
Photon-HDF5 Documentation
Release 0.4

Antonino Ingargiola, Xavier Michalet, Ted Laurence

Mar 15, 2018

Contents

1 Table of Contents 3
1.1 Introduction . 3

1.1.1 Overview . 3
1.1.2 What problems are we trying to solve? . 3
1.1.3 Features of HDF5 . 3
1.1.4 Photon-HDF5: Design principles . 4

1.2 Photon-HDF5 format definition . 4
1.2.1 Overview . 5
1.2.2 Root-level parameters . 7
1.2.3 Photon-data group . 7

Measurement specs . 7
1.2.4 Setup group . 9

Detectors group . 10
Optional /setup fields . 10

1.2.5 Sample group . 11
1.2.6 Identity group . 11
1.2.7 Provenance group . 12
1.2.8 Additional notes and definitions . 12

Detector pixel IDs . 12
Beam-split channels . 12
Wavelengths and spectral-band order . 13
Definition of alternation periods . 13
Measurement type . 13
Nanotimes time direction . 13
Group /setup/detectors . 14
Multi-spot measurements . 14

1.3 What changed in version 0.5 . 15
1.4 Reading Photon-HDF5 files . 15

1.4.1 Reading Photon-HDF5 in a smFRET analysis program . 16
Read single-spot function . 16
Read multi-spot function . 16

1.5 Writing Photon-HDF5 files . 16
1.5.1 Converting files to Photon-HDF5 . 17
1.5.2 Save Photon-HDF5 from a third party-software . 17
1.5.3 Saving Photon-HDF5 from MATLAB . 18
1.5.4 Saving Photon-HDF5 from scratch using only an HDF5 library 18

i

1.6 Defining new measurement types . 19
1.6.1 What to put in measurement_specs . 19
1.6.2 How to propose a new measurement_specs . 19

1.7 Known Limitations . 20
1.7.1 Timestamps with rollover . 20

1.8 Collaborating . 20
1.8.1 How to participate? . 20
1.8.2 Contributions Acknowledgement . 21
1.8.3 Contributor Code of Conduct . 21

ii

Photon-HDF5 Documentation, Release 0.4

Authors Antonino Ingargiola, Xavier Michalet, Ted Laurence

Contact Photon-HDF5 Google Group

Format Version 0.5rc1

This is the reference documentation for Photon-HDF5 (homepage), a file format for timestamp-based single-molecule
spectroscopy experiments such as single-molecule FRET (smFRET) (with or without lifetime), Fluorescence Correla-
tion Spectroscopy (FCS) and other related techniques.

Any dataset containing photon timestamps and other per-photon data can be stored in Photon-HDF5 files. Photon-
HDF5 is designed for long-term preservation and data sharing and can store experimental details and metadata such
as setup configurations, sample information, authorship and provenance.

The present document contains the reference documentation for the Photon-HDF5 format.

Other related resources (see also Photon-HDF5 Homepage):

• , view them with .

•

• : reference library to create and convert Photon-HDF5 files

• Biophysical Journal (2016), ().

•

Contents 1

https://groups.google.com/forum/#!forum/photon-hdf5
http://photon-hdf5.org/
http://photon-hdf5.org/

Photon-HDF5 Documentation, Release 0.4

2 Contents

CHAPTER 1

Table of Contents

1.1 Introduction

1.1.1 Overview

This document contains specifications of the Photon-HDF5 format. This format allows saving single-molecule spec-
troscopy experiment data in which at least one stream of photon timestamps is present. It has been designed as a
standard container format for a broad range of experiments involving confocal microscopy. Examples are confocal
smFRET experiments performed with a single or multiple excitation spots. Both 𝜇s-ALEX and ns-ALEX data are
supported.

1.1.2 What problems are we trying to solve?

• Ensuring long term data persistence.

• A disk space and read speed efficient file format for repeated use as well as for archiving.

• Facilitating data sharing and interoperability between analysis programs and research groups.

1.1.3 Features of HDF5

• Open-standard: language and platform independent, self-describing format with open source implementations.

• Efficient: the HDF5 format is a binary format that allows compression and fast read/write operations.

• Flexible: data arrays can be stored in “groups” (hierarchical format). Metadata can be attached to each data
entry (attributes).

• No limit in data size.

• Support for a variety of numeric and non-numeric data types.

3

http://dx.doi.org/10.1529/biophysj.104.054114

Photon-HDF5 Documentation, Release 0.4

1.1.4 Photon-HDF5: Design principles

The main design principles are:

• Simplicity

• Flexibility

• Compatibility

We aim to define a format that has a minimal set of specifications and therefore is easy to implement. At the same
time, it is important that the format can be expanded to accommodate new use cases while maintaining backward
compatibility.

To achieve simplicity, the only required file characteristics are a general file layout and the presence of a few basic
attributes and parameters. The remaining fields defined in this document will be present only when needed by a
particular measurement.

We retain flexibility by allowing the user to save any arbitrary data outside the ones defined in the specifications. To
assure that future versions of this format will not conflict with user-defined fields, we require that all user-defined
fields be contained in groups called user.

1.2 Photon-HDF5 format definition

Contents

• Photon-HDF5 format definition

– Overview

– Root-level parameters

– Photon-data group

* Measurement specs

· Detectors specs

– Setup group

* Detectors group

* Optional /setup fields

– Sample group

– Identity group

– Provenance group

– Additional notes and definitions

* Detector pixel IDs

* Beam-split channels

* Wavelengths and spectral-band order

* Definition of alternation periods

· Note for 𝜇s-ALEX

4 Chapter 1. Table of Contents

Photon-HDF5 Documentation, Release 0.4

* Measurement type

* Nanotimes time direction

* Group /setup/detectors

* Multi-spot measurements

1.2.1 Overview

A Photon-HDF5 is a HDF5 file with a predefined structure for timestamp-based data.

A screen-shot of a typical Photon-HDF5 file opened in HDFView is shown here:

The previous figure shows the 5 main groups contained in a Photon-HDF5 file. Of these, /photon_data and /setup
contains the raw data and all the information needed for the analysis. A schematic overview is shown in the next
figure:

The remaining 3 groups provide additional metadata not necessary for data analysis:

A brief description of these 3 metadata groups follows:

• /identity: Information about the data file.

• /provenance: Information about the original data file (when the Photon-HDF5 file has been converted from
another format).

1.2. Photon-HDF5 format definition 5

Photon-HDF5 Documentation, Release 0.4

6 Chapter 1. Table of Contents

Photon-HDF5 Documentation, Release 0.4

• /sample: Description of the measured sample.

1.2.2 Root-level parameters

The root node (“/”) in a Photon-HDF5 file contains the following fields:

• /acquisition_duration: (float) the measurement duration in seconds.

• /description: (string) a user-defined measurement description.

In addition, the root node has the following attributes which distinguish a Photon-HDF5 file from other HDF5 files:

• format_name: must contain the string “Photon-HDF5”

• format_version: (string) the Photon-HDF5 format version.

1.2.3 Photon-data group

This section describes the layout and fields in the /photon_data group. Note that only the kind of data is specified (i.e.
scalar, integer array, float array), but no data type size is mandated. For arrays, the most commonly used data-type is
indicated.

Mandatory fields:

• timestamps: (array) photon timestamps. Typical data-type int64.

• timestamps_specs/

– timestamps_unit: (float) timestamp units in seconds.

Optional if there is only 1 detector, otherwise mandatory:

• detectors: (array of integers) Detector pixel IDs for each timestamp. Typical data-type uint8.

When the dataset contains TCSPC or nanotime information (i.e. arrival time of each photon with respect to a laser
pulse), the following fields must be present:

• nanotimes:(array of integers) TCSPC nanotimes. Conventionally the time axis direction is the “natural” direc-
tion, i.e. lifetime decays look correctly oriented in time. For more details see Nanotimes time direction. Typical
data-type uint16.

• nanotimes_specs/

– tcspc_unit: (float) TAC/TDC bin size (in seconds).

– tcspc_num_bins: (integer) number of TAC/TDC bins.

– tcspc_range:(float) (optional) full-scale range of the TAC/TDC (in seconds). This a derived field
equal to tcspc_unit * tcspc_num_bins.

Finally, if the data come from a simulation, /photon_data may contain:

• particles: (array of integers) a particle ID (integer) for each timestamp. Typical data-type uint8.

Measurement specs

The group /photon_data/measurement_specs group contains additional information allowing unambiguous interpre-
tation of the data for each specific type of measurement.

• measurement_type: (string) the type of the measurements. Valid names are:

1.2. Photon-HDF5 format definition 7

Photon-HDF5 Documentation, Release 0.4

– “smFRET” (1 excitation wavelengths, 2 detection spectral bands). If /setup/lifetime is True the
measurement also includes TCSPC nanotimes.

– “smFRET-usALEX” (2 excitation wavelengths, 2 detection colors)

– “smFRET-usALEX-3c” (3 excitation wavelengths, 3 detection colors)

– “smFRET-nsALEX” (2 pulsed-laser wavelengths, 2 detection colors)

– “generic” a generic measurement defined by fields in /setup and measurement_specs.

The measurement_type field describes the type of measurement saved within the file. A “specific” measurement type,
can mandate the presence of certain fields in measurement_specs (see also Measurement type).

In Photon-HDF5 <0.5, each type of measurement required a distinct measurement_type, which was inconvenient
for supporting many variants of common measurements. In Photon-HDF5 0.5+ we added a “generic” measurement
type which supports a large combination of setup configurations. In this case, values in /setup/ will determine
mandatory measurement_specs fields. If you feel that a new “specific” measurement type is needed for your
application we have instructions to propose a new one. An advantage of a “specific” measurement type compared to
“generic”, is that additional fields can be made mandatory.

The following measurement_specs fields are present in specific measurement types.

For 𝜇s-ALEX, 2, 3 or N colors:

• alex_period: (integer or float) duration of one complete excitation alternation period expressed in timestamp
units. The alternation period is equal to alex_period * timestamps_unit.

For ns-ALEX (or lifetime with no alternation):

• laser_repetition_rate: (float) excitation laser pulse repetition rate in Hertz.

For 2-color (or more) 𝜇s-ALEX and ns-ALEX (optional):

• alex_offset: (scalar) [𝜇s-ALEX only] Time offset (in timestamps units) to be applied to the timestamps array be-
fore computing the 𝜇s-ALEX histogram. It is assumed that the 𝜇s-ALEX alternation histogram is the histogram
of (timestamps - alex_offset) MOD alex_period.

• alex_excitation_period1: (array with an even-number of integer elements, normally 2) start and stop values
identifying the excitation periods for the first wavelength in /setup/excitation_wavelengths (which
is the shortest wavelength). In smFRET experiments with 2-colors excitation this field defines the donor excita-
tion period. See also Wavelengths and spectral-band order and note below.

• alex_excitation_period2: (array with an even-number of integer elements, normally 2) start and stop values
identifying the excitation periods for the second wavelength in /setup/excitation_wavelengths. In
smFRET experiments with 2-colors excitation this field defines the acceptor excitation period. See also Wave-
lengths and spectral-band order and note below.

For 3 (or more) colors alternated or interleaved excitation:

• alex_excitation_period3: (array with an even-number of integer elements, normally 2) start and stop values
identifying the excitation periods for the third wavelength in /setup/excitation_wavelengths. See
also Wavelengths and spectral-band order and note below.

• etc. . .

Note: For 𝜇s-ALEX, both alex_excitation_period1 and alex_excitation_period2 are 2-element arrays and are ex-
pressed in timestamps_units. For ns-ALEX (also known as PIE), they are arrays with an even-number of elements,
comprising as many start-stop nanotime pairs as there are excitation periods within the TAC/TDC range. In this case
the values are expressed in nanotimes_units.

For more details see Definition of alternation periods.

8 Chapter 1. Table of Contents

Photon-HDF5 Documentation, Release 0.4

Detectors specs

Within measurement_specs, the detectors_specs/ sub-group contains all the pixel ID–detection channel associations,
i.e. spectral bands, polarizations or beam-split channels.

When a measurement records more than 1 spectral band, the fields:

• spectral_ch1

• spectral_ch2

• etc. . .

specify which detector pixel is employed in each spectral band. When the measurement records only 1 spectral band
these fields may be omitted. The spectral bands are strictly ordered for increasing wavelengths. For example, for
2-color smFRET measurements spectral_ch1 and spectral_ch2 represent the donor and acceptor channel
respectively.

If a measurement records more than 1 polarization states, the fields:

• polarization_ch1

• polarization_ch2

specify which detector pixel is used for each polarization. When the measurement records only one polarization, these
fields may be omitted.

When the detection light is split into 2 channels using a non-polarizing beam-splitter the fields:

• split_ch1

• split_ch2

specify which detector pixel is used in each of the “beam-split” channels.

All previous fields are arrays containing one or more Detector pixel IDs. For example, a 2-color smFRET mea-
surement will have only one value in spectral_ch1 (donor) and one value in spectral_ch2 (acceptor). A
2-color smFRET measurement with polarization (4 detectors) will have 2 values in each of the spectral_chX and
polarization_chX fields (where X=1 or 2). For a multispot smFRET measurement, in each photon_dataN
group, there will be spectral_chX fields containing the donor/acceptor pixels used in that spot (see Multi-spot
measurements).

1.2.4 Setup group

The /setup group contains information about the measurement setup. This group can be absent in some files, an
example being a file containing only detector dark counts, for which the following fields do not necessarily have a
meaning. When setup is present, the following 9 fields are mandatory:

• num_spectral_ch: (integer) number of distinct detection spectral channels. For example, in a 2-color smFRET
experiment there are 2 detection spectral channels (donor and acceptor), therefore its value is 2. When there is
a single detection channel or all channels detect the same spectral band, its value is 1.

• num_polarization_ch: (integer) number of distinct detection polarization channels. For example, in polariza-
tion anisotropy measurements, its value is 2. When there is a single detection channel or all channels detect the
same polarization (including when no polarization selection is performed) its value is 1.

• num_split_ch: (integer) number of distinct detection channels detecting the same spectral band and polarization
state. For example, when a non-polarizing beam-splitter is employed in the detection path, its value is 2. When
no splitting is performed, its value is 1.

• num_spots: (integer) the number of excitation (or detection) “spots” in the sample. This field is 1 for all the
measurements using a single confocal excitation volume.

1.2. Photon-HDF5 format definition 9

Photon-HDF5 Documentation, Release 0.4

• num_pixels: (integer) total number of detector pixels. For example, for a single-spot 2-color smFRET measure-
ment using 2 single-pixel SPADs as detectors this field is 2. This field is normally equal to num_pixels =
num_spectral_ch * num_split_ch * num_polarization_ch * num_spot. This equation
is not valid when the optical setup has non-symmetric branches, for example if the emission path is split in
two spectral bands and only one of the two is further split in two polarizations.

• excitation_cw: (array of booleans) for each excitation source, this field indicates whether excitation is
continuous wave (CW), True, or pulsed, False. The order of excitation sources is the same as that in
excitation_wavelengths and is in increasing order of wavelengths.

• lifetime: (boolean) True (or 1) if the measurements includes a nanotimes array of (usually sub-ns resolution)
photon arrival times with respect to a laser pulse (as in TCSPC measurements).

• modulated_excitation: (boolean) True (or 1) if there is any form of excitation modulation either in the wave-
length space (as in 𝜇s-ALEX or PAX) or in the polarization space. This field is also True for pulse-interleaved
excitation (PIE) or ns-ALEX measurements.

• excitation_alternated: (array of booleans) New in version 0.5. For each excitation source, this field indicates
whether the excitation is alternated (True) or not alternated (False). In ALEX measurement all sources are
alternated. In PAX measurements only one of the two sources is alternated. In measurements with pulsed
interleaved excitation (PIE), this field should contain all False.

Detectors group

New in version 0.5. The group /setup/detectors contains arrays with one element per detector’s pixel. The allowed
fields are:

• id (array of int): Mandatory. Number used by in /photon_data/detectors to identify the pixel.

• id_hardware (array of int): Optional. Detector numbers as used by the acquisition hardware if different from
id.

• label (array of string): Optional. A human-readable label for each detector.

• counts (array of int): Optional. Number of timestamps counted by each detector.

• module (array of string): Multispot only, optional. Name of the module each pixel belongs to.

• position (2-D array of int): Multispot only, optional. Columns are x,y positions of each pixel in the array.

• dcr (array of float): Optional. Dark counting rate in Hz for each pixel.

• afterpulsing (array of float): Optional. Afterpulsing probability for each pixel.

• spot (array of int): Multispot only, mandatory. The spot number each pixel is used in.

• tcspc_unit: (array of float) array of TAC/TDC bin size (in seconds). Present only if /setup/lifetime is
True and if TCSPC info is different for each pixel.

• tcspc_num_bins: (integer) array of number of TAC/TDC bins. Present only if /setup/lifetime is True
and if TCSPC info is different for each pixel.

For more info see Group /setup/detectors.

Optional /setup fields

The following /setup fields are optional and not necessarily relevant for all experiments. These fields may be not
present when the associated information is irrelevant or not available.

The following fields are arrays, one element per excitation source, in the order of increasing wavelengths:

10 Chapter 1. Table of Contents

Photon-HDF5 Documentation, Release 0.4

• excitation_wavelengths: (array of floats) list of excitation wavelengths (center wavelength if broad-band) in
increasing order (unit: meter).

• laser_repetition_rates: (array of floats) New in version 0.5. The laser repetition rate in Hz for each excitation
source. This field is mandatory only if there is at least one pulsed excitation source. When there are both CW
and pulsed lasers, the CW lasers will have a value of 0 in this field.

• excitation_polarizations: (arrays of floats) list of polarization angles (in degrees) for each excitation source.

• excitation_input_powers: (array of floats) excitation power in Watts for each excitation source. This is the
excitation power entering the optical system.

• excitation_intensity: (array of floats) excitation intensity in the sample for each excitation source (units: W/m2).
In the case of confocal excitation this is the peak PSF intensity.

The following fields are also arrays:

• detection_wavelengths: (arrays of floats) reference wavelengths (in meters) for each detection spectral band.
This array is ordered in increasing order of wavelengths. The first element refers to detectors_specs/
spectral_ch1, the second to detectors_specs/spectral_ch2 and so on.

• detection_polarizations: (arrays of floats) polarization angles for each detection polarization band. The
first element refers to detectors_specs/polarization_ch1, the second to detectors_specs/
polarization_ch2 and so on. This field is not relevant if no polarization selection is performed.

• detection_split_ch_ratios: (array of floats) power fraction detected by each “beam-split” channel (i.e. inde-
pendent detection channels obtained through a non-polarizing beam splitter). For 2 beam-split channels that
receive the same power this array should be [0.5, 0.5]. The first element refers to detectors_specs/
split_ch1, the second to detectors_specs/split_ch2 and so on. This field is not relevant when no
polarization- and spectral-insensitive splitting is performed.

1.2.5 Sample group

The /sample group contains information related to the measured sample. This group is optional.

• num_dyes: (integer) number of different dyes present in the samples.

• dye_names: (string) comma-separated list of dye or fluorophore names (for example: "ATTO550,
ATTO647N")

• buffer_name: (string) a user defined description for the buffer.

• sample_name: (string) a user defined description for the sample.

1.2.6 Identity group

The identity/ group contains information about the specific Photon-HDF5 file.

The following fields are mandatory (and automatically added by phconvert):

• creation_time: (string) the Photon-HDF5 file creation time with the following format: “YYYY-MM-DD
HH:MM:SS”.

• software: (string) name of the software used to create the Photon-HDF5 file.

• software_version: (string) version of the software used to create the Photon-HDF5 file.

• format_name: (string) this must always be “Photon-HDF5”

• format_version: (string) the Photon-HDF5 version string (e.g. “0.4”)

• format_url: (string) A URL pointing to the Photon-HDF5 specification document.

1.2. Photon-HDF5 format definition 11

http://photon-hdf5.github.io/phconvert/

Photon-HDF5 Documentation, Release 0.4

The following fields are optional:

• author: (string) the author of the measurement (or simulation).

• author_affiliation: (string) the company or institution the author is affiliated with.

• creator: (string) the Photon-HDF5 file creator. Used when the data was previously stored in another format and
the conversion is performed by a different person than the author.

• creator_affiliation: (string) the company or institution the creator is affiliated with.

• url: (string) URL that allow to download the Photon-HDF5 data file.

• doi: (string) Digital Object Identifier (DOI) for the Photon-HDF5 data file.

• funding: (string) Description of funding sources and or grants that supported the data collection.

• license: (string) License under which the data is released. Many journals and funding agencies require or
suggest “CC0” (or equivalently “Public Domain”) for the data.

• filename: (string) Photon-HDF5 file name at creation time. This field saves the original file name even if the
file is later on renamed on disk.

• filename_full: (string) Photon-HDF5 file name (including the full path) at creation time.

1.2.7 Provenance group

The provenance/ group contains info about the original file that has been converted into a Photon-HDF5 file. If the
file is directly saved to Photon-HDF5 there is no previous “original” file and in this case the provenance group may be
omitted. Also, if some information is not available the relative field may be omitted.

• filename: (string) File name of the original data file before conversion to Photon-HDF5.

• filename_full: (string) File name (with full path) of the original data file before conversion to Photon-HDF5.

• creation_time: (string) Creation time of the original data file.

• modification_time: (string) Time of last modification of the original data file.

• software: (string) Software used to save the original data file.

• software_version: (string) Version of the software used to save the original data file.

1.2.8 Additional notes and definitions

Detector pixel IDs

A detector pixel ID (or simply pixel ID) is the “name” of each pixels and is usually a single integer. Pixels are normally
numbered incrementally, but not necessarily so. In other words, a file containing data taken with 2 single-point (pixel)
detectors could have the first detector labeled “4” and the second detector labeled “6”. In some cases (when using
detector arrays) the pixel ID can be a n-tuple of integers. This allow to specify, for each pixel, the module number and
the X, Y location, for example. Therefore, an array of pixel IDs can be either a 1-D column array or a 2-D array. In
either cases, each row identifies a pixel.

Beam-split channels

When the emitted light path is split in 2 or more detection paths by using a non-polarizing beam splitter the measure-
ment has so called beam-split channels. The fields split_ch1 and split_ch2 contains the list of Detector pixel IDs for
each beam-split channel (see Detectors specs).

12 Chapter 1. Table of Contents

Photon-HDF5 Documentation, Release 0.4

Beam split channels can receive same or different (depending on whether the beam splitter is 50-50). The fractional
power of each beam split channel can be saved in the field detection_split_ch_ratios in the Setup group.

Wavelengths and spectral-band order

In Photon-HDF5, by convention, all the excitation wavelengths and detection spectral bands are ordered in increasing
order: from the shortest to the longest wavelength. This ordering is strictly followed and removes any ambiguity in
defining first, second, etc. . . wavelength or spectral band.

For examples, for 𝜇s-ALEX and ns-ALEX (or PIE) the excitation wavelengths (in /setup/
excitation_wavelenths) are ordered as

1. donor excitation wavelength,

2. acceptor excitation wavelength

Similarly, the donor (or acceptor) excitation period range is defined by /photon_data/
measurement_specs/alex_excitation_period1 (or /photon_data/measurement_specs/
alex_excitation_period2).

Finally the donor (or acceptor) Detector pixel IDs number is defined in /photon_data/measurement_specs/
detectors_specs/spectral_ch1 (or /photon_data/measurement_specs/detectors_specs/
spectral_ch2).

Definition of alternation periods

Note for 𝜇s-ALEX

The fields alex_offset, alex_excitation_period1 and alex_excitation_period2 define the excitation period for each ex-
citation source. The alternation histogram is the histogram of the following quantity:

A = (timestamps - alex_offset) MODULO alex_period

Note that alex_offset must be a value that shifts the timestamps in a way that the resulting alternation histogram
has uninterrupted excitation periods for each excitation source. It can be thought as the delay between the start of the
timestamping and the start of the alternation modulation. In most cases this is just an empirical parameter depending
on the specific setup.

Photons emitted during the donor period (or, respectively, acceptor period) are obtained by applying the condition:

• (A >= start) and (A < stop)

Measurement type

Each measurement_type has an associated set of mandatory fields which must be present to ensure that all information
needed to unambiguously interpret the data is present. For example, for a 2-color smFRET measurement, a software
package creating a file should check that the association between detector-pixel and donor or acceptor channel is
present.

The list of supported measurement types is reported in Measurement specs.

Nanotimes time direction

In typical TCSPC measurement the start and stop inputs are inverted, i.e. the start is triggered by the photon and
the stop by the the laser sync. This allows to start TAC or TDC measurements only when a photon is detected and
not after each laser sync pulse. However, due to this experimental configuration, the resulting raw TCSPC histogram

1.2. Photon-HDF5 format definition 13

Photon-HDF5 Documentation, Release 0.4

Fig. 1.1: Alternation histogram showing selection for the donor and acceptor periods.

looks inverted along the time axis, with the nanotimes of photons emitted shortly after a laser pulse being larger than
the nanotimes of photons emitted much later.

By convention, the Photon-HDF5 format requires nanotimes to be properly oriented. In other words, when a nanotimes
time axis inversion is needed, this correction needs to be performed before the data is saved into a Photon-HDF5 file.
As a corollary, TCSPC histograms computed directly from nanotimes from Photon-HDF5 files are always properly
oriented, regardless of the way the nanotimes were acquired.

Group /setup/detectors

This group is new in version 0.5 and contains fields which are arrays, one element per detector (see definition).
The only mandatory field is id which contains all detectors IDs as they appear in /photon_data/detectors.
Within each spot, IDs appear in /setup/id in increasing order. All values which appears in /photon_data/
detectors need to be listed here. This includes non-standard detectors (e.g. a monitor channel to monitor the input
power) or “markers” saved by the acquisition hardware (for example PicoQuant TCSPC hardware can save makers
for synchronization). However, special detector IDs used for overflow correction must be removed before saving a
Photon-HDF5 file.

In TCSPC measurements where each pixel has different TCSPC bin width, the /setup/detectors group allows
to save per-pixel TCSPC info. In this case the the nanotimes_specs group is not present in photon_data and
the group /setup/detectors will contain per-pixel TCSPC info:

/setup/detectors/tcspc_units
/setup/detectors/tcspc_num_bins

Multi-spot measurements

Multi-spot measurements are simply handled by having multiple photon_data groups, one for each excitation spot.
The naming convention is the following:

14 Chapter 1. Table of Contents

Photon-HDF5 Documentation, Release 0.4

photon_data0
photon_data1
...
photon_data10
...
photon_data100

Note that the enumeration starts from zero and there is no zero filling. Each photon_dataN group will have a
complete measurement_specs sub-group so that it can effectively treated as a single-spot measurements when
reading the file. As a result, even if the measurement_type field is not expected to change for different spots, it
will be replicated inside each photon_dataN group.

In version 0.5 and above the /photon_dataNN/detectors arrays need to contain detectors identifier which are
unique across all the spots. In version 0.4 the same identifiers (e.g. 0 and 1) were allowed in different spots.

1.3 What changed in version 0.5

• A new field: /setup/excitation_alternated (array of booleans), was added, which is True for all
excitation sources which are intensity-modulated. This field allows distinguishing between ALEX and PAX
measurements (i.e. when only one laser is alternated).

• A New group: /setup/detectors containing arrays of per-pixel information, was added. See Group
/setup/detectors.

• Support was added for cases where TCSPC specifications change for each pixel, by addition of dedicated fields
in /setup/detectors. See Group /setup/detectors.

• A new measurement_type “generic” was added. In a “generic” measurement, the specifications are determined
by the fields in the /setup group. For details see generic.

1.4 Reading Photon-HDF5 files

You can easily read a Photon-HDF5 file in Python, MATLAB, LabVIEW or any other language that supports HDF5
(C, C++, Java, R, etc. . .). Photon-HDF5 files, like any other HDF5 file, are read using the HDF5 library for the
language of choice. One specific advantage is that all field names (and their meaning) are defined in the specifications
(Photon-HDF5 format definition).

To read Photon-HDF5 in a given programming language, the user only needs to install the HDF5 library and a wrapper
for that language. Scientific Python distributions and MATLAB already include all the needed software support. In
the case of Python, both pytables or h5py can be used. In the case of MATLAB, we suggest using 2013a or later,
which include more user-friendly functions to access HDF5 files. LabVIEW users need to install the HDF5 library
(www.hdfgroup.org) and a third-party wrapper to support HDF5 file reading or writing. h5labview is currently our
recommended HDF5 wrapper for LabVIEW.

Simple examples on reading Photon-HDF5 files can be found in the paper describing Photon-HDF5 (section SM.2).
Complete code example on reading Photon-HDF5 files in different programming languages (currently Python, MAT-
LAB and LabVIEW) are provided on GitHub.

In the next section we discuss how to implement a generic Photon-HDF5 reader for a single-molecule FRET analysis
program.

1.3. What changed in version 0.5 15

http://h5labview.sourceforge.net/
http://dx.doi.org/10.1101/026484
http://photon-hdf5.github.io/photon_hdf5_reading_examples

Photon-HDF5 Documentation, Release 0.4

1.4.1 Reading Photon-HDF5 in a smFRET analysis program

This section describes an example of how to add support for reading Photon-HDF5 files to a smFRET analysis pro-
gram. This scheme is implemented in the burst analysis program FRETBursts (see code for full details).

1. Get the Photon-HDF5 version from format_version root-node attribute (see Root-level parameters). The
version must be '0.4' or greater.

2. Optionally load metadata from setup, sample, provenance and identity groups. This is not needed for the analy-
sis. The fields may not be present.

3. Same as in point 2 for root fields description and acquisition_duration.

4. If there is a /photon_data group the file is single-spot. Call the function to load single-spot data (see next
section). If there is no /photon_data the file is a multi-spot one, call the multi-spot read function (next
section).

Read single-spot function

Make a function that takes a channel parameter (N) and reads the data of the corresponding channel (/
photon_dataN). If N is not passed, the function reads data from /photon_data.

Read the photon-data following these steps:

1. Check if a photon-data group with given N is present, if not skip the channel. This is needed in cases of missing
channels (e.g. dead pixel in SPAD array).

2. Load photon-data arrays. Load the array timestamps and its unit (timestamps_specs/
timestamps_unit). If present, load also detectors, nanotimes and particles. If nanotimes is
present load nanotime_specs (tcspc_unit and tcspc_num_bins).

3. Load measurements-specs. Refer to Measurement specs documentation for details. Note that
measurement_specs may not be present.

4. If measurement_specs is present and the measurement-type starts with smFRET load de-
tectors definitions (donor: measurement_specs/detectors_specs/spectral_ch1, acceptor:
measurement_specs/detectors_specs/spectral_ch2).

5. For 𝜇s-ALEX load alex_period, and for ns-ALEX load laser_repetition_rate.

6. For both 𝜇s-ALEX and ns-ALEX, load the donor and acceptor period definitions
(alex_excitation_period1 and alex_excitation_period1). For 𝜇s-ALEX also load
alex_offset. All these field may not be present.

Read multi-spot function

Implement the single-channel version then:

• Find all the root groups starting with photon_data and for each group load the data for that channel. There
can be missing channels (e.g. if there are dead pixels).

1.5 Writing Photon-HDF5 files

To create Photon-HDF5 files, users can convert existing files or save directly from suitably modified acquisition soft-
ware. The conversion option is generally the simplest approach and, when using closed-source acquisition software,

16 Chapter 1. Table of Contents

http://tritemio.github.io/FRETBursts/
https://github.com/tritemio/FRETBursts/blob/master/fretbursts/loader.py#L226

Photon-HDF5 Documentation, Release 0.4

also the only one available (until vendors start supporting Photon-HDF5).

To simplify saving (and converting) Photon-HDF5 files we developed and maintain, phconvert, an open-source python
library serving as reference implementation for the Photon-HDF5 format. While Photon-HDF5 can be created without
phconvert, using only a HDF5 library, we recommend taking advantage of phconvert to simplify the writing step and
to make sure that the saved file conforms to the specifications. Phconvert, in fact, checks that all mandatory fields
are present and have correct names and types, and adds a description to each field. Phconvert can be directly used in
programs written in Python or other languages that allow calling Python code (see next sections). phconvert permissive
license (MIT) allows integration with both open and closed source software.

1.5.1 Converting files to Photon-HDF5

phconvert includes a browser-based interface using Jupyter Notebooks to convert vendor-specific file formats into
Photon-HDF5 without requiring any python knowledge. The formats currently supported are HT3 (from PicoQuant
TCSPC hardware), SPC/SET (from Becker & Hickl TCSPC hardware) as well as SM (a legacy file format developed
by the WeissLab, UCLA).

We provide a demo service to run these notebooks online and convert one of these formats to Photon-HDF5 without
software installation on the user’s computer.

Beyond the currently supported ones, other formats can be converted by writing a Python function to load the data and
by using phconvert to save the data to Photon-HDF5. Taking the existing phconvert loader functions as examples, this
task is relatively easy even for inexperienced Python programmers. See also the notebook Writing Photon-HDF5 files
(view online).

We encourage interested users to contribute to load functions to phconvert so that out-of-the-box support for conversion
of the largest number of formats can be provided. If you have an input file format not supported by phconvert please
open a new issue on GitHub.

1.5.2 Save Photon-HDF5 from a third party-software

To directly save Photon-HDF5 files from within an acquisition software, there are several options. For programs writ-
ten in Python, the obvious option is using phconvert which makes simple creating Photon-HDF5 files while assuring
the validity of the output file. See for example the notebook Writing Photon-HDF5 files (view online).

For acquisition software written in other languages(e.g. C, MATLAB or LabVIEW), it is in principle possible to call
python using the Python C API (see Embedding Python in Another Application). However understanding the Python
C API requires a fairly good proficiency in C (and probably python).

In order to make it easy to create valid Photon-HDF5 in any language (without duplicating the effort of creating a
library like phconvert in every language) we devised an alternative approach. The user can save the photon-data arrays
(timestamps, detectors, nanotimes, etc. . .) in a plain HDF5 file. The remaining metadata is written in a simple text file
(YAML). Next, a script called phforge reads the metadata and the photon-data arrays and creates a valid Photon-HDF5
file using phconvert. In this way, at the cost of a small inefficiency (writing some temporary files), a user can easily
and reliably generate Photon-HDF5 files from any language. The metadata file is a text-based representation of the full
Photon-HDF5 structure, excluding the photon-data arrays and some other field automatically filled by phconvert. To
store this metadata we use YAML markup (a superset of JSON) for its simplicity and ability to describe hierarchical
structures. For example, a minimal metadata file describing only mandatory fields is the following:

description: This is a dummy dataset which mimics smFRET data.

setup:
num_pixels: 2 # using 2 detectors
num_spots: 1 # a single confocal excitation
num_spectral_ch: 2 # donor and acceptor detection
num_polarization_ch: 1 # no polarization selection

1.5. Writing Photon-HDF5 files 17

http://photon-hdf5.github.io/phconvert/
http://jupyter.org/
http://photon-hdf5.github.io/Photon-HDF5-Converter/
https://github.com/Photon-HDF5/phconvert/blob/master/phconvert/loader.py
https://github.com/Photon-HDF5/phconvert/blob/master/notebooks/Writing%20Photon-HDF5%20files.ipynb
http://nbviewer.ipython.org/github/Photon-HDF5/phconvert/blob/master/notebooks/Writing%20Photon-HDF5%20files.ipynb
https://github.com/Photon-HDF5/phconvert/issues
https://github.com/Photon-HDF5/phconvert/blob/master/notebooks/Writing%20Photon-HDF5%20files.ipynb
http://nbviewer.ipython.org/github/Photon-HDF5/phconvert/blob/master/notebooks/Writing%20Photon-HDF5%20files.ipynb
https://docs.python.org/3.4/c-api/index.html#c-api-index
https://docs.python.org/3.4/extending/embedding.html
https://en.wikipedia.org/wiki/YAML
http://photon-hdf5.github.io/phforge/

Photon-HDF5 Documentation, Release 0.4

num_split_ch: 1 # no beam splitter
modulated_excitation: False # CW excitation, no modulation
lifetime: False # no TCSPC in detection

photon_data:
timestamps_specs:

timestamps_unit: 10e-9 # 10 ns

To save the photon-data arrays the user needs to call the HDF5 library for the language of choice. For example, in
MATLAB timestamps and detectors arrays can be saved with the following commands:

h5create('photon_data.h5', '/timestamps', size(timestamps), 'Datatype', 'int64')
h5write('photon_data.h5', '/timestamps', timestamps)
h5create('photon_data.h5', '/detectors', size(detectors), 'Datatype', 'uint8')
h5write('photon_data.h5', '/detectors', detectors)

Finally, once metadata and photon-data files have been saved, a Photon-HDF5 file can be created calling the phforge
script as follows:

phforge metadata.yaml photon-data-arrays.h5 photon-hdf5-output.hdf5

Note that the file generated with this minimal metadata, does not contain the measurement_specs group which is in
general necessary for a user to analyze the data.

The phforge script is available at http://photon-hdf5.github.io/phforge/. Examples of complete metadata files for all the
supported measurement types are available at https://github.com/Photon-HDF5/phforge/tree/master/example_data.

A complete example of creating Photon-HDF5 files in LabVIEW using phforge can be found at https://github.com/
Photon-HDF5/photon-hdf5-labview-write (for a MATLAB see next section).

Please use the mailing list if you have any questions.

1.5.3 Saving Photon-HDF5 from MATLAB

Creating Photon-HDF5 in MATLAB is easy using the approach described in the previous section, i.e. calling the script
phforge.

Complete MATLAB examples can be found at https://github.com/Photon-HDF5/photon-hdf5-matlab-write.

In principle, it should be possible using a recent release of MATLAB (R2014b or later) to directly call python functions.
Therefore it should be possible to directly call phconvert. However, in our recent attempt, we weren’t able to configure
MATLAB in order to load the correct dynamic libraries (i.e. the HDF5 C library) required by phconvert.

1.5.4 Saving Photon-HDF5 from scratch using only an HDF5 library

To create Photon-HDF5 files from languages different than python the easiest option, by far, is calling the phforge
script as described in previous section Save Photon-HDF5 from a third party-software.

If for some reason you cannot use phforge or phconvert, you have to implement routines to write Photon-HDF5 files
using the HDF5 library for your platform, taking care of following the Photon-HDF5 specification. In the following
paragraph we provide a few suggestions on how to proceed in this case.

To facilitate writing valid Photon-HDF5, we provide a JSON file containing all the official field names, a short descrip-
tion and a generic type definition (array, scalar, string or group). This JSON file can be used both to validate names
and types of the data fields and to retrieve the standard short description (this is, in fact, what phconvert does). The
developer needs to verify that all the mandatory fields are present. The description string should be saved for all the

18 Chapter 1. Table of Contents

http://photon-hdf5.github.io/phforge/
https://github.com/Photon-HDF5/phforge/tree/master/example_data
https://github.com/Photon-HDF5/photon-hdf5-labview-write
https://github.com/Photon-HDF5/photon-hdf5-labview-write
https://groups.google.com/forum/#!forum/photon-hdf5
http://photon-hdf5.github.io/phforge/
https://github.com/Photon-HDF5/photon-hdf5-matlab-write
http://www.mathworks.com/help/matlab/call-python-libraries.html
https://github.com/Photon-HDF5/phconvert/blob/master/phconvert/specs/photon-hdf5_specs.json

Photon-HDF5 Documentation, Release 0.4

official fields in an attribute named “TITLE”. For compatibility with h5labview, we recommend to use a single-space
string (” “) for all the user fields that lack a description (phconvert uses this workaround too).

Furthermore, the /identity group should include the fields software_name and software_version to specify
the name and the version of the software that created the file.

Finally, you can verify that generate files are compliant with the Photon-HDF5 specifications by using the phconvert
function phconvert.hdf5.assert_valid_photon_hdf5_tables(). This function will raise errors or warnings if the input file
does not follows the specs.

1.6 Defining new measurement types

If you need to save a type of measurement not included in the current list supported measurement types, you may want
to use a “generic” measurement type instead.

If the “generic” type is for some reason unsuitable you may propose a new “specific” measurement type following the
instruction in this page.

A new “measurement_type” will define what kind of fields will be present in the measurement_specs group in order
to make the dataset self-contained.

1.6.1 What to put in measurement_specs

First, a new measurement_specs needs to have an official name. The name of the measurement-type is a string stored
in measurement_specs/measurement_type. This string is used to differentiate between different measurement_specs.
For example, names of already defined measurment types are: smFRET, smFRET-usALEX, smFRET-usALEX-3c and
smFRET-nsALEX (see here).

Beyond the name, measurement_specs group should contain all the metadata needed to for unambiguous analysis of
the dataset. For example, in smFRET experiments the measurement_specs contains the IDs of donor and acceptor
detection channels. In Alternated Excitation (ALEX) measurements it will also contains definition of laser alternation
(period, range for donor and acceptor, etc. . .).

In most cases, measurement_specs will contain the association between detector IDs physical detection channels
(Detectors specs). Detection channels may differ in the detected spectral band and in detected polarization, called
spectral_chX and polarization_chX (where X is 1, 2, . . .). When using a non-polarizing beam splitter and both spectral
band and polarization are equal, the detection channels are names split_chX (see Beam-split channels).

If possible, new measurement_specs should follow naming conventions of other official measurement_specs.

For any question please use the Photon-HDF5 Google Group.

1.6.2 How to propose a new measurement_specs

Logistically, the process works as follows.

1. Users propose new measurement_specs using the Photon-HDF5 Google Group.

2. After discussion, the measurement_specs will be advertised on the Photon-HDF5 website in order to gather
opinions from different parties.

3. Discussion continues and modifications are proposed until consensus is reached.

4. Finally, the new measurement_specs becomes official part of Photon-HDF5: it is added to the Photon-HDF5
documentation and software support is added to phconvert.

For any question please use the Photon-HDF5 Google Group.

1.6. Defining new measurement types 19

http://phconvert.readthedocs.org/en/latest/hdf5.html#phconvert.hdf5.assert_valid_photon_hdf5
https://groups.google.com/forum/#!forum/photon-hdf5
https://groups.google.com/forum/#!forum/photon-hdf5
https://groups.google.com/forum/#!forum/photon-hdf5

Photon-HDF5 Documentation, Release 0.4

1.7 Known Limitations

In this section, we list some features that are not currently supported. If you think that some of these should be included
in the specifications, please contact us.

1.7.1 Timestamps with rollover

In Photon-HDF5 timestamps are always signed 64 bit integers. Thanks to compression, there is no size penalty
compared to 32 bit integers. Most timestamping hardware produce a timestamp with 24 or 32 bits and a rollover flag
in order to compute the full “unwrapped” timestamp. Saving timestamps with a separate rollover information is not
currently supported, therefore the rollover correction must be computed before saving data in a Photon-HDF5 file.

Timestamps with rollover may be supported in a future version of Photon-HDF5.

1.8 Collaborating

The success of a file format is only determined by the extent of its adoption. For this reason we greatly welcome any
feedback and contribution from interested users.

1.8.1 How to participate?

The Photon-HDF5 project resources include:

1. Reference Documentation (i.e. this document).

2. Examples on reading Photon-HDF5 in multiple languages.

3. Software for saving/converting Photon-HDF5 files: phconvert (reference python library); phforge (script to be
used from any language); Photon-HDF5 Online Converter (demostrative service).

All the sources (including for the documentation) are hosted on GitHub and we encourage to open GitHub Issues in
the documentation repository to discuss any topic related Photon-HDF5. You can also contact us by email, but we
prefer to use GitHub in order to keep any discussion public.

Contributions (such as fixes or enhancements) can be sent using GitHub Pull Requests (PR). You can find guides on
how to send a PR on the GitHub website. If have have any doubts, please contact us on the Photon-HDF5 google
group and we will be glad to help you getting started.

There are several ways you can get involved:

• Sending feedback: if you use or plan to use Photon-HDF5 and have any comment or suggestion, please send it
to us! Even if you don’t have any problem we would like to hear back about your use case. For this topic please
use the Photon-HDF5 google group or open an issue in the documentation repository.

• Documentation contributions: if you feel that some section of this document should be expanded or enhanced
in any way, please feel free to open an issue or send a PR (see note above) on the documentation repository.

• Contributing examples: you can send a new example on reading Photon-HDF5 files in a new language or for
a different measurement type. Or simply send a fix for the current examples.

• Contributing to phconvert: you can open issues to report bugs, discuss usage or propose enhancements. You
are also more than welcome to send PR for fixes or enhancements to the library. The official repository is this
one.

20 Chapter 1. Table of Contents

http://photon-hdf5.readthedocs.org/
https://github.com/Photon-HDF5/photon_hdf5_reading_examples
http://photon-hdf5.github.io/phconvert/
http://photon-hdf5.github.io/phforge/
http://photon-hdf5.github.io/Photon-HDF5-Converter/
https://github.com/Photon-HDF5
https://github.com/Photon-HDF5/photon-hdf5
https://groups.google.com/forum/#!forum/photon-hdf5
https://groups.google.com/forum/#!forum/photon-hdf5
https://groups.google.com/forum/#!forum/photon-hdf5
https://github.com/Photon-HDF5/photon-hdf5
https://github.com/Photon-HDF5/photon-hdf5
https://github.com/Photon-HDF5/photon_hdf5_reading_examples
https://github.com/Photon-HDF5/phconvert
https://github.com/Photon-HDF5/phconvert

Photon-HDF5 Documentation, Release 0.4

1.8.2 Contributions Acknowledgement

Any contributions to this documentation will be listed in the front page, just below the authors.

Contributions to other repository (e.g. phconvert, phforge, reading examples, etc.) will be acknowledged in the
respective website and listed in their LICENSE files. All the code in Photon-HDF5 projects is released under the MIT
license.

1.8.3 Contributor Code of Conduct

The Photon-HDF5 team subscribes to the Contributor Covenant, version 1.0.0, available from http://
contributor-covenant.org/version/1/0/0/.

1.8. Collaborating 21

https://github.com/Photon-HDF5/phconvert
https://github.com/Photon-HDF5/phforge
https://github.com/Photon-HDF5/photon_hdf5_reading_examples
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://contributor-covenant.org/version/1/0/0/
http://contributor-covenant.org/version/1/0/0/

	Table of Contents
	Introduction
	Overview
	What problems are we trying to solve?
	Features of HDF5
	Photon-HDF5: Design principles

	Photon-HDF5 format definition
	Overview
	Root-level parameters
	Photon-data group
	Measurement specs

	Setup group
	Detectors group
	Optional /setup fields

	Sample group
	Identity group
	Provenance group
	Additional notes and definitions
	Detector pixel IDs
	Beam-split channels
	Wavelengths and spectral-band order
	Definition of alternation periods
	Measurement type
	Nanotimes time direction
	Group /setup/detectors
	Multi-spot measurements

	What changed in version 0.5
	Reading Photon-HDF5 files
	Reading Photon-HDF5 in a smFRET analysis program
	Read single-spot function
	Read multi-spot function

	Writing Photon-HDF5 files
	Converting files to Photon-HDF5
	Save Photon-HDF5 from a third party-software
	Saving Photon-HDF5 from MATLAB
	Saving Photon-HDF5 from scratch using only an HDF5 library

	Defining new measurement types
	What to put in measurement_specs
	How to propose a new measurement_specs

	Known Limitations
	Timestamps with rollover

	Collaborating
	How to participate?
	Contributions Acknowledgement
	Contributor Code of Conduct

