

pgctl: the playground controller

Issues [https://github.com/yelp/pgctl/issues] |
Github [https://github.com/yelp/pgctl] |
PyPI [https://pypi.python.org/pypi/pgctl/]

Release v3.0. (Installation)

Introduction

pgctl is an MIT Licensed [https://github.com/Yelp/pgctl/blob/master/COPYING] tool to manage developer “playgrounds”.

Often projects have various processes that should run in the backround
(services) during development. These services amount to a miniature staging
environment that we term playground. Each service must have a well-defined
state at all times (it should be starting, up, stopping, or down), and should be
independantly restartable and debuggable.

pgctl aims to solve this problem in a unified, language-agnostic
framework (although the tool happens to be written in Python).

As a simple example, let’s say that we want a date service in our playground,
that ensures our now.date file always has the current date.

$ cat playground/date/run
date > now.date

$ pgctl start
$ pgctl status
date -- up (0 seconds)

$ cat now.date
Fri Jun 26 15:21:26 PDT 2015

$ pgctl stop
$ pgctl status
date -- down (0 seconds)

Feature Support

	User-friendly Command Line Interface

	Simple Configuration

	Python 2.7—3.5

User Guide

This part of the documentation covers the step-by-step
instructions and usage of pgctl for getting started quickly.

	Installation
	Distribute & Pip

	Get the Code

	Quickstart
	Setting up

	Writing Playground Services

	Aliases

	Sub-Commands
	start

	stop

	restart

	debug

	status

	log

	reload

	config

	Advanced Usage
	Services that stop slowly

	Services that start slowly

	Handling subprocesses in a bash service

API Documentation

If you are looking for information on a specific function, class or method,
this part of the documentation is for you.

	API Documentation
	Submodules

	pgctl.cli module

	Module contents

Contributor Guide

If you want to contribute to the project, this part of the documentation is for
you.

	Contributor’s guide
	Developer Environment

	Documentation

	Debugging

	Run tests

	Filter which tests to run

	Run a particular test

	Looking at Coverage

	Complications

	Design Rationale
	Directory Structure

	Design Decisions

	Bug Log
	Current bugs – 2015-10-26

Installation

This part of the documentation covers the installation of pgctl.
The first step to using any software package is getting it properly installed.

Distribute & Pip

Installing pgctl is simple with pip [https://pip.pypa.io], just run
this in your terminal:

$ pip install pgctl

Get the Code

pgctl is actively developed on GitHub, where the code is
always available [https://github.com/Yelp/pgctl].

You can either clone the public repository:

$ git clone git://github.com/yelp/pgctl.git

Download the tarball [https://github.com/yelp/pgctl/tarball/master]:

$ curl -OL https://github.com/yelp/pgctl/tarball/master

Or, download the zipball [https://github.com/yelp/pgctl/zipball/master]:

$ curl -OL https://github.com/yelp/pgctl/zipball/master

Once you have a copy of the source, you can embed it in your Python package,
or install it into your site-packages easily:

$ python setup.py install

Quickstart

This page attempts to be a quick-and-dirty guide to getting started with pgctl.

Setting up

The minimal setup for pgctl is a playground directory containing the services
you want to run. A service consists of a directory with a run script. The
script should run in the foreground.

$ cat playground/date/run
date > now.date

Once this is in place, you can start your playground and see it run.

$ pgctl start
$ pgctl log
[webapp] Serving HTTP on 0.0.0.0 port 36474 ...

$ curl

Writing Playground Services

pgctl works best with a single process. When writing a run script in
bash, use the exec statement to replace the shell with your process. This
avoids a process tree with bash as the parent of your service. Having a single
process allows simple management of state and proper signalling for stopping
the service.

Bad: (don’t do this!)

#!/bin/bash
sleep infinity # creates a new process

Good: (do it this way!)

#!/bin/bash
exec sleep infinity # replaces the *current* process

Without the exec, stopping the service will kill bash but the sleep process
will be left behind. This kind of process-tree management is too complex for
pgctl to auto-magically fix it for you, but it will let you know if it
becomes a problem:

$ pgctl restart
Stopping: sleeper
Stopped: sleeper
ERROR: We sent SIGTERM, but these processes did not stop:
 USER PID ACCESS COMMAND
playground/sleeper: buck 2847827 f.c.. sleep

To fix this temporarily, run: pgctl stop sleeper --force
To fix it permanently, see:
 http://pgctl.readthedocs.org/en/latest/user/quickstart.html#writing-playground-services

Aliases

With no arguments, pgctl start is equivalent to pgctl start default.
By default, default maps to a list of all services.
You can configure what default means via pgctl.yaml:

aliases:
 default:
 - service1
 - service2

You can also add other aliases this way. When you name an alias, it simply
expands to the list of configured services, so that pgctl start A-and-B
would be entirely equivalent to pgctl start A B.

Sub-Commands

pgctl has eight basic commands: start, stop, restart, debug, status, log, reload, config

Note

With no arguments, pgctl <cmd> is equivalent to pgctl <cmd> default.
By default, default maps to all services. See Aliases.

start

$ pgctl start <service=default>

Starts a specific service, group of services, or all services. This command is blocking until all services have successfully reached the up state. start is idempotent.

stop

$ pgctl stop <service=default>

Stops a specific service, group of services, or all services. This command is blocking until all services have successfully reached the down stated. stop is idempotent.

restart

$ pgctl restart <service=default>

Stops and starts specific service, group of services, or all services. This command is blocking until all services have successfully reached the down stated.

debug

$ pgctl debug <service=default>

Runs a specific service in the foreground.

status

$ pgctl status <service=default>
<service> (pid <PID>) -- up (0 seconds)

Retrieves the state, PID, and time in that state of a specific service, group of services, or all services.

log

$ pgctl log <service=default>

Retrieves the stdout and stderr for a specific service, group of services, or all services.

reload

$ pgctl reload <service=default>

Reloads the configuration for a specific service, group of services, or all services.

config

$ pgctl config <service=default>

Prints out a configuration for a specific service, group of services, or all services.

Advanced Usage

You may (or may not) want these notes after using pgctl for a while.

Services that stop slowly

When you have a service that takes a while to stop, pgctl may incorrectly error out saying that the service left processes behind. By default, pgctl only waits up to two seconds. To tell pgctl to wait a bit longer write a number of seconds into a timeout-stop file.

$ echo 10 > playground/uwsgi/timeout-stop
$ git add playground/uwsgi/timeout-stop

Services that start slowly

Similarly, if pgctl needs to be told to wait longer to start your service, write a timeout-ready file.

If there’s a significant period between when the service has started (up) and when it’s actually doing it’s job (ready),
or if your service sometimes stops working even when it’s running, create a runnable ready script in the service
directory and prefix your service command with our pgctl-poll-ready helper script. pgctl-poll-ready will run
the ready script repeatedly to determine when your service is actually ready. As an example:

$ cat playground/uwsgi/run
make -C ../../ minimal # the build takes a few seconds
exec pgctl-poll-ready ../../bin/start-dev

$ cat playground/uwsgi/ready
exec curl -s localhost:9003/status

$ cat playground/uwsgi/timeout-ready
30

Handling subprocesses in a bash service

If you’re unable to use exec to create a single-process service, you’ll need to handle SIGTERM and kill off your subprocesses yourself. In bash this is tricky. See the example in our test suite for an example of how to do this reliably:

https://github.com/Yelp/pgctl/blob/master/tests/examples/output/playground/ohhi/run

API Documentation

This is automatically generated documentation from the source code.
Generally this will only be useful for developers.

Submodules

pgctl.cli module

	
class pgctl.cli.PgctlApp(config=<frozendict {u'force': False, u'verbose': False, u'pgdir': u'playground', u'json': False, u'timeout': u'2.0', u'services': (u'default',), u'poll': u'.01', u'pghome': u'~/.run/pgctl', u'aliases': <frozendict {u'default': (u'(all services)',)}>}>)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
all_services

	Return a list of all services.

	Returns:	list of Service objects

	Return type:	list

	
commands = (<function start>, <function stop>, <function status>, <function restart>, <function reload>, <function log>, <function debug>, <function config>)

	

	
config()

	Print the configuration for a service

	
debug()

	Allow a service to run in the foreground

	
log(interactive=None)

	Displays the stdout and stderr for a service or group of services

	
pgdir

	Retrieve the set playground directory

	
pghome

	Retrieve the set pgctl home directory.

By default, this is “$XDG_RUNTIME_DIR/pgctl”.

	
playground_locked(*args, **kwds)

	Lock the entire playground.

	
reload()

	Reloads the configuration for a service

	
restart()

	Starts and stops a service

	
service_by_name(service_name)

	Return an instantiated Service, by name.

	
service_names

	

	
services

	Return a tuple of the services for a command

	Returns:	tuple of Service objects

	
start()

	Idempotent start of a service or group of services

	
status()

	Retrieve the PID and state of a service or group of services

	
stop(with_log_running=False)

	Idempotent stop of a service or group of services

	Parameters:	with_log_running – controls whether the logger associated with

this service should be stopped or left running. For restart cases, we
want to leave the logger running (since poll-ready may still be writing
log messages).

	
with_services(services)

	return a similar PgctlApp, but with a different set of services

	
class pgctl.cli.Start(service)

	Bases: pgctl.cli.StateChange

	
assert_()

	

	
change()

	

	
fail()

	

	
get_timeout()

	

	
is_user_facing = True

	

	
class strings

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
change = u'start'

	

	
changed = u'Started:'

	

	
changing = u'Starting:'

	

	
class pgctl.cli.StateChange(service)

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
class pgctl.cli.StateChangeResult

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
FAILURE = 1

	

	
RECHECK_NEEDED = 2

	

	
SUCCESS = 0

	

	
class pgctl.cli.Stop(service)

	Bases: pgctl.cli.StateChange

	
assert_()

	

	
change()

	

	
fail()

	

	
get_timeout()

	

	
is_user_facing = True

	

	
class strings

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
change = u'stop'

	

	
changed = u'Stopped:'

	

	
changing = u'Stopping:'

	

	
class pgctl.cli.StopLogs(service)

	Bases: pgctl.cli.StateChange

	
assert_()

	

	
change()

	

	
fail()

	

	
get_timeout()

	

	
is_user_facing = False

	

	
class strings

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
change = u'stop'

	

	
changed = u'Stopped logger for:'

	

	
changing = u'Stopping logger for:'

	

	
class pgctl.cli.TermStyle

	Bases: object [https://docs.python.org/2/library/functions.html#object]

	
BOLD = u'\x1b[1m'

	

	
ENDC = u'\x1b[0m'

	

	
GREEN = u'\x1b[92m'

	

	
RED = u'\x1b[91m'

	

	
YELLOW = u'\x1b[93m'

	

	
classmethod wrap(text, style)

	

	
pgctl.cli.error_message_on_timeout(service, error, action_name, actual_timeout_length, check_length)

	

	
pgctl.cli.main(argv=None)

	

	
pgctl.cli.parser()

	

	
pgctl.cli.pgctl_print(*print_args, **print_kwargs)

	Print to stderr with [pgctl] prepended.

	
pgctl.cli.timeout(service, start_time, check_time, curr_time)

	

	
pgctl.cli.unbuf_print(*args, **kwargs)

	Print unbuffered in utf8.

Module contents

Contributor’s guide

This page helps you make contributions to the pgctl project.

For a quick primer on using github, see
https://guides.github.com/activities/contributing-to-open-source/

Developer Environment

To put yourself into our dev environment, run source .activate.sh.

Documentation

If you need to make changes to the documentation, they live under docs/source.
For a quick primer on the rst format, see
http://docutils.sourceforge.net/docs/user/rst/quickref.html

If you want to see good examples of other projects’ documentation, see:

	[the Requests
docs](https://github.com/kennethreitz/requests/tree/master/docs)

	[the virtualenv docs](https://github.com/pypa/virtualenv/tree/master/docs)

To get a look at your changes, run make docs from the root of the project.
This will spin up a http server on port 8088 serving your editted documentation.

Debugging

To get extra debugging output from pgctl, set the PGCTL_VERBOSE environment variable.
This will cause any tests that assert the output of pgctl to fail, but it often helps finding
mysterious issues.

Run tests

	make test ## (should Just Work)

	tox -e test ## lose proper –recreate logic

	./test ## python must have all test deps

	py.test ## lose coverage and linting

Filter which tests to run

	make test ARGS=’-k “test and stop”’

	tox -e test – ‘-k “test and stop”’

	./test -k “test and stop”

	py.test tests -k “test and stop”

Run a particular test

	py.test tests/main_test.py::test_stop

Coverage reports should show all project files as well as test files.

Looking at Coverage

It’s good practice to look at unit coverage separately from spec
coverage. First,

make unit test

or:

make spec test

And in a separate terminal:

make coverage-server

Complications

These are the things that make things more complicated than they (seem to) need to be.

A broken setup.py should cause failing tests. Many projects’ testing setup will
blissfully pass even if setup.py does nothing whatsoever. In order to avoid
this, I use changedir in my tox.ini. Most of the other complexity comes from
this. For example, because I run the code that’s inside the virtualenv during
test, it’s fiddly to get coverage to report on the right copy of the code.

Subprocess coverage is complicated. coveragepy has some built-in support for
this, but it’s not enabled by default. The script at
tests/testing/install_coverage_pth.py does the necessary addtional work to
enable the subprocess coverage feature. Because several coverage runs may be
running concurrently, we must be careful to always use coverage in “parallel
mode” and run coverage combine afterward.

Design Rationale

Directory Structure

$ pwd
/home/<user>/<project>

$ tree playground/
playground/
├── service1
│ ├── down
│ ├── run
│ ├── stderr.log
│ ├── stdout.log
│ └── supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service1/supervise
├── service2
│ ├── down
│ ├── run
│ ├── stderr.log
│ ├── stdout.log
│ └── supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service2/supervise
└── service3
 ├── down
 ├── run
 ├── stderr.log
 ├── stdout.log
 └── supervise -> ~/.run/pgctl/home/<user>/<project>/playground/service3/supervise

There are a few points to note: logging, services, state, symlinking.

logging

stdin and stdout will be captured from the supervised process and written to log files under
the service directory. The user will be able to use the pgctl log command to aggregate
these logs in a readable form.

services

All services are located under the playground directory.

state

We are using s6 for process management and call the s6-supervise command directly.
It was a design decision to not use svscan to automatically supervise all services. This was due
to inflexability with logging (by default stdout is only logged). To ensure that every service
is in a consistent state, a down file is added to each service directory (man supervise) if it does not
already exist.

symlinking

Currently pip install . calls shutil.copy to copy all files in the current project when in the project’s
base directory. Having pipes present in the projects main directory attempts to copy the pipe and deadlocks.
To remedy this situation, we have symlinked the supervise directory to the user’s home directory to prevent
any pip issues.

–force option

--force takes effect only upon pgctl stop, not pgctl start.
--force implies that pgctl would try whatever it can to accomplish a task.
This would not apply to pgctl start under many cases.
For example, if a service takes 30 minutes to warm itself up before ready,
pgctl cannot force it to start up within a short period of time. Instead,
users should take the responsibility to adjust the timeout value.

Design Decisions

Design of debug

Unsupervise all things when down

Bug Log

This documents current and past bugs in the project.
This is helpful when during future debugging sessions.

Current bugs – 2015-10-26

Currently the coverage report improperly shows missing coverage, but only under jenkins / circleCI.
Local testing and travis don’t seem to have this issue.

I’ve found some clues:

	only lines run directly by the xdist workers goes missing; all subprocess coverage is reliable.

	the xdist worker does write out its coverage file on time, it’s just (mostly) empty.

	
	from looking at the coverage debugging trace: the coverage drops out at this line:

	https://bitbucket.org/hpk42/execnet/src/50f88cb892d/execnet/gateway_base.py#gateway_base.py-1072

	TODO: does this reproduce using coverage<4.0 ?

Circle CI debugging

To grab files from a circleCI run: (for example)

rsync -Pav -e ‘ssh -p 64785’ ubuntu@54.146.184.147:pgctl/coverage.bak.2015-10-24_18:28:36.937047774 .

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pgctl	

 	
 	
 pgctl.cli	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

A

 	
 	all_services (pgctl.cli.PgctlApp attribute)

 	assert_() (pgctl.cli.Start method)

 	(pgctl.cli.Stop method)

 	(pgctl.cli.StopLogs method)

B

 	
 	BOLD (pgctl.cli.TermStyle attribute)

C

 	
 	change (pgctl.cli.Start.strings attribute)

 	(pgctl.cli.Stop.strings attribute)

 	(pgctl.cli.StopLogs.strings attribute)

 	change() (pgctl.cli.Start method)

 	(pgctl.cli.Stop method)

 	(pgctl.cli.StopLogs method)

 	changed (pgctl.cli.Start.strings attribute)

 	(pgctl.cli.Stop.strings attribute)

 	(pgctl.cli.StopLogs.strings attribute)

 	
 	changing (pgctl.cli.Start.strings attribute)

 	(pgctl.cli.Stop.strings attribute)

 	(pgctl.cli.StopLogs.strings attribute)

 	commands (pgctl.cli.PgctlApp attribute)

 	config() (pgctl.cli.PgctlApp method)

D

 	
 	debug() (pgctl.cli.PgctlApp method)

E

 	
 	ENDC (pgctl.cli.TermStyle attribute)

 	
 	error_message_on_timeout() (in module pgctl.cli)

F

 	
 	fail() (pgctl.cli.Start method)

 	(pgctl.cli.Stop method)

 	(pgctl.cli.StopLogs method)

 	
 	FAILURE (pgctl.cli.StateChangeResult attribute)

G

 	
 	get_timeout() (pgctl.cli.Start method)

 	(pgctl.cli.Stop method)

 	(pgctl.cli.StopLogs method)

 	
 	GREEN (pgctl.cli.TermStyle attribute)

I

 	
 	is_user_facing (pgctl.cli.Start attribute)

 	(pgctl.cli.Stop attribute)

 	(pgctl.cli.StopLogs attribute)

L

 	
 	log() (pgctl.cli.PgctlApp method)

M

 	
 	main() (in module pgctl.cli)

P

 	
 	parser() (in module pgctl.cli)

 	pgctl (module)

 	pgctl.cli (module)

 	pgctl_print() (in module pgctl.cli)

 	
 	PgctlApp (class in pgctl.cli)

 	pgdir (pgctl.cli.PgctlApp attribute)

 	pghome (pgctl.cli.PgctlApp attribute)

 	playground_locked() (pgctl.cli.PgctlApp method)

R

 	
 	RECHECK_NEEDED (pgctl.cli.StateChangeResult attribute)

 	RED (pgctl.cli.TermStyle attribute)

 	
 	reload() (pgctl.cli.PgctlApp method)

 	restart() (pgctl.cli.PgctlApp method)

S

 	
 	service_by_name() (pgctl.cli.PgctlApp method)

 	service_names (pgctl.cli.PgctlApp attribute)

 	services (pgctl.cli.PgctlApp attribute)

 	Start (class in pgctl.cli)

 	start() (pgctl.cli.PgctlApp method)

 	Start.strings (class in pgctl.cli)

 	StateChange (class in pgctl.cli)

 	
 	StateChangeResult (class in pgctl.cli)

 	status() (pgctl.cli.PgctlApp method)

 	Stop (class in pgctl.cli)

 	stop() (pgctl.cli.PgctlApp method)

 	Stop.strings (class in pgctl.cli)

 	StopLogs (class in pgctl.cli)

 	StopLogs.strings (class in pgctl.cli)

 	SUCCESS (pgctl.cli.StateChangeResult attribute)

T

 	
 	TermStyle (class in pgctl.cli)

 	
 	timeout() (in module pgctl.cli)

U

 	
 	unbuf_print() (in module pgctl.cli)

W

 	
 	with_services() (pgctl.cli.PgctlApp method)

 	
 	wrap() (pgctl.cli.TermStyle class method)

Y

 	
 	YELLOW (pgctl.cli.TermStyle attribute)

 _static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/plus.png

nav.xhtml

 Table of Contents

 		pgctl: the playground controller

 		Installation

 		Distribute & Pip

 		Get the Code

 		Quickstart

 		Setting up

 		Writing Playground Services

 		Aliases

 		Sub-Commands

 		start

 		stop

 		restart

 		debug

 		status

 		log

 		reload

 		config

 		Advanced Usage

 		Services that stop slowly

 		Services that start slowly

 		Handling subprocesses in a bash service

 		API Documentation

 		Submodules

 		pgctl.cli module

 		Module contents

 		Contributor's guide

 		Developer Environment

 		Documentation

 		Debugging

 		Run tests

 		Filter which tests to run

 		Run a particular test

 		Looking at Coverage

 		Complications

 		Design Rationale

 		Directory Structure

 		logging

 		services

 		state

 		symlinking

 		–force option

 		Design Decisions

 		Design of debug

 		Unsupervise all things when down

 		Bug Log

 		Current bugs – 2015-10-26

