

 Navigation

 	
 index

 	
 next |

 	PhoneLab stable documentation

PhoneLab Development Documentation

What’s New

	[2017-04-21] PhoneLab will be shut down on May 2017.

	[2016-09-14] PhoneLab has migrated to Nexus 6 devices. We are ready to accept
experiment requests.

	Overview

	Get Started

	PhoneLab Branch Philosophy

	Experiment Logistics

	Logging Infrastructure

	Existing Instrumentation

	Data Release

	Distributing Surveys

	PhoneLab Data Format

	PhoneLab Policies

	Frequently Asked Questions

	Experiments

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

Overview

PhoneLab is a smartphone platform testbed based on Android. As a researcher,
you can add instrumentations to learn how Android works in the wild, or make
experimental changes to test your new ideas. Either way, PhoneLab provides a way
to monitor, study and experiment on Android system at scale, with the power of
full system control.

[image: _images/overview.png]
Overview of PhoneLab Experiment Process.

More details on how to deploy experiments on PhoneLab can be found in rest of
this documentation, but the high level steps are:

	Contact us to state who you are, and what kind of experiments you want to
do on PhoneLab. We do not have any specific application templates—just use
common sense.

	We will determine whether the experiment is suitable one PhoneLab. Typically
we welcome ideas that requires changes at platform level, which is the
unique capability of PhoneLab.

	Upon approval, we will create a experiment branch for your on our Gerrit
server so that you can download PhoneLab AOSP source and make changes.

	When your changes are ready, we will merge them into our mainstream release
branch and push out to participants.

	Meanwhile, you will need to apply for IRB approval to obtain the experiment
data generated by your changes.

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

Get Started

PhoneLab use the same tools to manage platform source with AOSP, except that we
are hosting our own platform mirror. Here we are not trying to cover every
aspect of the building process, which is already well documented by AOSP [https://source.android.com/source/initializing.html].

Registration

First, you will need to register an account on our Gerrit server at
http://platform.phone-lab.org:8080. You will need to use the OpenID
authentication provided by Yahoo! [https://www.yahoo.com/], since Google has
terminated its OpenID support [https://code.google.com/p/gerrit/issues/detail?id=2677].

Then please sign in and fill up your account information, most notably your SSH
public key and email address. These two information are required later on to
clone the platform source.

Finally, please open the email sent by Gerrit to confirm your email address, and
let us know your Gerrit account name.

Downloading and Building

Please follow the AOSP instructions [https://source.android.com/source/initializing.html] to set up your local
develop environment.

Before you continue, make sure that you have contacted us with these information:

	Who you are

	What the experiment is about (be brief)

	What will be a good code name (it will be used in creating the
experiment branch experiment/cm-13.0/${id}/${codename}, where
${id} is assigned by us.)

	Your account name and email on our Gerrit server.

Next, you are ready to clone the source code.

$ repo init -u ssh://<USERNAME>@platform.phone-lab.org:29418/cm-shamu/manifest -b <EXPERIMENT_BRANCH>
$ repo sync

Where <USERNAME> is your user name on our Gerrit server, and
<EXPERIMENT_BRANCH> is the branch name we created for you.

Since repo sync will put every repository in a “detached head” mode, you may
want to check out your experiment branch so further changes will be staged on
your branch:

$ repo forall -pvec git fetch phonelab <EXPERIMENT_BRANCH>:<EXPERIMENT_BRANCH>

Now you can go a head and build the platform. Note the build target is for
Nexus 6, aka “shamu”.

$ source build/envsetup.sh
$ lunch cm_shamu
$ make -j 16

After the compilation finishes, you can use fastboot to flash the images to
your device. Given that you are going to be modifying the platform we suggest
that you obtain a Google Nexus 6 smartphone
to use as a development device. Happily they are not terribly expensive.

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

PhoneLab Branch Philosophy

Before you go ahead and make changes to PhoneLab platform, we recommend you to
at least read this page to get some idea on these two question:

	Where is my experiment branch based on?

	How will my changes be merged?

This diagram shows how we manage branches for our platform at high level. You
can find more details next.

[image: _images/branch.png]
PhoneLab Platform Branching Diagram.

PhoneLab Develop Branch

When there is a major release of Android, we usually wait some time for it to be
become mature enough. Then we choose a fairly stable release for our device
(Nexus 5) and create our develop branch from there. The branch name is
phonelab/$tag/develop, where $tag is the AOSP release tag. For
instance, we used the release android-4.4.4_r1 for KitKat, android-5.1.1_r3 for
Lollipop, and cm-13.0 for Mashmallow.

Our develop branch usually only contains device specific changes to make the
platform fully functional, including GPS, cellular—parts there are usually
broken in original AOSP platform. The develop branch serves as a common ground
and does not contain any instrumentations or experiment specific changes.

Experiment Branches

To support parallel development of multiple experiments, we create a branch for
each experiment on top of our PhoneLab develop branch. The experiment branch
name is in the format of experiment/$tag/$id/$name:

	$tag is the base AOSP release tag that our PhoneLab develop branch is
based on, for instance, android-5.1.1_r3 or cm-13.0.

	$id is an integer that uniquely identifies your experiment.

	$name is a code name for your experiment, which is determined by you.

By default, your experiment branch is not publicly available: only PhoneLab
administrators and yourself have full access to the branch.

Deployment

When we deploy your experiment, we will create a release branch from our
PhoneLab develop branch, and merge your experiment branch into that release
branch.

Since we may continue development on our develop branch AFTER we create the
experiment branch for you, it is your responsibility to make sure that the
merging finishes smoothly without conflicts. You can ensure this by trying to
merge our develop branch into your experiment to resolve any conflicts
beforehand, so that the merging on our part is just a fast-forward.

Here are steps to make sure your changes can be successfully merged.

First, fetch the latest PhoneLab develop branch.

$ repo forall -j 8 -pvec git fetch aosp phonelab/$tag/develop:phonelab/$tag/develop

Second, make sure your are in your experiment branch.

$ repo forall -j 8 -pvec git checkout experiment/$tag/<id>/<name>

Finally, merge PhoneLab develop branch into your experiment branch.

$ repo forall -j 8 -pvec git merge phonelab/$tag/develop

You may need repeat the last step a couple of times to fix possible conflicts.

Warning

NEVER NEVER merge any other branches (e.g., release branches, other
experiment branches, logging branches) into your branch. Your experiment
branch should only contains your changes!

Warning

If your experiment branch can not be merged into our release branch, it will
be excluded from the release.

We developed a tool that will check whether or not your experiment changes meets
the above requirement. Please make sure your pass the check before notifying us
your changes are ready.

https://github.com/blue-systems-group/project.phonelab.platform_checker

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

Experiment Logistics

Guidelines

Experimenting with the platform image running on several-hundred actual
smartphones is risky, so our goal is to make this possible but not necessarily
easy. Keeping the following guidelines in mind as you make your experimental
changes will help:

	Don’t break stuff. The fastest way to lose our confidence is to provide us
with changes that don’t build or cause parts of the our PhoneLab image to
fail. There’s a road back from this point, but it’s uphill. Test your changes
thoroughly before submitting them to us.

	Make useful and novel changes. Given the dangers associated with this kind
of experimentation we are expecting researchers to approach us with exciting
and novel ideas that could potentially benefit PhoneLab participants. (In that
case, your changes will live on forever as part of the base system!)

	Be patient. This isn’t a fast process and it’s not designed to be. If you
have a paper deadline in a week—or even a month—forget it. Your scheduling
constraints are your problem—keeping our participants safe is ours.

Experiment Information

When your experiment changes have been successfully merged and build, we need
these extra information from you about the experiment:

	Experiment name

	Short description (a few sentences)

	Consent URL: a small web page explains what kind of data that your experiment
will collect.

These information will be presented to PhoneLab participants as follows:

[image: _images/exp.png]
[image: _images/consent.png]
Participants will have the option to “opt-out” your experiment data collection,
which means the data from their devices will not show up in the final dataset we
release.

Release Schedule

We will first push the platform changes to a small group of PhoneLab developers,
leave it running for at least a week to ensure the changes does not
significantly affect user experience. After that, we will push the changes to
the entire testbed. So please expect at least two weeks delay from when your
changes are ready to when they are deployed on the whole testbed.

To avoid issues with cross-modification compatibility or interference, we plan
to generally only distribute one experimental modification on PhoneLab at any
given point in time. The PhoneLab team will work with you to schedule your
experiment to ensure that it receives enough time on the testbed to generate
useful data. If your changes are unintrusive and useful, they may stick around,
but we provide no guarantees of this. We do guaranteed that if we receive
complaints from participants or notice stability issues your changes will be
reverted immediately.

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

Logging Infrastructure

This page answers these questions:

	How does PhoneLab collect data?

	How do I add new logging to PhoneLab platform?

	What has already been logged?

Log Data Collection

We rely on Android Logcat system [http://developer.android.com/tools/debugging/debugging-log.html] for data
collection. Basically, you use the Log [http://developer.android.com/reference/android/util/Log.html] class to write
log messages, and we have a small daemon app, PhoneLab Conductor [https://play.google.com/store/apps/details?id=edu.buffalo.cse.phonelab.conductor&hl=en],
running on the device, which will collect the log messages and upload them to
our backend server. More specifically, we are collecting the ``main`` logcat
buffer using ``threadtime`` format. Please see here [http://developer.android.com/tools/debugging/debugging-log.html#outputFormat]
for explanation about the logcat buffers and formats.

We made some improvements to the Logcat system:

	You can log up to 64K characters in one line. Android’s default limit is 4K.

	We enlarge the kernel’s buffer for logcat messages from 256KB to 16MB, to
tolerate more aggressive logging you may come up with, and also avoid losing
log messages due to buffer overflow.

	We developed a new daemon service, called kmsgd, which pipes all kernel
log messages (logged by printk) to the logcat buffer, which then will be
collected and uploaded by PhoneLab Conductor.

	We add year information to the logcat’s threadtime format.

Guidelines for Logging

When adding instrumentation to the PhoneLab platform there are really only a few
rules and guidelines that we ask experimenters to follow:

	Follow the logging conventions below. This helps us keep things organized
and avoid duplicated effort. You can also check out the existing tags for
examples providing more guidance on our logging conventions.

	Record something new and interesting. Check our existing tags before you get
started. If it’s already being logged, then someone did part of your job for
you! Proceed directly to data request and analysis. The only exception to
this rule is cases where the platform is already logging information but
poorly-formatted—in this case duplicated logging using JSON for easy
deserialization may be worth it.

	Remember: Android is more than services. The PhoneLab Android platform
includes many interesting libraries as well as pre-packaged apps such as an
alarm clock, calculator, and the Chrome web browser. These may be very
interesting places to add instrumentation.

	Log intelligently, particularly when adding instrumentation to hot code
paths. Android can support fairly high-volume logging, but please be
intelligent when adding instrumentation that could potentially produce a
great deal of output as this also slows down post-processing. Do you really
need to log every screen redraw separately? Maybe recording the number of
redraws per second and logging that once per second is sufficient. If you
have questions, contact the PhoneLab team.

	Log using JSON. JSON deserialization libraries exist for almost every useful
post-processing language. Writing tools based on regular-expressions is
tedious and terrible.

Log Format Conventions

We describe the tag, message, and commenting conventions we ask experimenters to
follow. Our goal is not to annoy you—it is to make log messages easy to
process and categorize, and to ensure that we avoid duplication of effort
between different research teams.

The tags should consist of three parts: (1) category, (2) subcategory, (3) and a
short organizational identifier, connected using a dash (‘-‘):
Category-Subcategory-Organization. We use PhoneLab as the organizational
code for the log messages added and maintained by the core PhoneLab team. Here
are a few examples:

	Network-Wifi-PhoneLab: collects network information about the Wifi interface,
added by PhoneLab.

	Power-Screen-PhoneLab: collects power information related to screen usage,
added by PhoneLab.

Use common sense to determine the category and sub-category field, but don’t get
too bogged down here—this is our best attempt at a taxonomy, and it’s far from
perfect. (For example: the Power-Screen-PhoneLab tag above could also be
under a Usage category, since the screen power state indicates whether
foreground or background activity is occurring.) You can check current category
and sub-category information of existing tags to determine how your new
instrumentation fits in. If none of the categories or sub-categories meets your
needs, feel free to propose your own.

The content of the log message should be a JSON string, making your results easy
to deserialize by a variety of downstream tools. We provide some helper classes
to assist in this process.

PhoneLab Log Helper

To simplify logging JSON strings, we provide a set of of helper classes and
interfaces in frameworks/base/core/java/edu/buffalo/cse/phonelab/json. One
interface and two helper classes are defined:

	JSONable: Any class that implements this interface must provide a
toJSONObject method, which returns a StrictJSONObject representing
this object.

	StrictJSONObject and StrictJSONArray: They are similar to
org.json.{JSONObject,JSONArray} but only accepts JSONable objects as
values. Please see comments at the head of StrictJSONObject.java for
details.

For example, this is a code snippet that we added to log Wifi scan results:

import edu.buffalo.cse.phonelab.json.StrictJSONObject;

// somewhere in the code

 (new StrictJSONObject(PHONELAB_TAG))
 .put(StrictJSONObject.KEY_ACTION, WifiManager.SCAN_RESULTS_AVAILABLE_ACTION)
 .put("Results", mScanResults)
 .log();

Note that:

	When appropriate, each StrictJSONObject should have a
StrictJSONObject.KEY_ACTION key to differentiate different types of
output logged under the same tag. For example, we could use the common
Network-Wifi-PhoneLab tag to log multiple Wifi-related events associated
with different actions—scan results, Wifi connections and disconnections,
etc—using a different action attribute for each. In fact, an exception will
be thrown if the StrictJSONObject does not have an action key when
its ``log`` method is called.

	You can only put JSONable objects into StrictJSONObject, which means
if the object you want to log does not implements JSONable, you’ll have
to implement by yourself. It’s not that difficult as it sounds like, please
see ScanResult.java for an example.

	When its log method is called, the StrictJSONObject will add a
timestamp field if it does not exist already. This is to help you
determine ordering between log messages, or want the exact timestamp when
some event happened.

Document Your Logs

To help us keep an record of what have been logged, we require you comment you
logs in a specific way so that we can automate the process of traversing the
whole source tree building a complete log taxonomy. This is an example comment
for the Wifi scan results tag described above:

/**
 * PhoneLab
 *
 * {
 * "Category": "Network",
 * "SubCategory": "Wifi",
 * "Tag": "Network-Wifi-PhoneLab",
 * "Action": "android.net.wifi.SCAN_RESULTS",
 * "Description": "Wifi scan results."
 * }
 */
(new StrictJSONObject(PHONELAB_TAG))
 .put("Action", WifiManager.SCAN_RESULTS_AVAILABLE_ACTION)
 .put("Results", mScanResults)
 .log();

Note that:

	The first two lines must match the example above exactly. They are the anchor
point for our tag processing script.

	The main body of the comment should be a JSON string, with the five keys in
the example. Any extra keys will be ignored. Any * symbol inside the JSON
string will also be ignored.

Log In C/C++ World

We recommend you to use the convenient StrictJSONObject whenever you are
instrumenting Java sources. If you are working in lower level C or C++ files
here are some instructions that you may find helpful.

The header file you need to include for Android logcat support is located in
system/core/include/log/log.h. The main function you will use is
__android_log_buf_write. It takes 4 arguments:

	bufID: Android logcat buffer id. Must be one of LOG_ID_{SYSTEM, MAIN, RADIO,
EVENTS} constants.

	prio: Log line priority. Must be one of ANDROID_LOG_{VERBOSE, DEBUG, INFO,
WARN, ERROR, FATAL} constants.

	tag: Tag name. Please use our tag name convention described above.

	msg: The message body you want to log. Please use a JSON string.

You can also use the more friendly __android_log_buf_print to get printf
style string formatting.

Logging in the Kernel

On PhoneLab builds, there is a daemon (kmsgd) that collects everything logged
from the kernel using printk, under the tag KernelPrintk. To distinguish
your logs from other kernel logs, we have provided functionality that can be accessed
by adding #include <linux/phonelab.h> to the kernel files you’re modifying.
Using these functions, kmsgd will ensure your kernel logs are assigned the
appropriate tags.

The kernel logging functions are equivalent to using Android’s Log.* functions
and the logs will appear in both /proc/kmsg and Logcat. The following table shows the
available logging functions and their Android counterparts.

	Kernel Logging Function
	Android Logging Function

	alog_v(char *tag, const char *fmt, ...)
	Log.v(...)

	alog_d(char *tag, const char *fmt, ...)
	Log.d(...)

	alog_i(char *tag, const char *fmt, ...)
	Log.i(...)

	alog_w(char *tag, const char *fmt, ...)
	Log.w(...)

	alog_e(char *tag, const char *fmt, ...)
	Log.e(...)

	Function Argument Notes:

	
	tag should use the same Log Format Conventions

	The functions are printk style and can include a variable number of arguments
	fmt is the format string, which should also be a JSON string

	The current length limit of the output JSON string, after format substitution, is 4096 characters

	You do not need to add a '\n' to fmt

The kernel time will be appended to the JSON string with the key KTime. You may want to include
SystemClock.uptimeMillis() in your Android logs in order to more tightly integrate the logs.

Uploading Raw Files

Sometimes it may be convenient to be able to update raw data files, such as
packet traces. Therefore, we also provide a FileUploderService in addition
to the text-log collection mechanism. You can see an example on how to use this
service at this project [https://github.com/blue-systems-group/project.conductor.test].

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

Existing Instrumentation

We expect our PhoneLab platform to include an increasing amount of
instrumentation added both by PhoneLab developers and by external research
teams. If our build already contains instrumentation recording what you’re
interested in, you can proceed directly to requesting data.

Logging Branches

Instrumentations are stagged in their respective branches by category, such as
network, location, or power. Here is a list of current logging branches:

	logging/android-5.1.1_r3/1/network

	logging/android-5.1.1_r3/2/power

	logging/android-5.1.1_r3/3/location

	logging/android-5.1.1_r3/4/packagemanager

Add Your Instrumentation

To add instrumentations to these branch, for example,
logging/android-5.1.1_r3/1/network, please follow these steps:

First, if you have not cloned the repository yet:

$ cd <WORKING_DIRECTORY>
$ repo init -u ssh://<USERNAME>@platform.phone-lab.org:8080/platform/manifest -b logging/android-5.1.1_r3/1/network
$ repo sync

The <USERNAME> is your user name on our Gerrit server [http://platform.phone-lab.org:8080/#/q/status:open].

Next, figure out the repository which you want to add instrumentation, say
frameworks/base, create a working branch:

$ cd frameworks/base
$ git checkout -b my_instrumentation

Then you add the instrumentation, commit and upload your changes for review:

$ git commit -a -S
$ git push aosp refs/for/logging/android-5.1.1_r3/1/network

Note

Note the remote branch name when you push: it is a special Gerrit pseudo
branch for changes to be reviewed.

Here is a list of existing instrumentations on our platform.

Summary

PhoneLab’s instrumented Android platform currently contains:

	11 tags, 20 actions,

	... in 9 categories,

	... added by 2 institutions.

Catetory: Activity

Tag: Activity-LifeCycle-QoE

	
Action: onStart, onPause, onResume

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/app/Activity.java:1146 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/app/Activity.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1146]

Description: Activity lifecycle events

Catetory: Location

Tag: Location-Misc-PhoneLab

	
Action: android.location.LOCATION_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/LocationManagerService.java:2252 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/LocationManagerService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l2252]

Description: Location update.

Catetory: Network

Tag: Network-Telephony-PhoneLab

	
Action: android.intent.action.ANY_DATA_STATE

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1592 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1592]

Description: Cellular data connectivity changed.

	
Action: android.intent.action.DATA_CONNECTION_FAILED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1649 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1649]

Description: Cellular data connection failed.

	
Action: android.intent.action.PHONE_STATE

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1547 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1547]

Description: Phone calling state changed (incoming call).

	
Action: android.intent.action.SERVICE_STATE

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1466 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1466]

Description: Cellular service state changed.

	
Action: android.intent.action.SIG_STR

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1501 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1501]

Description: Cellular signal strength changed.

	
Action: android.telephony.CALL_FORWARDING_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1027 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1027]

Description: Call forwarding status changed.

	
Action: android.telephony.CELL_LOCATION_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1257 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1257]

Description: Cell tower location changed.

	
Action: android.telephony.DATA_ACTIVITY_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1070 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1070]

Description: Cellular data activity.

	
Action: android.telephony.MESSAGE_WAITING_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:979 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l979]

Description: Message waiting status changed.

Catetory: PackageManager

Tag: PackageManager-Misc-PhoneLab

	
Action: android.intent.action.PACKAGE_{ADDED, CHANGED, REMOVED}

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/pm/PackageManagerService.java:10154 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/pm/PackageManagerService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l10154]

Description: Package installed/uninstalled/updated.

Catetory: Power

Tag: Power-Battery-PhoneLab

	
Action: android.intent.action.BATTERY_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/BatteryService.java:661 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/BatteryService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l661]

Description: Battery status changed.

Tag: Power-Screen-PhoneLab

	
Action: android.intent.action.SCREEN_OFF

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/power/Notifier.java:634 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/power/Notifier.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l634]

Description: Screen turned off.

	
Action: android.intent.action.SCREEN_ON

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/power/Notifier.java:596 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/power/Notifier.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l596]

Description: Screen turned on.

Catetory: Spinner

Tag: Spinner-State-QoE

	
Action: ProgressBarEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/widget/ProgressBar.java:1505 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/widget/ProgressBar.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1505]

Description: Start and end of indeterminate progressbars

Catetory: Usage

Tag: KeyEvent-UserAction-QoE

	
Action: HardwareTouchEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/view/KeyEvent.java:1594 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/view/KeyEvent.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1594]

Description: User pressed a key

Catetory: View

Tag: View-UserAction-QoE

	
Action: TouchEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/view/View.java:10294 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/view/View.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l10294]

Description: User touched item

Catetory: WebView

Tag: WebView-Update-QoE

	
Action: WebViewUpdateEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/webkit/WebViewClient.java:38 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebViewClient.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l38]

Description: Webview loading progress

	
Action: WebViewUpdateEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/webkit/WebChromeClient.java:39 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebChromeClient.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l39]

Description: Webview loading progress

Tag: WebView-UserActino-QoE

	
Action: WebViewTouchEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/webkit/WebView.java:304 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebView.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l304]

Description: User touched item in webview

Last updated 2016-12-02

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

Data Release

Sample PhoneLab Dataset

We put up a sample dataset that contains one month (March 2015) of data that
were collected from 11 PhoneLab devices. You can download the tarball here [https://phone-lab.org/static/experiment/sample_dataset.tgz]. The tags in this
sample dataset are listed in the existing tags page.

We hope this sample dataset can give you an idea of what the data looks like and
help you determine whether or not you want to proceed to the IRB process to
request the full dataset. You will also have a chance to start developing your
data analysis scripts immediately in parallel to the IRB process.

Request More

Once you’ve download and built our PhoneLab Android sources, added your
experimental instrumentation or platform modifications , and your changes have
been deployed, the final step is to request data generated by your experiment.

We will make a web form available to simply this process. However, here are the
things you need to provide in order for us to create an archive for you:

	Institutional Review Board (IRB) Letter. You must provide documentation
that your request for data and plan to process and publish that data have
been reviewed and approved for human subjects safety by your institutions IRB
or equivalent body. Your IRB documentation must match the rest of the
parameters of your request listed below.

	Consent procedure. If your experiment requires affirmative consent from
participants PhoneLab will assist you in performing that request to our
participants. No data will be provided from participants that fail to
complete the required consent process.

	Date Range. Including start day and end day, inclusive. Days are the
granularity by which we organize our archives so finer divisions (such as
hours) are not possible.

	Tag List. A list of all tags to return data from.

We are aware that IRB standards and procedures vary considerably between
institutions, and it is possible that getting your experiment approved may take
some time and effort on your part. However, we cannot assist you with this
process nor will any exceptions be made to our IRB approval requirement.

Once you have an archive this documentation will help you understand the archive
structure and file format.

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

Distributing Surveys

Here are steps to distribute a survey of your experiments to PhoneLab
participants.

	Compose your questionnaire using a survey provider. Note that the provider
need to support embedded user ID in the URL. SurveyGizmo [https://www.surveygizmo.com/] is know to support this feature.

	Send us a survey URL and a email template that we will forward to each
individual participants.

	We will substitute the user ID placeholder in the survey URL with the
device’s hashed ID, and send an email to each participant with this URL and
the email template you send us earlier.

Note

To incentivize participation, we suggest you also provide prizes for the
survey, such as Amazon Gift card. After the survey, you can draw winners from
those who completed the survey, and we will send the prize to corresponding
participant.

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

PhoneLab Data Format

Once you have received the data you requested the next step is to process it.
PhoneLab provides some of our own tools as is to help with this process and we
encourage experiments to reuse and contribute to them. However, if you have your
own tools the following documentation on the structure of our data archives and
files will be helpful.

Archive Format

The resulting TAR archive we will provide to IRB-approved experimenters
consists of one file per device per tag per day structured as follows:
device_identifier/tag/year/month/day.out.gz, so as an example
b3793ae1229920c02b564adbc200780168cd42ed/Location-Misc-PhoneLab/2014/11/19.out.gz.
When generating these these files we have attempted to ensure the following:

	All log messages are captured. Our data collection tools make
every effort to recover all generated log messages: including
configuring large Linux log buffers in our platform image and caching
up to several days worth of log messages on each device between
uploads. However, these measures are obviously not foolproof and
experimenters are encouraged to implement their own reliability
mechanisms as needed to detect missing log tags. Also please see the
note below on one important and well-known source of missing logs:
early boot.

	Each file is sorted by time. However, this is complicated by the
fact that in certain cases logcat can generate multiple log lines
with identical timestamps—particularly if the logged data contains
newlines. In the case of identical timestamps we defer to the order
in which the lines were originally logged by logcat, and when
processing identical timestamps split across multiple files, the
order in which the files were uploaded to the PhoneLab backend.

	Duplicate log lines are omitted. Our efforts to recover all log
messages sometimes lead to duplicate logs being uploaded or log files
being processed twice, but we attempt to remove duplicate messages
during post-processing. However, this is complicated by the lack of
timestamp uniqueness described above, which we work around in our
logging helper classes using a unique ID embedded in the JSON
message. However, because deduplication is done during log processing
only using the timestamp fields, duplicate messages may exist in the
archive.

Missing Early Boot Logs

One well-known source of missing log messages are from messages generated early
during Android boot. The problem arises because at this point the device does
not yet have a network-provided date and time, and so log messages are
timestamped as being generated in 1970—at the beginning of the Unix epoch. It
would probably be possible to fix this problem by retroactively correcting early
boot log message timestamps once a network-provided time is available, but have
yet to implement this fix. At present, these timestamps will be (correctly)
sorted into a 1970 tag file but (incorrectly) intermingled with many other log
tags also generated during other boot cycles.

If you are running an experiment that requires early boot logs, please feel free
to contact the PhoneLab team and we will see if we can come up with a better
solution to the problem together. For now these logs will simply be omitted from
all archives.

File Format

Each line in the file begins with the following standard fields. If you have
worked with logcat before, this will look familiar to you, as many of the
fields are taken directly from the logcat output. We describe each of the
standard fields in more detail below, using several examples based on actual log
messages uploaded by PhoneLab Director Geoffrey Challen’s device.

	Device Identifier
	UNIX Timestamp
	Ordering
	Date and Time
	Process ID
	Thread ID
	Log Level
	Tag

	7699f273...
	1416261509970
	1416261509970.0
	2014-11-17 21:58:29.970997
	769
	1026
	I
	Power-Battery-PhoneLab

	7699f273...
	1416261509970
	1416261509970.1
	2014-11-17 21:58:29.970997
	879
	1143
	D
	Location-Misc-PhoneLab

	Device Identifier: A unique identifier for each device.

	UNIX Timestamp: Milliseconds since 1970. Note even at this resolution this
timestamp is not guaranteed to be unique across all log messages, creating the
need for the next field.

	Ordering: This field takes the form
milliseconds_since_1970.order_in_upload_file. For log messages that do
not share a timestamp with any other line, it will be
milliseconds_since_1970.0. In other cases it will be set as shown in the
two examples above. Note that this is only sufficient to provide an ordering
for identically-timestamped messages in the same file; cross-file ordering is
still not handled properly by our tool chain. Also note that this example is
contrived as identical timestamps occur most often due to (1) multiple
logcat messages on neighboring lines of the same app or (2) logcat
messages that contain newlines.

	Date and Time: Human-readable date and timestamp using the device’s locale.
In this case the timestamps are in Eastern Standard Time (EST).

	Process and Thread IDs: Fairly self-explanatory.

	Log Level: Android uses verbose (V), debug (D), info (I), warning (W) and
error (E) log levels on a per-message basis. This page has more details. [http://developer.android.com/reference/android/util/Log.html]

	Tag: Log messages are either generated by the instrumentation we have added
or by existing logging included in the Android platform by default or left
enabled by many apps after deployment—despite Android’s suggestions to the
contrary. [http://developer.android.com/tools/publishing/publishing_overview.html#publishing-prepare]

These fields are following by a log message as a single string, which can be up
to 64k characters long—but hopefully nowhere close to that limit! Obviously the
format of the log string varies based on what is being recorded, but here are a
few examples. First, a JSON-formatted log string generated by our tools under
the Power-Battery-PhoneLab tag, with internal fields that are
self-explanatory:

{
 "Action":"android.intent.action.BATTERY_CHANGED",
 "LogFormat":"1.0",
 "BatteryProperties":{
 "Status":"Charging",
 "Present":true,
 "Voltage":4342,
 "Temperature":255,
 "CurrentNow":-794372,
 "Health":"Good",
 "Level":94,
 "PlugType":"AC",
 "ChargeCounter":-2147483648,
 "Technology":"Li-ion"
 },
 "Scale":100
}

And second, an example of something not formatted in JSON—in this case,
garbage collection output generated under the dalvikvm tag:

GC_FOR_ALLOC freed 259K, 6% free 18632K/19680K, paused 16ms, total 16m

PhoneLab Cruncher

Todo

revise this section about cruncher.

The PhoneLab cruncher is our own early attempt to produce a
reasonably-efficient and kind-of user-friendly set of log
post-processing tools. You are welcome to download, use, and modify
it [http://platform.phone-lab.org:8080/gitweb?p=phonelab%2Fcruncher.git;a=summary]
to suit your needs—just don’t expect us to support it. It should already
support many of the log tags we have added to the PhoneLab platform,
particularly ones we have used for our own experimental purposes.

The cruncher (ab)uses the Django object-relational mapper (ORM) to
ease the process of manipulating a database in Python. Given that (1)
importing logs from the files into the database and (2) processing the
logs further to produce useful output are both potentially
time-consuming, the cruncher splits log import and processing into
three phases with different parallelization constraints, each of which
can be repeated as needed during post-processing tool development:

	Log import: the process of importing logs from the flat files
into the database is parallelized by log file, meaning that logs can
be processed in any order in any queue. As a result, no relationships
between log tags can be established or used during import. Instead,
each log line should generate one (or many) database objects.
Django’s transaction and bulk loading support are used to make this
relatively quick.

	Per-device processing: the second stage is parallelized by device
and provides the opportunity to combine information from multiple log
messages. For example, separate messages logged during file
open() and close() along with information about intervening
read() and write() operations could be combined to create a
single file session object. However, at this stage no cross-device
relationships or statistics can be computed. The cruncher
provides several different optimized iterators allowing code to loop
over one or more of the objects created during the import stage—but
again, strictly on a per-device basis.

	Final processing: once all per-device processing has completed
cruncher code has access to all models from all devices and can
compute overall statistics or generate graphs integrating data from
the entire experiment.

Currently the cruncher is capable of making efficient use of
multiple cores to maximize IO throughput when importing and processing
logs, but not yet of using multiple machines to further parallelize the
process. We are actively working on this feature. If you would like to
help, we would welcome the assistance.

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

PhoneLab Policies

PhoneLab is an open-access smartphone platform testbed operated by the PhoneLab
team (we) at the Computer Science and Engineering Department at the University
at Buffalo, The State University of New York (UB). It consists of smartphones,
participants that use the smartphones, and control software. It is designed to
be open-access, meaning that researchers inside and outside of UB will conduct
research studies using PhoneLab. It provides realism by having participants use
their experimental smartphone as their primary device allowing research
experiments to be performed under realistic conditions and with real user
inputs. This document contains terms and conditions that each and every
experimenter should be aware of and agree to before using PhoneLab.

Access and Administration

The use of the testbed is allowed for most academic purposes. We will reserve
the right to grant or deny PhoneLab access depending on the nature of the
experiment and the demand of the testbed. The current policy only allows the use
of the testbed for research, not for education or development.

Data Release

PhoneLab will only release data to researchers whose requests have been reviewed
and approved or marked exempt by their institution’s Institutional Review Board
(IRB) or equivalent human subjects protection body. PhoneLab will assist
researchers whose protocols require affirmative consent from PhoneLab
participants.

Participation

PhoneLab makes no guarantees about the size of our testbed or how many
participants will choose to provide data at your request. Participants may opt
in and out of experiments on a per-experiment basis.

Acceptable Use

We require that researchers act within the bounds of the experiment they have
had reviewed by their IRB. We reserve the right to define abuse of PhoneLab as
broadly as possible in the interest of protecting our participants.
Misrepresentation of the purpose for using the testbed or misuse of PhoneLab
data will result in experimenters losing access to PhoneLab and having their
academic or research institution notified of their behavior.

Policy Changes

We also reserve the right to change our policies at any point of time in the
future.

Disclaimer

PhoneLab is provided as-is without any warranty. We disclaim any and all
liability of an experiment’s results, its errors, and any of its side-effects,
broadly defined. We also disclaim any errors or problems that arise out of
security and reliability issues of our software.

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PhoneLab stable documentation

Frequently Asked Questions

What is the device ID in the log lines?

The device ID is a string of length 40. The value is a hex digest of hashed
TelephonyManager.getDeviceId() (link [http://developer.android.com/reference/android/telephony/TelephonyManager.html#getDeviceId()]). A sample code snippet to get the
device ID in Java is as follows:

TelephonyManager telephonyManager = (TelephonyManager) context.getSystemService(Context.TELEPHONY_SERVICE);
MessageDigest digester = MessageDigest.getInstance("SHA-1");
byte[] digest = digester.digest(telephonyManager.getDeviceId().getBytes());
deviceID = (new BigInteger(1, digest)).toString(16);

What happed if the participant opt out my experiment?

Note that your experimental changes will be pushed to participants’ devices and
will be running during the experiment period no matter whether the user opt
out your experiment or not. That choice (opt-out) will be recorded by us and
only used to determine whether we should release the data collected from that
particular participant’s device to you (experimenter).

Do I need to log a event if it’s already logged in other branch?

It depends. If the event is logged in one of the
logging/android-5.1.1_r3/... branches, then NO NEED to log it again, since
these branches will almost always be included in the release branch. In fact, we
strongly advise you NOT to repeat the effort, as it will potentially cause merge
conflicts.

However, if the event is logged in another experiment branch (e.g.,
experiment/android-5.1.1_r3/...), then we suggest you log the information
again in your branch, since the other experiment may end earlier than yours.

Shall I merge other logging or experiment branches into my branch?

You should never do this. The only branch you need to keep up to date is the
PhoneLab develop branch (phonelab/android-5.1.1_r3/develop).

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	PhoneLab stable documentation

Experiments

PhoneLab is a public smartphone testbed. We solicit researchers with exciting
new ideas to experiment on PhoneLab that are made possible with PhoneLab’s
ability to modifying the AOSP platform. Over the years, PhoneLab has facilitated
the following smartphone platform experiments.

Ongoing

Completed

1. DefDroid [http://defdroid.github.io/]

9/21/2015 - 11/3/2015

The goal of DefDroid is to make the mobile OS more defensive to curb the naughty
apps that drain your battery or over-consume your mobile data, storage, etc. We
design DefDroid so that it makes your mobile phone more sustainable
without breaking the main functionalities of the apps.

	Contact:

	
Ryan (Peng) Huang (Advisor: Prof. Yuanyuan Zhou)

UCSD

2. Lock Screen [https://surveys.cs.berkeley.edu/lockscreen/lockscreen.html]

10/22/2015 - 6/3/2016

This experiment looks at how users interact with their lock screens. We collect
log information on whether a code-based lock is enabled, how much time is spent
before unlocking the device, how long users take to enter the code and how many
failed attempts occur. This information will help researchers to design lock
screens with better security while maintaining or improving upon existing usage
patterns.

	Contact:

	
Marian Harbach (Advisor: Serge Egelman)

ICSI @ UC Berkeley

3. LTE Handover Analysis [https://sites.google.com/a/umich.edu/robustnet-handover]

10/28/2015 - 6/3/2016

This experiment aims to study the decision policy and performance impact of
handovers including WiFi-Cellular handover, IRAT (Inter radio access technology)
handover, and intra-LTE handover.

	Contact

	
Shichang Shawn Xu (Advisor: Prof. Z. Morley Mao)

University of Michigan, Ann Arbor

4. Runtime Permission [https://sites.google.com/site/runtimeperm/]

11/24/2015 - 3/16/2016

This is a study on privacy preferences of mobile users when it comes to
sensitive data requests originating from third party applications. To that end,
we want to track sensitive data requests and ask users whether they want to
block such requests as it happens. However we hope to prompt the question at
most once per day per user when such a request occurs. We are also hoping to log
surrounding contextual data when such a question is prompted to the user.

	Contact:

	
Primal Wijesekera (Advisor: Prof. Konstanin Beznosov)

UC Berkeley & University of British Columbia

5. Maybe [https://blue.cse.buffalo.edu/projects/maybe/]

11/13/2015 - 11/24/2015

One of the reasons programming mobile systems is so hard is the uncertainty
created by the wide variety of environments a typical app encounters at
runtime. In many cases only post-deployment user testing can determine the
right algorithm to use, the rate at which something should happen, or when an
app should attempt to conserve energy. Programmers should not be forced to make
these choices at development time. But today’s programming languages leave no
way for programmers to express and structure their uncertainty about runtime
conditions, forcing them to adopt ineffective, fragile, and untested ad-hoc
approaches to runtime adaptation. We introduce a new approach based on
structured uncertainty through a new language construct: the maybe statement.

	Contact:

	
Yihong Chen (Advisor: Geoffrey Challen)

University at Buffalo

6. File System Analysis [https://blue.cse.buffalo.edu/projects/pocketlocker/]

11/3/2015 - 11/13/2015

Centralized cloud storage services such as Dropbox have revolutionized the way
that users share files and access data across their growing number of devices.
But today’s cloud storage options have serious limitations affecting mobile
battery-powered smartphones. Many central cloud storage providers require each
client to have enough storage for an entire replica, which may not be feasible
on smartphones with an order-of-magnitude less storage than laptops and
desktops. Centralized cloud storage does not scale as users add more storage and
misses the opportunity to harness free space users already have. And
centralized cloud storage provides poor support for mobile devices, both
failing to leverage natural mobility patterns when distributing data and
potentially causing costly mobile data traffic.

	Contact:

	
Carl Nuessle (Advisor: Geoffrey Challen)

University at Buffalo

7. Quality of Experience [https://blue.cse.buffalo.edu/projects/qoe/]

11/3/2015 - 11/16/2015

Of all the resources that smartphones manage, human attention is the most
precious. While processor speed and core count, memory and storage capacity, and
network bandwidth have steadily and sometimes rapidly increased, the number of
hours in the day has not. And as users spend an increasing amount of time with
their personal computing devices, it is more important than ever that these
devices ensure that their time is used effectively. We refer to this as quality
of experience (QoE).

	Contact:

	
Scott Haseley (Advisor: Geoffrey Challen)

University at Buffalo

8. Jouler [https://blue.cse.buffalo.edu/projects/jouler/]

3/7/2016 - 3/16/2016

Despite the fact that current smartphone platforms already incorporate energy
measurement tools and multiple energy control mechanisms, smartphone battery
lifetimes continue to frustrate users. This is because measurements and
mechanisms are of limited utility without policies that utilize them to achieve
different energy management goals, such as meeting a lifetime target or
providing good performance to a user’s favorite apps. To address this problem we
are developing Jouler, a policy framework enabling effective and flexible
smartphone energy management.

	Contact:

	
Anudipa Maiti (Advisor: Geoffrey Challen)

University at Buffalo

9. Bluetooth Low Energy [https://kabru.eecs.umich.edu/?page_id=971]

11/03/2015 - 8/31/2016

We collect information that nearby BLE powered devices publicly broadcast. This
enables us to study the privacy threats they pose. Please make sure you keep the
Bluetooth radio turned on for sometime during the day.

	Contact:

	
Kassem Fawaz (Advisor: Prof. Kang G. Shin)

RTCL @ University of Michigan, Ann Arbor

10. GridWatch: Crowdsourcing the Detection of Power Outages and Restorations [http://grid.watch/phonelab.html]

03/03/2016 - 8/31/2016

This experiment is gathering information to validate the GridWatch system.
GridWatch is a system that attempts to crowd-source the detection of power
outages and power restorations. These events are sensed using unmodified
smartphones. The key insight is that when a charging phone stops charging, it
might have experienced a power outage. When multiple phones that are nearby each
other stop charging at the same time, it becomes more likely that an outage
occurred. This same logic applies for power restorations, except instead of
stopping charging, phones start charging. This experiment will gather your
battery state (charging, not charging, percent charged) and your last known GPS
location when battery state changes.

	Contact:

	
Noah Klugman (Advisor: Prabal Dutta)

University of Michigan, Ann Arbor

11. Smartphone Storage Analysis [https://sites.google.com/site/uiucstoragestudy/]

06/13/2016 - 8/31/2016

The purpose of this study is to determine the amount of storage space consumed
by modern mobile apps on smartphones and effect of app usage on storage. The
results will help developing the new generation of storage for smartphones and
identifying minimum amount of storage space today’s smartphones must have.

	Contact:

	
Ashish Bijlani (Advisor: Prof. Roy H. Campbell)

UIUC

12. CPU Thermal Management

03/31/2016 - 8/31/2016

This experiment aims to study the thermal characteristics of smartphones. We
monitor the temperature of your smartphones and attempt to detect bad choices
made by Android that make the phones run hot. Our goal is to use this
information to prevent phones from (unnecessarily) overheating and also improve
battery life.

	Contact:

	
Guru Prasad Srinivasa and Scott Haseley (Advisor: Geoffrey Challen)

University at Buffalo

13. QoEye [https://blue.cse.buffalo.edu/projects/qoe/]

07/04/2016 - 8/31/2016

QoEye collects high-level interactions with app components to help study Quality
of Experience (QoE). Our goal is to discover common app usage patterns and to
use this data to replay these interactions, eventually determining the
contributing factors of QoE for various apps.

	Contact:

	
Scott Haseley (Advisor: Geoffrey Challen)

University at Buffalo

14. TicToc: User Authentication through UI profiling [https://www.perform.illinois.edu/exp/tictoc/]

07/04/2016 - 8/31/2016

This study will record low-level interaction with the phone to study
identifiable user-machine interaction abnormalities that are unique to each
user. We hypothesize that this profiling low-level interaction will be useful in
detecting impersonation attacks.

	Contact:

	
Ahmed M Fawaz (Advisor: Prof. William H. Sanders)

UIUC

15. M2Auth [https://sites.google.com/site/m2auth/]

07/06/2016 - 8/31/2016

This experiment aims to explore the behavioral biometrics-the way that user
interact with the smartphone, such as how user touching the screen instead of
what user touch. This data will help us to design a Multi-Modal Authentication
framework that incorporate different modalities of these biometrics.

	Contact:

	
Ahmed Mahfouz (Advisor: Prof. Tarek Mahmoud)

Minia University, Egypt

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	PhoneLab stable documentation

Index

 Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

_static/comment-bright.png

_images/branch.png
Stable AOSP Release
% AOSP Develop Branch

PhoneLab Develop Branch

PhoneLab Fixes / Experiment 1 Develop Branch
Experiment 2 Develop Branch

Experiment 3 Develop Branch
Your Changes

_images/overview.png
o
o GQ\O‘J‘“ ¥ || Testers / Participants
&

fgeS"‘“% PhoneLab Testbed U o

1. Experiment Development -

Log.i(MY_TAG, “Useful information.”);
Log.i (MY_TAG, “Other information.”);

4. Data Request (w/ IRB) -

-
® < [=]
\. 5/ |

I_IH - 5. Data Release 21p i

2747d45.. 2015-03-01... Power-Screen {"Action":"SCREEN_OFF", "Reason":"Timeout"} %
EXperlmenteI’S 2747d45.. 2015-03-01... Power-Screen {"Action":"SCREEN_OFF", "Reason":"User"} PhoneLab Server

_images/consent.png
O v @31237

Experiment Name Consent
Agreement

Participant Agreement

The PhonelLab Team

Last updated: August 1, 2014

Overview

PhonelLab is an open-access, large-
scale, participatory smartphone testb
operated by the PhoneLab team (“we”
in the Computer Science and
Engineering Department at the
University at Buffalo, The State
University of New York. It consists of
smartphones, participants that use the
smartphones, and control software. It
designed to be open-access, meaning

_static/down-pressed.png

_static/ajax-loader.gif

_images/exp.png
0 v. 12:37

PhonelLab Conductor

INFO STATS EXPERIMENTS

Click on experiments to view consent
agreement.
Experiment Name | ON |

Short description goes here.

_static/up.png

_static/down.png

_static/comment-close.png

tagdoc.html

 Navigation

 		
 index

 		PhoneLab stable documentation »

Summary

PhoneLab’s instrumented Android platform currently contains:

		11 tags, 20 actions,

		... in 9 categories,

		... added by 2 institutions.

Catetory: Activity

Tag: Activity-LifeCycle-QoE

		
Action: onStart, onPause, onResume

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/app/Activity.java:1146 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/app/Activity.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1146]

Description: Activity lifecycle events

Catetory: Location

Tag: Location-Misc-PhoneLab

		
Action: android.location.LOCATION_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/LocationManagerService.java:2252 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/LocationManagerService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l2252]

Description: Location update.

Catetory: Network

Tag: Network-Telephony-PhoneLab

		
Action: android.intent.action.ANY_DATA_STATE

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1592 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1592]

Description: Cellular data connectivity changed.

		
Action: android.intent.action.DATA_CONNECTION_FAILED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1649 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1649]

Description: Cellular data connection failed.

		
Action: android.intent.action.PHONE_STATE

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1547 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1547]

Description: Phone calling state changed (incoming call).

		
Action: android.intent.action.SERVICE_STATE

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1466 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1466]

Description: Cellular service state changed.

		
Action: android.intent.action.SIG_STR

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1501 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1501]

Description: Cellular signal strength changed.

		
Action: android.telephony.CALL_FORWARDING_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1027 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1027]

Description: Call forwarding status changed.

		
Action: android.telephony.CELL_LOCATION_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1257 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1257]

Description: Cell tower location changed.

		
Action: android.telephony.DATA_ACTIVITY_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:1070 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1070]

Description: Cellular data activity.

		
Action: android.telephony.MESSAGE_WAITING_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/TelephonyRegistry.java:979 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/TelephonyRegistry.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l979]

Description: Message waiting status changed.

Catetory: PackageManager

Tag: PackageManager-Misc-PhoneLab

		
Action: android.intent.action.PACKAGE_{ADDED, CHANGED, REMOVED}

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/pm/PackageManagerService.java:10154 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/pm/PackageManagerService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l10154]

Description: Package installed/uninstalled/updated.

Catetory: Power

Tag: Power-Battery-PhoneLab

		
Action: android.intent.action.BATTERY_CHANGED

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/BatteryService.java:661 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/BatteryService.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l661]

Description: Battery status changed.

Tag: Power-Screen-PhoneLab

		
Action: android.intent.action.SCREEN_OFF

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/power/Notifier.java:634 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/power/Notifier.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l634]

Description: Screen turned off.

		
Action: android.intent.action.SCREEN_ON

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: services/core/java/com/android/server/power/Notifier.java:596 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=services/core/java/com/android/server/power/Notifier.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l596]

Description: Screen turned on.

Catetory: Spinner

Tag: Spinner-State-QoE

		
Action: ProgressBarEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/widget/ProgressBar.java:1505 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/widget/ProgressBar.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1505]

Description: Start and end of indeterminate progressbars

Catetory: Usage

Tag: KeyEvent-UserAction-QoE

		
Action: HardwareTouchEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/view/KeyEvent.java:1594 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/view/KeyEvent.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l1594]

Description: User pressed a key

Catetory: View

Tag: View-UserAction-QoE

		
Action: TouchEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/view/View.java:10294 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/view/View.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l10294]

Description: User touched item

Catetory: WebView

Tag: WebView-Update-QoE

		
Action: WebViewUpdateEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/webkit/WebViewClient.java:38 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebViewClient.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l38]

Description: Webview loading progress

		
Action: WebViewUpdateEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/webkit/WebChromeClient.java:39 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebChromeClient.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l39]

Description: Webview loading progress

Tag: WebView-UserActino-QoE

		
Action: WebViewTouchEvent

Project: frameworks/base [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git]

File: core/java/android/webkit/WebView.java:304 [http://platform.phone-lab.org:8080/gitweb?p=cm-shamu/frameworks/base.git;a=blob;f=core/java/android/webkit/WebView.java;hb=refs/heads/phonelab/cm-13.0/release-4.2.5#l304]

Description: User touched item in webview

Last updated 2016-12-02

 © Copyright 2016, PhoneLab Team.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/branch.png
Stable AOSP Release
% AOSP Develop Branch

PhoneLab Develop Branch

PhoneLab Fixes / Experiment 1 Develop Branch
Experiment 2 Develop Branch

Experiment 3 Develop Branch
Your Changes

_static/consent.png
O v @31237

Experiment Name Consent
Agreement

Participant Agreement

The PhonelLab Team

Last updated: August 1, 2014

Overview

PhonelLab is an open-access, large-
scale, participatory smartphone testb
operated by the PhoneLab team (“we”
in the Computer Science and
Engineering Department at the
University at Buffalo, The State
University of New York. It consists of
smartphones, participants that use the
smartphones, and control software. It
designed to be open-access, meaning

_static/plus.png

_static/file.png

_static/exp.png
0 v. 12:37

PhonelLab Conductor

INFO STATS EXPERIMENTS

Click on experiments to view consent
agreement.
Experiment Name | ON |

Short description goes here.

_static/overview.png
o
o GQ\O‘J‘“ ¥ || Testers / Participants
&

fgeS"‘“% PhoneLab Testbed U o

1. Experiment Development -

Log.i(MY_TAG, “Useful information.”);
Log.i (MY_TAG, “Other information.”);

4. Data Request (w/ IRB) -

-
® < [=]
\. 5/ |

I_IH - 5. Data Release 21p i

2747d45.. 2015-03-01... Power-Screen {"Action":"SCREEN_OFF", "Reason":"Timeout"} %
EXperlmenteI’S 2747d45.. 2015-03-01... Power-Screen {"Action":"SCREEN_OFF", "Reason":"User"} PhoneLab Server

_static/minus.png

