns empty string if the tag or the
 attribute is not found.
 The descriptions must be a list of python dictionaries with
 ``{'tag': 'tag name', 'attrs': dict}``

 :param descriptions:
 :type descriptions: dict
 :param attribute:
 :type attribute: str
 :return: string or list if attribute is class
 """
 return piped_command(
 self.child,
 {'parsehtml.find_element_and_get_attribute_value': {
 'target': self.target,
 'descriptions': descriptions,
 'attribute': attribute}})

[docs] def find_element_and_collect_table_like_information(self, descriptions, searched_information):
 """
 If you are retrieving data from websites you might need to get the contents
 of a table or a similar structure. This is the function to get that information.
 The descriptions must be a list of python dictionaries with
 ``{'tag': 'tag name', 'attrs': dict}``. The last description in this list will
 be used for a findAll of that element. This should select all the rows of the
 table you want to read.
 specify all the information you are searching for in searched_information in the
 following format: ``{'name': {'search tag': 'td', 'search attrs': dict,``
 ``'captions': ['list', 'of', 'captions'], 'content tag': 'td', 'content attrs': dict},``
 ``'next name': ...}``

 :param descriptions:
 :type descriptions: dict
 :param searched_information:
 :type searched_information: dict
 :rtype: dict
 """
 return piped_command(
 self.child,
 {'parsehtml.find_element_and_collect_table_like_information': {
 'target': self.target,
 'descriptions': descriptions,
 'searched_information': searched_information}})

[docs]class SandboxHttp():
 """
 This wrapper is user to expose http requests to the sandbox.
 This is the Http class with the same methods to be used in the sandbox.
 """

 def __init__(self, pipe_child_end):
 self.child = pipe_child_end

[docs] def get(self, url):
 """
 This issues a http request to the supplied url and returns
 the response as a string. If the request fails an empty
 string is returned.

 :param url: Url with http:// or https:// at the beginning
 :type: str
 :rtype: str
 """
 return piped_command(
 self.child,
 {'https.get': {
 'url': url}})

[docs] def post(self, url, data):
 """
 This issues a http request to the supplied url and returns
 the response as a string. If the request fails an empty
 string is returned.

 :param url: Url with http:// or https:// at the beginning
 :type url: str
 :param data: payload data
 :type data: dict
 :rtype: str
 """
 return piped_command(
 self.child,
 {'https.post': {
 'url': url,
 'data': data}})

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

_modules/service/parsehtml.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 		Module code »

 Source code for service.parsehtml

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

from bs4 import BeautifulSoup
from service.xml import extract_content

[docs]class ParseHtml():
 """
 Use this service to get information from html documents.
 """
 def __init__(self, html):
 self.soup = BeautifulSoup(html, "html.parser")

[docs] def contains(self, descriptions):
 """
 Use this function to check if the html contains the described tag.
 The descriptions must be a list of python dictionaries with
 ``{'tag': 'tagname', 'attrs': dict}``

 :param descriptions:
 :type descriptions: dict
 :rtype: boolean
 """
 if type(descriptions) == dict:
 descriptions = [descriptions]
 if type(descriptions) != list:
 return ""
 element = self.soup
 for description in descriptions:
 if 'tag' not in description or not (type(description['tag']) == str or type(description['tag']) == bytes):
 return False
 attrs_dict = {}
 if 'attrs' in description and type(description['attrs']) == dict:
 attrs_dict = description['attrs']
 element = element.find(description['tag'], attrs=attrs_dict)
 if not element:
 return False
 return True

[docs] def find_element_and_get_attribute_value(self, descriptions, attribute):
 """
 Use this function to find the described tag and return the value from
 attribute if the tag is found. Returns empty string if the tag or the
 attribute is not found.
 The descriptions must be a list of python dictionaries with
 ``{'tag': 'tag name', 'attrs': dict}``

 :param descriptions:
 :type descriptions: dict
 :param attribute:
 :type attribute: str
 :return: string or list if attribute is class
 """
 if type(descriptions) == dict:
 descriptions = [descriptions]
 if type(descriptions) != list:
 return ""
 element = self.soup
 for description in descriptions:
 if 'tag' not in description or \
 not (type(description['tag']) == str or type(description['tag']) == bytes):
 return ""
 attrs_dict = {}
 if 'attrs' in description and type(description['attrs']) == dict:
 attrs_dict = description['attrs']
 element = element.find(description['tag'], attrs=attrs_dict)
 if not element:
 return ""
 if attribute in element.attrs:
 return element[attribute]
 else:
 return ""

[docs] def find_element_and_collect_table_like_information(self, descriptions, searched_information):
 """
 If you are retrieving data from websites you might need to get the contents
 of a table or a similar structure. This is the function to get that information.
 The descriptions must be a list of python dictionaries with
 ``{'tag': 'tag name', 'attrs': dict}``. The last description in this list will
 be used for a findAll of that element. This should select all the rows of the
 table you want to read.
 specify all the information you are searching for in searched_information in the
 following format: ``{'name': {'search tag': 'td', 'search attrs': dict,``
 ``'captions': ['list', 'of', 'captions'], 'content tag': 'td', 'content attrs': dict},``
 ``'next name': ...}``

 :param descriptions:
 :type descriptions: dict
 :param searched_information:
 :type searched_information: dict
 :rtype: dict
 """
 if type(descriptions) == dict:
 descriptions = [descriptions]
 if type(descriptions) != list:
 return {}
 element = self.soup
 rows = []
 for i, description in enumerate(descriptions):
 if 'tag' not in description or \
 not (type(description['tag']) == str or type(description['tag']) == bytes):
 return {}
 attrs_dict = {}
 if 'attrs' in description and type(description['attrs']) == dict:
 attrs_dict = description['attrs']
 if i < len(descriptions) - 1:
 element = element.find(description['tag'], attrs=attrs_dict)
 else:
 rows = element.find_all(description['tag'], attrs=attrs_dict, recursive=False)
 results = {}
 for row in rows:
 for key in searched_information:
 tag = 'td'
 if 'search tag' in searched_information[key]:
 tag = searched_information[key]['search tag']
 attrs_dict = {}
 if 'search attrs' in searched_information[key]:
 attrs_dict = searched_information[key]['search attrs']
 captions = []
 if 'captions' in searched_information[key]:
 captions = searched_information[key]['captions']
 caption_element = row.find(tag, attrs=attrs_dict)
 if extract_content(caption_element) in captions:
 if 'content tag' in searched_information[key]:
 tag = searched_information[key]['content tag']
 attrs_dict = {}
 if 'content attrs' in searched_information[key]:
 attrs_dict = searched_information[key]['content attrs']
 for element in row.find_all(tag, attrs=attrs_dict, recursive=False):
 if element != caption_element:
 results[key] = extract_content(element)
 break
 return results

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

_modules/service/response.html

 Navigation

 		
 index

 		
 modules |

 		Pinyto-Cloud 1.0-alpha1 documentation »

 		Module code »

 Source code for service.response

coding=utf-8
"""
Pinyto cloud - A secure cloud database for your personal data
Copyright (C) 2105 Johannes Merkert <jonny@pinyto.de>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""

from django.http import HttpResponse
import json

[docs]def json_response(data):
 """
 Returns the json as string with correct mimetype.

 @param data: dict
 @return: HttpResponse
 """
 return HttpResponse(json.dumps(data), content_type='application/json')

 © Copyright 2015, Johannes Merkert.
 Created using Sphinx 1.3.5.

