

Pet: Project Environment Tool

Quickstart

Installation

To install Pet, open an interactive shell and run:

bash -c "$(curl -fsSL https://raw.githubusercontent.com/limebrains/pet/master/install.bash)"

Or to specify installation directory and type of shell:

bash -c "shell='bash_or_zsh';install_dir='absolute_path';$(curl -fsSL https://raw.githubusercontent.com/limebrains/pet/master/install.bash)"

Using Pet

To start using Pet, you need to first create a project:

$ pet init

Note

If name for new project is not passed Pet uses current directory name.
To use custom name invoke it with pet init -n chosen_name

It will edit two files start.sh and stop.sh which commands are going to
be executed accordingly during start of project and after closing

If you want to start project:

pet project_name

Now you are in subshell created using your standard files (like .bashrc or .profile)
and start.sh

User Guide

Here you can read more about how Pet works.

This part provides examples of use and explores all Pet commands and its possibilities.

	Using pet
	Basic usage
	Creation of project

	Editing

	Listing

	Creating folders required by pet

	Stopping a project

	Advanced usage
	Archiving a project

	Configuring pet

	Deploying auto-completion

	Using local files

	Register

	Deletion

	Renaming

	Restoring project from archive

	Running a task outside of project

	Creating task

	Templates

	Modules
	Business logic

	Pet exceptions

	Pet utils

Indices and tables

	Index

Using pet

Pet can be used to:

	separate shell environments for each project you are working on

	cleaning after you work

	prepare exact shell that you need for undisturbed work

	share same shell scripts and aliases with your team

	use popular templates for working on certain tasks

	Basic usage
	Creation of project

	Editing

	Listing

	Creating folders required by pet

	Stopping a project

	Advanced usage
	Archiving a project

	Configuring pet

	Deploying auto-completion

	Using local files

	Register

	Deletion

	Renaming

	Restoring project from archive

	Running a task outside of project

	Creating task

	Templates

Basic usage

This part covers basic usage of a Pet

	Creation of project
	Init

	Create with templates

	Create in place

	Editing
	Using edit

	Listing

	Creating folders required by pet
	Using recreate

	Stopping a project
	Using stop

Creation of project

Init

You can create project by using pet init command.

This leads to creating start.sh and stop.sh files in which you can add all
the commands that should be run every time you start or stop project.

Pet uses current directory name as projects name if one is not provided.
You can provide one with use of -n flag:

pet init -n my_awesome_project

Create with templates

During creation you can specify which templates to use with -t flag.
Templates contain files that are going to be integrated to your project.

Basically it accumulates start.sh and stop.sh from every template
to your new project.

To do that execute:

$ pet init -t first_template -t secound_template...
or
$ pet init -t=first_template,secound_template...

After accumulating commands from given templates it passes editing to you
with notes from which template which part of a code comes from.

Create in place

You can create project and store it’s files in .pet folder in project
directory by using -i flag. This can be very useful if you want to
share pet project with others by adding .pet folder to repository

$ pet init -i

Editing

To edit project, task or locales you can use edit command.

Using edit

edit command helps you edit project or task if there is
active project or edit project if non is active

edits task
[project] $ pet edit task_name
edits current project
[project] $ pet edit
edits project
$ pet edit project_name

It opens accordingly task file or start.sh and stop.sh in $EDITOR

To edit locals you can use:

[project] $ pet edit task_name -l
or
$ pet edit project_name -l

Listing

Pet provides listing of:

	available projects pet list

	available tasks pet list -t (available only when some project is active in current shell)

	archived projects pet list -o

	all above pet list --tree

Creating folders required by pet

Pet requires specific folders in PET_FOLDER directory, to make
them you can use recreate

Using recreate

Recreate have to be turned without sudo. It creates required
directories in PET_FOLDER

$ pet recreate

Stopping a project

To stop a project you can use pet stop or ^D, both work same way

Using stop

stop sends SIGKILL to current shell.

Commands in stop.sh are executed before exiting a project by using
trap 'source /path/.../stop.sh' EXIT

[project] $ pet stop

Advanced usage

This part covers advanced usage of a Pet

	Archiving a project
	Using archive

	Configuring pet
	Using config

	Deploying auto-completion
	Using deploy

	Using local files
	Locals in projects

	Locals in tasks

	Register

	Deletion
	Using remove

	Renaming
	Using rename

	Restoring project from archive
	Using restore

	Running a task outside of project
	Using run

	Creating task
	Using task

	Task without alias

	Running task

	Templates
	Using templates

Archiving a project

If you don’t want to use certain project anymore but want to keep
project files, you can archive it.

Project is going to be moved to PET_FOLDER/archive and is not
going to be shown in autocomplete

Using archive

If project is not active it can be moved to archive to keep files safe.

To restore project from archive use restore command

$ pet archive project_name
$ pet restore project_name

To check projects in archive folder use pet list -o

Configuring pet

You can configure pet by using config command.

You can set:
- editor that is going to be used to edit files used by Pet

	directory in which pet files are going to be stored

	files used to initialize shell (such as .bashrc or .profile)

Using config

$ pet config editor

Helps you set EDITOR variable in config file, this editor is
going to be used to edit files used by Pet

$ pet config projects_folder

Informs you that pet stores files in directory that either is
equal to PET_FOLDER variable that can be exported in shell
profile file, if is unset uses ~/.pet folder

$ pet config shell

Helps you edit file that is going to be used to initialize
new shells

Deploying auto-completion

Pet provides auto-completion for bash and zsh, to use it you have
to run pet deploy (sometimes requires sudo)

Using deploy

deploy searches for possible paths to deploy completion to for
shell you are using (you can choose shell type manually by using
-s option)

$ pet deploy

Using local files

If you want to use relative paths or have some additional
settings but eg. you share pet project in repository you can
achieve that by using local files.

Add *.local* to .gitignore to not share local files

Locals in projects

Before executing start.sh and stop.sh pet looks for local
files for each of these files. If they exist they are used before
and after executing start.sh and stop.sh.

Workflow:
start.local.entry.sh -> start.sh -> start.local.exit.sh

work

stop.local.entry.sh -> stop.sh -> stop.local.exit.sh

To edit this files you can use:

$ pet edit project_name -l

Locals in tasks

Before executing task file pet looks for task_name.local.entry.sh
and task_name.local.exit.sh. If they exits they are used before
and after executing task.

Workflow:
start.local.entry.sh -> task -> start.local.exit.sh

To edit this files you can use:

[project] $ pet edit task_name -l

Register

Registers current directory as folder with project configuration files for pet
if found all required files:

	start.sh

	stop.sh

	tasks (directory)

$ pet register

You can add it under specific name different than directory name by passing
parameter with -n flag

$ pet register -n project_name

This might be useful if you want to share same environment in shell for each
member of a project - just add it to git repository with your project.

Whenever someone makes changes you are going to be using same environment.

This is accomplished by adding symbolic link to folder with projects

Deletion

To delete project, task or locks you can use remove command.

Using remove

remove command if given name removes task if there is active
project or removes project if non is active, also can be used
to delete all lock files that prevent from initializing
project too many times.

[project] $ pet remove task_name
or
$ pet remove project_name
delete locks
$ pet remove -l

Renaming

To rename project or task you can use rename command.

Using rename

rename command renames task if there is active project or renames project if non is active

[project] $ pet rename old_task_name new_task_name
or
$ pet rename old_project_name new_project_name

Restoring project from archive

If you want to restore project that you previously
put in archive you can use restore command

Using restore

To restore project from archive use restore command

$ pet restore project_name

To check projects in archive folder use pet list -o

Running a task outside of project

To run task outside of a project you can use run command

Using run

Run command runs task from a project in projects environment.

It is run in subshell.

To stay in shell after task is completed you can use -i flag
which stands for interactive mod

$ pet run project_name task_name
or
$ pet run project_name task_name -i

Creating task

To create task you need to activate project first, than use
task command.

Using task

Running task command will make a script that will be available
during use of a project.

You can specify what type of a file it’s going to be, but name of
a task is understood as name of a file without extension.

If extension is not provided it will create .sh file.

You have to choose is this task going to be normal or local by using
either -s/ –save or -l/ –local flag.

Local tasks are stored with additional ‘.local’ in their names

You might want to use local tasks if you are sharing pet project in repository.

[project] $ pet task task_name -s
or
[project] $ pet task task_name.extension -s
or
[project] $ pet task task_name -l
or
[project] $ pet task task_name.extension -l

This opens task file in $EDITOR to let you edit it.

You can change file extension freely

Task without alias

If you don’t want to create alias to task eg. because it have a
name of shell command you can use -a flag.

[project] $ pet task task_name -s -a

Running task

To run a task you can do it from within project:

[project] $ pet task_name
or by using alias (if -a flag was not used) during every next invocation of a project
[project] $ task_name

To run it from outside of a project you have to perform:

$ pet run project_name task_name

Templates

Provide faster creation of projects

Templates are stored in PET_FOLDER/templates

Using templates

You can use templates during initialization of a project by adding a -t flag before
each templates name.

$ pet init -t first_template -t secound_template...
or
$ pet init -t=first_template,secound_template...

Modules

Look into source code of pet

	Business logic

	Pet exceptions

	Pet utils

Business logic

Pet exceptions

Pet utils

	
pet.utils.makedirs(exists_ok=False, *args, **kwargs)

	

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pet	

 	
 	
 pet.utils	

Index

 M
 | P

M

 	
 	makedirs() (in module pet.utils)

P

 	
 	pet.utils (module)

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Pet: Project Environment Tool

 		
 Using pet

 		
 Basic usage

 		
 Creation of project

 		
 Editing

 		
 Listing

 		
 Creating folders required by pet

 		
 Stopping a project

 		
 Advanced usage

 		
 Archiving a project

 		
 Configuring pet

 		
 Deploying auto-completion

 		
 Using local files

 		
 Register

 		
 Deletion

 		
 Renaming

 		
 Restoring project from archive

 		
 Running a task outside of project

 		
 Creating task

 		
 Templates

 		
 Modules

 		
 Business logic

 		
 Pet exceptions

 		
 Pet utils

_static/ajax-loader.gif

