
PhoneLab Documentation
Release stable

PhoneLab Team

June 05, 2017

Contents

1 What’s New 1
1.1 Overview . 1
1.2 Get Started . 2
1.3 PhoneLab Branch Philosophy . 3
1.4 Experiment Logistics . 4
1.5 Logging Infrastructure . 6
1.6 Existing Instrumentation . 10
1.7 Data Release . 14
1.8 Distributing Surveys . 14
1.9 PhoneLab Data Format . 15
1.10 PhoneLab Policies . 17
1.11 Frequently Asked Questions . 18
1.12 Experiments . 19

i

ii

CHAPTER 1

What’s New

• [2017-04-21] PhoneLab will be shut down on May 2017.

• [2016-09-14] PhoneLab has migrated to Nexus 6 devices. We are ready to accept experiment requests.

Overview

PhoneLab is a smartphone platform testbed based on Android. As a researcher, you can add instrumentations to learn
how Android works in the wild, or make experimental changes to test your new ideas. Either way, PhoneLab provides
a way to monitor, study and experiment on Android system at scale, with the power of full system control.

Fig. 1.1: Overview of PhoneLab Experiment Process.

More details on how to deploy experiments on PhoneLab can be found in rest of this documentation, but the high level
steps are:

1. Contact us to state who you are, and what kind of experiments you want to do on PhoneLab. We do not have
any specific application templates—just use common sense.

2. We will determine whether the experiment is suitable one PhoneLab. Typically we welcome ideas that requires
changes at platform level, which is the unique capability of PhoneLab.

3. Upon approval, we will create a experiment branch for your on our Gerrit server so that you can download
PhoneLab AOSP source and make changes.

4. When your changes are ready, we will merge them into our mainstream release branch and push out to partici-
pants.

5. Meanwhile, you will need to apply for IRB approval to obtain the experiment data generated by your changes.

1

mailto:experiment@phone-lab.org

PhoneLab Documentation, Release stable

Get Started

PhoneLab use the same tools to manage platform source with AOSP, except that we are hosting our own platform
mirror. Here we are not trying to cover every aspect of the building process, which is already well documented by
AOSP.

Registration

First, you will need to register an account on our Gerrit server at http://platform.phone-lab.org:8080. You will need to
use the OpenID authentication provided by Yahoo!, since Google has terminated its OpenID support.

Then please sign in and fill up your account information, most notably your SSH public key and email address. These
two information are required later on to clone the platform source.

Finally, please open the email sent by Gerrit to confirm your email address, and let us know your Gerrit account name.

Downloading and Building

Please follow the AOSP instructions to set up your local develop environment.

Before you continue, make sure that you have contacted us with these information:

• Who you are

• What the experiment is about (be brief)

• What will be a good code name (it will be used in creating the experiment branch
experiment/cm-13.0/${id}/${codename}, where ${id} is assigned by us.)

• Your account name and email on our Gerrit server.

Next, you are ready to clone the source code.

$ repo init -u ssh://<USERNAME>@platform.phone-lab.org:29418/cm-shamu/manifest -b <EXPERIMENT_BRANCH>
$ repo sync

Where <USERNAME> is your user name on our Gerrit server, and <EXPERIMENT_BRANCH> is the branch name we
created for you.

Since repo sync will put every repository in a “detached head” mode, you may want to check out your experiment
branch so further changes will be staged on your branch:

$ repo forall -pvec git fetch phonelab <EXPERIMENT_BRANCH>:<EXPERIMENT_BRANCH>

Now you can go a head and build the platform. Note the build target is for Nexus 6, aka “shamu”.

$ source build/envsetup.sh
$ lunch cm_shamu
$ make -j 16

After the compilation finishes, you can use fastboot to flash the images to your device. Given that you are going to
be modifying the platform we suggest that you obtain a Google Nexus 6 smartphone to use as a development device.
Happily they are not terribly expensive.

2 Chapter 1. What’s New

https://source.android.com/source/initializing.html
https://source.android.com/source/initializing.html
http://platform.phone-lab.org:8080
https://www.yahoo.com/
https://code.google.com/p/gerrit/issues/detail?id=2677
https://source.android.com/source/initializing.html

PhoneLab Documentation, Release stable

PhoneLab Branch Philosophy

Before you go ahead and make changes to PhoneLab platform, we recommend you to at least read this page to get
some idea on these two question:

1. Where is my experiment branch based on?

2. How will my changes be merged?

This diagram shows how we manage branches for our platform at high level. You can find more details next.

Fig. 1.2: PhoneLab Platform Branching Diagram.

PhoneLab Develop Branch

When there is a major release of Android, we usually wait some time for it to be become mature enough. Then
we choose a fairly stable release for our device (Nexus 5) and create our develop branch from there. The branch
name is phonelab/$tag/develop, where $tag is the AOSP release tag. For instance, we used the release
android-4.4.4_r1 for KitKat, android-5.1.1_r3 for Lollipop, and cm-13.0 for Mashmallow.

Our develop branch usually only contains device specific changes to make the platform fully functional, including
GPS, cellular—parts there are usually broken in original AOSP platform. The develop branch serves as a common
ground and does not contain any instrumentations or experiment specific changes.

Experiment Branches

To support parallel development of multiple experiments, we create a branch for each experiment on top of our
PhoneLab develop branch. The experiment branch name is in the format of experiment/$tag/$id/$name:

1. $tag is the base AOSP release tag that our PhoneLab develop branch is based on, for instance,
android-5.1.1_r3 or cm-13.0.

2. $id is an integer that uniquely identifies your experiment.

3. $name is a code name for your experiment, which is determined by you.

By default, your experiment branch is not publicly available: only PhoneLab administrators and yourself have full
access to the branch.

Deployment

When we deploy your experiment, we will create a release branch from our PhoneLab develop branch, and merge your
experiment branch into that release branch.

Since we may continue development on our develop branch AFTER we create the experiment branch for you, it is
your responsibility to make sure that the merging finishes smoothly without conflicts. You can ensure this by

1.3. PhoneLab Branch Philosophy 3

PhoneLab Documentation, Release stable

trying to merge our develop branch into your experiment to resolve any conflicts beforehand, so that the merging on
our part is just a fast-forward.

Here are steps to make sure your changes can be successfully merged.

First, fetch the latest PhoneLab develop branch.

$ repo forall -j 8 -pvec git fetch aosp phonelab/$tag/develop:phonelab/$tag/develop

Second, make sure your are in your experiment branch.

$ repo forall -j 8 -pvec git checkout experiment/$tag/<id>/<name>

Finally, merge PhoneLab develop branch into your experiment branch.

$ repo forall -j 8 -pvec git merge phonelab/$tag/develop

You may need repeat the last step a couple of times to fix possible conflicts.

Warning: NEVER NEVER merge any other branches (e.g., release branches, other experiment branches, logging
branches) into your branch. Your experiment branch should only contains your changes!

Warning: If your experiment branch can not be merged into our release branch, it will be excluded from the
release.

We developed a tool that will check whether or not your experiment changes meets the above requirement. Please
make sure your pass the check before notifying us your changes are ready.

https://github.com/blue-systems-group/project.phonelab.platform_checker

Experiment Logistics

Guidelines

Experimenting with the platform image running on several-hundred actual smartphones is risky, so our goal is to
make this possible but not necessarily easy. Keeping the following guidelines in mind as you make your experimental
changes will help:

• Don’t break stuff. The fastest way to lose our confidence is to provide us with changes that don’t build or cause
parts of the our PhoneLab image to fail. There’s a road back from this point, but it’s uphill. Test your changes
thoroughly before submitting them to us.

• Make useful and novel changes. Given the dangers associated with this kind of experimentation we are expect-
ing researchers to approach us with exciting and novel ideas that could potentially benefit PhoneLab participants.
(In that case, your changes will live on forever as part of the base system!)

• Be patient. This isn’t a fast process and it’s not designed to be. If you have a paper deadline in a week—or even
a month—forget it. Your scheduling constraints are your problem—keeping our participants safe is ours.

Experiment Information

When your experiment changes have been successfully merged and build, we need these extra information from you
about the experiment:

1. Experiment name

4 Chapter 1. What’s New

https://github.com/blue-systems-group/project.phonelab.platform_checker

PhoneLab Documentation, Release stable

2. Short description (a few sentences)

3. Consent URL: a small web page explains what kind of data that your experiment will collect.

These information will be presented to PhoneLab participants as follows:

Participants will have the option to “opt-out” your experiment data collection, which means the data from their devices
will not show up in the final dataset we release.

1.4. Experiment Logistics 5

PhoneLab Documentation, Release stable

Release Schedule

We will first push the platform changes to a small group of PhoneLab developers, leave it running for at least a week
to ensure the changes does not significantly affect user experience. After that, we will push the changes to the entire
testbed. So please expect at least two weeks delay from when your changes are ready to when they are deployed on
the whole testbed.

To avoid issues with cross-modification compatibility or interference, we plan to generally only distribute one exper-
imental modification on PhoneLab at any given point in time. The PhoneLab team will work with you to schedule
your experiment to ensure that it receives enough time on the testbed to generate useful data. If your changes are
unintrusive and useful, they may stick around, but we provide no guarantees of this. We do guaranteed that if we
receive complaints from participants or notice stability issues your changes will be reverted immediately.

Logging Infrastructure

This page answers these questions:

1. How does PhoneLab collect data?

2. How do I add new logging to PhoneLab platform?

3. What has already been logged?

Log Data Collection

We rely on Android Logcat system for data collection. Basically, you use the Log class to write log messages, and we
have a small daemon app, PhoneLab Conductor, running on the device, which will collect the log messages and upload
them to our backend server. More specifically, we are collecting the ‘‘main‘‘ logcat buffer using ‘‘threadtime‘‘
format. Please see here for explanation about the logcat buffers and formats.

We made some improvements to the Logcat system:

1. You can log up to 64K characters in one line. Android’s default limit is 4K.

2. We enlarge the kernel’s buffer for logcat messages from 256KB to 16MB, to tolerate more aggressive logging
you may come up with, and also avoid losing log messages due to buffer overflow.

3. We developed a new daemon service, called kmsgd, which pipes all kernel log messages (logged by printk)
to the logcat buffer, which then will be collected and uploaded by PhoneLab Conductor.

4. We add year information to the logcat’s threadtime format.

Guidelines for Logging

When adding instrumentation to the PhoneLab platform there are really only a few rules and guidelines that we ask
experimenters to follow:

1. Follow the logging conventions below. This helps us keep things organized and avoid duplicated effort. You
can also check out the existing tags for examples providing more guidance on our logging conventions.

2. Record something new and interesting. Check our existing tags before you get started. If it’s already being
logged, then someone did part of your job for you! Proceed directly to data request and analysis. The only
exception to this rule is cases where the platform is already logging information but poorly-formatted—in this
case duplicated logging using JSON for easy deserialization may be worth it.

6 Chapter 1. What’s New

http://developer.android.com/tools/debugging/debugging-log.html
http://developer.android.com/reference/android/util/Log.html
https://play.google.com/store/apps/details?id=edu.buffalo.cse.phonelab.conductor&hl=en
http://developer.android.com/tools/debugging/debugging-log.html#outputFormat

PhoneLab Documentation, Release stable

3. Remember: Android is more than services. The PhoneLab Android platform includes many interesting
libraries as well as pre-packaged apps such as an alarm clock, calculator, and the Chrome web browser. These
may be very interesting places to add instrumentation.

4. Log intelligently, particularly when adding instrumentation to hot code paths. Android can support fairly
high-volume logging, but please be intelligent when adding instrumentation that could potentially produce a
great deal of output as this also slows down post-processing. Do you really need to log every screen redraw
separately? Maybe recording the number of redraws per second and logging that once per second is sufficient.
If you have questions, contact the PhoneLab team.

5. Log using JSON. JSON deserialization libraries exist for almost every useful post-processing language. Writing
tools based on regular-expressions is tedious and terrible.

Log Format Conventions

We describe the tag, message, and commenting conventions we ask experimenters to follow. Our goal is not to annoy
you—it is to make log messages easy to process and categorize, and to ensure that we avoid duplication of effort
between different research teams.

The tags should consist of three parts: (1) category, (2) subcategory, (3) and a short organizational identifier, connected
using a dash (‘-‘): Category-Subcategory-Organization. We use PhoneLab as the organizational code
for the log messages added and maintained by the core PhoneLab team. Here are a few examples:

• Network-Wifi-PhoneLab: collects network information about the Wifi interface, added by PhoneLab.

• Power-Screen-PhoneLab: collects power information related to screen usage, added by PhoneLab.

Use common sense to determine the category and sub-category field, but don’t get too bogged down here—this is our
best attempt at a taxonomy, and it’s far from perfect. (For example: the Power-Screen-PhoneLab tag above
could also be under a Usage category, since the screen power state indicates whether foreground or background
activity is occurring.) You can check current category and sub-category information of existing tags to determine how
your new instrumentation fits in. If none of the categories or sub-categories meets your needs, feel free to propose
your own.

The content of the log message should be a JSON string, making your results easy to deserialize by a variety of
downstream tools. We provide some helper classes to assist in this process.

PhoneLab Log Helper

To simplify logging JSON strings, we provide a set of of helper classes and interfaces in
frameworks/base/core/java/edu/buffalo/cse/phonelab/json. One interface and two helper
classes are defined:

• JSONable: Any class that implements this interface must provide a toJSONObject method, which returns
a StrictJSONObject representing this object.

• StrictJSONObject and StrictJSONArray: They are similar to
org.json.{JSONObject,JSONArray} but only accepts JSONable objects as values. Please see
comments at the head of StrictJSONObject.java for details.

For example, this is a code snippet that we added to log Wifi scan results:

import edu.buffalo.cse.phonelab.json.StrictJSONObject;

// somewhere in the code

(new StrictJSONObject(PHONELAB_TAG))
.put(StrictJSONObject.KEY_ACTION, WifiManager.SCAN_RESULTS_AVAILABLE_ACTION)

1.5. Logging Infrastructure 7

PhoneLab Documentation, Release stable

.put("Results", mScanResults)

.log();

Note that:

1. When appropriate, each StrictJSONObject should have a StrictJSONObject.KEY_ACTION key to
differentiate different types of output logged under the same tag. For example, we could use the common
Network-Wifi-PhoneLab tag to log multiple Wifi-related events associated with different actions—scan
results, Wifi connections and disconnections, etc—using a different action attribute for each. In fact, an ex-
ception will be thrown if the StrictJSONObject does not have an action key when its ‘‘log‘‘ method is
called.

2. You can only put JSONable objects into StrictJSONObject, which means if the object you want to log
does not implements JSONable, you’ll have to implement by yourself. It’s not that difficult as it sounds like,
please see ScanResult.java for an example.

3. When its log method is called, the StrictJSONObject will add a timestamp field if it does not exist
already. This is to help you determine ordering between log messages, or want the exact timestamp when some
event happened.

Document Your Logs

To help us keep an record of what have been logged, we require you comment you logs in a specific way so that we
can automate the process of traversing the whole source tree building a complete log taxonomy. This is an example
comment for the Wifi scan results tag described above:

/**
* PhoneLab

*
* {

* "Category": "Network",

* "SubCategory": "Wifi",

* "Tag": "Network-Wifi-PhoneLab",

* "Action": "android.net.wifi.SCAN_RESULTS",

* "Description": "Wifi scan results."

* }

*/
(new StrictJSONObject(PHONELAB_TAG))
.put("Action", WifiManager.SCAN_RESULTS_AVAILABLE_ACTION)
.put("Results", mScanResults)
.log();

Note that:

1. The first two lines must match the example above exactly. They are the anchor point for our tag processing
script.

2. The main body of the comment should be a JSON string, with the five keys in the example. Any extra keys will
be ignored. Any * symbol inside the JSON string will also be ignored.

Log In C/C++ World

We recommend you to use the convenient StrictJSONObject whenever you are instrumenting Java sources. If
you are working in lower level C or C++ files here are some instructions that you may find helpful.

8 Chapter 1. What’s New

PhoneLab Documentation, Release stable

The header file you need to include for Android logcat support is located in
system/core/include/log/log.h. The main function you will use is __android_log_buf_write. It
takes 4 arguments:

1. bufID: Android logcat buffer id. Must be one of LOG_ID_{SYSTEM, MAIN, RADIO, EVENTS} con-
stants.

2. prio: Log line priority. Must be one of ANDROID_LOG_{VERBOSE, DEBUG, INFO, WARN, ERROR,
FATAL} constants.

3. tag: Tag name. Please use our tag name convention described above.

4. msg: The message body you want to log. Please use a JSON string.

You can also use the more friendly __android_log_buf_print to get printf style string formatting.

Logging in the Kernel

On PhoneLab builds, there is a daemon (kmsgd) that collects everything logged from the kernel using printk,
under the tag KernelPrintk. To distinguish your logs from other kernel logs, we have provided functionality that
can be accessed by adding #include <linux/phonelab.h> to the kernel files you’re modifying. Using these
functions, kmsgd will ensure your kernel logs are assigned the appropriate tags.

The kernel logging functions are equivalent to using Android’s Log.* functions and the logs will appear in both
/proc/kmsg and Logcat. The following table shows the available logging functions and their Android counter-
parts.

Kernel Logging Function Android Logging Function
alog_v(char *tag, const char *fmt, ...) Log.v(...)
alog_d(char *tag, const char *fmt, ...) Log.d(...)
alog_i(char *tag, const char *fmt, ...) Log.i(...)
alog_w(char *tag, const char *fmt, ...) Log.w(...)
alog_e(char *tag, const char *fmt, ...) Log.e(...)

Function Argument Notes:

• tag should use the same Log Format Conventions

• The functions are printk style and can include a variable number of arguments

– fmt is the format string, which should also be a JSON string

– The current length limit of the output JSON string, after format substitution, is 4096 characters

– You do not need to add a ’\n’ to fmt

The kernel time will be appended to the JSON string with the key KTime. You may want to include
SystemClock.uptimeMillis() in your Android logs in order to more tightly integrate the logs.

Uploading Raw Files

Sometimes it may be convenient to be able to update raw data files, such as packet traces. Therefore, we also provide
a FileUploderService in addition to the text-log collection mechanism. You can see an example on how to use
this service at this project.

1.5. Logging Infrastructure 9

https://github.com/blue-systems-group/project.conductor.test

PhoneLab Documentation, Release stable

Existing Instrumentation

We expect our PhoneLab platform to include an increasing amount of instrumentation added both by PhoneLab devel-
opers and by external research teams. If our build already contains instrumentation recording what you’re interested
in, you can proceed directly to requesting data.

Logging Branches

Instrumentations are stagged in their respective branches by category, such as network, location, or power. Here is a
list of current logging branches:

1. logging/android-5.1.1_r3/1/network

2. logging/android-5.1.1_r3/2/power

3. logging/android-5.1.1_r3/3/location

4. logging/android-5.1.1_r3/4/packagemanager

Add Your Instrumentation

To add instrumentations to these branch, for example, logging/android-5.1.1_r3/1/network, please fol-
low these steps:

First, if you have not cloned the repository yet:

$ cd <WORKING_DIRECTORY>
$ repo init -u ssh://<USERNAME>@platform.phone-lab.org:8080/platform/manifest -b logging/android-5.1.1_r3/1/network
$ repo sync

The <USERNAME> is your user name on our Gerrit server.

Next, figure out the repository which you want to add instrumentation, say frameworks/base, create a working
branch:

$ cd frameworks/base
$ git checkout -b my_instrumentation

Then you add the instrumentation, commit and upload your changes for review:

$ git commit -a -S
$ git push aosp refs/for/logging/android-5.1.1_r3/1/network

Note: Note the remote branch name when you push: it is a special Gerrit pseudo branch for changes to be reviewed.

Here is a list of existing instrumentations on our platform.

Summary

PhoneLab’s instrumented Android platform currently contains:

• 11 tags, 20 actions,

• ... in 9 categories,

• ... added by 2 institutions.

10 Chapter 1. What’s New

http://platform.phone-lab.org:8080/#/q/status:open

PhoneLab Documentation, Release stable

Catetory: Activity

Tag: Activity-LifeCycle-QoE

1. Action: onStart, onPause, onResume

Project: frameworks/base
File: core/java/android/app/Activity.java:1146
Description: Activity lifecycle events

Catetory: Location

Tag: Location-Misc-PhoneLab

1. Action: android.location.LOCATION_CHANGED
Project: frameworks/base
File: services/core/java/com/android/server/LocationManagerService.java:2252
Description: Location update.

Catetory: Network

Tag: Network-Telephony-PhoneLab

1. Action: android.intent.action.ANY_DATA_STATE
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:1592
Description: Cellular data connectivity changed.

2. Action: android.intent.action.DATA_CONNECTION_FAILED
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:1649
Description: Cellular data connection failed.

3. Action: android.intent.action.PHONE_STATE
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:1547
Description: Phone calling state changed (incoming call).

4. Action: android.intent.action.SERVICE_STATE
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:1466
Description: Cellular service state changed.

5. Action: android.intent.action.SIG_STR
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:1501
Description: Cellular signal strength changed.

6. Action: android.telephony.CALL_FORWARDING_CHANGED
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:1027

1.6. Existing Instrumentation 11

http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/app/Activity.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1146
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/LocationManagerService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l2252
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1592
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1649
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1547
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1466
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1501
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1027

PhoneLab Documentation, Release stable

Description: Call forwarding status changed.

7. Action: android.telephony.CELL_LOCATION_CHANGED
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:1257
Description: Cell tower location changed.

8. Action: android.telephony.DATA_ACTIVITY_CHANGED
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:1070
Description: Cellular data activity.

9. Action: android.telephony.MESSAGE_WAITING_CHANGED
Project: frameworks/base
File: services/core/java/com/android/server/TelephonyRegistry.java:979
Description: Message waiting status changed.

Catetory: PackageManager

Tag: PackageManager-Misc-PhoneLab

1. Action: android.intent.action.PACKAGE_{ADDED, CHANGED, REMOVED}

Project: frameworks/base
File: services/core/java/com/android/server/pm/PackageManagerService.java:10154
Description: Package installed/uninstalled/updated.

Catetory: Power

Tag: Power-Battery-PhoneLab

1. Action: android.intent.action.BATTERY_CHANGED
Project: frameworks/base
File: services/core/java/com/android/server/BatteryService.java:661
Description: Battery status changed.

Tag: Power-Screen-PhoneLab

1. Action: android.intent.action.SCREEN_OFF
Project: frameworks/base
File: services/core/java/com/android/server/power/Notifier.java:634
Description: Screen turned off.

2. Action: android.intent.action.SCREEN_ON
Project: frameworks/base
File: services/core/java/com/android/server/power/Notifier.java:596
Description: Screen turned on.

12 Chapter 1. What’s New

http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1257
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1070
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l979
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/pm/PackageManagerService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l10154
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/BatteryService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l661
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/power/Notifier.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l634
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/power/Notifier.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l596

PhoneLab Documentation, Release stable

Catetory: Spinner

Tag: Spinner-State-QoE

1. Action: ProgressBarEvent
Project: frameworks/base
File: core/java/android/widget/ProgressBar.java:1505
Description: Start and end of indeterminate progressbars

Catetory: Usage

Tag: KeyEvent-UserAction-QoE

1. Action: HardwareTouchEvent
Project: frameworks/base
File: core/java/android/view/KeyEvent.java:1594
Description: User pressed a key

Catetory: View

Tag: View-UserAction-QoE

1. Action: TouchEvent
Project: frameworks/base
File: core/java/android/view/View.java:10294
Description: User touched item

Catetory: WebView

Tag: WebView-Update-QoE

1. Action: WebViewUpdateEvent
Project: frameworks/base
File: core/java/android/webkit/WebViewClient.java:38
Description: Webview loading progress

2. Action: WebViewUpdateEvent
Project: frameworks/base
File: core/java/android/webkit/WebChromeClient.java:39
Description: Webview loading progress

Tag: WebView-UserActino-QoE

1. Action: WebViewTouchEvent
Project: frameworks/base
File: core/java/android/webkit/WebView.java:304
Description: User touched item in webview

1.6. Existing Instrumentation 13

http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/widget/ProgressBar.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1505
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/view/KeyEvent.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1594
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/view/View.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l10294
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebViewClient.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l38
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebChromeClient.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l39
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git
http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebView.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l304

PhoneLab Documentation, Release stable

Last updated 2016-12-02

Data Release

Sample PhoneLab Dataset

We put up a sample dataset that contains one month (March 2015) of data that were collected from 11 PhoneLab
devices. You can download the tarball here. The tags in this sample dataset are listed in the existing tags page.

We hope this sample dataset can give you an idea of what the data looks like and help you determine whether or not
you want to proceed to the IRB process to request the full dataset. You will also have a chance to start developing your
data analysis scripts immediately in parallel to the IRB process.

Request More

Once you’ve download and built our PhoneLab Android sources, added your experimental instrumentation or platform
modifications , and your changes have been deployed, the final step is to request data generated by your experiment.

We will make a web form available to simply this process. However, here are the things you need to provide in order
for us to create an archive for you:

1. Institutional Review Board (IRB) Letter. You must provide documentation that your request for data and plan
to process and publish that data have been reviewed and approved for human subjects safety by your institutions
IRB or equivalent body. Your IRB documentation must match the rest of the parameters of your request listed
below.

2. Consent procedure. If your experiment requires affirmative consent from participants PhoneLab will assist you
in performing that request to our participants. No data will be provided from participants that fail to complete
the required consent process.

3. Date Range. Including start day and end day, inclusive. Days are the granularity by which we organize our
archives so finer divisions (such as hours) are not possible.

4. Tag List. A list of all tags to return data from.

We are aware that IRB standards and procedures vary considerably between institutions, and it is possible that getting
your experiment approved may take some time and effort on your part. However, we cannot assist you with this
process nor will any exceptions be made to our IRB approval requirement.

Once you have an archive this documentation will help you understand the archive structure and file format.

Distributing Surveys

Here are steps to distribute a survey of your experiments to PhoneLab participants.

1. Compose your questionnaire using a survey provider. Note that the provider need to support embedded user
ID in the URL. SurveyGizmo is know to support this feature.

2. Send us a survey URL and a email template that we will forward to each individual participants.

3. We will substitute the user ID placeholder in the survey URL with the device’s hashed ID, and send an email to
each participant with this URL and the email template you send us earlier.

14 Chapter 1. What’s New

https://phone-lab.org/static/experiment/sample_dataset.tgz
https://www.surveygizmo.com/

PhoneLab Documentation, Release stable

Note: To incentivize participation, we suggest you also provide prizes for the survey, such as Amazon Gift card. After
the survey, you can draw winners from those who completed the survey, and we will send the prize to corresponding
participant.

PhoneLab Data Format

Once you have received the data you requested the next step is to process it. PhoneLab provides some of our own tools
as is to help with this process and we encourage experiments to reuse and contribute to them. However, if you have
your own tools the following documentation on the structure of our data archives and files will be helpful.

Archive Format

The resulting TAR archive we will provide to IRB-approved experimenters consists of one file per device per tag
per day structured as follows: device_identifier/tag/year/month/day.out.gz, so as an example
b3793ae1229920c02b564adbc200780168cd42ed/Location-Misc-PhoneLab/2014/11/19.out.gz.
When generating these these files we have attempted to ensure the following:

• All log messages are captured. Our data collection tools make every effort to recover all generated log mes-
sages: including configuring large Linux log buffers in our platform image and caching up to several days worth
of log messages on each device between uploads. However, these measures are obviously not foolproof and
experimenters are encouraged to implement their own reliability mechanisms as needed to detect missing log
tags. Also please see the note below on one important and well-known source of missing logs: early boot.

• Each file is sorted by time. However, this is complicated by the fact that in certain cases logcat can generate
multiple log lines with identical timestamps—particularly if the logged data contains newlines. In the case of
identical timestamps we defer to the order in which the lines were originally logged by logcat, and when
processing identical timestamps split across multiple files, the order in which the files were uploaded to the
PhoneLab backend.

• Duplicate log lines are omitted. Our efforts to recover all log messages sometimes lead to duplicate logs
being uploaded or log files being processed twice, but we attempt to remove duplicate messages during post-
processing. However, this is complicated by the lack of timestamp uniqueness described above, which we work
around in our logging helper classes using a unique ID embedded in the JSON message. However, because
deduplication is done during log processing only using the timestamp fields, duplicate messages may exist in
the archive.

Missing Early Boot Logs

One well-known source of missing log messages are from messages generated early during Android boot. The problem
arises because at this point the device does not yet have a network-provided date and time, and so log messages are
timestamped as being generated in 1970—at the beginning of the Unix epoch. It would probably be possible to fix
this problem by retroactively correcting early boot log message timestamps once a network-provided time is available,
but have yet to implement this fix. At present, these timestamps will be (correctly) sorted into a 1970 tag file but
(incorrectly) intermingled with many other log tags also generated during other boot cycles.

If you are running an experiment that requires early boot logs, please feel free to contact the PhoneLab team and we
will see if we can come up with a better solution to the problem together. For now these logs will simply be omitted
from all archives.

1.9. PhoneLab Data Format 15

mailto:experiment@phone-lab.org

PhoneLab Documentation, Release stable

File Format

Each line in the file begins with the following standard fields. If you have worked with logcat before, this will look
familiar to you, as many of the fields are taken directly from the logcat output. We describe each of the standard
fields in more detail below, using several examples based on actual log messages uploaded by PhoneLab Director
Geoffrey Challen’s device.

Device
Identifier

UNIX
Times-
tamp

Ordering Date and Time Pro-
cess
ID

Thread
ID

Log
Level

Tag

7699f273...14162615099701416261509970.02014-11-17
21:58:29.970997

769 1026 I Power-Battery-PhoneLab

7699f273...14162615099701416261509970.12014-11-17
21:58:29.970997

879 1143 D Location-Misc-PhoneLab

1. Device Identifier: A unique identifier for each device.

2. UNIX Timestamp: Milliseconds since 1970. Note even at this resolution this timestamp is not guaranteed to be
unique across all log messages, creating the need for the next field.

3. Ordering: This field takes the form milliseconds_since_1970.order_in_upload_file. For log
messages that do not share a timestamp with any other line, it will be milliseconds_since_1970.0. In
other cases it will be set as shown in the two examples above. Note that this is only sufficient to provide an
ordering for identically-timestamped messages in the same file; cross-file ordering is still not handled properly
by our tool chain. Also note that this example is contrived as identical timestamps occur most often due to
(1) multiple logcat messages on neighboring lines of the same app or (2) logcat messages that contain
newlines.

4. Date and Time: Human-readable date and timestamp using the device’s locale. In this case the timestamps are
in Eastern Standard Time (EST).

5. Process and Thread IDs: Fairly self-explanatory.

6. Log Level: Android uses verbose (V), debug (D), info (I), warning (W) and error (E) log levels on a per-message
basis. This page has more details.

7. Tag: Log messages are either generated by the instrumentation we have added or by existing logging included in
the Android platform by default or left enabled by many apps after deployment—despite Android’s suggestions
to the contrary.

These fields are following by a log message as a single string, which can be up to 64k characters long—but hopefully
nowhere close to that limit! Obviously the format of the log string varies based on what is being recorded, but here are
a few examples. First, a JSON-formatted log string generated by our tools under the Power-Battery-PhoneLab
tag, with internal fields that are self-explanatory:

{
"Action":"android.intent.action.BATTERY_CHANGED",
"LogFormat":"1.0",
"BatteryProperties":{

"Status":"Charging",
"Present":true,
"Voltage":4342,
"Temperature":255,
"CurrentNow":-794372,
"Health":"Good",
"Level":94,
"PlugType":"AC",
"ChargeCounter":-2147483648,
"Technology":"Li-ion"

},

16 Chapter 1. What’s New

http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/tools/publishing/publishing_overview.html#publishing-prepare
http://developer.android.com/tools/publishing/publishing_overview.html#publishing-prepare

PhoneLab Documentation, Release stable

"Scale":100
}

And second, an example of something not formatted in JSON—in this case, garbage collection output generated under
the dalvikvm tag:

GC_FOR_ALLOC freed 259K, 6% free 18632K/19680K, paused 16ms, total
16m

PhoneLab Cruncher

Todo
revise this section about cruncher.

The PhoneLab cruncher is our own early attempt to produce a reasonably-efficient and kind-of user-friendly set of
log post-processing tools. You are welcome to download, use, and modify it to suit your needs—just don’t expect us
to support it. It should already support many of the log tags we have added to the PhoneLab platform, particularly
ones we have used for our own experimental purposes.

The cruncher (ab)uses the Django object-relational mapper (ORM) to ease the process of manipulating a database
in Python. Given that (1) importing logs from the files into the database and (2) processing the logs further to pro-
duce useful output are both potentially time-consuming, the cruncher splits log import and processing into three
phases with different parallelization constraints, each of which can be repeated as needed during post-processing tool
development:

1. Log import: the process of importing logs from the flat files into the database is parallelized by log file,
meaning that logs can be processed in any order in any queue. As a result, no relationships between log tags
can be established or used during import. Instead, each log line should generate one (or many) database objects.
Django’s transaction and bulk loading support are used to make this relatively quick.

2. Per-device processing: the second stage is parallelized by device and provides the opportunity to combine
information from multiple log messages. For example, separate messages logged during file open() and
close() along with information about intervening read() and write() operations could be combined
to create a single file session object. However, at this stage no cross-device relationships or statistics can be
computed. The cruncher provides several different optimized iterators allowing code to loop over one or
more of the objects created during the import stage—but again, strictly on a per-device basis.

3. Final processing: once all per-device processing has completed cruncher code has access to all models from
all devices and can compute overall statistics or generate graphs integrating data from the entire experiment.

Currently the cruncher is capable of making efficient use of multiple cores to maximize IO throughput when
importing and processing logs, but not yet of using multiple machines to further parallelize the process. We are
actively working on this feature. If you would like to help, we would welcome the assistance.

PhoneLab Policies

PhoneLab is an open-access smartphone platform testbed operated by the PhoneLab team (we) at the Computer Sci-
ence and Engineering Department at the University at Buffalo, The State University of New York (UB). It consists of
smartphones, participants that use the smartphones, and control software. It is designed to be open-access, meaning
that researchers inside and outside of UB will conduct research studies using PhoneLab. It provides realism by having
participants use their experimental smartphone as their primary device allowing research experiments to be performed
under realistic conditions and with real user inputs. This document contains terms and conditions that each and every
experimenter should be aware of and agree to before using PhoneLab.

1.10. PhoneLab Policies 17

http://platform.phone-lab.org:8080/gitweb?p=phonelab%2Fcruncher.git;a=summary

PhoneLab Documentation, Release stable

Access and Administration

The use of the testbed is allowed for most academic purposes. We will reserve the right to grant or deny PhoneLab
access depending on the nature of the experiment and the demand of the testbed. The current policy only allows the
use of the testbed for research, not for education or development.

Data Release

PhoneLab will only release data to researchers whose requests have been reviewed and approved or marked exempt
by their institution’s Institutional Review Board (IRB) or equivalent human subjects protection body. PhoneLab will
assist researchers whose protocols require affirmative consent from PhoneLab participants.

Participation

PhoneLab makes no guarantees about the size of our testbed or how many participants will choose to provide data at
your request. Participants may opt in and out of experiments on a per-experiment basis.

Acceptable Use

We require that researchers act within the bounds of the experiment they have had reviewed by their IRB. We reserve
the right to define abuse of PhoneLab as broadly as possible in the interest of protecting our participants. Misrepre-
sentation of the purpose for using the testbed or misuse of PhoneLab data will result in experimenters losing access to
PhoneLab and having their academic or research institution notified of their behavior.

Policy Changes

We also reserve the right to change our policies at any point of time in the future.

Disclaimer

PhoneLab is provided as-is without any warranty. We disclaim any and all liability of an experiment’s results, its
errors, and any of its side-effects, broadly defined. We also disclaim any errors or problems that arise out of security
and reliability issues of our software.

Frequently Asked Questions

What is the device ID in the log lines?

The device ID is a string of length 40. The value is a hex digest of hashed TelephonyManager.getDeviceId()
(link). A sample code snippet to get the device ID in Java is as follows:

TelephonyManager telephonyManager = (TelephonyManager) context.getSystemService(Context.TELEPHONY_SERVICE);
MessageDigest digester = MessageDigest.getInstance("SHA-1");
byte[] digest = digester.digest(telephonyManager.getDeviceId().getBytes());
deviceID = (new BigInteger(1, digest)).toString(16);

18 Chapter 1. What’s New

http://developer.android.com/reference/android/telephony/TelephonyManager.html#getDeviceId()

PhoneLab Documentation, Release stable

What happed if the participant opt out my experiment?

Note that your experimental changes will be pushed to participants’ devices and will be running during the experiment
period no matter whether the user opt out your experiment or not. That choice (opt-out) will be recorded by us and
only used to determine whether we should release the data collected from that particular participant’s device to you
(experimenter).

Do I need to log a event if it’s already logged in other branch?

It depends. If the event is logged in one of the logging/android-5.1.1_r3/... branches, then NO NEED to
log it again, since these branches will almost always be included in the release branch. In fact, we strongly advise you
NOT to repeat the effort, as it will potentially cause merge conflicts.

However, if the event is logged in another experiment branch (e.g., experiment/android-5.1.1_r3/...),
then we suggest you log the information again in your branch, since the other experiment may end earlier than yours.

Shall I merge other logging or experiment branches into my branch?

You should never do this. The only branch you need to keep up to date is the PhoneLab develop branch
(phonelab/android-5.1.1_r3/develop).

Experiments

PhoneLab is a public smartphone testbed. We solicit researchers with exciting new ideas to experiment on PhoneLab
that are made possible with PhoneLab’s ability to modifying the AOSP platform. Over the years, PhoneLab has
facilitated the following smartphone platform experiments.

Ongoing

Completed

1. DefDroid

9/21/2015 - 11/3/2015

The goal of DefDroid is to make the mobile OS more defensive to curb the naughty apps that drain your battery or
over-consume your mobile data, storage, etc. We design DefDroid so that it makes your mobile phone more sustainable
without breaking the main functionalities of the apps.

Contact:

Ryan (Peng) Huang (Advisor: Prof. Yuanyuan Zhou)
UCSD

2. Lock Screen

10/22/2015 - 6/3/2016

This experiment looks at how users interact with their lock screens. We collect log information on whether a code-
based lock is enabled, how much time is spent before unlocking the device, how long users take to enter the code and

1.12. Experiments 19

PhoneLab Documentation, Release stable

how many failed attempts occur. This information will help researchers to design lock screens with better security
while maintaining or improving upon existing usage patterns.

Contact:

Marian Harbach (Advisor: Serge Egelman)
ICSI @ UC Berkeley

3. LTE Handover Analysis

10/28/2015 - 6/3/2016

This experiment aims to study the decision policy and performance impact of handovers including WiFi-Cellular
handover, IRAT (Inter radio access technology) handover, and intra-LTE handover.

Contact

Shichang Shawn Xu (Advisor: Prof. Z. Morley Mao)
University of Michigan, Ann Arbor

4. Runtime Permission

11/24/2015 - 3/16/2016

This is a study on privacy preferences of mobile users when it comes to sensitive data requests originating from third
party applications. To that end, we want to track sensitive data requests and ask users whether they want to block such
requests as it happens. However we hope to prompt the question at most once per day per user when such a request
occurs. We are also hoping to log surrounding contextual data when such a question is prompted to the user.

Contact:

Primal Wijesekera (Advisor: Prof. Konstanin Beznosov)
UC Berkeley & University of British Columbia

5. Maybe

11/13/2015 - 11/24/2015

One of the reasons programming mobile systems is so hard is the uncertainty created by the wide variety of envi-
ronments a typical app encounters at runtime. In many cases only post-deployment user testing can determine the
right algorithm to use, the rate at which something should happen, or when an app should attempt to conserve energy.
Programmers should not be forced to make these choices at development time. But today’s programming languages
leave no way for programmers to express and structure their uncertainty about runtime conditions, forcing them to
adopt ineffective, fragile, and untested ad-hoc approaches to runtime adaptation. We introduce a new approach based
on structured uncertainty through a new language construct: the maybe statement.

Contact:

Yihong Chen (Advisor: Geoffrey Challen)
University at Buffalo

6. File System Analysis

11/3/2015 - 11/13/2015

Centralized cloud storage services such as Dropbox have revolutionized the way that users share files and access data
across their growing number of devices. But today’s cloud storage options have serious limitations affecting mobile

20 Chapter 1. What’s New

PhoneLab Documentation, Release stable

battery-powered smartphones. Many central cloud storage providers require each client to have enough storage for
an entire replica, which may not be feasible on smartphones with an order-of-magnitude less storage than laptops and
desktops. Centralized cloud storage does not scale as users add more storage and misses the opportunity to harness
free space users already have. And centralized cloud storage provides poor support for mobile devices, both failing to
leverage natural mobility patterns when distributing data and potentially causing costly mobile data traffic.

Contact:

Carl Nuessle (Advisor: Geoffrey Challen)
University at Buffalo

7. Quality of Experience

11/3/2015 - 11/16/2015

Of all the resources that smartphones manage, human attention is the most precious. While processor speed and
core count, memory and storage capacity, and network bandwidth have steadily and sometimes rapidly increased, the
number of hours in the day has not. And as users spend an increasing amount of time with their personal computing
devices, it is more important than ever that these devices ensure that their time is used effectively. We refer to this as
quality of experience (QoE).

Contact:

Scott Haseley (Advisor: Geoffrey Challen)
University at Buffalo

8. Jouler

3/7/2016 - 3/16/2016

Despite the fact that current smartphone platforms already incorporate energy measurement tools and multiple energy
control mechanisms, smartphone battery lifetimes continue to frustrate users. This is because measurements and
mechanisms are of limited utility without policies that utilize them to achieve different energy management goals,
such as meeting a lifetime target or providing good performance to a user’s favorite apps. To address this problem we
are developing Jouler, a policy framework enabling effective and flexible smartphone energy management.

Contact:

Anudipa Maiti (Advisor: Geoffrey Challen)
University at Buffalo

9. Bluetooth Low Energy

11/03/2015 - 8/31/2016

We collect information that nearby BLE powered devices publicly broadcast. This enables us to study the privacy
threats they pose. Please make sure you keep the Bluetooth radio turned on for sometime during the day.

Contact:

Kassem Fawaz (Advisor: Prof. Kang G. Shin)
RTCL @ University of Michigan, Ann Arbor

1.12. Experiments 21

PhoneLab Documentation, Release stable

10. GridWatch: Crowdsourcing the Detection of Power Outages and Restorations

03/03/2016 - 8/31/2016

This experiment is gathering information to validate the GridWatch system. GridWatch is a system that attempts
to crowd-source the detection of power outages and power restorations. These events are sensed using unmodified
smartphones. The key insight is that when a charging phone stops charging, it might have experienced a power outage.
When multiple phones that are nearby each other stop charging at the same time, it becomes more likely that an outage
occurred. This same logic applies for power restorations, except instead of stopping charging, phones start charging.
This experiment will gather your battery state (charging, not charging, percent charged) and your last known GPS
location when battery state changes.

Contact:

Noah Klugman (Advisor: Prabal Dutta)
University of Michigan, Ann Arbor

11. Smartphone Storage Analysis

06/13/2016 - 8/31/2016

The purpose of this study is to determine the amount of storage space consumed by modern mobile apps on smart-
phones and effect of app usage on storage. The results will help developing the new generation of storage for smart-
phones and identifying minimum amount of storage space today’s smartphones must have.

Contact:

Ashish Bijlani (Advisor: Prof. Roy H. Campbell)
UIUC

12. CPU Thermal Management

03/31/2016 - 8/31/2016

This experiment aims to study the thermal characteristics of smartphones. We monitor the temperature of your smart-
phones and attempt to detect bad choices made by Android that make the phones run hot. Our goal is to use this
information to prevent phones from (unnecessarily) overheating and also improve battery life.

Contact:

Guru Prasad Srinivasa and Scott Haseley (Advisor: Geoffrey Challen)
University at Buffalo

13. QoEye

07/04/2016 - 8/31/2016

QoEye collects high-level interactions with app components to help study Quality of Experience (QoE). Our goal is
to discover common app usage patterns and to use this data to replay these interactions, eventually determining the
contributing factors of QoE for various apps.

Contact:

Scott Haseley (Advisor: Geoffrey Challen)
University at Buffalo

22 Chapter 1. What’s New

PhoneLab Documentation, Release stable

14. TicToc: User Authentication through UI profiling

07/04/2016 - 8/31/2016

This study will record low-level interaction with the phone to study identifiable user-machine interaction abnormal-
ities that are unique to each user. We hypothesize that this profiling low-level interaction will be useful in detecting
impersonation attacks.

Contact:

Ahmed M Fawaz (Advisor: Prof. William H. Sanders)
UIUC

15. M2Auth

07/06/2016 - 8/31/2016

This experiment aims to explore the behavioral biometrics-the way that user interact with the smartphone, such as how
user touching the screen instead of what user touch. This data will help us to design a Multi-Modal Authentication
framework that incorporate different modalities of these biometrics.

Contact:

Ahmed Mahfouz (Advisor: Prof. Tarek Mahmoud)
Minia University, Egypt

1.12. Experiments 23

	What's New
	Overview
	Get Started
	PhoneLab Branch Philosophy
	Experiment Logistics
	Logging Infrastructure
	Existing Instrumentation
	Data Release
	Distributing Surveys
	PhoneLab Data Format
	PhoneLab Policies
	Frequently Asked Questions
	Experiments

