
Patchwork Documentation
Release 1.0.0

Stephen Finucane, Jeremy Kerr, Damien Lespiau

February 15, 2016

Contents

1 patchwork 3
1.1 Download . 3
1.2 Design . 3
1.3 Getting Started . 4
1.4 Support . 4

2 Deploying Patchwork 5
2.1 Database Configuration . 5
2.2 Django Setup . 7
2.3 Apache Setup . 8
2.4 Configure patchwork . 8
2.5 Subscribe a Local Address to the Mailing List . 9
2.6 Setup your MTA to Deliver Mail to the Parsemail Script . 9
2.7 Set up the patchwork cron script . 9
2.8 (Optional) Configure your VCS to Automatically Update Patches 9

3 User Manual 11
3.1 Submitting patches . 11
3.2 git-pw . 13

4 Testing with Patchwork 15
4.1 Flow . 15
4.2 git-pw helper commands . 17
4.3 Example: running checkpatch.pl on incoming series . 18

5 REST API 19
5.1 API Patterns . 19
5.2 API Reference . 20
5.3 API Revisions . 27

6 Developing patchwork 29
6.1 Quick Start . 29
6.2 Using virtualenv . 29
6.3 Environment Variables . 30
6.4 Running Tests . 31

HTTP Routing Table 33

i

ii

Patchwork Documentation, Release 1.0.0

Contents:

Contents 1

Patchwork Documentation, Release 1.0.0

2 Contents

CHAPTER 1

patchwork

patchwork is a patch tracking system for community-based projects. It is intended to make the patch management
process easier for both the project’s contributors and maintainers, leaving time for the more important (and more
interesting) stuff.

Patches that have been sent to a mailing list are ‘caught’ by the system, and appear on a web page. Any comments
posted that reference the patch are appended to the patch page too. The project’s maintainer can then scan through the
list of patches, marking each with a certain state, such as Accepted, Rejected or Under Review. Old patches can be
sent to the archive or deleted.

Currently, patchwork is being used for a number of open-source projects, mostly subsystems of the Linux kernel.
Although Patchwork has been developed with the kernel workflow in mind, the aim is to be flexible enough to suit the
majority of community projects.

1.1 Download

The latest version of Patchwork is available with git. To download:

$ git clone https://github.com/dlespiau/patchwork.git

Patchwork is distributed under the GNU General Public License.

1.2 Design

1.2.1 patchwork should supplement mailing lists, not replace them

Patchwork isn’t intended to replace a community mailing list; that’s why you can’t comment on a patch in patchwork.
If this were the case, then there would be two forums of discussion on patches, which fragments the patch review
process. Developers who don’t use patchwork would get left out of the discussion.

However, a future development item for patchwork is to facilitate on-list commenting, by providing a “send a reply to
the list” feature for logged-in users.

1.2.2 Don’t pollute the project’s changelogs with patchwork poop

A project’s changelogs are valuable - we don’t want to add patchwork-specific metadata.

3

http://www.gnu.org/licenses/gpl-2.0.html

Patchwork Documentation, Release 1.0.0

1.2.3 patchwork users shouldn’t require a specific version control system

Not everyone uses git for kernel development, and not everyone uses git for patchwork-tracked projects.

It’s still possible to hook other programs into patchwork, using the pwclient command-line client for patchwork, or
directly to the XML RPC interface.

1.3 Getting Started

You should check out the Deploying Patchwork and Developing patchwork guides for information on how to get to
work with patchwork.

1.4 Support

For questions and contributions, please use the GitHub project.

4 Chapter 1. patchwork

https://github.com/dlespiau/patchwork

CHAPTER 2

Deploying Patchwork

Patchwork uses the Django framework - there is some background on deploying Django applications here:

http://www.djangobook.com/en/2.0/chapter12/

You’ll need the following (applications used for patchwork development are in brackets):

• A Python interpreter

• Django >= 1.7. The latest version is recommended

• A webserver and suitable WSGI plugin. Options include Apache with the mod_python plugin, or Gunicorn with
nginx as the proxy server

• A database server (PostgreSQL, MySQL)

• Relevant Python modules for the database server (see the various requirements.txt files)

2.1 Database Configuration

Django’s ORM support multiple database backends, though the majority of testing has been carried out with Post-
greSQL and MySQL.

We need to create a database for the system, add accounts for two system users: the web user (the user that your
web server runs as) and the mail user (the user that your mail server runs as). On Ubuntu these are www-data and
nobody, respectively.

As an alternative, you can use password-based login and a single database account. This is described further down.

NOTE: For the following commands, a $ prefix signifies that the command should be entered at your shell prompt,
and a > prefix signifies the command-line client for your SQL server (psql or mysql).

2.1.1 Install Packages

If you don’t already have MySQL installed, you’ll need to do so now. For example, to install MySQL on RHEL:

$ sudo yum install mysql-server

5

https://www.djangoproject.com/
http://httpd.apache.org/
http://modpython.org/
http://gunicorn.org/
http://nginx.org/

Patchwork Documentation, Release 1.0.0

2.1.2 Create Required Databases and Users

PostgreSQL (ident-based)

PostgreSQL support ident-based authentication, which uses the standard UNIX authentication method as a backend.
This means no database-specific passwords need to be set/used. Assuming you are using this form of authentication,
you just need to create the relevant UNIX users and database:

$ createdb patchwork
$ createuser www-data
$ createuser nobody

PostgreSQL (password-based)

If you are not using the ident-based authentication, you will need to create both a new database and a new database
user:

$ createuser -PE patchwork
$ createdb -O patchwork patchwork

MySQL

$ mysql
> CREATE DATABASE patchwork CHARACTER SET utf8;
> CREATE USER 'www-data'@'localhost' IDENTIFIED BY '<password>';
> CREATE USER 'nobody'@'localhost' IDENTIFIED BY '<password>';

2.1.3 Configure Settings

Once that is done, you need to tell Django about the new database settings, by defining your own production.py
settings file (see below). For PostgreSQL:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'HOST': 'localhost',
'PORT': '',
'USER': 'patchwork',
'PASSWORD': 'my_secret_password',
'NAME': 'patchwork',
'TEST_CHARSET': 'utf8',

},
}

If you’re using MySQL, only the ENGINE changes:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysql',
...

},
}

NOTE: TEST/CHARSET is used when creating tables for the test suite. Without it, tests checking for the correct
handling of non-ASCII characters fail.

6 Chapter 2. Deploying Patchwork

http://www.postgresql.org/docs/8.4/static/auth-methods.html#AUTH-IDENT

Patchwork Documentation, Release 1.0.0

2.2 Django Setup

2.2.1 Configure Directories

Set up some initial directories in the patchwork base directory:

mkdir -p lib/packages lib/python

lib/packages is for stuff we’ll download, lib/python is to add to our Python path. We’ll symlink Python
modules into lib/python.

At the time of release, patchwork depends on Django version 1.7 or later. Where possible, try to use the latest stable
version (currently 1.8). Your distro probably provides this. If not, install it manually:

cd lib/packages
git clone https://github.com/django/django.git -b stable/1.8.x
cd ../python
ln -s ../packages/django/django ./django

2.2.2 Configure Settings

You will also need to configure a settings file for Django. A [sample settings file] is provided, which defines default
settings for patchwork. You’ll need to configure settings for your own setup and save this as production.py (or
override the DJANGO_SETTINGS_MODULE environment variable).

cp patchwork/settings/production.example.py \
patchwork/settings/production.py

At the very minimum, the following settings need to be configured:

SECRET_KEY
ADMINS
TIME_ZONE
LANGUAGE_CODE
DEFAULT_FROM_EMAIL
NOTIFICATION_FROM_EMAIL

You can generate the SECRET_KEY with the following python code:

import string, random
chars = string.letters + string.digits + string.punctuation
print repr("".join([random.choice(chars) for i in range(0,50)]))

If you wish to enable the XML-RPC interface, add the following to the file:

ENABLE_XMLRPC = True

2.2.3 Configure Database Tables

Then, get patchwork to create its tables in your configured database:

PYTHONPATH=../lib/python ./manage.py migrate

Add privileges for your mail and web users. This is only needed if you use the ident-based approach. If you use
password-based database authentication, you can skip this step.

For Postgresql:

2.2. Django Setup 7

https://docs.djangoproject.com/en/1.8/topics/settings/

Patchwork Documentation, Release 1.0.0

psql -f lib/sql/grant-all.postgres.sql patchwork

For MySQL:

mysql patchwork < lib/sql/grant-all.mysql.sql

2.2.4 Other Tasks

You will need to collect the static content into one location from which it can be served (by Apache or nginx, for
example):

PYTHONPATH=lib/python ./manage.py collectstatic

You’ll also need to load the initial tags and states into the patchwork database:

PYTHONPATH=lib/python ./manage.py loaddata default_tags default_states

2.3 Apache Setup

Example apache configuration files are in lib/apache2/.

2.3.1 wsgi

django has built-in support for WSGI, which supersedes the fastcgi handler. It is thus the preferred method to run
patchwork.

The necessary configuration for Apache2 may be found in:

lib/apache2/patchwork.wsgi.conf.

You will need to install/enable mod_wsgi for this to work:

a2enmod wsgi
apache2ctl restart

2.4 Configure patchwork

Now, you should be able to administer patchwork, by visiting the URL:

http://your-host/admin/

You’ll probably want to do the following:

• Set up your projects

• Configure your website address (in the Sites section of the admin)

8 Chapter 2. Deploying Patchwork

Patchwork Documentation, Release 1.0.0

2.5 Subscribe a Local Address to the Mailing List

You will need an email address for patchwork to receive email on - for example - patchwork@your-host, and
this address will need to be subscribed to the list. Depending on the mailing list, you will probably need to confirm
the subscription - temporarily direct the alias to yourself to do this.

2.6 Setup your MTA to Deliver Mail to the Parsemail Script

Your MTA will need to deliver mail to the parsemail script in the email/directory. (Note, do not use the
parsemail.py script directly). Something like this in /etc/aliases is suitable for postfix:

patchwork: "|/srv/patchwork/patchwork/bin/parsemail.sh"

You may need to customise the parsemail.sh script if you haven’t installed patchwork in /srv/patchwork.

Test that you can deliver a patch to this script:

sudo -u nobody /srv/patchwork/patchwork/bin/parsemail.sh < mail

2.7 Set up the patchwork cron script

Patchwork uses a cron script to clean up expired registrations, and send notifications of patch changes (for projects
with this enabled). Something like this in your crontab should work:

m h dom mon dow command

*/10 * * * * cd patchwork; ./manage.py cron

The frequency should be the same as the NOTIFICATION_DELAY_MINUTES setting, which defaults to 10 minutes.

2.8 (Optional) Configure your VCS to Automatically Update Patches

The tools directory of the patchwork distribution contains a file named post-receive.hook which is a sample
git hook that can be used to automatically update patches to the Accepted state when corresponding commits are
pushed via git.

To install this hook, simply copy it to the .git/hooks directory on your server, name it post-receive, and
make it executable.

This sample hook has support to update patches to different states depending on which branch is being pushed to. See
the STATE_MAP setting in that file.

If you are using a system other than git, you can likely write a similar hook using pwclient to update patch state. If
you do write one, please contribute it.

Some errors:

• ERROR: permission denied for relation patchwork_... The user that patchwork is run-
ning as (i.e. the user of the web-server) doesn’t have access to the patchwork tables in the database. Check that
your web server user exists in the database, and that it has permissions to the tables.

• pwclient fails for actions that require authentication, but a username and password is given in ~/.pwclientrc.
Server reports “No authentication credentials given”. If you’re using the FastCGI interface to apache, you’ll
need the -pass-header Authorization option to the FastCGIExternalServer configuration directive.

2.5. Subscribe a Local Address to the Mailing List 9

Patchwork Documentation, Release 1.0.0

10 Chapter 2. Deploying Patchwork

CHAPTER 3

User Manual

3.1 Submitting patches

3.1.1 Initial Submission

Patches are normally submitted with git send-email to a mailing list. For instance, if we branched from
master, have three patches to submit, we can use:

$ git send-email --to=<mailing-list> --cover-letter --annotate master

This command will produce the following email thread (providing you have the chainreplyto configuration option
set to false):

+ [PATCH 0/3] Cover Letter Subject
+--> [PATCH 1/3] Patch 1
+--> [PATCH 2/3] Patch 2
+--> [PATCH 3/3] Patch 3

Patchwork receives those mails and construct Series and Patches objects to present a high level view of the mailing-list
activity and a way to track what happens to that submission.

It’s a good idea to include a cover letter to introduce the work. Patchwork will also pick up that cover letter and name
the series with the subject of that email.

When sending only one patch, it’s a bit much to send a cover letter along with it as the commit message should provide
enough context. In that case, Patchwork will use the subject of the patch as the series title.

3.1.2 New Versions

Sometimes, maybe even more often than hoped, one needs to resend a few patches or even entire series to address
review comments.

Patchwork supports:

• Re-sending a single patch as a reply to the reviewer email. This is usually only used when a few patches have to
be resent.

• Re-sending a full series as a new thread.

A Series object in patchwork tracks all the changes on top of the initial submission.

11

Patchwork Documentation, Release 1.0.0

New Patch

To send a v2 of a patch part of a bigger series, one would do something similar to:

$ git send-email --to=<mailing-list> --cc=<reviewer> \
--in-reply-to=<reviewer-mail-message-id> \
--reroll-count 2 -1 HEAD~2

And, continuing the previous example, this would result in the following email thread:

+ [PATCH 0/3] Cover Letter Subject
+--> [PATCH 1/3] Patch 1
+--> [PATCH 2/3] Patch 2
| +--> Re: [PATCH 2/3] Patch 2 (reviewer comments)
| +--> [PATCH v2 2/3] Patch 2 (v2 of patch 2/3)
+--> [PATCH 3/3] Patch 3

Patch work will create a new revision of the series, updating patch #2 to the new version of that patch.

New Series

When something is really wrong or when, to address the review, most patches of a series need to be revised, re-sending
individual emails can be both annoying for the patch author but also hard to follow from the reviewer side. It’s then
better to re-send a full new thread and forget the previous one.

Patchwork will get that and create a new revision of the initial series with all patches updated to the latest and greatest.

+ [PATCH 0/3] Cover Letter Subject
+--> [PATCH 1/3] Patch 1
+--> [PATCH 2/3] Patch 2
+--> [PATCH 3/3] Patch 3

+ [PATCH v2 0/3] Cover Letter Subject
+--> [PATCH v2 1/3] Patch 1 (v2 of patch 1/3)
+--> [PATCH v2 2/3] Patch 2 (v2 of patch 2/3)
+--> [PATCH v2 3/3] Patch 3 (v2 of patch 3/3)

Patchwork uses the cover letter subject to detect that intent. So one doesn’t need to use the reroll-count like
above, the following would work as well:

+ [PATCH 0/3] Cover Letter Subject
+--> [PATCH 1/3] Patch 1
+--> [PATCH 2/3] Patch 2
+--> [PATCH 3/3] Patch 3

+ [PATCH 0/3] Cover Letter Subject (v2)
+--> [PATCH 1/3] Patch 1 (v2 of patch 1/3)
+--> [PATCH 2/3] Patch 2 (v2 of patch 2/3)
+--> [PATCH 3/3] Patch 3 (v2 of patch 3/3)

Of course, we’ve now entered a dangerous territory. Trying to parse some human-generated text. The regular expres-
sion used accepts several ways of saying that the series is a new version of a previous one. If your favourite way isn’t
among what’s supported, consider contributing (like filing an issue)!

Considering an initial series with Awesome feature as the cover letter subject, Patchwork will considering series
with the following cover letter subjects as new revisions:

12 Chapter 3. User Manual

Patchwork Documentation, Release 1.0.0

Regular Expression Cover Letter

• Awesome feature
• awesome feature

[, \(]*(v|take)[\) 0-9]+$’)
• Awesome feature v2
• awesome feature V2
• Awesome feature, v3
• Awesome feature (v4)
• Awesome feature (take 5)
• Awesome feature, take 6

3.2 git-pw

git-pw (or git pw) is a command line tool that bridges git and patchwork.

3.2.1 Installation

Requirements

git-pw uses GitPython and requests, so those dependencies need to be installed. Using the distribution packages
should work.

On Fedora:

$ sudo dnf install GitPython python-requests

On Debian/Ubuntu:

$ sudo apt-get install python-git python-requests

Alternatively it’s possible to use pip. git-pw/requirements.txt in the patchwork git repository has the list
of required packages:

$ cat git-pw/requirements.txt
GitPython
requests
$ pip install -r requirements.txt

Getting git-pw

git-pw can be directly downloaded from patchwork’s git repository, given execution permission (chmod +x) and
put it anywhere in your PATH.

Because this tool is still very young and to easily get the latest version I would suggest cloning patchwork’s repository
and use a symlink. This way, git-pw can be updated with a single git pull command. From patchwork’s
checkout:

$ ln -s $PWD/git-pw/git-pw ~/.local/bin/

3.2. git-pw 13

https://github.com/dlespiau/patchwork
https://github.com/dlespiau/patchwork/blob/master/git-pw/git-pw
https://github.com/dlespiau/patchwork

Patchwork Documentation, Release 1.0.0

3.2.2 Setup

git-pw configuration is stored in git config files and so can be set per git repository. Two pieces of information are
needed to get started: the URL of the patchwork instance and the project this git repository maps to.

For example, the following sets git-pw up for the intel-gfx project on freedesktop.org:

$ git config patchwork.default.url https://patchwork.freedesktop.org
$ git config patchwork.default.project intel-gfx

git-pw is ready to go! Applying a series known to patchwork to the current git tree is now a single command away:

$ git pw apply -s 122
Applying series: DP refactoring v2 (rev 1)
Applying: drm/i915: Don't pass *DP around to link training functions
Applying: drm/i915: Split write of pattern to DP reg from intel_dp_set_link_train
Applying: drm/i915 Call get_adjust_train() from clock recovery and channel eq
Applying: drm/i915: Move register write into intel_dp_set_signal_levels()
Applying: drm/i915: Move generic link training code to a separate file
...

14 Chapter 3. User Manual

CHAPTER 4

Testing with Patchwork

Patchwork can be used in conjunction with tests suites to build a CI (Continuous Integration) system.

4.1 Flow

Patches sent to the mailing list are grouped into series by Patchwork which, then, exposes events corresponding to the
mailing-list activity. Listening to those events, one or more testing infrastructure(s) can retrieve the patches, test them
and post test results back to Patchwork to display them in the web UI (User Interface). Optionally, Patchwork can
send those test results back to the user and/or mailing-list.

The following diagram describes that flow:

15

Patchwork Documentation, Release 1.0.0

4.1.1 Series and Revisions

Details about steps 1 and 2 can be found in Submitting patches.

4.1.2 Polling for events

Step 3 is Patchwork exposing new series and new series revisions appearing on the mailing list through the
series-new-revision event. This event is created when Patchwork has seen all patches that are part of a
new series/revision, so the API user can safely start processing the new series as soon as they notice the new event,
which, for now, is done polling the /events/ entry point.

To poll for new events, the user can use the since GET parameter to ask for events since the last query. The time
stamp to give to that since parameter is the event_time of the last event seen.

4.1.3 Testing

Step 4 is, of course, where the testing happens.

4.1.4 Test results

Once done, results are posted back to Patchwork in step 5 with the /test-results/ entry point.

One note on the intention behind the pending state: if running the test(s) takes a long time, it’s a good idea to mark
the test results as pending as soon as the series-new-revision event has been detected to indicate to the user
their patches have been picked up for testing.

4.1.5 Email reports

Finally, step 6, the test results can be communicated back by mail to the submitter. By default, Patchwork will not
send any email, that’s to allow test scripts authors to develop without the risk of sending confusing emails to people.

The test result emailing is configurable per test, identified by a unique tuple (project, test_name). That config-
uration is done using the Django administration interface. The first parameter to configure is the email recipient(s):

none No test result email should be sent out (default).

submitter Test result emails are sent to the patch submitter.

mailing list Test result emails are sent to the patch submitter with the project mailing-list in Cc.

recipient list Test result emails are sent to the list of email addresses specified in the Mail To: list field.

The Mail To: list and Mail Cc list are list of addresses that will be appended to the To: and Cc: fields.

When the test is configured to send emails, the when to send can be tweaked as well:

always Always send an email, disregarding the status of the test result.

on failure Only send an email when the test has some warnings or errors.

16 Chapter 4. Testing with Patchwork

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3

Patchwork Documentation, Release 1.0.0

4.2 git-pw helper commands

To interact with Patchwork, the REST API can be used directly with any language and an HTTP library. For python,
requests is a winning choice and I’d have a look at the git-pw source code.

git-pw also provides a couple of commands that can help with writing test scripts without resorting to using the REST
API.

4.2.1 git pw poll-events

git pw poll-events will print events since the last invocation of this command. The output is one event
per line, oldest event first. poll-events stores the time stamp of the last event seen in a file called
.git-pw.$project.poll.timestamp.

--since can be used to override the last seen time stamp and ask for all the events since a specific date:

$ git pw poll-events --since=2016-02-12
{"series": 3324, "parameters": {"revision": 1}, "name": "series-new-revision", ... }
{"series": 3304, "parameters": {"revision": 3}, "name": "series-new-revision", ... }
{"series": 3072, "parameters": {"revision": 2}, "name": "series-new-revision", ... }
{"series": 3344, "parameters": {"revision": 1}, "name": "series-new-revision", ... }

As shown, git pw poll-events prints JSON objects on stdout. Its intended usage is as input to a filter that
would take each event one at a time and do something with it, test a new revision for instance.

As a quick example of the above, to print the list of series created or updated since a specific date, a simple filter can
be written:

#!/bin/python
import fileinput
import json

for line in fileinput.input():
event = json.loads(line)
series = event['series']
revision = event['parameters']['revision']
print("series %d (rev %d)" % (series, revision))

Which gives:

$ git pw poll-events --since=2016-02-12 | ./show-series
series 3324 (rev 1)
series 3304 (rev 3)
series 3072 (rev 2)
series 3344 (rev 1)

4.2.2 git pw post-result

The other side of the patchwork interaction with testing is sending test results back. Here as well git-pw provides a
command to simplify the process. Remember it’s always possible to directly use the REST API.

No need to repeat what’s written in the /test-results/ documentation here. Just a couple of examples, setting a
test result as pending:

$ git pw post-result 3324 checkpatch.pl pending

4.2. git-pw helper commands 17

http://docs.python-requests.org/en/master/
https://github.com/dlespiau/patchwork/blob/master/git-pw/git-pw

Patchwork Documentation, Release 1.0.0

And posting the final results:

$ git pw post-result 3324 checkpatch.pl failure --summary-from-file results.txt

4.3 Example: running checkpatch.pl on incoming series

A slightly longer example can be found in the Patchwork repository, in docs/examples/testing-checkpatch.py. This
script will take series-new-revision events as input, as offered by git pw poll-events and run checkpatch.pl on
the incoming series. The main complexity beyond what has been explained in this document is that checkpatch.pl is
run on each patch of the series individually (by looping on all mails of the series mbox) and the checkpatch.pl output
is aggregated to be sent in the summary field of the test result.

Putting the following line in a cron entry should be enough to run checkpatch.pl on each new series:

git pw poll-events | testing-checkpatch.pl

There are a few improvements to make to have a nicer solution: for instance, one could make sure that the check-
patch.pl script is up-to-date by updating the Linux checkout before running the test.

18 Chapter 4. Testing with Patchwork

https://github.com/dlespiau/patchwork/blob/master/docs/examples/testing-checkpatch.py

CHAPTER 5

REST API

Patchwork exposes a REST API to allow other systems and scripts to interact with it. The basic service it offers is
exposing a mailing-list used for sending patches and review comments as high level objects: series, revisions and
patches.

series A collection of revisions. Series objects are created, along with an initial revision, when a set of patches are
sent to a mailing-list, usually through git send-email. Series can evolve over time and gain new revisions
as the work matures through reviews, testing and new iterations.

More about series and revisions can be found in Submitting patches.

revision A collection of patches.

patch The usual collection of changes expressed as a diff. With git, a patch also contains full commit metadata.

5.1 API Patterns

All the API entry points share common patterns to offer a coherent whole and limit surprises when using the API.

5.1.1 Lists

Various entry points expose lists of objects. They all follow the same structure:

{
"count": 25,
"next": "http://patchwork.example.com/api/1.0/series/?page=2",
"previous": null,
"results": [

{
"object": 0

},
{

"object": 1
},
{
},
{

"object": 19
},

]
}

19

https://en.wikipedia.org/wiki/Diff_utility

Patchwork Documentation, Release 1.0.0

Lists are paginated with 20 elements per page by default. count is the total number of objects while next and
previous will hold URLs to the next and previous pages. It’s possible to change the number of elements per page
with the perpage GET parameter, with a limit of 100 elements per page.

5.2 API Reference

5.2.1 API Metadata

GET /api/1.0/
Metadata about the API itself.

GET /api/1.0/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json

{
"revision": 0

}

Response JSON Object

• revision (int) – API revision. This can be used to ensure the server supports a feature
introduced from a specific revision. The list of API revisions and the changes introduced by
each of them is documented in API Revisions.

5.2.2 Projects

A project is merely one of the projects defined for this patchwork instance.

GET /api/1.0/projects/
List of all projects.

GET /api/1.0/projects/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
"count": 2,
"next": null,
"previous": null,
"results": [

{
"id": 2,
"name": "beignet",
"linkname": "beignet",
"listemail": "beignet@lists.freedesktop.org",
"web_url": "http://www.freedesktop.org/wiki/Software/Beignet/",
"scm_url": "git://anongit.freedesktop.org/git/beignet",

20 Chapter 5. REST API

Patchwork Documentation, Release 1.0.0

"webscm_url": "http://cgit.freedesktop.org/beignet/"
},
{

"id": 1,
"name": "Cairo",
"linkname": "cairo",
"listemail": "cairo@cairographics.org",
"web_url": "http://www.cairographics.org/",
"scm_url": "git://anongit.freedesktop.org/git/cairo",
"webscm_url": "http://cgit.freedesktop.org/cairo/"

}
]

}

GET /api/1.0/projects/(string: linkname)/

GET /api/1.0/projects/(int: project_id)/

GET /api/1.0/projects/intel-gfx/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
"id": 1,
"name": "intel-gfx",
"linkname": "intel-gfx",
"listemail": "intel-gfx@lists.freedesktop.org",
"web_url": "",
"scm_url": "",
"webscm_url": ""

}

5.2.3 Events

GET /api/1.0/projects/(string: linkname)/events/

GET /api/1.0/projects/(int: project_id)/events/
List of events for this project.

GET /api/1.0/projects/intel-gfx/events/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
"count": 23,
"next": "http://patchwork.example.com/api/1.0/events/?page=2",
"previous": null,
"results": [

{

5.2. API Reference 21

Patchwork Documentation, Release 1.0.0

"name": "series-new-revision",
"event_time": "2015-10-20T19:49:49.494183",
"series": 23,
"user": null,
"parameters": {

"revision": 2
}

},
{
},
{

"name": "series-new-revision",
"event_time": "2015-10-20T19:49:43.895382",
"series": 22,
"user": null,
"parameters": {

"revision": 1
}

}
]

}

Query Parameters

• since – Retrieve only events newer than a specific time. Format is the same as
event_time in response, an ISO 8601 date. That means that the event_time from
the last seen event can be used in the next query with a since parameter to only retrieve
events that haven’t been seen yet.

Each event type has some parameters specific to that event. At the moment, only one event is possible:

• series-new-revision: This event corresponds to patchwork receiving a new revision of a series, should it be the
initial submission or subsequent updates. The difference can be made by looking at the version of the series.

This event only appears when patchwork has received the full set of mails belonging to the same series, so the
revision object is guaranteed to contain all patches.

revision: The version of the new revision that has been created. series and revision can be used to retrieve
the corresponding patches.

5.2.4 Series

A series object represents a lists of patches sent to the mailing-list through git send-email. It also includes all
subsequent patches that are sent to address review comments, both single patch and full new series.

A series has then n revisions, n going from 1 to version.

GET /api/1.0/projects/(string: linkname)/series/

GET /api/1.0/projects/(int: project_id)/series/
List of all Series belonging to a specific project. The project can be specified using either its linkname or id.

GET /api/1.0/projects/intel-gfx/series/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept

22 Chapter 5. REST API

Patchwork Documentation, Release 1.0.0

Allow: GET, HEAD, OPTIONS

{
"count": 59,
"next": "http://patchwork.example.com/api/1.0/projects/intel-gfx/series/?page=2",
"previous": null,
"results": [

{
"id": 3,
"project": 1,
"name": "drm/i915: Unwind partial VMA rebinding after failure in set-cache-level",
"n_patches": 1,
"submitter": 77,
"submitted": "2015-10-09T11:51:38",
"last_updated": "2015-10-09T11:51:59.013345",
"version": 1,
"reviewer": null

},
{

"id": 5,
"project": 1,
"name": "RFC drm/i915: Stop the machine whilst capturing the GPU crash dump",
"n_patches": 1,
"submitter": 77,
"submitted": "2015-10-09T12:21:45",
"last_updated": "2015-10-09T12:21:58.657976",
"version": 1,
"reviewer": null,

}
]

}

Query Parameters

• submitter – Filter series by submitter id. self can be used as a special value meaning
the current logged in user.

• reviewer – Filter series by reviewer id or null for no reviewer assigned.

• submitted_since – Retrieve only submitted series newer than a specified time. Format
is the same as submitted in response, an ISO 8601 date.

• updated_since – Retrieve only updated series newer than a specified time. Format is
the same as last_updated in response, an ISO 8601 date.

• submitted_before – Retrieve only submitted series older than the specified time. For-
mat is the same as submitted in response, an ISO 8601 date.

• updated_before – Retrieve only updated series older than a specified time. Format is
the same as last_updated in response, an ISO 8601 date.

GET /api/1.0/series/
List of all Series known to patchwork.

GET /api/1.0/series/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Vary: Accept

5.2. API Reference 23

Patchwork Documentation, Release 1.0.0

Content-Type: application/json

{
"count": 344,
"next": "http://patchwork.example.com/api/1.0/series/?page=2",
"previous": null,
"results": [

{
"id": 10,
"project": 1,
"name": "intel: New libdrm interface to create unbound wc user mappings for objects",
"n_patches": 1,
"submitter": 10,
"submitted": "2015-01-02T11:06:40",
"last_updated": "2015-10-09T07:55:18.608251",
"version": 1,
"reviewer": null

},
{

"id": 1,
"project": 1,
"name": "PMIC based Panel and Backlight Control",
"n_patches": 4,
"submitter": 1,
"submitted": "2014-12-26T10:23:26",
"last_updated": "2015-10-09T07:55:01.558523",
"version": 1,
"reviewer": null,

},
]

}

GET /api/1.0/series/(int: series_id)/
A series (series_id). A Series object contains metadata about the series.

GET /api/1.0/series/47/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, PUT, PATCH, HEAD, OPTIONS

{
"id": 47,
"name": "Series without cover letter",
"n_patches": 2,
"submitter": 21,
"submitted": "2015-01-13T09:32:24",
"last_updated": "2015-10-09T07:57:23.541373",
"version": 1,
"reviewer": null

}

GET /api/1.0/series/(int: series_id)/revisions/
The list of revisions of the series series_id.

24 Chapter 5. REST API

Patchwork Documentation, Release 1.0.0

GET /api/1.0/series/47/revisions/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
"count": 1,
"next": null,
"previous": null,
"results": [

{
"version": 1,
"cover_letter": null,
"patches": [

120,
121

]
}

]
}

GET /api/1.0/series/(int: series_id)/revisions/(int: version)/
The specific version of the series series_id.

GET /api/1.0/series/47/revisions/1/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
"version": 1,
"cover_letter": null,
"patches": [

120,
121

]
}

GET /api/1.0/series/(int: series_id)/revisions/(int: version)/mbox/
Retrieve an mbox file that will contain all patches of this revision, in order in which to apply them. This mbox
file can be directly piped into git am.

$ curl -s http://patchwork.example.com/api/1.0/series/42/revisions/2/mbox/ | git am -3

POST /api/1.0/series/(int: series_id)/revisions/(int: version)/test-results/

Post test results for this revision.

POST /api/1.0/series/47/revisions/1/test-results/ HTTP/1.1

{
"test_name": "checkpatch.pl",
"state": "success",

5.2. API Reference 25

Patchwork Documentation, Release 1.0.0

"url": "http://jenkins.example.com/logs/47/checkpatch.log",
"summary": "total: 0 errors, 0 warnings, 10 lines checked"

}

Request JSON Object

• test_name – Required. The name of the test we’re reporting results for. This uniquely
identifies the test. Any subsequent data sent through this entry point with the same
test_name will be conflated into the same object. It’s thus possible to create a test result
with a pending state when a CI system picks up patches to indicate testing has started and
then update the result with the final (state, url, summary) when finished.

• state – Required. State of the test results. One of pending, success, warning or
failure

• url – Optional. A URL where to find the detailed logs of the test run.

• summary – Optional. A summary with some details about the results. If set, this will be
displayed along with the test result to provide some detailed about the failure. It’s suggested
to use summary for something short while url can be used for full logs, which can be
rather large.

5.2.5 Patches

GET /api/1.0/patches/
List of all patches.

GET /api/1.0/patches/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
"count": 1392,
"next": "http://patchwork.example.com/api/1.0/patches/?page=2",
"previous": null,
"results": [

{
"id": 1,
"project": 1,
"name": "[RFC,1/4] drm/i915: Define a common data structure for Panel Info",
"date": "2014-12-26T10:23:27",
"submitter": 1,
"state": 1,
"content": "<diff content>"

},
{

"id": 4,
"project": 1,
"name": "[RFC,2/4] drm/i915: Add a drm_panel over INTEL_SOC_PMIC",
"date": "2014-12-26T10:23:28",
"submitter": 1,
"state": 1,
"content": "<diff content>"

26 Chapter 5. REST API

Patchwork Documentation, Release 1.0.0

}
]

}

GET /api/1.0/patches/(int: patch_id)/
A specific patch.

GET /api/1.0/patches/120/ HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json
Vary: Accept
Allow: GET, HEAD, OPTIONS

{
"id": 120,
"name": "[1/2] drm/i915: Balance context pinning on reset cleanup",
"date": "2015-01-13T09:32:24",
"submitter": 21,
"state": 1,
"content": "<diff content>"

}

GET /api/1.0/patches/(int: patch_id)/mbox/
Retrieve an mbox file. This mbox file can be directly piped into git am.

$ curl -s http://patchwork.example.com/api/1.0/patches/42/mbox/ | git am -3

5.3 API Revisions

Revision 3

• Add test results entry points:

– /series/${id}/revisions/${version}/test-results/

• Add the submitter, reviewer, submitted_since, updated_since, submitted_before and updated_before query pa-
rameters to the list of series entry points.

Revision 2

• Add mbox entry points for both patches and series:

– /patches/${id}/mbox/

– /series/${id}/revisions/${version}/mbox/

• Add a parameters field to events and include the revision number to the series-new-revision event.

• Change /series/${id}/revisions/ to follow the same list system as other entry points. This is technically an API
change, but the impact is limited at this early point. Hopefully noone will ever find out.

• Document how lists of objects work.

• Make all DateTime field serialize to ISO 8061 format and not the ECMA 262 subset.

• Add a since GET parameter to /projects/${id,linkname}/events/

Revision 1

5.3. API Revisions 27

Patchwork Documentation, Release 1.0.0

• Add /projects/${linkname}/events/ entry point.

Revision 0

• Initial revision. Basic objects exposed: api root, projects, series, revisions and patches.

28 Chapter 5. REST API

CHAPTER 6

Developing patchwork

6.1 Quick Start

We have scripts that will get developers started in no time:

$ git clone https://github.com/dlespiau/patchwork/
$ cd patchwork
$./tools/setup-devel.sh
$./tools/run-devel.sh

setup-devel.sh will:

• Create a virtual environment in the venv directory,

• Install all the required dependencies in that virtual environment,

• Populate a SQLite database with a few patches,

• Create an admin account with pass as password.

run-devel.sh will run the web server serve the patchwork application. Pointing your browser to
http://127.0.0.1:8000/ should bring up patchwork.

6.2 Using virtualenv

It’s a good idea to use virtualenv to develop Python software. Virtual environments are “instances” of your system
Python, without any of the additional Python packages installed. They are useful to develop and deploy patchwork
against a “well known” set of dependencies, but they can also be used to test patchwork against several versions of
Django.

1. Install pip, virtualenv (python-pip, python-virtualenv packages)

Because we’re going to recompile our dependencies, we’ll also need development headers. For the MySQL/MariaDB
setups these are mariadb-devel (Fedora), libmysqlclient-dev (Debian)

2. Create a new virtual environement.

Inside a virtual env, we’ll just install the dependencies needed for patchwork and run it from there.

$ virtualenv django-1.8

This will create a virtual env called ‘django-1.8’ in the eponymous directory.

3. Activate a virtual environment

29

http://127.0.0.1:8000/

Patchwork Documentation, Release 1.0.0

$ source django-1.8/bin/activate
(django-1.8)$

The shell prompt is preprended with the virtual env name.

4. Install the required dependencies

To ease this task, it’s customary to maintain a list of dependencies in a text file and install them in one go. Patchwork
can work with multiple databases so we keep the requirements for each supported db:

(django-1.8)$ pip install -r docs/requirements-dev-mysql.txt

or:

(django-1.8)$ pip install -r docs/requirements-dev-postgresql.txt

5. Export the DJANGO_SETTINGS_MODULE variable

Django needs to be told which settings to use. By default it will try to load settings from the
patchwork/settings/production.py file. This can be overridden with the DJANGO_SETTINGS_MODULE
environment variable.

Patchwork provides a convenience settings template suitable for development in patchwork/settings/dev.py.
To use it, you can simply export the path to this file (in Python module format) like so:

(django-1.8)$ export DJANGO_SETTINGS_MODULE=patchwork.settings.dev

And adjust your database settings through environment variables. See the Environment Variables section below for
details. For example:

(django-1.8)$ export PW_TEST_DB_USER=root
(django-1.8)$ export PW_TEST_DB_PASS=password

You may also provide your own settings file and have DJANGO_SETTINGS_MODULE point to that file.

6. Run the development server

(django-1.8)$./manage.py runserver

Once finished, you can kill the server (Ctrl + C) and exit the virtual environment:

(django-1.8)$ deactivate
$

Should you wish to re-enter this environment, simply source the activate script again.

6.3 Environment Variables

The following environment variables are available to configure various settings if dev.py is used:

PW_TEST_DB_NAME Name of the database. Defaults to patchwork.

PW_TEST_DB_USER Username to access the database with. Defaults to patchwork.

PW_TEST_DB_PASS Password to access the database with. Defaults to password.

PW_TEST_DB_TYPE Type of database to use. Either mysql (default) or postgresql.

30 Chapter 6. Developing patchwork

Patchwork Documentation, Release 1.0.0

6.4 Running Tests

patchwork includes a tox script to automate testing. Before running this, you should probably install tox:

$ pip install tox

You can show available targets like so:

$ tox --list

You’ll see that this includes a number of targets to run unit tests against the different versions of Django supported,
along with some other targets related to code coverage and code quality. To run these, use the -e parameter:

$ tox -e py27-django18

In the case of the unit tests targets, you can also run specific tests by passing the fully qualified test name as an
additional argument to this command:

$ tox -e py27-django18 patchwork.tests.SubjectCleanUpTest

Because patchwork supports multiple versions of Django, it’s very important that you test against all supported ver-
sions. When run without argument, tox will do this:

$ tox

6.4. Running Tests 31

https://tox.readthedocs.org/en/latest/

Patchwork Documentation, Release 1.0.0

32 Chapter 6. Developing patchwork

HTTP Routing Table

/api
GET /api/1.0/, 20
GET /api/1.0/patches/, 26
GET /api/1.0/patches/(int:

patch_id)/, 27
GET /api/1.0/patches/(int:

patch_id)/mbox/, 27
GET /api/1.0/projects/, 20
GET /api/1.0/projects/(int:

project_id)/, 21
GET /api/1.0/projects/(int:

project_id)/events/, 21
GET /api/1.0/projects/(int:

project_id)/series/, 22
GET /api/1.0/projects/(string:

linkname)/, 21
GET /api/1.0/projects/(string:

linkname)/events/, 21
GET /api/1.0/projects/(string:

linkname)/series/, 22
GET /api/1.0/series/, 23
GET /api/1.0/series/(int:

series_id)/, 24
GET /api/1.0/series/(int:

series_id)/revisions/, 24
GET /api/1.0/series/(int:

series_id)/revisions/(int:
version)/, 25

GET /api/1.0/series/(int:
series_id)/revisions/(int:
version)/mbox/, 25

POST /api/1.0/series/(int:
series_id)/revisions/(int:
version)/test-results/, 25

33

	patchwork
	Download
	Design
	Getting Started
	Support

	Deploying Patchwork
	Database Configuration
	Django Setup
	Apache Setup
	Configure patchwork
	Subscribe a Local Address to the Mailing List
	Setup your MTA to Deliver Mail to the Parsemail Script
	Set up the patchwork cron script
	(Optional) Configure your VCS to Automatically Update Patches

	User Manual
	Submitting patches
	git-pw

	Testing with Patchwork
	Flow
	git-pw helper commands
	Example: running checkpatch.pl on incoming series

	REST API
	API Patterns
	API Reference
	API Revisions

	Developing patchwork
	Quick Start
	Using virtualenv
	Environment Variables
	Running Tests

	HTTP Routing Table

