

 Navigation

 	
 index

 	pgcli latest documentation

A REPL for Postgres

[image: Build Status] [https://travis-ci.org/dbcli/pgcli] [image: Latest Version] [https://pypi.python.org/pypi/pgcli/] [image: Gitter Chat] [https://gitter.im/dbcli/pgcli?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

This is a postgres client that does auto-completion and syntax highlighting.

MySQL Equivalent: http://mysql-cli.com

[image: _images/image02.png]
[image: _images/image01.png]

Quick Start

If you already know how to install python packages, then you can simply do:

$ pip install pgcli

or

$ brew install pgcli # Only on OS X

If you don’t know how to install python packages, please check the
detailed instructions [https://github.com/dbcli/pgcli#detailed-installation-instructions].

Usage

$ pgcli [database_name]

or

$ pgcli postgresql://[user[:password]@][netloc][:port][/dbname]

Examples:

$ pgcli local_database

$ pgcli postgres://amjith:pa$$w0rd@example.com:5432/app_db

Features

The pgcli is written using prompt_toolkit [https://github.com/jonathanslenders/python-prompt-toolkit].

	Auto-completion as you type for SQL keywords as well as tables and
columns in the database.

	Syntax highlighting using Pygments.

	Smart-completion (enabled by default) will suggest context-sensitive
completion.

	SELECT * FROM <tab> will only show table names.

	SELECT * FROM users WHERE <tab> will only show column names.

	Config file is automatically created at ~/.pgclirc at first launch.

	Primitive support for psql back-slash commands.

	Pretty prints tabular data.

Contributions:

If you’re interested in contributing to this project, first of all I would like
to extend my heartfelt gratitude. I’ve written a small doc to describe how to
get this running in a development setup.

https://github.com/dbcli/pgcli/blob/master/DEVELOP.rst

Please feel free to reach out to me if you need help.
My email: amjith.r@gmail.com, Twitter: @amjithr [http://twitter.com/amjithr]

Detailed Installation Instructions:

OS X:

Easiest way to install pgcli is using brew. Please be aware that this will
install postgres via brew if it wasn’t installed via brew.

$ brew install pgcli

Done!

If you have postgres installed via a different means (such as PostgresApp), you
can brew install --build-from-source pgcli which will skip installing
postgres via brew if postgres is available in the path.

Alternatively, you can install pgcli as a python package using a package
manager called called pip. You will need postgres installed on your system
for this to work.

In depth getting started guide for pip - https://pip.pypa.io/en/latest/installing.html.

$ which pip

If it is installed then you can do:

$ pip install pgcli

If that fails due to permission issues, you might need to run the command with
sudo permissions.

$ sudo pip install pgcli

If pip is not installed check if easy_install is available on the system.

$ which easy_install

$ sudo easy_install pgcli

Linux:

In depth getting started guide for pip - https://pip.pypa.io/en/latest/installing.html.

Check if pip is already available in your system.

$ which pip

If it doesn’t exist, use your linux package manager to install pip. This
might look something like:

$ sudo apt-get install python-pip # Debian, Ubuntu, Mint etc

or

$ sudo yum install python-pip # RHEL, Centos, Fedora etc

pgcli requires python-dev, libpq-dev and libevent-dev packages. You can
install these via your operating system package manager.

$ sudo apt-get install python-dev libpq-dev libevent-dev

or

$ sudo yum install python-devel postgresql-devel

Then you can install pgcli:

$ sudo pip install pgcli

Thanks:

A special thanks to Jonathan Slenders [https://twitter.com/jonathan_s] for
creating Python Prompt Toolkit [http://github.com/jonathanslenders/python-prompt-toolkit],
which is quite literally the backbone library, that made this app possible.
Jonathan has also provided valuable feedback and support during the development
of this app.

This app includes the awesome tabulate [https://pypi.python.org/pypi/tabulate]
library for pretty printing the output of tables. The reason for vendoring this
library rather than listing it as a dependency in setup.py, is because I had to
make a change to the table format which is merged back into the original repo,
but not yet released in PyPI.

Click [http://click.pocoo.org/3/] is used for command line option parsing
and printing error messages.

Thanks to psycopg [http://initd.org/psycopg/] for providing a rock solid
interface to Postgres database.

Thanks to all the beta testers and contributors for your time and patience. :)

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	pgcli latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 README.html

 Navigation

 		
 index

 		pgcli latest documentation »

A REPL for Postgres

[image: Build Status] [https://travis-ci.org/dbcli/pgcli] [image: Latest Version] [https://pypi.python.org/pypi/pgcli/] [image: Gitter Chat] [https://gitter.im/dbcli/pgcli?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

This is a postgres client that does auto-completion and syntax highlighting.

MySQL Equivalent: http://mysql-cli.com

[image: _images/image02.png]
[image: _images/image01.png]

Quick Start

If you already know how to install python packages, then you can simply do:

$ pip install pgcli

or

$ brew install pgcli # Only on OS X

If you don’t know how to install python packages, please check the
detailed instructions [https://github.com/dbcli/pgcli#detailed-installation-instructions].

Usage

$ pgcli [database_name]

or

$ pgcli postgresql://[user[:password]@][netloc][:port][/dbname]

Examples:

$ pgcli local_database

$ pgcli postgres://amjith:pa$$w0rd@example.com:5432/app_db

Features

The pgcli is written using prompt_toolkit [https://github.com/jonathanslenders/python-prompt-toolkit].

		Auto-completion as you type for SQL keywords as well as tables and
columns in the database.

		Syntax highlighting using Pygments.

		Smart-completion (enabled by default) will suggest context-sensitive
completion.

		SELECT * FROM <tab> will only show table names.

		SELECT * FROM users WHERE <tab> will only show column names.

		Config file is automatically created at ~/.pgclirc at first launch.

		Primitive support for psql back-slash commands.

		Pretty prints tabular data.

Contributions:

If you’re interested in contributing to this project, first of all I would like
to extend my heartfelt gratitude. I’ve written a small doc to describe how to
get this running in a development setup.

https://github.com/dbcli/pgcli/blob/master/DEVELOP.rst

Please feel free to reach out to me if you need help.
My email: amjith.r@gmail.com, Twitter: @amjithr [http://twitter.com/amjithr]

Detailed Installation Instructions:

OS X:

Easiest way to install pgcli is using brew. Please be aware that this will
install postgres via brew if it wasn’t installed via brew.

$ brew install pgcli

Done!

If you have postgres installed via a different means (such as PostgresApp), you
can brew install --build-from-source pgcli which will skip installing
postgres via brew if postgres is available in the path.

Alternatively, you can install pgcli as a python package using a package
manager called called pip. You will need postgres installed on your system
for this to work.

In depth getting started guide for pip - https://pip.pypa.io/en/latest/installing.html.

$ which pip

If it is installed then you can do:

$ pip install pgcli

If that fails due to permission issues, you might need to run the command with
sudo permissions.

$ sudo pip install pgcli

If pip is not installed check if easy_install is available on the system.

$ which easy_install

$ sudo easy_install pgcli

Linux:

In depth getting started guide for pip - https://pip.pypa.io/en/latest/installing.html.

Check if pip is already available in your system.

$ which pip

If it doesn’t exist, use your linux package manager to install pip. This
might look something like:

$ sudo apt-get install python-pip # Debian, Ubuntu, Mint etc

or

$ sudo yum install python-pip # RHEL, Centos, Fedora etc

pgcli requires python-dev, libpq-dev and libevent-dev packages. You can
install these via your operating system package manager.

$ sudo apt-get install python-dev libpq-dev libevent-dev

or

$ sudo yum install python-devel postgresql-devel

Then you can install pgcli:

$ sudo pip install pgcli

Thanks:

A special thanks to Jonathan Slenders [https://twitter.com/jonathan_s] for
creating Python Prompt Toolkit [http://github.com/jonathanslenders/python-prompt-toolkit],
which is quite literally the backbone library, that made this app possible.
Jonathan has also provided valuable feedback and support during the development
of this app.

This app includes the awesome tabulate [https://pypi.python.org/pypi/tabulate]
library for pretty printing the output of tables. The reason for vendoring this
library rather than listing it as a dependency in setup.py, is because I had to
make a change to the table format which is merged back into the original repo,
but not yet released in PyPI.

Click [http://click.pocoo.org/3/] is used for command line option parsing
and printing error messages.

Thanks to psycopg [http://initd.org/psycopg/] for providing a rock solid
interface to Postgres database.

Thanks to all the beta testers and contributors for your time and patience. :)

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

search.html

 Navigation

 		
 index

 		pgcli latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/comment.png

_images/image01.png
stayupdated_test> \d

1 1

1 1 1
| public | goose_db_version 1
| public | goose_db_version_id_seq |
| public | packages |
| public | packages_id_seq 1
| public | users 1
| public | users_id_seq 1
| public | vulnerabilities 1
| public | vulnerabilities_cpes |
ic | 1

vulnerabilities_id_seq

SELECT 11
stayupdated_test> SELECT * FROM users;
-+

177 | DisplayNamel | user@ex. com
| 180 | testname2 | pas5word | email@ex.com
| 181 | amjith | password |

4ommmmmgen
SELECT 3

stayupdated_test> SELECT * FROM

changelog.html

 Navigation

 		
 index

 		pgcli latest documentation »

0.17.0

Features:

		Add support for auto-completing view names. (Thanks: darikg [https://github.com/darikg])

		Add support for building RPM and DEB packages. (Thanks: dp [https://github.com/ceocoder])

		Add subsequence matching for completion. Previously completions only matched
a table name if it started with the partially typed word. Now completions
will match even if the partially typed word is in the middle of a suggestion.
eg: When you type ‘mig’, ‘django_migrations’ will be suggested. (Thanks: Daniel Rocco [https://github.com/drocco007])

		Completion for built-in tables and temporary tables are suggested after entering a prefix of pg_. (Thanks: darikg [https://github.com/darikg])

		Add place holder doc strings for special commands that are planned for implementation. (Thanks: Iryna Cherniavska [https://github.com/j-bennet])

Bug Fixes:

		Fix the table formatting while printing multi-byte characters (Chinese, Japanese etc). (Thanks: 蔡佳男 [https://github.com/xalley])

		Fix a crash when pg_catalog was present in search path. (Thanks: darikg [https://github.com/darikg])

0.16.3

Bug Fixes:

		Add more SQL keywords for auto-complete suggestion.

		Messages raised as part of stored procedures are no longer ignored.

		Use postgres flavored syntax highlighting instead of generic ANSI SQL.

0.16.2

Bug Fixes:

		Fix a bug where the schema qualifier was ignored by the auto-completion.
As a result the suggestions for tables vs functions are cleaner. (Thanks: darikg [https://github.com/darikg])

		Remove scientific notation when formatting large numbers. (Thanks: Daniel Rocco [https://github.com/drocco007])

		Add the FUNCTION keyword to auto-completion.

		Display NULL values as <null> instead of empty strings.

		Fix the completion refresh when \connect is executed.

0.16.1

Bug Fixes:

		Fix unicode issues with hstore.

		Fix a silent error when database is changed using \c.

0.16.0

Features:

		Add ds special command to show sequences.

		Add Vi mode for keybindings. This can be enabled by adding ‘vi = True’ in ~/.pgclirc. (Thanks: Jay Zeng [https://github.com/jayzeng])

		Add a -v/–version flag to pgcli.

		Add completion for TEMPLATE keyword and smart-completion for
‘CREATE DATABASE blah WITH TEMPLATE <tab>’. (Thanks: Daniel Rocco [https://github.com/drocco007])

		Add custom decoders to json/jsonb to emulate the behavior of psql. This
removes the unicode prefix (eg: u’Éowyn’) in the output. (Thanks: Daniel Rocco [https://github.com/drocco007])

		Add df special command to show functions. (Thanks: darikg [https://github.com/darikg])

		Make suggestions for special commands smarter. eg: dn - only suggests schemas. (Thanks: darikg [https://github.com/darikg])

		Print out the version and other meta info about pgcli at startup.

Bug Fixes:

		Fix a rare crash caused by adding new schemas to a database. (Thanks: darikg [https://github.com/darikg])

		Make dt command honor the explicit schema specified in the arg. (Thanks: darikg [https://github.com/darikg])

		Print BIGSERIAL type as Integer instead of Float.

		Show completions for special commands at the beginning of a statement. (Thanks: Daniel Rocco [https://github.com/drocco007])

		Allow special commands to work in a multi-statement case where multiple sql
statements are separated by semi-colon in the same line.

0.15.4

		Dummy version to replace accidental PyPI entry deletion.

0.15.3

		Override the LESS options completely instead of appending to it.

0.15.2

		Revert back to using psycopg2 as the postgres adapter. psycopg2cffi fails for some tests in Python 3.

0.15.0

Features:

		Add syntax color styles to config.

		Add auto-completion for COPY statements.

		Change Postgres adapter to psycopg2cffi, to make it PyPy compatible.
Now pgcli can be run by PyPy.

Bug Fixes:

		Treat boolean values as strings instead of ints.

		Make di, dv and dt to be schema aware. (Thanks: darikg [https://github.com/darikg])

		Make column name display unicode compatible.

0.14.0

Features:

		Add alias completion support to ON keyword. (Thanks: Iryna Cherniavska [https://github.com/j-bennet])

		Add LIMIT keyword to completion.

		Auto-completion for Postgres schemas. (Thanks: darikg [https://github.com/darikg])

		Better unicode handling for datatypes, dbname and roles.

		Add timing command to time the sql commands.
This can be set via config file (~/.pgclirc) using timing = True.

		Add different table styles for displaying output.
This can be changed via config file (~/.pgclirc) using table_format = fancy_grid.

		Add confirmation before printing results that have more than 1000 rows.

Bug Fixes:

		Performance improvements to expanded view display (x).

		Cast bytea files to text while displaying. (Thanks: Daniel Rocco [https://github.com/drocco007])

		Added a list of reserved words that should be auto-escaped.

		Auto-completion is now case-insensitive.

		Fix the broken completion for multiple sql statements. (Thanks: darikg [https://github.com/darikg])

0.13.0

Features:

		Add -d/–dbname option to the commandline.
eg: pgcli -d database

		Add the username as an argument after the database.
eg: pgcli dbname user

Bug Fixes:

		Fix the crash when c fails.

		Fix the error thrown by d when triggers are present.

		Fix broken behavior on ?. (Thanks: darikg [https://github.com/darikg])

0.12.0

Features:

		Upgrade to prompt_toolkit version 0.26 (Thanks: https://github.com/macobo)
* Adds Ctrl-left/right to move the cursor one word left/right respectively.
* Internal API changes.

		IPython integration through ipython-sql [https://github.com/catherinedevlin/ipython-sql] (Thanks: https://github.com/darikg)
* Add an ipython magic extension to embed pgcli inside ipython.
* Results from a pgcli query are sent back to ipython.

		Multiple sql statments in the same line separated by semi-colon. (Thanks: https://github.com/macobo)

Bug Fixes:

		Fix ‘message’ attribute not found exception in Python 3. (Thanks: https://github.com/GMLudo)

		Use the database username as the database name instead of defaulting to OS username. (Thanks: https://github.com/fpietka)

		Auto-completion for auto-escaped column/table names.

		Fix i-reverse-search to work in prompt_toolkit version 0.26.

0.11.0

Features:

		Add dn command. (Thanks: https://github.com/CyberDem0n)

		Add x command. (Thanks: https://github.com/stuartquin)

		Auto-escape special column/table names. (Thanks: https://github.com/qwesda)

		Cancel a command using Ctrl+C. (Thanks: https://github.com/macobo)

		Faster startup by reading all columns and tables in a single query. (Thanks: https://github.com/macobo)

		Improved psql compliance with env vars and password prompting. (Thanks: https://github.com/darikg)

Bug Fixes:

		Fix the broken behavior of d+. (Thanks: https://github.com/macobo)

		Fix a crash during auto-completion. (Thanks: https://github.com/Erethon)

Improvements:

		Faster test runs on TravisCI. (Thanks: https://github.com/macobo)

		Integration tests with Postgres!! (Thanks: https://github.com/macobo)

 © Copyright .
 Created using Sphinx 1.3.1.

_images/image02.png
stayupdated_test> INSERT INTO goose_db_versi

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

DEVELOP.html

 Navigation

 		
 index

 		pgcli latest documentation »

Development Guide

This is a guide for developers who would like to contribute to this project.

GitHub Workflow

If you’re interested in contributing to pgcli, first of all my heart felt
thanks. Fork the project [https://github.com/dbcli/pgcli] in github. Then
clone your fork into your computer (git clone <url-for-your-fork>). Make
the changes and create the commits in your local machine. Then push those
changes to your fork. Then click on the pull request icon on github and create
a new pull request. Add a description about the change and send it along. I
promise to review the pull request in a reasonable window of time and get back
to you.

In order to keep your fork up to date with any changes from mainline, add a new
git remote to your local copy called ‘upstream’ and point it to the main pgcli
repo.

$ git remote add upstream git@github.com:dbcli/pgcli.git

Once the ‘upstream’ end point is added you can then periodically do a git
pull upstream master to update your local copy and then do a git push
origin master to keep your own fork up to date.

Local Setup

The installation instructions in the README file are intended for users of
pgcli. If you’re developing pgcli, you’ll need to install it in a slightly
different way so you can see the effects of your changes right away without
having to go through the install cycle everytime you change the code.

It is highly recommended to use virtualenv for development. If you don’t know
what a virtualenv is, this guide [http://docs.python-guide.org/en/latest/dev/virtualenvs/#virtual-environments]
will help you get started.

Create a virtualenv (let’s call it pgcli-dev). Activate it:

source ./pgcli-dev/bin/activate

Once the virtualenv is activated, cd into the local clone of pgcli folder
and install pgcli using pip as follows:

$ pip install --editable .

or

$ pip install -e .

This will install the necessary dependencies as well as install pgcli from the
working folder into the virtualenv. By installing it using pip install -e
we’ve linked the pgcli installation with the working copy. So any changes made
to the code is immediately available in the installed version of pgcli. This
makes it easy to change something in the code, launch pgcli and check the
effects of your change.

Adding PostgreSQL Special (Meta) Commands

If you want to work on adding new meta-commands (such as dp, ds, dy),
you’ll be changing the code of packages/pgspecial.py. Search for the
dictionary called CASE_SENSITIVE_COMMANDS. The special command us used as
the dictionary key, and the value is a tuple.

The first item in the tuple is either a string (sql statement) or a function.
The second item in the tuple is a list of strings which is the documentation
for that special command. The list will have two items, the first item is the
command itself with possible options and the second item is the plain english
description of that command.

For example, l is a meta-command that lists all the databases. The way you
can see the SQL statement issued by PostgreSQL when this command is executed
is to launch psql -E and entering l.

That will print the results and also print the sql statement that was executed
to produce that result. In most cases it’s a single sql statement, but sometimes
it’s a series of sql statements that feed the results to each other to get to
the final result.

Building RPM and DEB packages

You will need Vagrant 1.7.2 or higher. In the project root there is a
Vagrantfile that is setup to do multi-vm provisioning. If you’re setting things
up for the first time, then do:

$ version=x.y.z vagrant up debian
$ version=x.y.z vagrant up centos

If you already have those VMs setup and you’re merely creating a new version of
DEB or RPM package, then you can do:

$ version=x.y.z vagrant provision

That will create a .deb file and a .rpm file.

The deb package can be installed as follows:

$ sudo dpkg -i pgcli*.deb # if dependencies are available.

or

$ sudo apt-get install -f pgcli*.deb # if dependencies are not available.

The rpm package can be installed as follows:

$ sudo yum install pgcli*.rpm

 © Copyright .
 Created using Sphinx 1.3.1.

_static/minus.png

