

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/phalcondocs/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/phalcondocs/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 	
 Dispatching Controllers
 	
 The Dispatch Loop
 	
 Dispatch Loop Events

 Forwarding to other actions

 Preparing Parameters

 Getting Parameters

 Preparing actions

 Camelize action names

 Remove legacy extensions

 Inject model instances

 Handling Not-Found Exceptions

 Implementing your own Dispatcher

 Overview

 	
 Overview
 	
 Dependencies

 	
 Services

 	
 Installation
 	
 With Composer (recommended)

 	
 With Git

 Configuration

 Usage

 Set up

 Logs

 Environment variables

 Web environment

 phpMyAdmin variables

 Xdebug Remote debugger (PhpStorm)

 Troubleshooting

 Startup or linking errors

 Full reset

 Updating dependencies

 Versions

 Assets Management

 	
 Assets Management
 	
 Adding Resources

 	
 Local/Remote resources

 	
 Collections

 	
 URL Prefixes

 	
 Minification/Filtering
 	
 Built-In Filters

 	
 Custom Filters

 Custom Output

 Improving performance

 Images

 	
 Improving Performance with Cache

[bookmark: overview]

Images

Phalcon\Image is the component that allows you to manipulate image files. Multiple operations can be performed on the same image object.

[bookmark: adapters]

Adapters

This component makes use of adapters to encapsulate specific image manipulator programs. The following image manipulator programs are supported:

Class	Description
———————————-	———————————————————————————–
Phalcon\Image\Adapter\Gd	Requires the GD PHP extension [http://php.net/manual/en/book.image.php]
Phalcon\Image\Adapter\Imagick	Requires the ImageMagick PHP extension [http://php.net/manual/en/book.imagick.php]

[bookmark: adapters-custom]

Implementing your own adapters

The Phalcon\Image\AdapterInterface interface must be implemented in order to create your own image adapters or extend the existing ones.

[bookmark: saving-rendering]

Saving and rendering images

Before we begin with the various features of the image component, it’s worth understanding how to save and render these images.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// ...

// Overwrite the original image
$image->save();

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// ...

// Save to 'new-image.jpg'
$image->save('new-image.jpg');

You can also change the format of the image:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// ...

// Save as a PNG file
$image->save('image.png');

When saving as a JPEG, you can also specify the quality as the second parameter:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// ...

// Save as a JPEG with 80% quality
$image->save('image.jpg', 80);

[bookmark: resizing]

Resizing images

There are several modes of resizing:

	\Phalcon\Image::WIDTH

	\Phalcon\Image::HEIGHT

	\Phalcon\Image::NONE

	\Phalcon\Image::TENSILE

	\Phalcon\Image::AUTO

	\Phalcon\Image::INVERSE

	\Phalcon\Image::PRECISE

[bookmark: resizing-width]

\Phalcon\Image::WIDTH

The height will automatically be generated to keep the proportions the same; if you specify a height, it will be ignored.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->resize(
 300,
 null,
 \Phalcon\Image::WIDTH
);

$image->save('resized-image.jpg');

[bookmark: resizing-height]

\Phalcon\Image::HEIGHT

The width will automatically be generated to keep the proportions the same; if you specify a width, it will be ignored.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->resize(
 null,
 300,
 \Phalcon\Image::HEIGHT
);

$image->save('resized-image.jpg');

[bookmark: resizing-none]

\Phalcon\Image::NONE

	The NONE constant ignores the original image’s ratio.

	Neither width and height are required.

	If a dimension is not specified, the original dimension will be used.

	If the new proportions differ from the original proportions, the image may be distorted and stretched.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->resize(
 400,
 200,
 \Phalcon\Image::NONE
);

$image->save('resized-image.jpg');

[bookmark: resizing-tensile]

\Phalcon\Image::TENSILE

	Similar to the NONE constant, the TENSILE constant ignores the original image’s ratio.

	Both width and height are required.

	If the new proportions differ from the original proportions, the image may be distorted and stretched.

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->resize(
 400,
 200,
 \Phalcon\Image::TENSILE
);

$image->save('resized-image.jpg');

[bookmark: cropping]

Cropping images

For example, to get a 100px by 100px square from the centre of the image:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$width = 100;
$height = 100;
$offsetX = (($image->getWidth() - $width) / 2);
$offsetY = (($image->getHeight() - $height) / 2);

$image->crop($width, $height, $offsetX, $offsetY);

$image->save('cropped-image.jpg');

[bookmark: rotating]

Rotating images

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// Rotate an image by 90 degrees clockwise
$image->rotate(90);

$image->save('rotated-image.jpg');

[bookmark: flipping]

Flipping images

You can flip an image horizontally (using the \Phalcon\Image::HORIZONTAL constant) and vertically (using the \Phalcon\Image::VERTICAL constant):

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

// Flip an image horizontally
$image->flip(
 \Phalcon\Image::HORIZONTAL
);

$image->save('flipped-image.jpg');

[bookmark: sharpening]

Sharpening images

The sharpen() method takes a single parameter - an integer between 0 (no effect) and 100 (very sharp):

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->sharpen(50);

$image->save('sharpened-image.jpg');

[bookmark: watermarks]

Adding watermarks to images

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$watermark = new \Phalcon\Image\Adapter\Gd('me.jpg');

// Put the watermark in the top left corner
$offsetX = 10;
$offsetY = 10;

$opacity = 70;

$image->watermark(
 $watermark,
 $offsetX,
 $offsetY,
 $opacity
);

$image->save('watermarked-image.jpg');

Of course, you can also manipulate the watermarked image before applying it to the main image:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$watermark = new \Phalcon\Image\Adapter\Gd('me.jpg');

$watermark->resize(100, 100);
$watermark->rotate(90);
$watermark->sharpen(5);

// Put the watermark in the bottom right corner with a 10px margin
$offsetX = ($image->getWidth() - $watermark->getWidth() - 10);
$offsetY = ($image->getHeight() - $watermark->getHeight() - 10);

$opacity = 70;

$image->watermark(
 $watermark,
 $offsetX,
 $offsetY,
 $opacity
);

$image->save('watermarked-image.jpg');

[bookmark: blurring]

Blurring images

The blur() method takes a single parameter - an integer between 0 (no effect) and 100 (very blurry):

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->blur(50);

$image->save('blurred-image.jpg');

[bookmark: pixelating]

Pixelating images

The pixelate() method takes a single parameter - the higher the integer, the more pixelated the image becomes:

<?php

$image = new \Phalcon\Image\Adapter\Gd('image.jpg');

$image->pixelate(10);

$image->save('pixelated-image.jpg');

 Model Behaviors

 	
 Model Behaviors
 	
 Timestampable

 	
 SoftDelete

 	
 Creating your own behaviors

 	
 Using Traits as behaviors

[bookmark: overview]

Model Behaviors

Behaviors are shared conducts that several models may adopt in order to re-use code, the ORM provides an API to implement behaviors in your models. Also, you can use the events and callbacks as seen before as an alternative to implement Behaviors with more freedom.

A behavior must be added in the model initializer, a model can have zero or more behaviors:

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Behavior\Timestampable;

class Users extends Model
{
 public $id;

 public $name;

 public $created_at;

 public function initialize()
 {
 $this->addBehavior(
 new Timestampable(
 [
 'beforeCreate' => [
 'field' => 'created_at',
 'format' => 'Y-m-d',
]
]
)
);
 }
}

The following built-in behaviors are provided by the framework:

| Name | Description |
| ————- | ———————————————————————————————————- |
| Timestampable | Allows to automatically update a model’s attribute saving the datetime when a record is created or updated |
| SoftDelete | Instead of permanently delete a record it marks the record as deleted changing the value of a flag column |

[bookmark: timestampable]

Timestampable

This behavior receives an array of options, the first level key must be an event name indicating when the column must be assigned:

<?php

use Phalcon\Mvc\Model\Behavior\Timestampable;

public function initialize()
{
 $this->addBehavior(
 new Timestampable(
 [
 'beforeCreate' => [
 'field' => 'created_at',
 'format' => 'Y-m-d',
]
]
)
);
}

Each event can have its own options, field is the name of the column that must be updated, if format is a string it will be used as format of the PHP’s function date [http://php.net/manual/en/function.date.php], format can also be an anonymous function providing you the free to generate any kind timestamp:

<?php

use DateTime;
use DateTimeZone;
use Phalcon\Mvc\Model\Behavior\Timestampable;

public function initialize()
{
 $this->addBehavior(
 new Timestampable(
 [
 'beforeCreate' => [
 'field' => 'created_at',
 'format' => function () {
 $datetime = new Datetime(
 new DateTimeZone('Europe/Stockholm')
);

 return $datetime->format('Y-m-d H:i:sP');
 }
]
]
)
);
}

If the option format is omitted a timestamp using the PHP’s function time [http://php.net/manual/en/function.time.php], will be used.

[bookmark: softdelete]

SoftDelete

This behavior can be used as follows:

<?php

use Phalcon\Mvc\Model;
use Phalcon\Mvc\Model\Behavior\SoftDelete;

class Users extends Model
{
 const DELETED = 'D';
 const NOT_DELETED = 'N';

 public $id;
 public $name;
 public $status;

 public function initialize()
 {
 $this->addBehavior(
 new SoftDelete(
 [
 'field' => 'status',
 'value' => Users::DELETED,
]
)
);
 }
}

This behavior accepts two options: field and value, field determines what field must be updated and value the value to be deleted. Let’s pretend the table users has the following data:

mysql> select * from users;
+----+---------+--------+
| id | name | status |
+----+---------+--------+
| 1 | Lana | N |
| 2 | Brandon | N |
+----+---------+--------+
2 rows in set (0.00 sec)

If we delete any of the two records the status will be updated instead of delete the record:

<?php

Users::findFirst(2)->delete();

The operation will result in the following data in the table:

mysql> select * from users;
+----+---------+--------+
| id | name | status |
+----+---------+--------+
| 1 | Lana | N |
| 2 | Brandon | D |
+----+---------+--------+
2 rows in set (0.01 sec)

Note that you need to specify the deleted condition in your queries to effectively ignore them as deleted records, this behavior doesn’t support that.

[bookmark: create-your-own-behaviors]

Creating your own behaviors

The ORM provides an API to create your own behaviors. A behavior must be a class implementing the Phalcon\Mvc\Model\BehaviorInterface. Also, Phalcon\Mvc\Model\Behavior provides most of the methods needed to ease the implementation of behaviors.

The following behavior is an example, it implements the Blameable behavior which helps identify the user that is performed operations over a model:

<?php

use Phalcon\Mvc\Model\Behavior;
use Phalcon\Mvc\Model\BehaviorInterface;

class Blameable extends Behavior implements BehaviorInterface
{
 public function notify($eventType, $model)
 {
 switch ($eventType) {

 case 'afterCreate':
 case 'afterDelete':
 case 'afterUpdate':

 $userName = // ... get the current user from session

 // Store in a log the username, event type and primary key
 file_put_contents(
 'logs/blamable-log.txt',
 $userName . ' ' . $eventType . ' ' . $model->id
);

 break;

 default:
 /* ignore the rest of events */
 }
 }
}

The former is a very simple behavior, but it illustrates how to create a behavior, now let’s add this behavior to a model:

<?php

use Phalcon\Mvc\Model;

class Profiles extends Model
{
 public function initialize()
 {
 $this->addBehavior(
 new Blameable()
);
 }
}

A behavior is also capable of intercepting missing methods on your models:

<?php

use Phalcon\Tag;
use Phalcon\Mvc\Model\Behavior;
use Phalcon\Mvc\Model\BehaviorInterface;

class Sluggable extends Behavior implements BehaviorInterface
{
 public function missingMethod($model, $method, $arguments = [])
 {
 // If the method is 'getSlug' convert the title
 if ($method === 'getSlug') {
 return Tag::friendlyTitle($model->title);
 }
 }
}

Call that method on a model that implements Sluggable returns a SEO friendly title:

<?php

$title = $post->getSlug();

[bookmark: traits-as-behaviors]

Using Traits as behaviors

You can use Traits [http://php.net/manual/en/language.oop5.traits.php] to re-use code in your classes, this is another way to implement custom behaviors. The following trait implements a simple version of the Timestampable behavior:

<?php

trait MyTimestampable
{
 public function beforeCreate()
 {
 $this->created_at = date('r');
 }

 public function beforeUpdate()
 {
 $this->updated_at = date('r');
 }
}

Then you can use it in your model as follows:

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
 use MyTimestampable;
}

 Installation on WAMP

 	
 Overview
 	
 Download the right version of Phalcon

 	
 Related

[bookmark: overview]

Installation on WAMP

WampServer [http://www.wampserver.com/en/] is a Windows web development environment. It allows you to create web applications with Apache2, PHP and a MySQL database. Below are detailed instructions on how to install Phalcon on WampServer for Windows. Using the latest WampServer version is highly recommended.

[bookmark: phalcon]

Download the right version of Phalcon

WAMP has both 32 and 64 bit versions. From the download section, you can download the Phalcon DLL that suits your WAMPP installation.

After downloading the Phalcon library you will have a zip file like the one shown below:

[image:]

Extract the library from the archive to get the Phalcon DLL:

[image:]

Copy the file php_phalcon.dll to the PHP extensions folder. If WAMP is installed in the C:\wamp folder, the extension needs to be in C:\wamp\bin\php\php5.5.12\ext (assuming your WAMP installation installed PHP 5.5.12).

[image:]

Edit the php.ini file, it is located at C:\wamp\bin\php\php5.5.12\php.ini. It can be edited with Notepad or a similar program. We recommend Notepad++ to avoid issues with line endings. Append at the end of the file:

and save it.

 Also edit the `php.ini` file, which is located at `C:\wamp\bin\apache\apache2.4.9\bin\php.ini`. Append at the end of the file:

    ```ini
    extension=php_phalcon.dll 
    

and save it.

Restart the Apache Web Server. Do a single click on the WampServer icon at system tray. Choose `Restart All Services` from the pop-up menu. Check out that tray icon will become green again.

![](/images/content/webserver-wamp-3.png)

Open your browser to navigate to http://localhost. The WAMP welcome page will appear. Check the section `extensions loaded` to ensure that phalcon was loaded.

![](/images/content/webserver-wamp-4.png)

Congratulations! You are now phlying with Phalcon.

<a name='related'></a>

## Related Guides

- [Installation on XAMPP](/[[language]]/[[version]]/webserver-xampp)











          

      

      

    

  

  
    
    
    Phalcon Developer Tools
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Phalcon Developer Tools 
        	
          Download
        

        	
          Installation
        

        	
          Available Commands
        

        	
          Generating a Project Skeleton
        

        	
          Generating Controllers
        

        	
          Preparing Database Settings
        

        	
          Generating Models
        

        	
          Scaffold a CRUD
        

        	
          Web Interface to Tools
        

        	
          Integrating Tools with PhpStorm IDE
        

        	
          Conclusion
        

      

    

  


[bookmark: overview]


Phalcon Developer Tools

These tools are a collection of useful scripts to generate skeleton code. Core components of your application can be generated with a simple command, allowing you to easily develop applications using Phalcon.

If you prefer to use the web version instead of the console, this blog post offers more information. 
[bookmark: download]


Download

You can download or clone a cross platform package containing the developer tools from Github [https://github.com/phalcon/phalcon-devtools].

[bookmark: installation]




Installation

These are detailed instructions on how to install the developer tools on different platforms:

Linux : MacOS : Windows

[bookmark: available-commands]




Available Commands

You can get a list of available commands in Phalcon tools by typing: :code:phalcon commands

$ phalcon commands

Phalcon DevTools (3.0.0)

Available commands:
  commands         (alias of: list, enumerate)
  controller       (alias of: create-controller)
  module           (alias of: create-module)
  model            (alias of: create-model)
  all-models       (alias of: create-all-models)
  project          (alias of: create-project)
  scaffold         (alias of: create-scaffold)
  migration        (alias of: create-migration)
  webtools         (alias of: create-webtools)





[bookmark: project-skeleton]




Generating a Project Skeleton

You can use Phalcon tools to generate pre-defined project skeletons for your applications with Phalcon framework. By default the project skeleton generator will use mod_rewrite for Apache. Type the following command on your web server document root:

$ pwd

/Applications/MAMP/htdocs

$ phalcon create-project store





The above recommended project structure was generated:

[image: ]

You could add the parameter --help to get help on the usage of a certain script:

$ phalcon project --help

Phalcon DevTools (3.0.0)

Help:
  Creates a project

Usage:
  project [name] [type] [directory] [enable-webtools]

Arguments:
  help    Shows this help text

Example
  phalcon project store simple

Options:
 --name               Name of the new project
 --enable-webtools    Determines if webtools should be enabled [optional]
 --directory=s        Base path on which project will be created [optional]
 --type=s             Type of the application to be generated (cli, micro, simple, modules)
 --template-path=s    Specify a template path [optional]
 --use-config-ini     Use a ini file as configuration file [optional]
 --trace              Shows the trace of the framework in case of exception. [optional]
 --help               Shows this help





Accessing the project from the web server will show you:

[image: ]

[bookmark: generating-controllers]




Generating Controllers

The command create-controller generates controller skeleton structures. It’s important to invoke this command inside a directory that already has a Phalcon project.

$ phalcon create-controller --name test





The following code is generated by the script:

<?php

use Phalcon\Mvc\Controller;

class TestController extends Controller
{
    public function indexAction()
    {

    }
}





[bookmark: database-settings]




Preparing Database Settings

When a project is generated using developer tools. A configuration file can be found in app/config/config.ini. To generate models or scaffold, you will need to change the settings used to connect to your database.

Change the database section in your config.ini file:

[database]
adapter  = Mysql
host     = "127.0.0.1"
username = "root"
password = "secret"
dbname   = "store_db"

[phalcon]
controllersDir = "../app/controllers/"
modelsDir      = "../app/models/"
viewsDir       = "../app/views/"
baseUri        = "/store/"





[bookmark: generating-models]




Generating Models

There are several ways to create models. You can create all models from the default database connection or some selectively. Models can have public attributes for the field representations or setters/getters can be used.

Options:
 --name=s             Table name
 --schema=s           Name of the schema. [optional]
 --namespace=s        Model's namespace [optional]
 --get-set            Attributes will be protected and have setters/getters. [optional]
 --extends=s          Model extends the class name supplied [optional]
 --excludefields=l    Excludes fields defined in a comma separated list [optional]
 --doc                Helps to improve code completion on IDEs [optional]
 --directory=s        Base path on which project will be created [optional]
 --force              Rewrite the model. [optional]
 --trace              Shows the trace of the framework in case of exception. [optional]
 --mapcolumn          Get some code for map columns. [optional]
 --abstract           Abstract Model [optional]





The simplest way to generate a model is:

$ phalcon model products





$ phalcon model --name tablename





All table fields are declared public for direct access.

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
    /**
     * @var integer
     */
    public $id;

    /**
     * @var integer
     */
    public $typesId;

    /**
     * @var string
     */
    public $name;

    /**
     * @var string
     */
    public $price;

    /**
     * @var integer
     */
    public $quantity;

    /**
     * @var string
     */
    public $status;
}





By adding the --get-set you can generate the fields with protected variables and public setter/getter methods. Those methods can help in business logic implementation within the setter/getter methods.

<?php

use Phalcon\Mvc\Model;

class Products extends Model
{
    /**
     * @var integer
     */
    protected $id;

    /**
     * @var integer
     */
    protected $typesId;

    /**
     * @var string
     */
    protected $name;

    /**
     * @var string
     */
    protected $price;

    /**
     * @var integer
     */
    protected $quantity;

    /**
     * @var string
     */
    protected $status;


    /**
     * Method to set the value of field id
     *
     * @param integer $id
     */
    public function setId($id)
    {
        $this->id = $id;
    }

    /**
     * Method to set the value of field typesId
     *
     * @param integer $typesId
     */
    public function setTypesId($typesId)
    {
        $this->typesId = $typesId;
    }

    // ...

    /**
     * Returns the value of field status
     *
     * @return string
     */
    public function getStatus()
    {
        return $this->status;
    }
}





A nice feature of the model generator is that it keeps changes made by the developer between code generations. This allows the addition or removal of fields and properties, without worrying about losing changes made to the model itself. The following screencast shows you how it works:


    
  
    
    
    Logging
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Contextual Escaping
    

    	
      Logging 
        	
          Adapters
        

        	
          Creating a Log
        

        	
          Transactions
        

        	
          Logging to Multiple Handlers
        

        	
          Message Formatting 
            	
              Line Formatter
            

            	
              Implementing your own formatters
            

          

        
    <li>
      <a href="#usage">Adapters</a> <ul>
        <li>
          <a href="#usage-stream">Stream Logger</a>
        </li>
        <li>
          <a href="#usage-file">File Logger</a>
        </li>
        <li>
          <a href="#usage-syslog">Syslog Logger</a>
        </li>
        <li>
          <a href="#usage-firephp">FirePHP Logger</a>
        </li>
        <li>
          <a href="#usage-custom">Implementing your own adapters</a>
        </li>
      </ul>
    </li>
  </ul>
</li>





  


  
    
    
    Class Autoloader
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Class Autoloader 
        	
          Security Layer
        

        	
          Registering Namespaces
        

        	
          Registering Directories
        

        	
          Registering Classes
        

        	
          Registering Files
        

        	
          Additional file extensions
        

        	
          Modifying current strategies
        

        	
          Autoloading Events
        

        	
          Troubleshooting
        

      

    

  


[bookmark: overview]


Class Autoloader

Phalcon\Loader allows you to load project classes automatically, based on some predefined rules. Since this component is written in C, it provides the lowest overhead in reading and interpreting external PHP files.

The behavior of this component is based on the PHP’s capability of autoloading classes [http://www.php.net/manual/en/language.oop5.autoload.php]. If a class that does not yet exist is used in any part of the code, a special handler will try to load it. Phalcon\Loader serves as the special handler for this operation. By loading classes on a need-to-load basis, the overall performance is increased since the only file reads that occur are for the files needed. This technique is called lazy initialization [http://en.wikipedia.org/wiki/Lazy_initialization].

With this component you can load files from other projects or vendors, this autoloader is PSR-0 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md] and PSR-4 [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4.md] compliant.

Phalcon\Loader offers four options to autoload classes. You can use them one at a time or combine them.

[bookmark: security]


Security Layer

Phalcon\Loader offers a security layer sanitizing by default class names avoiding possible inclusion of unauthorized files. Consider the following example:

<?php

// Basic autoloader
spl_autoload_register(
    function ($className) {
        $filepath = $className . '.php';

        if (file_exists($filepath)) {
            require $filepath;
        }
    }
);





The above auto-loader lacks any kind of security. If a function mistakenly launches the auto-loader and a malicious prepared string is used as parameter this would allow to execute any file accessible by the application:

<?php

// This variable is not filtered and comes from an insecure source
$className = '../processes/important-process';

// Check if the class exists triggering the auto-loader
if (class_exists($className)) {
    // ...
}





If ../processes/important-process.php is a valid file, an external user could execute the file without authorization.

To avoid these or most sophisticated attacks, Phalcon\Loader removes invalid characters from the class name, reducing the possibility of being attacked.

[bookmark: registering-namespaces]




Registering Namespaces

If you’re organizing your code using namespaces, or using external libraries which do, the registerNamespaces() method provides the autoloading mechanism. It takes an associative array; the keys are namespace prefixes and their values are directories where the classes are located in. The namespace separator will be replaced by the directory separator when the loader tries to find the classes. Always remember to add a trailing slash at the end of the paths.

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Register some namespaces
$loader->registerNamespaces(
    [
       'Example\Base'    => 'vendor/example/base/',
       'Example\Adapter' => 'vendor/example/adapter/',
       'Example'         => 'vendor/example/',
    ]
);

// Register autoloader
$loader->register();

// The required class will automatically include the
// file vendor/example/adapter/Some.php
$some = new \Example\Adapter\Some();





[bookmark: registering-directories]




Registering Directories

The third option is to register directories, in which classes could be found. This option is not recommended in terms of performance, since Phalcon will need to perform a significant number of file stats on each folder, looking for the file with the same name as the class. It’s important to register the directories in relevance order. Remember always add a trailing slash at the end of the paths.

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Register some directories
$loader->registerDirs(
    [
        'library/MyComponent/',
        'library/OtherComponent/Other/',
        'vendor/example/adapters/',
        'vendor/example/',
    ]
);

// Register autoloader
$loader->register();

// The required class will automatically include the file from
// the first directory where it has been located
// i.e. library/OtherComponent/Other/Some.php
$some = new \Some();





[bookmark: registering-classes]




Registering Classes

The last option is to register the class name and its path. This autoloader can be very useful when the folder convention of the project does not allow for easy retrieval of the file using the path and the class name. This is the fastest method of autoloading. However the more your application grows, the more classes/files need to be added to this autoloader, which will effectively make maintenance of the class list very cumbersome and it is not recommended.

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Register some classes
$loader->registerClasses(
    [
        'Some'         => 'library/OtherComponent/Other/Some.php',
        'Example\Base' => 'vendor/example/adapters/Example/BaseClass.php',
    ]
);

// Register autoloader
$loader->register();

// Requiring a class will automatically include the file it references
// in the associative array
// i.e. library/OtherComponent/Other/Some.php
$some = new \Some();





[bookmark: registering-files]




Registering Files

You can also registers files that are non-classes hence needing a require. This is very useful for including files that only have functions:

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Register some classes
$loader->registerFiles(
    [
        'functions.php',
        'arrayFunctions.php',
    ]
);

// Register autoloader
$loader->register();





These files are automatically loaded in the register() method.

[bookmark: registering-file-extensions]




Additional file extensions

Some autoloading strategies such as prefixes, namespaces or directories automatically append the php extension at the end of the checked file. If you are using additional extensions you could set it with the method setExtensions. Files are checked in the order as it were defined:

<?php

use Phalcon\Loader;

// Creates the autoloader
$loader = new Loader();

// Set file extensions to check
$loader->setExtensions(
    [
        'php',
        'inc',
        'phb',
    ]
);





[bookmark: modifying-current-strategies]




Modifying current strategies

Additional auto-loading data can be added to existing values by passing true as the second parameter:

<?php

// Adding more directories
$loader->registerDirs(
    [
        '../app/library/',
        '../app/plugins/',
    ],
    true
);





[bookmark: events]




Autoloading Events

In the following example, the EventsManager is working with the class loader, allowing us to obtain debugging information regarding the flow of operation:

<?php

use Phalcon\Events\Event;
use Phalcon\Events\Manager as EventsManager;
use Phalcon\Loader;

$eventsManager = new EventsManager();

$loader = new Loader();

$loader->registerNamespaces(
    [
        'Example\Base'    => 'vendor/example/base/',
        'Example\Adapter' => 'vendor/example/adapter/',
        'Example'         => 'vendor/example/',
    ]
);

// Listen all the loader events
$eventsManager->attach(
    'loader:beforeCheckPath',
    function (Event $event, Loader $loader) {
        echo $loader->getCheckedPath();
    }
);

$loader->setEventsManager($eventsManager);

$loader->register();





Some events when returning boolean false could stop the active operation. The following events are supported:

| Event Name         | Triggered                                                                                                           | Can stop operation? |
| —————— | ——————————————————————————————————————- | ——————- |
| beforeCheckClass | Triggered before starting the autoloading process                                                                   | Yes                 |
| pathFound        | Triggered when the loader locate a class                                                                            | No                  |
| afterCheckClass  | Triggered after finish the autoloading process. If this event is launched the autoloader didn’t find the class file | No                  |

[bookmark: troubleshooting]




Troubleshooting

Some things to keep in mind when using the universal autoloader:


	Auto-loading process is case-sensitive, the class will be loaded as it is written in the code

	Strategies based on namespaces/prefixes are faster than the directories strategy

	If a cache bytecode like APC [http://php.net/manual/en/book.apc.php] is installed this will used to retrieve the requested file (an implicit caching of the file is performed)









          

      

      

    

  

  
    
    
    Queueing
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Χρησημοποίηση Ουρών 
        	
          Putting Jobs into the Queue
        

        	
          Retrieving Messages
        

      

    

  


[bookmark: overview]


Queueing

Activities like processing videos, resizing images or sending emails aren’t suitable to be executed online or in real time because it may slow the loading time of pages and severely impact the user experience.

The best solution here is to implement background jobs. The web application puts jobs into a queue and which will be processed separately.

While you can find more sophisticated PHP extensions to address queueing in your applications like RabbitMQ [http://pecl.php.net/package/amqp]; Phalcon provides a client for Beanstalk [http://www.igvita.com/2010/05/20/scalable-work-queues-with-beanstalk/], a job queueing backend inspired by Memcached [http://memcached.org/]. It’s simple, lightweight, and completely specialized for job queueing.

Some of the data returned from queue methods require that the module Yaml be installed. Please refer to this for more information. You will need to use Yaml >= 2.0.0 
[bookmark: put-jobs-in-queue]


Putting Jobs into the Queue

After connecting to Beanstalk you can insert as many jobs as required. You can define the message structure according to the needs of the application:

<?php

use Phalcon\Queue\Beanstalk;

// Connect to the queue
$queue = new Beanstalk(
    [
        'host' => '192.168.0.21',
        'port' => '11300',
    ]
);

// Insert the job in the queue
$queue->put(
    [
        'processVideo' => 4871,
    ]
);





Available connection options are:

| Option | Description                              | Default   |
| —— | —————————————- | ——— |
| host   | IP where the beanstalk server is located | 127.0.0.1 |
| port   | Connection port                          | 11300     |

In the above example we stored a message which will allow a background job to process a video. The message is stored in the queue immediately and does not have a certain time to live.

Additional options as: time to run, priority and delay can be passed as second parameter:

<?php

// Insert the job in the queue with options
$queue->put(
    [
        'processVideo' => 4871,
    ],
    [
        'priority' => 250,
        'delay'    => 10,
        'ttr'      => 3600,
    ]
);





The following options are available:

| Option   | Description                                                                                                                                                                                 |
| ——– | ——————————————————————————————————————————————————————————————- |
| priority | It’s an integer < 2**32. Jobs with smaller priority values will be scheduled before jobs with larger priorities. The most urgent priority is 0; the least urgent priority is 4,294,967,295. |
| delay    | It’s an integer number of seconds to wait before putting the job in the ready queue. The job will be in the ‘delayed’ state during this time.                                               |
| ttr      | Time to run – is an integer number of seconds to allow a worker to run this job. This time is counted from the moment a worker reserves this job.                                          |

Every job put into the queue returns a job id which you can use to track the status of the job:

<?php

$jobId = $queue->put(
    [
        'processVideo' => 4871,
    ]
);





[bookmark: retrieving-messages]




Retrieving Messages

Once a job is placed into the queue, those messages can be consumed by a background worker which will have enough time to complete the task:

<?php

while (($job = $queue->peekReady()) !== false) {
    $message = $job->getBody();

    var_dump($message);

    $job->delete();
}





Jobs must be removed from the queue to avoid double processing. If multiple background jobs workers are implemented, jobs must be reserved so other workers don’t re-process them while other workers have them reserved:

<?php

while (($job = $queue->reserve()) !== false) {
    $message = $job->getBody();

    var_dump($message);

    $job->delete();
}





Our client implements a basic set of the features provided by Beanstalkd but enough to allow you to build applications implementing queues.







          

      

      

    

  

  
    
    
    Tutorial: Vökuró
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Σεμινάριο: Vökuró 
        	
          Project Structure
        

        	
          Load Classes and Dependencies
        

        	
          Sign Up
        

      

    

  


[bookmark: overview]


Tutorial: Vökuró

Vökuró is another sample application you can use to learn more about Phalcon. Vökuró is a small website that shows how to implement a security features and management of users and permissions. You can clone its code from Github [https://github.com/phalcon/vokuro].

[bookmark: structure]


Project Structure

Once you clone the project in your document root you’ll see the following structure:

vokuro/
    app/
        config/
        controllers/
        forms/
        library/
        models/
        views/
    cache/
    public/
        css/
        img/
    schemas/





This project follows a quite similar structure to INVO. Once you open the application in your browser http://localhost/vokuro you’ll see something like this:

[image: ]

The application is divided into two parts, a frontend, where visitors can sign up the service and a backend where administrative users can manage registered users. Both frontend and backend are combined in a single module.

[bookmark: dependencies]




Load Classes and Dependencies

This project uses Phalcon\Loader to load controllers, models, forms, etc. within the project and composer [https://getcomposer.org/] to load the project’s dependencies. So, the first thing you have to do before execute Vökuró is install its dependencies via composer [https://getcomposer.org/]. Assuming you have it correctly installed, type the following command in the console:

cd vokuro
composer install





Vökuró sends emails to confirm the sign up of registered users using Swift, the composer.json looks like:

{
    "require" : {
        "php": ">=5.5.0",
        "ext-phalcon": ">=3.0.0",
        "swiftmailer/swiftmailer": "^5.4",
        "amazonwebservices/aws-sdk-for-php": "~1.0"
    }
}





Now, there is a file called app/config/loader.php where all the auto-loading stuff is set up. At the end of this file you can see that the composer autoloader is included enabling the application to autoload any of the classes in the downloaded dependencies:

<?php

// ...

// Use composer autoloader to load vendor classes
require_once BASE_PATH . '/vendor/autoload.php';





Moreover, Vökuró, unlike the INVO, utilizes namespaces for controllers and models which is the recommended practice to structure a project. This way the autoloader looks slightly different than the one we saw before (app/config/loader.php):

<?php

use Phalcon\Loader;

$loader = new Loader();

$loader->registerNamespaces(
    [
        'Vokuro\Models'      => $config->application->modelsDir,
        'Vokuro\Controllers' => $config->application->controllersDir,
        'Vokuro\Forms'       => $config->application->formsDir,
        'Vokuro'             => $config->application->libraryDir,
    ]
);

$loader->register();

// ...





Instead of using registerDirectories(), we use registerNamespaces(). Every namespace points to a directory defined in the configuration file (app/config/config.php). For instance the namespace Vokuro\Controllers points to app/controllers so all the classes required by the application within this namespace requires it in its definition:

<?php

namespace Vokuro\Controllers;

class AboutController extends ControllerBase
{
    // ...
}





[bookmark: sign-up]




Sign Up

First, let’s check how users are registered in Vökuró. When a user clicks the Create an Account button, the controller SessionController is invoked and the action signup is executed:

<?php

namespace Vokuro\Controllers;

use Vokuro\Forms\SignUpForm;

class RegisterController extends ControllerBase
{
    public function signupAction()
    {
        $form = new SignUpForm();

        // ...

        $this->view->form = $form;
    }
}





This action simply pass a form instance of SignUpForm to the view, which itself is rendered to allow the user enter the login details:

{{ form('class': 'form-search') }}

    <h2>
        Sign Up
    </h2>

    <p>{{ form.label('name') }}</p>
    <p>
        {{ form.render('name') }}
        {{ form.messages('name') }}
    </p>

    <p>{{ form.label('email') }}</p>
    <p>
        {{ form.render('email') }}
        {{ form.messages('email') }}
    </p>

    <p>{{ form.label('password') }}</p>
    <p>
        {{ form.render('password') }}
        {{ form.messages('password') }}
    </p>

    <p>{{ form.label('confirmPassword') }}</p>
    <p>
        {{ form.render('confirmPassword') }}
        {{ form.messages('confirmPassword') }}
    </p>

    <p>
        {{ form.render('terms') }} {{ form.label('terms') }}
        {{ form.messages('terms') }}
    </p>

    <p>{{ form.render('Sign Up') }}</p>

    {{ form.render('csrf', ['value': security.getToken()]) }}
    {{ form.messages('csrf') }}

    <hr>

{{ endForm() }}











          

      

      

    

  

  
    
    
    Improving Performance with Cache
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Improving Performance with Cache 
        	
          When to implement cache?
        

        	
          Caching Behavior
        

        	
          Caching Output Fragments
        

        	
          Caching Arbitrary Data 
            	
              File Backend Example
            

            	
              Memcached Backend Example
            

          

        
    <li>
      <a href="#read">Querying the cache</a>
    </li>
    <li>
      <a href="#delete">Deleting data from the cache</a>
    </li>
    <li>
      <a href="#exists">Checking cache existence</a>
    </li>
    <li>
      <a href="#lifetime">Lifetime</a>
    </li>
    <li>
      <a href="#multi-level">Multi-Level Cache</a>
    </li>
    <li>
      <a href="#adapters-frontend">Frontend Adapters</a> <ul>
        <li>
          <a href="#adapters-frontend-custom">Implementing your own Frontend adapters</a>
        </li>
      </ul>
    </li>
    
    <li>
      <a href="#adapters-backend">Backend Adapters</a> <ul>
        <li>
          <a href="#adapters-backend-custom">Implementing your own Backend adapters</a>
        </li>
        <li>
          <a href="#adapters-backend-file">File Backend Options</a>
        </li>
        <li>
          <a href="#adapters-backend-libmemcached">Libmemcached Backend Options</a>
        </li>
        <li>
          <a href="#adapters-backend-memcache">Memcache Backend Options</a>
        </li>
        <li>
          <a href="#adapters-backend-apc">APC Backend Options</a>
        </li>
        <li>
          <a href="#adapters-backend-mongo">Mongo Backend Options</a>
        </li>
        <li>
          <a href="#adapters-backend-xcache">XCache Backend Options</a>
        </li>
        <li>
          <a href="#adapters-backend-redis">Redis Backend Options</a>
        </li>
      </ul>
    </li>
  </ul>
</li>





  


  
    
    
    Returning Responses
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Returning Responses 
        	
          Working with Headers
        

        	
          Making Redirections
        

        	
          HTTP Cache 
            	
              Setting an Expiration Time
            

            	
              Cache-Control
            

            	
              E-Tag
            

          

        

      

    

  


[bookmark: overview]


Returning Responses

Part of the HTTP cycle is returning responses to clients. Phalcon\Http\Response is the Phalcon component designed to achieve this task. HTTP responses are usually composed by headers and body. The following is an example of basic usage:

<?php

use Phalcon\Http\Response;

// Getting a response instance
$response = new Response();

// Set status code
$response->setStatusCode(404, 'Not Found');

// Set the content of the response
$response->setContent("Sorry, the page doesn't exist");

// Send response to the client
$response->send();





If you are using the full MVC stack there is no need to create responses manually. However, if you need to return a response directly from a controller’s action follow this example:

<?php

use Phalcon\Http\Response;
use Phalcon\Mvc\Controller;

class FeedController extends Controller
{
    public function getAction()
    {
        // Getting a response instance
        $response = new Response();

        $feed = // ... Load here the feed

        // Set the content of the response
        $response->setContent(
            $feed->asString()
        );

        // Return the response
        return $response;
    }
}





[bookmark: working-with-headers]


Working with Headers

Headers are an important part of the HTTP response. It contains useful information about the response state like the HTTP status, type of response and much more.

You can set headers in the following way:

<?php

// Setting a header by its name
$response->setHeader('Content-Type', 'application/pdf');
$response->setHeader('Content-Disposition', "attachment; filename='downloaded.pdf'");

// Setting a raw header
$response->setRawHeader('HTTP/1.1 200 OK');





A Phalcon\Http\Response\Headers bag internally manages headers. This class retrieves the headers before sending it to client:

<?php

// Get the headers bag
$headers = $response->getHeaders();

// Get a header by its name
$contentType = $headers->get('Content-Type');





[bookmark: redirections]




Making Redirections

With Phalcon\Http\Response you can also execute HTTP redirections:

<?php

// Redirect to the default URI
$response->redirect();

// Redirect to the local base URI
$response->redirect('posts/index');

// Redirect to an external URL
$response->redirect('http://en.wikipedia.org', true);

// Redirect specifying the HTTP status code
$response->redirect('http://www.example.com/new-location', true, 301);





All internal URIs are generated using the url service (by default Phalcon\Mvc\Url). This example demonstrates how you can redirect using a route you have defined in your application:

<?php

// Redirect based on a named route
return $response->redirect(
    [
        'for'        => 'index-lang',
        'lang'       => 'jp',
        'controller' => 'index',
    ]
);





Note that a redirection doesn’t disable the view component, so if there is a view associated with the current action it will be executed anyway. You can disable the view from a controller by executing $this->view->disable();

[bookmark: http-cache]




HTTP Cache

One of the easiest ways to improve the performance in your applications and reduce the traffic is using HTTP Cache. Most modern browsers support HTTP caching and is one of the reasons why many websites are currently fast.

HTTP Cache can be altered in the following header values sent by the application when serving a page for the first time:


	Expires: With this header the application can set a date in the future or the past telling the browser when the page must expire.

	Cache-Control: This header allows to specify how much time a page should be considered fresh in the browser.

	Last-Modified: This header tells the browser which was the last time the site was updated avoiding page re-loads

	ETag: An etag is a unique identifier that must be created including the modification timestamp of the current page



[bookmark: http-cache-expiration-time]


Setting an Expiration Time

The expiration date is one of the easiest and most effective ways to cache a page in the client (browser). Starting from the current date we add the amount of time the page will be stored in the browser cache. Until this date expires no new content will be requested from the server:

<?php

$expiryDate = new DateTime();
$expiryDate->modify('+2 months');

$response->setExpires($expiryDate);





The Response component automatically shows the date in GMT timezone as expected in an Expires header.

If we set this value to a date in the past the browser will always refresh the requested page:

<?php

$expiryDate = new DateTime();
$expiryDate->modify('-10 minutes');

$response->setExpires($expiryDate);





Browsers rely on the client’s clock to assess if this date has passed or not. The client clock can be modified to make pages expire and this may represent a limitation for this cache mechanism.

[bookmark: http-cache-control]




Cache-Control

This header provides a safer way to cache the pages served. We simply must specify a time in seconds telling the browser how long it must keep the page in its cache:

<?php

// Starting from now, cache the page for one day
$response->setHeader('Cache-Control', 'max-age=86400');





The opposite effect (avoid page caching) is achieved in this way:

<?php

// Never cache the served page
$response->setHeader('Cache-Control', 'private, max-age=0, must-revalidate');





[bookmark: http-cache-etag]




E-Tag

An entity-tag or E-tag is a unique identifier that helps the browser realize if the page has changed or not between two requests. The identifier must be calculated taking into account that this must change if the previously served content has changed:

<?php

// Calculate the E-Tag based on the modification time of the latest news
$mostRecentDate = News::maximum(
    [
        'column' => 'created_at'
    ]
);

$eTag = md5($mostRecentDate);

// Send an E-Tag header
$response->setHeader('E-Tag', $eTag);













          

      

      

    

  

  
    
    
    Tutorial: INVO
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Σεμινάριο: INVO 
        	
          Project Structure
        

        	
          Routing
        

        	
          Configuration
        

        	
          Autoloaders
        

        	
          Registering services
        

        	
          Handling the Request
        

        	
          Dependency Injection
        

        	
          Log into the Application
        

        	
          Securing the Backend 
            	
              Events Management
            

            	
              Getting the ACL list
            

          

        
    <li>
      <a href="#working-with-crud">Working with the CRUD</a>
    </li>
    <li>
      <a href="#search-form">The Search Form</a>
    </li>
    <li>
      <a href="#performing-searches">Performing a Search</a>
    </li>
    <li>
      <a href="#creating-updating-records">Creating and Updating Records</a>
    </li>
    <li>
      <a href="#user-components">User Components</a>
    </li>
    <li>
      <a href="#dynamic-titles">Changing the Title Dynamically</a>
    </li>
  </ul>
</li>





  


  
    
    
    Annotations Parser
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Annotations Parser 
        	
          Reading Annotations
        

        	
          Types of Annotations
        

        	
          Practical Usage 
            	
              Cache Enabler with Annotations
            

            	
              Private/Public areas with Annotations
            

          

        
    <li>
      <a href="#adapters">Annotations Adapters</a> <ul>
        <li>
          <a href="#adapters-custom">Implementing your own adapters</a>
        </li>
      </ul>
    </li>
    
    <li>
      <a href="#resources">External Resources</a>
    </li>
  </ul>
</li>





  


  
    
    
    New Pull Request
    
    

    
 
  
  

    
      
          
            
  
New Pull Request

A pull request is alterations to the code that either fixes a current issue or introduces new functionality.

Your Pull request must include: * Issued to the correct branch. We do not accept Pull Requests to the master branch * Update to the CHANGELOG * Unit tests * Documentation if necessary and usage examples

For fixing bugs, please ensure that you reference the issue in Github. If such issue does not exist, create one.

For new functionality, again we will need to have an issue created and referenced. If the functionality you are introducing collides with the philosophy and implementation of Phalcon it will be rejected. Additionally any new functionality that introduces breaking changes will be rejected at least for the current version but could very well be implemented in the next major version. It is highly recommended to discuss your NFR and PR with the core team and most importantly with the community so as to get feedback.





          

      

      

    

  

  
    
    
    Storing data in the Session
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Storing data in the Session 
        	
          Starting the Session
        

        	
          Storing/Retrieving data in Session
        

        	
          Removing/Destroying Sessions
        

        	
          Isolating Session Data between Applications
        

        	
          Session Bags
        

        	
          Persistent Data in Components
        

        	
          Implementing your own adapters
        

      

    

  


[bookmark: overview]


Storing data in the Session

The session component provides object-oriented wrappers to access session data.

Reasons to use this component instead of raw-sessions:


	You can easily isolate session data across applications on the same domain

	Intercept where session data is set/get in your application

	Change the session adapter according to the application needs



[bookmark: start]


Starting the Session

Some applications are session-intensive, almost any action that performs requires access to session data. There are others who access session data casually. Thanks to the service container, we can ensure that the session is accessed only when it’s clearly needed:

<?php

use Phalcon\Session\Adapter\Files as Session;

// Start the session the first time when some component request the session service
$di->setShared(
    'session',
    function () {
        $session = new Session();

        $session->start();

        return $session;
    }
);





[bookmark: store]




Storing/Retrieving data in Session

From a controller, a view or any other component that extends Phalcon\Di\Injectable you can access the session service and store items and retrieve them in the following way:

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
    public function indexAction()
    {
        // Set a session variable
        $this->session->set('user-name', 'Michael');
    }

    public function welcomeAction()
    {
        // Check if the variable is defined
        if ($this->session->has('user-name')) {
            // Retrieve its value
            $name = $this->session->get('user-name');
        }
    }

}





[bookmark: remove-destroy]




Removing/Destroying Sessions

It’s also possible remove specific variables or destroy the whole session:

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
    public function removeAction()
    {
        // Remove a session variable
        $this->session->remove('user-name');
    }

    public function logoutAction()
    {
        // Destroy the whole session
        $this->session->destroy();
    }
}





[bookmark: data-isolation]




Isolating Session Data between Applications

Sometimes a user can use the same application twice, on the same server, in the same session. Surely, if we use variables in session, we want that every application have separate session data (even though the same code and same variable names). To solve this, you can add a prefix for every session variable created in a certain application:

<?php

use Phalcon\Session\Adapter\Files as Session;

// Isolating the session data
$di->set(
    'session',
    function () {
        // All variables created will prefixed with 'my-app-1'
        $session = new Session(
            [
                'uniqueId' => 'my-app-1',
            ]
        );

        $session->start();

        return $session;
    }
);





Adding a unique ID is not necessary.

[bookmark: bags]




Session Bags

Phalcon\Session\Bag is a component that helps separating session data into namespaces. Working by this way you can easily create groups of session variables into the application. By only setting the variables in the bag, it’s automatically stored in session:

<?php

use Phalcon\Session\Bag as SessionBag;

$user = new SessionBag('user');

$user->setDI($di);

$user->name = 'Kimbra Johnson';
$user->age  = 22;





[bookmark: data-persistency]




Persistent Data in Components

Controller, components and classes that extends Phalcon\Di\Injectable may inject a Phalcon\Session\Bag. This class isolates variables for every class. Thanks to this you can persist data between requests in every class in an independent way.

<?php

use Phalcon\Mvc\Controller;

class UserController extends Controller
{
    public function indexAction()
    {
        // Create a persistent variable 'name'
        $this->persistent->name = 'Laura';
    }

    public function welcomeAction()
    {
        if (isset($this->persistent->name)) {
            echo 'Welcome, ', $this->persistent->name;
        }
    }
}





In a component:

<?php

use Phalcon\Mvc\User\Component;

class Security extends Component
{
    public function auth()
    {
        // Create a persistent variable 'name'
        $this->persistent->name = 'Laura';
    }

    public function getAuthName()
    {
        return $this->persistent->name;
    }
}





The data added to the session ($this->session) are available throughout the application, while persistent ($this->persistent) can only be accessed in the scope of the current class.

[bookmark: custom-adapters]




Implementing your own adapters

The Phalcon\Session\AdapterInterface interface must be implemented in order to create your own session adapters or extend the existing ones.

There are more adapters available for this components in the Phalcon Incubator [https://github.com/phalcon/incubator/tree/master/Library/Phalcon/Session/Adapter]







          

      

      

    

  

  
    
    
    Creating a Command Line (CLI) Application
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Creating a CLI Application 
        	
          Structure
        

        	
          Creating a Bootstrap
        

        	
          Tasks
        

        	
          Processing action parameters
        

        	
          Running tasks in a chain
        

      

    

  


[bookmark: creating-cli-application]


Creating a Command Line (CLI) Application

CLI applications are executed from the command line. They are useful to create cron jobs, scripts, command utilities and more.

[bookmark: structure]


Structure

A minimal structure of a CLI application will look like this:


	app/config/config.php

	app/tasks/MainTask.php

	app/cli.php <– main bootstrap file



[bookmark: creating-bootstrap]




Creating a Bootstrap

As in regular MVC applications, a bootstrap file is used to bootstrap the application. Instead of the index.php bootstrapper in web applications, we use a cli.php file for bootstrapping the application.

Below is a sample bootstrap that is being used for this example.

<?php

use Phalcon\Di\FactoryDefault\Cli as CliDI;
use Phalcon\Cli\Console as ConsoleApp;
use Phalcon\Loader;

// Using the CLI factory default services container
$di = new CliDI();

/**
 * Register the autoloader and tell it to register the tasks directory
 */
$loader = new Loader();

$loader->registerDirs(
    [
        __DIR__ . '/tasks',
    ]
);

$loader->register();

// Load the configuration file (if any)
$configFile = __DIR__ . '/config/config.php';

if (is_readable($configFile)) {
    $config = include $configFile;

    $di->set('config', $config);
}

// Create a console application
$console = new ConsoleApp();

$console->setDI($di);

/**
 * Process the console arguments
 */
$arguments = [];

foreach ($argv as $k => $arg) {
    if ($k === 1) {
        $arguments['task'] = $arg;
    } elseif ($k === 2) {
        $arguments['action'] = $arg;
    } elseif ($k >= 3) {
        $arguments['params'][] = $arg;
    }
}

try {
    // Handle incoming arguments
    $console->handle($arguments);
} catch (\Phalcon\Exception $e) {
    // Do Phalcon related stuff here
    // ..
    fwrite(STDERR, $e->getMessage() . PHP_EOL);
    exit(1);
} catch (\Throwable $throwable) {
    fwrite(STDERR, $throwable->getMessage() . PHP_EOL);
    exit(1);
} catch (\Exception $exception) {
    fwrite(STDERR, $exception->getMessage() . PHP_EOL);
    exit(1);
}





This piece of code can be run using:

php app/cli.php





[bookmark: tasks]




Tasks

Tasks work similar to controllers. Any CLI application needs at least a MainTask and a mainAction and every task needs to have a mainAction which will run if no action is given explicitly.

Below is an example of the app/tasks/MainTask.php file:

<?php

use Phalcon\Cli\Task;

class MainTask extends Task
{
    public function mainAction()
    {
        echo 'This is the default task and the default action' . PHP_EOL;
    }
}





[bookmark: processing-action-parameters]




Processing action parameters

It’s possible to pass parameters to actions, the code for this is already present in the sample bootstrap.

If you run the application with the following parameters and action:

<?php

use Phalcon\Cli\Task;

class MainTask extends Task
{
    public function mainAction()
    {
        echo 'This is the default task and the default action' . PHP_EOL;
    }

    /**
     * @param array $params
     */
    public function testAction(array $params)
    {
        echo sprintf('hello %s', $params[0]);

        echo PHP_EOL;

        echo sprintf('best regards, %s', $params[1]);

        echo PHP_EOL;
    }
}





We can then run the following command:

php app/cli.php main test world universe

hello world
best regards, universe





[bookmark: running-tasks-chain]




Running tasks in a chain

It’s also possible to run tasks in a chain if it’s required. To accomplish this you must add the console itself to the DI:

<?php

$di->setShared("console", $console);

try {
    // Handle incoming arguments
    $console->handle($arguments);
} catch (\Phalcon\Exception $e) {
    // Do Phalcon related stuff here
    // ..
    fwrite(STDERR, $e->getMessage() . PHP_EOL);
    exit(1);
} catch (\Throwable $throwable) {
    fwrite(STDERR, $throwable->getMessage() . PHP_EOL);
    exit(1);
} catch (\Exception $exception) {
    fwrite(STDERR, $exception->getMessage() . PHP_EOL);
    exit(1);
}





Then you can use the console inside of any task. Below is an example of a modified MainTask.php:

<?php

use Phalcon\Cli\Task;

class MainTask extends Task
{
    public function mainAction()
    {
        echo "This is the default task and the default action" . PHP_EOL;

        $this->console->handle(
            [
                "task"   => "main",
                "action" => "test",
            ]
        );
    }

    public function testAction()
    {
        echo "I will get printed too!" . PHP_EOL;
    }
}





However, it’s a better idea to extend Phalcon\Cli\Task and implement this kind of logic there.







          

      

      

    

  

  
    
    
    Filtering and Sanitizing
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Filtering and Sanitizing 
        	
          Types of Built-in Filters
        

        	
          Sanitizing data
        

        	
          Sanitizing from Controllers
        

        	
          Filtering Action Parameters
        

        	
          Filtering data
        

        	
          Combining Filters
        

        	
          Adding filters
        

        	
          Complex Sanitizing and Filtering
        

        	
          Implementing your own Filter
        

      

    

  


[bookmark: overview]


Filtering and Sanitizing

Sanitizing user input is a critical part of software development. Trusting or neglecting to sanitize user input could lead to unauthorized access to the content of your application, mainly user data, or even the server your application is hosted on.

[image: ]

Full image on XKCD [http://xkcd.com/327]

The Phalcon\Filter component provides a set of commonly used filters and data sanitizing helpers. It provides object-oriented wrappers around the PHP filter extension.

[bookmark: types]


Types of Built-in Filters

The following are the built-in filters provided by this component:

| Name      | Description                                                                             | |
| ——— | ————————————————————————————— |
| string    | Strip tags and encode HTML entities, including single and double quotes.                |
| email     | Remove all characters except letters, digits and !#$%&*+-/=?^_{|}~@.[]`.       |
| int       | Remove all characters except digits, plus and minus sign.                               |
| float     | Remove all characters except digits, dot, plus and minus sign.                          |
| alphanum  | Remove all characters except [a-zA-Z0-9]                                                |
| striptags | Applies the strip_tags [http://www.php.net/manual/en/function.strip-tags.php] function |
| trim      | Applies the trim [http://www.php.net/manual/en/function.trim.php] function             |
| lower     | Applies the strtolower [http://www.php.net/manual/en/function.strtolower.php] function |
| upper     | Applies the strtoupper [http://www.php.net/manual/en/function.strtoupper.php] function |

[bookmark: sanitizing]




Sanitizing data

Sanitizing is the process which removes specific characters from a value, that are not required or desired by the user or application. By sanitizing input we ensure that application integrity will be intact.

<?php

use Phalcon\Filter;

$filter = new Filter();

// Returns 'someone@example.com'
$filter->sanitize('some(one)@exa\mple.com', 'email');

// Returns 'hello'
$filter->sanitize('hello<<', 'string');

// Returns '100019'
$filter->sanitize('!100a019', 'int');

// Returns '100019.01'
$filter->sanitize('!100a019.01a', 'float');





[bookmark: sanitizing-from-controllers]




Sanitizing from Controllers

You can access a Phalcon\Filter object from your controllers when accessing GET or POST input data (through the request object). The first parameter is the name of the variable to be obtained; the second is the filter to be applied on it.

<?php

use Phalcon\Mvc\Controller;

class ProductsController extends Controller
{
    public function indexAction()
    {

    }

    public function saveAction()
    {
        // Sanitizing price from input
        $price = $this->request->getPost('price', 'double');

        // Sanitizing email from input
        $email = $this->request->getPost('customerEmail', 'email');
    }
}





[bookmark: filtering-action-parameters]




Filtering Action Parameters

The next example shows you how to sanitize the action parameters within a controller action:

<?php

use Phalcon\Mvc\Controller;

class ProductsController extends Controller
{
    public function indexAction()
    {

    }

    public function showAction($productId)
    {
        $productId = $this->filter->sanitize($productId, 'int');
    }
}





[bookmark: filtering-data]




Filtering data

In addition to sanitizing, Phalcon\Filter also provides filtering by removing or modifying input data to the format we expect.

<?php

use Phalcon\Filter;

$filter = new Filter();

// Returns 'Hello'
$filter->sanitize('<h1>Hello</h1>', 'striptags');

// Returns 'Hello'
$filter->sanitize('  Hello   ', 'trim');





[bookmark: combining-filters]




Combining Filters

You can also run multiple filters on a string at the same time by passing an array of filter identifiers as the second parameter:

<?php

use Phalcon\Filter;

$filter = new Filter();

// Returns 'Hello'
$filter->sanitize(
    '   <h1> Hello </h1>   ',
    [
        'striptags',
        'trim',
    ]
);





[bookmark: adding-filters]




Adding filters

You can add your own filters to Phalcon\Filter. The filter function could be an anonymous function:

<?php

use Phalcon\Filter;

$filter = new Filter();

// Using an anonymous function
$filter->add(
    'md5',
    function ($value) {
        return preg_replace('/[^0-9a-f]/', '', $value);
    }
);

// Sanitize with the 'md5' filter
$filtered = $filter->sanitize($possibleMd5, 'md5');





Or, if you prefer, you can implement the filter in a class:

<?php

use Phalcon\Filter;

class IPv4Filter
{
    public function filter($value)
    {
        return filter_var($value, FILTER_VALIDATE_IP, FILTER_FLAG_IPV4);
    }
}

$filter = new Filter();

// Using an object
$filter->add(
    'ipv4',
    new IPv4Filter()
);

// Sanitize with the 'ipv4' filter
$filteredIp = $filter->sanitize('127.0.0.1', 'ipv4');





[bookmark: complex-sanitization-filtering]




Complex Sanitizing and Filtering

PHP itself provides an excellent filter extension you can use. Check out its documentation: Data Filtering at PHP Documentation [http://www.php.net/manual/en/book.filter.php]

[bookmark: custom]




Implementing your own Filter

The Phalcon\FilterInterface interface must be implemented to create your own filtering service replacing the one provided by Phalcon.







          

      

      

    

  

  
    
    
    Validation
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Validation 
        	
          Initializing Validation
        

        	
          Validators
        

        	
          Callback Validator
        

        	
          Validation Messages
        

        	
          Filtering of Data
        

        	
          Validation Events
        

        	
          Cancelling Validations
        

        	
          Avoid validating empty values
        

        	
          Recursive Validation
        

      

    

  


[bookmark: overview]


Validation

Phalcon\Validation is an independent validation component that validates an arbitrary set of data. This component can be used to implement validation rules on data objects that do not belong to a model or collection.

The following example shows its basic usage:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Validator\Email;
use Phalcon\Validation\Validator\PresenceOf;

$validation = new Validation();

$validation->add(
    'name',
    new PresenceOf(
        [
            'message' => 'The name is required',
        ]
    )
);

$validation->add(
    'email',
    new PresenceOf(
        [
            'message' => 'The e-mail is required',
        ]
    )
);

$validation->add(
    'email',
    new Email(
        [
            'message' => 'The e-mail is not valid',
        ]
    )
);

$messages = $validation->validate($_POST);

if (count($messages)) {
    foreach ($messages as $message) {
        echo $message, '<br>';
    }
}





The loosely-coupled design of this component allows you to create your own validators along with the ones provided by the framework.

[bookmark: initializing]


Initializing Validation

Validation chains can be initialized in a direct manner by just adding validators to the Phalcon\Validation object. You can put your validations in a separate file for better re-use code and organization:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Validator\Email;
use Phalcon\Validation\Validator\PresenceOf;

class MyValidation extends Validation
{
    public function initialize()
    {
        $this->add(
            'name',
            new PresenceOf(
                [
                    'message' => 'The name is required',
                ]
            )
        );

        $this->add(
            'email',
            new PresenceOf(
                [
                    'message' => 'The e-mail is required',
                ]
            )
        );

        $this->add(
            'email',
            new Email(
                [
                    'message' => 'The e-mail is not valid',
                ]
            )
        );
    }
}





Then initialize and use your own validator:

<?php

$validation = new MyValidation();

$messages = $validation->validate($_POST);

if (count($messages)) {
    foreach ($messages as $message) {
        echo $message, '<br>';
    }
}





[bookmark: validators]




Validators

Phalcon exposes a set of built-in validators for this component:

| Class                                          | Explanation                                                       |
| ———————————————- | —————————————————————– |
| Phalcon\Validation\Validator\Alnum        | Validates that a field’s value is only alphanumeric character(s). |
| Phalcon\Validation\Validator\Alpha        | Validates that a field’s value is only alphabetic character(s).   |
| Phalcon\Validation\Validator\Date         | Validates that a field’s value is a valid date.                   |
| Phalcon\Validation\Validator\Digit        | Validates that a field’s value is only numeric character(s).      |
| Phalcon\Validation\Validator\File         | Validates that a field’s value is a correct file.                 |
| Phalcon\Validation\Validator\Uniqueness   | Validates that a field’s value is unique in the related model.    |
| Phalcon\Validation\Validator\Numericality | Validates that a field’s value is a valid numeric value.          |
| Phalcon\Validation\Validator\PresenceOf   | Validates that a field’s value is not null or empty string.       |
| Phalcon\Validation\Validator\Identical    | Validates that a field’s value is the same as a specified value   |
| Phalcon\Validation\Validator\Email        | Validates that field contains a valid email format                |
| Phalcon\Validation\Validator\ExclusionIn  | Validates that a value is not within a list of possible values    |
| Phalcon\Validation\Validator\InclusionIn  | Validates that a value is within a list of possible values        |
| Phalcon\Validation\Validator\Regex        | Validates that the value of a field matches a regular expression  |
| Phalcon\Validation\Validator\StringLength | Validates the length of a string                                  |
| Phalcon\Validation\Validator\Between      | Validates that a value is between two values                      |
| Phalcon\Validation\Validator\Confirmation | Validates that a value is the same as another present in the data |
| Phalcon\Validation\Validator\Url          | Validates that field contains a valid URL                         |
| Phalcon\Validation\Validator\CreditCard   | Validates a credit card number                                    |
| Phalcon\Validation\Validator\Callback     | Validates using callback function                                 |

The following example explains how to create additional validators for this component:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Message;
use Phalcon\Validation\Validator;

class IpValidator extends Validator
{
    /**
     * Executes the validation
     *
     * @param Validation $validator
     * @param string     $attribute
     * @return boolean
     */
    public function validate(Validation $validator, $attribute)
    {
        $value = $validator->getValue($attribute);

        if (!filter_var($value, FILTER_VALIDATE_IP, FILTER_FLAG_IPV4 | FILTER_FLAG_IPV6)) {
            $message = $this->getOption('message');

            if (!$message) {
                $message = 'The IP is not valid';
            }

            $validator->appendMessage(
                new Message($message, $attribute, 'Ip')
            );

            return false;
        }

        return true;
    }
}





It is important that validators return a valid boolean value indicating if the validation was successful or not.

[bookmark: callback]




Callback Validator

By using Phalcon\Validation\Validator\Callback you can execute custom function which must return boolean or new validator class which will be used to validate the same field. By returning true validation will be successful, returning false will mean validation failed. When executing this validator Phalcon will pass data depending what it is - if it’s an entity then entity will be passed, otherwise data. There is example:

<?php

use \Phalcon\Validation;
use \Phalcon\Validation\Validator\Callback;
use \Phalcon\Validation\Validator\PresenceOf;

$validation = new Validation();
$validation->add(
    'amount',
    new Callback(
        [
            'callback' => function($data) {
                return $data['amount'] % 2 == 0;
            },
            'message'  => 'Only even number of products are accepted'
        ]
    )
);
$validation->add(
    'amount',
    new Callback(
        [
            'callback' => function($data) {
                if($data['amount'] % 2 == 0) {
                    return $data['amount'] != 2;
                }

                return true;
            },
            'message' => "You can't buy 2 products"
        ]
    )
);
$validation->add(
    'description',
    new Callback(
        [
            'callback' => function($data) {
                if($data['amount'] >= 10) {
                    return new PresenceOf(
                        [
                            'message' => 'You must write why you need so big amount.'
                        ]
                    );
                }

                return true;
            }
        ]
    )
);

$messages = $validation->validate(['amount' => 1]);  // will return message from first validator
$messages = $validation->validate(['amount' => 2]);  // will return message from second validator
$messages = $validation->validate(['amount' => 10]); // will return message from validator returned by third validator





[bookmark: messages]




Validation Messages

Phalcon\Validation has a messaging subsystem that provides a flexible way to output or store the validation messages generated during the validation processes.

Each message consists of an instance of the class Phalcon\Validation\Message. The set of messages generated can be retrieved with the getMessages() method. Each message provides extended information like the attribute that generated the message or the message type:

<?php

$messages = $validation->validate();

if (count($messages)) {
    foreach ($messages as $message) {
        echo 'Message: ', $message->getMessage(), "\n";
        echo 'Field: ', $message->getField(), "\n";
        echo 'Type: ', $message->getType(), "\n";
    }
}





You can pass a ‘message’ parameter to change/translate the default message in each validator:

<?php

use Phalcon\Validation\Validator\Email;

$validation->add(
    'email',
    new Email(
        [
            'message' => 'The e-mail is not valid',
        ]
    )
);





By default, the getMessages() method returns all the messages generated during validation. You can filter messages for a specific field using the filter() method:

<?php

$messages = $validation->validate();

if (count($messages)) {
    // Filter only the messages generated for the field 'name'
    $filteredMessages = $messages->filter('name');

    foreach ($filteredMessages as $message) {
        echo $message;
    }
}





[bookmark: filtering]




Filtering of Data

Data can be filtered prior to the validation ensuring that malicious or incorrect data is not validated.

<?php

use Phalcon\Validation;

$validation = new Validation();

$validation->add(
    'name',
    new PresenceOf(
        [
            'message' => 'The name is required',
        ]
    )
);

$validation->add(
    'email',
    new PresenceOf(
        [
            'message' => 'The email is required',
        ]
    )
);

// Filter any extra space
$validation->setFilters('name', 'trim');
$validation->setFilters('email', 'trim');





Filtering and sanitizing is performed using the filter component. You can add more filters to this component or use the built-in ones.

[bookmark: events]




Validation Events

When validations are organized in classes, you can implement the beforeValidation() and afterValidation() methods to perform additional checks, filters, clean-up, etc. If the beforeValidation() method returns false the validation is automatically cancelled:

<?php

use Phalcon\Validation;

class LoginValidation extends Validation
{
    public function initialize()
    {
        // ...
    }

    /**
     * Executed before validation
     *
     * @param array $data
     * @param object $entity
     * @param Phalcon\Validation\Message\Group $messages
     * @return bool
     */
    public function beforeValidation($data, $entity, $messages)
    {
        if ($this->request->getHttpHost() !== 'admin.mydomain.com') {
            $messages->appendMessage(
                new Message('Only users can log on in the administration domain')
            );

            return false;
        }

        return true;
    }

    /**
     * Executed after validation
     *
     * @param array $data
     * @param object $entity
     * @param Phalcon\Validation\Message\Group $messages
     */
    public function afterValidation($data, $entity, $messages)
    {
        // ... Add additional messages or perform more validations
    }
}





[bookmark: cancelling]




Cancelling Validations

By default all validators assigned to a field are tested regardless if one of them have failed or not. You can change this behavior by telling the validation component which validator may stop the validation:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Validator\Regex;
use Phalcon\Validation\Validator\PresenceOf;

$validation = new Validation();

$validation->add(
    'telephone',
    new PresenceOf(
        [
            'message'      => 'The telephone is required',
            'cancelOnFail' => true,
        ]
    )
);

$validation->add(
    'telephone',
    new Regex(
        [
            'message' => 'The telephone is required',
            'pattern' => '/\+44 [0-9]+/',
        ]
    )
);

$validation->add(
    'telephone',
    new StringLength(
        [
            'messageMinimum' => 'The telephone is too short',
            'min'            => 2,
        ]
    )
);





The first validator has the option cancelOnFail with a value of true, therefore if that validator fails the remaining validators in the chain are not executed.

If you are creating custom validators you can dynamically stop the validation chain by setting the cancelOnFail option:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Message;
use Phalcon\Validation\Validator;

class MyValidator extends Validator
{
    /**
     * Executes the validation
     *
     * @param Phalcon\Validation $validator
     * @param string $attribute
     * @return boolean
     */
    public function validate(Validation $validator, $attribute)
    {
        // If the attribute value is name we must stop the chain
        if ($attribute === 'name') {
            $validator->setOption('cancelOnFail', true);
        }

        // ...
    }
}





[bookmark: empty-values]




Avoid validating empty values

You can pass the option allowEmpty to all the built-in validators to avoid the validation to be performed if an empty value is passed:

<?php

use Phalcon\Validation;
use Phalcon\Validation\Validator\Regex;

$validation = new Validation();

$validation->add(
    'telephone',
    new Regex(
        [
            'message'    => 'The telephone is required',
            'pattern'    => '/\+44 [0-9]+/',
            'allowEmpty' => true,
        ]
    )
);





[bookmark: recursive]




Recursive Validation

You can also run Validation instances within another via the afterValidation() method. In this example, validating the CompanyValidation instance will also check the PhoneValidation instance:

<?php

use Phalcon\Validation;

class CompanyValidation extends Validation
{
    /**
     * @var PhoneValidation
     */
    protected $phoneValidation;



    public function initialize()
    {
        $this->phoneValidation = new PhoneValidation();
    }



    public function afterValidation($data, $entity, $messages)
    {
        $phoneValidationMessages = $this->phoneValidation->validate(
            $data['phone']
        );

        $messages->appendMessages(
            $phoneValidationMessages
        );
    }
}











          

      

      

    

  

  
    
    
    Overview
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Overview 
        	
          Integrating PHPUnit with Phalcon
        

        	
          The PHPUnit helper file
        

        	
          The phpunit.xml file
        

        	
          Sample Unit Test
        

      

    

  


[bookmark: overview]


Overview

Writing proper tests can assist in writing better software. If you set up proper test cases you can eliminate most functional bugs and better maintain your software.

[bookmark: integration]


Integrating PHPUnit with Phalcon

If you don’t already have phpunit installed, you can do it by using the following composer command:

composer require phpunit/phpunit:^5.0





or by manually adding it to composer.json:

<br />{
    "require-dev": {
        "phpunit/phpunit": "^5.0"
    }
}





Once PHPUnit is installed create a directory called tests in project root directory:

app/
public/
tests/





Next, we need a ‘helper’ file to bootstrap the application for unit testing.

[bookmark: unit-helper]




The PHPUnit helper file

A helper file is required to bootstrap the application for running the tests. We have prepared a sample file. Put the file in your tests/ directory as TestHelper.php.

<?php

use Phalcon\Di;
use Phalcon\Di\FactoryDefault;
use Phalcon\Loader;

ini_set("display_errors", 1);
error_reporting(E_ALL);

define("ROOT_PATH", __DIR__);

set_include_path(
    ROOT_PATH . PATH_SEPARATOR . get_include_path()
);

// Required for phalcon/incubator
include __DIR__ . "/../vendor/autoload.php";

// Use the application autoloader to autoload the classes
// Autoload the dependencies found in composer
$loader = new Loader();

$loader->registerDirs(
    [
        ROOT_PATH,
    ]
);

$loader->register();

$di = new FactoryDefault();

Di::reset();

// Add any needed services to the DI here

Di::setDefault($di);





Should you need to test any components from your own library, add them to the autoloader or use the autoloader from your main application.

To help you build the Unit Tests, we made a few abstract classes you can use to bootstrap the Unit Tests themselves. These files exist in the Phalcon Incubator [https://github.com/phalcon/incubator].

You can use the Incubator library by adding it as a dependency:

composer require phalcon/incubator





or by manually adding it to composer.json:

{
    "require": {
        "phalcon/incubator": "^3.0"
    }
}





You can also clone the repository using the repo link above.

[bookmark: phpunit-config]




The phpunit.xml file

Now, create a phpunit.xml file as follows:

<?xml version="1.0" encoding="UTF-8"?>

<phpunit bootstrap="./TestHelper.php"
         backupGlobals="false"
         backupStaticAttributes="false"
         verbose="true"
         colors="false"
         convertErrorsToExceptions="true"
         convertNoticesToExceptions="true"
         convertWarningsToExceptions="true"
         processIsolation="false"
         stopOnFailure="false"
         syntaxCheck="true">

    <testsuite name="Phalcon - Testsuite">
        <directory>./</directory>
    </testsuite>
</phpunit>





Modify the phpunit.xml to fit your needs and save it in tests. This will run any tests under the tests directory.

[bookmark: sample]




Sample Unit Test

To run any Unit Tests you need to define them. The autoloader will make sure the proper files are loaded so all you need to do is create the files and phpunit will run the tests for you.

This example does not contain a config file, most test cases however, do need one. You can add it to the DI to get the UnitTestCase file.

First create a base Unit Test called UnitTestCase.php in your tests directory:

<?php

use Phalcon\Di;
use Phalcon\Test\UnitTestCase as PhalconTestCase;

abstract class UnitTestCase extends PhalconTestCase
{
    /**
     * @var bool
     */
    private $_loaded = false;

    public function setUp()
    {
        parent::setUp();

        // Load any additional services that might be required during testing
        $di = Di::getDefault();

        // Get any DI components here. If you have a config, be sure to pass it to the parent

        $this->setDi($di);

        $this->_loaded = true;
    }

    /**
     * Check if the test case is setup properly
     *
     * @throws \PHPUnit_Framework_IncompleteTestError;
     */
    public function __destruct()
    {
        if (!$this->_loaded) {
            throw new \PHPUnit_Framework_IncompleteTestError(
                "Please run parent::setUp()."
            );
        }
    }
}





It’s always a good idea to separate your Unit Tests in namespaces. For this test we will create the namespace ‘Test’. So create a file called tests\Test\UnitTest.php:

<?php

namespace Test;

/**
 * Class UnitTest
 */
class UnitTest extends \UnitTestCase
{
    public function testTestCase()
    {
        $this->assertEquals(
            "works",
            "works",
            "This is OK"
        );

        $this->assertEquals(
            "works",
            "works1",
            "This will fail"
        );
    }
}





Now when you execute phpunit in your command-line from the tests directory you will get the following output:

$ phpunit
PHPUnit 3.7.23 by Sebastian Bergmann.

Configuration read from /var/www/tests/phpunit.xml

Time: 3 ms, Memory: 3.25Mb

There was 1 failure:

1) Test\UnitTest::testTestCase
This will fail
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'works'
+'works1'

/var/www/tests/Test/UnitTest.php:25

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.





Now you can start building your Unit Tests. You can view a good guide here [http://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises/]. We also recommend reading the PHPUnit documentation if you’re not familiar with PHPUnit.







          

      

      

    

  

  
    
    
    ODM (Object-Document Mapper)
    
    

    
 
  
  

    
      
          
            
  
  
    	
      ODM (Object-Document Mapper) 
        	
          Creating Models
        

        	
          Understanding Documents To Objects
        

        	
          Models in Namespaces
        

        	
          Setting a Connection
        

        	
          Finding Documents
        

        	
          Aggregations
        

        	
          Creating Updating/Records 
            	
              Validation Messages
            

            	
              Validation Events and Events Manager
            

            	
              Implementing a Business Rule
            

            	
              Validating Data Integrity
            

          

        
    <li>
      <a href="#deleting-records">Deleting Records</a>
    </li>
    <li>
      <a href="#validation-failed-events">Validation Failed Events</a>
    </li>
    <li>
      <a href="#ids-vs-primary-keys">Implicit Ids vs. User Primary Keys</a>
    </li>
    <li>
      <a href="#multiple-databases">Setting multiple databases</a>
    </li>
    <li>
      <a href="#services-in-models">Injecting services into Models</a>
    </li>
  </ul>
</li>





  


  
    
    
    Encryption/Decryption
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Encryption/Decryption 
        	
          Basic Usage
        

        	
          Encryption Options
        

        	
          Base64 Support
        

        	
          Setting up an Encryption service
        

        	
          Links
        

      

    

  


[bookmark: overview]


Encryption/Decryption

Phalcon provides encryption facilities via the Phalcon\Crypt component. This class offers simple object-oriented wrappers to the openssl [http://www.php.net/manual/en/book.openssl.php] PHP’s encryption library.

By default, this component provides secure encryption using AES-256-CFB.

You must use a key length corresponding to the current algorithm. For the algorithm used by default it is 32 bytes.
[bookmark: usage]


Basic Usage

This component is designed to provide a very simple usage:

<?php

use Phalcon\Crypt;

// Create an instance
$crypt = new Crypt();

$key  = 'This is a secret key (32 bytes).';
$text = 'This is the text that you want to encrypt.';

$encrypted = $crypt->encrypt($text, $key);

echo $crypt->decrypt($encrypted, $key);





You can use the same instance to encrypt/decrypt several times:

<?php

use Phalcon\Crypt;

// Create an instance
$crypt = new Crypt();

$texts = [
    'my-key'    => 'This is a secret text',
    'other-key' => 'This is a very secret',
];

foreach ($texts as $key => $text) {
    // Perform the encryption
    $encrypted = $crypt->encrypt($text, $key);

    // Now decrypt
    echo $crypt->decrypt($encrypted, $key);
}





[bookmark: options]




Encryption Options

The following options are available to change the encryption behavior:

| Name   | Description                                                                                                                                                          |
| —— | ——————————————————————————————————————————————————————– |
| Cipher | The cipher is one of the encryption algorithms supported by openssl. You can see a list here [http://www.php.net/manual/en/function.openssl-get-cipher-methods.php] |

Example:

<?php

use Phalcon\Crypt;

// Create an instance
$crypt = new Crypt();

// Use blowfish
$crypt->setCipher('bf-cbc');

$key  = 'le password';
$text = 'This is a secret text';

echo $crypt->encrypt($text, $key);





[bookmark: base64]




Base64 Support

In order for encryption to be properly transmitted (emails) or displayed (browsers) base64 [http://www.php.net/manual/en/function.base64-encode.php] encoding is usually applied to encrypted texts:

<?php

use Phalcon\Crypt;

// Create an instance
$crypt = new Crypt();

$key  = 'le password';
$text = 'This is a secret text';

$encrypt = $crypt->encryptBase64($text, $key);

echo $crypt->decryptBase64($encrypt, $key);





[bookmark: service]




Setting up an Encryption service

You can set up the encryption component in the services container in order to use it from any part of the application:

<?php

use Phalcon\Crypt;

$di->set(
    'crypt',
    function () {
        $crypt = new Crypt();

        // Set a global encryption key
        $crypt->setKey(
            '%31.1e$i86e$f!8jz'
        );

        return $crypt;
    },
    true
);





Then, for example, in a controller you can use it as follows:

<?php

use Phalcon\Mvc\Controller;

class SecretsController extends Controller
{
    public function saveAction()
    {
        $secret = new Secrets();

        $text = $this->request->getPost('text');

        $secret->content = $this->crypt->encrypt($text);

        if ($secret->save()) {
            $this->flash->success(
                'Secret was successfully created!'
            );
        }
    }
}





[bookmark: links]




Links


	Advanced Encryption Standard (AES) [https://en.wikipedia.org/wiki/Advanced_Encryption_Standard]

	What is block cipher [https://en.wikipedia.org/wiki/Block_cipher]

	Introduction to Blowfish [http://www.splashdata.com/splashid/blowfish.htm]









          

      

      

    

  

  
    
    
    The MVC Architecture
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Η αρχιτεκτονική MVC 
        	
          Models
        

        	
          Views
        

        	
          Controllers
        

      

    

  


[bookmark: architecture]


The MVC Architecture

Phalcon offers the object-oriented classes, necessary to implement the Model, View, Controller architecture (often referred to as MVC [https://en.wikipedia.org/wiki/Model–view–controller]) in your application. This design pattern is widely used by other web frameworks and desktop applications.

MVC benefits include:


	Isolation of business logic from the user interface and the database layer

	Making it clear where different types of code belong for easier maintenance



If you decide to use MVC, every request to your application resources will be managed by the MVC architecture. Phalcon classes are written in C language, offering a high performance approach of this pattern in a PHP based application.

[bookmark: models]


Models

A model represents the information (data) of the application and the rules to manipulate that data. Models are primarily used for managing the rules of interaction with a corresponding database table. In most cases, each table in your database will correspond to one model in your application. The bulk of your application’s business logic will be concentrated in the models. Learn more

[bookmark: views]




Views

Views represent the user interface of your application. Views are often HTML files with embedded PHP code that perform tasks related solely to the presentation of the data. Views handle the job of providing data to the web browser or other tool that is used to make requests from your application. Learn more

[bookmark: controllers]




Controllers

The controllers provide the ‘flow’ between models and views. Controllers are responsible for processing the incoming requests from the web browser, interrogating the models for data, and passing that data on to the views for presentation. Learn more







          

      

      

    

  

  
    
    
    Cookies Management
    
    

    
 
  
  

    
      
          
            
  
  
    	
      Διαχείριση cookies 
        	
          Basic Usage
        

        	
          Encryption/Decryption of Cookies
        

      

    

  


[bookmark: overview]


Cookies Management

Cookies [http://en.wikipedia.org/wiki/HTTP_cookie] are a very useful way to store small pieces of data on the client’s machine that can be retrieved even if the user closes his/her browser. Phalcon\Http\Response\Cookies acts as a global bag for cookies. Cookies are stored in this bag during the request execution and are sent automatically at the end of the request.

[bookmark: usage]


Basic Usage

You can set/get