
php-annotations Documentation
Release 1.0.0

Rasmus Schultz

Sep 05, 2017

Contents

1 Getting Started 3
1.1 Installation . 3

2 Roadmap, upgrading and release notes 5
2.1 Status . 5
2.2 Roadmap . 5
2.3 Upgrading . 6

3 Understanding annotations 7
3.1 What are annotations? . 7
3.2 What does this library do? . 8
3.3 Annotation Syntax . 8
3.4 So what can I do with this? . 9

4 Working with the Annotation Manager 11
4.1 Loading and Importing . 11
4.2 Inspecting Annotations . 12

5 Writing your own types of annotations 13
5.1 What is an Annotation? . 13
5.2 UsageAnnotation . 13

6 Fully documented, step-by-step example of declarative meta-programming 15

7 Standard annotations library 23
7.1 Available Annotations . 23

8 Design considerations 25
8.1 Feature Set . 25
8.2 Syntax . 26
8.3 API . 26
8.4 Performance . 26

i

ii

php-annotations Documentation, Release 1.0.0

This library provides support for source-code annotations in PHP.

This library references practices and features established by other languages and platforms with native support for
annotations, mainly C#/.NET and Java, drawing on the strengths (while observing the limitations) of the PHP language.

The main areas of this Wiki are listed below:

• *Roadmap, upgrading and release notes

• *Understanding and applying annotations to PHP source code

• *Consuming source-code annotations at run-time

• *Writing your own types of annotations

• *See a fully documented, step-by-step example of declarative meta-programming at work

• *Review the standard library of annotations

• *Learn more about the design considerations behind this library

This library was created by Rasmus Schultz - a lot of careful planning and design went into this project, which was in
development for almost a year before it’s initial release.

Contents 1

https://github.com/mindplay-dk

php-annotations Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Getting Started

Below you’ll find all needed information to find your way across the library.

Installation

Library can be installed using Composer like so:

$ composer require mindplay/annotations

3

php-annotations Documentation, Release 1.0.0

4 Chapter 1. Getting Started

CHAPTER 2

Roadmap, upgrading and release notes

This project implements support for source-code annotations in PHP (5.3+).

Referencing established practices and proven features of annotation-support from other languages and platforms with
native support for annotations (mainly C#/.NET and Java), this library implements a complete, “industrial strength”
annotation engine for PHP, drawing on the strengths (while observing the limitations) of the language.

Status

The current status of the individual components is as follows:

• The core annotation framework (and API) is stable and complete.

• Documentation is being written.

• Some standard annotations are still stubs or only partially done.

• A fully documented demonstration script is available.

Roadmap

The current release consists of the following components:

• Core annotation framework. (adds support for annotations)

• Self-contained unit test suite.

• Documentation.

• Example.

A library of useful standard (PHP-DOC and other) annotations has been started, but is incomplete.

5

php-annotations Documentation, Release 1.0.0

Upgrading

Version 1.1.x introduces some incompatibilities with previous versions:

• The cache-abstraction has been removed - refer to this note explaining why. If you wrote your own cache-
provider, you should remove it.

• If you derived custom annotation-types from the Annotation\Annotation base-class, you must rename
the _map() method to map() - the underscore suggested a private method, but this method is actually pro-
tected.

6 Chapter 2. Roadmap, upgrading and release notes

https://github.com/php-annotations/php-annotations/pull/6#issuecomment-9279655

CHAPTER 3

Understanding annotations

What are annotations?

Annotations are meta-data that can be embedded in source code.

You may already be familiar with the PHP-DOC flavor of source code annotations, which are seen in most modern
PHP codebases - they look like this:

class Foo
{

/**
* @var integer

*/
public $bar;

}

When you see @var integer in the source code, immediately preceding the public $bar declaration, this little
piece of meta-data tells us that the $bar property is expected to contain a value of type integer.

This information is useful to programmers - an IDE can use this information to display popup hints when you’re
writing code that works with an instance of Foo, documentation generators can display this information in reference
material, etc.

Now imagine you had to build an HTML form that allows someone to edit a Foo object. When this information comes
back from a form-post, you will need to validate that the input is in fact an integer - using the information from the
@var annotation, you could abstract and automate this process, rather than having to code in by hand every time.

The same information about the type of value required for this property could have many other uses besides validation
- for example, you could use it to decide what type of input to render on a form, or how to persist the value to a
database column.

Using other types of annotations besides @var, you could provide more information about the $bar property - for
example, you might use an annotation to specify the minimum and maximum allowed integer values of a property for
validation, or define a label to be displayed next to the input on forms or in the column-header of a list of Foo objects:

7

http://www.phpdoc.org/

php-annotations Documentation, Release 1.0.0

class Foo
{

/**
* @var integer

* @range(0, 100)

* @label('Number of Bars')

*/
public $bar;

}

We now have the information about the type of value, the allowed range, and the label, all associated with the
Foo::$bar property member. You may have noticed a subtle difference between the @var annotation and the
other two annotations in this example: the extra parentheses - we’ll get to that below.

It’s important to understand that this meta-data does not have a single predefined purpose - it is general information,
which when put to use in creative ways, can be used to simplify or eliminate repetitive work, and enables you to write
more elegant and reusable code.

What does this library do?

This library allows you to implement annotation-types as classes, and apply them as objects.

Annotations are translated into objects using a simple rule: @name is essentially equivalent to new
NameAnnotation() - in other words, the annotation name is capitalized and an “Annotation” suffix is added
to the class-name; this prevents the class-names of annotation-types from colliding with the names of other classes.

Using this library, annotations applied to classes, methods and properties may be inspected at run-time. Combined
with the Reflection API, this enables you to apply reflective meta-programming in your PHP projects.

Annotation Syntax

This library provides support for two types of annotation syntax. While the difference between the two syntaxes is
subtle, the difference in terms of how they function is very different.

The first type of syntax is based on PHP-DOC syntax:

/**
* @var integer

*/
public $bar;

PHP-DOC annotations do not have a fixed syntax - that is, everything after @name is interpreted differently for each
type of annotation. For example, the syntax for @var is @var {type} {description}, while the syntax for
@param is @param {type} {$name} {description}.

In other words, PHP-DOC style annotations have to go through an extra step at compile-time. (note that there is no
performance penalty for this extra step, since the compiled annotation properties are cached.)

For simple annotations (like those defined by the PHP-DOC specification), this syntax is usually preferable.

For custom annotations (perhaps requiring more complex properties), a second syntax using parentheses is supported:

/**
* @range(0, 100)

8 Chapter 3. Understanding annotations

http://php.net/manual/en/book.reflection.php
http://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://www.phpdoc.org/
http://www.phpdoc.org/docs/latest/for-users/list-of-tags.html

php-annotations Documentation, Release 1.0.0

*/
public $bar;

When this syntax is used, the run-time equivalent for this example is something along the lines of:

$annotation = new RangeAnnotation();
$annotation->initAnnotation(array(0, 100));

In other words, everything between the parentheses is standard PHP array syntax - as you’re probably already com-
fortable with this syntax, there is no additional syntax to learn.

While an annotation-type can optionally implement a custom (PHP-DOC style) syntax annotation, the array-style
syntax is supported by every annotation. To achieve compatibility with IDEs and documentation generators, you
should use the PHP-DOC style syntax for annotations defined by the PHP-DOC standard.

Both syntaxes have unique advantages:

• PHP-DOC style offers shorter syntax for commonly used annotation-types, and compatibility with IDEs and
documentation generators.

• Array-style syntax offers direct access to PHP language features, such as access to class-constants, static
method-calls, nested arrays, etc.

Note that both syntaxes cause annotations to initialize in the same way, at run-time - via a call to the
IAnnotation::initAnnotation() interface, passing an array of property values. The PHP-DOC style syntax
simply adds an extra step where the annotation values are parsed, and the initialization code for those properties is
generated (and cached).

So what can I do with this?

See a real, working example of declarative meta-programming with this library in this commented, step-by-step exam-
ple - the same script is available in the demo folder in the project, and can be run from your local web-server.

3.4. So what can I do with this? 9

http://php.net/manual/en/language.types.array.php
https://github.com/php-annotations/php-annotations/tree/master/demo

php-annotations Documentation, Release 1.0.0

10 Chapter 3. Understanding annotations

CHAPTER 4

Working with the Annotation Manager

Note: Some programmers learn best by seeing a practical example - if you belong to those who learn best by seeing
things applied, you should start by taking a look at the demo script, which provides a minimal, yet practical, real-world
example of applying and consuming source code annotations.

The annotation framework lives in the mindplay\annotations namespace, and the library of standard annota-
tions lives in the mindplay\annotations\standard namespace.

The heart of the annotation framework is the AnnotationManager class, which provides the following functionality:

• Inspecting (and filtering) annotations

• Annotation registry and name-resolution

• Caching annotations in the local filesystem (underneath the hood)

Behind the scenes, the AnnotationManager relies on the AnnotationParser to perform the parsing and compilation
of annotations into cacheable scripts.

For convenience, a static (singleton) wrapper-class for the annotation manager is also available. This class is named
Annotations - we will use it in the following examples.

Loading and Importing

Going into details about autoloading and importing the annotation classes is beyond the scope of this article.

I will assume you are familiar with these language features, and in the following examples, it is implied that the static
wrapper-class has been imported, e.g.:

use mindplay\annotations\Annotations;

11

https://github.com/php-annotations/php-annotations/tree/master/src/annotations/standard
https://github.com/php-annotations/php-annotations/blob/master/src/annotations/AnnotationManager.php
https://github.com/php-annotations/php-annotations/blob/master/src/annotations/AnnotationParser.php
https://github.com/php-annotations/php-annotations/blob/master/src/annotations/Annotations.php
http://php.net/manual/en/language.oop5.autoload.php
http://php.net/manual/en/language.namespaces.importing.php

php-annotations Documentation, Release 1.0.0

Configuring the Annotation Manager

For convenience, the static Annotations class provides a public $config array - the keys in this array are applied
the singleton AnnotationManager instance on first use, for example:

Annotations::$config = array(
'cachePath' => sys_get_temp_dir()

);

In this example, when the AnnotationManager is initialized, the public $cachePath property is set to point to
the local temp-dir on your system.

Other configurable properties include:

Property Type Description
$fileMode int . . .
$autoload bool . . .
$cachePath string . . .
$cacheSeed string . . .
$suffix string . . .
$namespace string . . .
$registry array . . .

The Annotation Registry

...

Inspecting Annotations

...

Annotation Name Resolution

...

Filtering Annotations

...

12 Chapter 4. Working with the Annotation Manager

CHAPTER 5

Writing your own types of annotations

What is an Annotation?

An annotation is just a class - it is merely the way it gets initialized (and instantiated) that makes it an annotation.

In order for a class to work as an annotation, it must:

• have a constructor with no arguments - e.g.: function __construct() (or no constructor)

• implement the IAnnotation interface - e.g.: function initAnnotation($properties)

• be annotated with an @usage annotation - see below for details.

Beyond the quantitative requirements, you should make some qualitative considerations. Here are some things to
consider:

• Annotations are specifications - they can provide default values for various components, or define additional
behaviors or metadata. But your components should not depend on a specific annotation - if you find you’re
trying to define an annotation that is required for your components to operate, there’s a good chance you’d be
better off defining that behavior as an interface.

• Try to design your annotation types for general purposes, rather than for a specific purpose - there is a good
chance you may be able to use the same metadata in new ways at a later time. Choose broad terms for class-
names (and property-names) so as not to imply any specific meaning - just describe the information, not it’s
purpose.

• Do you need a new annotation type, or can one of the existing types be used to define what you’re trying to
specify? Be careful not to duplicate your specifications, as this leads to situations where you’ll be forced to
write the same metadata in two different formats - the point of annotations is to help eliminate this kind of
redundancy and overhead.

UsageAnnotation

The UsageAnnotation class defines the constraints and behavior of an annotation.

13

https://github.com/php-annotations/php-annotations/blob/master/src/annotations/UsageAnnotation.php

php-annotations Documentation, Release 1.0.0

An instance of the built-in @usage annotation must be applied to every annotation class, or to it’s ancestor - the
@usage annotation itself is inheritable, and can be overridden by a child class.

The standard @length annotation, for example, defines it’s use as follows:

/**
* Specifies validation of a string, requiring a minimum and/or maximum length.

*
* @usage('property'=>true, 'inherited'=>true)

*/
class LengthAnnotation extends ValidationAnnotationBase
{

...
}

This specification indicates that the annotation may be applied to properties, and that the annotation can be inherited
by classes which extend a class to which the annotation was applied.

The @usage annotation is permissive; that is, all of it’s properties are false by default - you have to turn on any of
the permissions/features that apply to your annotation class, by setting each property to true.

Let’s review the available properties.

• The $class, $property and $method flags simply specify to which type(s) of source-code elements an
annotation is applicable.

• The $multiple flag specifies whether more than one annotation of this type may be applied to the same
source-code element

• The $inherited flag specifies whether the annotation(s) will be inherited by a class extending the class to
which the annotations were applied.

Different combinations of the $multiple and $inherited flags result in the following behavior:

$multiple=true $multiple=false
$inherited=true Multiples allowed and inherited Only one allowed, inherited with override
$inherited=false Multiples allowed, not inherited Only one allowed, not inherited

Note that annotations with $multiple=false and $inherited=true are a special case, in which only one
annotation is allowed on the same code-element, and is inherited - but can be overridden by a child-class which would
otherwise inherit the annotation.

When overriding an inherited annotation, it’s important to understand that the individual properties of an annotation
are not inherited - the entire annotation is replaced by the overriding annotation.

14 Chapter 5. Writing your own types of annotations

CHAPTER 6

Fully documented, step-by-step example of declarative
meta-programming

File: demo/index.php

namespace mindplay\demo;

use Composer\Autoload\ClassLoader;
use mindplay\annotations\AnnotationCache;
use mindplay\annotations\Annotations;
use mindplay\demo\annotations\Package;

Configure a simple auto-loader

$vendor_path = dirname(__DIR__) . '/vendor';

if (!is_dir($vendor_path)) {
echo 'Install dependencies first' . PHP_EOL;
exit(1);

}

require_once($vendor_path . '/autoload.php');

$auto_loader = new ClassLoader();
$auto_loader->addPsr4("mindplay\\demo\\", __DIR__);
$auto_loader->register();

Configure the cache-path. The static Annotations class will configure any public properties of
AnnotationManager when it creates it. The AnnotationManager::$cachePath property is a path to
a writable folder, where the AnnotationManager caches parsed annotations from individual source code files.

Annotations::$config['cache'] = new AnnotationCache(__DIR__ . '/runtime');

Register demo annotations.

15

php-annotations Documentation, Release 1.0.0

Package::register(Annotations::getManager());

For this example, we’re going to generate a simple form that allows us to edit a Person object. We’ll define a few
public properties and annotate them with some useful metadata, which will enable us to make decisions (at run-time)
about how to display each field, how to parse the values posted back from the form, and how to validate the input.

Note the use of standard PHP-DOC annotations, such as @var string - this metadata is traditionally useful both
as documentation to developers, and as hints for an IDE. In this example, we’re going to use that same information
as advice to our components, at run-time, to help them establish defaults and make sensible decisions about how to
handle the value of each property.

class Person
{

/**
* @var string

* @required

* @length(50)

* @text('label' => 'Full Name')

*/
public $name;

/**
* @var string

* @length(50)

* @text('label' => 'Street Address')

*/
public $address;

/**
* @var int

* @range(0, 100)

*/
public $age;

}

To build a simple form abstraction that can manage the state of an object being edited, we start with a simple, abstract
base class for input widgets.

abstract class Widget
{

protected $object;
protected $property;

public $value;

Each widget will maintain a list of error messages.

public $errors = array();

A widget needs to know which property of what object is being edited.

public function __construct($object, $property)
{

$this->object = $object;
$this->property = $property;
$this->value = $object->$property;

}

16 Chapter 6. Fully documented, step-by-step example of declarative meta-programming

php-annotations Documentation, Release 1.0.0

Widget classes will use this method to add an error-message.

public function addError($message)
{

$this->errors[] = $message;
}

This helper function provides a shortcut to get a named property from a particular type of annotation - if no annotation
is found, the $default value is returned instead.

protected function getMetadata($type, $name, $default = null)
{

$a = Annotations::ofProperty($this->object, $this->property, $type);

if (!count($a)) {
return $default;

}

return $a[0]->$name;
}

Each type of widget will need to implement this interface, which takes a raw POST value from the form, and attempts
to bind it to the object’s property.

abstract public function update($input);

After a widget successfully updates a property, we may need to perform additional validation - this method will
perform some basic validations, and if errors are found, it will add them to the $errors collection.

public function validate()
{

if (empty($this->value)) {
if ($this->isRequired()) {

$this->addError("Please complete this field");
} else {

return;
}

}

if (is_string($this->value)) {
$min = $this->getMetadata('@length', 'min');
$max = $this->getMetadata('@length', 'max');

if ($min !== null && strlen($this->value) < $min) {
$this->addError("Minimum length is {$min} characters");

} else {
if ($max !== null && strlen($this->value) > $max) {

$this->addError("Maximum length is {$max} characters");
}

}
}

if (is_int($this->value)) {
$min = $this->getMetadata('@range', 'min');
$max = $this->getMetadata('@range', 'max');

if (($min !== null && $this->value < $min) || ($max !== null && $this->
→˓value > $max)) {

17

php-annotations Documentation, Release 1.0.0

$this->addError("Please enter a value in the range {$min} to {$max}");
}

}
}

Each type of widget will need to implement this interface, which renders an HTML input representing the widget’s
current value.

abstract public function display();

This helper function returns a descriptive label for the input.

public function getLabel()
{

return $this->getMetadata('@text', 'label', ucfirst($this->property));
}

Finally, this little helper function will tell us if the field is required - if a property is annotated with @required, the
field must be filled in.

public function isRequired()
{

return count(Annotations::ofProperty($this->object, $this->property,
→˓'@required')) > 0;

}
}

The first and most basic kind of widget, is this simple string widget.

class StringWidget extends Widget
{

On update, take into account the min/max string length, and provide error messages if the constraints are violated.

public function update($input)
{

$this->value = $input;

$this->validate();
}

On display, render out a simple <input type="text"/> field, taking into account the maximum string-length.

public function display()
{

$length = $this->getMetadata('@length', 'max', 255);

echo '<input type="text" name="' . get_class($this->object) . '[' . $this->
→˓property . ']"'

. ' maxlength="' . $length . '" value="' . htmlspecialchars($this->value)
→˓. '"/>';

}
}

For the age input, we’ll need a specialized StringWidget that also checks the input type.

18 Chapter 6. Fully documented, step-by-step example of declarative meta-programming

php-annotations Documentation, Release 1.0.0

class IntWidget extends StringWidget
{

On update, take into account the min/max numerical range, and provide error messages if the constraints are violated.

public function update($input)
{

if (strval(intval($input)) === $input) {
$this->value = intval($input);
$this->validate();

} else {
$this->value = $input;

if (!empty($input)) {
$this->addError("Please enter a whole number value");

}
}

}
}

Next, we can build a simple form abstraction - this will hold and object and manage the widgets required to edit the
object.

class Form
{

private $object;

/**
* Widget list.

*
* @var Widget[]

*/
private $widgets = array();

The constructor just needs to know which object we’re editing.

Using reflection, we enumerate the properties of the object’s type, and using the @var annotation, we decide which
type of widget we’re going to use.

public function __construct($object)
{

$this->object = $object;

$class = new \ReflectionClass($this->object);

foreach ($class->getProperties() as $property) {
$type = $this->getMetadata($property->name, '@var', 'type', 'string');

$wtype = 'mindplay\\demo\\' . ucfirst($type) . 'Widget';

$this->widgets[$property->name] = new $wtype($this->object, $property->
→˓name);

}
}

This helper-method is similar to the one we defined for the widget base class, but fetches annotations for the specified
property.

19

php-annotations Documentation, Release 1.0.0

private function getMetadata($property, $type, $name, $default = null)
{

$a = Annotations::ofProperty(get_class($this->object), $property, $type);

if (!count($a)) {
return $default;

}

return $a[0]->$name;
}

When you post information back to the form, we’ll need to update it’s state, validate each of the fields, and return a
value indicating whether the form update was successful.

public function update($post)
{

$data = $post[get_class($this->object)];

foreach ($this->widgets as $property => $widget) {
if (array_key_exists($property, $data)) {

$this->widgets[$property]->update($data[$property]);
}

}

$valid = true;

foreach ($this->widgets as $widget) {
$valid = $valid && (count($widget->errors) === 0);

}

if ($valid) {
foreach ($this->widgets as $property => $widget) {

$this->object->$property = $widget->value;
}

}

return $valid;
}

Finally, this method renders out the form, and each of the widgets inside, with a <label> tag surrounding each input.

public function display()
{

foreach ($this->widgets as $widget) {
$star = $widget->isRequired() ? ' *' : '';
echo '<label>' . htmlspecialchars($widget->getLabel()) . $star . '
';
$widget->display();
echo '</label>
';

if (count($widget->errors)) {
echo '';
foreach ($widget->errors as $error) {

echo '' . htmlspecialchars($error) . '';
}
echo '';

}
}

}

20 Chapter 6. Fully documented, step-by-step example of declarative meta-programming

php-annotations Documentation, Release 1.0.0

}

Now let’s put the whole thing to work...

We’ll create a Person object, create a Form for the object, and render it!

Try leaving the name field empty, or try to tell the form you’re 120 years old - it won’t pass validation.

You can see the state of the object being displayed below the form - as you can see, unless all updates and validations
succeed, the state of your object is left untouched.

echo <<<HTML
<html>

<head>
<title>Metaprogramming With Annotations!</title>

</head>
<body>
<h1>Edit a Person!</h1>
<h4>Declarative Metaprogramming in action!</h4>
<form method="post">

HTML;

$person = new Person;

$form = new Form($person);

if ($_SERVER['REQUEST_METHOD'] === 'POST') {
if ($form->update($_POST)) {

echo '<h2 style="color:green">Person Accepted!</h2>';
} else {

echo '<h2 style="color:red">Oops! Try again.</h2>';
}

}

$form->display();

echo <<<HTML

<input type="submit" value="Go!"/>
</form>

HTML;

echo "<pre>\n\nHere's what your Person instance currently looks like:\n\n";
var_dump($person);
echo '</pre>';

echo <<<HTML
</body>

</html>
HTML;

21

php-annotations Documentation, Release 1.0.0

22 Chapter 6. Fully documented, step-by-step example of declarative meta-programming

CHAPTER 7

Standard annotations library

A library of standard annotations will eventually be (but is not currently) part of this package.

Note: Experienced developers (primarily maintainers of libraries that rely on annotations), are encouraged to con-
tribute or suggest changes or additions to the standard library.

The standard library of annotations generally belong to one (or more) of the following categories:

• Reflective annotations to describe aspects of code semantics not natively supported by the PHP language.

• Data annotations to describe storage/schema aspects of persistent types.

• Display annotations to specify input types, labels, display-formatting and other UI-related aspects of your
domain- or view-models.

• Validation annotations to specify property/object validators for domain- or form-models, etc.

• PHP-DOC annotations - a subset of the standard PHP-DOC annotations.

Some of the annotations belong to more than one of these categories - the standard PHP-DOC annotations generally
fall into at least one of the other categories.

Most of the standard annotations were referenced from annotations that ship with other languages and frameworks
that support annotations natively, mainly .NET and Java. Due to the strict nature of these languages, as compared to
the loose nature of PHP, the standard annotations were not merely ported from other languages, but adapted to better
fit with good, modern PHP code.

Available Annotations

Note: The annotation library is not yet available, or still in development.

23

php-annotations Documentation, Release 1.0.0

Category: Reflective, PHP-DOC

Annotation Scope Description
MethodAnnotation Class Defines a magic/virtual method.
ParamAnnotation Method Defines a method-parameter’s type.
PropertyAnnotation Class Defines a magic/virtual property and it’s type.
PropertyReadAnnotation Class Defines a magic/virtual read-only property and it’s type.
PropertyWriteAnnotation Class Defines a magic/virtual write-only property and it’s type.
ReturnAnnotation Method Defines the return-type of a function or method.
VarAnnotation Property Specifies validation of various common property types.
TypeAnnotation Property Specifies validation of various common property types.

Category: Display

Annotation Scope Description
DisplayAn-
notation

Property Defines various display-related metadata, such as grouping and ordering.

EditableAn-
notation

Property Indicates whether a property should be user-editable or not.

EditorAnno-
tation

Property Specifies a view-name (or path, or helper) to use for editing purposes - overrides
ViewAnnotation when rendering inputs.

FormatAnno-
tation

Property Specifies how to display or format a property value.

TextAnnota-
tion

Property Defines various text (labels, hints, etc.) to be displayed with the annotated property.

ViewAnnota-
tion

Prop-
erty/class

Specifies a view-name (or path) to use for display/editing purposes.

Category: Validation

Annotation Scope Description
EnumAnnotation Property Specifies validation against a fixed enumeration of valid choices.
LengthAnnotation Property Specifies validation of a string, requiring a minimum and/or maximum length.
MatchAnnotation Property Specifies validation of a string against a regular expression pattern.
RangeAnnotation Property Specifies validation against a minimum and/or maximum numeric value.
RequiredAnnotation Property Specifies validation requiring a non-empty value.
ValidateAnnotation Class Specifies a custom validation callback method.

24 Chapter 7. Standard annotations library

CHAPTER 8

Design considerations

This page will attempt to explain some of the design considerations behind this library.

Feature Set

The feature set was mainly referenced from languages with proven annotation support and established use of annota-
tions - the primary inspiration was the .NET platform and Java.

Other existing annotation-libraries for PHP were also referenced, for both good and evil:

• The popular Addendum library brought some good ideas to the table, but adds unnecessary custom syntax and
parses annotations at run-time.

• Doctrine’s Annotations library achieves a number of good things, but also adds unnecessary custom syntax.

• The Recess framework has good support for annotations and relies on them to solve a number of interesting
challenges in highly original ways, making it a great inspiration.

• A proposed native Class MetaData extension to the PHP language: follows no existing standards, (incompat-
ible with existing IDEs, documentation generators, existing practices and codebases); mixes JSON, a data-
serialization format, into PHP - I would welcome JSON support in PHP, but not solely for annotations, and it
should not replace what can already be achieved with existing PHP language features.

When held against the annotation feature-set of the C#/.NET or Java platforms, these implementations have some
weak points:

• These libraries use various custom, data-formats to initialize annotations - neglecting support for common lan-
guage features, such as class-constants, static method calls and closures.

• Support for inheritance is lacking, limited or incorrect in various ways - inheriting and overriding annotations is
an absolute requirement.

• Common constraints are unsupported or too simple - applicable member types, cardinality and inheritance
constraints should be easy to specify, and must be consistently enforced.

The absence of these features is what sparked the inception of this library.

25

http://code.google.com/p/addendum/
http://www.doctrine-project.org/projects/common/2.0/docs/reference/annotations/en
http://www.recessframework.org
http://wiki.php.net/rfc/annotations
http://json.org/
http://en.wiktionary.org/wiki/cardinality

php-annotations Documentation, Release 1.0.0

Syntax

The syntax is based on PHP-DOC annotations mixed with PHP standard array syntax.

The decision to use PHP-DOC syntax was made primarily because PHP-DOC source code annotations are already
very common in the PHP community, and well-established with good design-time support by many popular IDEs.
Many types of useful standard PHP-DOC annotations can be inspected at run-time.

Extending this syntax with standard PHP array syntax is practical for a number of reasons:

• PHP array-syntax is already familiar to PHP developers, and naturally allows you to initialize annotation prop-
erties using PHP language constructs, including constants, anonymous functions (closures), static method-calls,
etc.

• It reduces the complexity of parsing, since PHP already knows how to parse arrays.

• There is no compelling reason to introduce new syntax (and more complexity) to achieve something that is
already supported by the language.

Rather than attempting to reinvent (or having to forego) important aspects of existing language features, this library
builds on existing PHP syntax, and existing establish conventions, as much as possible, introducing a minimal amount
of new syntax. This makes it feel like a more natural extension to the language itself.

API

The API has two levels of public interfaces - an annotation-manager, which can be extended, if needed, and a simple
static wrapper-class with static methods, mostly for convenience.

Extending the Reflection API with annotation features might seem like a natural approach, since this is where you
would find it on other platforms such as .NET. There are a couple of reasons why this is not necessary or practical:

• PHP might very well add native support for annotations to the reflection classes someday - if (or when) that
happens, we don’t want our API to conflict with (or hide portions of) any eventual extensions to the native
reflection API.

• This library minimally relies on reflection itself.

• There is nothing in particular to gain by mixing the annotation APIs with reflection in the first place.

Freedom

This library has no external dependencies on any non-standard PHP modules or third-party libraries.

Annotation-types implement an interface - they do not need to extend a base-class, which enables it to fit into your
existing class-hierarchies without requiring you to refactor your existing codebase.

Performance

From a performance-oriented perspective, a scripting language may not be a good choice for writing any kind of parser.
Since some form of parsing is inevitable, the following design choices were made early on to minimize the overhead
of using annotations:

• The annotation-parser is only loaded as needed, e.g. after a change (invalidating the cache-file) is made to an
inspected script-file.

26 Chapter 8. Design considerations

http://www.phpdoc.org/
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/book.reflection.php

php-annotations Documentation, Release 1.0.0

• The annotation-manager compiles (JIT) and caches annotation data - the annotations from one PHP script file
are written to one cache-file. This simple strategy results in one additional script being loaded, when a script is
inspected for annotations.

• Since the cache-file itself is a PHP script, the annotation library can take advantage of a bytecode cache for
additional performance gains.

In general, as much work as possible (or practical) is done at compile-time, minimizing the run-time overhead - no
tokenization or parsing or is performed at run-time, except the first time a script is inspected.

8.4. Performance 27

http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/PHP_accelerator
http://php.net/manual/en/function.token-get-all.php

	Getting Started
	Installation

	Roadmap, upgrading and release notes
	Status
	Roadmap
	Upgrading

	Understanding annotations
	What are annotations?
	What does this library do?
	Annotation Syntax
	So what can I do with this?

	Working with the Annotation Manager
	Loading and Importing
	Inspecting Annotations

	Writing your own types of annotations
	What is an Annotation?
	UsageAnnotation

	Fully documented, step-by-step example of declarative meta-programming
	Standard annotations library
	Available Annotations

	Design considerations
	Feature Set
	Syntax
	API
	Performance

