

Payment Suite Documentation

The Payment Suite Project is just a way to implement any payment platform
using some Symfony2 components, with a common structure. Your project will
simply need to listen to a few events, so the payment platform usage will be
fully transparent.

User Documentation

	Installation

	Configuration
	About PaymentBridgeBundle

	PaymentBridge Service

	Payment Event Listener

	Available Platforms
	AuthorizenetBundle

	GoogleWalletBundle

	PaymillBundle

	StripeBundle

	FAQ

Developer Documentation

	Developing Platform
	PaymentMethod

	Configuration

	Extra data

	Controllers

	Services

	Exceptions

	Kernel Events

	Contribute
	Contributors

	TO DO

Installation

You have to add require line into you composer.json file. Notice that you need
to override the defined platform name with desired one.

You have to add require line into you composer.json file

Note

you need to replace platform with bundle name you want to
install

"require": {
 // ...
 "paymentsuite/platform-bundle": "X.X.X"
}

Then you have to use composer to update your project dependencies

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar update

And register the bundle in your AppKernel.php file

return array(
 // ...
 new PaymentSuite\PaymentCoreBundle\PaymentCoreBundle(),
 new PaymentSuite\PlatformBundle\PlatformBundle(),
);

Configuration

About PaymentBridgeBundle

As Payment Suite should be compatible with all E-commerces projects,
it’s built without any kind of attachment with your model, so you must
build (just once) a specific bridge bundle to tell Payment Suite where
to find some data.

For this purpose, create a Bundle [http://symfony.com/doc/current/bundles/SensioGeneratorBundle/commands/generate_bundle.html] named PaymentBridgeBundle with the
following features.

PaymentBridge Service

Payment Service is a service [http://symfony.com/doc/current/book/service_container.html] that has to be necessarily implemented.
This service must implement
PaymentSuite\PaymentCoreBundle\Services\Interfaces\PaymentBridgeInterface.

<?php

namespace YourProjectName\PaymentCoreBundle\Services;

use PaymentSuite\PaymentCoreBundle\Services\Interfaces\PaymentBridgeInterface;

class PaymentBridge implements PaymentBridgeInterface
{
 /**
 * @var Object
 *
 * Order object
 */
 private $order;

 /**
 * Set order to PaymentBridge
 *
 * @var Object $order Order element
 */
 public function setOrder($order)
 {
 $this->order = $order;
 }

 /**
 * Return order
 *
 * @return Object order
 */
 public function getOrder()
 {
 return $this->order;
 }

 /**
 * Return order identifier value
 *
 * @return integer
 */
 public function getOrderId()
 {
 return $this->order->getId();
 }

 /**
 * Given an id, find Order
 *
 * @return Object order
 */
 public function findOrder($orderId)
 {
 /*
 * Your code to get Order
 */

 return $this->order;
 }

 /**
 * Get the currency in which the order is paid
 *
 * @return string
 */
 public function getCurrency()
 {
 /*
 * Set your static or dynamic currency
 */

 return 'USD';
 }

 /**
 * Get total order amount in cents
 *
 * @return integer
 */
 public function getAmount()
 {
 /*
 * Return payment amount (in cents)
 */

 return $amount;
 }

 /**
 * Return if order has already been paid
 *
 * @return boolean
 */
 public function isOrderPaid()
 {
 return array();
 }

 /**
 * Get extra data
 *
 * @return array
 */
 public function getExtraData()
 {
 return false;
 }
}

This service must be named payment.bridge and configured in the
Resources\config\services.yml file:

services:
 # ...
 payment.bridge:
 class: YourProjectName\PaymentBridgeBundle\Services\PaymentBridge

Payment Event Listener

You can create an Event Listener [http://symfony.com/doc/current/cookbook/service_container/event_listener.html] to subscribe to Payment process
events.

In fact, this will be the way to manage your cart and your order in
every payment stage.

<?php

namespace YourProjectName\PaymentBridgeBundle\EventListener;

use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderLoadEvent;
use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderCreatedEvent;
use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderDoneEvent;
use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderSuccessEvent;
use PaymentSuite\PaymentCoreBundle\Event\PaymentOrderFailEvent;

/**
 * Payment event listener
 *
 * This listener is enabled whatever the payment method is.
 */
class Payment
{
 /**
 * On payment order load event
 *
 * @param PaymentOrderLoadEvent $paymentOrderLoadEvent Payment Order Load event
 */
 public function onPaymentOrderLoad(PaymentOrderLoadEvent $paymentOrderLoadEvent)
 {
 /*
 * Your code for this event
 */
 }

 /**
 * On payment order created event
 *
 * @param PaymentOrderCreatedEvent $paymentOrderCreatedEvent Payment Order Created event
 */
 public function onPaymentOrderCreated(PaymentOrderCreatedEvent $paymentOrderCreatedEvent)
 {
 /*
 * Your code for this event
 */
 }

 /**
 * On payment done event
 *
 * @param PaymentOrderDoneEvent $paymentOrderDoneEvent Payment Order Done event
 */
 public function onPaymentDone(PaymentOrderDoneEvent $paymentOrderDoneEvent)
 {
 /*
 * Your code for this event
 */
 }

 /**
 * On payment success event
 *
 * @param PaymentOrderSuccessEvent $paymentOrderSuccessEvent Payment Order Success event
 */
 public function onPaymentSuccess(PaymentOrderSuccessEvent $paymentOrderSuccessEvent)
 {
 /*
 * Your code for this event
 */
 }

 /**
 * On payment fail event
 *
 * @param PaymentOrderFailEvent $paymentOrderFailEvent Payment Order Fail event
 */
 public function onPaymentFail(PaymentOrderFailEvent $paymentOrderFailEvent)
 {
 /*
 * Your code for this event
 */
 }
}

Register these event listeners in your Resources\config\services.yml
file:

services:
 # ...
 payment.event.listener:
 class: YourProjectName\PaymentBridgeBundle\EventListener\Payment
 arguments: [@doctrine.orm.entity_manager, @mailer]
 tags:
 - { name: kernel.event_listener, event: payment.order.done, method: onPaymentOrderDone }
 - { name: kernel.event_listener, event: payment.order.created, method: onPaymentOrderCreated }
 - { name: kernel.event_listener, event: payment.order.load, method: onPaymentLoad }
 - { name: kernel.event_listener, event: payment.order.success, method: onPaymentSuccess }
 - { name: kernel.event_listener, event: payment.order.fail, method: onPaymentFail }

Available Platforms

These are the platforms currently supported by the main PaymentSuite team.
Each platform has been developed as a wrapper of PaymentCoreBundle

AuthorizenetBundle

This bundle bring you a possibility to make simple payments through Authorize.Net [http://www.authorize.net/].

Install

You have to add require line into you composer.json file

"require": {
 // ...
 "paymentsuite/authorizenet-bundle": "v1.1"
}

Then you have to use composer to update your project dependencies

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar update paymentsuite/authorizenet-bundle

And register the bundle in your AppKernel.php file

return array(
 // ...
 new PaymentSuite\PaymentCoreBundle\PaymentCoreBundle(),
 new PaymentSuite\AuthorizenetBundle\AuthorizenetBundle(),
);

Configuration

If it’s first payment method of PaymentSuite in your project, first you have to configure PaymentBridge Service and Payment Event Listener following this documentation [http://docs.paymentsuite.org/en/latest/configuration.html/].

Configure the AuthorizenetBundle parameters in your config.yml.

authorizenet:

 # authorizenet keys
 login_id: XXXXXXXXXXXX
 tran_key: XXXXXXXXXXXX
 test_mode: true

 # By default, controller route is /payment/authorizenet/execute
 controller_route: /my/custom/route

 # Configuration for payment success redirection
 #
 # Route defines which route will redirect if payment success
 # If order_append is true, Bundle will append cart identifier into route
 # taking order_append_field value as parameter name and
 # PaymentOrderWrapper->getOrderId() value
 payment_success:
 route: cart_thanks
 order_append: true
 order_append_field: order_id

 # Configuration for payment fail redirection
 #
 # Route defines which route will redirect if payment fails
 # If cart_append is true, Bundle will append cart identifier into route
 # taking cart_append_field value as parameter name and
 # PaymentCartWrapper->getCartId() value
 payment_fail:
 route: cart_view
 cart_append: false
 cart_append_field: cart_id

About Authorizenet login_id and tran_key you can learn more in
Authorizenet documentation page [http://support.authorize.net/authkb/index?page=content&id=A576&actp=LIST_POPULAR].

Router

AuthorizenetBundle allows developer to specify the route of controller where Authorize.Net callback is processed.
By default, this value is /payment/authorizenet/callback but this value can be changed in configuration file.
Anyway AuthorizenetBundle’s routes must be parsed by the framework, so these lines must be included into routing.yml file.

authorizenet_payment_routes:
 resource: .
 type: authorizenet

Display

Once your AuthorizenetBundle is installed and well configured, you need to place your payment form.

AuthorizenetBundle gives you all form view as requested by the payment module.

{% block content %}
 <div class="payment-wrapper">
 {{ authorizenet_render() }}
 </div>
{% endblock content %}

Customize

authorizenet_render() just print a basic form.

As every project need its own form design, you can overwrite default form located in: app/Resources/AuthorizenetBundle/views/Authorizenet/view.html.twig.

Testing and more documentation

For testing you can use these example these examples [http://developer.authorize.net/testingfaqs/]. More detail about Authorizenet API you can find in this web [http://developer.authorize.net/].

GoogleWalletBundle

This bundle bring you a possibility to make simple payments through Google Wallet [http://www.google.com/wallet/].

Install

You have to add require line into you composer.json file

"require": {
 // ...
 "paymentsuite/google-wallet-bundle": "v1.1"
}

Then you have to use composer to update your project dependencies

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar update paymentsuite/google-wallet-bundle

And register the bundle in your AppKernel.php file

return array(
 // ...
 new PaymentSuite\PaymentCoreBundle\PaymentCoreBundle(),
 new PaymentSuite\GoogleWalletBundle\GoogleWalletBundle(),
);

Configuration

If it’s first payment method of PaymentSuite in your project, first you have to configure PaymentBridge Service and Payment Event Listener following this documentation [http://docs.paymentsuite.org/en/latest/configuration.html/].

Configure the GoogleWalletBundle parameters in your config.yml.

google_wallet:

 # google wallet keys
 merchant_id: XXXXXXXXXXXX
 secret_key: XXXXXXXXXXXX

 # Configuration for payment success redirection
 #
 # Route defines which route will redirect if payment success
 # If order_append is true, Bundle will append cart identifier into route
 # taking order_append_field value as parameter name and
 # PaymentOrderWrapper->getOrderId() value
 payment_success:
 route: cart_thanks
 order_append: true
 order_append_field: order_id

 # Configuration for payment fail redirection
 #
 # Route defines which route will redirect if payment fails
 # If cart_append is true, Bundle will append cart identifier into route
 # taking cart_append_field value as parameter name and
 # PaymentCartWrapper->getCartId() value
 payment_fail:
 route: cart_view
 cart_append: false
 cart_append_field: cart_id

To get merchant_id and secret_key you have to register for Sandbox Settings [https://sandbox.google.com/checkout/inapp/merchant/settings.html] or Production Settings [https://checkout.google.com/inapp/merchant/settings.html]. Also there you have to set postback URL (must be on public DNS and not localhost). For more information you can visit page of Google Wallet APIs [https://developers.google.com/wallet/].

Extra Data

PaymentBridge Service must return, at least, these fields.

	order_name

	order_description

Router

GoogleWalletBundle allows developer to specify the route of controller where Google Wallet callback is processed.
By default, this value is /payment/googlewallet/callback but this value can be changed in configuration file.
Anyway GoogleWalletBundle’s routes must be parsed by the framework, so these lines must be included into routing.yml file.

google_wallet_payment_routes:
 resource: .
 type: googlewallet

Display

Once your GoogleWalletBundle is installed and well configured, you need to place submit button which open Google Wallet pop-up.

GoogleWalletBundle gives you all code as requested by the payment module.

{% block content %}
 <div class="payment-wrapper">
 {{ googlewallet_render() }}
 </div>
{% endblock content %}

{% block foot_script %}
 {{ parent() }}
 {{ googlewallet_scripts() }}
{% endblock foot_script %}

Customize

As every project need its own form design, you can overwrite default button located in: app/Resources/GoogleWalletBundle/views/GoogleWallet/view.html.twig.

Testing and more documentation

For testing, you just have to use sandbox settings.
More details about Google Wallet API you can find in this web [https://developers.google.com/wallet/].

PaymillBundle

Configuration

Configure the PaymillBundle configuration in your config.yml

paymill:

 # paymill keys
 public_key: XXXXXXXXXXXX
 private_key: XXXXXXXXXXXX

 # By default, controller route is /payment/paymill/execute
 controller_route: /my/custom/route

 # Configuration for payment success redirection
 #
 # Route defines which route will redirect if payment successes
 # If order_append is true, Bundle will append card identifier into route
 # taking order_append_field value as parameter name and
 # PaymentOrderWrapper->getOrderId() value
 payment_success:
 route: card_thanks
 order_append: true
 order_append_field: order_id

 # Configuration for payment fail redirection
 #
 # Route defines which route will redirect if payment fails
 # If card_append is true, Bundle will append card identifier into route
 # taking card_append_field value as parameter name and
 # PaymentCardWrapper->getCardId() value
 payment_fail:
 route: card_view
 card_append: false
 card_append_field: card_id

Extra Data

PaymentBridge Service must return, at least, these fields.

	order_description

Router

PaymillBundle allows developer to specify the route of controller where paymill
payment is processed.
By default, this value is /payment/paymill/execute but this value can be
changed in configuration file.
Anyway, the bundle routes must be parsed by the framework, so these lines must
be included into routing.yml file

Display

Once your Paymill is installed and well configured, you need to place your
payment form.

PaymillBundle gives you all form view as requested by the payment module.

Customize

paymill_render() only print form in a simple way.

As every project need its own form design, you should overwrite in
app/Resources/PaymillBundle/views/Paymill/view.html.twig, paymill form render
template placed in
PaymentSuite/Paymill/Bundle/Resources/views/Paymill/view.html.twig.

StripeBundle

This bundle bring you a possibility to make simple payments through Stripe [https://stripe.com].

Install

You have to add require line into you composer.json file

"require": {
 // ...
 "paymentsuite/stripe-bundle": "v1.1"
}

Then you have to use composer to update your project dependencies

$ curl -sS https://getcomposer.org/installer | php
$ php composer.phar update paymentsuite/stripe-bundle

And register the bundle in your AppKernel.php file

return array(
 // ...
 new PaymentSuite\PaymentCoreBundle\PaymentCoreBundle(),
 new PaymentSuite\StripeBundle\StripeBundle(),
);

Configuration

If it’s first payment method of PaymentSuite in your project, first you have to configure PaymentBridge Service and Payment Event Listener following this documentation [http://docs.paymentsuite.org/en/latest/configuration.html/].

Configure the StripeBundle parameters in your config.yml.

stripe:

 # stripe keys
 public_key: XXXXXXXXXXXX
 private_key: XXXXXXXXXXXX

 # By default, controller route is /payment/stripe/execute
 controller_route: /my/custom/route

 # Configuration for payment success redirection
 #
 # Route defines which route will redirect if payment success
 # If order_append is true, Bundle will append cart identifier into route
 # taking order_append_field value as parameter name and
 # PaymentOrderWrapper->getOrderId() value
 payment_success:
 route: cart_thanks
 order_append: true
 order_append_field: order_id

 # Configuration for payment fail redirection
 #
 # Route defines which route will redirect if payment fails
 # If cart_append is true, Bundle will append cart identifier into route
 # taking cart_append_field value as parameter name and
 # PaymentCartWrapper->getCartId() value
 payment_fail:
 route: cart_view
 cart_append: false
 cart_append_field: cart_id

About Stripe public_key and private_key you can learn more in Stripe documentation page [https://stripe.com/docs/tutorials/dashboard#api-keys].

Router

StripeBundle allows developer to specify the route of controller where Stripe callback is processed.
By default, this value is /payment/stripe/callback but this value can be changed in configuration file.
Anyway StripeBundle’s routes must be parsed by the framework, so these lines must be included into routing.yml file.

stripe_payment_routes:
 resource: .
 type: stripe

Display

Once your StripeBundle is installed and well configured, you need to place your payment form.

StripeBundle gives you all form view as requested by the payment module.

{% block content %}
 <div class="payment-wrapper">
 {{ stripe_render() }}
 </div>
{% endblock content %}

{% block foot_script %}
 {{ parent() }}
 {{ stripe_scripts() }}
{% endblock foot_script %}

Customize

stripe_render() just print a basic form.

As every project need its own form design, you can overwrite default form located in: app/Resources/StripeBundle/views/Stripe/view.html.twig following Stripe documentation [https://stripe.com/docs/tutorials/forms].

In another hand, Stripe recommend [https://stripe.com/docs/tutorials/forms#create-a-single-use-token] use jQuery form validator [https://github.com/stripe/jquery.payment].

Testing and more documentation

For testing you can use these examples [https://stripe.com/docs/testing].
More detail about Stripe API you can find in this web [https://stripe.com/docs/api/php].

FAQ

Developing Platform

Since any payment platform is implemented on the existing PaymentSuite for Symfony2 is something like a plugin,
must be implemented simply those specific features of the platform itself.

The core provides a number of tools, both definition and execution, so
it is not too complex to implement each of the platforms, and providing
homogeneity in the set of all events regarding concerns.

PaymentMethod

The first class that must implement either integrated platform is called
PaymentMethod. This must extend an interface located in
Mmoreram\PaymentCoreBundle\PaymentMethodInterface, so you should
just implement a single method.

<?php

namespace Mmoreram\PaymentCoreBundle;

/**
 * Interface for all type of payments
 */
interface PaymentMethodInterface
{

 /**
 * Return type of payment name
 *
 * @return string
 */
 public function getPaymentName();
}

At the time that our platform offers data on the response of the payment,
it is interesting that this class implements their getters,
although not common on all platforms.

This is done because there may be a case where a project wants to subscribe to an event of Core,
acting only if the payment is one in specific. In this case, you will have
access to the data offered without any problem.

Here is an example of what could be a kind of a new payment method
called AcmePaymentBundle

<?php

/**
 * AcmePaymentBundle for Symfony2
 */

namespace Mmoreram\AcmePaymentBundle;

use Mmoreram\PaymentCoreBundle\PaymentMethodInterface;

/**
 * AcmePaymentMethod class
 */
class AcmePaymentMethod implements PaymentMethodInterface
{

 /**
 * @var SomeExtraData
 *
 * Some extra data given by payment response
 */
 private $someExtraData;

 /**
 * Get AcmePayment method name
 *
 * @return string Payment name
 */
 public function getPaymentName()
 {
 return 'acme_payment';
 }

 /**
 * Set some extra data
 *
 * @param string $someExtraData Some extra data
 *
 * @return AcmePaymentMethod self Object
 */
 public function setSomeExtraData($someExtraData)
 {
 $this->someExtraData = $someExtraData;

 return $this;
 }

 /**
 * Get some extra data
 *
 * @return array Some extra data
 */
 public function getSomeExtraData()
 {
 return $someExtraData;
 }
}

Configuration

Consider the data coming through PaymentBridge service defined by the
project, and you should not redefine them statically. The configuration
data is used for completely static definition.
A clear example of configuration is

	Public and private keys

	API url

	Controllers routes

	Static data, like logo

This configuration must be properly defined and validated, as defined
here [http://symfony.com/doc/current/components/config/definition.html]. Let’s see a configuration sample

services:

 acmepayment:
 public_key: XXXXXXXXXX
 private_key: XXXXXXXXXX
 payment_success:
 route: payment_success
 order_append: true
 order_append_field: order_id
 payment_fail:
 route: payment_failed
 order_append: false

Note

It is important to understand the motivation of configuration items.
You only have to define elements unchanged at project level and
environment-level writable. Pay dependent elements are placed along
PaymentBridge as we will see later.

When the configuration settings are validated by the bundle, the
platform should add, one by one, as parameters. Please check that all
changed as a parameter fields always have the same format. Here is a
short example of what could be a configuration validator.

<?php

/**
 * AcmePaymentBundle for Symfony2
 */

namespace Mmoreram\AcmePaymentBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

/**
 * This is the class that validates and merges configuration from your app/config files
 */
class Configuration implements ConfigurationInterface
{
 /**
 * {@inheritDoc}
 */
 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('acmepayment');

 $rootNode
 ->children()
 ->scalarNode('public_key')
 ->isRequired()
 ->cannotBeEmpty()
 ->end()
 ->scalarNode('private_key')
 ->isRequired()
 ->cannotBeEmpty()
 ->end()
 ->arrayNode('payment_success')
 ->children()
 ->scalarNode('route')
 ->isRequired()
 ->cannotBeEmpty()
 ->end()
 ->booleanNode('order_append')
 ->defaultTrue()
 ->end()
 ->scalarNode('order_append_field')
 ->defaultValue('order_id')
 ->end()
 ->end()
 ->end()
 ->arrayNode('payment_fail')
 ->children()
 ->scalarNode('route')
 ->isRequired()
 ->cannotBeEmpty()
 ->end()
 ->booleanNode('order_append')
 ->defaultTrue()
 ->end()
 ->scalarNode('order_append_field')
 ->defaultValue('card_id')
 ->end()
 ->end()
 ->end()
 ->end();

 return $treeBuilder;
 }
}

And an example of parametrization of configuration items. Each platform
must implement their own items.

<?php

/**
 * AcmePaymentBundle for Symfony2
 */

namespace Mmoreram\AcmePaymentBundle\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\Loader;

/**
 * This is the class that loads and manages your bundle configuration
 */
class AcmePaymentExtension extends Extension
{
 /**
 * {@inheritDoc}
 */
 public function load(array $configs, ContainerBuilder $container)
 {
 $configuration = new Configuration();
 $config = $this->processConfiguration($configuration, $configs);

 $container->setParameter('acmepayment.private.key', $config['private_key']);
 $container->setParameter('acmepayment.public.key', $config['public_key']);

 $container->setParameter('acmepayment.success.route', $config['payment_success']['route']);
 $container->setParameter('acmepayment.success.order.append', $config['payment_success']['order_append']);
 $container->setParameter('acmepayment.success.order.field', $config['payment_success']['order_append_field']);

 $container->setParameter('acmepayment.fail.route', $config['payment_fail']['route']);
 $container->setParameter('acmepayment.fail.order.append', $config['payment_fail']['order_append']);
 $container->setParameter('acmepayment.fail.order.field', $config['payment_fail']['order_append_field']);
 }
}

Extra data

All configuration of the payment must be collected by the method of
getExtraData of PaymentBridge service. This method will provide
all the necessary values for all installed platforms, so that each
platform must, specifically, validate that the required fields are
present in the method response array.

Controllers

All controller that requires payment platform itself, must be associated
with a dynamically generated path. Its motivation is that the user must
be able to define each of the paths associated with each of the actions
of the drivers. For this, each platform must make available to the user
the possibility to overwrite the path as follows.

<?php

namespace Mmoreram\AcmeBundle\DependencyInjection;

use Symfony\Component\Config\Definition\Builder\TreeBuilder;
use Symfony\Component\Config\Definition\ConfigurationInterface;

/**
 * This is the class that validates and merges configuration from your app/config files
 */
class Configuration implements ConfigurationInterface
{
 /**
 * {@inheritDoc}
 */
 public function getConfigTreeBuilder()
 {
 $treeBuilder = new TreeBuilder();
 $rootNode = $treeBuilder->root('acme');

 $rootNode
 ->children()
 ...

 ->scalarNode('controller_route')
 ->defaultValue('/payment/acme/execute')
 ->end()

 ...
 ->end();

 return $treeBuilder;
 }
}

Once we provide the possibility to define this variable, adding one by
default (should follow this pattern), we transform the variable
parameter configuration, in order to inject.

<?php

namespace Mmoreram\AcmeBundle\DependencyInjection;

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\HttpKernel\DependencyInjection\Extension;
use Symfony\Component\DependencyInjection\Loader;

/**
 * This is the class that loads and manages your bundle configuration
 */
class AcmePaymentExtension extends Extension
{
 /**
 * {@inheritDoc}
 */
 public function load(array $configs, ContainerBuilder $container)
 {
 $configuration = new Configuration();
 $config = $this->processConfiguration($configuration, $configs);
 $container->setParameter('acme.controller.route', $config['controller_route']);
 }
}

Services

All services with responsibility for launching events PaymentCore, MUST
inject an instance of
Mmoreram\PaymentCoreBundle\Services\PaymentEventDispatcher. This
class is responsible for providing direct methods to launch the kernel
events. All methods require paymentBridge and paymentmethod.

<?php

/**
 * At this point, order must be created given a card, and placed in PaymentBridge
 *
 * So, $this->paymentBridge->getOrder() must return an object
 */
$this->paymentEventDispatcher->notifyPaymentOrderLoad($this->paymentBridge, $paymentMethod);

Exceptions

PaymentCore provides a number of Exceptions to be used by the platforms.
It is important to unify certain behaviors using transparently payment
platform.

PaymentAmountsNotMatchException

This exception must be thrown when the value of the payment goes through
form, is validated and is not equal to the real value of the payment.

PaymentOrderNotFoundException

Launched the first event of the kernel, as explained in Order load
event, PaymentBridge order must have a private variable in order.
This implies that the getOrder() should return an object. This
exception must be thrown if this method returns null.

PaymentExtraDataFieldNotDefinedException

As explained in Extra Data fields may have platforms that require
extra fields. You can throw this exception if one of the camps is not
found and is required.

PaymentException

Any exceptions regarding payment methods PaymentException extends so
you can try a transparent any exception concerning PaymentCore.

Kernel Events

Order load

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderLoadEvent with these methods.

	$event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by PaymentCore.

	$event->getPaymentMethod returns the implementation of PaymentMethodInterface implemented by Method Platform.

services:
 my_event_listener:
 class: AcmeBundle\EventListener\MyEventListener
 tags:
 - { name: kernel.event_listener, event: payment.order.load, method: onOrderLoad }

Order created

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderCreatedEvent with thow methods.

	$event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by PaymentCore.

	$event->getPaymentMethod returns the implementation of PaymentMethodInterface implemented by Method Platform.

services:
 my_event_listener:
 class: AcmeBundle\EventListener\MyEventListener
 tags:
 - { name: kernel.event_listener, event: payment.order.created, method: onOrderCreated }

Order done

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderDone with thow methods.

	$event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by PaymentCore.

	$event->getPaymentMethod returns the implementation of PaymentMethodInterface implemented by Method Platform.

services:
 my_event_listener:
 class: AcmeBundle\EventListener\MyEventListener
 tags:
 - { name: kernel.event_listener, event: payment.order.load, method: onOrderDone }

Order success

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderSuccessEvent with thow methods.

	$event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by PaymentCore.

	$event->getPaymentMethod returns the implementation of PaymentMethodInterface implemented by Method Platform.

services:
 my_event_listener:
 class: AcmeBundle\EventListener\MyEventListener
 tags:
 - { name: kernel.event_listener, event: payment.order.load, method: onOrderSuccess }

Order fail

This event recieves as parameter an instance of

Mmoreram\PaymentCoreBundle\Event\PaymentOrderFailEvent with thow methods.

	$event->getPaymentBridge returns the implementation of PaymentBridgeInterface needed by PaymentCore.

	$event->getPaymentMethod returns the implementation of PaymentMethodInterface implemented by Method Platform.

services:
 my_event_listener:
 class: AcmeBundle\EventListener\MyEventListener
 tags:
 - { name: kernel.event_listener, event: payment.order.load, method: onOrderFail}

Contribute

All code is Symfony2 Code formatted, so every pull request must validate
phpcs standards. You should read Symfony2 coding standards [http://symfony.com/doc/current/contributing/code/standards.html] and
install this [https://github.com/opensky/Symfony2-coding-standard] CodeSniffer to check all code is validated.

There is also a policy for contributing to this project. All pull
request must be all explained step by step, to make us more
understandable and easier to merge pull request. All new features must
be tested with PHPUnit [http://symfony.com/doc/current/book/testing.html].

If you’d like to contribute, please read the Contributing Code [http://symfony.com/doc/current/contributing/code/index.html] part
of the documentation. If you’re submitting a pull request, please follow
the guidelines in the Submitting a Patch [http://symfony.com/doc/current/contributing/code/patches.html#check-list] section and use the Pull
Request Template [http://symfony.com/doc/current/contributing/code/patches.html#make-a-pull-request].

When contributing with PaymentCoreBundle, you can contact
yuhu@mmoreram.com to let us know about your contribution in this amazing
project.

Contributors

	Marc Morera (Main developer) - [@mmoreram](http://github.com/mmoreram)

	Denys Pasishnyi - [@dpcat237](http://github.com/dpcat237)

	Gonzalo Miguez - [@mrzard](http://github.com/mrzard)

	Aldo Chiecchia - [@alch](http://github.com/alch)

	Santi Castells - [@scastells](http://github.com/scastells)

	Contributors [https://github.com/mmoreram/PaymentCoreBundle/graphs/contributors]

TO DO

Index

 _static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Payment Suite Documentation

 		Installation

 		Configuration

 		About PaymentBridgeBundle

 		PaymentBridge Service

 		Payment Event Listener

 		Available Platforms

 		AuthorizenetBundle

 		Install

 		Configuration

 		Router

 		Display

 		Customize

 		Testing and more documentation

 		GoogleWalletBundle

 		Install

 		Configuration

 		Extra Data

 		Router

 		Display

 		Customize

 		Testing and more documentation

 		PaymillBundle

 		Configuration

 		Extra Data

 		Router

 		Display

 		Customize

 		StripeBundle

 		Install

 		Configuration

 		Router

 		Display

 		Customize

 		Testing and more documentation

 		FAQ

 		Developing Platform

 		PaymentMethod

 		Configuration

 		Extra data

 		Controllers

 		Services

 		Exceptions

 		PaymentAmountsNotMatchException

 		PaymentOrderNotFoundException

 		PaymentExtraDataFieldNotDefinedException

 		PaymentException

 		Kernel Events

 		Order load

 		Order created

 		Order done

 		Order success

 		Order fail

 		Contribute

 		Contributors

 		TO DO

_static/plus.png

