
php-opencloud Documentation
Release 1.12.1

Jamie Hannaford, Shaunak Kashyap

Jul 18, 2017





Contents

1 Installation 1

2 Services 3

3 Usage tips 131

4 Help and support 141

5 Contributing 143

i



ii



CHAPTER 1

Installation

You must install this library through Composer:

composer require rackspace/php-opencloud

If you do not have Composer installed, please consult the official docs.

Once you have installed the library, you will need to load Composer’s autoloader (which registers all the required
namespaces). To do this, place the following line of PHP code at the top of your application’s PHP files:

require 'vendor/autoload.php';

This assumes your application’s PHP files are located in the same folder as vendor/. If your files are located
elsewhere, please supply the path to vendor/autoload.php in the require statement above.

Read the getting-started-with-openstack or getting-started-with-rackspace to help you get started with basic Compute
operations.

Note: If you are running PHP 5.3, please see our using-php-5.3 guide.

1

https://getcomposer.org/doc/00-intro.md


php-opencloud Documentation, Release 1.12.1

2 Chapter 1. Installation



CHAPTER 2

Services

Auto Scale v2

Note: This service is only available for Rackspace users.

Setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

Auto Scale service

Now to instantiate the Auto Scale service:

$service = $client->autoscaleService();

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

3



php-opencloud Documentation, Release 1.12.1

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Groups

List all groups

$groups = $service->groupList();
foreach ($group as $group) {
/** @var $group OpenCloud\Autoscale\Resources\Group */

}

Please consult the iterator guide for more information about iterators.

Retrieve group by ID

$group = $service->group('{groupId}');

Create a new group

// Set the config object for this autoscale group; contains all of properties
// which determine its behaviour
$groupConfig = array(
'name' => 'new_autoscale_group',
'minEntities' => 5,
'maxEntities' => 25,
'cooldown' => 60,

);

// We need specify what is going to be launched. For now, we'll launch a new server
$launchConfig = array(

'type' => 'launch_server',
'args' => array(
'server' => array(

'flavorRef' => 3,
'name' => 'webhead',
'imageRef' => '0d589460-f177-4b0f-81c1-8ab8903ac7d8'

),
'loadBalancers' => array(
array('loadBalancerId' => 2200, 'port' => 8081),

)
)

);

// Do we want particular scaling policies?
$policy = array(

'name' => 'scale up by 10',
'change' => 10,
'cooldown' => 5,
'type' => 'webhook',

4 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

);

$group->create(array(
'groupConfiguration' => $groupConfig,
'launchConfiguration' => $launchConfig,
'scalingPolicies' => array($policy),

));

Delete a group

$group->delete();

Get the current state of the scaling group

$group->getState();

Group configurations

Setup

In order to interact with the functionality of a group’s configuration, you must first retrieve the details of the group
itself. To do this, you must substitute {groupId} for your group’s ID:

$group = $service->group('{groupId}');

Get group configuration

/** @var */
$groupConfig = $group->getGroupConfig();

Edit group configuration

$groupConfig->update(array(
'name' => 'New name!'

));

Get launch configuration

/** @var */
$launchConfig = $group->getLaunchConfig();

2.1. Auto Scale v2 5



php-opencloud Documentation, Release 1.12.1

Edit group/launch configuration

$launchConfig = $group->getLaunchConfig();

$server = $launchConfig->args->server;
$server->name = "BRAND NEW SERVER NAME";

$launchConfig->update(array
'args' => array(

'server' => $server,
'loadBalancers' => $launchConfig->args->loadBalancers

)
));

Scaling Policies

Setup

In order to interact with the functionality of a group’s scaling policies, you must first retrieve the details of the group
itself. To do this, you must substitute {groupId} for your group’s ID:

$group = $service->group('{groupId}');

Get all policies

$policies = $group->getScalingPolicies();

foreach ($policies as $policy) {
printf("Name: %s Type: %s\n", $policy->name, $policy->type);

}

Create new scaling policies

Creating policies is achieved through passing an array to the create method.

$policies = array(
array(
'name' => 'NEW NAME',
'change' => 1,
'cooldown' => 150,
'type' => 'webhook',

)
);

$group->createScalingPolicies($policies);

Get an existing scaling policy

6 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

$policy = $group->getScalingPolicy('{policyId}');

Update a scaling policy

$policy = $group->getScalingPolicy('{policyId}');
$policy->update(array(

'name' => 'More relevant name'
));

Delete a scaling policy

$policy = $group->getScalingPolicy('{policyId}');
$policy->delete();

Execute a scaling policy

$policy = $group->getScalingPolicy('{policyId}');
$policy->execute();

Webhooks

Setup

In order to interact with webhooks, you must first retrieve the details of the group and scaling policy you want to
execute:

$group = $service->group('{groupId}');
$policy = $group->getScalingPolicy('{policyId}');

Get all webhooks

$webhooks = $policy->getWebookList();

Create a new webhook

$policy->createWebhooks(array(
array(

'name' => 'Alice',
'metadata' => array(

'firstKey' => 'foo',
'secondKey' => 'bar'

)
)

));

2.1. Auto Scale v2 7



php-opencloud Documentation, Release 1.12.1

Get webhook

$webhook = $policy->getWebhook('{webhookId}');

Update webhook

// Update the metadata
$metadata = $webhook->metadata;
$metadata->thirdKey = 'blah';
$webhook->update(array(

'metadata' => $metadata
));

Delete webhook

Glossary

group The scaling group is at the heart of an Auto Scale deployment. The scaling group specifies the basic elements
of the Auto Scale configuration. It manages how many servers can participate in the scaling group. It also
specifies information related to load balancers if your configuration uses a load balancer.

group configuration Outlines the basic elements of the Auto Scale configuration. The group configuration manages
how many servers can participate in the scaling group. It sets a minimum and maximum limit for the number of
entities that can be used in the scaling process. It also specifies information related to load balancers.

launch configuration Creates a blueprint for how new servers will be created. The launch configuration specifies
what type of server image will be started on launch, what flavor the new server is, and which load balancer the
new server connects to.

policy Auto Scale uses policies to define the scaling activity that will take place, as well as when and how that
scaling activity will take place. Scaling policies specify how to modify the scaling group and its behavior. You
can specify multiple policies to manage a scaling group.

webhook A webhook is a reachable endpoint that when visited will execute a scaling policy for a particular scaling
group.

Further Links

• Getting Started Guide for the API

• API Developer Guide

• API release history

Compute v2

Setup

8 Chapter 2. Services

http://docs.rackspace.com/cas/api/v1.0/autoscale-gettingstarted/content/Overview.html
http://docs.rackspace.com/cas/api/v1.0/autoscale-devguide/content/Overview.html
http://docs.rackspace.com/cas/api/v1.0/autoscale-releasenotes/content/v2.html


php-opencloud Documentation, Release 1.12.1

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

Compute service

Now to instantiate the Compute service:

$service = $client->computeService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Images

Note: Images on Rackspace servers: with standard servers, the entire disk (OS and data) is captured in the image.
With Performance servers, only the s ystem disk is captured in the image. The data disks should be backed up using
Cloud Backup or Cloud Block Storage to ensure availability in case you need to rebuild or restore a server.

List images

Below is the simplest usage for retrieving a list of images:

2.2. Compute v2 9



php-opencloud Documentation, Release 1.12.1

$images = $service->imageList();

foreach ($images as $image) {

}

Get the executable PHP script for this example

Detailed results

By default, the only fields returned in a list call are id and name, but you can enable more detailed information to be
result by passing in true as the first argument of the call, like so:

$images = $service->imageList(true);

Filtering

You can also refine the list of images returned by providing specific filters:

Array
key

Description

server Filters the list of images by server. Specify the server reference by ID or by full URL.
name Filters the list of images by image name.
status Filters the list of images by status. In-flight images have a status of SAVING and the conditional

progress element contains a value from 0 to 100, which indicates the percentage completion. For a full
list, please consult the OpenCloud\Compute\Constants\ImageState class. Images with an
ACTIVE status are available for use.

changes-
since

Filters the list of images to those that have changed since the changes-since time. See the official docs
for more information.

marker The ID of the last item in the previous list. See the official docs for more information.
limit Sets the page size. See the official docs for more information.
type Filters base Rackspace images or any custom server images that you have created. Can either be BASE

or SNAPSHOT.

These are defined in an array and passed in as the second argument. For example, to filter images for a particular
server:

$images = $service->imageList(false, array('server' => '{serverId}'));

Retrieve details about an image

$image = $service->image('{imageId}');

Delete an image

$image->delete();

10 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/list_images.php
http://docs.rackspace.com/servers/api/v2/cs-devguide/content/ChangesSince.html
http://docs.rackspace.com/servers/api/v2/cs-devguide/content/Paginated_Collections-d1e664.html
http://docs.rackspace.com/servers/api/v2/cs-devguide/content/Paginated_Collections-d1e664.html


php-opencloud Documentation, Release 1.12.1

Flavors

Get a flavor

$flavor = $service->flavor('{flavorId}');

List flavors

$flavors = $service->flavorList();

foreach ($flavors as $flavor) {
/** @param $flavor OpenCloud\Common\Resource\FlavorInterface */

}

Get the executable PHP script for this example

Detailed results

By default, the flavorList method returns full details on all flavors. However, because of the overhead involved
in retrieving all the details, this function can be slower than might be expected. To disable this feature and keep
bandwidth at a minimum, just pass false as the first argument:

// Name and ID only
$compute->flavorList(false);

Filtering

You can also refine the list of images returned by providing specific filters:

Array key Description
minDisk Filters the list of flavors to those with the specified minimum number of gigabytes of disk storage.
minRam Filters the list of flavors to those with the specified minimum amount of RAM in megabytes.
marker The ID of the last item in the previous list. See the official docs for more information.
limit Sets the page size. See the official docs for more information.

These are defined in an array and passed in as the second argument. For example, to return all flavors over 4GB in
RAM:

$flavors = $service->flavorList(true, array('minRam' => 4));

Servers

Get server

The easiest way to retrieve a specific server is by its unique ID:

$server = $service->server('{serverId}');

2.2. Compute v2 11

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/list_flavors.php
http://docs.rackspace.com/servers/api/v2/cs-devguide/content/Paginated_Collections-d1e664.html
http://docs.rackspace.com/servers/api/v2/cs-devguide/content/Paginated_Collections-d1e664.html


php-opencloud Documentation, Release 1.12.1

List servers

You can list servers in two different ways:

• return an overview of each server (ID, name and links)

• return detailed information for each server

Knowing which option to use might help save unnecessary bandwidth and reduce latency.

// overview
$servers = $service->serverList();

// detailed
$servers = $service->serverList(true);

URL parameters for filtering servers

Name Description Type
image The image ID string
flavor The flavor ID string
name The server name string
status The server status. Servers contain a status attribute that indicates the

current server state. You can filter on the server status when you complete
a list servers request, and the server status is returned in the response body.
For a full list, please consult
OpenCloud\Compute\Constants\ServerState

string

changes-
since

Value for checking for changes since a previous request A valid ISO 8601
dateTime
(2011-01-24T17:08Z)

RAX-
SI:image_schedule

If scheduled images enabled or not. If the value is TRUE, the list contains
all servers that have an image schedule resource set on them. If the value
is set to FALSE, the list contains all servers that do not have an image
schedule.

bool

Get the executable PHP script for this example

Create server

Using an image

Now we’re ready to create our instance:

$server = $compute->server();

$server->create(array(
'name' => 'My lovely server',
'imageId' => '{imageId}',
'flavorId' => '{flavorId}',

));

It’s always best to be defensive when executing functionality over HTTP; you can achieve this best by wrapping calls
in a try/catch block. It allows you to debug your failed operations in a graceful and efficient manner.

Get the executable PHP script for this example

12 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/list_servers.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/create_server.php


php-opencloud Documentation, Release 1.12.1

Using a bootable volume

Firstly we need to find our volume using their IDs.

$bootableVolume = $client->volumeService()->volume('{volumeId}');

Now we’re ready to create our instance:

$server = $compute->server();

$response = $server->create(array(
'name' => 'My lovely server',
'volume' => $bootableVolume,
'flavorId' => '{flavorId}'

));

It’s always best to be defensive when executing functionality over HTTP; you can achieve this best by wrapping calls
in a try/catch block. It allows you to debug your failed operations in a graceful and efficient manner.

Get the executable PHP script for this example

2.2. Compute v2 13

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/create_server_with_bootable_volume.php


php-opencloud Documentation, Release 1.12.1

Create parameters

Name Description Type Required
name The server name. The name that you specify in a create request becomes the

initial host name of the server. After the server is built, if you change the
server name in the API or change the host name directly, the names are not
kept in sync.

string Yes

flavor A populated OpenCloud\Compute\Resource\Flavor object
representing your chosen flavor

ob-
ject

Yes

image A populated OpenCloud\Compute\Resource\Image object
representing your chosen image

ob-
ject

No, if
volume is
specified

volume A populated OpenCloud\Volume\Resource\Volume object
representing your chosen bootable volume

ob-
ject

No, if
image is
specified

volumeDele-
teOnTermi-
nation

true if the bootable volume should be deleted when the server is
terminated; false, otherwise

booleanNo; default
= false

OS-
DCF:diskConfig

The disk configuration value. You can use two options: AUTO or MANUAL.
AUTO means the server is built with a single partition the size of the target
flavor disk. The file system is automatically adjusted to fit the entire
partition. This keeps things simple and automated. AUTO is valid only for
images and servers with a single partition that use the EXT3 file system.
This is the default setting for applicable Rackspace base images.MANUAL
means the server is built using whatever partition scheme and file system is
in the source image. If the target flavor disk is larger, the remaining disk
space is left unpartitioned. This enables images to have non-EXT3 file
systems, multiple partitions, and so on, and enables you to manage the disk
configuration.

string No

networks An array of populated OpenCloud\Compute\Resource\Network
objects that indicate which networks your instance resides in.

ar-
ray

No

metadata An array of arbitrary data (key-value pairs) that adds additional meaning to
your server.

ar-
ray

No

keypair You can install a registered keypair onto your newly created instance,
thereby providing scope for keypair-based authentication.

ar-
ray

No

personality Files that you can upload to your newly created instance’s filesystem. ar-
ray

No

user_data User script to configure the server at launch time string No

Creating a server with keypairs

In order to provision an instance with a saved keypair (allowing you to SSH in without passwords), you create your
server using the same operation as usual, with one extra parameter:

$server = $compute->server();

$server->create(array(
'name' => 'New server',
'imageId' => '{imageId}',
'flavorId' => '{flavorId}',
'keypair' => 'main_key'

));

14 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

So, as you can see, you specify the name of an existing keypair that you previously created on the API.

Get the executable PHP script for this example

Creating a server with personality files

Before you execute the create operation, you can add “personality” files to your
OpenCloud\Compute\Resource\Server object. These files are structured as a flat array.

$server->addFile('/var/test_file', 'FILE CONTENT');

As you can see, the first parameter represents the filename, and the second is a string representation of its content.
When the server is created these files will be created on its local filesystem. For more information about server
personality files, please consult the official documentation.

Update server

You can update certain attributes of an existing server instance. These attributes are detailed in the next section.

$server->update(array(
'name' => 'NEW SERVER NAME'

));

Get the executable PHP script for this example

Updatable attributes

name description
name The name of the server. If you edit the server name, the server host name does not change. Also, server

names are not guaranteed to be unique.
acces-
sIPv4

The IP version 4 address.

acces-
sIPv6

The IP version 6 address.

Updating the access IP address(es)

For example, you may have a private cloud with internal addresses in the 10.1.x range. However, you can access a
server via a firewall device at address 50.57.94.244. In this case, you can change the accessIPv4 attribute to point
to the firewall:

$server->update(array('accessIPv4' => '50.57.94.244'));

When a client application retrieves the server’s information, it will know that it needs to use the accessIPv4 address
to connect to the server, and not the IP address assigned to one of the network interfaces.

Retrieving the server’s IP address

The Server::ip() method is used to retrieve the server’s IP address. It has one optional parameter: the format
(either IPv4 or IPv6) of the address to return (by default, it returns the IPv4 address):

2.2. Compute v2 15

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/create_server_with_keypair.php
http://docs.rackspace.com/servers/api/v2/cs-devguide/content/Server_Personality-d1e2543.html
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/update_server.php


php-opencloud Documentation, Release 1.12.1

// IPv4
echo $server->ip();
echo $server->ip(4);

// IPv6
echo $server->ip(6);

Delete server

$server->delete();

Get the executable PHP script for this example

Keypairs

Generate a new keypair

This operation creates a new keypair under a provided name; the public key value is automatically generated for you.

// Instantiate empty object
$keypair = $service->keypair();

// Send to API
$keypair->create(array(

'name' => 'jamie_keypair_1'
));

// Save these!
$pubKey = $keypair->getPublicKey();
$priKey = $keypair->getPrivateKey();

Get the executable PHP script for this example

Upload existing keypair

This operation creates a new keypair according to a provided name and public key value. This is useful when the
public key already exists on your local filesystem.

$keypair = $service->keypair();

// $key needs to be the string content of the key file, not the filename
$content = file_get_contents('~/.ssh/id_rsa.pub');

$keypair->create(array(
'name' => 'main_key',
'publicKey' => $content

));

Get the executable PHP script for this example

16 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/delete_server.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/create_new_keypair.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Compute/upload_existing_keypair.php


php-opencloud Documentation, Release 1.12.1

List keypairs

To list all existing keypairs:

$keys = $service->listKeypairs();

foreach ($keys as $key) {

}

Delete keypairs

To delete a specific keypair:

$keypair->delete();

Glossary

image An image is a collection of files for a specific operating system that you use to create or rebuild a server.
Rackspace provides prebuilt images. You can also create custom images from servers that you have launched.

flavor A flavor is a named definition of certain server parameters such as the amount of RAM and disk space available.
(There are other parameters set via the flavor, such as the amount of disk space and the number of virtual CPUs,
but a discussion of those is too in-depth for a simple Getting Started Guide like this one.)

server A server is a virtual machine instance in the Cloud Servers environment.

Further Links

• Getting Started Guide for the API

• API Developer Guide

• API release history

Databases v1

Setup

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

2.3. Databases v1 17

http://docs.rackspace.com/servers/api/v2/cs-gettingstarted/content/overview.html
http://docs.rackspace.com/servers/api/v2/cs-devguide/content/ch_preface.html
http://docs.rackspace.com/servers/api/v2/cs-releasenotes/content/ch_preface.html


php-opencloud Documentation, Release 1.12.1

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

Databases service

Now to instantiate the Databases service:

$service = $client->databaseService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Instances

Create a new instance

// Create an empty object
$instance = $service->instance();

// Send to the API
$instance->create(array(

'name' => '{name}',
'flavor' => $service->flavor('{flavorId}'),
'volume' => array('size' => 4) // 4GB of volume disk

));

Get the executable PHP script for this sample

Waiting for the instance to build

The SDK provides a blocking operation that will wait until your instance resource has transitioned into an ACTIVE
state. During this period, it will continuously poll the API and break the loop when the state has been achieved:

$instance->waitFor('ACTIVE', null, function ($instance) {
// This will be executed continuously
printf("Database instance build status: %s\n", $instance->status);

});

18 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Database/create-instance.php


php-opencloud Documentation, Release 1.12.1

Connecting an instance to a load balancer

The instance created in the previous step can only be accessed from the Rackspace private network (aka
SERVICENET). If you have a cloud server instance in the same region as the database server instance, you will
be able to connect to the database from that cloud server instance.

If, however, you would like to access the database from the Internet, you will need to create a load balancer with an
IP address that is routable from the Internet and attach the database server instance as a back-end node of this load
balancer.

$lbService = $client->loadBalancerService(null, '{region}');

// Create empty object
$loadBalancer = $lbService->loadBalancer();

// Associate this LB with the instance as a "node"
$loadBalancer->addNode($instance->hostname, 3306);
$loadBalancer->addVirtualIp('PUBLIC');

// Configure other parameters and send to the API
$loadBalancer->create(array(

'name' => 'DB Load Balancer',
'port' => 3306,
'protocol' => 'MYSQL',

));

// Wait for the resource to create
$loadBalancer->waitFor('ACTIVE', null, function ($loadBalancer) {

printf("Load balancer build status: %s\n", $loadBalancer->status);
});

foreach ($loadBalancer->virtualIps as $vip) {
if ($vip->type == 'PUBLIC') {

printf("Load balancer public %s address: %s\n", $vip->ipVersion, $vip->
→˓address);

}
}

In the example above, a load balancer is created with the database server instance as its only back-end node. Further,
this load balancer is configured to listen for MySQL connections on port 3306. Finally a virtual IP address (VIP) is
configured in the PUBLIC network address space so that this load balancer may receive connections from the Internet.

Once the load balancer is created and becomes ACTIVE, it’s Internet-accessible IP addresses are printed out. If you
connect to any of these IP addresses on port 3306 using the MySQL protocol, you will be connected to the database
created in step 3.

Retrieving an instance

$instance = $service->instance('{instanceId}');

Get the executable PHP script for this example

Updating an instance

An instance can be updated to use a specific configuration as shown below.

2.3. Databases v1 19

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Database/get-instance.php


php-opencloud Documentation, Release 1.12.1

$instance->update(array(
'configuration' => '{configurationId}'

));

Note: If any parameters in the associated configuration require a restart, then you will need to restart the instance
after the update.

Deleting an instance

$instance->delete();

Restarting an instance

$instance->restart();

Resizing an instance’s RAM

To change the amount of RAM allocated to the instance:

$flavor = $service->flavor('{flavorId}');
$instance->resize($flavor);

Resizing an instance’s volume

You can also independently change the volume size to increase the disk space:

// Increase to 8GB disk
$instance->resizeVolume(8);

Databases

Setup

In order to interact with the functionality of databases, you must first retrieve the details of the instance itself. To do
this, you must substitute {instanceId} for your instance’s ID:

$instance = $service->instance('{instanceId}');

Creating a new database

To create a new database, you must supply it with a name; you can optionally specify its character set and collating
sequence:

20 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

// Create an empty object
$database = $instance->database();

// Send to API
$database->create(array(

'name' => 'production',
'character_set' => 'utf8',
'collate' => 'utf8_general_ci'

));

You can find values for character_set and collate at the MySQL website.

Deleting a database

$database->delete();

Note: This is a destructive operation: all your data will be wiped away and will not be retrievable.

Listing databases

$databases = $service->databaseList();

foreach ($databases as $database) {
/** @param $database OpenCloud\Database\Resource\Database */

}

Users

Setup

Finally, in order to interact with the functionality of databases, you must first retrieve the details of the instance itself.
To do this, you must substitute {instanceId} for your instance’s ID:

$instance = $service->instance('{instanceId}');

Creating users

Database users exist at the Instance level, but can be associated with a specific Database. They are represented
by the OpenCloud\Database\Resource\User class.

// New instance of OpenCloud\Database\Resource\User
$user = $instance->user();

// Send to API
$user->create(array(

'name' => 'Alice',
'password' => 'fooBar'

2.3. Databases v1 21

http://dev.mysql.com/doc/refman/5.0/en/charset-mysql.html


php-opencloud Documentation, Release 1.12.1

'databases' => array('production')
));

Deleting a user

$user->delete();

The root user

By default, Cloud Databases does not enable the root user. In most cases, the root user is not needed, and having one
can leave you open to security violations. However, if you do want to enable access to the root user:

$rootUser = $instance->enableRootUser();

This returns a regular User object with the name attribute set to root and the password attribute set to an auto-
generated password.

Check if root user is enabled

// true for yes, false for no
$instance->isRootEnabled();

Grant database access

To grant access to one or more databases, you can run:

$user = $instance->user('{userName}');
$user->grantDbAccess(['{dbName1}', '{dbName2}']);

Datastores

Listing datastores

You can list out all the datastores available as shown below:

$datastores = $service->datastoreList();
foreach ($datastores as $datastore) {

/** @var $datastore OpenCloud\Database\Resource\Datastore **/
}

Get the executable PHP script for this example

Retrieving a datastore

You can retrieve a specific datastore’s information, using its ID, as shown below:

22 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Database/list-datastores.php


php-opencloud Documentation, Release 1.12.1

/** @var OpenCloud\Database\Resource\Datastore **/
$datastore = $service->datastore('{datastoreId}');

Get the executable PHP script for this example

Listing datastore versions

You can list out all the versions available for a specific datastore, as shown below:

$versions = $datastore->versionList();
foreach ($versions as $version) {

/** @var $version OpenCloud\Database\Resource\DatastoreVersion **/
}

Get the executable PHP script for this example

Retrieving a datastore version

You a retrieve a specific datastore version, using its ID, as shown below:

$datastoreVersion = $datastore->version('{versionId}');

Get the executable PHP script for this example

Glossary

configuration group A configuration group is a collection of key/value pairs which configure a database instance.
Some directives are capable of being applied dynamically, while other directives require a server restart to take
effect. The configuration group can be applied to an instance at creation or applied to an existing instance to
modify the behavior of the running datastore on the instance.

flavor A flavor is an available hardware configuration for a database instance. Each flavor has a unique combination
of memory capacity and priority for CPU time.

instance A database instance is an isolated MySQL instance in a single tenant environment on a shared physical host
machine. Also referred to as instance.

database A database is a local MySQL database running on an instance.

user A user is a local MySQL user that can access a database running on an instance.

datastore The database engine running on your instance. Currently, there is support for MySQL 5.6, MySQL 5.1,
Percona 5.6 and MariaDB 10.

volume A volume is user-specified storage that contains the database engine data directory. Volumes are automat-
ically provisioned on shared Internet Small Computer System Interface (iSCSI) storage area networks (SAN)
that provide for increased performance, scalability, availability and manageability. Applications with high I/O
demands are performance optimized and data is protected through both local and network RAID-10.

Further Links

• Getting Started Guide for the API

• API Developer Guide

2.3. Databases v1 23

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Database/get-datastore.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Database/list-datastore-versions.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Database/get-datastore-version.php
http://docs.rackspace.com/cdb/api/v1.0/cdb-getting-started/content/DB_Overview.html
http://docs.rackspace.com/cdb/api/v1.0/cdb-devguide/content/overview.html


php-opencloud Documentation, Release 1.12.1

• API release history

DNS v1

Note: This service is only available for Rackspace users.

Setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

DNS service

Now to instantiate the DNS service:

$service = $client->dnsService();

Operations

Records

Setup

In order to interact with the functionality of records, you must first retrieve the details of the domain itself. To do this,
you must substitute {domainId} for your domain’s ID:

$domain = $service->domain('{domainId}');

Get record

In order to retrieve details for a specific DNS record, you will need its id:

$record = $domain->record('{recordId}');

If you do not have this ID at your disposal, you can traverse the record collection and do a string comparison (detailed
below).

24 Chapter 2. Services

http://docs.rackspace.com/cdb/api/v1.0/cdb-getting-started/content/DB_Doc_Change_History.html


php-opencloud Documentation, Release 1.12.1

List records

This call lists all records configured for the specified domain.

$records = $domain->recordList();

foreach ($records as $record) {
printf("Record name: %s, ID: %s, TTL: %s\n", $record->name, $record->id, $record->

→˓ttl);
}

Query parameters

You can pass in an array of query parameters for greater control over your search:

Name Data type Description
type string The record type
name string The record name
data string Data for this record

Find a record ID from its name

For example:

$records = $domain->recordList(array(
'name' => 'imap.example.com',
'type' => 'MX'

));

foreach ($records as $record) {
$recordId = $record->id;

}

Add record

This call adds a new record to the specified domain:

$record = $domain->record(array(
'type' => 'A',
'name' => 'example.com',
'data' => '192.0.2.17',
'ttl' => 3600

));

$record->create();

Please be aware that records that are added with a different hostname than the parent domain might fail silently.

2.4. DNS v1 25



php-opencloud Documentation, Release 1.12.1

Modify record

$record = $domain->record('{recordId}');
$record->ttl -= 100;
$record->update();

Delete record

$record->delete();

Domains

Get domain

To retrieve a specific domain, you will need the domain’s id, not its domain name:

$domain = $service->domain('{domainId}');

If you are having trouble remembering or accessing the domain ID, you can do a domain list search for your domain
and then access its ID.

List domains

These calls provide a list of all DNS domains manageable by a given account. The resulting list is flat, and does not
break the domains down hierarchically by subdomain. All representative domains are included in the list, even if a
domain is conceptually a subdomain of another domain in the list.

$domains = $service->domainList();

# Return detailed information for each domain
$domains = $service->domainList(true);

Filter parameters

You can filter the search by using the name parameter in a key/value array supplied as a method argument. For
example, to retrieve domains named foo.com, along with any subdomains like bar.foo.com:

$hoolaDomains = $service->domainList(array(
'name' => 'foo.com'

));

Filter criteria may consist of:

• Any letter (A-Za-z)

• Numbers (0-9)

• Hyphen (“-”)

• 1 to 63 characters

Filter criteria should not include any of the following characters:

26 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

‘ + , | ! ” £ $ % & / ( ) = ? ^ * ç ° § ; : _ > ] [ @ à, é, ò

Finding a domain ID

Once you have a list of domains, to retrieve a domain’s ID:

foreach ($domains as $domain) {
$id = $domain->id;

}

List domain changes

This call shows all changes to the specified domain since the specified date/time. To list all available changes for a
domain for the current day:

$changes = $domain->changes();

For more granular control, you can manually define the since parameter like so:

$since = date('c', strtotime('last week'));
$changes = $domain->changes($since);

Once you have a set of changes, you can iterate over them like so:

foreach ($changes->changes as $change) {
printf("Domain: %s\nAction: %s\nTarget: %s", $change->domain, $change->action,

→˓$change->targetType);

foreach ($change->changeDetails as $detail) {
printf("Details: %s was changed from %s to %s", $detail->field, $detail->

→˓oldValue, $detail->newValue);
}

}

Create domain

The first thing you will need to do is instantiate a new object and set the primary A record for the DNS domain, like
so:

// get empty object
$domain = $service->domain();

// add A record
$aRecord = $domain->record(array(

'type' => 'A',
'name' => 'example.com',
'data' => '192.0.2.17',
'ttl' => 3600

));

$domain->addRecord($aRecord);

2.4. DNS v1 27



php-opencloud Documentation, Release 1.12.1

You also have the option of adding more types of DNS records such as CNAME, MX and NS records. This step is
completely optional and depends on your requirements:

// add CNAME record
$cRecord = $domain->record(array(

'type' => 'CNAME',
'name' => 'www.example.com',
'data' => 'example.com',
'ttl' => 3600

));
$domain->addRecord($cRecord);

// add MX record
$mxRecord = $domain->record(array(

'type' => 'MX',
'data' => 'mail.example.com',
'name' => 'example.com',
'ttl' => 3600,
'priority' => 5

));
$domain->addRecord($mxRecord);

// add NS record
$nsRecord = $domain->record(array(

'type' => 'NS',
'data' => 'dns1.stabletransit.com',
'name' => 'example.com',
'ttl' => 5400

));
$domain->addRecord($nsRecord);

You can also add sub-domains to your new DNS domain. Again, this is completely optional:

$subdomain = $domain->subdomain(array(
'emailAddress' => 'foo@example.com',
'name' => 'dev.example.com',
'comment' => 'Dev portal'

));
$domain->addSubdomain($subdomain);

Once you’ve finished configuring how your DNS domain will work, you’re ready to specify the essential details and
send it to the API for creation:

$domain->create(array(
'emailAddress' => 'webmaster@example.com',
'ttl' => 3600,
'name' => 'example.com',
'comment' => 'Optional comment'

));

Clone domain

This call will duplicate an existing domain under a new name. By default, all records and, optionally, subdomains are
duplicated as well.

The method signature you will need to use is:

28 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

cloneDomain($newDomainName[, $subdomains[, $comments[, $email[, $records]]]])
Clone a domain

Parameters

• $newDomainName (string) – The name of the new domain entry

• $subdomains (bool) – Set to true to clone all the subdomains for this domain

• $comments (bool) – Set to true to replace occurrences of the reference domain name
with the new domain name in comments on the cloned (new) domain.

• $email (bool) – Set to true to replace occurrences of the reference domain name with
the new domain name in data fields (of records) on the cloned (new) domain. Does not affect
NS records.

• $records (bool) – Set to true to replace occurrences of the reference domain name
with the new domain name in data fields (of records) on the cloned (new) domain. Does not
affect NS records.

For example:

$asyncResponse = $domain->cloneDomain('new-name.com', true, false, true, false);

Export domain

This call provides access to the BIND (Berkeley Internet Name Domain) 9 for the requested domain. This call is for a
single domain only, and as such, does not traverse up or down the domain hierarchy for details:

$asyncResponse = $domain->export();

$body = $asyncResponse->waitFor('COMPLETED');
echo $body['contents'];

Import domain

This operation will create a new DNS domain according to a BIND (Berkeley Internet Name Domain) 9 formatted
value.

In order for the BIND value to be considered valid, it needs to adhere to the following rules:

• Each record starts on a new line and on the first column. If a record will not fit on one line, use the BIND_9 line
continuation convention where you put a left parenthesis and continue the one record on the next line and put a
right parenthesis when the record ends. For example:

example2.net. 3600 IN SOA dns1.stabletransit.com. (sample@rackspace.com. 1308874739 3600
3600 3600 3600)

• The attribute values of a record must be separated by a single blank or tab. No other white space characters.

• If there are any NS records, the data field should not be dns1.stabletransit.com or dns2.
stabletransit.com. They will result in “duplicate record” errors.

For example:

$bind9Data = <<<EOT

example.net. 3600 IN SOA dns1.stabletransit.com. sample@rackspace.com. 1308874739
→˓3600 3600 3600 3600

2.4. DNS v1 29

http://www.isc.org/downloads/bind/
http://www.isc.org/downloads/bind/
mailto:sample@rackspace.com


php-opencloud Documentation, Release 1.12.1

example.net. 86400 IN A 110.11.12.16
example.net. 3600 IN MX 5 mail2.example.net.
www.example.net. 5400 IN CNAME example.net.

EOT;

$asyncResponse = $service->import($bind9Data);

Modify domain

Only the TTL, email address and comment attributes of a domain can be modified. Records cannot be added, modified,
or removed through this API operation - you will need to use the add records, modify records or remove records
operations respectively.

$domain->update(array(
'ttl' => ($domain->ttl + 100),
'emailAddress' => 'new_dev@foo.com'

));

Delete domain

$domain->delete();

Limits

List all limits

This call provides a list of all applicable limits for the specified account.

$limits = $service->limits();

Absolute limits

There are some absolute limits imposed on your account - such as how many domains you can create and how many
records you can create for each domain:

$absoluteLimits = $limits->absolute;

// Domain limit
echo $absoluteLimits->domains;

// Record limit per domain
echo $absoluteLimits->{'records per domain'};

List limit types

To find out the different limit types you can query, run:

30 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

$limitTypes = $service->limitTypes();

will return:

array(3) {
[0] => string(10) "RATE_LIMIT"
[1] => string(12) "DOMAIN_LIMIT"
[2] => string(19) "DOMAIN_RECORD_LIMIT"

}

Query a specific limit

$limit = $service->limits('DOMAIN_LIMIT');
echo $limit->absolute->limits->value;

Reverse DNS

Get PTR record

PTR records refer to a parent device: either a Cloud Server or a Cloud Load Balancer with a public virtual IP address.
You must supply a fully formed resource object in order to retrieve either one’s PTR record:

/** @param $parent OpenCloud\DNS\Resource\HasPtrRecordsInterface */

$ptr = $service->ptrRecord(array(
'parent' => $parent

));

So, in the above example, the $parent object could be an instance of
OpenCloud\Compute\Resource\Server or OpenCloud\LoadBalancer\Resource\LoadBalancer
- because they both implement OpenCloud\DNS\Resource\HadPtrRecordsInterface. Please consult
the server documentation and load balancer documentation for more detailed usage instructions.

List PTR records

/** @param $parent OpenCloud\DNS\Resource\HasPtrRecordsInterface */

$ptrRecords = $service->ptrRecordList($parent);

foreach ($ptrRecords as $ptrRecord) {

}

Add PTR record

$parent = $computeService->server('foo-server-id');

$ptr = $dnsService->ptrRecord(array(
'parent' => $parent,

2.4. DNS v1 31



php-opencloud Documentation, Release 1.12.1

'ttl' => 3600,
'name' => 'example.com',
'type' => 'PTR',
'data' => '192.0.2.7'

));

$ptr->create();

Here is a table that explains the above attributes:

Name Description Required
type Specifies the record type as “PTR”. Yes
name Specifies the name for the domain or subdomain. Must be a valid domain name. Yes
data The data field for PTR records must be a valid IPv4 or IPv6 IP address. Yes
ttl If specified, must be greater than 300. Defaults to 3600 if no TTL is specified. No
comment If included, its length must be less than or equal to 160 characters. No

Modify PTR record

$ptr->update(array(
'ttl' => $ptr->ttl * 2

));

Delete PTR record

$ptr->delete();

Glossary

domain A domain is an entity/container of all DNS-related information containing one or more records.

record A DNS record belongs to a particular domain and is used to specify information about the domain.
There are several types of DNS records. Each record type contains particular information used to
describe that record’s purpose. Examples include mail exchange (MX) records, which specify the
mail server for a particular domain, and name server (NS) records, which specify the authoritative
name servers for a domain.

subdomain Subdomains are domains within a parent domain, and subdomains cannot be registered.
Subdomains allow you to delegate domains. Subdomains can themselves have subdomains, so third-
level, fourth-level, fifth-level, and deeper levels of nesting are possible.

pointer records DNS usually determines an IP address associated with a domain name. Reverse DNS is
the opposite process: resolving a domain name from an IP address. This is usually achieved with a
domain name pointer.

Further Links

• Getting Started Guide for the API

• API Developer Guide

• API release history

32 Chapter 2. Services

http://docs.rackspace.com/cdb/api/v1.0/cdb-getting-started/content/DB_Overview.html
http://docs.rackspace.com/cdns/api/v1.0/cdns-devguide/content/overview.html
http://docs.rackspace.com/cdns/api/v1.0/cdns-releasenotes/content/doc_change_history.html


php-opencloud Documentation, Release 1.12.1

Identity v2

Setup

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

Identity service

Now to instantiate the Identity service:

$service = $client->identityService();

Operations

Tokens

Create token (authenticate)

In order to generate a token, you must pass in the JSON template that is sent to the API. This is because Rackspace’s
operation expects a slightly different entity body than OpenStack Keystone.

To do this, and then generate a token:

$json = $client->getCredentials();

/** @var $response Guzzle\Http\Message\Response */
$response = $service->generateToken($json);
$jsonBody = $response->json();

When a token is generated by the API, there are a few things returned:

2.5. Identity v2 33



php-opencloud Documentation, Release 1.12.1

• a service catalog outlining all of the services you can interact with, including their names, service types, and
endpoint URLs. Which services make up your catalog, and how your catalog is structured, will depend on your
service provider.

• details about your token, such as its ID, created and expiration date

• details about your user account

• details about your tenant

Interacting with the service catalog

Once you have the $jsonBody, you can construct a Catalog object for easier interaction:

$data = $jsonBody->access->serviceCatalog;
$catalog = OpenCloud\Common\Service\Catalog::factory($data);

foreach ($catalog->getItems() as $service) {
/** @param $service OpenCloud\Common\Service\CatalogItem */
printf("Catalog item: Name [%s] Type [%s]\n", $service->getName(), $service->

→˓getType());

foreach ($service->getEndpoints() as $endpoint) {
printf(" Endpoint provided: Region [%s] PublicURL [%s] PrivateURL [%s]\n",

$endpoint->getRegion(), $endpoint->getPublicUrl(), $endpoint->getPrivateUrl());
}

}

Interacting with tokens

$data = $jsonBody->access->token;
$token = $service->resource('Token', $data);

printf("Token ID: %s - Token expiry %s", $token->getId(), $token->getExpires());

if ($token->hasExpired()) {
// ...

}

Interacting with users

$data = $jsonBody->access->user;
$user = $service->resource('User', $data);

To see which methods you can call on $user (which implements OpenCloud\Identity\Resource\User),
see our user documentation which accompanies this guide.

Interacting with tenants

$data = $jsonBody->access->tenant;
$tenant = $service->resource('Tenant', $data);

34 Chapter 2. Services

http://docs.rackspace.com/auth/api/v2.0/auth-client-devguide/content/Svc_Catalog_ovw.html


php-opencloud Documentation, Release 1.12.1

To see which methods you can call on $tenant (which implements
OpenCloud\Identity\Resource\Tenant), see our user documentation which accompanies this guide.

Revoke token (destroy session)

$service->revokeToken('{tokenId}');

Users

Object properties/methods

Prop-
erty

Description Getter Setter

id The unique ID for this user getId() setId()
user-
name

Username for this user getUsername()setUsername()

email User’s email address getEmail() setEmail()
en-
abled

Whether or not this user can consume API
functionality

getEnabled()
or
isEnabled()

setEnabled()

pass-
word

Either a user-defined string, or an automatically
generated one, that provides security when
authenticating.

getPassword()
only valid
on creation

setPassword() to set local
property only. To set password on
API (retention), use
updatePassword().

de-
fault-
Re-
gion

Default region associates a user with a specific
regional datacenter. If a default region has been
assigned for this user and that user has NOT
explicitly specified a region when creating a service
object, the user will obtain the service from the
default region.

getDefaultRegion()setDefaultRegion()

do-
mainId

Domain ID associates a user with a specific domain
which was assigned when the user was created or
updated. A domain establishes an administrative
boundary for a customer and a container for a
customer’s tenants (accounts) and users. Generally,
a domainId is the same as the primary tenant id of
your cloud account.

getDomainId()setDomainId()

List users

$users = $service->getUsers();

foreach ($users as $user) {
// ...

}

Get the executable PHP script for this example

2.5. Identity v2 35

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Identity/list_users.php


php-opencloud Documentation, Release 1.12.1

Retrieve a user by username

$user = $service->getUser('jamie');

Get the executable PHP script for this example

Retrieve a user by user ID

use OpenCloud\Identity\Constants\User as UserConst;

$user = $service->getUser('{userId}', UserConst::MODE_ID);

Get the executable PHP script for this example

Retrieve a user by email address

use OpenCloud\Identity\Constants\User as UserConst;

$user = $service->getUser('{emailAddress}', UserConst::MODE_EMAIL);

Get the executable PHP script for this example

Create user

There are a few things to bear in mind when creating a user:

• This operation is available only to users who hold the identity:user-admin role. This admin can create
a user who holds the identity:default user role.

• The created user will have access to APIs but will not have access to the Cloud Control Panel.

• A maximum of 100 account users can be added per account.

• If you attempt to add a user who already exists, an HTTP error 409 results.

The username and email properties are required for creating a user. Providing a password is optional; if omitted,
one will be automatically generated and provided in the response.

use Guzzle\Http\Exception\ClientErrorResponseException;

$user = $service->createUser(array(
'username' => 'newUser',
'email' => 'foo@bar.com'

));

// show generated password
echo $user->getPassword();

Get the executable PHP script for this example

Update user

When updating a user, specify which attribute/property you want to update:

36 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Identity/get_user_by_name.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Identity/get_user_by_id.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Identity/get_user_by_email.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Identity/add_user.php


php-opencloud Documentation, Release 1.12.1

$user->update(array(
'email' => 'new_email@bar.com'

));

Updating a user password

Updating a user password requires calling a distinct method:

$user->updatePassword('password123');

Delete user

$user->delete();

Get the executable PHP script for this example

List credentials

This operation allows you to see your non-password credential types for all authentication methods available.

$creds = $user->getOtherCredentials();

Get user API key

echo $user->getApiKey();

Reset user API key

When resetting an API key, a new one will be automatically generated for you:

$user->resetApiKey();
echo $user->getApiKey();

Get the executable PHP script for this example

Tenants

List tenants

$tenants = $service->getTenants();

foreach ($tenants as $tenant) {
// ...

}

2.5. Identity v2 37

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Identity/delete_user.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Identity/reset_api_key.php


php-opencloud Documentation, Release 1.12.1

Tenant object properties and methods

Once you have a OpenCloud\Identity\Resource\Tenant object, you can retrieve information like so:

$tenant->getId();
$tenant->getName();
$tenant->getDescription();
$tenant->isEnabled();

Glossary

token A token is an opaque string that represents an authorization to access cloud resources. Tokens may be revoked
at any time and are valid for a finite duration.

tenant A tenant is a container used to group or isolate resources and/or identity objects. Depending on the service
operator, a tenant may map to a customer, account, organization, or project.

user A user is a digital representation of a person, system, or service who consumes cloud services. Users have cre-
dentials and may be assigned tokens; based on these credentials and tokens, the authentication service validates
that incoming requests are being made by the user who claims to be making the request, and that the user has
the right to access the requested resources. Users may be directly assigned to a particular tenant and behave as
if they are contained within that tenant.

Further Links

• Quickstart for the API

• API Developer Guide

Images v1

Setup

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

38 Chapter 2. Services

http://docs.rackspace.com/auth/api/v2.0/auth-client-devguide/content/QuickStart-000.html
http://docs.rackspace.com/auth/api/v2.0/auth-client-devguide/content/Overview-d1e65.html


php-opencloud Documentation, Release 1.12.1

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

Images service

Now to instantiate the Images service:

$service = $client->imageService(null, '{region}');

Operations

Images

List images

$images = $service->listImages();

foreach ($images as $image) {
/** @param $image OpenCloud\Image\Resource\Image */

}

Get image details

/** @param $image OpenCloud\Image\Resource\Image */
$image = $service->getImage('{imageId}');

A note on schema classes

Both OpenCloud\Image\Resource\Image and OpenCloud\Image\Resource\Member extend the
AbstractSchemaResource class, which offers some unique functionality.

Because these resources are inherently dynamic - i.e. they are modelled on dynamic JSON schema - you need to
access their state in a different way than conventional getter/setter methods, and even class properties. For this reason,
they implement SPL’s native ArrayAccess interface which allows you to access their state as a conventional array:

$image = $service->getImage('{imageId}');

$id = $image['id'];
$tags = $image['tags'];

Update image

You can only update your own custom images - you cannot update or delete base images. The way in which you may
update your image is dictated by its schema.

2.6. Images v1 39

http://www.php.net/manual/en/class.arrayaccess.php


php-opencloud Documentation, Release 1.12.1

Although you should be able to add new and replace existing properties, always prepare yourself for a situation where
it might be forbidden:

use OpenCloud\Common\Exceptions\ForbiddenOperationException;

try {
$image->update(array(

'name' => 'foo',
'newProperty' => 'bar'

));
} catch (ForbiddenOperationException $e) {

// A 403 Forbidden was returned
}

There are three operations that can take place for each Image property:

• If a false or null value is provided, a REMOVE operation will occur, removing the property from the JSON
document

• If a non-false value is provided and the property does not exist, an ADD operation will add it to the document

• If a non-false value is provided and the property does exist, a REPLACE operation will modify the property in
the document

Delete image

$image->delete();

JSON schemas

Schema types

There are currently four types of schema: Images schema, Image schema, Members schema, and Member schema.

Example response from the API

A sample response from the API, for an Images schema might be:

{
"name": "images",
"properties": {

"images": {
"items": {

"type": "array",
"name": "image",
"properties": {

"id": {"type": "string"},
"name": {"type": "string"},
"visibility": {"enum": ["public", "private"]},
"status": {"type": "string"},
"protected": {"type": "boolean"},
"tags": {

"type": "array",
"items": {"type": "string"}

40 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

},
"checksum": {"type": "string"},
"size": {"type": "integer"},
"created_at": {"type": "string"},
"updated_at": {"type": "string"},
"file": {"type": "string"},
"self": {"type": "string"},
"schema": {"type": "string"}

},
"additionalProperties": {"type": "string"},
"links": [

{"href": "{self}", "rel": "self"},
{"href": "{file}", "rel": "enclosure"},
{"href": "{schema}", "rel": "describedby"}

]
}

},
"schema": {"type": "string"},
"next": {"type": "string"},
"first": {"type": "string"}

},
"links": [

{"href": "{first}", "rel": "first"},
{"href": "{next}", "rel": "next"},
{"href": "{schema}", "rel": "describedby"}

]
}

The top-level schema is called images, and contains an array of links and a properties object. Inside this properties
object we see the structure of this top-level images object. So we know that it will take this form:

{
"images": [something...]

}

Within this object, we can see that it contains an array of anonymous objects, each of which is called image and has
its own set of nested properties:

{
"images": [

{
[object 1...]

},
{

[object 2...]
},
{

[object 3...]
}

]
}

The structure of these nested objects are defined as another schema - i.e. a subschema. We know that each object has
an ID property (string), a name property (string), a visibility property (can either be private or public), etc.

{
"images": [

{

2.6. Images v1 41



php-opencloud Documentation, Release 1.12.1

"id": "foo",
"name": "bar",
"visibility": "private",
// etc.

},
{

"id": "foo",
"name": "bar",
"visibility": "private",
// etc.

},
{

"id": "foo",
"name": "bar",
"visibility": "private",
// etc.

}
]

}

Each nested property of a schema is represented by the OpenCloud\Image\Resource\Schema\Property
class.

If you would like to find out more about schemas, Guzzle has good documentation about service descriptions, which
is fairly analogous.

JSON Patch

The Glance API has a unique way of updating certain dynamic resources: they use JSON Patch method, as outlined
in RFC 6902.

Requests need to use the application/openstack-images-v2.1-json-patch content-type.

In order for the operation to occur, the request entity body needs to contain a very particular structure:

[
{"op": "replace", "path": "/name", "value": "Fedora 17"},
{"op": "replace", "path": "/tags", "value": ["fedora", "beefy"]}

]

• The op key refers to the type of Operation (see OpenCloud\Image\Enum\OperationType for a full
list).

• The path key is a JSON pointer to the document property you want to modify or insert. JSON pointers are
defined in RFC 6901.

• The value key is the value.

Because this is all handled for you behind the scenes, we will not go into exhaustive depth about how this operation
is handled. You can browse the source code, consult the various RFCs and the official documentation for additional
information.

Sharing images

Images can be created and deleted by image producers, updated by image consumers, and listed by both image pro-
ducers and image consumers:

42 Chapter 2. Services

http://docs.guzzlephp.org/en/latest/webservice-client/guzzle-service-descriptions.html
http://tools.ietf.org/html/rfc6902
http://tools.ietf.org/html/rfc6901
http://docs.rackspace.com/images/api/v2/ci-devguide/content/patch-method.html


php-opencloud Documentation, Release 1.12.1

Operation Producer can? Consumer can?
Created Yes No
Deleted Yes No
Updated No Yes
Listed Yes Yes

The producer shares an image with the consumer by making the consumer a member of that image. The consumer
then accepts or rejects the image by changing the member status. Once accepted, the image appears in the consumer’s
image list.

Typical workflow

1. The producer posts the availability of specific images on a public website.

2. A potential consumer provides the producer with his/her tenant ID and email address.

3. The producer ‘creates a new Image Member <>‘__ with the consumer’s details

4. The producer notifies the consumer via email that the image has been shared and provides the image’s ID.

5. If the consumer wishes the image to appear in his/her image list, the consumer ‘updates their own Member
status <>‘__ to ACCEPTED.

Additional notes

• If the consumer subsequently wishes to hide the image, the consumer can change their Member status to
REJECTED.

• If the consumer wishes to hide the image, but is open to the possibility of being reminded by the producer that
the image is available, the consumer can change their Member status to PENDING.

• Image producers add or remove image members, but may not modify the member status of an image member.

• Image consumers change their own member status, but may not add or remove themselves as an image member.

• Image consumers can boot from any image shared by the image producer, regardless of the member status, as
long as the image consumer knows the image ID.

Setup

All member operations are executed against an Image, so you will need to set one up first:

$image = $service->getImage('{imageId}');

List image members

This operation is available for both producers and consumers.

$members = $image->listMembers();

foreach ($members as $member) {
/** @param $member OpenCloud\Image\Resource\Member */

}

2.6. Images v1 43



php-opencloud Documentation, Release 1.12.1

Create image member

This operation is only available for producers.

/** @param $response Guzzle\Http\Message\Response */
$response = $image->createMember('{tenantId}');

Delete image member

This operation is only available for producers.

/** @param $member OpenCloud\Image\Resource\Member */
$member = $image->getMember('{tenantId}');
$member->delete();

Update image member status

This operation is only available for consumers.

use OpenCloud\Images\Enum\MemberStatus;

/** @param $member OpenCloud\Image\Resource\Member */
$member = $image->getMember('{tenantId}');

$member->updateStatus(MemberStatus::ACCEPTED);

The acceptable states you may pass in are made available to you through the constants defined in the
OpenCloud\Images\Enum\MemberStatus class.

Image tags

Setup

All member operations are executed against an Image, so you will need to set one up first:

$image = $service->getImage('{imageId}');

Add image tag

/** @param $response Guzzle\Http\Message\Response */
$response = $image->addTag('jamie_dev');

Delete image tag

/** @param $response Guzzle\Http\Message\Response */
$response = $image->deleteTag('jamie_dev');

44 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

Glossary

image A virtual machine image is a single file which contains a virtual disk that has an installed bootable
operating system. In the Cloud Images API, an image is represented by a JSON-encoded data
structure (the image schema) and its raw binary data (the image file).

schema The Cloud Images API supplies JSON documents describing the JSON-encoded data structures
that represent domain objects, so that a client knows exactly what to expect in an API response.

tag An image tag is a string of characters used to identify a specific image or images.

Further Links

• Getting Started Guide for the API

• API Developer Guide

Load Balancer v1

Note: This service is only available for Rackspace users.

Setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

Load Balancer service

Now to instantiate the Load Balancer service:

$service = $client->loadBalancerService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

2.7. Load Balancer v1 45

http://docs.rackspace.com/images/api/v2/ci-gettingstarted/content/ch_image_preface.html
http://docs.rackspace.com/images/api/v2/ci-devguide/content/ch_image_preface.html


php-opencloud Documentation, Release 1.12.1

Operations

Load Balancer

Note: Many of the examples in this document use two cloud servers as nodes for the load balancer. The variables
$serverOne and $serverTwo refer to these two cloud servers.

Create Load Balancer

The first step is to instantiate an empty object, like so:

$loadBalancer = $service->loadBalancer();

In essence, all a load balancer does is evenly distribute traffic between various back-end nodes - which can be Compute
or Database instances. So we will need to add a few when creating our load balancer:

$serverOneNode = $loadBalancer->node();
$serverOneNode->address = $serverOne->addresses->private[0]->addr;
$serverOneNode->port = 8080;
$serverOneNode->condition = 'ENABLED';

$serverTwoNode = $loadBalancer->node();
$serverTwoNode->address = $serverTwo->addresses->private[0]->addr;
$serverTwoNode->port = 8080;
$serverTwoNode->condition = 'ENABLED';

All that remains is apply final configuration touches, such as name and the port number, before submitting to the API:

$loadBalancer->addVirtualIp('PUBLIC');
$loadBalancer->create(array(

'name' => 'My load balancer',
'port' => 80,
'protocol' => 'HTTP',
'nodes' => array($serverOneNode, $serverTwoNode),
'algorithm' => 'ROUND_ROBIN',

));

For a full list of available protocols and algorithms please see the sections below.

Get the executable PHP script for this example

Get Load Balancer Details

You can retrieve a single load balancer’s details by using its ID:

/** @var $loadBalancer OpenCloud\LoadBalancer\Resource\LoadBalancer **/
$loadBalancer = $service->loadBalancer('{loadBalancerId}');

List Load Balancers

You can retrieve a list of all your load balancers:

46 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/LoadBalancer/create-lb.php


php-opencloud Documentation, Release 1.12.1

$loadBalancers = $service->loadBalancerList();

foreach ($loadBalancers as $loadBalancer) {
/** @var $loadBalancer OpenCloud\LoadBalancer\Resource\LoadBalancer **/

}

Get the executable PHP script for this example

Update a Load Balancer

You can update one or more of the following load balancer attributes:

• name: The name of the load balancer

• algorithm: The algorithm used by the load balancer to distribute traffic amongst its nodes. See also: Load
balancing algorithms.

• protocol: The network protocol used by traffic coming in to the load balancer. See also: Protocols.

• port: The network port on which the load balancer listens for incoming traffic.

• halfClosed: Enable or Disable Half-Closed support for the load balancer.

• timeout: The timeout value for the load balancer to communicate with its nodes.

• httpsRedirect: Enable or disable HTTP to HTTPS redirection for the load balancer. When enabled, any
HTTP request will return status code 301 (Moved Permanently), and the requestor will be redirected to the
requested URL via the HTTPS protocol on port 443. For example, http://example.com/page.html would be
redirected to https:// example.com/page.html. Only available for HTTPS protocol (port = 443), or HTTP
Protocol with a properly configured SSL Termination (‘secureTrafficOnly=true, securePort=443). See also: SSL
Termination.

$loadBalancer->update(array(
'name' => 'New name',
'algorithm' => 'ROUND_ROBIN'

));

Remove Load Balancer

When you no longer have a need for the load balancer, you can remove it:

$loadBalancer->delete();

Get the executable PHP script for this example

Protocols

When a load balancer is created a network protocol must be specified. This network protocol should be based on the
network protocol of the back-end service being load balanced. Common protocols are HTTP, HTTPS and MYSQL. A
full list is available here.

2.7. Load Balancer v1 47

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/LoadBalancer/list-load-balancers.php
http://example.com/page.html
https://
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/LoadBalancer/delete-lb.php
http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/content/protocols.html


php-opencloud Documentation, Release 1.12.1

List Load Balancing Protocols

You can list all supported network protocols like so:

$protocols = $service->protocolList();

foreach ($protocols as $protocol) {
/** @var $protocol OpenCloud\LoadBalancer\Resource\Protocol **/

}

Algorithms

Load balancers use an algorithm to determine how incoming traffic is distributed amongst the back-end nodes. A full
list is available here.

List Load Balancing Algorithms

You can programmatically list all supported load balancing algorithms:

$algorithms = $service->algorithmList();

foreach ($algorithms as $algorithm) {
/** @var $algorithm OpenCloud\LoadBalancer\Resource\Algorithm **/

}

Nodes

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

List Nodes

You can list the nodes attached to a load balancer:

$nodes = $loadBalancer->nodeList();

foreach ($nodes as $node) {
/** @var $node OpenCloud\LoadBalancer\Resource\Node **/

}

Add Nodes

You can attach additional nodes to a load balancer. Assume $loadBalancer already has two nodes attached to it -
$serverOne and $serverTwo - and you want to attach a third node to it, say $serverThree, which provides
a service on port 8080.

48 Chapter 2. Services

http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/content/Algorithms-d1e4367.html


php-opencloud Documentation, Release 1.12.1

Important: Remember to call $loadBalancer->addNodes() after all the calls to
$loadBalancer->addNode() as shown below.

$address = $serverThree->addresses->private[0]->addr;
$loadBalancer->addNode($address, 8080);
$loadBalancer->addNodes();

The signature for addNodes is as follows:

addNodes($address, $port[, $condition = ‘ENABLED’[, $type = null[, $weight = null]]])
Add a node to a load balancer

Parameters

• $address (string) – the IP address of the node

• $port (integer) – the port number of the node

• $condition (string) – the initial condition of the code. Defaults to ENABLED

• $type (string) – either PRIMARY or SECONDARY

• $weight (integer) – the node weight (for round-robin algorithm)

The addNode method accepts three more optional parameters, in addition to the two shown above:

Modify Nodes

You can modify one or more of the following node attributes:

• condition: The condition of the load balancer:

– ENABLED – Node is ready to receive traffic from the load balancer.

– DISABLED – Node should not receive traffic from the load balancer.

– DRAINING – Node should process any traffic it is already receiving but should not receive any further
traffic from the load balancer.

• type: The type of the node:

– PRIMARY – Nodes defined as PRIMARY are in the normal rotation to receive traffic from the load bal-
ancer.

– SECONDARY – Nodes defined as SECONDARY are only in the rotation to receive traffic from the load
balancer when all the primary nodes fail.

• weight: The weight, between 1 and 100, given to node when distributing traffic using either the
WEIGHTED_ROUND_ROBIN or the WEIGHTED_LEAST_CONNECTIONS load balancing algorithm.

use OpenCloud\LoadBalancer\Enum\NodeCondition;
use OpenCloud\LoadBalancer\Enum\NodeType;

$node->update(array(
'condition' => NodeCondition::DISABLED,
'type' => NodeType::SECONDARY

));

2.7. Load Balancer v1 49



php-opencloud Documentation, Release 1.12.1

Remove Nodes

There are two ways to remove a node. The first way is on an OpenCloud\LoadBalancer\Resource\Node
instance, like so:

$node->delete();

The second is with an OpenCloud\LoadBalancer\Resource\LoadBalancer instance and the node’s ID,
like so:

$loadBalancer->removeNode('{nodeId}');

where ‘{nodeId}’ is the integer ID of the node itself - this is a required value.

View Node Service Events

You can view events associated with the activity between a node and a load balancer:

$nodeEvents = $loadBalancer->nodeEventList();

foreach ($nodeEvents as $nodeEvent) {
/** @var $nodeEvent OpenCloud\LoadBalancer\Resource\NodeEvent **/

}

Virtual IPs

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

List Virtual IPs

You can list the VIPs associated with a load balancer like so:

$vips = $loadBalancer->virtualIpList();

foreach ($vips as $vip) {
/** @var $vip of OpenCloud\LoadBalancer\Resource\VirtualIp **/

}

Get existing VIP

To retrieve the details of an existing VIP on a load balancer, you will need its ID:

Add Virtual IPv6

You can add additional IPv6 VIPs to a load balancer using the following method:

50 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

use OpenCloud\LoadBalancer\Enum\IpType;

$loadBalancer->addVirtualIp(IpType::PUBLIC, 6);

the first argument is the type of network your IP address will server traffic in - and can either be PUBLIC or PRIVATE.
The second argument is the version of IP address, either 4 or 6.

Add Virtual IPv4

Similar to above:

use OpenCloud\LoadBalancer\Enum\IpType;

$loadBalancer->addVirtualIp(IpType::PUBLIC, 4);

Remove Virtual IP

You can remove a VIP from a load balancer.

$vip->remove();

Note: A load balancer must have at least one VIP associated with it. If you try to remove a load balancer’s last VIP,
a ClientErrorResponseException will be thrown.

Allowed Domains

List Allowed Domains

You can list all allowed domains using a load balancer service object. An instance of
OpenCloud\Common\Collection\PaginatedIterator is returned.

$allowedDomains = $service->allowedDomainList();

foreach ($allowedDomains as $allowedDomain) {
/** @var $allowedDomain OpenCloud\LoadBalancer\Resource\AllowedDomain **/

}

Access Lists

Access Lists allow fine-grained network access to a load balancer’s VIP. Using access lists, network traffic to a load
balancer’s VIP can be allowed or denied from a single IP address, multiple IP addresses or entire network subnets.

Note that ALLOW network items will take precedence over DENY network items in an access list.

To reject traffic from all network items except those with the ALLOW type, add a DENY network item with the address
of 0.0.0.0/0.

2.7. Load Balancer v1 51



php-opencloud Documentation, Release 1.12.1

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

View Access List

You can view a load balancer’s access list:

$accessList = $loadBalancer->accessList();

foreach ($accessList as $networkItem) {
/** @var $networkItem OpenCloud\LoadBalancer\Resource\Access **/

}

Add Network Items To Access List

You can add network items to a load balancer’s access list very easily:

$loadBalancer->createAccessList(array(
(object) array(

'type' => 'ALLOW',
'address' => '206.160.165.1/24'

),
(object) array(

'type' => 'DENY',
'address' => '0.0.0.0/0'

)
));

In the above example, we allowed access for 1 IP address, and used the “0.0.0.0” wildcard to blacklist all other traffic.

Get the executable PHP scripts for this example:

• Blacklist IP range

• Limit access to 1 IP

Remove Network Item From Access List

You an remove a network item from a load balancer’s access list:

$networkItem->delete();

Content Caching

When content caching is enabled on a load balancer, recently-accessed files are stored on the load balancer for easy
retrieval by web clients. Requests to the load balancer for these files are serviced by the load balancer itself, which
reduces load off its back-end nodes and improves response times as well.

52 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/LoadBalancer/blacklist-ip-range.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/LoadBalancer/limit-access-to-1-ip.php


php-opencloud Documentation, Release 1.12.1

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

Check Configuration

// TRUE if enabled, FALSE if not
$contentCaching = $loadBalancer->hasContentCaching();

Enable Content Caching

$loadBalancer->enableContentCaching(true);

Disable Content Caching

$loadBalancer->enableContentCaching(false);

Error Pages

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

An error page is the html file that is shown to the end user when an error in the service has been thrown. By default
every virtual server is provided with the default error file. It is also possible to set a custom error page for a load
balancer.

View Error Page Content

$errorPage = $loadBalancer->errorPage();
$errorPageContent = $errorPage->content;

/** @var $errorPageContent string **/

In the example above the value of $errorPageContent is the HTML for that page. This could either be the HTML
of the default error page or of your custom error page.

Set Custom Error Page

2.7. Load Balancer v1 53



php-opencloud Documentation, Release 1.12.1

$errorPage = $loadBalancer->errorPage();
$errorPage->update(array(

'content' => '<HTML content of custom error page>'
));

Delete Custom Error Page

$errorPage = $loadBalancer->errorPage();
$errorPage->delete();

Connection Logging

The connection logging feature allows logs to be delivered to a Cloud Files account every hour. For HTTP-based
protocol traffic, these are Apache-style access logs. For all other traffic, this is connection and transfer logging.

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

Check Configuration

// TRUE if enabled, FALSE if not
$connectionLogging = $loadBalancer->hasConnectionLogging();

Enable Connection Logging

$loadBalancer->enableConnectionLogging(true);

Disable Connection Logging

$loadBalancer->enableConnectionLogging(false);

Health Monitors

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

54 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

Retrieve monitor details

/** @var $healthMonitor OpenCloud\LoadBalancer\Resource\HealthMonitor **/

$healthMonitor = $loadBalancer->healthMonitor();

printf(
"Monitoring type: %s, delay: %s, timeout: %s, attempts before deactivation: %s",
$healthMonitor->type, $healthMonitor->delay, $healthMonitor->timeout

);

For a full list, with explanations, of required and optional attributes, please consult the official documentation

Update monitor

$healthMonitor->update(array(
'delay' => 120,
'timeout' => 60,
'type' => 'CONNECT'
'attemptsBeforeDeactivation' => 3

));

Delete monitor

$healthMonitor->delete();

Metadata

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

List metadata

$metadataList = $loadBalancer->metadataList();

foreach ($metadataList as $metadataItem) {
printf("Key: %s, Value: %s", $metadataItem->key, $metadataItem->value);

}

Add metadata

$metadataItem = $loadBalancer->metadata();
$metadataItem->create(array(

'key' => 'foo',

2.7. Load Balancer v1 55

http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/content/Monitor_Connections-d1e3536.html


php-opencloud Documentation, Release 1.12.1

'value' => 'bar'
));

Modify metadata

$metadataItem = $loadBalancer->metadata('foo');
$metadataItem->update(array(

'value' => 'baz'
));

Remove metadata

$metadataItem->delete();

Session Persistence

There are two types (or modes) of session persistence:

Name Description
HTTP_COOKIEA session persistence mechanism that inserts an HTTP cookie and is used to determine the

destination back-end node. This is supported for HTTP load balancing only.
SOURCE_IPA session persistence mechanism that will keep track of the source IP address that is mapped and is

able to determine the destination back-end node. This is supported for HTTPS pass-through and
non-HTTP load balancing only.

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

List Session Persistence Configuration

$sessionPersistence = $loadBalancer->sessionPersistence();

/** @var $sessionPersistenceType null | 'HTTP_COOKIE' | 'SOURCE_IP' **/
$sessionPersistenceType = $sessionPersistence->persistenceType;

In the example above:

• If session persistence is enabled, the value of $sessionPersistenceType is the type of session persis-
tence: either HTTP_COOKIE or SOURCE_IP.

• If session persistence is disabled, the value of $sessionPersistenceType is null.

56 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

Enable Session Persistence

$sessionPersistence = $loadBalancer->sessionPersistence();
$sessionPersistence->update(array(

'persistenceType' => 'HTTP_COOKIE'
));

Disable Session Persistence

$sessionPersistence = $loadBalancer->sessionPersistence();
$sessionPersistence->delete();

SSL Termination

The SSL Termination feature allows a load balancer user to terminate SSL traffic at the load balancer layer versus
at the web server layer. A user may choose to configure SSL Termination using a key and an SSL certificate or an
(Intermediate) SSL certificate.

When SSL Termination is configured on a load balancer, a secure shadow server is created that listens only for secure
traffic on a user-specified port. This shadow server is only visible to and manageable by the system. Existing or
updated attributes on a load balancer with SSL Termination will also apply to its shadow server. For example, if
Connection Logging is enabled on an SSL load balancer, it will also be enabled on the shadow server and Cloud Files
logs will contain log files for both.

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

View configuration

/** @var $sslConfig OpenCloud\LoadBalancer\Resource\SSLTermination **/
$sslConfig = $loadBalancer->SSLTermination();

Update configuration

$sslConfig->update(array(
'enabled' => true,
'securePort' => 443,
'privateKey' => $key,
'certificate' => $cert

));

For a full list, with explanations, of required and optional attributes, please consult the official documentation

Get the executable PHP script for this example

2.7. Load Balancer v1 57

http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/content/SSLTermination-d1e2479.html
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/LoadBalancer/ssl-termination.php


php-opencloud Documentation, Release 1.12.1

Delete configuration

$sslConfig->delete();

Statistics and Usage Reports

Setup

In order to interact with this feature you must first retrieve a particular load balancer, like so:

$loadBalancer = $service->loadBalancer('{id}');

Retrieve LB stats

You can retrieve detailed stats about your load balancer, including the following information:

• connectTimeOut – Connections closed by this load balancer because the ‘connect_timeout’ interval was
exceeded.

• connectError – Number of transaction or protocol errors in this load balancer.

• connectFailure – Number of connection failures in this load balancer.

• dataTimedOut – Connections closed by this load balancer because the ‘timeout’ interval was exceeded.

• keepAliveTimedOut – Connections closed by this load balancer because the ‘keepalive_timeout’ interval
was exceeded.

• maxConn – Maximum number of simultaneous TCP connections this load balancer has processed at any one
time.

/** @var $stats OpenCloud\LoadBalancer\Resource\Stats **/
$stats = $loadBalancer->stats();

Usage Reports

The load balancer usage reports provide a view of all transfer activity, average number of connections, and number of
virtual IPs associated with the load balancing service. Current usage represents all usage recorded within the preceding
24 hours. Values for both incomingTransfer and outgoingTransfer are expressed in bytes transferred.

The optional startTime and endTime parameters can be used to filter all usage. If the startTime parameter is supplied
but the endTime parameter is not, then all usage beginning with the startTime will be provided. Likewise, if the
endTime parameter is supplied but the startTime parameter is not, then all usage will be returned up to the endTime
specified.

# View billable LBs
$billable = $service->billableLoadBalancerList();

foreach ($billable as $loadBalancer) {
/** @var $loadBalancer OpenCloud\LoadBalancer\Resource\LoadBalancer **/

# View usage
/** @var $usage OpenCloud\LoadBalancer\Resource\UsageRecord **/
$usage = $loadBalancer->usage();

58 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

echo $usage->averageNumConnections, PHP_EOL;
}

Glossary

allowed domain Allowed domains are a restricted set of domain names that are allowed to add load
balancer nodes.

content caching When content caching is enabled on a load balancer, recently-accessed files are stored
on the load balancer for easy retrieval by web clients. Requests to the load balancer for these files
are serviced by the load balancer itself, which reduces load off its back-end nodes and improves
response times as well.

health monitor The load balancing service includes a health monitoring operation which periodically
checks your back-end nodes to ensure they are responding correctly. If a node is not responding, it
is removed from rotation until the health monitor determines that the node is functional. In addition
to being performed periodically, the health check also is performed against every node that is added
to ensure that the node is operating properly before allowing it to service traffic. Only one health
monitor is allowed to be enabled on a load balancer at a time.

load balancer A load balancer is a device that distributes incoming network traffic amongst multiple
back-end systems. These back-end systems are called the nodes of the load balancer.

metadata Metadata can be associated with each load balancer and each node for the client’s personal
use. It is defined using key-value pairs where the key and value consist of alphanumeric characters.
A key is unique per load balancer.

node A node is a backend device that provides a service on specified IP and port. An example of a load
balancer node might be a web server serving HTTP traffic on port 8080. A load balancer typically
has multiple nodes attached to it so it can distribute incoming network traffic amongst them.

session persistence Session persistence is a feature of the load balancing service that forces multiple
requests, of the same protocol, from clients to be directed to the same node. This is common with
many web applications that do not inherently share application state between back-end servers.

virtual IP A virtual IP (VIP) makes a load balancer accessible by clients. The load balancing service
supports either a public VIP address (PUBLIC), routable on the public Internet, or a ServiceNet VIP
address (SERVICENET), routable only within the region in which the load balancer resides.

Further Links

• API Developer Guide

• API release history

Monitoring v1

Note: This service is only available for Rackspace users.

2.8. Monitoring v1 59

http://docs.rackspace.com/loadbalancers/api/v1.0/clb-devguide/content/Overview-d1e82.html
http://docs.rackspace.com/loadbalancers/api/v1.0/clb-getting-started/content/DB_Doc_Change_History.html


php-opencloud Documentation, Release 1.12.1

Setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

Monitoring service

Now to instantiate the Monitoring service:

$service = $client->monitoringService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Entities

An entity is the target of what you are monitoring. For example, you can create an entity to monitor your website,
a particular web service, or your Rackspace server. Note that an entity represents only one item in the monitoring
system – if you wanted to monitor each server in a cluster, you would create an entity for each of the servers. You
would not create a single entity to represent the entire cluster.

An entity can have multiple checks associated with it. This allows you to check multiple services on the same host by
creating multiple checks on the same entity, instead of multiple entities each with a single check.

Create Entity

$service->createEntity(array(
'label' => 'Brand New Entity',
'ip_addresses' => array(

'default' => '127.0.0.4',
'b' => '127.0.0.5',
'c' => '127.0.0.6',
'test' => '127.0.0.7'

),
'metadata' => array(

'all' => 'kinds',
'of' => 'stuff',
'can' => 'go',
'here' => 'null is not a valid value'

60 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

)
));

Retrive an entity

$entity = $service->getEntity('{entityId}');

Attributes

Name Description Data type Method
label Defines a name for the entity. String (1..255 chars) getLabel()
agent_id Agent to which this entity is bound to. String matching the regex:

/^[-\.\w]{1,255}$/
getAgentId()

ip_addressesHash of IP addresses that can be referenced
by checks on this entity.

Array getIpAddresses()

meta-
data

Arbitrary key/value pairs that are passed
during the alerting phase.

OpenCloud\Common\Metadata getMetadata()

Update an entity

$entity->update(array(
'label' => 'New label for my entity'

));

Delete entity

$entity->delete();

Checks

A check is one of the foundational building blocks of the monitoring system. The check determines the parts or pieces
of the entity that you want to monitor, the monitoring frequency, how many monitoring zones are originating the
check, and so on. When you create a new check in the monitoring system, you specify the following information:

• A name for the check

• The check’s parent entity

• The type of check you’re creating

• Details of the check

• The monitoring zones that will launch the check

The check, as created, will not trigger alert messages until you create an alarm to generate notifications, to enable the
creation of a single alarm that acts upon multiple checks (e.g. alert if any of ten different servers stops responding)
or multiple alarms off of a single check. (e.g. ensure both that a HTTPS server is responding and that it has a valid
certificate).

2.8. Monitoring v1 61



php-opencloud Documentation, Release 1.12.1

Create a check

There are various attributes available to you when creating a new monitoring check:

$params = array(
'type' => 'remote.http',
'details' => array(

'url' => 'http://example.com',
'method' => 'GET'

),
'monitoring_zones_poll' => array('mzlon'),
'period' => '100',
'timeout' => '30',
'target_alias' => 'default',
'label' => 'Website check 1'

);

For a full list of available attributes, consult the list below.

Attributes

Name Description Re-
quired?

Data type

type The type of check. Re-
quired

Valid check type.
String (1..25 chars)

de-
tails

Details specific to the check type. Op-
tional

Array

dis-
abled

Disables the check. Op-
tional

Boolean

label A friendly label for a check. Op-
tional

String (1..255 chars)

meta-
data

Arbitrary key/value pairs. Op-
tional

Array

pe-
riod

The period in seconds for a check. The value must be greater than
the minimum period set on your account.

Op-
tional

Integer (30..1800)

time-
out

The timeout in seconds for a check. This has to be less than the
period.

Op-
tional

Integer (2..1800)

Optional attributes to be used with remote checks

Name Description Re-
quired?

Data type

monitor-
ing_zones_poll

List of monitoring zones to poll from. Note: This argument is
only required for remote (non-agent) checks

Op-
tional

Array

tar-
get_alias

A key in the entity’s ip_addresses hash used to resolve this
check to an IP address. This parameter is mutually exclusive
with target_hostname.

Op-
tional

String (1..64 chars)

tar-
get_hostname

The hostname this check should target. This parameter is
mutually exclusive with target_alias.

Op-
tional

Valid FQDN, IPv4 or
IPv6 address. String
(1..256 chars).

tar-
get_resolver

Determines how to resolve the check target. Op-
tional

IPv4 or IPv6

62 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

Test parameters

Sometimes it can be useful to test out the parameters before sending them as a create call. To do this, pass in the
$params like so:

$response = $entity->testNewCheckParams($params);

echo $response->timestamp; // When was it executed?
echo $response->available; // Was it available?
echo $response->status; // Status code

Send parameters

Once you are satisfied with your configuration parameters, you can complete the operation and send it to the API like
so:

$entity->createCheck($params);

Test existing Check

// Set arg to TRUE for debug information
$response = $check->test(true);

echo $response->debug_info;

List Checks

$checks = $entity->getChecks();

foreach ($checks as $check) {
echo $check->getId();

}

Update Check

$check->update(array('period' => 500));

Delete check

$check->delete();

Check types

Each check within the Rackspace Cloud Monitoring has a designated check type. The check type instructs the moni-
toring system how to check the monitored resource. Note: Users cannot create, update or delete check types.

2.8. Monitoring v1 63



php-opencloud Documentation, Release 1.12.1

Check types for commonly encountered web protocols, such as HTTP (remote.http), IMAP (remote.
imap-banner) , SMTP (remote.stmp), and DNS (remote.dns) are provided. Monitoring com-
monly encountered infrastructure servers like MySQL (remote.mysql-banner) and PostgreSQL (remote.
postgresql-banner) are also available. Monitoring custom server uptime can be accomplished with the re-
mote.tcp banner check to check for a protocol-defined banner at the beginning of a connection. Gathering metrics
from server software to create alerts against can be accomplished using the remote.http check type and the ‘extract’
attribute to define the format.

In addition to the standard Cloud Monitoring check types, you can also use agent check types if the Monitoring Agent
is installed on the server you are monitoring. For a list of available check types, see the official API documentation.

Checks generate metrics that alarms will alert based upon. The metrics generated often times depend on the check’s
parameters. For example, using the ‘extract’ attribute on the remote.http check, however the default metrics will
always be present. To determine the exact metrics available, the Test Check API is provided.

Find an existing check’s type

If you want to see the type for an existing Check resource:

/** @var \OpenCloud\CloudMonitoring\Resource\CheckType */
$checkType = $check->getCheckType();

List all possible check types

$checkTypes = $service->getCheckTypes();

foreach ($checkTypes as $checkType) {
echo $checkType->getId();

}

Retrieve details about a Type by its ID

Alternatively, you can retrieve a specific type based on its ID:

$checkTypeId = 'remote.dns';
$checkType = $service->getCheckType($checkTypeId);

Attributes

Once you have access to a OpenCloud\CloudMonitoring\Resource\CheckType object, you can query
these attributes:

Name Description Data
type

Method

type The name of the supported check type. String getType()
fields Check type fields. Ar-

ray
getFields()

sup-
ported_platforms

Platforms on which an agent check type is supported. This is advisory
information only - the check may still work on other platforms, or report
that check execution failed at runtime

Ar-
ray

getSupportedPlatforms()

64 Chapter 2. Services

http://docs.rackspace.com/cm/api/v1.0/cm-devguide/content/appendix-check-types.html


php-opencloud Documentation, Release 1.12.1

Alarms

Alarms bind alerting rules, entities, and notification plans into a logical unit. Alarms are responsible for determining
a state (OK, WARNING or CRITICAL) based on the result of a Check, and executing a notification plan whenever that
state changes. You create alerting rules by using the alarm DSL. For information about using the alarm language, refer
to the reference documentation.

Setup

In order to interact with this feature, you must first retrieve an entity by its ID:

$entity = $service->getEntity('{entityId}');

and then a particular check, about which you can configure alarms:

$check = $entity->getCheck('{checkId}');

For more information about these resource types, please consult the documentation about entities and checks.

Retrieve alarm

$alarm = $check->getAlarm('{alarmId}');

Once you have access to a OpenCloud\Monitoring\Resource\Alarm object, these are the attributes you can
access:

Name Description Re-
quired?

Method

check_id The ID of the check to alert on. Re-
quired

getCheckId()

notifica-
tion_plan_id

The ID of the notification plan to execute when the
state changes.

Op-
tional

getNotificationPlanId()

criteria The alarm DSL for describing alerting conditions and
their output states.

Op-
tional

getCriteria()

disabled Disable processing and alerts on this alarm Op-
tional

isDisabled()
<bool>

label A friendly label for an alarm. Op-
tional

getLabel()

metadata Arbitrary key/value pairs. Op-
tional

getMetadata()

Create Alarm

$alarm = $check->getAlarm();
$alarm->create(array(

'check_id' => 'chAAAA',
'criteria' => 'if (metric["duration"] >= 2) { return new AlarmStatus(OK); }

→˓return new AlarmStatus(CRITICAL);',
'notification_plan_id' => 'npAAAAA'

));

2.8. Monitoring v1 65

http://docs.rackspace.com/cm/api/v1.0/cm-devguide/content/alerts-language.html


php-opencloud Documentation, Release 1.12.1

List Alarms

$alarms = $entity->getAlarms();

foreach ($alarms as $alarm) {
echo $alarm->getId();

}

Update Alarm

$alarm->update(array(
'criteria' => 'if (metric["duration"] >= 5) { return new AlarmStatus(OK); }

→˓return new AlarmStatus(CRITICAL);'
));

Delete alarm

$alarm->delete();

Agents

The Monitoring Agent resides on the host server being monitored. The agent allows you to gather on-host metrics
based on agent checks and push them to Cloud Monitoring where you can analyze them, use them with the Cloud
Monitoring infrastructure (such as alarms), and archive them.

For more information about this feature, including a brief overview of its core design principles and security layers,
see the official API documentation.

Retrieve details about an agent

$agent = $service->getAgent('{agentId}');

List agents

$agents = $service->getAgents();

foreach ($agents as $agent) {
echo $agent->getLastConnected();

}

List connections

$connections = $agent->getConnections();

66 Chapter 2. Services

http://docs.rackspace.com/cm/api/v1.0/cm-devguide/content/service-agent.html


php-opencloud Documentation, Release 1.12.1

Get connection

/** @var \OpenCloud\CloudMonitoring\Resource\AgentConnection */
$connection = $agent->getConnection('{connectionId}');

Once you have access to an agent’s OpenCloud\CloudMonitoring\Resource\AgentConnection object,
these are the attributes you can access:

Name Method
id getId()
guid getGuid()
agent_id getAgentId()
endpoint getEndpoint()
process_version getProcessVersion()
bundle_version getBundleVersion()
agent_ip getAgentIp()

Agent tokens

Agent tokens are used to authenticate Monitoring agents to the Monitoring Service. Multiple agents can share a single
token.

Retrieve an agent token

$agentToken = $service->getAgentToken('{tokenId}');

Create agent token

$newToken = $service->getAgentToken();
$newToken->create(array('label' => 'Foobar'));

List agent tokens

$agentTokens = $service->getAgentTokens();

foreach ($agentTokens as $token) {
echo $token->getLabel();

}

Update agent token

$token->update(array(
'label' => 'New label'

));

2.8. Monitoring v1 67



php-opencloud Documentation, Release 1.12.1

Update agent token

$token->delete();

Agent Host Information

An agent can gather host information, such as process lists, network configuration, and memory usage, on demand.
You can use the host-information API requests to gather this information for use in dashboards or other utilities.

Setup

$host = $service->getAgentHost();

Get some metrics

$cpuInfo = $host->info('cpus');
$diskInfo = $host->info('disks');
$filesystemInfo = $host->info('filesystems');
$memoryInfo = $host->info('memory');
$networkIntInfo = $host->info('network_interfaces');
$processesInfo = $host->info('processes');
$systemInfo = $host->info('system');
$userInfo = $host->info('who');

// What CPU models do we have?
foreach ($cpuInfo as $cpuMetric) {

echo $cpuMetric->model, PHP_EOL;
}

// How many disks do we have?
echo $diskInfo->count();

// What's the available space on our ext4 filesystem?
foreach ($filesystemInfo as $filesystemMetric) {

if ($filesystemMetric->sys_type_name == 'ext4') {
echo $filesystemMetric->avail;

}
}

Agent targets

Each agent check type gathers data for a related set of target devices on the server where the agent is installed. For
example, agent.network gathers data for network devices. The actual list of target devices is specific to the
configuration of the host server. By focusing on specific targets, you can efficiently narrow the metric data that the
agent gathers.

68 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

List agent targets

$targets = $service->getAgentTargets();

foreach ($targets as $target) {
echo $target->getType();

}

Changelogs

The monitoring service records changelogs for alarm statuses. Changelogs are accessible as a Time Series Collection.
By default the API queries the last 7 days of changelog information.

View Changelog

$changelog = $service->getChangelog();

foreach ($changelog as $item) {
$entity = $item->getEntityId();

}

Metrics

When Monitoring checks run, they generate metrics. These metrics are stored as full resolution data points in the
Cloud Monitoring system. Full resolution data points are periodically rolled up (condensed) into coarser data points.

Depending on your needs, you can use the metrics API to fetch individual data points (fine-grained) or rolled up data
points (coarse-grained) over a period of time.

Data Granularity

Cloud Monitoring supports several granularities of data: full resolution data and rollups computed at 5, 20, 60, 240
and 1440 minute intervals.

When you fetch metrics data points, you specify several parameters to control the granularity of data returned:

• A time range for the points

• Either the number of points you want returned OR the resolution of the data you want returned

When you query by points, the API selects the resolution that will return you the number of points you requested. The
API makes the assumption of a 30 second frequency, performs the calculation, and selects the appropriate resolution.

Note: Because the API performs calculations to determine the points returned for a particular resolution, the number
of points returned may differ from the specific number of points you request.

Consider that you want to query data for a 48-hour time range between the timestamps from=1354647221000
and to=1358794421000 ( specified in Unix time, based on the number of milliseconds that have elapsed since
January 1, 1970 ). The following table shows the number of points that the API returns for a given resolution.

2.8. Monitoring v1 69



php-opencloud Documentation, Release 1.12.1

Specifying resolution to retrieve data in 48 hour period

You specify resolution... API returns points...
FULL 5760
MIN5 576
MIN20 144
MIN60 48
MIN240 12
MIN1440 2

Specifying number of points to retrieve data in 48 hour period

You specify points in the range... API calculates resolution
3168-∞ FULL
360-3167 MIN5
96-359 MIN20
30-95 MIN60
7-29 MIN240
0-6 MIN1440

Data Point Expiration

Cloud Monitoring expires data points according to the following schedule:

Resolution Expiration
FULL 2 days
MIN5 7 days
MIN20 15 days
MIN60 30 days
MIN240 60 days
MIN1440 365 days

Setup

In order to interact with this feature, you must first retrieve an entity by its ID:

$entity = $service->getEntity('{entityId}');

and then a particular check, about which you can configure alarms:

$check = $entity->getCheck('{checkId}');

For more information about these resource types, please consult the documentation about entities and checks.

List all metrics

$metrics = $check->getMetrics();

foreach ($metrics as $metric) {

70 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

echo $metric->getName();
}

Fetch data points

$data = $check->fetchDataPoints('mzdfw.available', array(
'resolution' => 'FULL',
'from' => 1369756378450,
'to' => 1369760279018

));

Notifications

A notification is a destination to send an alarm; it can be a variety of different types, and will evolve over time.

For instance, with a webhook type notification, Cloud Monitoring posts JSON formatted data to a user-specified URL
on an alert condition (Check goes from OK -> CRITICAL and so on).

Get notification

$notification = $service->getNotification('{id}');

Once you have access to a OpenCloud\Monitoring\Resource\Notification object, these are the at-
tributes available for use:

Name Description Data type Method
de-
tails

A hash of notification specific details based on
the notification type.

Array getDetails()

label Friendly name for the notification. String (1..255 chars) getLabel()
type The notification type to send. String. Either webhook, email, or

pagerduty
getType()

Creating notifications

The first thing to do when creating a new notification is configure the parameters which will define the behaviour of
your resource:

$params = array(
'label' => 'My webhook #1',
'type' => 'webhook',
'details' => array(

'url' => 'http://example.com'
)

);

Test parameters

Once this is done, it is often useful to test them out to check whether they will result in a successful creation:

2.8. Monitoring v1 71



php-opencloud Documentation, Release 1.12.1

// Test it
$response = $notification->testParams($params);

if ($response->status == 'Success') {
echo $response->message;

}

Send parameters

When you’re happy with the parameters you’ve defined, you can complete the operation by sending them to the API
like so:

$notification->create($params);

Test existing notification

$response = $notification->testExisting(true);
echo $response->debug_info;

List Notifications

$notifications = $service->getNotifications();

foreach ($notifications as $notification) {
echo $notification->getId();

}

Update a Notification

$notification->update(array(
'label' => 'New notification label'

));

Delete a Notification

$notification->delete();

Notification types

Rackspace Cloud Monitoring currently supports the following notification types:

Industry-standard web hooks, where JSON is posted to a configurable URL. It has these attributes:

Name Description Data type
address Email address to send notifications to Valid email

Email alerts where the message is delivered to a specified address. It has these attributes:

72 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

Name Description Data type
url An HTTP or HTTPS URL to POST to Valid URL

Setup

If you’ve already set up a main Notification object, and want to access functionality for this Notification’s particular
Notification Type, you can access its property:

$type = $notification->getNotificationType();

Alternatively, you can retrieve an independent resource using the ID:

$typeId = 'pagerduty';
$type = $service->getNotificationType($typeId);

List all possible notification types

$types = $service->getNotificationTypes();

foreach ($types as $type) {
echo sprintf('%s %s', $type->getName(), $type->getDescription());

}

Notification plans

A notification plan contains a set of notification actions that Rackspace Cloud Monitoring executes when triggered by
an alarm. Rackspace Cloud Monitoring currently supports webhook and email notifications.

Each notification state can contain multiple notification actions. For example, you can create a notification plan that
hits a webhook/email to notify your operations team if a warning occurs. However, if the warning escalates to an Error,
the notification plan could be configured to hit a different webhook/email that triggers both email and SMS messages
to the operations team. The notification plan supports the following states:

• Critical

• Warning

• OK

A notification plan, npTechnicalContactsEmail, is provided by default which will email all of the technical
contacts on file for an account whenever there is a state change.

Get a notification plan

$plan = $service->getNotificationPlan('{planId}');

Once you have access to a OpenCloud\\Monitoring\\Resource\\NotificationPlan object, you can
access these resources:

2.8. Monitoring v1 73



php-opencloud Documentation, Release 1.12.1

Name Description Re-
quired?

Data type Method

label Friendly name for the notification plan. Re-
quired

String (1..255
chars)

getLabel()

criti-
cal_state

The notification list to send to when the state
is CRITICAL.

Optional Array getCriticalState()

ok_state The notification list to send to when the state
is OK.

Optional Array getOkState()

warn-
ing_state

The notification list to send to when the state
is WARNING.

Optional Array getWarningState()

Create Notification Plan

$plan->create(array(
'label' => 'New Notification Plan',
'critical_state' => array('ntAAAA'),
'ok_state' => array('ntBBBB'),
'warning_state' => array('ntCCCC')

));

Update notification plan

$plan->update(array(
'label' => 'New label for my plan'

));

Delete notification plan

$plan->delete();

Alarm Notification History

The monitoring service keeps a record of notifications sent for each alarm. This history is further subdivided by the
check on which the notification occurred. Every attempt to send a notification is recorded, making this history a
valuable tool in diagnosing issues with unreceived notifications, in addition to offering a means of viewing the history
of an alarm’s statuses.

Alarm notification history is accessible as a Time Series Collection. By default alarm notification history is stored for
30 days and the API queries the last 7 days of information.

Setup

In order to interact with this feature, you must first retrieve an entity by its ID:

$entity = $service->getEntity('{entityId}');

and then a particular check, about which you can configure alarms:

74 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

$check = $entity->getCheck('{checkId}');

and finally, retrieve the alarm:

$alarm = $check->getAlarm('{alarmId}');

For more information about these resource types, please consult the documentation about entities and checks.

Discover which Checks have a Notification History

This operation list checks for which alarm notification history is available:

$checks = $alarm->getRecordedChecks();

List Alarm Notification History for a particular Check

$checkHistory = $alarm->getNotificationHistoryForCheck('chAAAA');

Get a particular Notification History item

$checkId = 'chAAAA';
$itemUuid = '646ac7b0-0b34-11e1-a0a1-0ff89fa2fa26';

$singleItem = $history->getNotificationHistoryItem($checkId, $itemUuid);

Views

Views contain a combination of data that usually includes multiple, different objects. The primary purpose of a view
is to save API calls and make data retrieval more efficient. Instead of doing multiple API calls and then combining the
result yourself, you can perform a single API call against the view endpoint.

List all Views

$views = $service->getViews();

foreach ($views as $view) {
$entity = $view->getEntity();
echo $view->getTimestamp();

}

Zones

A monitoring zone is a location that Rackspace Cloud Monitoring collects data from. Examples of monitoring zones
are “US West”, “DFW1” or “ORD1”. It is an abstraction for a general location from which data is collected.

An “endpoint,” also known as a “collector,” collects data from the monitoring zone. The endpoint is mapped directly
to an individual machine or a virtual machine. A monitoring zone contains many endpoints, all of which will be within

2.8. Monitoring v1 75



php-opencloud Documentation, Release 1.12.1

the IP address range listed in the response. The opposite is not true, however, as there may be unallocated IP addresses
or unrelated machines within that IP address range.

A check references a list of monitoring zones it should be run from.

Get details about a zone

$zone = $monitoringService->getMonitoringZone('{zoneId}');

Name Description Data type Method
country_code Country Code String longer than 2 characters getCountryCode()
label Label String getLabel()
source_ips Source IP list Array getSourceIps()

List all zones

$zones = $service->getMonitoringZones();

Perform a traceroute

$traceroute = $zone->traceroute(array(
'target' => 'http://test.com',
'target_resolver' => 'IPv4'

));

// How many hops?
echo count($traceroute);

// What was the first hop's IP?
echo $traceroute[0]->ip;

Glossary

agent A monitoring daemon that resides on the server being monitored. The agent gathers metrics based on agent
checks and pushes them to Cloud Monitoring. The agent provides insight into your servers with checks for
information such as load average and network usage. The agent acts as a single small service that runs scheduled
checks and pushes metrics to the rest of Cloud Monitoring so the metrics can be analyzed, trigger alerts, and be
archived. These metrics are gathered via checks using agent check types, and can be used with the other Cloud
Monitoring primitives such as alarms.

agent token An authentication token used to identify the agent when it communicates with Cloud Monitoring.

alarm An alarm contains a set of rules that determine when the monitoring system sends a notification. You can
create multiple alarms for the different checks types associated with an entity. For example, if your entity is a
web server that hosts your company’s website, you can create one alarm to monitor the server itself, and another
alarm to monitor the website.

check Checks explicitly specify how you want to monitor an entity. Once you’ve created an entity, you can configure
one or more checks for it. A check is the foundational building block of the monitoring system, and is always
associated with an entity. The check specifies the parts or pieces of the entity that you want to monitor, the

76 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

monitoring frequency, how many monitoring zones are launching the check, and so on. It contains the specific
details of how you are monitoring the entity.

entity The object or resource that you want to monitor. It can be any object or device that you want to monitor. It’s
commonly a web server, but it might also be a website, a web page or a web service.

monitoring zone A monitoring zone is the “launch point” of a check. When you create a check, you specify which
monitoring zone(s) you want to launch the check from. This concept of a monitoring zone is similar to that of a
datacenter, however in the monitoring system, you can think of it more as a geographical region.

notification A notification is an informational message sent to one or more addresses by the monitoring system when
an alarm is triggered. You can set up notifications to alert a single individual or an entire team. Rackspace Cloud
Monitoring currently supports webhooks and email for sending notifications.

notification plan A notification plan contains a set of notification rules to execute when an alarm is triggered. A
notification plan can contain multiple notifications for each of the following states:

Further links

• Getting Started Guide for the API

• API Developer Guide

• API release history

Networking v2

Setup

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

2.9. Networking v2 77

http://docs.rackspace.com/cm/api/v1.0/cm-getting-started/content/Introduction.html
http://docs.rackspace.com/cm/api/v1.0/cm-devguide/content/overview.html
http://docs.rackspace.com/cm/api/v1.0/cm-releasenotes/content/cmv1.10.html


php-opencloud Documentation, Release 1.12.1

Networking service

Now to instantiate the Networking service:

$service = $client->networkingService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Networks

Create a network

This operation takes one parameter, an associative array, with the following keys:

Name Description Data
type

Re-
quired?

Default value Example value

name A human-readable name for the network.
This name might not be unique.

String No null My private
backend
network

adminStateUpThe administrative state of network. If
false (down), the network does not
forward packets.

BooleanNo true true

shared Specifies whether the network resource can
be accessed by any tenant.

BooleanNo false false

tenantIdOwner of network. Only admin users can
specify a tenant ID other than their own.

String No Same as tenant
creating the
network

123456

You can create a network as shown in the following example:

/** @var $network OpenCloud\Networking\Resource\Network **/
$network = $networkingService->createNetwork(array(

'name' => 'My private backend network'
));

Get the executable PHP script for this example

Create multiple networks

This operation takes one parameter, an indexed array. Each element of this array must be an associative array with the
keys shown in the preceding table.

You can create multiple networks as shown in the following example:

78 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/create-network.php


php-opencloud Documentation, Release 1.12.1

$networks = $networkingService->createNetworks(array(
array(

'name' => 'My private backend network #1'
),
array(

'name' => 'My private backend network #2'
)

));

foreach ($networks as $network) {
/** @var $network OpenCloud\Networking\Resource\Network **/

}

Get the executable PHP script for this example

List networks

You can list all the networks to which you have access as shown in the following example:

$networks = $networkingService->listNetworks();

foreach ($networks as $network) {
/** @var $network OpenCloud\Networking\Resource\Network **/

}

Get the executable PHP script for this example

Get a network

You can retrieve a specific network by using that network’s ID, as shown in the following example:

/** @var $network OpenCloud\Networking\Resource\Network **/
$network = $networkingService->getNetwork('{networkId}');

Get the executable PHP script for this example

Update a network

This operation takes one parameter, an associative array, with the following keys:

Name Description Data
type

Re-
quired?

De-
fault
value

Example value

name A human-readable name for the network. This
name might not be unique.

String No null My updated
private backend
network

adminStateUpThe administrative state of network. If false
(down), the network does not forward packets.

BooleanNo true true

shared Specifies whether the network resource can be
accessed by any tenant.

BooleanNo false false

You can update a network as shown in the following example:

2.9. Networking v2 79

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/create-networks.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/list-networks.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/get-network.php


php-opencloud Documentation, Release 1.12.1

$network->update(array(
'name' => 'My updated private backend network'

));

Get the executable PHP script for this example

Delete a network

You can delete a network as shown in the following example:

$network->delete();

Get the executable PHP script for this example

Subnets

Create a subnet

This operation takes one parameter, an associative array, with the following keys:

80 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/update-network.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/delete-network.php


php-opencloud Documentation, Release 1.12.1

Name Description Data type Required? Default value Example value
networkId Network this

subnet is associ-
ated with

String Yes • eb60583c-57ea-41b9-8d5c-8fab2d22224c

ipVersion IP version Integer (4 or 6) Yes • 4

cidr CIDR represent-
ing the IP ad-
dress range for
this subnet

String (CIDR) Yes • 192.168.
199.0/25

name A human-
readable name
for the subnet.
This name
might not be
unique.

String No null My subnet

gatewayIp IP address of the
default gateway
used by devices
on this subnet

String (IP ad-
dress)

No First IP address
in CIDR

192.168.
199.128

dnsNameserversDNS name-
servers used
by hosts in this
subnet

Indexed array of
strings

No Empty array array('4.
4.4.4',
'8.8.8.8')

allocationPoolsSubranges
of the CIDR
available for
dynamic al-
location to
ports

Indexed array
of associative
arrays

No Every IP ad-
dress in CIDR,
excluding gate-
way IP address
if configured

array(array('start'
=> '192.
168.199.
2', 'end'
=> '192.
168.199.
127'))

hostRoutes Routes that
should be used
by devices with
IP addresses
from this subnet
(not including
the local subnet
route)

Indexed array
of associative
arrays

No Empty array array(array('destination'
=> '1.1.1.
0/24',
'nexthop'
=> '192.
168.19.
20'))

enableDhcp Specifies
whether DHCP
is enabled for
this subnet

Boolean No true false

tenantId Owner of the
subnet. Only
admin users can
specify a tenant
ID other than
their own.

String No Same as tenant
creating the sub-
net

123456

You can create a subnet as shown in the following example:

/** @var $subnet OpenCloud\Networking\Resource\Subnet **/
$subnet = $networkingService->createSubnet(array(

2.9. Networking v2 81



php-opencloud Documentation, Release 1.12.1

'name' => 'My subnet',
'networkId' => 'eb60583c-57ea-41b9-8d5c-8fab2d22224c',
'ipVersion' => 4,
'cidr' => '192.168.199.0/25'

));

Get the executable PHP script for this example

Create multiple subnets

This operation takes one parameter, an indexed array. Each element of this array must be an associative array with the
keys shown in the preceding table.

You can create multiple subnets as shown in the following example:

$subnets = $networkingService->createSubnets(array(
array(

'name' => 'My subnet #1'
),
array(

'name' => 'My subnet #2'
)

));

foreach ($subnets as $subnet) {
/** @var $subnet OpenCloud\Networking\Resource\Subnet **/

}

Get the executable PHP script for this example

List subnets

You can list all the subnets to which you have access as shown in the following example:

$subnets = $networkingService->listSubnets();
foreach ($subnets as $subnet) {

/** @var $subnet OpenCloud\Networking\Resource\Subnet **/
}

Get the executable PHP script for this example

Get a subnet

You can retrieve a specific subnet by using that subnet’s ID, as shown in the following example:

/** @var $subnet OpenCloud\Networking\Resource\Subnet **/
$subnet = $networkingService->getSubnet('{subnetId}');

Get the executable PHP script for this example

Update a subnet

This operation takes one parameter, an associative array, with the following keys:

82 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/create-subnet.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/create-subnets.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/list-subnets.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/get-subnet.php


php-opencloud Documentation, Release 1.12.1

Name Description Data type Re-
quired?

Default
value

Example value

name A human-readable name for the
subnet. This name might not be
unique.

String No null My updated subnet

gatewayIpIP address of the default gateway
used by devices on this subnet

String (IP
address)

No First IP
address
in
CIDR

192.168.62.155

dnsNameserversDNS nameservers used by hosts in
this subnet

Indexed
array of
strings

No Empty
array

array('4.4.4.4',
'8.8.8.8')

hostRoutesRoutes that should be used by
devices with IP adresses from this
subnet (not including the local
subnet route)

Indexed
array of
associative
arrays

No Empty
array

array(array('destination'
=> '1.1.1.0/24',
'nexthop' =>
'192.168.17.19'))

enableDhcpSpecifies whether DHCP is
enabled for this subnet

Boolean No true false

You can update a subnet as shown in the following example:

$subnet->update(array(
'name' => 'My updated subnet',
'hostRoutes' => array(

array(
'destination' => '1.1.1.0/24',
'nexthop' => '192.168.17.19'

)
),
'gatewayIp' => '192.168.62.155'

));

Get the executable PHP script for this example

Delete a subnet

You can delete a subnet as shown in the following example:

$subnet->delete();

Get the executable PHP script for this example

Ports

Create a port

This operation takes one parameter, an associative array, with the following keys:

2.9. Networking v2 83

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/update-subnet.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/delete-subnet.php


php-opencloud Documentation, Release 1.12.1

Name Description Data type Required? Default value Example value
networkId Network this

port is associ-
ated with

String Yes • eb60583c-57ea-41b9-8d5c-8fab2d22224c

name A human-
readable name
for the port.
This name
might not be
unique.

String No null My port

adminStateUp The admin-
istrative state
of port. If
false (down),
the port does
not forward
packets.

Boolean No true true

macAddress MAC address to
use on this port

String (MAC
address in
6-octet form
separated by
colons)

No Generated 0F:5A:6F:70:E9:5C

fixedIps IP addresses for
this port

Indexed array
of associative
arrays

No Automatically
allocated from
the pool

array(array('subnetId'
=>
'75906d20-6625-11e4-9803-0800200c9a66',

'ipAddress'
=> '192.
168.199.
17'))

deviceId Identifies the
device (for
example, virtual
server) using
this port

String No null 5e3898d7-11be-483e-9732-b2f5eccd2b2e

deviceOwner Identifies the
entity (for ex-
ample, DHCP
agent) using this
port

String No null network:router_interface

securityGroupsSpecifies the
IDs of any
security groups
associated with
this port

Indexed array of
strings

No Empty array array('f0ac4394-7e4a-4409-9701-ba8be283dbc3')

tenantId Owner of the
port. Only
admin users can
specify a tenant
ID other than
their own.

String No Same as the ten-
ant creating the
port

123456

You can create a port as shown in the following example:

84 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

/** @var $port OpenCloud\Networking\Resource\Port **/
$port = $networkingService->createPort(array(

'name' => 'My port',
'networkId' => 'eb60583c-57ea-41b9-8d5c-8fab2d22224c'

));

Get the executable PHP script for this example

Create multiple ports

This operation takes one parameter, an indexed array. Each element of this array must be an associative array with the
keys shown in the preceding table.

You can create multiple ports as shown in the following example:

$ports = $networkingService->createPorts(array(
array(

'name' => 'My port #1',
'networkId' => 'eb60583c-57ea-41b9-8d5c-8fab2d22224c'

),
array(

'name' => 'My port #2',
'networkId' => 'eb60583c-57ea-41b9-8d5c-8fab2d22224c'

)
));

foreach ($ports as $port) {
/** @var $port OpenCloud\Networking\Resource\Port **/

}

Get the executable PHP script for this example

List ports

You can list all the ports to which you have access as shown in the following example:

$ports = $networkingService->listPorts();

foreach ($ports as $port) {
/** @var $port OpenCloud\Networking\Resource\Port **/

}

Get the executable PHP script for this example

The port list query may be filtered by numerous optional parameters as per the API documentation

$ports = $networkingService->listPorts([
'status' => 'ACTIVE',
'device_id' => '9ae135f4-b6e0-4dad-9e91-3c223e385824'

]);

foreach ($ports as $port) {
/** @var $port OpenCloud\Networking\Resource\Port **/

}

Get the executable PHP script for this example

2.9. Networking v2 85

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/create-port.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/create-ports.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/list-ports.php
http://developer.openstack.org/api-ref-networking-v2.html#listPorts
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/list-ports-filtered.php


php-opencloud Documentation, Release 1.12.1

Get a port

You can retrieve a specific port by using that port’s ID, as shown in the following example:

/** @var $port OpenCloud\Networking\Resource\Port **/
$port = $networkingService->getPort('{portId}');

Get the executable PHP script for this example

Update a port

This operation takes one parameter, an associative array, with the following keys:

Name Description Data
type

Re-
quired?

Default
value

Example value

name A human-readable name
for the port. This name
might not be unique.

String No null My port

adminStateUpThe administrative state
of port. If false
(down), the port does
not forward packets.

Boolean No true true

fixedIpsIP addresses for this port Indexed
array of
associa-
tive
arrays

No Automati-
cally
allocated
from the
pool

array(array('subnetId' =>
'75906d20-6625-11e4-9803-0800200c9a66',
'ipAddress' =>
'192.168.199.59'))

deviceIdIdentifies the device (for
example, virtual server)
using this port

String No null 5e3898d7-11be-483e-9732-b2f5eccd2b2e

deviceOwnerIdentifies the entity (for
example, DHCP agent)
using this port

String No null network:router_interface

securityGroupsSpecifies the IDs of any
security groups
associated with this port

Indexed
array of
strings

No Empty
array

array('f0ac4394-7e4a-4409-9701-ba8be283dbc3')

You can update a port as shown in the following example:

$port->update(array(
'fixedIps' => array(

array(
'subnetId' => '75906d20-6625-11e4-9803-0800200c9a66',
'ipAddress' => '192.168.199.59'

)
)

));

Get the executable PHP script for this example

Delete a port

You can delete a port as shown in the following example:

86 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/get-port.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/update-port.php


php-opencloud Documentation, Release 1.12.1

$port->delete();

Get the executable PHP script for this example

Security Groups

Create a security group

This operation takes one parameter, an associative array, with the following keys:

Name Description Data type Required? Default value Example value
name A human-

readable name
for the security
group. This
name might not
be unique.

String Yes • new-webservers

description Description of
the security
group.

String No null security
group for
webservers

You can create a security group as shown in the following example:

/** @var $securityGroup OpenCloud\Networking\Resource\SecurityGroup **/
$securityGroup = $networkingService->createSecurityGroup(array(

'name' => 'new-webservers',
'description' => 'security group for webservers'

));

Get the executable PHP script for this example

List security groups

You can list all the security groups to which you have access as shown in the following example:

$securityGroups = $networkingService->listSecurityGroups();
foreach ($securityGroups as $securityGroup) {

/** @var $securityGroup OpenCloud\Networking\Resource\SecurityGroup **/
}

Get the executable PHP script for this example

Get a security group

You can retrieve a specific security group by using that security group’s ID, as shown in the following example:

/** @var $securityGroup OpenCloud\Networking\Resource\SecurityGroup **/
$securityGroup = $networkingService->getSecurityGroup('{secGroupId}');

Get the executable PHP script for this example

2.9. Networking v2 87

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Networking/delete-port.php
https://raw.githubusercontent.com/rackspace/php-opencloud/working/samples/Networking/create-security-group.php
https://raw.githubusercontent.com/rackspace/php-opencloud/working/samples/Networking/list-security-groups.php
https://raw.githubusercontent.com/rackspace/php-opencloud/working/samples/Networking/get-security-group.php


php-opencloud Documentation, Release 1.12.1

Delete a security group

You can delete a security group as shown in the following example:

$securityGroup->delete();

Get the executable PHP script for this example

Security Group Rules

Create a security group rule

This operation takes one parameter, an associative array, with the following keys:

88 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/working/samples/Networking/delete-security-group.php


php-opencloud Documentation, Release 1.12.1

Name Description Data type Required? Default value Example value
securityGroupIdThe security

group ID to
associate with
this security
group rule.

String Yes • 2076db17-a522-4506-91de-c6dd8e837028

direction The direction
in which the
security group
rule is applied.
For a compute
instance, an
ingress se-
curity group
rule is applied
to incoming
(ingress) traf-
fic for that
instance. An
egress rule is
applied to traffic
leaving the
instance.

String
(ingress
or egress)

Yes • ingress

ethertype Must be IPv4
or IPv6, and
addresses repre-
sented in CIDR
must match the
ingress or egress
rules.

String (IPv4 or
IPv6)

No IPv4 IPv6

portRangeMin The minimum
port number in
the range that is
matched by the
security group
rule. If the pro-
tocol is TCP or
UDP, this value
must be less
than or equal to
the value of the
portRangeMax
attribute. If the
protocol is
ICMP, this
value must be
an ICMP type.

Integer No null 80

portRangeMax The maximum
port number in
the range that
is matched by
the security
group rule. The
port_range_min
attribute con-
strains the
attribute. If
the protocol
is ICMP, this
value must be
an ICMP type.

Integer No null 80

protocol The protocol
that is matched
by the security
group rule.

String (tcp,
udp, icmp)

No null tcp

remoteGroupIdThe remote
group ID to
be associated
with this se-
curity group
rule. You can
specify either
remoteGroupId
or
remoteGroupPrefix.

String Optional null 85cc3048-abc3-43cc-89b3-377341426ac5

remoteIpPrefixThe remote
IP prefix to
be associated
with this se-
curity group
rule. You can
specify either
remoteGroupId
or
remoteGroupPrefix.

String Optional null 192.168.5.
0

2.9. Networking v2 89



php-opencloud Documentation, Release 1.12.1

You can create a security group rule as shown in the following example:

/** @var $securityGroupRule OpenCloud\Networking\Resource\SecurityGroupRule **/
$securityGroupRule = $networkingService->createSecurityGroupRule(array(

'securityGroupId' => '2076db17-a522-4506-91de-c6dd8e837028',
'direction' => 'egress',
'ethertype' => 'IPv4',
'portRangeMin' => 80,
'portRangeMax' => 80,
'protocol' => 'tcp',
'remoteGroupId' => '85cc3048-abc3-43cc-89b3-377341426ac5'

));

Get the executable PHP script for this example

List security group rules

You can list all the security group rules to which you have access as shown in the following example:

$securityGroupRules = $networkingService->listSecurityGroupRules();
foreach ($securityGroupRules as $securityGroupRule) {

/** @var $securityGroupRule OpenCloud\Networking\Resource\SecurityGroupRule **/
}

Get the executable PHP script for this example

Glossary

network A network is an isolated virtual layer-2 broadcast domain that is typically reserved for the tenant who
created it unless you configure the network to be shared. The network is the main entity in the Networking
service. Ports and subnets are always associated with a network.

subnet A subnet represents an IP address block that can be used to assign IP addresses to virtual instances (such
as servers created using the Compute service). Each subnet must have a CIDR and must be associated with a
network.

port A port represents a virtual switch port on a logical network switch. Virtual instances (such as servers created
using the Compute service) attach their interfaces into ports. The port also defines the MAC address and the IP
address(es) to be assigned to the interfaces plugged into them. When IP addresses are associated to a port, this
also implies the port is associated with a subet, as the IP address is taken from the allocation pool for a specific
subnet.

security group A security group is a named container for security group rules.

security group rule A security group rule provides users the ability to specify the types of traffic that are allowed to
pass through to and from ports on a virtual server instance.

Further links

• Getting Started Guide for the API

• API Developer Guide

• API release history

90 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/working/samples/Networking/create-security-group-rule.php
https://raw.githubusercontent.com/rackspace/php-opencloud/working/samples/Networking/list-security-group-rules.php
http://docs.rackspace.com/networks/api/v2/cn-gettingstarted/content/ch_preface.html
http://docs.rackspace.com/networks/api/v2/cn-devguide/content/ch_preface.html
http://docs.rackspace.com/networks/api/v2/cn-releasenotes/content/ch_preface.html


php-opencloud Documentation, Release 1.12.1

Object Store v1

Setup

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

Object Store service

Now to instantiate the Object Store service:

$service = $client->objectStoreService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Account Details

To see how many containers you have in your account (X-Account-Container-Count), how many objects are in your
account (X-Account-Object-Count), and how many total bytes your account uses (X-Account-Bytes-Used):

2.10. Object Store v1 91



php-opencloud Documentation, Release 1.12.1

Setup

$account = $service->getAccount();

View all details

$details = $account->getDetails();

Retrieve total container count

$account->getContainerCount();

Get the executable PHP script for this example

Retrieve total object count

$account->getObjectCount();

Get the executable PHP script for this example

Retrieve total bytes used

$account->getBytesUsed();

Get the executable PHP script for this example

Containers

Create container

To create a new container, you just need to define its name:

$container = $service->createContainer('my_amazing_container');

If the response returned is FALSE, there was an API error - most likely due to the fact you have a naming collision.

Container names must be valid strings between 0 and 256 characters. Forward slashes are not currently permitted.

Note: When working with names that contain non-standard alphanumerical characters (such as spaces or non-English
characters), you must ensure they are encoded with urlencode before passing them in

Get the executable PHP script for this example

92 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-account-container-count.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-account-object-count.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-account-bytes-used.php
http://php.net/urlencode
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/create-container.php


php-opencloud Documentation, Release 1.12.1

List containers

$containers = $service->listContainers();

foreach ($containers as $container) {
/** @param $container OpenCloud\ObjectStore\Resource\Container */
printf("Container name: %s\n", $container->name);
printf("Number of objects within container: %d\n", $container->getObjectCount());

}

Container names are sorted based on a binary comparison, a single built-in collating sequence that compares string
data using SQLite’s memcmp() function, regardless of text encoding.

The list is limited to 10,000 containers at a time. To work with larger collections, please read the next section.

Get the executable PHP script for this example

Filtering large collections

When you need more control over collections of containers, you can filter the results and return back a subset of
the total collection by using the marker and end_marker parameters. The former parameter (marker) tells the
API where to begin the list, and the latter (end_marker) tells it where to end the list. You may use either of them
independently or together.

You may also use the limit parameter to fix the number of containers returned.

To list a set of containers between two fixed points:

$someContainers = $service->listContainers(array(
'marker' => 'container_55',
'end_marker' => 'container_2001'

));

Or to return a limited set:

$someContainers = $service->listContainers(array('limit' => 560));

Get container

To retrieve a certain container:

/** @param $container OpenCloud\ObjectStore\Resource\Container */
$container = $service->getContainer('{containerName}');

Get the executable PHP script for this example

Retrieve a container’s name

$name = $container->name;

2.10. Object Store v1 93

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/list-containers.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-container.php


php-opencloud Documentation, Release 1.12.1

Retrieve a container’s object count

$count = $container->getObjectCount();

Get the executable PHP script for this example

Retrieve a container’s total bytes used

$bytes = $container->getBytesUsed();

Get the executable PHP script for this example

Delete container

Deleting an empty container is easy:

$container->delete();

Please bear mind that you must delete all objects inside a container before deleting it. This is done for you if you set
the $deleteObjects parameter to TRUE like so:

$container->delete(true);

You can also delete all objects first, and then call delete.

Get the executable PHP script for this example

Deleting all objects inside a container

$container->deleteAllObjects();

Get the executable PHP script for this example

Create or update container metadata

$container->saveMetadata(array(
'Author' => 'Virginia Woolf',
'Published' => '1931'

));

Please bear in mind that this action will set metadata to this array - overriding existing values and wiping those left
out. To append values to the current metadata:

$metadata = $container->appendToMetadata(array(
'Publisher' => 'Hogarth'

));

Get the executable PHP script for this example

94 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-container-object-count.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-container-bytes-used.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/delete-container.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/delete-container-recursive.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/set-container-metadata.php


php-opencloud Documentation, Release 1.12.1

Container quotas

The container_quotas middleware implements simple quotas that can be imposed on Cloud Files containers by
a user. Setting container quotas can be useful for limiting the scope of containers that are delegated to non-admin
users, exposed to formpost uploads, or just as a self-imposed sanity check.

To set quotas for a container:

use OpenCloud\Common\Constants\Size;

$container->setCountQuota(1000);
$container->setBytesQuota(2.5 * Size::GB);

And to retrieve them:

echo $container->getCountQuota();
echo $container->getBytesQuota();

Get the executable PHP scripts for this example:

• Set bytes quota

• Set count quota

Access log delivery

To view your object access, turn on Access Log Delivery. You can use access logs to analyze the number of people
who access your objects, where they come from, how many requests for each object you receive, and time-based usage
patterns (such as monthly or seasonal usage).

$container->enableLogging();
$container->disableLogging();

Syncing containers

You can synchronize local directories with your CloudFiles/Swift containers very easily. When you do this, the
container will mirror exactly the nested file structure within your local directory:

$container->uploadDirectory('/home/user/my-blog');

There are four scenarios you should be aware of:

Local Remote Comparison Action
File exists File exists Identical checksum No action
File exists File exists Different checksum Local file overwrites re-

mote
File exists File does not exist • Local file created in Swift

Files does not exist File exists • Remote file deleted

2.10. Object Store v1 95

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-container-bytes-quota.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-container-count-quota.php


php-opencloud Documentation, Release 1.12.1

Objects

Setup

In order to interact with this feature, you must first retrieve a particular container using its unique name:

$container = $service->getContainer('{containerName}');

Create an object

There are three ways to upload a new file, each of which has different business needs.

Note: Unlike previous versions, you do not need to manually specify your object’s content type. The API will do this
for you.

Note: When working with names that contain non-standard alphanumerical characters (such as spaces or non-English
characters), you must ensure they are encoded with urlencode before passing them in.

Upload a single file (under 5GB)

The simplest way to upload a local object, without additional metadata, is by its path:

$container->uploadObject('example.txt', fopen('/path/to/file.txt', 'r+'));

The resource handle will be automatically closed by Guzzle in its destructor, so there is no need to execute fclose.

Get the executable PHP script for this example

Upload a single file (under 5GB) with metadata

Although the previous section handles most use cases, there are times when you want greater control over what is
being uploaded. For example, you might want to control the object’s metadata, or supply additional HTTP headers to
coerce browsers to handle the download a certain way. To add metadata to a new object:

use OpenCloud\ObjectStore\Resource\DataObject;

// specify optional metadata
$metadata = array(

'Author' => 'Camera Obscura',
'Origin' => 'Glasgow',

);

// specify optional HTTP headers
$httpHeaders = array(

'Content-Type' => 'application/json',
);

// merge the two
$allHeaders = array_merge(DataObject::stockHeaders($metadata), $httpHeaders);

96 Chapter 2. Services

http://php.net/urlencode
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/upload-object.php


php-opencloud Documentation, Release 1.12.1

// upload as usual
$container->uploadObject('example.txt', fopen('/path/to/file.txt', 'r+'),
→˓$allHeaders);

As you will notice, the first argument to uploadObject is the remote object name, i.e. the name it will be uploaded
as. The second argument is either a file handle resource, or a string representation of object content (a temporary
resource will be created in memory), and the third is an array of additional headers.

Get the executable PHP script for this example

Batch upload multiple files (each under 5GB)

$files = array(
array(

'name' => 'apache.log',
'path' => '/etc/httpd/logs/error_log'

),
array(

'name' => 'mysql.log',
'body' => fopen('/tmp/mysql.log', 'r+')

),
array(

'name' => 'to_do_list.txt',
'body' => 'PHONE HOME'

)
);

$container->uploadObjects($files);

As you can see, the name key is required for every file. You must also specify either a path key (to an existing file),
or a body. The body can either be a PHP resource or a string representation of the content you want to upload.

Get the executable PHP script for this example

Upload large files (over 5GB)

For files over 5GB, you will need to use the OpenCloud\ObjectStore\Upload\TransferBuilder factory
to build and execute your transfer. For your convenience, the Container resource object contains a simple method to
do this heavy lifting for you:

$transfer = $container->setupObjectTransfer(array(
'name' => 'video.mov',
'path' => '/home/user/video.mov',
'metadata' => array('Author' => 'Jamie'),
'concurrency' => 4,
'partSize' => 1.5 * Size::GB

));

$transfer->upload();

You can specify how many concurrent cURL connections are used to upload parts of your file. The file is fragmented
into chunks, each of which is uploaded individually as a separate file (the filename of each part will indicate that it’s a
segment rather than the full file). After all parts are uploaded, a manifestfile is uploaded. When the end-user accesses

2.10. Object Store v1 97

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/upload-object-with-metadata.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/upload-multiple-objects-with-metadata.php


php-opencloud Documentation, Release 1.12.1

the 5GB by its true filename, it actually references the manifest file which concatenates each segment into a streaming
download.

In Swift terminology, the name for this process is Dynamic Large Object (DLO). To find out more details, please
consult the official documentation.

Get the executable PHP script for this example

List objects in a container

To return a list of objects:

$files = $container->objectList();

foreach ($files as $file) {
/** @var $file OpenCloud\ObjectStore\Resource\DataObject */

}

By default, 10,000 objects are returned as a maximum. To get around this, you can construct a query which refines
your result set. For a full specification of query parameters relating to collection filtering, see the official docs.

$container->objectList(array('prefix' => 'logFile_'));

Get the executable PHP script for this example

List over 10,000 objects

To retrieve more than 10,000 objects (the default limit), you’ll need to use the built-in paging which uses a ‘marker’
parameter to fetch the next page of data.

$containerObjects = array();
$marker = '';

while ($marker !== null) {
$params = array(

'marker' => $marker,
);

$objects = $container->objectList($params);
$total = $objects->count();
$count = 0;

if ($total == 0) {
break;

}

foreach ($objects as $object) {
/** @var $object OpenCloud\ObjectStore\Resource\DataObject **/
$containerObjects[] = $object->getName();
$count++;

$marker = ($count == $total) ? $object->getName() : null;
}

}

Get the executable PHP script for this example

98 Chapter 2. Services

http://docs.rackspace.com/files/api/v1/cf-devguide/content/Large_Object_Creation-d1e2019.html
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/upload-large-object.php
http://docs.openstack.org/api/openstack-object-storage/1.0/content/list-objects.html
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/list-objects.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/list-objects-over-10000.php


php-opencloud Documentation, Release 1.12.1

Get object

To retrieve a specific file from Cloud Files:

/** @var $file OpenCloud\ObjectStore\Resource\DataObject */
$file = $container->getObject('summer_vacation.mp4');

Once you have access to this OpenCloud\ObjectStore\Resource\DataObject object, you can access
these attributes:

Get object’s parent container

/** @param $container OpenCloud\ObjectStore\Resource\Container */
$container = $object->getContainer();

Get file name

/** @param $name string */
$name = $object->getName();

Get file size

/** @param $size int */
$size = $object->getContentLength();

Get content of file

/** @param $content Guzzle\Http\EntityBody */
$content = $object->getContent();

Get type of file

/** @param $type string */
$type = $object->getContentType();

Get file checksum

/** @param $etag string */
$etag = $object->getEtag();

Get last modified date of file

2.10. Object Store v1 99



php-opencloud Documentation, Release 1.12.1

/** @param $lastModified string */
$lastModified = $object->getLastModified();

Conditional requests

You can also perform conditional requests according to RFC 2616 specification (§§ 14.24-26). Supported headers are
If-Match, If-None-Match, If-Modified-Since and If-Unmodified-Since.

So, to retrieve a file’s contents only if it’s been recently changed

$file = $container->getObject('error_log.txt', array(
'If-Modified-Since' => 'Tue, 15 Nov 1994 08:12:31 GMT'

));

if ($file->getContentLength()) {
echo 'Has been changed since the above date';

} else {
echo 'Has not been changed';

}

Retrieve a file only if it has NOT been modified (and expect a 412 on failure):

use Guzzle\Http\Exception\ClientErrorResponseException;

try {
$oldImmutableFile = $container->getObject('payroll_2001.xlsx', array(

'If-Unmodified-Since' => 'Mon, 31 Dec 2001 23:00:00 GMT'
));

} catch (ClientErrorResponseException $e) {
echo 'This file has been modified...';

}

Finally, you can specify a range - which will return a subset of bytes from the file specified. To return the last 20B of
a file:

$snippet = $container->getObject('output.log', array('range' => 'bytes=-20'));

Update an existing object

$file->setContent(fopen('/path/to/new/content', 'r+'));
$file->update();

Bear in mind that updating a file name will result in a new file being generated (under the new name). You will need
to delete the old file.

Copy object to new location

To copy a file to another location, you need to specify a string-based destination path:

$object->copy('/container_2/new_object_name');

100 Chapter 2. Services

http://www.ietf.org/rfc/rfc2616.txt


php-opencloud Documentation, Release 1.12.1

Where container_2 is the name of the container, and new_object_name is the name of the object inside the
container that does not exist yet.

Get the executable PHP script for this example

Symlinking to this object from another location

To create a symlink to this file in another location you need to specify a string-based source

$object->createSymlinkFrom('/container_2/new_object_name');

Where container_2 is the name of the container, and new_object_name is the name of the object inside the
container that either does not exist yet or is an empty file.

Get the executable PHP script for this example

Setting this object to symlink to another location

To set this file to symlink to another location you need to specify a string-based destination

$object->createSymlinkTo('/container_2/new_object_name');

Where container_2 is the name of the container, and new_object_name is the name of the object inside the
container.

The object must be an empty file.

Get the executable PHP script for this example

Get object metadata

You can fetch just the object metadata without fetching the full content:

$container->getPartialObject('summer_vacation.mp4');

In order to access the metadata on a partial or complete object, use:

$object->getMetadata();

You can turn a partial object into a full object to get the content after looking at the metadata:

$object->refresh();

You can also update to get the latest metadata:

$object->retrieveMetadata();

Get the executable PHP script for this example

Update object metadata

Similarly, with setting metadata there are two options: you can update the metadata values of the local object (i.e. no
HTTP request) if you anticipate you’ll be executing one soon (an update operation for example):

2.10. Object Store v1 101

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/copy-object.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/symlink-object.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/symlink-object.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/get-object-metadata.php


php-opencloud Documentation, Release 1.12.1

// There's no need to execute a HTTP request, because we'll soon do one anyway for
→˓the update operation
$object->setMetadata(array(

'Author' => 'Hemingway'
));

// ... code here

$object->update();

Alternatively, you can update the API straight away - so that everything is retained:

$object->saveMetadata(array(
'Author' => 'Hemingway'

));

Please be aware that these methods override and wipe existing values. If you want to append values to your metadata,
use the correct method:

$metadata = $object->appendToMetadata(array(
'Author' => 'Hemingway'

));

$object->saveMetadata($metadata);

Get the executable PHP script for this example

Extract archive

CloudFiles provides you the ability to extract uploaded archives to particular destinations. The archive will be extracted
and its contents will populate the particular area specified. To upload file (which might represent a directory structure)
into a particular container:

use OpenCloud\ObjectStore\Constants\UrlType;

$service->bulkExtract('container_1', fopen('/home/jamie/files.tar.gz','r'),
→˓UrlType::TAR_GZ);

You can also omit the container name (i.e. provide an empty string as the first argument). If you do this, the API will
create the containers necessary to house the extracted files - this is done based on the filenames inside the archive.

Get the executable PHP script for this example

Delete object

$container->deleteObject('{objectName}');

Get the executable PHP script for this example

Delete already downloaded object

$object->delete();

102 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/update-object-metadata.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/auto-extract-archive-files.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/delete-object-without-download.php


php-opencloud Documentation, Release 1.12.1

Get the executable PHP script for this example

Delete multiple objects

Bulk delete a set of paths:

$pathsToBeDeleted = array('/container_1/old_file', '/container_2/notes.txt', '/
→˓container_1/older_file.log');

$service->batchDelete($pathsToBeDeleted);

Get the executable PHP script for this example

Check an object exists

To check whether an object exists:

/** @var bool $exists */
$exists = $container->objectExists('{objectName}');

CDN Containers

Note: This feature is only available to Rackspace users.

Setup

In order to interact with CDN containers, you first need to instantiate a CDN service object:

$cdnService = $service->getCdnService();

List CDN-enabled containers

To list CDN-only containers, follow the same operation for Storage which lists all containers. The only difference is
which service object you execute the method on:

$cdnContainers = $cdnService->listContainers();

foreach ($cdnContainers as $cdnContainer) {
/** @var $cdnContainer OpenCloud\ObjectStore\Resource\CDNContainer */

}

Get the executable PHP script for this example

CDN-enable a container

Before a container can be CDN-enabled, it must exist in the storage system. When a container is CDN-enabled, any
objects stored in it are publicly accessible over the Content Delivery Network by combining the container’s CDN URL
with the object name.

2.10. Object Store v1 103

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/delete-object.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/bulk-delete.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/list-cdn-containers.php


php-opencloud Documentation, Release 1.12.1

Any CDN-accessed objects are cached in the CDN for the specified amount of time called the TTL. The default TTL
value is 259200 seconds, or 72 hours. Each time the object is accessed after the TTL expires, the CDN refetches and
caches the object for the TTL period.

$container->enableCdn();

Get the executable PHP script for this example

CDN-disable a container

$container->disableCdn();

Get the executable PHP script for this example

Operations on CDN-enabled containers

Once a container has been CDN-enabled, you can retrieve it like so:

$cdnContainer = $cdnService->cdnContainer('{containerName}');

If you already have a container object and want to avoid instantiating a new service, you can also do:

$cdnContainer = $container->getCdn();

Retrieve the SSL URL of a CDN container

$cdnContainer->getCdnSslUri();

Retrieve the streaming URL of a CDN container

$cdnContainer->getCdnStreamingUri();

Retrieve the iOS streaming URL of a CDN container

The Cloud Files CDN allows you to stream video to iOS devices without needing to convert your video. Once you
CDN-enable your container, you have the tools necessary for streaming media to multiple devices.

$cdnContainer->getIosStreamingUri();

CDN logging

To enable and disable logging for your CDN-enabled container:

$cdnContainer->enableCdnLogging();
$cdnContainer->disableCdnLogging();

104 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/enable-container-cdn.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/disable-container-cdn.php


php-opencloud Documentation, Release 1.12.1

Purge CDN-enabled objects

To remove a CDN object from public access:

$object->purge();

You can also provide an optional e-mail address (or comma-delimeted list of e-mails), which the API will send a
confirmation message to once the object has been completely purged:

$object->purge('jamie.hannaford@rackspace.com');
$object->purge('hello@example.com,hallo@example.com');

Migrating containers across regions

Currently, there exists no single API operation to copy containers across geographic endpoints. Although the API
offers a COPY operation for individual files, this does not work for cross-region copying. The SDK, however, does
offer this functionality.

You will be charged for bandwidth between regions, so it’s advisable to use ServiceNet where possible (which is free).

Requirements

• You must install the full Guzzle package, so that the process can take advantage of Guzzle’s batching function-
ality (it allows parallel requests to be batched for greater efficiency). You can do this by running:

composer require guzzle/guzzle

• Depending on the size and number of transfer items, you will need to raise PHP’s memory limit:

ini_set('memory_limit', '512M');

• You will need to enact some kind of backoff/retry strategy for rate limits. Guzzle comes with a convenient
feature that just needs to be added as a normal subscriber:

use Guzzle\Plugin\Backoff\BackoffPlugin;

// maximum number of retries
$maxRetries = 10;

// set HTTP error codes
$httpErrors = array(500, 503, 408);

$backoffPlugin = BackoffPlugin::getExponentialBackoff($maxRetries, $httpErrors);
$client->addSubscriber($backoffPlugin);

This tells the client to retry up to 10 times for failed requests have resulted in these HTTP status codes: 500, 503 or
408.

Setup

You can access all this functionality by executing:

2.10. Object Store v1 105



php-opencloud Documentation, Release 1.12.1

$ordService = $client->objectStoreService('cloudFiles', 'ORD');
$iadService = $client->objectStoreService('cloudFiles', 'IAD');

$oldContainer = $ordService->getContainer('old_container');
$newContainer = $iadService->getContainer('new_container');

$iadService->migrateContainer($oldContainer, $newContainer);

It’s advisable to do this process in a Cloud Server in one of the two regions you’re migrating to/from. This allows you
to use internalURL as the third argument in the objectStoreService methods like this:

$client->objectStoreService('cloudFiles', 'IAD', 'internalURL');

This will ensure that traffic between your server and your new IAD container will be held over the internal Rackspace
network which is free.

Options

You can pass in an array of arguments to the method:

$options = array(
'read.batchLimit' => 100,
'read.pageLimit' => 100,
'write.batchLimit' => 50

);

$iadService->migrateContainer($oldContainer, $newContainer, $options);

Options explained

Name Description De-
fault

read.
pageLimit

When the process begins, it has to collect all the files that exist in the old container. It does
this through a conventional objectList method, which calls the
PaginatedIterator. This iterator has the option to specify the page size for the
collection (i.e. how many items are contained per page in responses from the API)

10,000

read.
batchLimit

After the data objects are collected, the process needs to send an individual GET request to
ascertain more information. In order to make this process faster, these individual GET
requests are batched together and sent in parallel. This limit refers to how many of these
GET requests are batched together.

1,000

write.
batchLimit

Once each file has been retrieved from the API, a PUT request is executed against the new
container. Similar to above, these PUT requests are batched - and this number refers to the
amount of PUT requests batched together.

100

Temporary URLs

Temporary URLs allow you to create time-limited Internet addresses that allow you to grant access to your Cloud Files
account. Using Temporary URL, you may allow others to retrieve or place objects in your containers - regardless of
whether they’re CDN-enabled.

106 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

Set “temporary URL” metadata key

You must set this “secret” value on your account, where it can be used in a global state:

$account = $service->getAccount();
$account->setTempUrlSecret('my_secret');

echo $account->getTempUrlSecret();

The string argument of setTempUrlSecret() is optional - if left out, the SDK will generate a random hashed
secret for you.

Get the executable PHP script for this example:

• Specify a URL secret

• Generate random URL secret

Create a temporary URL

Once you’ve set an account secret, you can create a temporary URL for your object. To allow GET access to your
object for 1 minute:

$object->getTemporaryUrl(60, 'GET');

To allow PUT access for 1 hour:

$object->getTemporaryUrl(360, 'PUT');

Get the executable PHP script for this example

Override TempURL file names

Override tempURL file names simply by adding the filename parameter to the url:

$tempUrl = $object->getTemporaryUrl(60, 'GET');
$url = $tempUrl.'&filename='.$label;

Hosting HTML sites on CDN

Note: This feature is only available to Rackspace users.

To host a static (i.e. HTML) website on Cloud Files, you must follow these steps:

1. CDN-enable a container:

$container = $service->getContainer('html_site');
$container->enableCdn();

2. Upload all HTML content. You can use nested directory structures.

2.10. Object Store v1 107

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/set-account-temp-url-secret-specified.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/set-account-temp-url-secret.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/ObjectStore/create-object-temporary-url.php


php-opencloud Documentation, Release 1.12.1

$container->uploadObjects(array(
array('name' => 'index.html', 'path' => 'index.html'),
array('name' => 'contact.html', 'path' => 'contact.html'),
array('name' => 'error.html', 'path' => 'error.html'),
array('name' => 'styles.css', 'path' => 'styles.css'),
array('name' => 'main.js', 'path' => 'main.js'),

));

3. Tell Cloud Files what to use for your default index page like this:

$container->setStaticIndexPage('index.html');

4. (Optional) Tell Cloud Files which error page to use by default:

$container->setStaticErrorPage('error.html');

Bear in mind that steps 3 & 4 do not upload content, but rather specify a reference to an existing page/CloudFiles
object.

Glossary

account The portion of the system designated for your use. An Object Store system is typically designed to be used
by many different customers, and your user account is your portion of it.

container A storage compartment that provides a way for you to organize data. A container is similar to a folder
in Windows or a directory in UNIX. The primary difference between a container and these other file system
concepts is that containers cannot be nested.

cdn A system of distributed servers (network) that delivers web pages and other web content to a user based on the
geographic locations of the user, the origin of the web page, and a content delivery server.

metadata Optional information that you can assign to Cloud Files accounts, containers, and objects through the use
of a metadata header.

object An object (sometimes referred to as a file) is the unit of storage in an Object Store. An object is a combination
of content (data) and metadata.

Further links

• Getting Started Guide for the API

• API Developer Guide

• API release history

Orchestration v1

Setup

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

108 Chapter 2. Services

http://docs.rackspace.com/files/api/v1/cf-getting-started/content/Overview-d1e01.html
http://docs.rackspace.com/files/api/v1/cf-devguide/content/Overview-d1e70.html
http://docs.rackspace.com/files/api/v1/cf-getting-started/content/Doc_Change_History.html


php-opencloud Documentation, Release 1.12.1

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

Orchestration service

Now to instantiate the Orchestration service:

$service = $client->orchestrationService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Templates

An Orchestration template is a JSON or YAML document that describes how a set of resources should be assembled
to produce a working deployment (known as a stack). The template specifies the resources to use, the attributes of
these resources that are parameterized and the information that is sent to the user when a template is instantiated.

Validating templates

Before you use a template to create a stack, you might want to validate it.

Validate a template from a file

If your template is stored on your local computer as a JSON or YAML file, you can validate it as shown in the following
example:

2.11. Orchestration v1 109



php-opencloud Documentation, Release 1.12.1

use OpenCloud\Common\Exceptions\InvalidTemplateError;

try {
$orchestrationService->validateTemplate(array(

'template' => file_get_contents(__DIR__ . '/lamp.yaml')
));

} catch (InvalidTemplateError $e) {
// Use $e->getMessage() for explanation of why template is invalid

}

Get the executable PHP script for this example

Validate Template from URL

If your template is stored as a JSON or YAML file in a remote location accessible via HTTP or HTTPS, you can
validate it as shown in the following example:

use OpenCloud\Common\Exceptions\InvalidTemplateError;

try {
$orchestrationService->validateTemplate(array(

'templateUrl' => 'https://raw.githubusercontent.com/rackspace-orchestration-
→˓templates/lamp/master/lamp.yaml'

));
} catch (InvalidTemplateError $e) {

// Use $e->getMessage() for explanation of why template is invalid
}

Get the executable PHP script for this example

Stacks

A stack is a running instance of a template. When a stack is created, the resources specified in the template are created.

Preview stack

Before you create a stack from a template, you might want to see what that stack will look like. This is called
previewing the stack.

This operation takes one parameter, an associative array, with the following keys:

110 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/validate-template-from-template-url.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/validate-template-from-template-url.php


php-opencloud Documentation, Release 1.12.1

Name Description Data type Required? Default value Example value
name Name of the

stack
String. Must
start with an al-
phabetic charac-
ter, and must
contain only al-
phanumeric, _,
- or . charac-
ters

Yes • simple-lamp-setup

template Template con-
tents

String. JSON or
YAML

No, if
templateUrl
is specified

null heat_template_version:
2013-05-23\ndescription:
LAMP
server\n

templateUrl URL of the tem-
plate file

String. HTTP or
HTTPS URL

No, if
template
is specified

null https:/
/raw.
githubusercontent.
com/
rackspace-orchestration-templates/
lamp/
master/
lamp.yaml

parameters Arguments to
the template,
based on the
template’s pa-
rameters. For
example, see
the parameters
in this template
section

Associative ar-
ray

No null array('flavor_id'
=>
'general1-1')

Preview a stack from a template file

If your template is stored on your local computer as a JSON or YAML file, you can use it to preview a stack as shown
in the following example:

/** @var $stack OpenCloud\Orchestration\Resource\Stack **/
$stack = $orchestrationService->previewStack(array(

'name' => 'simple-lamp-setup',
'template' => file_get_contents(__DIR__ . '/lamp.yml'),
'parameters' => array(

'server_hostname' => 'web01',
'image' => 'Ubuntu 14.04 LTS (Trusty Tahr) (PVHVM)'

)
));

Get the executable PHP script for this example

Preview a stack from a template URL

If your template is stored as a JSON or YAML file in a remote location accessible via HTTP or HTTPS, you can use
it to preview a stack as shown in the following example:

2.11. Orchestration v1 111

https://github.com/rackspace-orchestration-templates/lamp/blob/master/lamp.yaml#L22
https://github.com/rackspace-orchestration-templates/lamp/blob/master/lamp.yaml#L22
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/preview-stack-from-template-file.php


php-opencloud Documentation, Release 1.12.1

/** @var $stack OpenCloud\Orchestration\Resource\Stack **/
$stack = $orchestrationService->previewStack(array(

'name' => 'simple-lamp-setup',
'templateUrl' => 'https://raw.githubusercontent.com/rackspace-orchestration-

→˓templates/lamp/master/lamp.yaml',
'parameters' => array(

'server_hostname' => 'web01',
'image' => 'Ubuntu 14.04 LTS (Trusty Tahr) (PVHVM)'

)
));

Get the executable PHP script for this example

Create stack

You can create a stack from a template. This operation takes one parameter, an associative array, with the following
keys:

Name Description Data type Required? Default value Example value
name Name of the

stack
String. Must
start with an al-
phabetic charac-
ter, and must
contain only al-
phanumeric, _,
- or . charac-
ters.

Yes • simple-lamp-setup

template Template con-
tents

String. JSON or
YAML

No, if
templateUrl
is specified

null heat_template_version:
2013-05-23\ndescription:
LAMP
server\n

templateUrl URL of tem-
plate file

String. HTTP or
HTTPS URL

No, if
template
is specified

null https:/
/raw.
githubusercontent.
com/
rackspace-orchestration-templates/
lamp/
master/
lamp.yaml

parameters Arguments to
the template,
based on the
template’s
parameters

Associative ar-
ray

No null array('server_hostname'
=>
'web01')

timeoutMins Duration, in
minutes, after
which stack
creation should
time out

Integer Yes • 5

112 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/preview-stack-from-template-url.php


php-opencloud Documentation, Release 1.12.1

Create a stack from a template file

If your template is stored on your local computer as a JSON or YAML file, you can use it to create a stack as shown
in the following example:

/** @var $stack OpenCloud\Orchestration\Resource\Stack **/
$stack = $orchestrationService->createStack(array(

'name' => 'simple-lamp-setup',
'templateUrl' => 'https://raw.githubusercontent.com/rackspace-orchestration-

→˓templates/lamp/master/lamp.yaml',
'parameters' => array(

'server_hostname' => 'web01',
'image' => 'Ubuntu 14.04 LTS (Trusty Tahr) (PVHVM)'

),
'timeoutMins' => 5

));

Get the executable PHP script for this example

Create a stack from a template URL

If your template is stored as a JSON or YAML file in a remote location accessible via HTTP or HTTPS, you can use
it to create a stack as shown in the following example:

$stack = $orchestrationService->stack();
$stack->create(array(

'name' => 'simple-lamp-setup',
'templateUrl' => 'https://raw.githubusercontent.com/rackspace-orchestration-

→˓templates/lamp/master/lamp.yaml',
'parameters' => array(

'server_hostname' => 'web01',
'image' => 'Ubuntu 14.04 LTS (Trusty Tahr) (PVHVM)'

),
'timeoutMins' => 5

));

Get the executable PHP script for this example

List stacks

You can list all the stacks that you have created as shown in the following example:

$stacks = $orchestrationService->listStacks();
foreach ($stacks as $stack) {

/** @var $stack OpenCloud\Orchestration\Resource\Stack **/
}

Get the executable PHP script for this example

Get stack

You can retrieve a specific stack using its name, as shown in the following example:

2.11. Orchestration v1 113

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/create-stack-from-template-file.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/create-stack-from-template-url.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/list-stacks.php


php-opencloud Documentation, Release 1.12.1

/** @var $stack OpenCloud\Orchestration\Resource\Stack **/
$stack = $orchestrationService->getStack('simple-lamp-setup');

Get the executable PHP script for this example

Get stack template

You can retrieve the template used to create a stack. Note that a JSON string is returned, regardless of whether a JSON
or YAML template was used to create the stack.

/** @var $stackTemplate string **/
$stackTemplate = $stack->getTemplate();

Get the executable PHP script for this example

Update stack

You can update a running stack.

This operation takes one parameter, an associative array, with the following keys:

Name Description Data type Required? Default value Example value
template Template con-

tents
String. JSON or
YAML

No, if
templateUrl
is specified

null heat_template_version:
2013-05-23\ndescription:
LAMP
server\n

templateUrl URL of tem-
plate file

String. HTTP or
HTTPS URL

No, if
template
is specified

null https:/
/raw.
githubusercontent.
com/
rackspace-orchestration-templates/
lamp/
master/
lamp-updated.
yaml

parameters Arguments to
the template,
based on the
template’s
parameters

Associative ar-
ray

No null array('flavor_id'
=>
'general1-1')

timeoutMins Duration, in
minutes, after
which stack
update should
time out

Integer Yes • 5

Update a stack from a template file

If your template is stored on your local computer as a JSON or YAML file, you can use it to update a stack as shown
in the following example:

114 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/get-stack.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/get-stack-template.php


php-opencloud Documentation, Release 1.12.1

/** @var $stack OpenCloud\Orchestration\Resource\Stack **/
$stack->update(array(

'template' => file_get_contents(__DIR__ . '/lamp-updated.yml'),
'parameters' => array(

'server_hostname' => 'web01',
'image' => 'Ubuntu 14.04 LTS (Trusty Tahr) (PVHVM)'

),
'timeoutMins' => 5

));

Get the executable PHP script for this example

Update Stack from Template URL

If your template is stored as a JSON or YAML file in a remote location accessible via HTTP or HTTPS, you can use
it to update a stack as shown in the following example:

/** @var $stack OpenCloud\Orchestration\Resource\Stack **/
$stack->update(array(

'templateUrl' => 'https://raw.githubusercontent.com/rackspace-orchestration-
→˓templates/lamp/master/lamp-updated.yaml',

'parameters' => array(
'server_hostname' => 'web01',
'image' => 'Ubuntu 14.04 LTS (Trusty Tahr) (PVHVM)'

),
'timeoutMins' => 5

));

Get the executable PHP script for this example

Delete stack

If you no longer need a stack and all its resources, you can delete the stack and the resources as shown in the following
example:

$stack->delete();

Get the executable PHP script for this example

Abandon Stack

Note: This operation returns data about the abandoned stack as a string. You can use this data to recreate the stack
by using the adopt stack operation.

If you want to delete a stack but preserve all its resources, you can abandon the stack as shown in the following
example:

/** @var $abandonStackData string **/
$abandonStackData = $stack->abandon();
file_put_contents(__DIR__ . '/sample_adopt_stack_data.json', $abandonStackData);

Get the executable PHP script for this example

2.11. Orchestration v1 115

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/update-stack-from-template-file.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/update-stack-from-template-url.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/delete-stack.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/abandon-stack.php


php-opencloud Documentation, Release 1.12.1

Adopt stack

If you have data from an abandoned stack, you can re-create the stack as shown in the following example:

/** @var $stack OpenCloud\Orchestration\Resource\Stack **/
$stack = $orchestrationService->adoptStack(array(

'name' => 'simple-lamp-setup',
'template' => file_get_contents(__DIR__ . '/lamp.yml'),
'adoptStackData' => $abandonStackData,
'timeoutMins' => 5

));

Get the executable PHP script for this example

Stack resources

A stack is made up of zero or more resources such as databases, load balancers, and servers, and the software installed
on servers.

List stack resources

You can list all the resources for a stack as shown in the following example:

$resources = $stack->listResources();

foreach ($resources as $resource) {
/** @var $resource OpenCloud\Orchestration\Resource\Resource **/

}

Get the executable PHP script for this example

Get stack resource

You can retrieve a specific resource in a stack bt using that resource’s name, as shown in the following example:

/** @var $resource OpenCloud\Orchestration\Resource\Resource **/
$resource = $stack->getResource('load-balancer');

Get the executable PHP script for this example

Get stack resource metadata

You can retrieve the metadata for a specific resource in a stack as shown in the following example:

/** @var $resourceMetadata \stdClass **/
$resourceMetadata = $resource->getMetadata();

Get the executable PHP script for this example

Resource types

When you define a template, you must use resource types supported by your cloud.

116 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/adopt-stack.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/list-stack-resources.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/get-stack-resource.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/get-stack-resource-metadata.php


php-opencloud Documentation, Release 1.12.1

List resource types

You can list all supported resource types as shown in the following example:

$resourceTypes = $orchestrationService->listResourceTypes();
foreach ($resourceTypes as $resourceType) {

/** @var $resourceType OpenCloud\Orchestration\Resource\ResourceType **/
}

Get the executable PHP script for this example

Get resource type

You can retrieve a specific resource type’s schema as shown in the following example:

/** @var $resourceType OpenCloud\Orchestration\Resource\ResourceType **/
$resourceType = $orchestrationService->getResourceType('OS::Nova::Server');

Get the executable PHP script for this example

Get resource type template

You can retrieve a specific resource type’s representation as it would appear in a template, as shown in the following
example:

/** @var $resourceTypeTemplate string **/
$resourceTypeTemplate = $resourceType->getTemplate();

Get the executable PHP script for this example

Build info

Get build info

You can retrieve information about the current Orchestration service build as shown in the following example:

/** @var $resourceType OpenCloud\Orchestration\Resource\BuildInfo **/
$buildInfo = $orchestrationService->getBuildInfo();

Get the executable PHP script for this example

Stack resource events

Operations on resources within a stack (such as the creation of a resource) produce events.

List stack events

You can list all of the events for all of the resources in a stack as shown in the following example:

2.11. Orchestration v1 117

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/list-resource-types.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/get-resource-type.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/get-resource-type-template.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/get-build-info.php


php-opencloud Documentation, Release 1.12.1

$stackEvents = $stack->listEvents();

foreach ($stackEvents as $stackEvent) {
/** @var $stackEvent OpenCloud\Orchestration\Resource\Event **/

}

Get the executable PHP script for this example

List stack resource events

You can list all of the events for a specific resource in a stack as shown in the following example:

$resourceEvents = $resource->listEvents();

foreach ($resourceEvents as $resourceEvent) {
/** @var $resourceEvent OpenCloud\Orchestration\Resource\Event **/

}

Get the executable PHP script for this example

Get stack resource event

You can retrieve a specific event for a specific resource in a stack, by using the resource event’s ID, as shown in the
following example:

/** @var $resourceEvent OpenCloud\Orchestration\Resource\Event **/
$resourceEvent = $resource->getEvent('c1342a0a-59e6-4413-9af5-07c9cae7d729');

Get the executable PHP script for this example

Glossary

template An Orchestration template is a JSON or YAML document that describes how a set of resources should
be assembled to produce a working deployment. The template specifies what resources should be used, what
attributes of these resources are parameterized and what information is output to the user when a template is
instantiated.

resource A resource is a template artifact that represents some component of your desired architecture (a Cloud
Server, a group of scaled Cloud Servers, a load balancer, some configuration management system, and so forth).

stack A stack is a running instance of a template. When a stack is created, the resources specified in the template are
created.

Further links

• Getting Started Guide for the API

• API Developer Guide

• API release history

118 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/list-stack-events.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/list-stack-resource-events.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Orchestration/get-stack-resource-event.php
http://docs.rackspace.com/orchestration/api/v1/orchestration-getting-started/content/DB_Overview.html
http://docs.rackspace.com/orchestration/api/v1/orchestration-devguide/content/overview.html
http://docs.rackspace.com/orchestration/api/v1/orchestration-getting-started/content/DB_Doc_Change_History.html


php-opencloud Documentation, Release 1.12.1

Queues v1

Setup

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

Queues service

Now to instantiate the Queues service:

$service = $client->queuesService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Queues

A note on Client IDs

For most of the operations in Cloud Queues, you must specify a Client ID which will be used as a unique identifier
for the process accessing this Queue. This is basically a UUID that must be unique to each client accessing the API -
it can be an arbitrary string.

2.12. Queues v1 119



php-opencloud Documentation, Release 1.12.1

$service->setClientId();

echo $service->getClientId();

If you call setClientId without any parameters, a UUID is automatically generated for you.

List queues

This operation lists queues for the project. The queues are sorted alphabetically by name.

$queues = $service->listQueues();

foreach ($queues as $queue) {
echo $queue->getName() , PHP_EOL;

}

Filtering lists

You can also filter collections using the following query parameters:

$queues = $service->listQueues(array('detailed' => false));

Create queue

The only parameter required is the name of the queue you’re creating. The name must not exceed 64 bytes in length,
and it is limited to US-ASCII letters, digits, underscores, and hyphens.

$queue = $service->createQueue('new_queue');

Get the executable PHP script for this example

Find queue details

/** @var $queue OpenCloud\Queues\Resource\Queues */
$queue = $service->getQueue('{name}');

Check queue existence

This operation verifies whether the specified queue exists by returning TRUE or FALSE.

if ($service->hasQueue('new_queue')) {
// do something

}

120 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Queues/create-queue.php


php-opencloud Documentation, Release 1.12.1

Update queue metadata

This operation replaces any existing metadata document in its entirety. Ensure that you do not accidentally overwrite
existing metadata that you want to retain. If you want to append metadata, ensure you merge a new array to the
existing values.

$queue->saveMetadata(array(
'foo' => 'bar'

));

Retrieve the queue metadata

This operation returns metadata, such as message TTL, for the queue.

$metadata = $queue->retrieveMetadata();
print_r($metadata->toArray());

Get queue stats

This operation returns queue statistics, including how many messages are in the queue, categorized by status.

$queue->getStats();

Delete queue

$queue->delete();

Get the executable PHP script for this example

Messages

Setup

In order to work with messages, you must first retrieve a queue by its name:

$queue = $service->getQueue('{queueName}');

Post new message

This operation posts the specified message or messages. You can submit up to 10 messages in a single request.

When posting new messages, you specify only the body and ttl for the message. The API will insert metadata, such
as ID and age.

How you pass through the array structure depends on whether you are executing multiple or single posts, but the keys
are the same:

• The body attribute specifies an arbitrary document that constitutes the body of the message being sent. The
size of this body is limited to 256 KB, excluding whitespace.

2.12. Queues v1 121

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Queues/delete-queue.php


php-opencloud Documentation, Release 1.12.1

• The ttl attribute specifies how long the server waits before marking the message as expired and removing it
from the queue. The value of ttl must be between 60 and 1209600 seconds (14 days). Note that the server might
not actually delete the message until its age has reached up to (ttl + 60) seconds, to allow for flexibility in storage
implementations.

Posting a single message

use OpenCloud\Common\Constants\Datetime;

$queue->createMessage(array(
'body' => (object) array(

'event' => 'BackupStarted',
'deadline' => '26.12.2013',

),
'ttl' => 2 * Datetime::DAY

));

Get the executable PHP script for this example

Post a batch of messages

Please note that the list of messages will be truncated at 10. For more, please execute another method call.

use OpenCloud\Common\Constants\Datetime;

$messages = array(
array(

'body' => (object) array(
'play' => 'football'

),
'ttl' => 2 * Datetime::DAY

),
array(

'body' => (object) array(
'play' => 'tennis'

),
'ttl' => 50 * Datetime::HOUR

)
);

$queue->createMessages($messages);

Get messages

This operation gets the message or messages in the specified queue.

Message IDs and markers are opaque strings. Clients should make no assumptions about their format or length.
Furthermore, clients should assume that there is no relationship between markers and message IDs (that is, one cannot
be derived from the other). This allows for a wide variety of storage driver implementations.

Results are ordered by age, oldest message first.

122 Chapter 2. Services

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Queues/add-message.php


php-opencloud Documentation, Release 1.12.1

Parameters

When retrieving messages, you can filter using these options:

$messages = $queue->listMessages(array(
'marker' => '51db6f78c508f17ddc924357',
'limit' => 20,
'echo' => true

));

foreach ($messages as $message) {
echo $message->getId() . PHP_EOL;

}

Get a set of messages by ID

This operation provides a more efficient way to query multiple messages compared to using a series of individual GET.
Note that the list of IDs cannot exceed 20. If a malformed ID or a nonexistent message ID is provided, it is ignored,
and the remaining messages are returned.

Parameters

$ids = array('id_1', 'id_2');

$messages = $queue->listMessages(array('ids' => $ids));

foreach ($messages as $message) {
echo $message->getId() . PHP_EOL;

}

Delete a set of messages by ID

This operation immediately deletes the specified messages. If any of the message IDs are malformed or non-existent,
they are ignored. The remaining valid messages IDs are deleted.

$ids = array('id_1', 'id_2');
$response = $queue->deleteMessages($ids);

Get a specific message

This operation gets the specified message from the specified queue.

/** @var $message OpenCloud\Queues\Message */
$message = $queue->getMessage('{messageId}');

Once you have access to the Message object, you access its attributes:

2.12. Queues v1 123



php-opencloud Documentation, Release 1.12.1

at-
tribute

method description

href getHref An opaque relative URI that the client can use to uniquely identify a message resource and
interact with it.

ttl getTtl The TTL that was set on the message when it was posted. The message expires after (ttl -
age) seconds.

age getAge The number of seconds relative to the server’s clock.
body getBody The arbitrary document that was submitted with the original request to post the message.

Delete message

$message->delete();

Claims

Setup

In order to work with messages, you must first retrieve a queue by its name:

$queue = $service->getQueue('{queueName}');

Claim messages

This operation claims a set of messages (up to the value of the limit parameter) from oldest to newest and skips any
messages that are already claimed. If no unclaimed messages are available, the API returns a 204 No Content
message.

When a client (worker) finishes processing a message, it should delete the message before the claim expires to ensure
that the message is processed only once. As part of the delete operation, workers should specify the claim ID (which
is best done by simply using the provided href). If workers perform these actions, then if a claim simply expires, the
server can return an error and notify the worker of the race condition. This action gives the worker a chance to roll
back its own processing of the given message because another worker can claim the message and process it.

The age given for a claim is relative to the server’s clock. The claim’s age is useful for determining how quickly
messages are getting processed and whether a given message’s claim is about to expire.

When a claim expires, it is released. If the original worker failed to process the message, another client worker can
then claim the message.

Parameters

The ttl attribute specifies how long the server waits before releasing the claim. The ttl value must be between 60
and 43200 seconds (12 hours). You must include a value for this attribute in your request.

The grace attribute specifies the message grace period in seconds. The value of grace value must be between 60 and
43200 seconds (12 hours). You must include a value for this attribute in your request. To deal with workers that have
stopped responding (for up to 1209600 seconds or 14 days, including claim lifetime), the server extends the lifetime of
claimed messages to be at least as long as the lifetime of the claim itself, plus the specified grace period. If a claimed
message would normally live longer than the grace period, its expiration is not adjusted.

124 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

The limit attribute specifies the number of messages to return, up to 20 messages. If limit is not specified, limit
defaults to 10. The limit parameter is optional.

use OpenCloud\Common\Constants\Datetime;

$queue->claimMessages(array(
'limit' => 15,
'grace' => 5 * Datetime::MINUTE,
'ttl' => 5 * Datetime::MINUTE

));

Get the executable PHP script for this example

Query claim

This operation queries the specified claim for the specified queue. Claims with malformed IDs or claims that are not
found by ID are ignored.

$claim = $queue->getClaim('{claimId}');

Update claim

This operation updates the specified claim for the specified queue. Claims with malformed IDs or claims that are not
found by ID are ignored.

Clients should periodically renew claims during long-running batches of work to avoid losing a claim while processing
a message. The client can renew a claim by executing this method on a specific Claim and including a new TTL. The
API will then reset the age of the claim and apply the new TTL.

use OpenCloud\Common\Constants\Datetime;

$claim->update(array(
'ttl' => 10 * Datetime::MINUTE

));

Release claim

This operation immediately releases a claim, making any remaining undeleted messages that are associated with the
claim available to other workers. Claims with malformed IDs or claims that are not found by ID are ignored.

This operation is useful when a worker is performing a graceful shutdown, fails to process one or more messages, or is
taking longer than expected to process messages, and wants to make the remainder of the messages available to other
workers.

$message->delete();

Glossary

claim A Claim is the process of a worker checking out a message to perform a task. Claiming a message prevents
other workers from attempting to process the same messages.

2.12. Queues v1 125

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Queues/claim-messages.php


php-opencloud Documentation, Release 1.12.1

queue A Queue is an entity that holds messages. Ideally, a queue is created per work type. For example, if you want
to compress files, you would create a queue dedicated to this job. Any application that reads from this queue
would only compress files.

message A Message is a task, a notification, or any meaningful data that a producer or publisher sends to the queue.
A message exists until it is deleted by a recipient or automatically by the system based on a TTL (time-to-live)
value.

Further links

• Getting Started Guide for the API

• API Developer Guide

• API release history

Volumes v1

Setup

Rackspace setup

The first step is to pass in your credentials and set up a client. For Rackspace users, you will need your username and
API key:

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => '{username}',
'apiKey' => '{apiKey}',

));

OpenStack setup

If you’re an OpenStack user, you will also need to prove a few other configuration parameters:

$client = new OpenCloud\OpenStack('{keystoneUrl}', array(
'username' => '{username}',
'password' => '{apiKey}',
'tenantId' => '{tenantId}',

));

Volume service

Now to instantiate the Volume service:

$service = $client->volumeService('{catalogName}', '{region}', '{urlType}');

• {catalogName} is the name of the service as it appears in the service catalog. OpenStack users must set this
value. For Rackspace users, a default will be provided if you pass in null.

126 Chapter 2. Services

http://docs.rackspace.com/queues/api/v1.0/cq-gettingstarted/content/DB_Overview.html
http://docs.rackspace.com/queues/api/v1.0/cq-devguide/content/overview.html
http://docs.rackspace.com/queues/api/v1.0/cq-gettingstarted/content/doc-change-history.html


php-opencloud Documentation, Release 1.12.1

• {region} is the region the service will operate in. For Rackspace users, you can select one of the following
from the supported regions page.

• {urlType} is the type of URL to use, depending on which endpoints your catalog provides. If omitted, it will
default to the public network.

Operations

Volumes

Create a volume

To create a volume, you must specify its size (in gigabytes). All other parameters are optional:

// Create instance of OpenCloud\Volume\Resource\Volume
$volume = $service->volume();

$volume->create(array(
'size' => 200,
'volume_type' => $service->volumeType('<volume_type_id>'),
'display_name' => 'My Volume',
'display_description' => 'Used for large object storage'

));

Get the executable PHP script for this example

List volumes

$volumes = $service->volumeList();

foreach ($volumes as $volume) {
/** @param $volumeType OpenCloud\Volume\Resource\Volume */

}

Get the executable PHP script for this example

Get details on a single volume

If you specify an ID on the volume() method, it retrieves information on the specified volume:

$volume = $dallas->volume('<volume_id>');
echo $volume->size;

Get the executable PHP script for this example

To delete a volume

$volume->delete();

Get the executable PHP script for this example

2.13. Volumes v1 127

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Volume/create-volume.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Volume/list-volumes.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Volume/get-volume.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Volume/delete-volume.php


php-opencloud Documentation, Release 1.12.1

Attach a volume to a server

// retrieve server
$computeService = $client->computeService('{catalogName}', '{region}');
$server = $computeService->server('{serverId}');

// attach volume
$server->attachVolume($volume, '{mountPoint}')

The {mountPoint} is the location on the server on which to mount the volume (usually /dev/xvhdd or similar).
You can also supply 'auto' as the mount point, in which case the mount point will be automatically selected for you.
auto is the default value for {mountPoint}, so you do not actually need to supply anything for that parameter.

Detach a volume from a server

$server->detachVolume($volume);

Volume Types

List volume types

$volumeTypes = $service->volumeTypeList();

foreach ($volumeTypes as $volumeType) {
/** @param $volumeType OpenCloud\Volume\Resource\VolumeType */

}

Describe a volume type

If you know the ID of a volume type, use the volumeType method to retrieve information on it:

$volumeType = $service->volumeType(1);

A volume type has three attributes:

• id the volume type identifier

• name its name

• extra_specs additional information for the provider

Snapshots

Create a snapshot

A Snapshot object is created from the Cloud Block Storage service. However, it is associated with a volume, and
you must specify a volume to create one:

128 Chapter 2. Services



php-opencloud Documentation, Release 1.12.1

// New instance of OpenCloud\Volume\Resource\Snapshot
$snapshot = $service->snapshot();

// Send to API
$snapshot->create(array(

'display_name' => 'Name that snapshot',
'volume_id' => $volume->id

));

Get the executable PHP script for this example

List snapshots

$snapshots = $service->snapshotList();

foreach ($snapshots as $snapshot) {
/** @param $snapshot OpenCloud\Volume\Resource\Snapshot */

}

Get the executable PHP script for this example

To get details on a single snapshot

$snapshot = $dallas->snapshot('{snapshotId}');

Get the executable PHP script for this example

To delete a snapshot

$snapshot->delete();

Get the executable PHP script for this example

Glossary

volume A volume is a detachable block storage device. You can think of it as a USB hard drive. It can only be
attached to one instance at a time.

volume type Providers may support multiple types of volumes; at Rackspace, a volume can either be SSD (solid
state disk: expensive, high-performance) or SATA (serial attached storage: regular disks, less expensive).

snapshot A snapshot is a point-in-time copy of the data contained in a volume.

Further links

• Getting Started Guide for the API

• API Developer Guide

• API release history

2.13. Volumes v1 129

https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Volume/create-snapshot.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Volume/list-snapshots.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Volume/get-snapshot.php
https://raw.githubusercontent.com/rackspace/php-opencloud/master/samples/Volume/delete-snapshot.php
http://docs.rackspace.com/cbs/api/v1.0/cbs-getting-started/content/Doc_change_history_d1e060.html
http://docs.rackspace.com/cbs/api/v1.0/cbs-devguide/content/overview.html
http://docs.rackspace.com/cbs/api/v1.0/cbs-releasenotes/content/preface.html


php-opencloud Documentation, Release 1.12.1

130 Chapter 2. Services



CHAPTER 3

Usage tips

Debugging

There are two important debugging strategies to use when encountering problems with HTTP transactions.

Strategy 1: Meaningful exception handling

If the API returns a 4xx or 5xx status code, it indicates that there was an error with the sent request, meaning that the
transaction cannot be adequately completed.

The Guzzle HTTP component, which forms the basis of our SDK’s transport layer, utilizes numerous exception classes
to handle this error logic.

The two most common exception classes are:

• Guzzle\Http\Exception\ClientErrorResponseException, which is thrown when a 4xx re-
sponse occurs

• Guzzle\Http\Exception\ServerErrorResponseException, which is thrown when a 5xx re-
sponse occurs

Both of these classes extend the base BadResponseException class.

This provides you with the granularity you need to debug and handle exceptions.

An example with Swift

If you’re trying to retrieve a Swift resource, such as a Data Object, and you’re not completely certain that it exists, it
makes sense to wrap your call in a try/catch block:

use Guzzle\Http\Exception\ClientErrorResponseException;

try {
return $service->getObject('foo.jpg');

131

https://github.com/guzzle/guzzle/tree/master/src/Guzzle/Http/Exception


php-opencloud Documentation, Release 1.12.1

} catch (ClientErrorResponseException $e) {
if ($e->getResponse()->getStatusCode() == 404) {

// Okay, the resource does not exist
return false;

}
} catch (\Exception $e) {

// Some other exception was thrown...
}

Both ClientErrorResponseException and ServerErrorResponseException have two methods that
allow you to access the HTTP transaction:

// Find out the faulty request
$request = $e->getRequest();

// Display everything by casting as string
echo (string) $request;

// Find out the HTTP response
$response = $e->getResponse();

// Output that too
echo (string) $response;

Strategy 2: Wire logging

Guzzle provides a Log plugin that allows you to log everything over the wire, which is useful if you don’t know what’s
going on.

Here’s how you enable it:

Install the plugin

composer require guzzle/guzzle

Add to your client

use Guzzle\Plugin\Log\LogPlugin;

$client->addSubscriber(LogPlugin::getDebugPlugin());

The above will add a generic logging subscriber to your client, which will output every HTTP transaction to STDOUT.

Caching credentials

You can speed up your API operations by caching your credentials in a (semi-)permanent location, such as your DB
or local filesystem. This enable subsequent requests to access a shared resource, instead of repetitively having to
re-authenticate on every thread of execution.

Tokens are valid for 24 hours, so you can effectively re-use the same cached value for that period. If you try to use a
cached version that has expired, an authentication request will be made.

132 Chapter 3. Usage tips

http://docs.guzzlephp.org/en/latest/plugins/log-plugin.html


php-opencloud Documentation, Release 1.12.1

Filesystem example

In this example, credentials will be saved to a file in the local filesystem. Be sure to exclude it from your VCS.

use OpenCloud\Rackspace;

$client = new Rackspace(Rackspace::US_IDENTITY_ENDPOINT, array(
'username' => 'foo',
'apiKey' => 'bar'

));

$cacheFile = __DIR__ . '/.opencloud_token';

// If the cache file exists, try importing it into the client
if (file_exists($cacheFile)) {

$data = unserialize(file_get_contents($cacheFile));
$client->importCredentials($data);

}

$token = $client->getTokenObject();

// If no token exists, or the current token is expired, re-authenticate and save the
→˓new token to disk
if (!$token || ($token && $token->hasExpired())) {

$client->authenticate();
file_put_contents($cacheFile, serialize($client->exportCredentials()));

}

In tests, the above code shaved about 1-2s off the execution time.

Iterators

Iterators allow you to traverse over collections of your resources in an efficient and easy way. Currently there are two
Iterators provided by the SDK:

• ResourceIterator. The standard iterator class that implements SPL’s standard Iterator, ArrayAccess and Count-
able interfaces. In short, this allows you to traverse this object (using foreach), count its internal elements like
an array (using count or sizeof), and access its internal elements like an array (using $iterator[1]).

• PaginatedIterator. This is a child of ResourceIterator, and as such inherits all of its functionality. The differ-
ence however is that when it reaches the end of the current collection, it attempts to construct a URL to access
the API based on predictive paginated collection templates.

Common behaviour

$iterator = $computeService->flavorList();

There are two ways to traverse an iterator. The first is the longer, more traditional way:

while ($iterator->valid()) {
$flavor = $iterator->current();

// do stuff..
echo $flavor->id;

3.3. Iterators 133

http://php.net/manual/en/class.iterator.php
http://www.php.net/manual/en/class.arrayaccess.php
http://php.net/manual/en/class.countable.php
http://php.net/manual/en/class.countable.php


php-opencloud Documentation, Release 1.12.1

$iterator->next();
}

There is also a shorter and more intuitive version:

foreach ($iterator as $flavor) {
// do stuff...
echo $flavor->id;

}

Because the iterator implements PHP’s native Iterator interface, it can inherit all the native functionality of
traversible data structures with foreach.

Very important note

Until now, users have been expected to do this:

while ($flavor = $iterator->next()) {
// ...

}

which is incorrect. The single responsibility of next is to move the internal pointer forward. It is the job of current
to retrieve the current element.

For your convenience, these two Iterator classes are fully backward compatible: they exhibit all the functionality you’d
expect from a correctly implemented iterator, but they also allow previous behaviour.

Using paginated collections

For large collections, such as retrieving DataObjects from CloudFiles/Swift, you need to use pagination. Each resource
will have a different limit per page; so once that page is traversed, there needs to be another API call to retrieve to next
page’s resources.

There are two key concepts:

• limit is the amount of resources returned per page

• marker is the way you define a starting point. It is some form of identifier that allows the collection to begin
from a specific resource

Resource classes

When the iterator returns a current element in the internal list, it populates the relevant resource class
with all the data returned to the API. In most cases, a stdClass object will become an instance of
OpenCloud\Common\PersistentObject.

In order for this instantiation to happen, the resourceClass option must correspond to some method in the parent
class that creates the resource. For example, if we specify ‘ScalingPolicy’ as the resourceClass, the parent object
(in this case OpenCloud\Autoscale\Group, needs to have some method will allows the iterator to instantiate
the child resource class. These are all valid:

1. Group::scalingGroup($data);

2. Group::getScalingGroup($data);

3. Group::resource('ScalingGroup', $data);

134 Chapter 3. Usage tips



php-opencloud Documentation, Release 1.12.1

where $data is the standard object. This list runs in order of precedence.

Setting up a PaginatedIterator

use OpenCloud\Common\Collection\PaginatedIterator;

$service = $client->computeService();

$flavors = PaginatedIterator::factory($service, array(
'resourceClass' => 'Flavor',
'baseUrl' => $service->getUrl('flavors')
'limit.total' => 350,
'limit.page' => 100,
'key.collection' => 'flavors'

));

foreach ($flavors as $flavor) {
echo $flavor->getId();

}

As you can see, there are a lot of configuration parameters to pass in - and getting it right can be quite fiddly, involving
a lot of API research. For this reason, using the convenience methods like flavorList is recommended because it
hides the complexity.

PaginatedIterator options

There are certain configuration options that the paginated iterator needs to work. These are:

3.3. Iterators 135



php-opencloud Documentation, Release 1.12.1

Name Description Type Required Default
resourceClass The resource class

that is instantiated
when the current
element is retrieved.
This is relative to
the parent/service
which called the
iterator.

string Yes •

baseUrl The base URL that
is used for making
new calls to the API
for new pages

Guzzle\Http\Url Yes •

limit.total The total amount of
resources you want
to traverse in your
collection. The iter-
ator will stop as this
limit is reached, re-
gardless if there are
more items in the
list

int No 10000

limit.page The amount of re-
sources each page
contains

int No 100

key.links Often, API re-
sponses will contain
“links” that allow
easy access to the
next page of a
resource collection.
This option speci-
fies what that JSON
element is called (its
key). For example,
for Rackspace Com-
pute images it is
images_links.

string No links

key.collection The top-level key
for the array of
resources. For
example, servers
are returned with
this data structure:
{"servers":
[...]}. The
key.collection value
in this case would
be servers.

string No null

key.collectionElement Rarely used. But
it indicates the
key name for each
nested resource
element. KeyPairs,
for example, are
listed like this:
{"keypairs":
[ {"keypair":
{...}} ] }.
So in this case
the collectionEle-
ment key would be
keypair.

string No null

key.marker The value used
as the marker. It
needs to represent
a valid property in
the JSON resource
objects. Often it is
id or name.

string No name

request.method The HTTP method
used when making
API calls for new
pages

string No GET

request.headers The HTTP headers
to send when mak-
ing API calls for
new pages

array No array()

request.body The HTTP entity
body to send when
making API calls
for new pages

Guzzle\Http\EntityBodyNo null

request.curlOptions Additional cURL
options to use when
making API calls
for new pages

array No array()

136 Chapter 3. Usage tips



php-opencloud Documentation, Release 1.12.1

Rackspace regions

Below are the supported regions on the Rackspace network:

code location
IAD Virginia
ORD Chicago
DFW Dallas
LON London
SYD Sydney
HKG Hong Kong

URL types

internalURL

An internal URL is a URL that is accessible only from within the Rackspace Cloud network. Access to an internal
URL is always free of charge.

publicURL

A public URL is a URL that is accessible from anywhere. Access to a public URL usually incurs traffic charges.

Logging

Logger injection

As the Rackspace client extends the OpenStack client, they both support passing $options as an array via the
constructor’s third parameter. The options are passed as a config to the Guzzle client, but also allow to inject your own
logger.

Your logger should implement the Psr\Log\LoggerInterface as defined in PSR-3. One example of a compat-
ible logger is Monolog. When the client does create a service, it will inject the logger if one is available.

To inject a LoggerInterface compatible logger into a new client:

use Monolog\Logger;
use OpenCloud\OpenStack;

// create a log channel
$logger = new Logger('name');

$client = new OpenStack('http://identity.my-openstack.com/v2.0', array(
'username' => 'foo',
'password' => 'bar'

), array(
'logger' => $logger,

));

3.4. Rackspace regions 137

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-3-logger-interface.md
https://github.com/Seldaek/monolog


php-opencloud Documentation, Release 1.12.1

HTTP Clients

Default HTTP headers

To set default HTTP headers:

$client->setDefaultOption('headers/X-Custom-Header', 'FooBar');

User agents

php-opencloud will send a default User-Agent header for every HTTP request, unless a custom value is provided
by the end-user. The default header will be in this format:

User-Agent: OpenCloud/xxx cURL/yyy PHP/zzz

where xxx is the current version of the SDK, yyy is the current version of cURL, and zzz is the current PHP version.
To override this default, you must run:

$client->setUserAgent('MyCustomUserAgent');

which will result in:

User-Agent: MyCustomUserAgent

If you want to set a prefix for the user agent, but retain the default User-Agent as a suffix, you must run:

$client->setUserAgent('MyPrefix', true);

which will result in:

User-Agent: MyPrefix OpenCloud/xxx cURL/yyy PHP/zzz

where $client is an instance of OpenCloud\OpenStack or OpenCloud\Rackspace.

Other functionality

For a full list of functionality provided by Guzzle, please consult the official documentation.

Authentication

The client does not automatically authenticate against the API when it is instantiated - it waits for an API call. When
this happens, it checks whether the current “token” has expired, and (re-)authenticates if necessary.

You can force authentication, by calling:

$client->authenticate();

If the credentials are incorrect, a 401 error will be returned. If credentials are correct, a 200 status is returned with
your Service Catalog.

138 Chapter 3. Usage tips

http://docs.guzzlephp.org/en/latest/http-client/client.html


php-opencloud Documentation, Release 1.12.1

Service Catalog

The Service Catalog is returned on successful authentication, and is composed of all the different API services available
to the current tenant. All of this functionality is encapsulated in the Catalog object, which allows you greater control
and interactivity.

/** @var OpenCloud\Common\Service\Catalog */
$catalog = $client->getCatalog();

// Return a list of OpenCloud\Common\Service\CatalogItem objects
foreach ($catalog->getItems() as $catalogItem) {

$name = $catalogItem->getName();
$type = $catalogItem->getType();

if ($name == 'cloudServersOpenStack' && $type == 'compute') {
break;

}

// Array of OpenCloud\Common\Service\Endpoint objects
$endpoints = $catalogItem->getEndpoints();
foreach ($endpoints as $endpoint) {

if ($endpoint->getRegion() == 'DFW') {
echo $endpoint->getPublicUrl();

}
}

}

As you can see, you have access to each Service’s name, type and list of endpoints. Each endpoint provides access to
the specific region, along with its public and private endpoint URLs.

3.8. Authentication 139



php-opencloud Documentation, Release 1.12.1

140 Chapter 3. Usage tips



CHAPTER 4

Help and support

If you have specific problems or bugs with this SDK, please file an issue on our official Github. We also have a mailing
list, so feel free to join to keep up to date with all the latest changes and announcements to the library.

You can also find assistance via IRC on #rackspace at freenode.net.

141

https://github.com/rackspace/php-opencloud
https://groups.google.com/forum/#!forum/php-opencloud
https://groups.google.com/forum/#!forum/php-opencloud


php-opencloud Documentation, Release 1.12.1

142 Chapter 4. Help and support



CHAPTER 5

Contributing

If you’d like to contribute to the project, or require help running the unit/acceptance tests, please view the contributing
guidelines.

143

https://github.com/rackspace/php-opencloud/blob/master/CONTRIBUTING.md
https://github.com/rackspace/php-opencloud/blob/master/CONTRIBUTING.md


php-opencloud Documentation, Release 1.12.1

144 Chapter 5. Contributing



Index

A
account, 108
addNodes() (global function), 49
agent, 76
agent token, 76
alarm, 76

C
cdn, 108
check, 76
claim, 125
cloneDomain() (global function), 28
configuration group, 23
container, 108

D
database, 23
datastore, 23

E
entity, 77

F
flavor, 17, 23

G
group, 8
group configuration, 8

I
image, 17
instance, 23

L
launch configuration, 8

M
message, 126
metadata, 108

monitoring zone, 77

N
network, 90
notification, 77
notification plan, 77

O
object, 108

P
policy, 8
port, 90

Q
queue, 126

R
resource, 118

S
security group, 90
security group rule, 90
server, 17
snapshot, 129
stack, 118
subnet, 90

T
template, 118
tenant, 38
token, 38

U
user, 23, 38

V
volume, 23, 129
volume type, 129

145



php-opencloud Documentation, Release 1.12.1

W
webhook, 8

146 Index


	Installation
	Services
	Usage tips
	Help and support
	Contributing

