
Payment Suite
Release

Apr 25, 2017

Contents

1 User Documentation 3
1.1 Installation . 3
1.2 Configuration . 4
1.3 Available Platforms . 8
1.4 FAQ . 15

2 Developer Documentation 17
2.1 Developing Platform . 17
2.2 Contribute . 26
2.3 TO DO . 26

i

ii

Payment Suite, Release

The Payment Suite Project is just a way to implement any payment platform using some Symfony2 compo-
nents, with a common structure. Your project will simply need to listen to a few events, so the payment platform usage
will be fully transparent.

Contents 1

Payment Suite, Release

2 Contents

CHAPTER 1

User Documentation

Installation

You have to add require line into you composer.json file. Notice that you need to override the defined platform name
with desired one.

You have to add require line into you composer.json file

Note: you need to replace platform with bundle name you want to install

"require": {
// ...
"paymentsuite/platform-bundle": "X.X.X"

}

Then you have to use composer to update your project dependencies

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar update

And register the bundle in your AppKernel.php file

return array(
// ...
new PaymentSuite\PaymentCoreBundle\PaymentCoreBundle(),
new PaymentSuite\PlatformBundle\PlatformBundle(),

);

3

Payment Suite, Release

Configuration

About PaymentBridgeBundle

As Payment Suite should be compatible with all E-commerces projects, it’s built without any kind of attachment with
your model, so you must build (just once) a specific bridge bundle to tell Payment Suite where to find some data.

For this purpose, create a Bundle named PaymentBridgeBundle with the following features.

PaymentBridge Service

Payment Service is a service that has to be necessarily implemented. This service must implement
PaymentSuite\PaymentCoreBundle\Services\Interfaces\PaymentBridgeInterface.

<?php

namespace YourProjectName\PaymentCoreBundle\Services;

use PaymentSuite\PaymentCoreBundle\Services\Interfaces\PaymentBridgeInterface;

class PaymentBridge implements PaymentBridgeInterface
{

/**
* @var Object

*
* Order object

*/
private $order;

/**
* Set order to PaymentBridge

*
* @var Object $order Order element

*/
public function setOrder($order)
{

$this->order = $order;
}

/**
* Return order

*
* @return Object order

*/
public function getOrder()
{

return $this->order;
}

/**
* Return order identifier value

*
* @return integer

*/
public function getOrderId()
{

4 Chapter 1. User Documentation

http://symfony.com/doc/current/bundles/SensioGeneratorBundle/commands/generate_bundle.html
http://symfony.com/doc/current/book/service_container.html

Payment Suite, Release

return $this->order->getId();
}

/**
* Given an id, find Order

*
* @return Object order

*/
public function findOrder($orderId)
{

/*
* Your code to get Order

*/

return $this->order;
}

/**
* Get the currency in which the order is paid

*
* @return string

*/
public function getCurrency()
{

/*
* Set your static or dynamic currency

*/

return 'USD';
}

/**
* Get total order amount in cents

*
* @return integer

*/
public function getAmount()
{

/*
* Return payment amount (in cents)

*/

return $amount;
}

/**
* Return if order has already been paid

*
* @return boolean

*/
public function isOrderPaid()
{

return array();
}

/**
* Get extra data

*

1.2. Configuration 5

Payment Suite, Release

* @return array

*/
public function getExtraData()
{

return false;
}

}

This service must be named payment.bridge and configured in the Resources\config\services.yml
file:

services:
...
payment.bridge:

class: YourProjectName\PaymentBridgeBundle\Services\PaymentBridge

Payment Event Listener

You can create an Event Listener to subscribe to Payment process events.

In fact, this will be the way to manage your cart and your order in every payment stage.

<?php

namespace YourProjectName\PaymentBridgeBundle\EventListener;

use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderLoadEvent;
use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderCreatedEvent;
use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderDoneEvent;
use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderSuccessEvent;
use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderFailEvent;

/**
* Payment event listener

*
* This listener is enabled whatever the payment method is.

*/
class Payment
{

/**
* On payment order load event

*
* @param PaymentOrderLoadEvent $paymentOrderLoadEvent Payment Order Load event

*/
public function onPaymentOrderLoad(PaymentOrderLoadEvent $paymentOrderLoadEvent)
{

/*
* Your code for this event

*/
}

/**
* On payment order created event

*
* @param PaymentOrderCreatedEvent $paymentOrderCreatedEvent Payment Order

→˓Created event

*/

6 Chapter 1. User Documentation

http://symfony.com/doc/current/cookbook/service_container/event_listener.html

Payment Suite, Release

public function onPaymentOrderCreated(PaymentOrderCreatedEvent
→˓$paymentOrderCreatedEvent)

{
/*
* Your code for this event

*/
}

/**
* On payment done event

*
* @param PaymentOrderDoneEvent $paymentOrderDoneEvent Payment Order Done event

*/
public function onPaymentDone(PaymentOrderDoneEvent $paymentOrderDoneEvent)
{

/*
* Your code for this event

*/
}

/**
* On payment success event

*
* @param PaymentOrderSuccessEvent $paymentOrderSuccessEvent Payment Order

→˓Success event

*/
public function onPaymentSuccess(PaymentOrderSuccessEvent

→˓$paymentOrderSuccessEvent)
{

/*
* Your code for this event

*/
}

/**
* On payment fail event

*
* @param PaymentOrderFailEvent $paymentOrderFailEvent Payment Order Fail event

*/
public function onPaymentFail(PaymentOrderFailEvent $paymentOrderFailEvent)
{

/*
* Your code for this event

*/
}

}

Register these event listeners in your Resources\config\services.yml file:

services:
...
payment.event.listener:

class: YourProjectName\PaymentBridgeBundle\EventListener\Payment
arguments: [@doctrine.orm.entity_manager, @mailer]
tags:

- { name: kernel.event_listener, event: payment.order.done, method:
→˓onPaymentOrderDone }

- { name: kernel.event_listener, event: payment.order.created, method:
→˓onPaymentOrderCreated }

1.2. Configuration 7

Payment Suite, Release

- { name: kernel.event_listener, event: payment.order.load, method:
→˓onPaymentLoad }

- { name: kernel.event_listener, event: payment.order.success, method:
→˓onPaymentSuccess }

- { name: kernel.event_listener, event: payment.order.fail, method:
→˓onPaymentFail }

Available Platforms

These are the platforms currently supported by the main PaymentSuite team. Each platform has been developed as a
wrapper of PaymentCoreBundle

AuthorizenetBundle

This bundle bring you a possibility to make simple payments through Authorize.Net.

Install

You have to add require line into you composer.json file

"require": {
// ...
"paymentsuite/authorizenet-bundle": "v1.1"

}

Then you have to use composer to update your project dependencies

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar update paymentsuite/authorizenet-bundle

And register the bundle in your AppKernel.php file

return array(
// ...
new PaymentSuite\PaymentCoreBundle\PaymentCoreBundle(),
new PaymentSuite\AuthorizenetBundle\AuthorizenetBundle(),

);

Configuration

If it’s first payment method of PaymentSuite in your project, first you have to configure PaymentBridge Service and
Payment Event Listener following this documentation.

Configure the AuthorizenetBundle parameters in your config.yml.

authorizenet:

authorizenet keys
login_id: XXXXXXXXXXXX
tran_key: XXXXXXXXXXXX
test_mode: true

8 Chapter 1. User Documentation

http://www.authorize.net/
http://docs.paymentsuite.org/en/latest/configuration.html/

Payment Suite, Release

By default, controller route is /payment/authorizenet/execute
controller_route: /my/custom/route

Configuration for payment success redirection
#
Route defines which route will redirect if payment success
If order_append is true, Bundle will append cart identifier into route
taking order_append_field value as parameter name and
PaymentOrderWrapper->getOrderId() value
payment_success:

route: cart_thanks
order_append: true
order_append_field: order_id

Configuration for payment fail redirection
#
Route defines which route will redirect if payment fails
If cart_append is true, Bundle will append cart identifier into route
taking cart_append_field value as parameter name and
PaymentCartWrapper->getCartId() value
payment_fail:

route: cart_view
cart_append: false
cart_append_field: cart_id

About Authorizenet login_id and tran_key you can learn more in Authorizenet documentation page.

Router

AuthorizenetBundle allows developer to specify the route of controller where Authorize.Net callback is processed.
By default, this value is /payment/authorizenet/callback but this value can be changed in configuration
file. Anyway AuthorizenetBundle’s routes must be parsed by the framework, so these lines must be included into
routing.yml file.

authorizenet_payment_routes:
resource: .
type: authorizenet

Display

Once your AuthorizenetBundle is installed and well configured, you need to place your payment form.

AuthorizenetBundle gives you all form view as requested by the payment module.

{% block content %}
<div class="payment-wrapper">

{{ authorizenet_render() }}
</div>

{% endblock content %}

Customize

authorizenet_render() just print a basic form.

1.3. Available Platforms 9

http://support.authorize.net/authkb/index?page=content&id=A576&actp=LIST_POPULAR

Payment Suite, Release

As every project need its own form design, you can overwrite default form located in: app/Resources/
AuthorizenetBundle/views/Authorizenet/view.html.twig.

Testing and more documentation

For testing you can use these example these examples. More detail about Authorizenet API you can find in this web.

GoogleWalletBundle

This bundle bring you a possibility to make simple payments through Google Wallet.

Install

You have to add require line into you composer.json file

"require": {
// ...
"paymentsuite/google-wallet-bundle": "v1.1"

}

Then you have to use composer to update your project dependencies

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar update paymentsuite/google-wallet-bundle

And register the bundle in your AppKernel.php file

return array(
// ...
new PaymentSuite\PaymentCoreBundle\PaymentCoreBundle(),
new PaymentSuite\GoogleWalletBundle\GoogleWalletBundle(),

);

Configuration

If it’s first payment method of PaymentSuite in your project, first you have to configure PaymentBridge Service and
Payment Event Listener following this documentation.

Configure the GoogleWalletBundle parameters in your config.yml.

google_wallet:

google wallet keys
merchant_id: XXXXXXXXXXXX
secret_key: XXXXXXXXXXXX

Configuration for payment success redirection
#
Route defines which route will redirect if payment success
If order_append is true, Bundle will append cart identifier into route
taking order_append_field value as parameter name and
PaymentOrderWrapper->getOrderId() value
payment_success:

route: cart_thanks

10 Chapter 1. User Documentation

http://developer.authorize.net/testingfaqs/
http://developer.authorize.net/
http://www.google.com/wallet/
http://docs.paymentsuite.org/en/latest/configuration.html/

Payment Suite, Release

order_append: true
order_append_field: order_id

Configuration for payment fail redirection
#
Route defines which route will redirect if payment fails
If cart_append is true, Bundle will append cart identifier into route
taking cart_append_field value as parameter name and
PaymentCartWrapper->getCartId() value
payment_fail:

route: cart_view
cart_append: false
cart_append_field: cart_id

To get merchant_id and secret_key you have to register for Sandbox Settings or Production Settings. Also
there you have to set postback URL (must be on public DNS and not localhost). For more information you can visit
page of Google Wallet APIs.

Extra Data

PaymentBridge Service must return, at least, these fields.

• order_name

• order_description

Router

GoogleWalletBundle allows developer to specify the route of controller where Google Wallet callback is processed.
By default, this value is /payment/googlewallet/callback but this value can be changed in configuration
file. Anyway GoogleWalletBundle’s routes must be parsed by the framework, so these lines must be included into
routing.yml file.

google_wallet_payment_routes:
resource: .
type: googlewallet

Display

Once your GoogleWalletBundle is installed and well configured, you need to place submit button which open Google
Wallet pop-up.

GoogleWalletBundle gives you all code as requested by the payment module.

{% block content %}
<div class="payment-wrapper">

{{ googlewallet_render() }}
</div>

{% endblock content %}

{% block foot_script %}
{{ parent() }}
{{ googlewallet_scripts() }}

{% endblock foot_script %}

1.3. Available Platforms 11

https://sandbox.google.com/checkout/inapp/merchant/settings.html
https://checkout.google.com/inapp/merchant/settings.html
https://developers.google.com/wallet/

Payment Suite, Release

Customize

As every project need its own form design, you can overwrite default button located in: app/Resources/
GoogleWalletBundle/views/GoogleWallet/view.html.twig.

Testing and more documentation

For testing, you just have to use sandbox settings. More details about Google Wallet API you can find in this web.

PaymillBundle

Configuration

Configure the PaymillBundle configuration in your config.yml

paymill:

paymill keys
public_key: XXXXXXXXXXXX
private_key: XXXXXXXXXXXX

By default, controller route is /payment/paymill/execute
controller_route: /my/custom/route

Configuration for payment success redirection
#
Route defines which route will redirect if payment successes
If order_append is true, Bundle will append card identifier into route
taking order_append_field value as parameter name and
PaymentOrderWrapper->getOrderId() value
payment_success:

route: card_thanks
order_append: true
order_append_field: order_id

Configuration for payment fail redirection
#
Route defines which route will redirect if payment fails
If card_append is true, Bundle will append card identifier into route
taking card_append_field value as parameter name and
PaymentCardWrapper->getCardId() value
payment_fail:

route: card_view
card_append: false
card_append_field: card_id

Extra Data

PaymentBridge Service must return, at least, these fields.

• order_description

12 Chapter 1. User Documentation

https://developers.google.com/wallet/

Payment Suite, Release

Router

PaymillBundle allows developer to specify the route of controller where paymill payment is processed. By default, this
value is /payment/paymill/execute but this value can be changed in configuration file. Anyway, the bundle
routes must be parsed by the framework, so these lines must be included into routing.yml file

Display

Once your Paymill is installed and well configured, you need to place your payment form.

PaymillBundle gives you all form view as requested by the payment module.

Customize

paymill_render() only print form in a simple way.

As every project need its own form design, you should overwrite in app/Resources/PaymillBundle/views/
Paymill/view.html.twig, paymill form render template placed in PaymentSuite/Paymill/Bundle/
Resources/views/Paymill/view.html.twig.

StripeBundle

This bundle bring you a possibility to make simple payments through Stripe.

Install

You have to add require line into you composer.json file

"require": {
// ...
"paymentsuite/stripe-bundle": "v1.1"

}

Then you have to use composer to update your project dependencies

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar update paymentsuite/stripe-bundle

And register the bundle in your AppKernel.php file

return array(
// ...
new PaymentSuite\PaymentCoreBundle\PaymentCoreBundle(),
new PaymentSuite\StripeBundle\StripeBundle(),

);

Configuration

If it’s first payment method of PaymentSuite in your project, first you have to configure PaymentBridge Service and
Payment Event Listener following this documentation.

Configure the StripeBundle parameters in your config.yml.

1.3. Available Platforms 13

https://stripe.com
http://docs.paymentsuite.org/en/latest/configuration.html/

Payment Suite, Release

stripe:

stripe keys
public_key: XXXXXXXXXXXX
private_key: XXXXXXXXXXXX

By default, controller route is /payment/stripe/execute
controller_route: /my/custom/route

Configuration for payment success redirection
#
Route defines which route will redirect if payment success
If order_append is true, Bundle will append cart identifier into route
taking order_append_field value as parameter name and
PaymentOrderWrapper->getOrderId() value
payment_success:

route: cart_thanks
order_append: true
order_append_field: order_id

Configuration for payment fail redirection
#
Route defines which route will redirect if payment fails
If cart_append is true, Bundle will append cart identifier into route
taking cart_append_field value as parameter name and
PaymentCartWrapper->getCartId() value
payment_fail:

route: cart_view
cart_append: false
cart_append_field: cart_id

About Stripe public_key and private_key you can learn more in Stripe documentation page.

Router

StripeBundle allows developer to specify the route of controller where Stripe callback is processed. By default, this
value is /payment/stripe/callback but this value can be changed in configuration file. Anyway StripeBun-
dle’s routes must be parsed by the framework, so these lines must be included into routing.yml file.

stripe_payment_routes:
resource: .
type: stripe

Display

Once your StripeBundle is installed and well configured, you need to place your payment form.

StripeBundle gives you all form view as requested by the payment module.

{% block content %}
<div class="payment-wrapper">

{{ stripe_render() }}
</div>

{% endblock content %}

14 Chapter 1. User Documentation

https://stripe.com/docs/tutorials/dashboard#api-keys

Payment Suite, Release

{% block foot_script %}
{{ parent() }}
{{ stripe_scripts() }}

{% endblock foot_script %}

Customize

stripe_render() just print a basic form.

As every project need its own form design, you can overwrite default form located in: app/Resources/
StripeBundle/views/Stripe/view.html.twig following Stripe documentation.

In another hand, Stripe recommend use jQuery form validator.

Testing and more documentation

For testing you can use these examples. More detail about Stripe API you can find in this web.

FAQ

1.4. FAQ 15

https://stripe.com/docs/tutorials/forms
https://stripe.com/docs/tutorials/forms#create-a-single-use-token
https://github.com/stripe/jquery.payment
https://stripe.com/docs/testing
https://stripe.com/docs/api/php

Payment Suite, Release

16 Chapter 1. User Documentation

CHAPTER 2

Developer Documentation

Developing Platform

Since any payment platform is implemented on the existing PaymentSuite for Symfony2 is something like a plugin,
must be implemented simply those specific features of the platform itself.

The core provides a number of tools, both definition and execution, so it is not too complex to implement each of the
platforms, and providing homogeneity in the set of all events regarding concerns.

PaymentMethod

The first class that must implement either integrated platform is called PaymentMethod. This must extend an interface
located in Mmoreram\PaymentCoreBundle\PaymentMethodInterface, so you should just implement a
single method.

<?php

namespace Mmoreram\PaymentCoreBundle;

/**
* Interface for all type of payments

*/
interface PaymentMethodInterface
{

/**
* Return type of payment name

*
* @return string

*/
public function getPaymentName();

}

17

Payment Suite, Release

At the time that our platform offers data on the response of the payment, it is interesting that this class implements
their getters, although not common on all platforms.

This is done because there may be a case where a project wants to subscribe to an event of Core, acting only if the
payment is one in specific. In this case, you will have access to the data offered without any problem.

Here is an example of what could be a kind of a new payment method called AcmePaymentBundle

<?php

/**
* AcmePaymentBundle for Symfony2

*/

namespace Mmoreram\AcmePaymentBundle;

use Mmoreram\PaymentCoreBundle\PaymentMethodInterface;

/**
* AcmePaymentMethod class

*/
class AcmePaymentMethod implements PaymentMethodInterface
{

/**
* @var SomeExtraData

*
* Some extra data given by payment response

*/
private $someExtraData;

/**
* Get AcmePayment method name

*
* @return string Payment name

*/
public function getPaymentName()
{

return 'acme_payment';
}

/**
* Set some extra data

*
* @param string $someExtraData Some extra data

*
* @return AcmePaymentMethod self Object

*/
public function setSomeExtraData($someExtraData)
{

$this->someExtraData = $someExtraData;

return $this;
}

18 Chapter 2. Developer Documentation

Payment Suite, Release

/**
* Get some extra data

*
* @return array Some extra data

*/
public function getSomeExtraData()
{

return $someExtraData;
}

}

Configuration

Consider the data coming through PaymentBridge service defined by the project, and you should not redefine them
statically. The configuration data is used for completely static definition. A clear example of configuration is

• Public and private keys

• API url

• Controllers routes

• Static data, like logo

This configuration must be properly defined and validated, as defined here. Let’s see a configuration sample

services:

acmepayment:
public_key: XXXXXXXXXX
private_key: XXXXXXXXXX
payment_success:

route: payment_success
order_append: true
order_append_field: order_id

payment_fail:
route: payment_failed
order_append: false

Note: It is important to understand the motivation of configuration items. You only have to define elements unchanged
at project level and environment-level writable. Pay dependent elements are placed along PaymentBridge as we will
see later.

When the configuration settings are validated by the bundle, the platform should add, one by one, as parameters.
Please check that all changed as a parameter fields always have the same format. Here is a short example of what
could be a configuration validator.

<?php

/**
* AcmePaymentBundle for Symfony2

*/

namespace Mmoreram\AcmePaymentBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;

2.1. Developing Platform 19

http://symfony.com/doc/current/components/config/definition.html

Payment Suite, Release

use Symfony\Component\Config\Definition\ConfigurationInterface;

/**
* This is the class that validates and merges configuration from your app/config
→˓files

*/
class Configuration implements ConfigurationInterface
{

/**
* {@inheritDoc}

*/
public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('acmepayment');

$rootNode
->children()

->scalarNode('public_key')
->isRequired()
->cannotBeEmpty()

->end()
->scalarNode('private_key')

->isRequired()
->cannotBeEmpty()

->end()
->arrayNode('payment_success')

->children()
->scalarNode('route')

->isRequired()
->cannotBeEmpty()

->end()
->booleanNode('order_append')

->defaultTrue()
->end()
->scalarNode('order_append_field')

->defaultValue('order_id')
->end()

->end()
->end()
->arrayNode('payment_fail')

->children()
->scalarNode('route')

->isRequired()
->cannotBeEmpty()

->end()
->booleanNode('order_append')

->defaultTrue()
->end()
->scalarNode('order_append_field')

->defaultValue('card_id')
->end()

->end()
->end()

->end();

return $treeBuilder;
}

20 Chapter 2. Developer Documentation

Payment Suite, Release

}

And an example of parametrization of configuration items. Each platform must implement their own items.

<?php

/**
* AcmePaymentBundle for Symfony2

*/

namespace Mmoreram\AcmePaymentBundle\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\Loader;

/**
* This is the class that loads and manages your bundle configuration

*/
class AcmePaymentExtension extends Extension
{

/**
* {@inheritDoc}

*/
public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();
$config = $this->processConfiguration($configuration, $configs);

$container->setParameter('acmepayment.private.key', $config['private_key']);
$container->setParameter('acmepayment.public.key', $config['public_key']);

$container->setParameter('acmepayment.success.route', $config['payment_success
→˓']['route']);

$container->setParameter('acmepayment.success.order.append', $config['payment_
→˓success']['order_append']);

$container->setParameter('acmepayment.success.order.field', $config['payment_
→˓success']['order_append_field']);

$container->setParameter('acmepayment.fail.route', $config['payment_fail'][
→˓'route']);

$container->setParameter('acmepayment.fail.order.append', $config['payment_
→˓fail']['order_append']);

$container->setParameter('acmepayment.fail.order.field', $config['payment_fail
→˓']['order_append_field']);

}
}

Extra data

All configuration of the payment must be collected by the method of getExtraData of PaymentBridge service.
This method will provide all the necessary values for all installed platforms, so that each platform must, specifically,
validate that the required fields are present in the method response array.

2.1. Developing Platform 21

Payment Suite, Release

Controllers

All controller that requires payment platform itself, must be associated with a dynamically generated path. Its motiva-
tion is that the user must be able to define each of the paths associated with each of the actions of the drivers. For this,
each platform must make available to the user the possibility to overwrite the path as follows.

<?php

namespace Mmoreram\AcmeBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

/**
* This is the class that validates and merges configuration from your app/config
→˓files

*/
class Configuration implements ConfigurationInterface
{

/**
* {@inheritDoc}

*/
public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('acme');

$rootNode
->children()

...

->scalarNode('controller_route')
->defaultValue('/payment/acme/execute')

->end()

...
->end();

return $treeBuilder;
}

}

Once we provide the possibility to define this variable, adding one by default (should follow this pattern), we transform
the variable parameter configuration, in order to inject.

<?php

namespace Mmoreram\AcmeBundle\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\Loader;

/**
* This is the class that loads and manages your bundle configuration

*/
class AcmePaymentExtension extends Extension

22 Chapter 2. Developer Documentation

Payment Suite, Release

{
/**
* {@inheritDoc}

*/
public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();
$config = $this->processConfiguration($configuration, $configs);
$container->setParameter('acme.controller.route', $config['controller_route

→˓']);
}

}

Services

All services with responsibility for launching events PaymentCore, MUST inject an instance of
Mmoreram\PaymentCoreBundle\Services\PaymentEventDispatcher. This class is responsible for
providing direct methods to launch the kernel events. All methods require paymentBridge and paymentmethod.

<?php

/**
* At this point, order must be created given a card, and placed in PaymentBridge

*
* So, $this->paymentBridge->getOrder() must return an object

*/
$this->paymentEventDispatcher->notifyPaymentOrderLoad($this->paymentBridge,
→˓$paymentMethod);

Exceptions

PaymentCore provides a number of Exceptions to be used by the platforms. It is important to unify certain behaviors
using transparently payment platform.

PaymentAmountsNotMatchException

This exception must be thrown when the value of the payment goes through form, is validated and is not equal to the
real value of the payment.

PaymentOrderNotFoundException

Launched the first event of the kernel, as explained in Order load event, PaymentBridge order must have a private
variable in order. This implies that the getOrder() should return an object. This exception must be thrown if this
method returns null.

PaymentExtraDataFieldNotDefinedException

As explained in Extra Data fields may have platforms that require extra fields. You can throw this exception if one of
the camps is not found and is required.

2.1. Developing Platform 23

Payment Suite, Release

PaymentException

Any exceptions regarding payment methods PaymentException extends so you can try a transparent any excep-
tion concerning PaymentCore.

Kernel Events

Order load

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderLoadEvent with these methods.

• $event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by
PaymentCore.

• $event->getPaymentMethod returns the implementation of PaymentMethodInterface imple-
mented by Method Platform.

services:
my_event_listener:

class: AcmeBundle\EventListener\MyEventListener
tags:
- { name: kernel.event_listener, event: payment.order.load, method:

→˓onOrderLoad }

Order created

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderCreatedEvent with thow methods.

• $event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by
PaymentCore.

• $event->getPaymentMethod returns the implementation of PaymentMethodInterface imple-
mented by Method Platform.

services:
my_event_listener:

class: AcmeBundle\EventListener\MyEventListener
tags:
- { name: kernel.event_listener, event: payment.order.created, method:

→˓onOrderCreated }

Order done

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderDone with thow methods.

24 Chapter 2. Developer Documentation

Payment Suite, Release

• $event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by
PaymentCore.

• $event->getPaymentMethod returns the implementation of PaymentMethodInterface imple-
mented by Method Platform.

services:
my_event_listener:

class: AcmeBundle\EventListener\MyEventListener
tags:
- { name: kernel.event_listener, event: payment.order.load, method:

→˓onOrderDone }

Order success

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderSuccessEvent with thow methods.

• $event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by
PaymentCore.

• $event->getPaymentMethod returns the implementation of PaymentMethodInterface imple-
mented by Method Platform.

services:
my_event_listener:

class: AcmeBundle\EventListener\MyEventListener
tags:
- { name: kernel.event_listener, event: payment.order.load, method:

→˓onOrderSuccess }

Order fail

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderFailEvent with thow methods.

• $event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by
PaymentCore.

• $event->getPaymentMethod returns the implementation of PaymentMethodInterface imple-
mented by Method Platform.

services:
my_event_listener:

class: AcmeBundle\EventListener\MyEventListener
tags:
- { name: kernel.event_listener, event: payment.order.load, method:

→˓onOrderFail}

2.1. Developing Platform 25

Payment Suite, Release

Contribute

All code is Symfony2 Code formatted, so every pull request must validate phpcs standards. You should read Symfony2
coding standards and install this CodeSniffer to check all code is validated.

There is also a policy for contributing to this project. All pull request must be all explained step by step, to make us
more understandable and easier to merge pull request. All new features must be tested with PHPUnit.

If you’d like to contribute, please read the Contributing Code part of the documentation. If you’re submitting a pull
request, please follow the guidelines in the Submitting a Patch section and use the Pull Request Template.

When contributing with PaymentCoreBundle, you can contact yuhu@mmoreram.com to let us know about your con-
tribution in this amazing project.

Contributors

• Marc Morera (Main developer) - [@mmoreram](http://github.com/mmoreram)

• Denys Pasishnyi - [@dpcat237](http://github.com/dpcat237)

• Gonzalo Miguez - [@mrzard](http://github.com/mrzard)

• Aldo Chiecchia - [@alch](http://github.com/alch)

• Santi Castells - [@scastells](http://github.com/scastells)

• Contributors

TO DO

26 Chapter 2. Developer Documentation

http://symfony.com/doc/current/contributing/code/standards.html
http://symfony.com/doc/current/contributing/code/standards.html
https://github.com/opensky/Symfony2-coding-standard
http://symfony.com/doc/current/book/testing.html
http://symfony.com/doc/current/contributing/code/index.html
http://symfony.com/doc/current/contributing/code/patches.html#check-list
http://symfony.com/doc/current/contributing/code/patches.html#make-a-pull-request
mailto:yuhu@mmoreram.com
http://github.com/mmoreram
http://github.com/dpcat237
http://github.com/mrzard
http://github.com/alch
http://github.com/scastells
https://github.com/mmoreram/PaymentCoreBundle/graphs/contributors

	User Documentation
	Installation
	Configuration
	Available Platforms
	FAQ

	Developer Documentation
	Developing Platform
	Contribute
	TO DO

