

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 At the moment, we do not recommend exposing Mailpile directly to the wider Internet.

Putting it behind a security-mindful reverse proxy (NginX, Pound, etc…) will add an important layer of protection. That proxy then handles the SSL. A slightly more geeky solution which also provides strong security is to use SSH tunneling from your desktop to the VPS.

	Using Apache as Proxy

	Using Nginx as Proxy

	Using Lighttpd as Proxy

	Serving from a Sub Directory

We have not decided what our long-term solution is for this use-case. On Linux, making something like Pound a dependency is not a problem and is going to be the best overall technical solution. For desktop (win/mac) installations that people still want remote access to, we may need to bundle something ourselves.

Using Apache as Proxy

This requires the following modules mod_ssl and mod_proxy and mod_proxy_http and perhaps others… you can enable these (with most apache setups) by typing sudo a2enmod mod_ssl ...

Create the following site configuration file example.com.conf which usually exists in /etc/apache2/sites-available/ directory.

<IfModule mod_ssl.c>
 <VirtualHost *:80>
 ServerName webmail.mailpile.com
 Redirect permanent / https://webmail.mailpile.com/
 </VirtualHost>

 <VirtualHost _default_:443>
 ServerName webmail.mailpile.com

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 SSLEngine on
 SSLCertificateFile /etc/apache2/ssl/mailpile.crt
 SSLCertificateKeyFile /etc/apache2/ssl/mailpile.key

 ProxyPass / http://localhost:33411/

 <FilesMatch "\.(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
 </FilesMatch>
 <Directory /usr/lib/cgi-bin>
 SSLOptions +StdEnvVars
 </Directory>

 BrowserMatch "MSIE [2-6]" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0
 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

 </VirtualHost>
</IfModule>

Once you’ve added the above the virtual host file, enabled the site by typing sudo a2ensite example.com if you encounter any problems, Google + StackOverflow are handy!

Using Nginx as Proxy

If you want to use Mailpile at the root location of a domain, then the following configuration will get you started:

server {
 listen 80;
 server_name server.com;
 return 301 https://$server_name$request_uri;
}

server {
 listen 443 ssl;
 server_name server.com;

 # see https://raymii.org/s/tutorials/Strong_SSL_Security_On_nginx.html
 # for notes on the good SSL on nginx
 ssl_certificate /etc/nginx/ssl/server.com.crt;
 ssl_certificate_key /etc/nginx/ssl/server.com.key;
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_ciphers 'EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH';
 ssl_prefer_server_ciphers on;
 ssl_session_cache shared:SSL:10m;
 add_header Strict-Transport-Security "max-age=31536000; includeSubdomains";
 ssl_dhparam /etc/nginx/ssl/dhparam.pem;

 location / {
 access_log /var/log/nginx/mailpile_access.log;
 error_log /var/log/nginx/mailpile_error.log info;

 proxy_pass http://127.0.0.1:33411;
 proxy_set_header X-Forwarded-Host $host;
 proxy_set_header X-Forwarded-Server $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

If you want to host Mailpile at a non-root location, then you will need a recent development version. You can set what Mailpile views as root location with mailpile> set sys.http_path = /foobar (see #1329 [https://github.com/mailpile/Mailpile/issues/1329]). Then the following is a sample Nginx configuration:

server {
 listen 80;
 server_name server.com;
 return 301 https://$server_name$request_uri;
}

server {
 listen 443 ssl;
 server_name server.com;

 # see https://raymii.org/s/tutorials/Strong_SSL_Security_On_nginx.html
 # for notes on the good SSL on nginx
 ssl_certificate /etc/nginx/ssl/server.com.crt;
 ssl_certificate_key /etc/nginx/ssl/server.com.key;
 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
 ssl_ciphers 'EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH';
 ssl_prefer_server_ciphers on;
 ssl_session_cache shared:SSL:10m;
 add_header Strict-Transport-Security "max-age=31536000; includeSubdomains";
 ssl_dhparam /etc/nginx/ssl/dhparam.pem;

 location /mailpile {
 access_log /var/log/nginx/mailpile_access.log;
 error_log /var/log/nginx/mailpile_error.log info;

 rewrite ^(.*)$ $1 break; # prevents additional rewrites of the path via proxy_pass
 proxy_pass http://127.0.0.1:33411/foobar;
 proxy_set_header X-Forwarded-Host $host;
 proxy_set_header X-Forwarded-Server $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

Using Lighttpd as Proxy

In lighttpd 1.4 add this to your lighttpd.conf:

either this or add mod_proxy to your existing modules list
server.modules =~ (
 "mod_proxy",
)

this will redirect www.your.domain.org/email to 127.0.0.1:33411, where mailpile listens
$HTTP["url"] =~ "(^/email/)" {
 proxy.server = ("" => ("" => ("host" => "127.0.0.1", "port" => 33411)))
 }

For lighttpd 1.5 the oficial documentation [http://redmine.lighttpd.net/projects/1/wiki/Docs_ModProxyCore]
says this should work:

either this or add mod_proxy to your existing modules list
server.modules =~ (
 "mod_proxy_core",
)

this will redirect www.your.domain.org/email to 127.0.0.1:33411, where mailpile listens
$HTTP["url"] =~ "^/email" {
 proxy-core.rewrite-request = (
 "_uri" => ("^/email/?(.*)" => "/$1"),
 "Host" => (".*" => "127.0.0.1"),
 "port" => '33411
)
}

But: This has not been tested and need to be revised by another nice community member. ;)

Using nodejs with express middleware and http-proxy module

var fs = require('fs');
var https = require('https');
var http = require('http');
var express = require('express');
var httpProxy = require('http-proxy');
var apiProxy = httpProxy.createProxyServer();
var mailPileServer = 'http://localhost:33411'

var securePort = 443;
var port = 80;
var secureApp = express();
var redirectApp = express();

var options = {
 key: fs.readFileSync('ca.key'),// or your .PEM files
 cert: fs.readFileSync('ca.crt')
};

redirectApp.use('*', function(req,res){ res.redirect('https://www.example.com'+req.baseUrl); });
secureApp.use('/',function(req,res){ apiProxy.web(req, res, {target: mailPileServer}); });

try{
 http.createServer(redirectApp).listen(port,function(){ console.log('https redirection is now running'); });
 https.createServer(options,secureApp).listen(securePort,function(){ console.log('secure server listening on port '+port); });
}catch(err){
 console.log('error creating server: '+err);
}

Serving from a Sub Directory

If you want to serve Mailpile from a subdirectory your-domain.com/email you need to specify the path in your proxy server’s configuration file, but you also need to tell Mailpile about this.

Type the command mailpile> set sys.http_path = /email into your Mailpile CLI

Accounts

(Note: Work in progress)

In order to match common user expectations, the old fragmented concepts of profiles, mail sources and mail routes will be unified under the Account concept.

The flexibility of being able to define a stand-alone mail source (mail not associated with any particular account) will be retained, but will be considered a secondary use-case and not given much visibility within the app’s user interface. The ability to configure default settings for sending mail without a valid profile (Account) will on the other hand go away, and some settings which used to be global for the entire app will become per-Account preferences instead.

What is an Account?

Conceptually, an Account is an e-mail address and all the meta-data required to make use of it:

	Name

	E-mail

	Profile picture

	Settings for sending e-mail

	Settings for receiving e-mail

	Preferences, including security & signature

	Encryption key(s)

	Communication history

	Tag(s) used to label mail associated with this account

Implementation

Accounts are manipulated using the /profiles/ API endpoints and the primary storage for an Account is a Mailpile VCard (kind=profile). Accounts inherit basic VCard semantics, but each account SHOULD also have:

	A dedicated Tag

	x-mailpile-profile-tag

	MailpileCard.tag

	Zero or more Mail Sources

	x-mailpile-profile-source

	MailpileCard.add_source(source_id)

	MailpileCard.sources()

	Zero or one Mail Routes

	x-mailpile-profile-route

	MailpileCard.route

The data associated with these items are not currently stored on the VCard itself, but are linked using the named attributes. Other profile-specific VCard attributes/methods are:

	Human-readable message signature

	x-mailpile-profile-signature

	MailpileCard.signature

	Domains this account sends mail to

	x-mailpile-profile-scope

	MailpileCard.add_scope(domain or email)

	MailpileCard.sends_to(email)

	Outgoing encryption and signing policy+

	x-mailpile-crypto-policy

	MailpileCard.crypto_policy

	Outgoing encrypted mail format+

	x-mailpile-crypto-format

	MailpileCard.crypto_format

	PGP key fingerprint+

	key

(+ The last three may be used by individual contacts as well, to specify per-recipient customizations)

Incoming mail, Tags and Accounts

All incoming mail (and drafts) associated with a particular account will be tagged using a tag specific to that account. This tag will be an internal-use tag, not editable through normal user interfaces.

This will allow us to retain the default unified “Inbox”, “Spam”, “Drafts” etc, but make it easy to specialize each view to only show messages from a particular account if desired.

User Interface

In recognition of the importance that identity and identity management has to most people, Accounts should be a central theme of any Mailpile user interface; the Beta III will by default present users with the list of configured accounts as a “Home Page”, with accessible buttons for changing settings, creating new accounts and accessing the mail associated with each one.

The Tags view in the sidebar should be augmented to allow the user to choose between the default unified view, or scoped to a particular account.

This scoping should also effect which outgoing e-mail address is selected by default when composing a new message, even overriding (possibly with a warning?) the addressing information gleaned from message headers when composing a reply.

 Mailpile provides a simple script for integrating with the Apache
web-server.

WARNING

This page is slightly out of date. See Issue https://github.com/mailpile/Mailpile/issues/1538 for hints on what has changed. If you can fix this page and resolve that issue, that would be most appreciated!

What it does

Creates a /mailpile/ namespace in your Apache configuration, which is
used to launch and access Mailpile instances.

To launch your Mailpile, simply visit http://example.com/mailpile/
(replace the domain with your actual domain, or localhost) and enter
your Unix username and password. This will start Mailpile in the
background and let you start using it.

Installation

The easy way to install, is to use the automated installation script:

sudo ./scripts/mailpile-apache.py --install-apache

If you would rather install by hand, the installer performs the following
steps (read the source for full details):

	Installs screen

	Run a2enmod headers rewrite proxy proxy_http

	Create /etc/apache2/conf-enabled/mailpile.conf

	Create /var/lib/mailpile/apache/

	Run apache2ctl restart

(Note: this list is almost certainly incomplete)

Security

Please use <www.letsencrypt.org> to enable SSL for your site. Without it
your e-mail (and potentially your PGP keys) may be at risk.

Note that the running Mailpile instances will have e-mail account
credentials (usernames and passwords), as well as PGP key passphrase
material in RAM. A hostile server administrator could modify the running
Mailpile to steal both, read and modify your e-mail.

For this reason we recommend always running Mailpile on hardware you
control.

Performance

Performance should be fine, Apache’s proxy is relatively efficent.

However, note that the more Mailpile instances you have running, the
more RAM will be consumed on your machine. Users that have a lot of
e-mail will consume a lot of RAM, so be sure your server is sized
accordingly.

Enabling remote access

Check out https://pagekite.net/! It should work with Let’s Encrypt.

How it works

Mailpile’s Apache integration makes use of Apache’s built in proxy to
forward traffic to running Mailpile instances, and keeps track of which
local ports each user’s Mailpile runs.

If Mailpile is not running for a given user, the user is directed to a
log-in page where they can enter their username and password to start
Mailpile in the background.

Internally, su is used to launch Mailpile in a screen session. Next
the launcher script updates an Apache .htaccess file to make the new
instance reachable by adding proxy rules.

 [image: Technical documentation]

Commands are the basic building block of the Mailpile back-end application.
Most commands are both exposed to the user on the CLI, and to the web
interface as HTML pages or as REST API endpoints.

Virtually all of the Mailpile commands are written using the internal plugin
API and can be found in mailpile/commands.py and mailpile/plugins/.
Each command is derived from the base Command class found in
mailpile/commands.py.

A new command is registered with the plugin interface using
mailpile.plugins.register_commands(CommandPluginClassName).

Coding examples may be found in mailpile/plugins/demos.py.

A basic Command:

FIXME: insert md5sumCommand from demos.py

Command attributes

All command classes have a few standard attributes which describe their
function to the rest of the app (and the user), including preferences for how
they are to be invoked, security characteristics and what details should by
default go into the event log.

The base Command class defines reasonable defaults for most attributes.

Required attributes:

	SYNOPSIS = ('opt-char', 'cli-name', 'api-name', 'parameters')

	ORDER = ('category' string, order int)

Optional:

	HTTP_CALLABLE = ('GET', 'POST', 'PUT', 'DELETE', ...)
…

 [image: Technical documentation]

There are lots of internal commands in Mailpile. These can be accessed via any of the interaction modes, including web, command line, JSON API, or Python module.

Type “help” in the command line interface to get a list. See [[URLS]] for API endpoint specifications. See [[Command plugins]] for adding new commands.

 [image: Guide]

Oh no, PGP/GPG support is unavailable!

MailPile relies on GNUPG to provide PGP/GPG support. If you don’t have it installed you will get this message.

 [image: Technical documentation]

Mailpile configuration draft spec (2013-10-11)

The goals for the new configuration system are:

	Allow plugins to register new sections in a developer-friendly
manner

	Make the configuration self documenting as much as possible

	Make the configuration verifiable, so all values are checked for
validity

Code which accomplishes these 3 goals has been written (see
mailpile/config.py [https://github.com/mailpile/Mailpile/blob/master/mailpile/config.py]). This document is describes the format used to define
configuration itself; they are are written as JSON (or the equivalent Python
dicts). A variable is defined using a list of three values: [comment,
type/constraint, default-value].

A fictional example of simple settings:

"search": ["Search related settings", false,
{
 "max_results": ["The max number of search results per page",
 "int",
 20],
 "default_order": ["The default sort order.",
 ["date", "reverse-date", ...],
 "reverse-date"]
}]

Here a section of the configuration is defined named “search”, which
contains the settings “max_results” and “default_order”. The
“max_results” is defined as an integer with the default value of 20, and
the “default_order” is a string which must match one of the listed
values.

Settings can be nested using the same syntax, where instead of a default
value, a dictionary of sub-variables and their defintions is present
instead:

"preferences": ["User preferences", false,
{
 "user-interface": ["User interface", false, {
 "color-scheme": ["Preferred color scheme",
 ["light", "dark", "colorblind"],
 "light"],
 "hotkeys": ["Keybinding style",
 ["emacs", "gmail", "vi", "mailpile"],
 "mailpile"]
 ...
 }],
 ...
}]

Finally, lists or dictionaries of structured elements can be defined by
setting the default value to an empty list [] or dictionary {}, and
provide a description of what each element should look like in the
type/constraint field:

"tags": ["The tags used by the system",
 {
 "name": ["The tag name", unicode, "Unnamed Tag"],
 "slug": ["Slug for URLs etc.", unicode, "UnnamedTag"],
 ...
 },
 []]

"tagdict": ["The tags used by the system",
 {
 "name": ["The tag name", unicode, "Unnamed Tag"],
 "slug": ["Slug for URLs etc.", unicode, "UnnamedTag"],
 ...
 },
 {}]

In the Python code, this structure would be manipulated like so:

Note: config['tags'] and config.tags are the same thing
config.tags.append({
 "name": 'Watever',
 'slug': 'watever'
})

config.tagdict['mytag'] = {
 "name": 'Watever',
 'slug': 'watever'
}

… would succeed. However these would throw an exception:

config.tags.append({
 "name": 'Watever',
 'slog': 'watever',
 'bogon': 'invalid crap'
})

config.tagdict.mytag'] = {
 "name": 'Watever',
 'slog': 'watever',
 'bogon': 'invalid crap'
}

Known limitations

	Currently it is not possible to specify that some settings
are mandatory and must be set (all are considered optional)

	There is no concept of privacy in this yet

	There is no constraint on what keys can be used in a structured
dictionary

Points for the future

	We need to choose a configuration file format

	We will want to be able to import/export/backup settings

	We will want a “safe export@ that doesn’t leak passwords etc

 [image: Technical documentation]

This page is obsolete, and dates back to a terrible time in the past when Mailpile didn’t support fetching mail natively. It should be disregarded for almost all users now, although some technical users may find it interesting.

This page describes how to configure Ubuntu or Debian to download your
e-mail from a remote server. These instructions probably apply to other
operating systems as well, but the commands for installing software
(apt-get install etc.) may differ.

Two methods are described: OfflineIMAP and postfix + fetchmail.
They can be summarized roughly as follows:

	OfflineIMAP just downloads your mail to a local folder.

	The postfix + fetchmail solution configures a full local mail server.

The former is simpler, the latter is a more advanced - more flexible and
more complicated - configuration.

If neither of those sound good, maybe you want one of these:

	[[Synchronizing Mailpile with Thunderbird]]

	…

So, choose your poison!

OfflineIMAP

Installing OfflineIMAP

That should be as simple as:

sudo apt-get install offlineimap

Configuring OfflineIMAP

OfflineIMAP reads its configuration from a file named .offlineimaprc in
your home directory. You can edit (or create) it using your favourite text
editor, or this: nano $HOME/.offlineimaprc.

For a simple case of one remote IMAP account, all mail downloaded to a
folder named MyMail in your home directory, the configuration file
should look something like this:

[general]
accounts = MyMail

[Account MyMail]
localrepository = Local
remoterepository = Remote

[Repository Local]
type = Maildir
localfolders = ~/MyMail

[Repository Remote]
type = IMAP
remotehost = imap.yourprovider.com
remoteuser = yourname
remotepass = yourpassword

If downloading from GMail, the last section might be better written like so:

[Repository Remote]
type = Gmail
cert_fingerprint = 89091347184d41768bfc0da9fad94bfe882dd358
folderfilter = lambda folder: folder.startswith('[Gmail]/All Mail')
remoteuser = yourname@gmail.com
remotepass = yourpassword

This will only download the “All Mail” section.

You can test your OfflineIMAP configuration by running offlineimap. If it
looks like it is about to take forever, you can abort it by pressing CTRL+C.

Configuring Mailpile

You can configure Mailpile to periodically invoke OfflineIMAP for
you. In the Mailpile CLI, type:

Run offlineimap before looking for new mail
mailpile> set prefs.rescan_command = offlineimap || true

Configure Mailpile to look for new mail every 300 seconds
mailpile> set prefs.rescan_interval = 300

Finally, you need to tell Mailpile where to find your mail:

Add your mailbox to the list of locations to scan
mailpile> add ~/MyMail

Read it now! Invokes offlineimap and then scans for new mail.
mailpile> rescan

That’s all folks!

postfix + fetchmail

Installing postfix

We like postfix, but these instructions probably also work almost
verbatim for other common mail servers (exim for example).

sudo apt-get install postfix fetchmail

The package installer will ask what kind of mail configuration you
prefer. Usually “Local only” is fine - you can update the settings at
any time with sudo dpkg-reconfigure postfix.

Installing fetchmail

To configure fetchmail, create a file named .fetchmailrc in your
home directory. If your Unix account is named unixjoe, and you have
a GMail account, contents like the following might work:

set postmaster unixjoe
poll pop.gmail.com with proto POP3
 user 'joe@gmail.com' there with password 'SEKRIT'
 is unixjoe here
 nofetchall keep options ssl

To create this file,use nano $HOME/.fetchmailrc in the shell (or your
editor of choice), and afterwards run chmod 0700 $HOME/.fetchmailrc to
set the correct access controls.

(Note for GMail users: you cannot use your normal password with
fetchmail if you are using two-factor authentication. Instead you
will need to create a custom password using GMail’s security tools.)

This setup can then be tested by running the following command:

Fetch some mail! (hit CTRL+C to abort)
fetchmail

Or if you really need verbose output for debugging:
fetchmail -V -v --nodetach --nosyslog`

Configuring Mailpile

Once local mail delivery and fetchmail are both working, you can either use
a cron job to periodically download your e-mail, or configure Mailpile to
periodically invoke fetchmail for you. In the Mailpile CLI, type:

Run fetchmail before looking for new mail
mailpile> set prefs.rescan_command = fetchmail || true

Configure Mailpile to look for new mail every 300 seconds
mailpile> set prefs.rescan_interval = 300

Finally, you need to tell Mailpile where to find your mail:

Add your mailbox to the list of locations to scan
mailpile> add /var/mail/unixjoe

Read it now! Invokes fetchmail and then scans for new mail.
mailpile> rescan

That wasn’t too hard, was it?

 [image: Guide]

Profiles

You can see your profile details from CLI with :

profiles --lines

Changing your signature

Signature is handled per-profile and is as far as now accessible only via CLI. When no signature is set, a promotional message for Mailpile and open-source is inserted as signature.

To set a signature for your profile jdoe@example.com,

vcards/addlines jdoe@example.com "=x-mailpile-profile-signature: this is my new signature"

You can add a blank signature if you prefer :

vcards/addlines jdoe@example.com "=x-mailpile-profile-signature: "

Mail Sources

From CLI, you can list them by issuing

print sources

…tbw

Sending Routes

…tbw

Language

…tbw

From CLI, for exemple to go french :

set prefs.language fr_FR

For now, the list of language codes can be read from the source [https://github.com/mailpile/Mailpile/tree/master/shared-data/locale].

Encryption Keys

…tbw

Security

…tbw

Using Tor or Proxies

To configure Mailpile to access mailservers Tor or other proxies, you can set the following values via the CLI

set sys.proxy.protocol=socks5
set sys.proxy.host=localhost
set sys.proxy.port=9050

See also

	[[Manual configuration]]

	[[Technical details about configuration|Config]]

 [image: Technical documentation]

Contacts are stored on disk as RFC6350 [https://tools.ietf.org/html/rfc6350]
compliant VCARDs.

Base code for Contacts is in mailpile/plugins/contacts.py

How contacts work

Mailpile’s contacts are internally built upon the
RFC6350 [https://tools.ietf.org/html/rfc6350] standard, or VCards.

Internally these data structures are used to represent a few different
types of data:

	Profiles (Mailpile owner personalities/identities)

	Contacts (People the owner communicates with)

	Groups (Groups of Contacts)

Profiles and Contacts share many attributes, the most important of which
pertain to encryption (keys, preferences) as well as mapping which of a
users profiles is preferred for communicating with a given contact or
Internet domain.

At a low level, the trickiest part of contacts is synchronizing the
different data sources. The Mailpile contacts attempt to provide a
unified view of various different sources of contact information,
including:

	User preferences (manual changes)

	User behavior (inferred changes)

	The user’s GPG key-chain

	A Thunderbird Mork database

	A CardDAV server

	The Gravatar online image database

	… more! …

Mailpile’s contacts make extensive use of the VCard data source and
synchronization specification for merging all of these disparate sources
of information into a single VCard.

Many of these data sources are read-only. However, for bidirectional
synchronization, it may be appropriate to update the GPG key-chain
and/or CardDAV servers to reflect certain user initiated changes.
However, in order to prevent infinite loops and unexpected behavior,
Mailpile should NEVER automatically synchronize data from one external
source to another. Only manual user-initiated changes are candidates for
syncing back.

Data merging strategy

The initial pass of data merging is taken care of by the VCard spec’s
built-in features, which allow lines on a card to be associated with
different data sources and specifies an algorithm for updating the card
when the source data changes.

However, this only gets us half-way, as once the data is on the card,
Mailpile frequently has to make a choice about which of multiple e-mail
addresses, names or encryption keys to use.

In general, we want Mailpile’s contacts to have the following
characteristics:

	User preferences (manual settings) override all others

	In particular, a user can edit, suppress or “delete” data,
without it reverting/reappearing on sync.

	When a user has not expressed a preference, updates from
remote sources should result in updates to the data present
on the card.

Current status

Mailpile’s current VCard/Contact implementation is incomplete, in that
it lacks the following:

	Deleting/suppressing imported data is impossible

	Existing importers are flawed in that they show only the importer
as a source, whereas they should list each individual source entity
(e.g. GPG key) separately, so the user can suppress entire sources
or simply understand where data comes from.

	Interfaces for writing data back to sources (sync) are missing.

	Interfaces for triggering and directing updates from sources (in
particular the GPG key chain) are missing.

Impact:

	Changes to keys and settings (e.g. importing keys) are not reflected
in the UI in a timely fashion.

	Users cannot disable or edit their contacts in a meaningful way.

	Users cannot disable/ignore a key via. the contact manager, they have
to go all the way to the key-chain, which won’t scale if we ever have
multiple key-chains as data sources or multiple types of encryption
active at once.

Importers

	[[VCARD Importer]]

	[[Mork Importer]]

	[[CardDAV Importer]]

	[[GnuPG Contact Importer]]

	Google Contacts?

Exporters

	[[VCARD Exporter]]

Synchronization

Modulo some complexity, import + export = syncrhonization. Let’s get import
working first.

Field validators

We want to make sure there’s no crud in some fields, because we expect those
fields to be actionable. Field validators may therefore be useful.

Not done:

	E-mail field

	Website field

	…?

IDEA: Context providers

A context provider is an import filter which, when provided with certain
information about a contact, extracts useful context about the contact to
deepen the user’s understanding of what the user is doing, who they are, and
how best to contact them.

This is a slightly creepy feature, but actually fairly reasonable considering
it is primarily using public info or info that is otherwise available to the
Mailpile user in question. Heck, it might even encourage people to think a bit
more about privacy…

This is not NOT DONE in anyway yet, but here are the API’s we’re considering
about:

	Facebook

	Auth: oauth2 api requests with application specific tokens (HARD)

	Can’t programaticaly get my “friends” email addresses (for east comparisons), even if they list email address in their profile.

	Docs: https://developers.facebook.com

	Available Data:

	Name

	Avatar

	Current Location

	Home Location

	Website

	Birthday

	Schools

	Work

	Gender

	Languages

	Twitter

	Auth: oauth1 api requests with unique application specific tokens (DIFFICULT)

	Docs: https://dev.twitter.com

	Available Data:

	Name

	Avatar

	Website

	Location

	Bio

	Gravatar

	Auth: Send an MD5 hash of an email address appended to a URL endpoint (VERY EASY)

	Available Data:

	Name

	Mutliple Avatars

	Chat Accounts

	Bio

	Location

	Various URLs

	Validated social media profile URLs

	Docs: http://en.gravatar.com/site/implement/profiles/

	Example: http://en.gravatar.com/brennannovak.json or .vcf

	IndieWeb (Microformats)

	Auth: None - simple HTTP requests, hot dog.

	Available Data (varies):

	Name

	Avatar

	Various URLs

	Email

	Phone

	Docs: http://indiewebcamp.com/How_to_set_up_web_sign-in_on_your_own_domain

	MicroFormats: http://microformats.org/wiki/hcard

	Example: http://indiewebify.waterpigs.co.uk/validate-h-card/?url=https%3A%2F%2Fbrennannovak.com%2F

	Identengine

	Auth: None

	Docs: http://www.identengine.com/documentation/

	Available Data:

	Varies depending on contacts & type of query

	Example: http://www.identengine.com/api/identities/http%3A%2F%2Ftwitter.com%2Fglennjones/ (Twitter Lookup)

	Example: http://www.identengine.com/api/identities/glennjonesnet%40gmail.com/ (webfinger)

Due to the technical overhead and steps required for Facebook & Twitter, we are considering creating a Mailpile web service that handles making the OAuth requests and returns the data for you contacts. However, we are aware of the privacy issues of this approach which will make it unacceptable for many users. For those privacy minded users we will try to make the process as easy as possible so they the only requests will be between their Mailpile <—> Twitter / Facebook

Hooks

	register_contact_importer(importer) - importer is subclass of ContactImporter.

	register_contact_exporter(exporter) - exporter is subclass of ContactExporter.

	register_contact_field_validator(field, validator) - field is string, validator is subclass of ContactFieldValidator.

	register_contact_context_provider(provider) - provider is subclass of ContactContextProvider.

 [image: Technical documentation]

API command output

	[[PGP import commands]]

Mailbox formats

	Maildir

	mbox

	Mac Mail.app dir format

Contact formats

	VCard

	Mork

	PGP Keyring

Email index formats

	[[Data formats: Metadata index]]

	[[Data formats: Keyword index]]

Other formats

	JPEG

	PNG

 This page is based on reading code from commit 8511284 dated 2018-02-23 and files generated by it. There may errors or omissions!

Structure

The keyword index is structured as a “posting list”. A posting list is a mapping of keywords to messages that contain them.

Each keyword is represented by a keyword hash, a string of 24 characters from the set([‘_’, ‘+’, ‘0’..‘9’, ‘a’..’z’]).

Each message is represented by a Message Index ID (MSG_MID) from the Metadata Index [https://github.com/mailpile/Mailpile/wiki/Data-formats:-Metadata-index]. It is Base36 - variable length - no leading zeros.

External format

The main index is stored in the subdirectory search. An additional file kw-journal.dat is used to store the “global posting list” which contains only recent additions to the index.

Subdirectory search in turn has subdirectories with one character names from the set([‘_’, ‘+’, ‘0’..‘9’, ‘a’..’z’]). Each subdirectory contains zero or more files. The file names are strings of one or more (typically two) characters from the same set. Each file name starts with the name of the subdirectory that contains it. File sizes are typically < 100 kB. (See configuration parameter sys.postinglist_kb.)

Examples:~/.local/share/Mailpile/default/search/m/m~/.local/share/Mailpile/default/search/g/g_~/.local/share/Mailpile/default/search/r/rdb~/.local/share/Mailpile/default/search/g/g6spxziaxht1brplfihefyyo

Each file consists of lines terminated by <LF> = 0Ah. Each line consists of two or more fields delimited by tabs <HT> = 09h.

The fields are:

	Keyword hash. All the keyword hash values in a file start with the file name of the keyword index file that contains it (except in the case of kw-journal.dat).The lines in a file are not sorted, and more than one line may have the same keyword hash.When lines have same keyword hash, the Message Index ID lists from all such lines are combined.The specified character set is safe for case-insensitive file names used e.g. in Windows.

	Message Index ID. Base36 - variable length - no leading zeros.

	(and subsequent fields, if any) Same format as field 2.The fields after field 1 comprise a list of emails that contain the keyword. These are not sorted.

In one Mailpile instance (which may not be typical) in which about 50,000 emails were indexed, the kw-journal.dat file contained about 5,000 lines totaling about 200 kB; the search subdirectory contained about 2,000 files totaling about 100 MB.

Internal format

The global posting list is stored internally in mailpile.postinglist.GLOBAL_GPL as a dictionary. Dictionary keys are keyword hashes, values are sets of Message Index IDs. A few example entries displayed by adding print GLOBAL_GPL to the code:

{ u's59n1weaos4rz0lzms+yj25m': set([u'12']),u'p7mble1uaouodot3oyoejfqt': set([u'C', u'B', u'E', u'7']),u'h1hexqphvgt4lwzqtgml4yvf': set([u'Q']),u'nfz4kq09fs0jnnj4gb3ackhm': set([u'1Q', u'1P', u'1S', u'1R', u'1U', u'1T', u'1W', ...]),u'pe6sidpfbagfnucp9yxsbuek': set([u'10']),... }

The global posting list is loaded from kw-journal.dat (after the user has authenticated) by calling mailpile.postinglist.GlobalPostingList() from mailpile.postinglist.search.MailIndex.load().

New messages are added to the global posting list by GlobalPostingList._Append(), which appends lines to kw-journal.dat and then adds their contents to items in mailpile.postinglist.GLOBAL_GPL.

The global posting list is periodically saved to kw-journal.dat by mailpile.postinglist.OldPostingList.save() called from mailpile.postinglist._Optimize()

Parts of the keyword index other than the global posting list are stored internally in the posting list cache mailpile.postinglist.PLC_CACHE as a dictionary. Structurally, each dictionary entry corresponds to a file in search; the keys corresponds to the file name while the values are tuples consisting of a time stamp and a second-level dictionary. The second-level dictionary corresponds structurally to the contents of a file in search and is similar in format to the global posting list dictionary. Example showing both levels of dictionaries:

{'x': [1520274976, {'xgqxjxggn4c6b0s0efxk8oi3': set([u'Y', u'31', u'3D']]),'xvecx_f8prs2xzx5nyxjgfkc': set([u'3D']]),'xo+glm5scnsohyrpzpgpn0sq': set([u'1Q', u'1P', u'1R', ...]]),'xreotnzskhx9mbczywafnzuw': set([u'12']]),... }],'r': [1520274885, { ... }],'e': [1520274885, { ... }],
...'l': [1520274851, { ... }]}

The entries in the posting list cache are loaded from external storage, or created, as and when needed.

Entries are merged incrementally into the posting list cache from the global posting list by mailpile.postinglist.GlobalPostingList._migrate() called from_Optimize()

Entries in the posting list cache are flushed progressively to external storage by threads created by mailpile.postinglist.PLC_CACHE_FlushAndClean() called from _Optimize().

Security

To improve speed, the keyword index is unencrypted by default. Only the hashes of keywords appear in the index, providing a degree of security even without encryption. By default, dictionary attacks are hindered by appending a (secret) fixed string to each keyword before hashing. Even with this precaution, relations and patterns of emails could conceivably be determined by analysis of the Message Index IDs that contain the same keyword. If it is desired to prevent even this type of attack, the keyword index can optionally be encrypted. (See configuration parameters prefs.encrypt_index, prefs.obfuscate_index.)

 This page is based on reading code from commit 8511284 dated 2018-02-23 and files generated by it. See search.MailIndex.edit_msg_info() andadd_new_msg(). There may errors or omissions!

Structure

The metadata index contains a contact index section and a message index section. The contact index lists email addresses and associates a unique integer Contact Index ID to each one. The message index lists messages. To each message it associates a unique integer Message Index ID, a pointer to the message location in external storage, and metadata from that message. The metadata for a message can include cross-references to other Message Index IDs and to Contact Index IDs.

External format

The metadata index is stored in file mailpile.idx. The file is normally encrypted. An authenticated user can make a plaintext copy using the CLI, for example:

mailpile> cd ~/.local/share/Mailpile/defaultmailpile> pipe >mailpile.idx.txt cat mailpile.idx

The file consists of lines terminated by <LF> = 0Ah.

Contact index lines start with ‘@’ = 40h.

Each line consists of fields delimited by tabs <HT> = 09h.

Some fields may contain a list of items delimited by commas = 2Ch.

The complete metadata index is written to mailpile.idx by mailpile.search.MailIndex.save(), called by mailpile.search.MailIndex.save_changes(), mailpile.commands.Command._background_save() and mailpile.plugins.core.Optimize(). Previous versions of the file are renamed and retained as mailpile.idx.1,

Updates to the metadata index are appended to an existing mailpile.idx by mailpile.search.MailIndex.save_changes(), called by mailpile.commands.Command._background_save() and at shutdown by mailpile.app.Main(). When an updated mailpile.idx is later read into internal storage, only the last entry for any Contact Index ID or Message Index ID is retained.

In one Mailpile instance (which may not be typical) the mailpile.idx file contained about 50,000 entries and occupied about 24 MB (encrypted).

Fields - contact index lines

	Contact Index ID. Base36 - variable length - no leading zeros.

	Email address in a safe format with the display name at the end, for example:brmdamon%40hushmail.com%20%28Jack%20Dodds%29

Fields - message index lines

	Message Index ID. Base36 - variable length - no leading zeros.

	Message location pointer. List (but usually just one) of hex - 14 digitsMay be blank e.g. when snippet contains ‘(missing message)’.Digits 0-4: Mailbox.Refers to subdirectory paths listed in mailpile.cfg, section config/sys/mailbox.Digits 5-14: File name of message.

	MessageID Hash. Base64 - 27 digits representing 160 bits.
This is the SHA1 hash of the MessageID if it exists.See base.BaseIndex._encode_msg_id().

	Date/time. Base36 - 6 digits. UTC s since epoch.

	From field as it appears in the message.

	To field as a list of Base36 Contact Index IDs.

	Cc field as a list of Base36 Contact Index IDs.

	Size. Base36 - variable length. Message size in units of 1024 octets.

	Subject field as it appears in the message.

	Snippet of the message body. Sometimes ‘(missing message)’.See search.MailIndex.add_new_ghost()

	Tags. List of Base36 (lower case) tag IDs.
e.g. ID xxx refers to mailpile.cfg section config/tags/xxx.Contains {G} when Snippet contains ‘(missing message)’.

	Replies. List of Base36 Message Index IDs.

	Conversation ID. Base36, or two Base36 separated by slash / = 2Fh.Constants (MSG_MID, MSG_PTRS, MSG_ID, MSG_DATE, …) that identify these fields are defined in mailpile.index.msginfo.MessageInfoConstants.

Internal format - contact index

The contact index is stored in two attributes of mailpile.search.MailIndex.

EMAILS is a list in which the items correspond structurally to the lines in the contact index part of the external format, without the safe encoding. Example (print EMAILS). The position in the list is the Contact Index ID.

[u'bre@klaki.net (Bjarni Runar Einarsson)',u'brmdamon@hushmail.com (Jack Dodds)', ... ,u'schneier@schneier.com (schneier)',u'smari@mailpile.is (Sm\xe1ri McCarthy)',u'brmdamon@fastmail.fm (Jack Dodds)', ... ,u'no-reply@accounts.google.com (Google)',...]

EMAIL_IDS is a dictionary which maps each bare email address (no display name) to its Contact Index ID.

{u'no-reply@accounts.google.com': 36,u'brmdamon@fastmail.fm': 32,u'schneier@schneier.com': 30,u'bre@klaki.net': 11,u'brmdamon@hushmail.com': 12,u'smari@mailpile.is': 31, }

EMAILS_SAVED is a count of the contact index entries that have been written to external storage, that is, EMAILS[:EMAILS_SAVED] have been written while EMAILS[EMAILS_SAVED:] have not.

Attributes EMAILS, EMAIL_IDS, and EMAILS_SAVED are loaded at startup by mailpile.search.load.process_lines().

Internal format - message index

The message index is stored in several attributes of mailpile.search.MailIndex.

INDEX and INDEX_THR are lists in which the items correspond structurally to the lines in the message index part of the external format. The position in the list is the Message Index ID. Each INDEX list item is a unicode object corresponding to one line of the external format, including the tab delimiters. Each INDEX_THR item is the conversation ID (the first field only when the ID has more than one field).

INDEX_SORT is a dictionary in which each key is a sort order (e.g. ‘freshness’ or ‘date’) and each value is a list. In each list, the index is the Message Index ID; the item is a number which defines the sort priority of that message according to the sort order.

MSGIDS is a dictionary which maps the MessageID Hash of each message to its Messsage Index Entry ID.

PTRS is a dictionary which maps the Message location(s) for a message to the Message Index ID.

TAGS is a dictionary in which the keys are tag IDs and the values are sets of Message Index IDs

At startup, the above index attributes are loaded by mailpile.search.MailIndex.set_msg_at_idx_pos() called byload() called byprocess_lines().

EMAILS_SAVED is the largest Contact Index ID in the externally stored index.

MODIFIED is a set of Message Index IDs of message index entries that have been modified but not written to external storage.

CACHE is a dictionary in which the keys are Message Index IDs and the values are structurally the same as items in INDEX.

Notes

Base64 - As used in the MessageID Hash, underscore = 5Fh represents value 63.
(Differs from RFC2045 and RFC4880.)Base36 - Digits (in order) “0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ”Base36 (lower case) - Digits (in order) “0123456789abcdefghijklmnopqrstuvwxyz”

 [image: Technical documentation]

Debian packaging is considered experimental!

Generating DEB packages

You first need to generate a changelog, then create a .deb package.

scripts/create-debian-changelog.py #May take some time
debuild -us -uc -b

The first command generates changelog messages for all git commit messages.
If you’re not interested in a proper changelog, you can use this command
instead of create-debian-changelog.py to create an empty changelog:

dch --create -v 0.0.0-dev$(git rev-list $(git rev-parse HEAD) | wc -l) --package mailpile ""
debuild -us -uc -b

Debugging actual data

If you happen to have issues with particular data (e.g. some emails in your inbox), you may want to reproduce issues in a development environment.

For that you can add your mails as individual files to mailpile/tests/data/Maildir/cur/ (just copy-paste faulty mail source code in a new .mbx file).

You can then pop a fresh mailpile test instance:

./scripts/mailpile-test.py -i

It will load all mails contained in mailpile/tests/data. You can run the web interface typing www in the shell (you may have to try it twice).

Be sure not to commit that files if they contain private information.

	[[Functionality layout]]

	[[API URLs|URLS]]

	[[Configuration|Config]]

	[[Frontend]]

	[[Mailpile Analytics Reporting System]]

 [image: Technical documentation]

New to Mailpile development? Want to contribute? Thinking of writing a plugin?
Read on…

Turning on debugging

If you’re developing Mailpile, you probably want a lot more debug output than
otherwise. Simply:

set sys.debug = ["log"]

where [“log”] is a list of types of debug messages you want to see printed out. Options include:

	log

	http

	gnupg

	cryptostate

	sources

	keywords

	vcard

	pop3

	imap

	imaplib

	rescan

	autotag

	oauth

	jinja

	timing

	httpdata

	connbroker

Testing

	compose

	sendmail

See also Debugging actual data

Writing plugins

	Look at the [[Plugin API]]

	Look at the [[Front-end Plugin API]]

	Look at existing plugins sketches https://github.com/mailpile/plugins

Committing to Mailpile core

	Come hang out on our IRC channel - introduce yourself. It’s easier to get
into things if you chat with us. :-)

	If you’re a backend developer, go read mailpile/app.py, mailpile/command.py
and mailpile/ui.py at the very least. Take note of the “session” and
“config” objects that are floating about. They’re very central.

	If you’re a frontend developer, read [[Front End Development Guide]], familiarize yourself with the
[[Commands]] structure, the [[Search Result Json]] and the Jinja2
templating engine. Then visit [[Themes]]

 [image: Technical documentation]

Mailpile’s Event Log

This document is a problem statement and high level architectural overview.

Some hints for the impatient:

	See [[Events of Note]] for examples of some interesting events

	The /api/0/eventlog/ method is the way non-Pythonic code polls, waits or searches for events

	The code lives in mailpile/eventlog.py and mailpile/plugins/eventlog.py

	Internally, the event log is an attribute of the global ConfigManager (usually session.config.event_log)

Problems to solve:

	For debugging and troubleshooting, an event log is a necessity

	We need a standard way to tell the user what Mailpile is doing

	A queue of unfinished or pending ops may simplify the design of
certain more complex workflows, especially ones which require
user input.

	If sufficiently detailed, an event log may allow one mailpile to
synchronize itself with another.

	It would be nice to be able to undo certain actions.

The question remains whether it is realistic to solve all of these
different problems using the same internal data structure. See below
for further discussion.

What does each problem imply?

1. Debugging

This requires timestamps, arguments and result summaries for commands
invoked. Human readable messages are preferable.

This also requires the ability to generate a useful description of what
happened, that leaks as little personal information as possible to the
helpful tech support person.

2. Visibility

This requires timestamps, and human readable descriptions of what is
going on. These human readable descriptions are probably one and the
same as the status messages the commands should be returning.

Updates and progress should update the visible entry (not create a new
one).

3. Workflows

A command that runs in the background needs to be able to post events
which trigger foreground user input, which then gets sent to a 2nd stage
command. Informing the user what action he should take requires a human
readable description. Describing the action itself may be complex as
we might need to present the user with multiple choices.

A command that fails due to network trouble, needs to be able to post
events which trigger a retry at some later date. Users should be informed
that operations were incomplete and potentially given the option to cancel
or force an immediate retry.

4. Synchronization

For synchronization to work, any modification of underlying data needs
to be recorded in sufficient detail that it can be duplicated perfectly
by the log reader. Timestamps and unique IDs are required for ordering
operations.

5. Undo

For undo, any modification to underlying data needs to be recorded in
sufficient detail that it can be undone. This may require grouping
together and reversing multiple actions, as what the user perceives as
a single operation may involve multiple transformations under the hood.

This also implies that operations need to log what actually happened,
not what the user requested.

Summary of functional requirements

	Timestamps

	Unique IDs

	Human readable descriptions

	A separation between private and non-private data (for tech support)

	Info about finished commands, how they were invoked and their results

	Info about what changes were made to underlying data structures

	Info about commands to run, and how to invoke them

	Scheduling information “run this event after X minutes”

	The ability to change/update an event’s status (unique IDs)

	A flexible way to render events as user visible notifications, so
questions can be asked and structured data rendered nicely.

	Events must be written to disk, encrypted for privacy reasons

	On app restart, still pending events need to be loaded from disk

Event log design

The event log is implemented by mailpile/eventlog.py, which contains two
main classes, Event and EventLog.

Event

Instances of the Event class have the following properties:

	date = RFC2822 timestamp of event time

	ts = Unix timestamp representation of the same (not stored on disk)

	event_id = Unique event ID

	message = Human readable event description

	flags = Flags describing status of the event (running, complete, …)

	source = Event source class, usually the API command which triggered it

	data = Event-specific descriptive data

	private_data = Event-specific private data

By default, API commands will all generate Events with basic details about
how they were invoked, performance, errors and results. In addition, some
API commands will generate custom events for tracking the state of long
running ops.

Each Event is associated with the API command which triggered it, and for
purposes of user interaction, the relevant command class can take part in
interpreting the data (and private data) and rendering for the UI.

The Event class takes care of serializing and deserializing itself to a
one-line JSON representation, when reading/writing from disk.

EventLog

The EventLog does the following:

	Writes the log to disk (encrypted if possible)

	Reading incomplete events from disk on startup

	Deleting old logfiles to avoid infinite disk usage

	Keeps recent and incomplete events in RAM for access by the app

That’s about it.

 [image: Technical documentation]

This page documents the data section of some of the more interesting events in the [[Event Log]].

To look at some live data, try these URLs:

	/api/0/eventlog/incomplete/ (for in-progress events only)

	/api/0/eventlog/?source=mailpile.mail_source.imap.ImapMailSource

Or on the CLI,

mailpile> help/urlmap eventlog
...
mailpile> eventlog incomplete
...

mailpile.mail_source.*

All Mailpile [[mail sources]] will record their internal state in an “incomplete” event. Thus the state of any mail source can be examined via. the event log. The following sections are standard in all Mail Source events.

 "id": <the mail source ID>,
 "mailbox_state": { ... <internal state> ... },
 "have_unknown": true,
 "copying": {
 "batch_size": 5,
 "complete": true,
 "copied_bytes": 0,
 "copied_messages": 0,
 "mailbox_id": "001n",
 "running": false,
 "total": 0
 },

have_unknown - need configuration

The have_unknown flag, if present and set to True, is a signal to the user interface that this Mail Source has discovered a new source mailbox, and the user should visit the configuration interface to enable downloads/syncing/whatever.

(This data can also be seen by perusing the mailbox section of the [[mail sources]] configuration and searching for mailboxes with a policy of “unknown”, but it is announced here so event listeners can subscribe to the event.)

copying - progress info

The copying section appears if mail was (or is being) copied from a source mailbox to a local mailbox. It shows statistics which can be used to generate a progress-bar or otherwise inform the user about in-progess copies.

	The running attribute tells us whether the copy is still in progress or whether it has finished.

	If complete is true, then that means all known mail has been copied (or downloaded).

mailpile.mail_source.* / mailpile.commands.Rescan

The data section of these events ([[Mail sources]] and the rescan command) will contain two subsections, rescan and rescans, pertaining to what happened during the process of reading new mail (indexing for the search engine, initial tagging, etc.) These data sections look like so:

 "rescan": {
 "added": 0,
 "batch_size": 5,
 "complete": true,
 "errors": [],
 "mailbox_id": "001j",
 "running": false,
 "total": 2,
 "updated": 0
 },
 "rescans": [
 [<Mailbox ID>, <Count>, <Human readable message>, { ...stats... }],
 ...
]

rescan - progress info

The first, rescan, describes the most recent rescan operation, which may still be in progress. This can be used to generate a progress bar.

	The running attribute will be True if the operation is still running.

	The complete attribute will be True if all known messages have been processed.

rescans - history

The second section, rescans, gives a summary of the recent rescan operations and how they went. Each entry in the history is a list of four values:

	the Mailbox ID

	the count of messages added to the index (or -1 if there was an error)

	a human readable description

	a dictionary describing the final state in machine-readable form:

	updated = how many messages were updated

	added = how many messages were added

	complete = whether the rescan was considered complete or not.

mailpile.mail_source.imap.*

The IMAP [[Mail Sources]] (and other network sources such as POP3 in the future) will record information about network activity on its event, like so:

 "connection": {
 "error": [false, "Nothing is wrong"],
 "live": true
 },

	The error attribute is a list of two items:

	The first is the error state, one of: False, “network”, “auth”, “timeout” and “imap”

	the second item is a human readable description of the problem

	The live event is True if the connection is currently in a usable state, otherwise False

(An error state of False means there was no error. Usually live will be true in this case.)

Does Mailpile allow me to customize my install with a company logo, colors, font?

The code is open, so if your people know how, then this can be done. Mailpile is Open Source, so the license explicitly permits such modifications.

We are also working on native support for themes and skins, but those features will not be ready until well after the 1.0 has launched.

You used bad words in your video and I didn’t like it.

We apologize you took offence to some of our branding and creative choices, we were just trying to have fun.

I don’t like your design, logo, font, layout, haircut.

That is very sad, taste is subjective. :(

I really liked your design, logo, font, layout, haircut.

Cheers, so do we! :)

Why didn’t you use a more modern color palate?

We thought more natural tones would humanize the user experience and make complicated things like encryption and e-mail more user friendly.

I am a developer, how can I help?

Take a look at our Github page [https://github.com/mailpile/Mailpile], we have a very long list of open issues.

I am not a techie, how can I help?

You can spread the word about the awesomeness of Mailpile!

You can give us lots of money [https://www.mailpile.is/donate/]! Or just a little bit, it all helps.

When we release new versions of the software (there have been a few Alpha and Beta releases already), it is useful for us to get feedback on what works well and what does not. However, note that at the moment we have literally hundreds of outstanding issues and are a bit swamped. As we make progress and fix the obvious things, getting reports about edge cases or things we haven’t yet encountered will become more and more important.

Do you accept Bitcoin?

Yes. If you don’t want to be anonymous you’ll have to get in touch to let us know who to thank!

Is Mailpile an encrypted e-mail service?

Mailpile is not an e-mail service, it is software - an e-mail client - that supports strong encryption.

What is your PGP public key?

Our team PGP key is downloadable from here: https://www.mailpile.is/files/team@mailpile.is.asc

Can you please support insert-some-random-encryption-scheme

Yeah, we’ll get right to that - after we get the standard, widely adopted protocols supported robustly… ;-)

Will Mailpile be able to send messages that expire or self destruct?

No, that is impossible.

You can’t un-tell somebody something. You can ask them nicely to delete the message, but if they refuse, you can’t make them. Sorry! The only way to do that is to not send the message in the first place.

(OK, so maybe it’s not completely impossible. If you control their computer, you can make their computer delete things without their consent [http://www.theguardian.com/money/2012/oct/22/amazon-wipes-customers-kindle-deletes-account]. But that’s not very polite. And besides, Mailpile is an e-mail program, not an evil hacking tool from a James Bond film.)

How will you prevent governments from accessing your user database?

Simple: We will not have a user database.

We do not have any server infrastructure that contains user information. Users install the Mailpile client on their own computers. We do not track people that want to use Mailpile.

Would it possible to add support for one-time passwords?

Yes. This may not happen until after 1.0, but it is an important feature Mailpile needs to have.

How secure is Mailpile’s internal database and configuration?

Mailpile will by default encrypt all configuration data, contacts and the search index. It may also encrypt downloaded e-mail, depending on user preferences.

Encryption is either provided by the GnuPG program, or OpenSSL’s AES support.

How are attachments stored? Are they encrypted, too?

Email attachments are stored wherever your e-mail is stored.

If that’s secure, the attachments are secure. We will provide methods to secure your e-mail, although we recommend that you use full disk encryption!

Will search work with encrypted messages?

Yes.

Mailpile will decrypt incoming e-mail on the fly and update the search index. The message is then stored to disk in its original encrypted form. The search index itself is strongly encrypted.

What are Mailpile’s weak points, security-wise? What can be done?

Mailpile is an e-mail client and interoperates with existing standards. These standards are often lacking, in particular when it comes to protecting various types of metadata, anonymity or privacy.

For example, the OpenPGP encryption standard does not encrypt message headers, so the Subject, From and To lines are sent unencrypted. Mailpile is taking part in efforts to improve these standards.

Another example is the PGP web of trust. The web of trust is meant to help verify the authenticity of a given encryption key. Unfortunately, the web of trust relies on people publishing, in public, details about who they know and who they communicate with (in the form of signatures on keys uploaded to key servers). This is a very basic privacy problem; even Facebook recognize the need to let people restrict access to their friends list! As a result, Mailpile does not encourage use of the web of trust and relies instead on a “trust on first use” scheme to discover and authenticate keys.

The most fundamental problem of course, is that you cannot send encrypted e-mail to someone who does not themselves have an encryption key and software capable of reading and writing encrypted mail. Mailpile itself is an attempt to remedy this, by making an encryption capable e-mail client that people can easily install and use.

For all the nitty-gritty details about Mailpile’s security and its limitations, please consult our Security Roadmap [https://github.com/mailpile/Mailpile/wiki/Security-roadmap].

Will Mailpile work with Tor and .onion domains?

If you mean sending mail to .onion domains: probably! Check out our SMTorP [https://github.com/mailpile/Mailpile/wiki/SMTorP] draft proposal.

If you mean accessing Mailpile’s web interface as a Tor hidden service: Yes!
We plan to provide support for that.

Mailpile will also use Tor to download information anonymously from key servers and web services like Gravatar, and potentially to send or download e-mail, when that can be done without messages getting misclassified as spam or exit nodes snooping on sensitive traffic.

Check out our Security Roadmap [https://github.com/mailpile/Mailpile/wiki/Security-roadmap] for more details.

How does Mailpile compare with something like Hushmail? Protonmail? Whiteout?

Usually, these solutions store your e-mail data on their servers.

Usually, they also provide a web interface to read and write mail, possibly using Javascript-based cryptography to support claims that they cannot read your mail since all the encryption and decryption takes place in your browser, on your computer.

This may be better than nothing, but it can also provide a false sense of security: if the same entity is responsible for storing the e-mail and providing you with encryption software, then all they need to do to read your mail is modify the code so it goes behind your back and sends them a copy of the keys. This is not a theretical problem, it has already happened [http://www.wired.com/2007/11/encrypted-e-mai/] and if your adversary is a government you would do well to steer clear of these solutions.

Mailpile is just software. The authors of Mailpile will never have a copy of your e-mail (or encryption keys), unless you mail them to us! Furthermore, we are committed to distributing Mailpile in ways that make it hard or impossible for us target individual users for “Trojan horses”.

Does everyone need to be using Mailpile to be truly secure?

Of course! World domination, here we come!

But seriously, no. Mailpile implements public standards and you can exchange mail with any other mail client that supports those same standards. When we feel the standards fall short, we will use open processes to propose improvements and work with authors of other e-mail systems to make sure our respective users can communicate as easily and securely as possible.

Does Mailpile solve secure public key distribution?

Mailpile will by default use an ad-hoc, opportunistic model of key distribution and discovery.

Public keys will be attached to outgoing e-mail and Mailpile will when necessary search the local mail store for key material before reaching out to key servers or other external services. The trust model will be “TOFU/C”, Trust on First Use/Contact, augmented by historic analysis of observed behavior, with key servers and traditional fingerprint verification as fallback strategies.

Please consult our Security Roadmap [https://github.com/mailpile/Mailpile/wiki/Security-roadmap] for details.

Will you be storing my private key on your mail server?

No. We do not operate mail servers and we do not store users’ private keys.

You install Mailpile on your own computer, which keeps your key nice, safe, and under your control.

Do plan to implement RFC6698 DANE and move towards CA free authentication?

Not for version 1.0, but hopefully later!

Please consult our Security Roadmap [https://github.com/mailpile/Mailpile/wiki/Security-roadmap] for details.

Will you implement Perfect Forward Secrecy (PFS)?

There is no accepted standard for how to do this for e-mail itself, so that is not on our initial roadmap.

However, Mailpile will certainly prefer ciphers which offer PFS whenever making a TLS connection for sending or receiving mail (IMAP, POP3, SMTP, etc.).

Please consult our Security Roadmap [https://github.com/mailpile/Mailpile/wiki/Security-roadmap] for details.

Will you implement STARTTLS?

Yes.

Will you hide the client’s IP address when sending e-mail?

Perhaps.

We are considering using Tor for this sort of thing, and hopefully the community will provide plugins implementing support for MixMasters and anonymous mail.

However, we are not committed to this plan, due to concerns that it would increase the risk that legitimate mail gets classified as Spam. There is little point sending mail securely if that prevents it from being delivered at all!

Please consult our Security Roadmap [https://github.com/mailpile/Mailpile/wiki/Security-roadmap] for details.

Will Mailpile support sending S/MIME emails?

Yes, but not right away.

Once OpenPGP and PGP/MIME work well, both from the user experience and technical points of view, we will look into adding other protocols, with S/MIME very near the top of the list.

Please consult our Security Roadmap [https://github.com/mailpile/Mailpile/wiki/Security-roadmap] for details.

Can Mailpile filter incoming messages to specific folders?

Mailpile uses Tags instead of folders. They function similarly, except a single message can have many different tags applied.

Filters can be defined which apply tags to incoming mail automatically.

Can Mailpile synchronize contact information with an external contact manager like Google contacts?

Not yet.

Will there be POP, IMAP and SMTP support?

Yes!

Will there be an app for Android?

Not right away, no. But hopefully some day.

Will there be an app for iPhone / iPad?

Not right away, no. But hopefully some day.

For the Linux / Unix geeks, will there be a command line interface?

Mailpile has a text-based interface which can be used in a terminal, in addition to the web-based user interface. There is also support for automation and scripting, but it is mostly at the Python level, not in the shell.

What about backups?

This is not fully decided, but we do recognize that if users are to download their mail from the cloud and entrust it to Mailpile, then Mailpile will need to help make sure backups are in place and kept up to date.

We are considering ideas such as encrypting data and re-uploading to IMAP servers in order to implement secure off-site backups, as well as prompting the user to make backups by hand to USB, external media or even paper in some cases.

Do you have any plans to implement threaded conversations? Like GMail?

Mailpile’s default conversation view is very similar to that of GMail, with messages grouped together in chronological order.

Other threading strategies might be added later.

How will Mailpile exist well in both the Windows and the Mac worlds?

Mailpile runs inside a web browser using HTML, CSS, and Javascript for the user interface. This provides an experience which is both familiar and very similar no matter what operating system they use.

Does Mailpile make PGP encryption simple?

Yes! That is our goal at any rate. :-)

Will Mailpile inform users if an e-mail they received was encrypted or not?

Yes. Messages are annotated with icons illustrating both encryption state and whether a message was signed or not. More detailed context-appropriate explanations are available in tooltips.

Will the composer make it easy to choose whether I want to encrypt or not?

Yes, we have a put a lot of time into thinking about and designing this to be intuitive.

How hard will it be to install Mailpile?

It should simply be a double-click to launch an installer on Windows, or dragging an app to the Applications folder on the Mac.

On Linux we hope to provide native packages for most of the popular distributions.

Is Mailpile real?

Yes, and so are we!

Where is your blog’s RSS button!?!?!?!

Good question. Here it is: http://www.mailpile.is/blog/index.rss

Can we use Mailpile as the standard mail solution for our clients/company/server?

When Mailpile is ready, that should be an option, yes. But when is software ever ready?

How do I get updates about your project?

We have an IRC channel on Freenode, #mailpile. This is the easiest to get hold of us and ask questions. Otherwise you can follow us on Twitter [https://twitter.com/MailpileTeam].

We’ll probably also add a mailing list one of these days… ;-)

Will Mailpile run on Windows 8.1, macOS, Linux etc. etc.?

Mailpile 1.0 should run on Linux, macOS and modern versions of Windows.

Will mail sent from Mailpile be compatible with other e-mail clients?

Yes! We are compliant with all the appropriate internet and e-mail standards.

Can Mailpile import from Thunderbird, Outlook, Mac Mail, Eudora, etc…?

We already support importing data from various common formats and aim to try and support all the popular formats over time.

Will Mailpile protect me from spam? Illegal content? Viruses?

Mailpile’s spam filter will stop most such problems from reaching your inbox. However, no spam filter is perfect and we cannot guarantee you will never see unwanted or unpleasant e-mails.

In either case, we recommend using an up-to-date anti-virus solution and keeping your operating system and web browser fully up to date with the latest security updates.

Please also see our Security Roadmap [https://github.com/mailpile/Mailpile/wiki/Security-roadmap] for more details on how we plan to deal with malicious content in the future.

Will Mailpile run on Raspberry Pi?

Yes, most certainly. Mailpile runs on most Linux systems.

Will Mailpile work on PowerPC? ARM? Intel?

You won’t have any problems. Mailpile is written in Python, so it’s very portable.

Will Mailpile support multiple email accounts?

Yes, you can use more than one e-mail account at once with Mailpile, both to receive mail and send.

I run a server! Can I can use Mailpile to give my users webmail access?

Note that Mailpile is primarily written as a personal application, it is not designed for large multi-user installations.

That said, this should become possible for small groups quite soon after our 1.0 release. Mostly we will need to document the recommended setup procedure.

What is Mailpile?

Mailpile is software, an e-mail client. It runs on your desktop or laptop computer and you interact with it by using your web browser. The goal of Mailpile is to allow people to send e-mail in a more secure and private manner than before.

Where does Mailpile store my mail?

We recommend you let Mailpile download your e-mail and store it on your computer. This allows you to read and write mail even if your Internet connection is not working, and gives you the option of deleting the mail from the server which in turn improves your privacy.

Mailpile stores mail it has downloaded in the Mailpile data folder, the precise location of which depends a bit on your operating system. It’s easy to find from within the app though.

Then how do I access it when my computer is turned off?

You don’t! :-)

This is actually a very basic privacy feature; when your computer is switched off you can rest assured that nobody can access or read your mail.

If that does not appeal to you, you may prefer to leave Mailpile running on a computer that is always on. You can then access it over the network using your web browser.

Is Mailpile webmail like Gmail, Yahoo, Hotmail?

Mailpile is like these solutions, in that you use your web browser to interact with Mailpile, to read and write and organize your mail. The user interface Mailpile offers is in many ways quite similar to those.

However unlike most webmail solutions, Mailpile is meant to run on your own computer, so you have control over your data and your privacy. Mailpile also does not force you to change e-mail addresses, it works with the e-mail addresses you already have.

Where do I sign up for a Mailpile address?

Unlike the cloud-based webmail providers (Gmail, Yahoo, Hotmail etc.), Mailpile does not include its own mail server. This means you do not sign up for a “mailpile address”, instead you use an e-mail addresses you already have.

As an example, you can use Mailpile with an existing GMail account, improving your privacy by configuring Mailpile to download the mail and then delete it from Google’s servers.

If I use my old e-mail, won’t my mail still go through the old servers and be kept there indefinitely?

Yes, your mail will still follow the same path through the network as before.

However, if you download and delete your mail, it will most likely get purged from the server sooner or later - unless your e-mail provider is really out to get you! Exactly how long this takes can be difficult to predict, in particular since most well-run mail providers keep backups of your mail.

Backups do not invalidate the approach though. Even if the mail remains on a backup tape in a vault somewhere, a hacker who breaks in to your account will not be able to access all your old messages. Leaving aside the question of whether our e-mail providers are trustworthy or not, we all have friends and family whose curiosity may get the better of them, and computer criminals frequently target perfect strangers.

Nothing is perfect, but deleting mail from the server really does improve privacy for most people. And Mailpile will help you improve it even further by making it easy to encrypt your mail.

How much does Mailpile cost?

Mailpile is free of charge, you just download it and use it. It is also free of advertisements. Development is supported by voluntary donations from our community, from people like yourself who want a more secure and privacy friendly solution for e-mail.

To make a contribution, please visit our donation page [https://www.mailpile.is/donate/]!

I am a techie, can I fix bugs or add features to Mailpile?

Yes, Mailpile is 100% Free, Open Source Software. You can find the source code online and make any changes you please on Github [https://github.com/mailpile/Mailpile]. We happily accept pull requests!

If anyone can view the code & change Mailpile, doesn’t that make it less secure?

Quite the opposite, Open Source facilitates peer review and quality engineering.

If the entire community of security professionals can examine how Mailpile works under the hood, they can and will help us find and fix problems quicker than would otherwise be possible.

Many professionals are of the opinion that security tools which keep their inner workings hidden from sight, are in fact less trustworthy because they could easily hide backdoors or deliberate vulnerabilities.

Wikipedia has an interesting article on “Security through Obscurity” [https://en.wikipedia.org/wiki/Security_through_obscurity] which discusses these philosophical issues in more depth.

 [image: Technical documentation]

Filters are a generic mechanism for automatically adding or removing [[Tags]]
to messages that have just been discovered.

Some of the Mailpile default behaviors (flagging messages unread or
placing in the inbox) are implemented using filters that are configured
by the --setup command.

FIXME: Describe filters in more detail.

This document needs to be fleshed out. In the meantime, please see
help filter in the CLI, or check out mailpile/plugins/filters.py in
the source.

	What Is Mailpile?

	How can I help?

	Feature Requests

	Technical Questions

	Interface & Usability Design

	Encryption & Security

	Branding & Design

	Random! Random!

 [image: Technical documentation]

Backbone Dependencies

underscore.js
backbone.js
backbone-validation.js

Bootstrap

dropdown.js
modal.js

jQuery UI

jquery.ui.core.js
jquery.ui.widget.js
jquery.ui.mouse.js
jquery.ui.draggable.js
jquery.ui.droppable.js
jquery.ui.sortable.js

Misc JS Dependencies

underscore.js
backbone.js
backbone-validation.js
jquery.autosize.js
slugify.js
jquery.timer.js
mousetrap.js
mousetrap.global.bind.js
purl.js
jquery.qtip.js
select2.js
favico.js
helpers.js

All of these JS files are compiled into libraries-min.js manually at the moment. Some of them are downloaded via Bower, others exist in the Mailpile repo in the static/default/js/libraries folder.

We’d like to make this process more elegant and easy for a front-end dev to jump and work with, but will probably not do so post 1.0, hopefully post Beta.

 [image: Technical documentation]

Front-End Dependencies & Bower

The decision was made to migrate front-end dependencies (JS, CSS, and LESS) to use the Bower [http://bower.io] package manager. It is a tool that is quite popular with front-end developers. My reasoning is:

	Makes updating of front-end deps’ much easier

	Offers semantic versioning (semver) of front-end deps

	Will ultimately keep the Mailpile git repo smaller in size

Currently the plan is to keep comiting the default.css and various JS files so the experience for an alpha tester or backend python dev should remain identical to current flow. However, front-end developers will need to install Bower and the Mailpile deps if they want to work on existing front-end (mostly LESS / CSS) code.

Using Bower with Mailpile

To start doing front-end development on Mailpile you need to first install the existing dependencies, once you have Bower itself installed, do the following to:

	Navigate to theme folder $ cd Mailpile/shared-data/default-theme

	Install Bower dependencies $ bower install

This will have created the following folder Mailpile/shared-data/default-theme/bower_components which contains all the source front-end dependencies.

	To add a new dependency type $ bower install new-package-name

	To search packages type $ bower search name-of-package

Compiling LESS

First make sure that you have the Ruby version of lessc installed:

	Run which lessc to check if you have lessc installed.

	If not, run make debian-dev (or arch-dev, or fedora-dev)

	If yes check ls -al `which lessc`

	If it points to a nodejs installation, run sudo gem install therubyracer less

To compile modifications in less files to css, run make less in the root folder. To compile changes automatically, run make less-loop. This will compile everything down in every 15 seconds.

 [image: Technical documentation]

Currently the way front-end plugin code will interact / be stored with backend python plugins is highly undetermined and subject to much change. The following represents the current state of things, but please be aware that the footing might be pulled from under you at any moment.

UI hooks

These hooks are used in Python modules to register various interactions. They are then filled out in detail in the HTML and Javascript sides for the plugins.

	register_uiclass(uiclass)

	register_display_mode(uiclass, name, jsaction, url="#")

	register_display_action(uiclass, name, jsaction, url="#")

	register_selection_action(uiclass, name, jsaction, url="#")

	register_activity(name, jsaction, url="#")

	register_asset(assetclass, path)

	register_body_block(uiclass, path)

Jinja2 functions:

	get_display_modes(uiclass) - returns [{"name": "", "url": "#", "jsaction": "", "text": None, "icon": None},...]

	get_display_actions(uiclass) - returns [{"name": "", "url": "#", "jsaction": "", "text": None, "icon": None},...]

	get_selection_actions(uiclass) - returns [{"name": "", "url": "#", "jsaction": "", "text": None, "icon": None},...]

	get_activities() - returns [{"name": "", "url": "#", "text": "", "icon": None},...]

	get_assets(assetclass) - returns ["filename", ...]

	get_body_blocks(uiclass) - returns ["filename", ...]

Modes, actions, etc:

	[uiclass:search]

	
	display_modes -> list, graph

	
	display_actions -> all, new, select[all,none]

	
	selection_actions -> later, group, tag, delete, read, archive, spam, advanced[export]

	[uiclass:thread]

	
	display_modes ->

	
	display_actions -> archive, delete, show all

	
	selection_actions ->

	[uiclass:contact]

	
	display_modes -> cards, list

	
	display_actions -> view, add, import

	
	selection_actions -> group, mailto

	[uiclass:tags]

	
	display_modes -> cards, list

	
	display_actions -> view, add

	
	selection_actions ->

	[uiclass:main]

	
	activities -> compose, contacts, tags, donate, settings

Plugins repository

We have created a repo with various skeletons of plugins.

	Clone the Mailpile Plugins repo

$ git clone https://github.com/mailpile/plugins

	Into the falling path in your instance of Mailpile

/static/default/plugins

	Create config.json manifest file for your plugin

This is not currently manditory, but in due time will replace the manual use of registration hooks documented above to a substantial degree. Please generate the manifest file even though it isn’t currently used, as it will make everything else a lot easier in the future.

{
 "plugin": "force-grapher",
 "name": "Use The Force, Grapher",
 "created": "2013-10-31",
 "updated": "2013-10-31",
 "creators": ["Smári McCarthy <smari@mailpile.is>", "Brennan Novak <hi@bnvk.me>"],
 "categories": [
 "interfaces",
 "data visualization",
 "graphs",
 "force directed",
 "inbox"
],
 "navigation": ["sub-navigation"],
 "views": ["search"],
 "urls":{
 "default": "/force-grapher"
 },
 "components": {
 "python": "false",
 "css": "true",
 "javscript": "true",
 "html": "true"
 }
}

 [image: Technical documentation]

Front-End Development

Here are some notes about the current build process to work on the front-end code of Mailpile. This is a rough draft of front-end documentation but it will be more fleshed out soon.

[[Themes]]

Currently, there is only one known theme for Mailpile, it is called “Default” and is located in mailpile/www/default folder of the Mailpile codebase. See [[Themes]] for further details.

JavaScripts

To run Mailpile with JavaScript, which is required for write actions (compose, adding tags, contacts, etc…) the following two JS files must be included in your theme.

mailpile.js
mailpile-libraries.js

These files get minified down into the following:

mailpile-min.js
mailpile-libraries-min.js

There are numerous ways to minify JS files. Currently I am developing using a Mac app called CodeKit which handles both JS and CSS using LESS, a popular preprocessor that you can learn more about at http://lesscss.org

The current file dependencies that get included in mailpile-libraries.js is the following:

	jquery.ui.core.js

	jquery.ui.widget.js

	jquery.ui.mouse.js

	jquery.ui.position.js

	jquery.ui.sortable.js

	jquery.ui.droppable.js

	jquery.ui.draggable.js

	select2.min.js

	mousetrap.min.js

I don’t expect anyone else to use CodeKit as it is a MacApp that costs money. I plan to add config suport for Grunt and other free/open types of precompilers for both JS and CSS. Until I get around to it, please submit patches and front-end code in separate files that you manually include that I can compile into the main files.

CSS

The main CSS file that is used is called default.css which SHOULD match the name of the theme it is for. Additional CSS files that are only needed for specific parts of the app or for a plugin can be included separately.

Another thing of note is the CSS is compiled using LESS

Font Icons

This is the most fancy modern approach to icons- it works in all the modern browsers. To use this type of icon copy the contents of Font-Icons/fonts folder into your public assets folder and then copy the contents of style.css into your existing CSS files. Then you easily display an icon where ever you want with a simple class like this:

The full list of these class names is in Font-Icons/index.html. In this file you will see there is another method of displaying these icons, but I’ve always preffered the .class method.

These were created with a free tool called Ico Moon http://icomoon.io in order to add or update to this icon font import the file Font-Icons.json once inside the app update additional .svg files saved at 48x48px then export. The interface is quite intuitive and easy to use.

See also

	[[Frontend Dependencies]]

 [image: Technical documentation]

NOTE: This document needs to be updated to reflect the new API path structure and command structure.

This guide is here to help you figure out how Mailpile is designed. It is not a
user guide - it is a guide for new developers and others needing to understand
the high level design of Mailpile. It is not a threat model or security brief.
It is not a user experience design specification. It is not a vending machine.
It will not absolve developers from having to read and understand the code.

Backend data stores

Mailpile has a number of backend data stores for different types of data. Each
backend exposes an internal interface. These can be seen as “Models”.

Data stores do not currently have a standardized interface. No currently defined
data store uses and external database.

[image: Data stores]

Mail management backend

The mail management backend reads in e-mail from defined sources, including IMAP,
Mbox, Maildirs and Mac Mail.app directories, scans them and enters them into the
search engine index. This search engine component is one of the central components
of Mailpile. The search engine is mostly defined in mailpile/search.py, but
some importers are defined in mailpile/mailboxes/.

[image: Mail management backend]

Contact backend

Contacts are stored locally as VCards in the vcards/ directory in the configuration
directory. The contacts backend transparently manages their creation, destruction,
etc. On runtime all the VCards are loaded into memory and interacted with there. This
speeds up access and allows for fast sorting, searching, etc.

[image: Contacts backend]

PGP backend

Mailpile will never access your PGP keystore directly. It will interact through
a GnuPG interface with GnuPG as it is installed on the local computer, and will
therefore only have access to actions provided by the GnuPG binary.

Mailpile will not make any assumptions about the nature of your GnuPG keystore,
but upon setup, if no keystore is found, it will generate a fresh 4096 bit
RSA/RSA PGP key for you if GnuPG is available, assigned to the user defined
identity. If GnuPG is not available, GnuPG will be disabled and the user will
be presented with a grave warning.

[image: PGP backend]

Other backends

There may be other backends for various purposes.

Commands

There are in addition a number of API commands. Each command can have zero or
more subcommands. These return internal Python data structures that are to be
used in output. These can be seen as “Views”.

[image: Commands]

Each command is internally subclassed from Command and returns a
CommandResult typed object. Commands are defined in commands.py, and some
of the core commands are defined there or in other parts of the system. Most
commands are defined as plugins though, which is partially just a convenient
segregation between backends and API, but partially a not particularly subtle
way of suggesting that everything can in theory be overridden. Don’t try that
at home unless you really mean it.

Output formatters

The output formatters each consume an internal data structure from a command,
and based on the data and other context provided will format the output
appropriately. In most cases the output format will consist exclusively of the
data output from the command, but sometimes when the output format requires, it
will bake in further data provided as extra context. Some will use some kind of
template format to structure the data.

[image: Output]

JSON formatter

The JSON formatter will hand you back a JSON blob. The JHTML formatter will
hand you back a formatted HTML partial wrapped in a JSON blob for easy
consumption into JavaScript.

HTML formatter

The HTML formatter will hand you back a fully kitted HTML UI containing a view
of the data in question, with additional UI tidbits. This is not very clean or
RESTful, but it does mean that the HTML output is fully usable by people who do
not use JavaScript, and we get this almost for free without having to repeat
ourselves (because DRY).

The HTML formetter gets information about which templates to use from the array
TEMPLATE_IDS in the command class. If the command is subclassing another
command and does not define its template, it will use the parent classes
template. Subcommands use the template basename defined in TEMPLATE_IDS
followed by an underscore and then the subcommand name. So the add subcommand
in the contact command (“contact add”) will use the template
contact_add.html.

These templates exist in the html/ directory of the current template. For the
default template this is static/default/html/ from the Mailpile base
directory.

XMLRPC

WRITE ME

Interaction modes

All interaction with the system is done through an interaction mode, currently
either a console or HTTP server. These consume commands and parameters and
return output. Every interaction mode can return every output format, although
some may be meaningless to the given mode.

[image: Interaction modes]

Command Line Interface (CLI)

WRITE ME

HTTP Server

WRITE ME

XMLRPC bindings

WRITE ME

Pythonic interaction

WRITE ME

API access and command structure

WRITE ME

[image: Command structure]

Install Mailpile on OpenBSD 5.5 [image: Guide] [image: OpenBSD]

First mention that I am a fan of OpenBSD and security. So I want a way to combine Mailpile and OpenBSD.

Well, then let’s start with the packages you need to have installed.

We get as root and we move to the temporary directory

su

cd /tmp

Then we needed packages install, The command can change according to the current versions, look in the current versions of OpenBSD FTP server

pkg_add git curl python-2.7.6p0 py-setuptools-1.1.6v0 py-lxml-2.3.2 py-libxml-2.9.1 py-libxslt-1.1.28

curl -L -o get-pip.py https://raw.github.com/pypa/pip/master/contrib/get-pip.py

python get-pip.py

After installing these basic needs, put the following command

STATIC_DEPS=true pip install lxml

Create a symbolic link of python, because in OpenBSD binary is named differently in linux for example

ln -s /usr/local/bin/python2.7 /usr/local/bin/python2

Then we move where our mailpile be located, in my case

cd /var/www

And we clone our repository

git clone -b release/alpha https://github.com/pagekite/Mailpile.git

We move to our new directory

cd Mailpile

We put this command without this did magic

pip install -r requirements.txt

This is ready!

MY EXAMPLE CONFIGURATION

./mp

mailpile> setup

mailpile> set profiles.0.email = yourmail@domain.com

mailpile> set profiles.0.name = Your Real Name

Basic: Send mail in the clear over port 25

mailpile> set profiles.0.route = smtp://user:password@smtphost.com:25

or

Better: Send mail using TLS over the submission port, 587

mailpile> set profiles.0.route = smtptls://user:password@smtphost.com:587

./mp --set sys.http_host=0.0.0.0

./mp --www

I hope you serve, I’m already researching how to use virtual domains and mailpile rid of roundcube.

I hope we do, I want to first thank the staff for their hard work Mailpile and effort.

Mailpile walks to be very safe, thanks to its creator and the community.

Currently I’m already tested on my dedicated server with OpenBSD, still does not work 100% but hopefully time to refine the work.

 [image: Technical Documentation]

This is a rough guide for getting Mailpile running on odd operating systems or system configurations, intended for a technical audience. Generally speaking, if you are using some other operating system than those explicitly supported, you are on your own, but the following general guidelines may be of use.

Mailpile doesn’t employ any magic. Everything it does is mostly compliant with the laws of physics and the relevant RFCs. In particular, no violations of the second law of thermodynamics have been detected during Mailpile’s operation. Developers are nonetheless urged to exercise caution.

Requirements

	Python [http://python.org] 2.7

	python-imaging [http://www.pythonware.com/products/pil/] 1.1.7

	python-lxml [http://lxml.de/] 2.3.2

	python-jinja2 [http://jinja.pocoo.org/] 2.6

	spambayes [http://www.spambayes.org/] 1.1a6

You will also need a tool which can download your e-mail and store in one of the following formats:

	Unix mbox

	Unix Maildir

	Windows Maildir

	Mac Mail.app format

	GMVault

Using PIP Install

If you’re the kind of Python dev who prefers to stay in the Python universe, the PIP tool can be used to install the required packages:

$ pip install -r requirements.txt

Note that this requires having a functioning C development environment and sometimes lxml can be a bit tricky to install. For Debian-based distributions, the required development libraries can be installed like so:

$ sudo apt-get install libxml2-dev libxslt1-dev

as per this Stack Overflow
answer [http://stackoverflow.com/questions/15759150/src-lxml-etree-defs-h931-fatal-error-libxml-xmlversion-h-no-such-file-or-di].

Developing using virtualenv

The Makefile includes a recipe for setting up a virtualenv for use with Mailpile:

$ make virtualenv
$ source mp-virtualenv/bin/activate
$ mailpile

This allows easy, sandboxed usage.

Developing using docker

To start a docker container for local development, run:

$./scripts/docker-dev/up

You can access the mailpile cli for a running docker container via:

$./scripts/docker-dev/shell

Stop the container again with:

$./scripts/docker-dev/down

Config and mail data is persisted on the docker host.

Installing on Raspberry Pi

Users have reported running into a problem when running make when building the Alpha on Raspberry Pi. Once you get to installing therubyracer it might fail due to a problem with libv8. Run the following:

$ gem install libv8 -- --with-system-v8

 [image: Guide]

Mailpile is developed and tested most heavily on Debian and Debian-based distributions, but should work fine on any modern distribution (Fedora, Mandriva, even Arch if you are so inclined). There may be packages available for your system [https://www.mailpile.is/download/]. If not, consider [[submitting packages]].

1. Install your system dependencies

Mailpile requires a number of different packages in order to run. Specifically:

	GnuPG (preferably on the 1.x branch for now, as Mailpile doesn’t currently act as a GPG Agent)

	OpenSSL

	Python 2.7+

	Lxml

Python 2.7 or newer is standard on virtually all Linux systems now. On Debian, you could install the other packages by running:

sudo apt-get install git gnupg openssl python-virtualenv \
 python-pip python-lxml python-dev libjpeg-dev \
 python-pgpdump python-cryptography libssl-dev

On Fedora, you could install the other packages by running:

sudo dnf install git gnupg openssl python-virtualenv \
 python-pip python-lxml python-devel libjpeg-turbo-devel \
 python-pgpdump

This will also install the Python virtual environment and package installer tools, which are optional but recommended.

The following steps assume that you already have virtualenv [http://virtualenv.readthedocs.org] installed. If not please follow the installation instructions [http://virtualenv.readthedocs.io/en/stable/installation/] for that first. If you would prefer not to use virtualenv at all and install Mailpile globally (either with or without pip [http://pip.readthedocs.org]), please see the instructions at the end of the page.

2. Clone the source repository

clone Mailpile, docs and plugins (submodules) to your machine
git clone --recursive https://github.com/mailpile/Mailpile.git

This will clone the main development branch of Mailpile. If you want to clone a specific branch, specify it like so:

git clone --recursive -b branchname https://github.com/mailpile/Mailpile.git

A full list of existing branches is available on Github [https://github.com/mailpile/Mailpile/branches]. Generally you’ll want the highest version number available.

3. Setup your virtual environment

move into the newly created source repo
cd Mailpile

create a virtual environment directory
virtualenv -p /usr/bin/python2.7 --system-site-packages mp-virtualenv

activate the virtual Python environment
source mp-virtualenv/bin/activate

source is a built into bash, so you have to use either bash or a bash compatible shell.

What is virtualenv?

Virtualenv is a tool which allows you to install the Mailpile’s Python dependencies locally, without having to modify your operating system’s global Python. This keeps things contained and makes it easier to un-install everything all at once. The downside, is you need to activate the virtual environment before you continue setting up Mailpile and always before you run Mailpile. That is what the source command does.

4. Install the dependencies

Important: You must have activated the virtual Python environment in your current shell, as described in step 1 above. If you opened a new shell or a new terminal window, see section 5.1.

If you want to develop Mailpile:

pip install -r requirements-dev.txt

For production or end-users, install everything that’s listed in requirements.txt [https://github.com/mailpile/Mailpile/blob/master/requirements.txt] instead.

pip install -r requirements.txt

If all is well, you should now be able to run Mailpile.

Note: If you have difficulty installing the LXML package, you can try installing a vendor supplied package instead, e.g. by running sudo apt-get install python-lxml, or equivalent. (Some users will need to run sudo apt-get install libxml2-dev libxslt1-dev before lxml will compile.)

5. Start Running Mailpile

You can now run Mailpile directly using the command:

./mp

This should drop you into the Mailpile shell in the terminal and open up a new tab or window on your default browser that you can use to configure Mailpile and start using it.

	[[Configuring Mailpile]]

	[[Using Mailpile’s command line]]

	[[Troubleshooting]]

If you want to configure Mailpile to launch automatically on startup, consider adding it to either your window system config (if you’re running it on a personal computer for instance), or to your init scripts (if you’re using Mailpile on a server).

If you want to configure Mailpile to accessed over the internet follow these instructions [https://github.com/mailpile/Mailpile/wiki/Accessing-The-GUI-Over-Internet]

5.1. Run Mailpile again!

Steps 1-5 should get you up and running. However, you don’t need to go through the entire process every time you want to run Mailpile. The steps for doing that are as follows:

enter the Mailpile source directory
cd Mailpile

activate the Mailpile virtual Python environment
source mp-virtualenv/bin/activate

run Mailpile
./mp

Other useful commands (from within the Mailpile directory):

update your Mailpile
git pull

update any submodules (documentation, plug-ins)
git submodule update

if you are developing and want a throw-away, blank Mailpile
./scripts/setup-test.sh

running all the tests
make alltests

leave the virtual Python environment
deactivate

6. Installing Mailpile globally

6.1. With pip

If you want to use PIP (Python’s package manager), you need to install these dependencies first, to enable PIP to run. For Debian…

sudo apt-get install python-dev libxml2-dev libxslt-dev libz-dev python-pip

Then follow the details in step 3 & step 4

6.2. Without pip

If you don’t want to use PIP, you need to install these dependencies:

	python-dev

	libxml2-dev

	libxslt-dev

	libz-dev

	python-jinja2

	python-lxml

	python-pgpdump

	python-cryptography

	spambayes

	python-fasteners

(note: see the file requirements.txt for a full list, the above may be out of date)

Debian

You could install these packages like this:

sudo apt-get install python-dev libxml2-dev libxslt1-dev zlib1g-dev python-jinja2 python-lxml python-pgpdump python-cryptography spambayes python-fasteners

Fedora

Using this dnf command might work for installing the dependencies:

sudo dnf install gnupg openssl python-devel libxml2-devel libxslt-devel zlib-devel python-jinja2 python-lxml python-pgpdump python-fasteners

Then follow the details in step 2

 [image: Guide]

Installing the Mailpile Beta on OS X

	Please download the OS X installer from our website [https://www.mailpile.is/download/].

	Once downloaded, open the installer from your Downloads directory. When the Mailpile folder opens, drag the Mailpile.app application icon into your Applications directory.

[image: Install Mailpile]

	Now, launch Mailpile by navigating to your Applications directory or selecting it in Launchpad.

	You may see a Gatekeeper dialog box shown below if you have not changed the default security settings.

[image: Gatekeeper alert]

In order to run Mailpile you can temporarily alter the default Gatekeeper security settings in the Security & Privacy System Preferences pane (see Apple’s Gatekeeper documentation [http://support.apple.com/kb/HT5290] for more information), but the much easier way is to just right-click the icon, select “Open” from the contextual menu and confirm you want to launch the application (which may require admin authorization). In either case, after you started Mailpile for the first time, you can simply launch it as usual.

	At this point you should be able to follow the Mailpile configuration wizard.

	Mailpile also provides a convenient menu bar icon for quick access.

[image: Mailpile menu bar icon]

This documentation needs expanding.

Tips for developers using MacOS

If you want to help develop Mailpile by submitting pull requests, then some of these instructions might still be relevant. We will work to update this procedure as soon as possible!

Leopard 10.6.8

Mailpile depends on lxml, which is a binder for two C libraries (libxml2 and libxslt). The GCC compiler needs to be installed on your os for those dependencies to work but is unfortunately not included with MacOS 10.6.8.

Some people are using XCode (that comes with GCC), others skip downloading the massive XCode installer and use GCC packaged by Kenneth Reitz [https://github.com/kennethreitz/osx-gcc-installer]. Long story short, to install Mailpile you have to have the GCC compiler installed, however you do it, and install lxml when GCC has been successfully installed. You will find several discussion [http://stackoverflow.com/questions/1277124/how-do-you-install-lxml-on-os-x-leopard-without-using-macports-or-fink] threads regarding this issue if you run into any problems.

Mavericks 10.9.1 (Step-by-Step)

Download and Install Xcode Command Line Tools:

xcode-select --install

Download and Install PIP for Python:

cd /tmp
curl -L -o get-pip.py https://raw.github.com/pypa/pip/master/contrib/get-pip.py
sudo python get-pip.py

Install latest version of ‘lxml’ using Static Dependencies:

sudo STATIC_DEPS=true pip install lxml

OR install ‘lxml’ without pip, macports, or fink

cd /tmp
curl -o lxml-3.3.0.tgz http://lxml.de/files/lxml-3.3.0.tgz
tar -xzvf lxml-3.3.0.tgz
cd lxml-3.3.0
python setup.py build --static-deps --libxml2-version=2.8.0 --libxslt-version=1.1.24
sudo python setup.py install

Clone and Install Mailpile (in user ‘Sites’ directory, but any directory will do):

cd ~/Sites
git clone -b release/alpha https://github.com/pagekite/Mailpile.git
cd Mailpile
sudo pip install -r requirements.txt

If you run into an error like

 clang: warning: unknown argument: '-mno-fused-madd' [-Wunused-command-line-argument-hard-error-in-future]

it is because you have a newer version of the Apple LLVM compiler in Xcode 5.1 that is stricter about flags, so prefix your build commands with this:

ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future

e.g.,

ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future python setup.py build --static-deps --libxml2-version=2.8.0 --libxslt-version=1.1.24 13ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future python setup.py build --static-deps --libxml2-version=2.8.0 --libxslt-version=1.1.24

and

sudo ARCHFLAGS=-Wno-error=unused-command-line-argument-hard-error-in-future pip install -r requirements.txt

[UGLY HACK WARNING - Mailpile calls python2 when opening, but in OS X this binary/symbolic link does not exist, instead we call python or python2.X directly. For this reason, we must accommodate Mailpile by creating a symbolic link in the usr/bin/ directory]

Create symbolic link from ‘python2.7’ to ‘python2’:

sudo ln -s /usr/bin/python2.7 /usr/bin/python2

Finally - run Mailpile!

./mp

See “Getting started on linux” for more information on setting up Mailpile for the first time.

 [image: Guide]

This documentation needs expanding.

Tips for developers using Windows

If you want to help develop Mailpile by submitting pull requests that would be awesome. We need to create documentation about how to best setup a dev version of Mailpile in Windows.

Download links used to resolve dependencies:

python 2.7: <http://www.python.org/download/>
lxml: <http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml>
pyreadline: <https://pypi.python.org/pypi/pyreadline/2.0>

2. Clone the source repository

clone Mailpile, docs and plugins (submodules) to your machine

git clone --recursive https://github.com/mailpile/Mailpile.git

This will clone the main development branch of Mailpile. If you want to clone a specific branch, specify it like so:

git clone --recursive -b branchname https://github.com/mailpile/Mailpile.git

A full list of existing branches is available on Github. Generally you’ll want the highest version number available.

3. Setup your virtual environment

move into the newly created source repo

cd Mailpile

create a virtual environment directory

python -m pip install virtualenv
python -m virtualenv -p "C:\Python27\python.exe" --system-site-packages mp-virtualenv

activate the virtual Python environment

cmd.exe: "mp-virtualenv\Scripts\activate"

powershell: .\mp-virtualenv\Scripts\activate.ps1

What is virtualenv?

Virtualenv is a tool which allows you to install the Mailpile’s Python dependencies locally, without having to modify your operating system’s global Python. This keeps things contained and makes it easier to un-install everything all at once. The downside, is you need to activate the virtual environment before you continue setting up Mailpile and always before you run Mailpile. That is what the activate command does.

4. Install the dependencies

Important: You must have activated the virtual Python environment in your current shell, as described in step 1 above. If you opened a new shell or a new terminal window, see section 5.1.

If you want to develop Mailpile:

python -m pip install -r requirements-dev.txt

For production or end-users, install everything that’s listed in requirements.txt instead.

python -m pip install -r requirements.txt

Also see if pyreadline is installed else run the following command

python -m pip install pyreadline

If all is well, you should now be able to run Mailpile.

5. Start Running Mailpile

You can now run Mailpile directly using the following command to launch a new console – without start, Mailpile would share stdio with the shell and would fight for input:

start .\mp.cmd

 [image: Guide]

IMPORTANT: The information on this page is partially out of date! The Beta release includes a web based configuration wizard, so usually you just start app and go with the flow in your browser.

Quickstart

The quickest way to get up and running, is to follow one of the following guides:

	[[Getting started on Linux]]

	[[Getting started on MacOS]]

	[[Getting started on Windows]]

	Getting started on OpenBSD [https://github.com/pagekite/Mailpile/wiki/Getting-started-on-Open-BSD]

When that is done, the following guides will help you configure the software and get started using it:

	[[Configuring Mailpile]]

	[[Accessing The GUI Over Internet]]

	[[Indexing Mail]]

	[[Synchronizing Mailpile with Thunderbird]]

	[[Using Mailpile]]

	[[Using the Web Interface]]

	[[Protecting Your Privacy]]

	[[Hacking and Exploring]]

	[[Mailpile’s Performance]]

If you are using some other operating system or are a developer who prefers Docker, Virtualenv or PIP to the above recipes, please read on…

==

See also

	[[Getting started for developers]]

 [image: Security]

This document outlines the details of the implementation of PGP in Mailpile, including backend interactions, frontend UI specifications, and overall policy.

We have several goals for Mailpile’s security model that explain the use of PGP:

	Opportunistic end-to-end message security

	A third party should not be able to read messages.

	Message verifiability

	It should be possible to verify that a message is authentic and has not been tampered with.

	Simple key exchange with implicit trust on first use (TOFU)

	As the biggest problem is not MITM attacks against keys in transit, but that almost nobody uses in encryption.

	Easy key discoverability in the case of missing encryption keys

	Because people use a lot of methods to distribute public keys.

	Key validation/invalidation with explicit trust/distrust settings

	Because we sometimes want to be sure about things.

	Seamless key revocation

	Because sometimes keys are revoked.

	Seamless key rollovers

	Because sometimes new keys are issued.

	Per-recipient crypto policy management

	Because sometimes not everybody wants to receive encrypted e-mail all the time, even if they might sometimes.

	Proper user diagnosis of failures, including unexpected new keys

	Make sure users know when things are going wrong, or might be going wrong.

	Easy per-message crypto-management

	Make sure users can choose on an e-mail by e-mail basis whether to sign, encrypt, or what else.

	Seamless key publication when desired

	To make keys more publicly available.

	Follow standard practices when possible and not contradicted

	Even though we do things slightly differently than GnuPG’s standard practices, we try to do so in a way that doesn’t muddle up the keychain or cause trouble for power users who are using GnuPG elsewhere in a different context.

We also have several non-goals:

	Deniability

	In practice, denying having sent e-mail does not hold up in court. This is because courts don’t care so much about cryptographic proof as they care about proof beyond reasonable doubt. As do most people, in practice. We therefore make no special effort to provide deniability to messaging. If you require deniability, don’t use e-mail at all.

	Anonymity

	E-mail is generally not anonymous, although it may be pseudonymous. If you wish to use e-mail anonymously, consider using [[SMTorP]] to obscure your origin and make a creative pseudonym generation plugin. Or simply use another communications protocol that is better suited to anonymity.

	Perfect forward secrecy

	Perfect forward secrecy does not practically apply to e-mail /in storage/, as people have an expectation of being able to read old e-mails, regardless of age. It is reasonable to expect forward secrecy for e-mail /in transit/, but this obligation falls to TLS. It is not a consideration of PGP, and in fact, if somebody is in a position to hijack your PGP key, they are more than likely to also have access to your e-mail storage anyway.

	Support for keysigning and web of trust

	The Web of Trust leaks information, creates a historical record, is complicated for people to understand, nigh impossible to visualise, and in practice does not work. See below.

Overall design

There are several separate points of functionality that relate to PGP usage in Mailpile:

	Key discovery mechanisms

	Key importers

	Key selection mechanism

	Crypto policy

	GnuPG interface

	Signing mechanism

	Encryption mechanism

	Decryption mechanism

	Verification mechanism

Most of these simply require calls to GnuPG, which handles most of the details.

Interaction with GnuPG

All interaction with GnuPG is managed through the GnuPG class in mailpile/crypto/gpgi.py. This class forks an instance of gpg as specified (defaulting to gpg from the OS’s current execution path), operating with a specified GnuPG home directory (defaulting to GnuPG’s platform-specific default). The GnuPG interface is custom built. It was in some ways inspired by py-gnupg by Frank J. Tobin, but we wrote our own because:

	None of the Python GnuPG wrappers we found were reporting sufficiently on their status, in particular, GnuPG’s status file descriptor was not being read or its output parsed by the common Python GnuPG wrappers.

	In order to reduce the number of “moving parts” in Mailpile, we are being somewhat picky about the inclusion of dependencies. Of course we will use dependencies when it is appropriate, staying away from “not invented here” syndrome; but if we can’t find something that does what we need, and it’s a simple enough thing, it’s better to write our own solution than to attempt to monkeypatch a small, weak dependency.

The GnuPG interface defaults to using GnuPG’s default home and default keychain. This can be altered by setting sys.gpg_home.

Key Discovery

The main risks to downloading keys, is it exposes to 3rd parties who you are communicating with and provides remote third parties with information about which groups of users are conversing, leaking data about the social graph. Despite this, there are many benefits to fetching keys if possible, and therefore it should be done by default, but only with user permission.

If we have a p2p channel, requesting keys over that could make sense for a TOFU model. When downloading keys, it would be best to do so via Tor, and take care to randomize delays between downloads and ask Tor to create a new “identity” for each download.

It can be very important to download keys to “fill in the blanks”, if a group message is sent encrypted to multiple people, and one is missing keys in order to reply - replying unencrypted should probably be prevented (see above), and so obtaining keys is necessary. In this case it is important to download keys by Key ID, checking the encrypted data being replied to, not use the e-mail addresses as they might not match.

Bearing all of this in mind, Mailpile uses a multi-pronged strategy to discover PGP keys. Our goal is to fetch keys when needed from wherever we can find them. We perform key lookup on user request, but provide multiple points at which users will be able to make such requests. There is a key lookup handler which uses available lookup strategies to build a list of key candidates for a particular set of conditions. These are evaluated based on a heuristic. The user gets presented with a list of candidates to choose from, ordered by score.

The most important key lookup strategy is keys that have been received through e-mail from the address in question. The key lookup mechanism for that does a search in Mailpile for e-mails recieved from the address with attached keys. It may have to perform some processing to determine which keys have the greatest validity, or are expired, etc.

The lookup methods are:

Method	Baseline score
————————————–	———————-
Nicknymlm1 [https://leap.se/en/nicknym]	10
DNS PKAlm2 [http://www.gushi.org/make-dns-cert/HOWTO.html]	9
draft-wouters-dane-openpgp-02lm3 [http://tools.ietf.org/html/draft-wouters-dane-openpgp-02]	9
Received keys in E-mail	3
OpenPGP header in E-mail	2
keybase.io	1
PGP Keyservers	1

A key discovered through multiple lookup methods gets additive bonus, but never higher than 20.

The reason Nicknym gets the highest score is that the Nicknym protocol guarantees uniqueness of keys, so only one key exists per user. The Nicknym server for an e-mail address is also required to be on the domain of the address, which means it is somewhat more trustworthy than, say, PGP keyservers, where there is neither uniqueness nor any explicit control authority.

DNS PKA and draft-wouters-dane-openpgp-02 both operate on the same principle, of DNS records containing references to keys. These are more easily spoofed than Nicknym servers, but are still reasonably authoritative.

Keys received by E-mail are practically speaking the core of the TOFU model we’re advocating, but we’d like to err on the side of caution when only a single instance of a key has been received for a given e-mail address, specially in the case where multiple instances of an erroneous key may have been received. This should also be implemented in such a way as to ignore keys on messages which are tagged as spam.

keybase.io is somewhat like a “supercharged keyserver”. Although it has much the same security properties as a PGP keyserver, the fact that keys are managed by keybase users may make it somewhat more trustworthy in practice, but since we don’t know that yet.

PGP keyservers are not very trustworthy, but are quite ubiquitous and useful. We give it a low trust score here, but may give it extra points with the bonuses below.

A key gets additional heuristic points for:

Criterea	Additional score
————————————–	———————-
Being explicitly trusted by user	50
Being implicitly trusted by user	10
Each explicitly trusted signature	1
Contradicting key found in E-mail	-5
Being explicitly distrusted by user	-10000
Being revoked	-10000
Being superceded by new key	-50

These are additive rather than bounded because it simplifies the heuristic logic. This may turn out to be a wrong approach, but in particular, we’d like to make sure that even if a key has been found on Nicknym, DNS PKA, DANE and Keybase, that if it has been explicitly distrusted, it still is considered to be untrusted. We could implement a mistrust cutoff, whereby no keys with negative heuristic values get reported.

These values are arbitrarily chosen, albeit with some understanding presumed about how good each method is. It is expected that we’ll have to do some testing and alterations to these.

Key Trust

Mailpile’s approach to security includes an attempt to reduce metadata leakages, and an effort to minimize operational complexity for users. As a result, Mailpile does not work on the basis of PGP’s web of trust. This is because the web of trust is overly complicated and highly prone to failure in practice. It also leaks information about the social graph.

Instead, Mailpile works on the basis of Trust On First Use principle (TOFU), which means that when a new key is discovered and accepted by the user, it is stored and considered to be implicitly trusted. At any time, the user can perform actions that will revoke the key, explicitly distrust it, or explicitly trust it.

We want to be explicit about communication with the user about the state of keys which are discovered. We should report:

	You have not seen this key before, and have not verified it.

	You have seen this key before, but have not verified it.

	You have seen this key before, and have verified it.

	This key is different from what that person presented last time.

	Is new key signed by old key? (OK, shutup)

	The old key was about to expire

	The old key was revoked

	This might be weird.

Mailpile does award heuristic bonuses for trusted signatures, but that is the extent of the use of the web of trust.

When a user indicates that he wishes to encrypt a message to a recipient, an appropriate key is used for that recipient if one is known. If none is known, the key lookup mechanism is used. If an acceptable key is found (either determined automatically or through user selection), it is imported to the local keyring and used, with implicit trust granted. A user can choose to explicitly trust a key. For purposes of calculating the heuristic value, the existance of a key in a user’s keyring is equivalent to implicit trust. Resultingly, keys have the following trust states:

	Revoked

	Explicitly distrusted

	Superceded (see below)

	Untrusted

	Implicitly trusted

	Explicitly trusted

Key Revocation

Key revocation is handled in two ways: through GnuPG’s own revocation mechanism, and through a supercedance mechanism built into Mailpile.

If an incoming e-mail contains a key revocation certificate, it is automatically processed.

If an incoming e-mail contains a public key, and it is signed by a previously implicitly trusted public key, the new public key is imported and the older key is considered to be superceded. The same occurs if a user confirms the replacement of a previously explicitly trusted public key.

Outgoing message signing, encryption, and crypto policy

When sending mail to a group of recipients, it is important to only assume the lowest common denominator of security and make that clear and visible to the user. We want them to think “why isn’t this encrypted?” so they can take steps to fix that (contact the user without a key for example, or trigger key discovery of some sort).

Replying to a message, or forwarding, should maintain security if at all possible. We can’t prevent the user from downgrading the security but there should be clear, understandable warnings.

The current lock is good, but it might be good to also have a lock for the header section, and some sort of indication on the send button or elsewhere, telling us how secure the transport is.

For certain workflows, it would be useful to have a “lock security” button, which enforces stronger security for message headers, bodies or transports. In this mode addresses which don’t fulfill the security requirements would not be available as recipients and other behaviors which might degrade security would be prevented. This enables the user to think like so: “I am about to say something sensitive, but to avoid accidentaly fat-fingering it and leaking information, I am going to put Mailpile in secure composition mode before I even start writing.”

Normally (when not in locked mode?), the crypto policy determines the default behavior. Messages are encrypted or signed according to the crypto policy. The policy types are determined per user (including the default policy of the actuve user profile) and are as follows:

	none

	sign

	sign-encrypt

	default

There is no ‘encrypt’ option which does not imply signing, because deniability is not a consideration that is relevant in a reality where people automatically trust all e-mails as being authentic, which therefore implies that there is no practical deniability. However, verifiability is a consideration that we care about.

If there are multiple users with policies, the crypto policies for all the users are merged like so:

 + | none | sign | sign-encrypt |

————-|————-|————-|————–|
none | none | none | none |
sign | none | sign | sign |
sign-encrypt | none | sign | sign-encrypt |

This table works on the premise that we never want to upgrade the security beyond what a user is capable of receiving, and that for the case of multiple recipients the security is limited to the lowest common denominator. Furthermore, although technically we could send anyone a signed message, if they have an explicit policy rejecting that (a policy of none) there’s probably a good reason for that and we should honor it.

For instance, if we are sending a message to Alice, Bob and Charlie, and their policies are like so:

Default: sign-encrypt
Alice: sign-encrypt
Charlie: sign

Then we say: sign-encrypt + sign-encrypt + sign = (sign-encrypt) + sign = sign

In this way, messages are encrypted by default if all recipients have been explicitly set to receive encrypted e-mail and have known implictly or explicitly trusted keys. Messages can be optionally encrypted if the user elects to.

Incoming message processing

Mailpile automatically tries to decrypt incoming encrypted messages in two scenarios:

	Indexing

	Displaying them to the user

On both of these conditions, Mailpile automatically checks for valid signatures. This processing leads to [[signature_state]] and [[crypto_state]] structures being internally accessible to Mailpile.

There are several different states an encrypted or signed message or message part can have (see below):

	encryption: none, decrypted, missingkey, error, mixed-*

	signature: none, invalid, expired, revoked, unknown, verified, unverified, mixed-*

These are displayed to the user via icons on the message and appropriate message parts. In each case interacting with the icon will provide details.

Key generation

When a user begins a setup process, Mailpile automatically detects whether there is a keyring available on the computer. If so, it uses it. If not, it generates a key automatically, using best practices.

Current best practice is considered to be:

	4096 bit RSA/RSA

	Automatic expiration in 2-3 years

Mailpile periodically checks whether keys are expiring and if close (within 1-2 months), generate a new key, sign it with the old key, and proceed to distribute it.

We ask a minimum of questions on key generation: Name, e-mail address, and whether to upload to keyserver?

Message Statuses

There are 3 places where PGP data is exposed in our data structures: the message summary, message text part, and message metadata

Message Summary

There is a crypto overview for messages that pertain to the WHOLE message, this overview will ALWAYS have information about encryption and signature states and contains mixed-* states as well as the normal states

messages: {
 MID: {
 crypto: {
 encryption: {
 context: "", # a number for comparing text_part crypto state 29
 have_keys: [], # start of a key? B8127F5124462421
 missing_keys: [], # start of a key? 8E86CED32B2BBB65
 protocol: "", # one of: openpgp
 status: "" # one of: none, decrypted, missingkey, error, mixed-*
 },
 signature: {
 context: "", # a number for comparing text_part crypto state 30
 email: "", # an address: name@email.org
 keyinfo: "", # a fingerprint or key ID 23GF7C78D83C580EF939
 name: "", # name of contact: Josephine Smythe
 protocol: "", # one of: openpgp
 status: "", # one of: none, invalid, expired, revoked, unknown, verified, unverified, mixed-*
 timestamp: "" # a UNIX timestamp 1389280400
 }
 }
 }
}

Message Text Part

Each part of text data MIGHT have information about the encryption, signature, both or neither. This ONLY contains normal PGP states and never mixed-* values.

messages: {
 MID: {
 text_parts: [
 {
 crypto: {
 encryption: {
 context: 29,
 status: "none"
 },
 signature: {
 context: 30,
 email: "name@email.org",
 keyinfo: "23GF7C78D83C580EF939642F230904D9190FG52B",
 name: "Josephine Smythe",
 protocol: "openpgp",
 status: "mixed-unverified",
 timestamp: 1389280400
 }
 }
 },{
 crypto: {
 encryption: {
 context: 38,
 status: "none"
 },
 signature: {
 context: 39,
 protocol: "openpgp",
 status: "none",
 timestamp: 1389280400
 }
 }
 }
]
 }
}

Message Metadata

Each message item in search results and threads also ALWAYS exposes crypo overview about both the encryption and signature of a given message. This returns the various mixed- states as well the normal states

metadata: {
 MID: {
 crypto: {
 encryption: "", # one of: none, decrypted, missingkey, error, mixed-*
 signature: "" # one of: none, invalid, expired, revoked, unknown, verified, unverified, mixed-*
 }
 }
}

	none: no signature

	invalid: the signature was invalid (bad)

	expired: the signature was made with an expired key

	revoked: the signature was made with a revoked key

	unknown: the signature was made with an unknown key, so we can’t verify it

	verified: the signature was good, and came from a verified key

	unverified: the signature was good, and came from a key that isn’t verified

	error: there was some weird error.

Possible situations:

	Not encrypted or signed

	Encrypted, but couldn’t decrypt. No signature.

	Encrypted, but couldn’t decrypt. Invalid signature.

	Encrypted, but couldn’t decrypt. Unknown signing key.

	Encrypted, but couldn’t decrypt. Good signature.

	Encrypted, decryption successful. No Signature.

	Encrypted, decryption successful. Invalid signature.

	Encrypted, decryption successful. Unknown signing key.

	Encrypted, decryption successful. Good signature.

	Not encrypted. No signature.

	Not encrypted. Invalid signature.

	Not encrypted. Unknown signing key.

	Not encrypted. Good signature.

Original Icons

The following icons have been designed originally for Mailpile and are open & free for anyone to use for relevant crypto UI feedback in other applications! The more applications which adopt the same (or similar) icons, the better this will be for the user experience (and understanding of encryption) as they will already have an understanding of meaning as they move from app to app.

[image: Signature Icons]

[image: Encryption Icons]

Notes

Regarding the Web of Trust

We recommend against using the Web of Trust (WoT), because it generates a persistent and public social graph that can be mined by adversaries. And a historic record. And it does not work.

If you disagree with us, fine. But we’re not implementing support for the Web of Trust in Mailpile’s core.

Regarding choices and options

We are intentionally dropping most of GnuPG’s features on the floor, because they do not matter to most people. Here we make a distinction between lifestylers vs. normal humans. Lifestyle GnuPG users can go enjoy the command-line or their favourite with-kitchen-sink GUI if they do not like the Mailpile GPG model, or alternatively develop a plugin that supports all the features you’re after.

 [image: Technical documentation]

Code structure

Mailpile’s python code lives in mailpile/.

Mailpile’s default HTML templates and Javascript lives in static/default/.

Miscellaneous documentation is in doc/.

Test data lives in testing/.

Internal variables

There are a bunch of variables that can be tweaked. For a complete list:

mailpile> help/variables
...

To set a variable to some value either run Mailpile with:

$./mp --set section.variable=value

Or alternatively run ./mp and issue:

mailpile> set section.variable=value

after which you need to restart the program for it to take effect
(Ctrl+D and ./mp). You can print the value of a variable using:

mailpile> print variable

Testing

We are slowly migrating the code to use the doctest module for
internal unit tests.

Black-box regression tests can be invoked by running
scripts/mailpile-test.py. For experimenting and testing, the blackbox
test script can be run in an interactive mode:

$./scripts/mailpile-test.py -i

JSON, XML, RSS, …

JSON and XML versions exist for most web-based commands and requests
and most Mailpile functionality is (or will be) accessible over an
HTTP REST-style API.

Please see doc/URLS.md for details.

 [image: Mailpile Wiki & Docs]

Using Mailpile

	Release notes:

	[[Beta III Release, July 2015|Release-Notes-201507-Beta-III]]

	[[Beta II Release, January 2015|Release-Notes-201501-Beta-II]]

	[[Beta Release, September 2014|Release-Notes-201409-Beta]]

	[[Alpha II Release, July 2014|Release-Notes-201406-Alpha-II]]

	[[Alpha Release, January 2014|Release-Notes-201401-Alpha]]

	[[Getting Started]]

	[[Troubleshooting]]

	[[Search Queries]]

	[[Keyboard shortcuts]]

	[[Frequently Asked Questions]]

Developing Mailpile

	[[Getting started for developers]]

	[[Data formats]]

	[[Design documents]]

	[[Themes]]

	[[Ideas]]

	[[Mailpile Internals]]

	[[Development Guide]]

	[[Front End Development Guide]]

	[[Translations]] (i18n/l10n)

	[[Privacy]]

	[[Packaging]]

	[[Security]]

Emerging Protocols & Standards

	[[PasswordRecovery]] using trivial secret sharing

	[[SMTorP]] SMTP over Tor network

	[[Super Contacts]] Auto updating address book

	[[Social Messaging]] Format social media messages & chat

	[[LEAP Integration]]

	Microformats [http://microformats.org] Used in various capacities

 [image: Technical documentation]

We use the Jinja [http://jinja.pocoo.org] template engine.

Most commands/pages/API-endpoints return a variant of the
[[Search Result Json]], which the template must navigate when
rendering.

 [image: Features]

These are random ideas that may or may not make sense. Most of them
were in one way or another inspired by conversations at FSCONS 2011/2012.

Power user features

Done?

	Fast for large amounts of e-mail

	Powerful searching

	Powerful filters

	GPG encryption: mail and/or local data

	Reply all, reply many, forwarding, bouncing

Ideas:

	Sticky search: checked messages stay in the list

	GPG indexing: automatic or manual

	Multiple personalities for composing: name/email/gpg/sig/template

	Personal mailing lists: if UI is public, allow direct unsubscribe

	Schedule messages for sending later

	Built-in web-bug support to know who has read what and when

	Revokable mail: send an URL, display message in browser.

	Multimedia composing

	Collaborative composing

	Google Translate integration

	Ability to drop messages from the search index? (Delete)

	Facebook/Gravatar integration for photos?

	Jabber transport to snag Facebook messages? Facebook app?

	Markdown!

Tahoe-LAFS integration

Once a significant amount of e-mail has been indexed, tagged and sorted,
losing the index becomes a serious problem.

Backing up is the obvious solution (and not necessarily Mailpile’s problem),
but it would be interesting to explore the option of integrating with
Tahoe-LAFS to provide “out of the box” secure distributed storage.

… but it would probably be too slow. An alternative, now that mailpile
knows how to GPG encrypt/decrypt things, is to add unhosted support or
webdav. That might get us Tahoe-LAFS for free anyway?

Remote sources and sync

Mailpile currently recognizes duplicate messages by Message-ID, and assumes
that discovering a duplicate within the same mailbox means the message has
been edited/moved.

It silently ignores duplicates found in other mailboxes, which is probably
not great behavior, instead it should probably track all locations for a
message (update: this has been fixed).

This in turn implies a backup/sync option: Mailpile could enforce a policy
of all messages always existing in multiple mailboxes OR a simpler policy
where one mailbox always mirrors the others.

This in turn leads to questions about versioning, which is a big topic…

Collaboration and access controls

If tags are given an “access control” characteristic, Mailpile’s web
interface could be useful for:

	Collaboration on mail

	Support / Forums

	Instant mailing list archives

	Blogging and comments

RSS integration

Reading mail and reading RSS are really similar. Indexing RSS feeds
would be kinda awesome.

However - once we start indexing other peoples’ content we quickly end
up with an order of magnitude more data and the index-in-RAM strategy
may become untenable. It’s like busy mailing lists, only worse.

Searching other things

It’s a search engine. It could search the web, but more realistically
it might be useful as a super-bookmarking tool which indexes arbitrary
pages on demand. We’d want a mirroring feature to go with this though.

We should be able to index the chat logs from e.g. Pidgin/Purple.

Fighting spam

Training a Bayes filter would ideally be done automatically:

	Replying to a message can be treated as a relatively strong
indicator that a message is not spam - could lead to
auto-whitelisting of the sender.

	Archiving a message or tagging is a weak indicator that a message
is not spam.

	Flagging as spam trains the spam filter.

Do we want to implement the mailer fingerprinter?

PageKite allows us to use the web:

	Folks could submit e-mail using web forms instead of SMTP, where
anti-comment-spam tech can be used to avoid spam.

	Borderline spam could potentially get auto-replies directing
senders to an annoying “prove you are human” form.

Combining Mailpile and PageKite, means mail clients can start talking
to each-other. Could this be useful for fighting spam?

	Marking mail AS SPAM or as NOT SPAM could be shared anonymously
with peers, via. hashes.

	Reputation information could be shared as well. But with friends
only, as it will inevitably leak who you are communicating with?
The benefit is a potential friends-of-friends whitelist for preventing
false-positives and allowing spam filters to be more aggressive.

Packaging

Take a look at sickbeard, sabnzbd, couchpotato for inspiration regarding
packaging.

 [image: Guide]

Mailpile is built around a search engine and before you can read or sort your e-mail, Mailpile has to add it to the local search index. Usually this will happen automatically once you have configured Mailpile with the details of one or more accounts.

However, many power users already have existing e-mail on their hard drives or have specific opinions about how they would like their mail to be processed. If you are one of those users, read on to learn a bit more about how Mailpile processes mail and how you can customize and control the experience.

In this guide:

	What Happens During Indexing?

	When Does Indexing Happen?

	Manually Configuring Mail Sources

	Examining Your Settings

	Creating a New Mail Source

	Changing Settings

	What Settings Exist?

	Examples

	Auto-discover New Local Mailboxes

Important: Low-level configuration tools do not yet exist for the web interface of Mailpile; in order to benefit from this guide you will need to make use of the Mailpile command-line interface. Changing these settings is NOT without risk - you can break your Mailpile if you get things wrong here!

What Happens During Indexing?

Discovering and indexing new mail happens in a few stages.

	Configuration: create mail sources

	Mailbox discovery: apply discovery policies

	Message copying: update local mailboxes

	Message indexing: record metadata and search terms, apply tags

Configuration is accomplished either by using the Add Account wizard, or manually as described in this document. This tells Mailpile to look for mail and what to do with the mail it finds. You will generally create one or more [[mail sources]], each of which describes a remote IMAP or POP3 account or a set of mailboxes already on your local computer.

Mailbox discovery is a process whereby Mailpile will automatically discover which folders exist on an IMAP server or which mailboxes exist in a local directory. This happens periodically, so if a new folder or mailbox is created, Mailpile can automatically react and make that mail available for use. How exactly this happens is decided by the discovery policy of the relevant mail source.

Message copying is the act of downloading mail from a remote server to Mailpile’s (usually encrypted) local mail store. This step may be skipped, but is generally recommended.

Indexing is the final stage, when each e-mail is individually read and added to Mailpile’s index. The metadata index will store things like the date, subject and sender. [[Tags]] will be applied based on global filter rules, auto-tagging, as well as any configuration of the mail source itself. The search index will be updated using keywords extracted from the message header, body and attachments. This stage may involve decrypting the mail or processing large attachments, and may be somewhat resource intensive as a result.

When Does Indexing Happen?

Indexing happens on a per-mail-source basis and each mail source keeps its own schedule depending on the type of mailbox, network connectivity and other factors.

The status of each mail source is recorded in the [[Event Log]]; eventually there should be nice interfaces to browse this data, but for now you can take a look either by visiting /api/0/eventlog/incomplete/ in your browser or by running the eventlog incomplete command at the mailpile> prompt. In the latter case, piping through less is advised:

mailpile> pipe less eventlog incomplete
...

If you are impatient and want a round of indexing to happen right now, you can trigger it using the rescan command:

Rescan everything, not just mail
mailpile> rescan full
...

Rescan only mail sources
mailpile> rescan sources
...

Trigger a rescan of mailbox 000b only
mailpile> rescan mailbox:000b
...

Manually Configuring Mail Sources

Manually configuring mail sources is a large topic, arguably one of the most complex parts of Mailpile.

Examining your Settings

Mail source settings live in two sections of the Mailpile configuration tree; sys.mailbox and sources. You will need to examine both of these structures to get a full understanding of how your Mailpile is configured. An example is presented and discussed below.

First, it’s useful to get a short list of what sources exist:

mailpile> print -flat sources
{
 "sources": {
 "abcdefg": "{ ... }",
 "1234xyz": "{ ..(Local mailboxes).. }",
 "999000x": "{ ..(Personal GMail).. }"
 }
}

Next, let’s examine one in more detail, using less:

mailpile> pipe less print sources.abcdefg
{
 "sources.abcdefg": {
 "name": "Personal GMail",
 "profile": "random-vcard-id-string",
 "enabled": true,
 "host": "imap.gmail.com",
 "interval": 300,
 "keepalive": false,
 "auth_type": "password",
 "username": "user.name@gmail.com"
 "password": "(SUPPRESSED)",
 "port": 993,
 "post_command": "",
 "pre_command": "",
 "protocol": "imap_ssl",

Above we have settings pertaining to the source of mail; this is an IMAP source (GMail) which is linked to a profile (an account). The source checks for new mail every 300 seconds (interval: 300) and disconnects after each batch (keepalive: false).

Next we see the discovery policy. Whenever a new folder is discovered on the IMAP server, an entry is added to the mailboxes section below and it is configured in accordance with this policy. In this case, the default is to apply the policy “unknown” which effectively ignores the new folder:

 "discovery": {
 "apply_tags": {},
 "create_tag": true,
 "guess_tags": true,
 "local_copy": true,
 "parent_tag": "27",
 "paths": {},
 "policy": "unknown",
 "process_new": true,
 "visible_tags": false
 },
 "mailbox": {
 "000w": {
 "apply_tags": {},
 "local": "/home/USER/.local/share/Mailpile/default/mail/12345",
 "name": "MyGmailTag",
 "path": "@000w",
 "policy": "unknown",
 "primary_tag": "Personal GMail/Baronsstigur39",
 "process_new": true
 },

Above we can see an IMAP folder with the id 000w, below is another with the ID 0011. The first is unconfigured (policy: unknown), in accordance with the discovery policy.

The second (the INBOX) has however been manually configured for reading mail, keeping local copies at a specific path, applying both tags 28 and a to all mail, and processing mail as “new”, which means the unread flag will be set if necessary.

 "0011": {
 "apply_tags": {
 "0000": "a"
 },
 "local": "/home/USER/.local/share/Mailpile/default/mail/67890",
 "name": "INBOX",
 "path": "@0011",
 "policy": "read",
 "primary_tag": "28",
 "process_new": true
 }
 }
 }
}

Finally, we can examine some of the resources mentioned in the settings above:

Examine the sys.mailbox entry for the INBOX
mailpile> print sys.mailbox.0011
{
 "sys.mailbox.0011": "src:sdpslfj/INBOX"
}

Examine tag "a":
mailpile> print tags.a
...

Examine the VCard for the linked profile
mailpile> vcard random-vcard-id-string
...

Creating a new Mail Source

You can create a new mail source simply by adding an entry to the sources section. There are many, many ways to do this, but here is a relatively complete example to get you started:

Create a source with the ID "test"
mailpile> set sources.test = {"name": "Testing", "protocol": "local"}
...

Take a look at the result:
mailpile> print sources.test
...

You should probably link this new source with an account, to make sure it behaves “as expected” in the Mailpile user interface:

Create a new account (skipping this step is OK)
mailpile> profiles/add user@example.com = User McTesterson
...

Examine the profile, look for the profile-tag and rid lines:
mailpile> profiles --lines user@example.com
...
19 990.3 x-mailpile-profile-tag: 16 (pref=None)
25 x-mailpile-rid: 9c655ba4912
...
mailpile> set sources.test.profile = 9c655ba4912
...
mailpile> append sources.test.discovery.apply_tags 16
...

You may also want to change the value of sources.test.discovery.local_copy or other discovery settings if you want Mailpile to make copies of the mail or you don’t like the default tag creation policy.

We can now in a single command add and configure a new mailbox:

mailpile> add user@example.com /path/to/file.mbx
...

We could also add an entire folder full of mailboxes all at once:

mailpile> add --recurse user@example.com /home/USER/Mail/

And finally, if we expect new mailboxes to show up in that folder now and then, we could configure auto-discovery:

mailpile> set sources.test.discovery.policy = read
...
mailpile> append sources.test.discovery.paths /home/USER/Mail/
...

Changing Settings

Settings can be examined and changed using the “standard” print and set commands. To revert a setting to its default value, use unset. The command append appends to lists.

Examples:

Disable a mail source temporarily
mailpile> set sources.12345678.enabled = false

Reset the polling interval to its default value
mailpile> unset sources.12345678.interval

Reset the list of discovery paths to the empty set
mailpile> unset sources.12345678.discovery.paths

Append to the discovery path list
mailpile> append sources.12345678.discovery.paths /my/stuff/is/here
...
mailpile> append sources.12345678.discovery.paths /other/stuff/is/her
...

Update an element in the discovery path list
mailpile> set sources.12345678.discovery.paths.1 = /other/stuff/is/HERE
...

See the list of available settings below.

Each of these commands will trigger a save operation, updating the Mailpile config file right away. Careful, there is no undo for settings, short of quitting the app, visiting the Mailpile data directory and replacing the current config with one of the backup files.

What Settings Exist?

Note: See the previous section for examples of the correct syntax for changing a setting. What follows is a relatively dense reference.

General settings

name: The name of this mail source (used in the user interface).

profile: The profile (or account) which this mail source belongs to.

protocol: One of local, imap, imap_ssl, imap_tls, pop3, pop3_ssl. The protocols ending in _ssl assume the use of a “secure socket layer” connect wrapping the entire connection, the _tls ending means the STARTSSL protocol extension should be used. IMPORTANT: Changing from a remote protocol to local (or vice versa) is not supported and may cause unpredictable behaviour!

interval: Seconds of waiting between checking for new mail.

keepalive: true or false, controls whether Mailpile disconnects from the remote server or not after each check for new mail. Note that some servers, GMail in particular or old POP3 servers, will behave badly if this is false.

username, password: User credentials for logging in to remote servers (IMAP, POP3).

auth_type: Authentication type, currently only password is implemented.

host, port: Connection details for remote servers (IMAP, POP3).

pre_command, post_command: Not yet implemented

Discovery Policy Settings

The discovery policy controls both where Mailpile looks for new mailboxes and how they are configured when they are found. As a result many of the settings are simply inherited by new mailbox entries and their meaning is explained in the next section.

paths: A list of paths to check for new mailboxes, may be empty.

policy: One of unknown, ignore, read, watch, move and sync. See per-mailbox settings.

local_copy: true or false; determines whether new mailboxes are configured for making local copies or not.

parent_tag: The Tag-ID of a tag to use as parent of all per-mailbox tags. Set to “!CREATE” to have Mailpile create a new tag when needed (this is the default).

guess_tags: true or false; Enable or disable Mailpile’s heuristics to guess whether a discovered mailbox is a known type of mailbox such as spam, drafts or inbox.

create_tag: true or false; Determine whether each new mailbox is assigned a dedicated tag automatically. Without this it is not easy to browse individual mailboxes using the Mailpile UI; rather than disabling this it is better to use the visible_tags setting to hide them if you want to avoid clutter.

visible_tags: true or false; Determine whether per-mailbox tags should be visible in the sidebar by default or not.

process_new: true or false; See per-mailbox settings.

apply_tags: A list of Tag-IDs; See per-mailbox settings.

Per-Mailbox settings

name: The name of this mailbox.

path: A path identifier for this mailbox (usually the ID in the sys.mailbox table).

policy: One of unknown, ignore, read, watch, move and sync. Both unknown and ignore do the same thing (nothing), but unknown may be a trigger for notifications in the user interface that user attention is needed. The read policy is used to read the contents of this mailbox and add to the index. Other options are currently unimplemented.

local: Path to a local mailbox. If this is set, it implies that local copies (Mailpile internal, usually encrypted) should be made.

process_new: true or false; Determine whether Mailpile should treat newly discovered e-mail as “new” by default or not. Use this for incoming mail spools, disable if the mailbox is an archive of old mail.

primary_tag: The Tag-ID of a tag representing this mailbox.

apply_tags: A list of other Tag-IDs, all of which will be applied to all new messages as they are discovered. This is commonly used to merge the contents of a mail spool into the shared Inbox. This list is often empty.

Examples

Auto-discover New Local Mailboxes

This is what a configuration similar to the one described above looks like when complete. It will discover new mailboxes (in mbox or Maildir format) automatically.

(Default values that do not matter have been omitted for brevity.)

"sources.test": {
 "name": "Testing",
 "enabled": true,
 "interval": 300,
 "protocol": "local",
 "profile": "299af055371",
 "discovery": {
 "apply_tags": {
 "0000": "1z"
 },
 "create_tag": true,
 "guess_tags": true,
 "local_copy": false,
 "parent_tag": "20",
 "paths": {
 "0000": "/home/USER/Mail/"
 },
 "policy": "read",
 "process_new": true,
 "visible_tags": false
 },
 "mailbox": {
 "000q": {
 "apply_tags": {
 "0000": "1z"
 },
 "local": "",
 "name": "mailpile-1407513984.mbx",
 "path": "@000q",
 "policy": "read",
 "primary_tag": "21",
 "process_new": true
 }
 }
}

Please feel free to edit and add your own configuration examples here!

 [image: Technical documentation]

See the URLs list [https://github.com/pagekite/Mailpile/wiki/URLS] for details.

 [image: Guide]

Mailpile has built in keyboard shortcuts. We use keychains, so sometimes multi-key combos will get you results you’re looking for.

To get help about the available keyboard shortcuts, press ? on your keyboard from the Mailpile web interface.

 [image: Technical documentation]

	https://github.com/pixelated-team/mailpile-leap-adapter

Installing Packages

Install the current versions of the packages DNSMASQ, IPTables-Persistent and TOR on your Linux distribution.

Configuring

TOR

/etc/tor/torrc

Configure TOR Hidden-Service for mail# See https://www.torproject.org/docs/tor-hidden-service.html.enHiddenServiceDir /var/lib/tor/mail/

SMTPDHiddenServicePort 25 127.0.0.1:25HiddenServicePort 25 [:::1]:25

WebmailHiddenServicePort 80 127.0.0.1:80HiddenServicePort 80 [:::1]:80

Configure transparent proxying# See https://trac.torproject.org/projects/tor/wiki/doc/TransparentProxyVirtualAddrNetworkIPv4 10.192.0.0/10VirtualAddrNetworkIPv6 [FC00::0]/7TransPort 127.0.0.1:9040TransPort [::1]:9040DNSPort 127.0.0.1:54DNSPort [::1]:54AutomapHostsSuffixes .AutomapHostsOnResolve 1

IPTables transparent proxying via TOR

See https://trac.torproject.org/projects/tor/wiki/doc/TransparentProxyiptables -t filter -A INPUT -p tcp --dport 9040 -j ACCEPTip6tables -t filter -A INPUT -p tcp --dport 9040 -j ACCEPTiptables -t nat -A PREROUTING -p tcp -d 10.192.0.0/10 -j REDIRECT --to-port 9040ip6tables -t nat -A PREROUTING -p tcp -d fc00::/7 -j REDIRECT --to-port 9040iptables -t nat -A OUTPUT -p tcp -d 10.192.0.0/10 -j REDIRECT --to-port 9040ip6tables -t nat -A OUTPUT -p tcp - d fc00::/7 -j REDIRECT --to-port 9040iptables-save > /etc/iptables/rules.v4ip6tables-save > /etc/iptables/rules.v6

DNSMASQ

See http://www.thekelleys.org.uk/dnsmasq/docs/dnsmasq-man.html

/etc/dnsmasq.d/tor

Map TOR specific Top-Level-Domains to TOR DNS resolverserver=/exit/127.0.0.1#54server=/onion/127.0.0.1#54

/etc/dnsmasq.d/dnssec

Enable DNSSEC validationdnssectrust-anchor=.,19036,8,2,49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5dnssec-check-unsigned

Mail-Transport-Agent

Mailpile

Configure Mailpile to listen on 127.0.0.1:25 and [:::1]:25 with the hostname from /var/lib/tor/mail/hostname. Disable TLS (Transport-Layer-Security) on that ports. Mailpile MUST use DNSMASQ for DNS-queries. Mailpile MUST ignore all non-.onion-TLDs in the data field of the MX-records to ensure transport via TOR.

Primary DNS-Server of mail-domain

Configure the Hidden-Service hostname from /var/lib/tor/mail/hostname as Primary MX-record of the mail-domain.

@ 3600 IN MX 10 <hidden-service>.onion.@ 3600 IN MX 20 <hidden-service><hidden-service> 3600 IN AAAA <IPv6-address of clearnet2TOR gateway><hidden-service> 3600 IN A <IPv4-address of clearnet2TOR gateway>

Safety

	Protect the mail-domain zone with DNSSEC to prevent manipulation of DNS-records.

	Backup the TOR Hidden-Service private key from /var/lib/tor/mail/private_key.

	If it is lost the Hidden-Service hostname is lost!

	If it is compromised someone can set up a TOR Hidden-Service with your hostname!

	DNSMASQ leaks DNS-queries!

 [image: Technical documentation]

Mail sources

Mailpile’s Mail Sources take care of importing mail into Mailpile’s local storage and adding to the index. Mail sources can represent remote servers (IMAP, POP3, …) or local sources such as a Thunderbird installation or Unix mail spool.

Eventually mail sources will also be able to synchronize changes back, e.g. for keeping a remote IMAP server in sync with Mailpile’s internal state.

NOTE: A more detailed guide can be found here: [[Indexing-Mail]]

Architecture

Each configured Mail Source gets a dedicated thread, which implements its own schedule for updates. The updates are twofold:

	Discovery and processing of new mailboxes (or folders) containing email

	Discovery and processing of new email messages

(Later implementations may add a 3rd stage, which synchronizes local changes back to the remote source.)

In order to prevent mail source activity from overloading the app’s responsiveness, all mail sources will attempt to acquire the GLOBAL_RESCAN_LOCK before performing any intensive operations (so we only ever have one mail source update active at any given time), and all mail sources are expected to periodically invoke play_nice_with_threads() to release the GIL.

Events communicate their internal state to the UI and the rest of the app by using the [[Event Log]] mechanism. The Mail Source specific data sections are explained in [[Events of Note]].

Supported source types

As of 2014-07-30, the following mail sources have been implemented:

	local folder containing mbox files

	local folder containint Maildirs (e.g. a nested Maildir)

	remote IMAP4rev1 servers

Expected by Mailpile 1.0:

	Mac Mail.app

	POP3

Configuration

Note: This section describes the mail source configuration as of 2014-07-30, please consult the definition in mailpile/defaults.py if any time has passed.

Mail source configurations are part of the larger Mailpile configuration tree. Each mail source is a named dictionary (object in javascript lingo) under sources. So typical CLI references to mail source attributes might look like so sources.imap.name or sources.mygmail.discovery.

Below is the current mail source spec. The bottom of this section has some real-life examples of correctly configured mail sources.

 'name': (_('Source name'), str, ''),
 'protocol': (_('Mailbox protocol or format'),
 ["mbox", "maildir", "macmaildir", "gmvault",
 "imap", "imap_ssl", "pop3"],
 ''),
 'pre_command': (_('Shell command run before syncing'), str, ''),
 'post_command': (_('Shell command run after syncing'), str, ''),
 'interval': (_('How frequently to check for mail'), int, 300),
 'username': (_('User name'), str, ''),
 'password': (_('Password'), str, ''),
 'host': (_('Host'), str, ''),
 'port': (_('Port'), int, 993),

The above values are the global settings for this source, specifying what kind of mail source it is and details such as access credentials.

The next section defines the “discovery policy”, defining how Mailpile searches for new mailboxes or folders, and what it does when it finds one:

 'discovery': (_('Mailbox discovery policy'), False, {
 'paths': (_('Paths to watch for new mailboxes'), str, []),
 'policy': (_('Default mailbox policy'),
 ['unknown', 'ignore', 'watch',
 'read', 'move', 'sync'], 'unknown'),
 'local_copy': (_('Copy mail to a local mailbox?'), bool, False),
 'create_tag': (_('Create a tag for each mailbox?'), bool, True),
 'process_new': (_('Is a potential source of new mail'), bool, True),
 'apply_tags': (_('Tags applied to messages'), str, []),
 }),

The above discovery policy will be used to auto-create mailbox entries, as describe in the final section.

Usually, the discovery policy should be set to unknown, so new mailboxes will be analyzed but no action taken until the user has confirmed the proposed configuration.

 'mailbox': (_('Mailboxes'), {
 'path': (_('Mailbox source path'), str, ''),
 'policy': (_('Mailbox policy'),
 ['unknown', 'ignore', 'read', 'move', 'sync'],
 'ignore'),
 'local': (_('Local mailbox path'), str, ''),
 'process_new': (_('Will mark new mail as new'), bool, True),
 'primary_tag': (_('A tag representing this mailbox'), str, ''),
 'apply_tags': (_('Tags applied to messages'), str, []),
 }, {})

Examples

(TO BE WRITTEN)

 [image: Technical documentation]

Adding Mailboxes

Note: The primary way to do this, is to use the Browse tool
from the Accounts (Home) page in the app. If you would rather do it by
hand on the CLI, see below.

	Add mailbox mailpile> add your@account.com /path/to/your/something.mbox

This will add the mailbox to your Pile, associating it with the specified
account (which should already exist).

Once that is done importing the new mailbox you just added, you may want
to apply some tags. Do that by the following commands

	Add the tag “Custom Tag” mailpile> tags/add "Custom Tag"

	Search for that mailbox mailpile> search mailbox:something.mbox

	Tag that search with “Custom Tag” mailpile> tag +custom-tag all

There you go, now that mail will show up in your Mailpile under the
new tag.

Deleting Mailboxes

Currently to make entire mailboxes disappear is a bit of a hack:

Deleting mailbox content (mails)

	Search for that mailbox mailpile> search mailbox:something.mbox

	Tag that search as Trash mailpile> tag -inbox +trash all

Deleting the mailbox itself

	Find the ID of the mailbox mailpile> print sys.mailbox

	Replace the mailbox path: mailpile> set sys.mailbox.1234 = /dev/null

(Replace 1234 in step 4, with the ID found in step 3.)

 [image: Technical documentation]

Searching is all about disk seeks.

Mailpile tries to keep seeks to a minimum: any single-keyword search can
be answered by opening and parsing one relatively small file, which should
take on the order of 200-400ms, depending on your filesystem and hard
drive. Repeated searches or searches for closely related keywords will be
up to 10x faster, due to help from the OS cache.

This includes the time it takes to render the list of results.

This level of performance is possible, because all the metadata about the
messages themselves is kept in RAM. This may seem extravagant, but on
modern computers you can actually handle massive amounts of e-mail this way.

Mailpile stores in RAM about 180 bytes of metadata per message (actual size
depends largely on the size of various headers), but Python overhead brings
that to about 250B. This means handling a million messages should consume
about 250MB of RAM - not too bad if you consider how much memory your
browser (or desktop e-mail client) eats up. Also, who has a million
e-mails? :-)

(Caveat: Really common terms will take longer due to the size of the result
set - but searching for really common terms won’t give good results anyway.)

 [image: Technical documentation]

The Mailpile Analytics Reporting System (MARS), reports back usage in an anonymized, nontrackable way. This provides us with some kind of idea of how many users Mailpile has, which version of the software they use and what language they speak. This can help us with Mailpile’s fund-raising and promotion, as well as just generally making it easier to gauge our impact and make reasonable assumptions about where to focus our development activities.

Having this kind of information is useful, but we want to be very sure that were not violating people’s privacy by doing this kind of collection. We can do this by collecting very small amounts of information that is not personally identifiable, but is sufficient to give us some kind of ideas of where we stand. As a design guideline, we want to achieve a similar level of anonymity as Tor does with its CollecTor system.

We want to know:

	How many people are using Mailpile

	The Mailpile version number

	The platform Mailpile runs on (operating system and Python version)

We do not want to know, or even be able to find out:

	The user’s IP address

	The user’s name, e-mail addresses, or other personal details

	The user’s exact geographic location

	Any information about the user’s Mailpile setup

Implementation

The Code

The main code for MARS data submission is in: mailpile/plugins/motd.py [https://github.com/mailpile/Mailpile/blob/master/mailpile/plugins/motd.py]

Collecting information

The metrics we would like to collect overlap almost perfectly with how we would like to target announcements to different groups of users; for example there is little or no reason to inform macOS users about a security vulnerability which is specific to Linux, nor to bother Linux users with the information that new Windows packages are available for download.

This insight has led to the current implementation of MARS piggy-backing upon Mailpile’s Message Of The Day (MOTD), which is how Mailpile downloads information about whether upgrades are available, or whether there is any critical news from the development team to the users of the software (such as warnings about software vulnerabilities).

The Message Of The Day is a simple JSON file, which is available from the following URLs:

	https://www.mailpile.is/motd/latest/motd.json

	https://www.mailpile.is/motd/[VERSION]-[OS]/motd.json

The first URL allows MOTD updates which carry no MARS information at all. The second allows more targeted announcements and allows the required metrics to be extracted from the web server logs. Additional variables for tracking (the Python version and the active language) may be appended to the URL using the query-string.

The MOTD system checks for updates roughly once per day, which gives MARS a lower bound for daily active users of the software.

Which URL is used is configurable via the prefs.motd_url setting; the user interface should allow the user to opt in (or out) of MARS entirely, or potentially omitting individual variables as they prefer. Setting this variable to an empty string or a local file can be used to disable the feature entirely (or repurpose for local needs).

Avoiding collection of user data

Most of the data we wish to avoid collecting is afforded basic protection by simply not baking that information into the MOTD/MARS protocol.

The exception to this is the IP address is the only concern; it may indirectly reveal the user’s location and worse, it facilitates tracking and correlation with other data sources, potentially leaking other information.

We therefore will make MOTD/MARS updates use Tor by default whenever possible, and that the updates be made opt-in when Tor is unavailable.

Processing the data

Data will be processed by analyzing the Mailpile site’s web server logs. Further details are TBD, see issue #721.

Future Improvements

Allowing the user to voluntarily disclose a (rough) geographic location would be useful for Mailpile marketing and planning.

Certain metrics about how Mailpile is being used (with or without encryption, most popular e-mail providers) might also have value, but will need careful assessment.

As a rule any such additions must be opt-in, not opt-out and not part of the recommended defaults.

Original Proposal

Note: The original proposal for the Mailpile Analytics Reporting System is below. The actual implementation differs slightly (is simpler), but the original proposal is reproduced in its entirety below for posterity.

This is a proposal for a Mailpile Analytics Reporting System, which reports back usage in an anonymized, nontrackable way. This provides us with some kind of idea of how many users Mailpile has and where, roughly, they are. This can help us with Mailpile’s fundraising and promotion, as well as just generally making it easier to gauge our impact and make reasonable assumptions about where to focus our development acivities. Having this kind of information is useful, but we want to be very sure that were not violating people’s privacy by doing this kind of collection. We can do this by collecting very small amounts of information that is not personally identifiable, but is sufficient to give us some kind of ideas of where we stand. As a design guideline, we want to acheive a similar level of anonymity as Tor does with its CollecTor system.

We want to know:

	How many people are using Mailpile

	Rough bucketed information about where they are

	An estimation of whether they are continuous users or new users

	The Mailpile version number

We do not want to know, or even be able to find out:

	The user’s IP address

	The user’s name, e-mail addresses, or other personal details

	The user’s exact geographic location

	Any information about the user’s Mailpile setup

Setup

On setup, Mailpile stores information about its creation datetime.

This can at any time be changed by the user in order to alter her reporting identity. This should not be valuable to users in practice though, as the reporting data is not very granular.

Reporting

On a random interval of between 3 and 10 days, Mailpile will connect to a Tor hidden service operated by the Mailpile Team. It is a hidden service to guarantee that it cannot be accessed without using the Tor network, and to reduce the ability of Exit nodes to harvest raw data or expose user identities.

To this service, it will send a data structure containing the following:

	round(log10(install_age))

	The country code as determined by GeoIP’s Geolite2.

	Mailpile’s version number

A HTTP GET request is made:
http://tracker/?ia=100&cc=IS&v=0.1.5

The response is a PGP signed JSON structure which can tell the user useful stuff, such as news from us, info about available updates, and other helpful things the team may want to communicate to users. May as well use the request if we’re generating traffic.

This structure will contain certain fixed fields, but also a optional fields which will be specified later.

{
 "reportback_next": 0,
 "reportback_server": "https://xxxxxxxxx.onion",
 "news": "",
 "newest_version": "0.1.0",
}

	reportback_next: Number of seconds until next reportback. Clients should add up to 3 days of randomness to this value.

	reportback_server: The server to report to next.

	news: Textual updates from Mailpile Team.

	newest_version: The newest released version of Mailpile.

Well, if we have a billion users, according to the default 3-10 day window, we’re expecting about 1653 requests per second. I think if we ever get to the point where we have a billion users we can handle that rate, but the reportback_next option allows us to space that out more if necessary.

Display

Mailpile operates an analytics.mailpile.is website, which displays usage graphs and other data. It floors reported data to the closest 10, so as not to show that Mailpile usage in certain countries is lower than 10, as this may expose social graph information. Obviously the flaw here is that Mailpile is actually receiving more granular data than is being displayed, but not by much.

Draft implementation

	Draft implementation available at https://github.com/mailpile/analytics

 [image: Technical documentation]

Please refer to [[Configuring mailpile]] for an easy guide to Mailpile configuration.

Once you’ve got Mailpile running on your machine, do the following:

	Point your web browser at http://localhost:33411

	Use the GUI installer that you see from accessing the above URL

A non-web-based setup procedure is in the works. Currently there are too many moving parts and too much of the code is under development to document the entire procedure.

Running from an alternative config directory

By default, Mailpile reads its config from .local/share/Mailpile/ (Or ~/.mailpile in previous versions, which presence will still be tested for backward compatibility).

You can override this by setting the $MAILPILE_HOME environment variable, for example:

$ export MAILPILE_HOME=/home/user/.config/mailpile

or for a single run:

$ MAILPILE_HOME=/home/user/.mailpile-alternative ./mp

 [image: Technical documentation]

Mork is perhaps the most insane file format ever invented. That’s saying a lot [http://origin.arstechnica.com/news.media/200/ooxml_2.jpg]. It’s used in Thunderbird and some other applications as a datastore, often for contacts. In Thunderbird, your two address books (managed addresses + collected addresses) is typically available in ~/.(thunderbird|icedove)/*.default/(abook|history).mab

Our importer is based on Demork by Mike Hoye, which in turn is based on Mindy by Kumaran Santhanam.

To understand the insanity that is Mork, read these:

	http://www-archive.mozilla.org/mailnews/arch/mork/primer.txt

	http://www.jwz.org/blog/2004/03/when-the-database-worms-eat-into-your-brain/

 [image: Technical documentation]

PGP import commands all return four items in the result structure:

	results: a statistical overview of what happened

	failed: details about keys which failed to be imported

	updated: details about keys which were updated (as they previously existed in the keyring)

	imported: details about keys which were imported as new

Results

Most of these statistics are not useful in most cases but may be of interest in edge cases. They are mostly included for completeness, since we get these statistics anyway from the GnuPG result.

{
 "count": 2,
 "imported": 0,
 "imported_rsa": 0,
 "no_userids": 0,
 "not_imported": 0,
 "num_revoked": 0,
 "num_signatures": 0,
 "num_subkeys": 0,
 "num_uids": 0,
 "sec_dups": 0,
 "sec_imported": 0,
 "sec_read": 0,
 "skipped_new_keys": 0,
 "unchanged": 2
}

	count: How many keys were processed

	imported: How many keys were imported as new

	imported_rsa: How many of the newly imported keys were RSA keys

	no_userids: Number of keys without a User ID

	not_imported: Number of keys specifically not imported

	num_revoked: Number of keys that were revoked through the action

	num_signatures: Number of new signatures seen

	num_subkeys: Number of new subkeys seen

	num_uids: Number of User ID’s imported

	sec_dups: Private key duplicates seen

	sec_imported: Private keys imported

	sec_read: Private keys processed

	skipped_new_keys: New keys which were ignored

	unchanged: How many keys were left unchanged

Imported, Updated

Imported and updated contain lists of details, where each entry is like so:

 {
 "details": 0,
 "details_text": "unchanged",
 "fingerprint": "B2216FD2779AE5B59D79743CD5DC2A79C2E4AE92"
 }

details_text contains a rough description of what happened. fingerprint contains the key’s fingerprint.

The details field conforms to the details field in GnuPG’s IMPORT_OK status [https://gitorious.org/gnupg/mainline/source/927377bc91288d121a7d8bdbb3c32d8fc728e9fb:doc/DETAILS], which is an integer field comprised of these values OR’d together:

	0 : Not actually changed

	1 : Entirely new key.

	2 : New user IDs

	4 : New signatures

	8 : New subkeys

	16 : Contains private key.

Failed

The failed structure is very similar to the Updated/Imported structure, but the details field is different, conforming to GnuPG’s IMPORT_PROBLEM status [https://gitorious.org/gnupg/mainline/source/927377bc91288d121a7d8bdbb3c32d8fc728e9fb:doc/DETAILS]:

	0 : No specific reason given.

	1 : Invalid Certificate.

	2 : Issuer Certificate missing.

	3 : Certificate Chain too long.

	4 : Error storing certificate.

 [image: Technical documentation]

	[[Debian packaging]]

	[[Windows packaging]]

	[[MacOS packaging]]

Abstract

NOTE: WORK IN PROGRESS!

This document proposes a protocol for decentralized passphrase and password recovery.

Discussion

One of the most common failures in PGP key management is loss of the passphrase.

In many common configurations, a strong passphrase is used to protect the private key material: the user is asked to cleverly create an unguessable passphrase and then commit it to memory. In general a longer and more complex passphrase is considered more secure, but unfortunately such passphrases are also more easily forgotten.

This problem is a special case of the general problem of passwords and memory, but is exacerbated by the unforgiving nature of strong cryptography in general and the culture around PGP in particular:

	PGP keys have no “password reset” mechanism

	PGP passphrases are often considered “too important” to entrust them to keychain managers or hard copies

	Forgetting a passphrase is equivalent to losing a key, which is equivalent to losing all the data that has ever been encrypted to that key - no matter how diligent the user has been about making backups.

To put it another way: the high value placed on PGP keys inevitably implies that the cost of losing a passphrase is also very high.

Although some high-risk users explicitly need their passphrase to be only ever committed to human memory, there is a significant number of users whose need to avoid data-loss greatly outweighs the potential risk recoverable passphrases might pose to confidentiality of their data.

(Aside: The PGP community has traditionally focused exclusively on the former case, which may be an overlooked factor contributing to the low adoption of PGP by the wider public - backups are important! In a parallel universe where the community recognizes this, people might organize recovery code swapping parties in place of key-signing parties…)

Tankred Hase of Whiteout has proposed an elegant use of IMAP as a key synchronization channel [https://github.com/whiteout-io/mail-html5/wiki/Secure-OpenPGP-Key-Pair-Synchronization-via-IMAP], which Mailpile will adopt, not only to facilitate synchronization, but also to guarantee an off-site backup of the user’s key material. This greatly reduces the risk of catastrophic data loss, but the problem of the passphrase getting lost or forgotten remains.

This document describes a decentralized protocol for implementing secure passphrase recovery using Trivial Secret Sharing [https://en.wikipedia.org/wiki/Secret_sharing#Trivial_secret_sharing].

Previous work

Mailpile’s initial attempt at solving the problem was to admonish users to print out and keep safe a hard-copy of their passphrase.

Although Mailpile has so far only been used by a small number of technically skilled users, this “nagging” was almost universally ignored. One of the most common questions from our Alpha and Beta programs was “how do I reset my passphrase?”, which does not bode well for the technique if the software is adopted by a wider, less technical audience.

Generic Protocol

Passphrase recovery can be made possible by employing a Secret Sharing [https://en.wikipedia.org/wiki/Secret_sharing] algorithm to generate a set of N recovery codes. These recovery codes will have the property that each of them is worthless on its own, but any subset of M codes (for a fixed M, where 1 < M <= N) may be recombined to reconstruct the original passphrase.

The recovery protocol therefore has the following preparation steps:

	Choose numbers N and M

	Generate N recovery codes

	Store each recovery code in a different location

Recovery of the passphrase is then accomplished by:

	Fetching at least M recovery codes from storage

	Recombining the recovery codes to reconstruct the lost passphrase

The key to this approach is each individual storage node does not need to be trusted, the security of the protocol can be improved even by adding untrusted nodes. It should be possible to choose a diverse enough set of nodes to thwart most attacks, including attempts by the nodes themselves to collude against the user.

Mailpile’s Proposed Implementation

Mailpile will invite the user to enable passphrase recovery once a certain threshold of app use has been passed; metrics to track include progress configuring accounts and keys, volume of e-mail downloaded or sent, number of custom tags created. In short, once it appears the user has invested time and effort into using their Mailpile, they should be prompted to take steps to protect that investment by enabling backups and key/passphrase recovery.

When recovery is enabled, the following locations will be chosen as recovery code storage nodes:

	The folder containing the key itself ($GNUPGHOME or $MAILPILE_HOME)

	All configured IMAP accounts

	The e-mail addresses of at least two frequent correspondents (the user may choose)

	An optional hard-copy printout

Recovery codes will be constructed in such a way as to require an answer from all-but-one of the correspondents and all-but-one of the IMAP servers (assuming there is more than one available). With the exception of managing the optional hard-copy, distribution of recovery codes can be fully automated.

Implementation notes:

	The implementation must take care when correspondents are chosen, and attempt to avoid accounts hosted with the same providers as the user’s own IMAP accounts (this can be ascertained with moderate confidence by using DNS MX-record lookups).

	Mailpile should not keep a local record of the codes themselves or which correspondents received recovery codes, but if a hard-copy is made their names and addresses will be listed there.

	Recovery codes sent by mail should be placed in attachments, so replies do not accidentally leak the codes via quoted content.

Note: Work in progress… this is unfinished and uncoded!

Implementing Rationale

This section will explore in detail the practical considerations of implementing this protocol which resulted in the above strategy.

Algorithm Choice

In this document we propose using the Trivial Secret Sharing algorithm which is based on generating random bit-strings and using the XOR operation to combine them into recovery sets.

The main downside to this approach is each recovery code will be a multiple of the size of the original passphrase. For a value of M = N-1, the size is multiplied by N, for many lower values of M the ratio gets even worse (look, a calculator [http://www.numberempire.com/combinatorialcalculator.php]). Other secret sharing algorithms exist which offer smaller recovery codes, but the math quickly gets more complicated which adds unwelcome complexity to the implementation.

Choosing Storage Locations

The strength (or weakness) of this protocol is largely dependent on how well the storage locations for the recovery codes are chosen:

	The fewer the locations (smaller M), the easier it is for an attacker to assemble all the recovery codes

	The more locations are chosen (larger M), the harder it may be for the user to access enough of them to perform a successful recovery

	Availability of the storage locations matters (affects M/N ratio)

	The channels used to transmit the recovery codes to and from their storage locations, should be as diverse as the locations themselves

	If storage locations are kept secret, they may be forgotten

	If storage locations are not kept secret, attacks and collusion are made easier

	Manual work during recovery is more acceptable than manual work during the preparation phase, otherwise the preparation phase might never be completed

There are a few potential storage locations considered in this document:

	The user’s brain

	The user’s own computer

	The user’s external media

	The user’s IMAP accounts

	Hard-copy printouts

	Friends’ and colleagues’ computers

	Friends’ e-mail inboxes

As a special case; the physical media where the key material itself resides should always be one of the N storage locations. The key material needs to be stored somewhere; not storing one of the recovery codes alongside it would lower M needlessly.

The case of losing the recovery code which is stored alongside the key itself need not be taken into account when generating recovery sets, thus reducing overhead somewhat.

Storage: The user’s brain

As the recovery codes will be at least as long as the original passphrase (probably much longer), this is not feasible. If the user could remember the recovery code, they could remember the passphrase itself.

That said, using an extremely weak secret (a “security question”) to encrypt one of the recovery codes may still have value in scenarios where not many storage locations are available.

Storage: The user’s computer

As mentioned above, one of the recovery codes should be stored alongside the secret key material itself. In most cases, that is the user’s computer. So this location is already spoken for.

Storage: The user’s external media

USB sticks, external hard drives or other computers are reasonable storage locations, as long as the user keeps them separate from their main machine.

Downsides: This implies manual effort during the preparation phase. Hardware malfunctions and gets lost.

Storage: The user’s IMAP accounts

This appears to be one of the best storage locations available to most users. Many users have multiple e-mail accounts on geographically and administratively different computer systems. These servers have good availability and are professionally maintained. Preparation and recovery can be fully automated.

Spreading recovery codes over multiple IMAP servers seems like a generally good strategy.

Downsides: If a full set of M recovery codes resides on IMAP servers, it is very likely that a compromise of the device the user uses to read e-mail will grant access to all M codes at once. Individual IMAP servers are vulnerable to coercion, insiders and technical attacks.

Storage: Hard-copy printouts

Most people know how to keep small, valuable pieces of paper safe. As such, hard-copy printouts are suitable storage locations for recovery codes.

A hard copy is also a suitable place to print recovery instructions, including a list of which storage nodes are in use for a given secret.

Downsides: Manual labour during preparation. Recovery may be tedious and error prone for complex recovery codes.

Note: This is a sufficiently onerous procedure for most users (making a hard copy and placing it in safe storage) that it may be better use of the effort involved to treat hard copies as full backups rather than single nodes of a shared scheme.

Storage: Friends’ and colleagues’ computers

Devices belonging to friends, relatives and colleagues share all the same benefits as the user’s own devices, but improve security by adding diversity.

Downsides: Even more manual setup work and less convenience than the user’s own hardware.

Storage: Friends’ e-mail inboxes

Sending e-mail containing recovery codes to friends, relatives and colleagues shares the same security and setup benefits as the user’s own IMAP account, without suffering from the same “single point of access” vulnerability.

Downsides: Recovery requires asking for help and remembering who to ask! Choosing who to rely on may be difficult. Although automatable, is easy to make mistakes; friends must be chosen who do not use the same e-mail infrastructure, the sent messages must not be kept anywhere local (drafts, outbox, sent, …) and the messages may be at risk of interception during transit - to name just a few potential pitfalls.

 [image: Features]

Platform	Works?	Notes	Reported by
——————	——	—–	———–
Ubuntu Linux 12.04	Yes		Mailpile team
Raspbian wheezy	Yes		busla [https://github.com/busla]
Debian 7 Wheezy	Yes		lazlo [https://github.com/lazlolazlolazlo]
NixOS [http://nixos.org]	Yes		iElectric [https://github.com/iElectric]
Linux Mint 17	Yes		Videl [https://github.com/Videl]
Arch Linux	Yes		Foxboron [https://github.com/Foxboron]

 [image: Technical documentation]

There are demos of the plugin API in mailpile/plugins/demos.py

If you want to know which plugins are currently registered, do print sys.plugins from the textmode UI. To add a plugin, do append sys.plugins <name>.

Command plugin hooks

You can add arbitrary commands to Mailpile. See [[Command plugins]]

	mailpile.plugins.register_commands(*plugins) - plugins is a list of one or more subclass of Command.

An example command plugin:

class MyCommand(Command):
 """Do some very fun action"""
 ORDER = ('', 0) # The command's order in the "help" output
 # The first value in SYNOPSIS would be a shortform version, and
 # the last contains a description of the paramters the function takes.
 SYNOPSIS = (None, 'textui_commandname', 'webui_commandname', '')
 HTTP_CALLABLE = ('GET',) # Can be "GET", "POST", "PUT",... or empty for no HTTP interaction
 HTTP_QUERY_VARS = {'q': 'search terms'} # A documented list of query variables taken

 class CommandResult(Command.CommandResult):
 def as_text(self):
 # Overload the text printout. Also: as_json, as_html, ...
 return "...".join(self.result)

 def command(self):
 args = self.args[:] # The arguments of the function
 for q in self.data.get('q', []): # self.data contains HTTP query args
 args.extend(q.split())

 # ... do something ...
 # Return some kind of JSON-serializable data structure...
 return {}

Configuration plugin hooks

See [[Extending Maipile’s Configuration]] and [[Configuring Mailpile]].

	mailpile.plugins.register_config_variables(*args)

	mailpile.plugins.register_config_section(*args)

Search engine plugins hooks

See [[Search engine plugins]]

	mailpile.plugins.register_search_term(term, handler) - handler is a function that manages the search term.

	mailpile.plugins.register_data_kw_extractor(term, function)

	mailpile.plugins.register_text_kw_extractor(term, function)

	mailpile.plugins.register_meta_kw_extractor(term, function)

Contact plugin hooks

The internal contacts manager stores everything internally as VCards. It supports the addition of importers and exporters to populate the VCard store, and context providers which provide the contact manager with ephemeral data relating to the contact that is expected to change over time. See [[Contact plugins]]

	mailpile.plugins.register_contact_importer(importer) - importer is subclass of ContactImporter.

	mailpile.plugins.register_contact_exporter(exporter) - exporter is subclass of ContactExporter.

	mailpile.plugins.register_contact_context_provider(provider) - provider is subclass of ContactContextProvider.

Job plugin hooks

Needs documenting.

 [image: Technical documentation]

THIS IS A WORK IN PROGRESS, PLEASE ADD COMMENTS IF ANYTHING IS UNCLEAR - … or clarify, of course

The new Mailpile plugin architecture allows you to create and install plugin packages that live outside the Mailpile source tree. This allows you to extend the functionality of Mailpile in a lot of ways. This documentation is intended to help you get started with the creation of Mailpile plugins, but we also suggest looking at the demo plugins shipped with Mailpile in plugins/demos/.

Getting started

When you decide to make a plugin, you will normally have some functionality in mind. It could be expanding on any number of Mailpile’s features or providing entirely new features. For instance, a plugin might add a new way to visualize your inbox, or support importing contacts from a new type of file format or online service. It could also add support for a calendar, instant messaging, or something else entirely new to Mailpile. The sky is not the limit!

The first thing to do is to make a directory for your plugin plugins/my-awesome-plugin or copy our demos folder and rename it. Then start poking around. Most things should become clear, for everything else, read on…

Plugin layout

A plugin lives in a folder and contains at minimum a manifest.json file containing a valid JSON manifest. If this file does not exist, the folder is not considered to be a plugin and Mailpile will ignore it.

Beyond that, you can have any collection of Python, Javascript, HTML, CSS, and other files that you want to use in the plugin within the plugin folder. Whether you organize it in any way and how you chose to do so is entirely up to you, but there are a few little tricks. The most important trick is that if you have Python or Javascript files which have the same name as the plugin, then these will be loaded as the root object rather than a sub-object. For instance, if your plugin is named foo, then foo.py will be available as mailpile.plugins.foo in the Python hierarchy, while bar.py will be available as mailpile.plugins.foo.bar. This is similar to how __init__.py would normally be expected to behave. The same applies for Javascript, where foo.js will be available as mailpile.plugins.foo while bar.js will be loaded as mailpile.plugins.foo.bar. (Yes, the same hierarchy is used on both Python and Javascript sides!)

Manifest files

The manifest files describe what your plugin does, and how. Some of the contents of the manifest are meant for human consumption, but most of the information is telling Mailpile how your code provides added functionality and how to present that functionality to the user.

A manifest file is a valid strict JSON file, with one exception: a line where the first non-whitespace character is a hash symbol (#) is considered a comment. (Note: This means you can’t put a comment after JSON content on a line!)

So, as a barebones example, your manifest file could be:

{
 "name": "my-awesome-plugin",
 "author": "J. Random Hacker <jrh@example.com>",
 "code": {
 "javascript": [],
 "python": [],
 "css": []
 }
}

A fully documented manifest file is in plugins/demos/manifest.json. The following will only be directive descriptions.

name

A string that contains the plugin name. This must match the name of the folder containing the plugin.

author

A string that contains the plugin author, formatted like an e-mail From: header: Your Name <email@domain.com>

code

A dictionary containing three lists, named python, javascript and css respectively. Contains a list of files that the plugin should load of each type. These resources are all managed by Mailpile directly and loaded in the right places to make them available to the application. As such, each must obey a few simple conventions.

Python files will be loaded with the plugin’s name under the mailpile.plugins namespace. If a Python file has the same name as the plugin, e.g. xyzzy.py in the xyzzy plugin, it will be loaded as the root of the plugin. More details below.

Javascript files will be loaded into the HTML client as objects under the mailpile.plugins namespace, within a closure function. If a Javascript file has the same name as the plugin, e.g. xyzzy.js in the xyzzy plugin, it will be loaded as the root of the plugin. Any methods you want exposed to the rest of the app must be returned as an object. More details below.

CSS files will be loaded into the HTML client.

routes

Routes bind URLs with files from your plugin. Generally this mechanism is used to assign view templates to API commands, with the exception of the /static/ namespace which can be used to serve up raw data.

The routes section is a dictionary that maps URL keys to dictionaries. The dictionaries contain:

	name: the filename in your plugin (required)

	api: the API version this routing is considered to occur at (see API versions below) (recommended)

	mimetype: the MIME type of the file (optional)

config

The config section is used to declare configuration areas in the configuration file. These entries follow the same structure as is layed out in [[Config]].

For example, you can add a variable named md5sum_blacklist that takes a string to the sys section of the configuration structure and defaults to gross like so:

config: {
 "sections": {},
 "variables": {
 "sys": {
 "md5sum_blacklist": ["Words hated by the md5sum command",
 "str", "gross"]
 }
 }
}

The first parameter is documentation for that variable, for use when Mailpile auto-generates settings dialogs.

commands

The commands section lists any [[Commands]] that the plugin provides. These then get registered into the command registry and are immediately available through all [[user interaction]] modes (HTML, JSON, CLI, etc).

A command entry must name its class, URL and name, e.g.:

{
 "class": "demos.md5sumCommand",
 "url": "md5sum",
 "name": "md5sum"
}

This will make the command available on the command line as md5sum (based on the name) and on the URL /api/N/md5sum/ (based on the url field, where N is the API version). Both of these will execute the command defined by the md5sumCommand class (which is a subclass of Command). See below.

contacts

The contacts structure defines three lists, each referring to Python classes:

	importers: Contact importers, e.g. an importer that loads contacts from a Mork or WAB database.

	exporters: Contact exporters, e.g. an exporter that saves contacts to a Mork database or a CardDAV database.

	context: Contact context providers, e.g. one that shows the newest tweets from a particular contact.

periodic_jobs

Allows you to register jobs that should happen at fixed intervals. There are two classes of jobs: fast jobs, which are expected to run and terminate quickly, and slow jobs, which may go on for some time before quitting. This distinction is made for optimization purposes.

Fast and slow jobs are provided as lists. Each item must declare an interval (in seconds) and a class to execute.

"periodic_jobs": {
 "fast": [{"interval": 5, "class": "TickJob"}],
 "slow": [{"interval": 15, "class": "TickJob"}]
},

keyword_extractors

DETAILS MISSING.

search_terms

DETAILS MISSING.

filters

Allows you to register actions that are taken before and after [[deterministic filters]] and [[Bayesian filters]] are applied, in the pre and post lists.

"filters": {
 "pre": [],
 "post": []
},

DETAILS MISSING.

threads

DETAILS MISSING.

user_interface

Here we start defining how things will be presented in the user interface. There are currently four types of user interface elements:

	Display modes: Different ways of rendering data. For instance, searching defaults to a list view, but you could create a display mode that displays a timeline or something.

	Display refiners: Ways to refine the data being shown. This could for add, remove or alter terms for a query. For instance, a refiner that shows only unread messages.

	Selection actions: Actions that can be taken on a set of items which have been selected. For example, delete selected contacts.

	Activities: Stand-alone activities. This can be anything that should be represented as a button in a given context and doesn’t fit into the above categories.

The user_interface structure is therefore at its most basic:

"user_interface": {
 "activities": [],
 "display_modes": [],
 "display_refiners": [],
 "selection_actions": []
}

Every item of every type here exists in a set of given contexts. These contexts determine when and how the UI elements are displayed. Without contexts, weird things would happen. It would be silly for a selection action which knows how to create a group from a set of contacts to show up when your selection is a set of messages.

Contexts are given in terms of the API endpoints. So, a user interface element that knows how to work with search results from /api/0/search/ would list /api/0/search/ as one of its contexts. They also have names, descriptions, and a number of other attributes.

Attribute	Activities	Display modes	Display refiners	Selection actions	Required?	Values	Default value	Description
———————-	————	—————	——————	——————-	———–	—————–	———————–	—————————————————————————
context	Yes	Yes	Yes	Yes	Yes	List of strings	[]	List of contexts that the element is shown in
name	Yes	Yes	Yes	Yes	Unique	HTML ID string	“”	Name of element
description	Yes	Yes	Yes	Yes	No	String	“”	Descriptive text for this UI element
text	Yes	Yes	Yes	Yes	No	String	“”	Button text
icon	Yes	Yes	Yes	Yes	No	Filename or ID	“”	Image path or ID for CSS class
javascript_setup	Yes	Yes	Yes	Yes	No	Identifier	“”	Javascript function to call on initialization
url	Yes	Yes	Yes	Yes	No	URL	“”	URL to go to on click

API versions

Each version of Mailpile where there are API changes will have its own API version number. When you develop plugins which reference the API based on a particular version, any subsequent changes in the API should be resolved automatically to the greatest degree possible. For instance, if we had an API call in API verion 7 called bork, it would be accessible under /api/7/bork/. If you refer to that in an action context or a route, and in version 8 it changes to huzzah, then in the version 8 API we will include a transation stating that /api/7/bork/ is equivalent to /api/8/huzzah/. That way, hopefully, even if big things change, most of the time your plugins should continue to work.

It is possible but not certain that this will also provide backwards-compatibility for plugins, where a plugin developed with /api/8/huzzah/ will be able to use the /api/7/bork/ call transparently.

Further details on this are available in the [[API versioning]] documentation.

Writing Python plugins

Most plugins will have some Python component that implements a commmand, contact importer or exporter, a periodic job, keyword extractor, some search terms, filters, or worker threads.

(Some of this can come from the [[Plugin API]] page)

Commands

A command is a class that subclasses the Command class, or any subclass thereof.

It must implement a function called command. This function must return a Python data structure, such as a string, int, bool, list, or dict.

When you add a command, it will instantly become available as a command in the CLI, an API endpoint on the HTTP server, and if you supply templates, as HTML or anything else. Where it will become available is determined by the routing you did.

…

Writing Javascript plugins

…

 [image: Security]

Information leaks

	Beware that Mailpile currently polls Gravatar, leaking MD5 hashes of your contact’s e-mail addresses. This is only really a risk if an attacker either a) makes a dictionary attack against MD5 (unlikely) or b) wants to monitor whether you know specific people by tracking your traffic for particular hashed e-mail addresses (also unlikely). This is a temporary violation for purposes of development and will be changed before the alpha release.

 [image: Security]

Mailpile indexes your encrypted mail, and has access to your mail sources. This means for sensitive messages, the search index becomes a potential security risk, as does the configuration file. More broadly, easy access
to all your communications can be a privacy risk in and of itself:
consider the search naked att:jpg as an example. It is almost certainly
worth taking steps to protect your Mailpile.

The simplest and most effective strategy, is to store your .mailpile
folder on an encrypted volume.

Alternately, if you have a GPG key and run Mailpile in an environment
where gpg-agent is available for key management, you can tell Mailpile
to encrypt its config and data using your key, like so:

$./mp --set "prefs.gpg_recipient = youremail@yourdomain.com"

Note that this only encrypts the main index and config file, and only
works if gpg is in your path. The search terms themselves are not
encrypted, which means the contents of individual messages could at
least in part be derived from the index. This problem can be mitigated,
at the cost of some performance, by telling Mailpile to use a one-way
hash to obfuscate the search terms:

$./mp --set "prefs.obfuscate_index = Some RaNdoM LongISH SECRET"

Note that if you change this setting, whatever has already been indexed
will “disappear” and become unfindable. So do this first if you do it
at all!

 [image:]

The first alpha release of Mailpile is available for download from github. This release is a technology preview release and is not meant for production use. Use at your own risk! See the release blog post [https://mailpile.is/blog/2014-01-31_Alpha_Release_Shipping_Bits_and_Atoms.html] for elaboration.

Reference platform and reporting

Our reference platform for this release is Ubuntu Linux 12.04. Other operating systems may work, but for best results we recommend testing on the reference platform.

If you use Mailpile with other setups, please consider letting us know how well it worked on [[Platform support/Alpha]] and filing issues [https://github.com/pagekite/Mailpile/issues] if you run into any bugs.

Getting the release

The code can be downloaded like so:

git clone -b release/alpha https://github.com/pagekite/Mailpile.git

This branch may receive minor updates (bug-fixes) over the next couple of weeks, but core development will continue on the master branch. Please see the [[Getting Started]] page for further details.

There is also a live demo accessible on https://www.mailpile.is/demos/.

Highlights of this release

	User interface

	Modern HTML5-based interface design

	Original typeface [https://github.com/mailpile/fonts]

	[[Integrated user-friendly PGP support|GnuPG interface security]]

	Alternate text and shell-based user interfaces available for power users

	Encryption and security

	Support for reading and writing PGP/MIME encrypted or signed e-mail

	The contents of incoming encrypted and signed mail is searchable

	Contacts, configuration and meta-data are stored encrypted

	First pass of Mailpile’s [[threat model]] exists

	Search

	Fast, extensible, custom search engine

	The search index is stored using a one-way hash to protect sensitive data

	Tags

	Can be used to organize indexed mail

	Used internally to implement common e-mail metaphors such as “unread” and “inbox”

	Messages can be tagged automatically, using static filter rules or Bayesian classifiers

	Spam filtering

	A basic Bayesian spam filter is configured by default [https://www.mailpile.is/blog/2014-01-12_A_Plan_For_Spam.html]

	Interoperability

	Support for reading mail stored in mbox, Maildir, Thunderbird, Mac Mail.app and GMVault formats.

	Support for importing contact details from the GnuPG keychain and Thunderbird (Mork)

	Selected messages can be exported en-masse to a portable mbox file

	Mailpile has been tested and verified to run on various versions of Debian and Ubuntu Linux, and on Mac OS X 10.9.1

	Internationalization

	Message strings in Python and HTML can be translated

	Work has begun translating Mailpile into roughly 30 languages [https://www.transifex.com/projects/p/mailpile/]

	Extensibility

	[[Plugin hooks for numerous types of interactions|Plugin API]]

	Most core functionality is built using the plugin architecture

	All API actions available as JSON-based API endpoints

	Mailpile can be loaded as a Python module

Known bugs and limitations

	User Experience

	The HTML user-interface is “read only” unless Javascript is enabled

	Auto-saving of drafts doesn’t work yet

	HTML/Javascript performance has not been optimized

	Security

	The search index is not yet fully encrypted

	Drafts, mailbox state and Bayesian rules are not stored encrypted

	Encryption features are only available to users who have a PGP key

	PGP keys are not created by default

	Protocol support

	Native IMAP/POP3 is missing because it depends on local mailbox encryption

	Multiple profile support is very primitive

	Features

	Contact management support is very primitive

	Tag management support in HTML UI is very primitive

 [image:]

The second alpha release of Mailpile is available for download from github. This release is a technology preview release and is not meant for production use. Use at your own risk! See the release blog post [https://mailpile.is/blog/2014-06-03_Mailpile_Alpha_II.html] for elaboration.

Reference platform and reporting

Our reference platform for this release is Ubuntu Linux 12.04. Other operating systems may work, but for best results we recommend testing on the reference platform.

If you use Mailpile with other setups, please consider letting us know how well it worked on [[Platform support/Alpha]] and filing issues [https://github.com/pagekite/Mailpile/issues] if you run into any bugs.

Getting the release

The code can be downloaded like so:

git clone -b release/alpha https://github.com/pagekite/Mailpile.git

This branch may receive minor updates (bug-fixes) over the next couple of weeks, but core development will continue on the master branch. Please see the [[Getting Started]] page for further details.

There is also a live demo accessible on https://www.mailpile.is/demos/.

Highlights of this release

	User interface

	Modern HTML5-based interface design

	Original typeface [https://github.com/mailpile/fonts]

	[[Integrated user-friendly PGP support|GnuPG interface security]]

	Alternate text and shell-based user interfaces available for power users

	Encryption and security

	Support for reading and writing PGP/MIME encrypted or signed e-mail

	The contents of incoming encrypted and signed mail is searchable

	Contacts, configuration, logs and meta-data can be stored encrypted

	First pass of Mailpile’s [[threat model]] exists

	Search

	Fast, extensible, custom search engine

	The search index is stored using a one-way hash to protect sensitive data

	Tags

	Can be used to organize indexed mail

	Used internally to implement common e-mail metaphors such as “unread” and “inbox”

	Messages can be tagged automatically, using static filter rules or Bayesian classifiers

	Spam filtering

	A basic Bayesian spam filter is configured by default [https://www.mailpile.is/blog/2014-01-12_A_Plan_For_Spam.html]

	The spam filtering engine can be used for other types of auto-classification of mail

	Interoperability

	Support for reading mail stored in mbox, Maildir, Thunderbird, Mac Mail.app and GMVault formats

	Basic read-only support for remote IMAP servers (work in progress)

	Support for importing contact details from the GnuPG keychain and Thunderbird (Mork)

	Selected messages can be exported en-masse to a portable mbox file

	Mailpile has been tested and verified to run on various versions of Debian and Ubuntu Linux, and on Mac OS X 10.9.1

	Internationalization

	Message strings in Python and HTML can be translated

	Work has begun translating Mailpile into roughly 30 languages [https://www.transifex.com/projects/p/mailpile/]

	Extensibility

	[[Plugin hooks for numerous types of interactions|Plugin API]]

	Most core functionality is built using the plugin architecture

	All API actions available as JSON-based API endpoints

	Mailpile can be loaded as a Python module

What’s changed since [[the first Alpha Release|Release-Notes-201401-Alpha]]?

	Sending and composing

	Auto-saving of drafts works

	UI redesign to help prevent “oops I sent that from the wrong address”

	Better feedback on who is receiving mail, in compact mode

	Clearer indication which parts of a message will be encrypted or signed

	Much improved logic for choosing which e-mail (user profile) is suggested by default for sending

	The code which sends e-mail has been revamped to properly handle errors and retry as necessary

	Importing/syncing mail

	New architecture, based on the concept of “mail sources”

	Partial native IMAP support (on-line, read-only) is now in place

	The SMTorP proof-of-concept server now limits resource usage and implements a form of hashcash to rate limit spam

	User profiles and contacts

	User profiles are now implemented using the underlying VCard store

	Profiles can be associated with specific domains or individual contacts (so mail is sent from the right profile)

	Profile data is visible in the UI in various places and progress was made on the Contacts page

	Searching and tagging

	Tags can now be decorated with icons and colors

	The order of tags in the side-bar can now be rearranged by the user

	An entire search can be scoped using a prefix, e.g. “subject: this and that” instead of “subject:this subject:and subject:that” (note the spaces)

	App internals

	Our low level plugin APIs was redesigned to support javascript and HTML plugins, as well as Python

	Plugins can now inject controls into the UI

	Javascript or CSS from plugins is automatically included in the default app JS / CSS

	Plugins can offer alternate HTML views for existing API endpoints

	An internal event log and queue was added

	Allows the app to keep state

	Facilitates debugging and troubleshooting

	Allows the Python process to communicate asynchronously with the Javascript front-end (e.g. notify about new mail or progress of in-flight message delivery)

	The code which interacts with gnupg and openssl for encryption and verification of local data and mail was reworked and

	should now work on Windows (as well as *nix platforms)

	better support for encrypting local data: downloaded mail, settings, plugin state

	Many, many bug-fixes and improvements to stability and performance

What’s cookin?

	The IMAP mail source is under rapid development

	Uploading of attachments almost works, but not quite…

	A setup flow, to make it easy to set up Mailpile the first time or change settings later

	A multi-user version of Mailpile

Known bugs and limitations

	User Experience

	The HTML user-interface is “read only” unless Javascript is enabled

	HTML/Javascript performance has not been optimized

	Security

	The search index is not yet fully encrypted

	Drafts, mailbox state and Bayesian rules are not stored encrypted

	Encryption features are only available to users who have a PGP key

	PGP keys are not created by default

	Protocol support

	Native IMAP/POP3 is incomplete

 [image:]

The Beta release of Mailpile is available for download from github, with pre-built packages availble for Windows and Mac OS X.

This release is a technology preview release, meant for developers, very patient early adopters, usability testers and our community of translators. It might also be useful for reading and writing e-mail, you never know!

See the release blog post [https://www.mailpile.is/blog/2014-09-13_Mailpile_Beta_Release.html] for details.

Note: Please consult the list of known issues below before filing bugs! Thanks!

Getting the release

Pre-built packages:

	Live demo: https://www.mailpile.is/demos/

	Windows: HTTPS download [https://www.mailpile.is/files/releases/Mailpile-Installer-Beta.exe], Bittorrent download [https://www.mailpile.is/files/releases/Mailpile-Installer-Beta.exe.torrent]

	Mac OS X: HTTPS download [https://www.mailpile.is/files/releases/Mailpile-Installer-Beta.dmg], Bittorrent download [https://www.mailpile.is/files/releases/Mailpile-Installer-Beta.dmg.torrent]

The source code [https://github.com/pagekite/Mailpile]:

git clone -b release/beta https://github.com/pagekite/Mailpile.git

This branch may receive minor updates (bug-fixes) over the next couple of weeks, but core development will continue on the master branch. Please see the Getting Started page for further details.

Highlights of this release

	A powerful e-mail client capable of reading, writing, organizing and searching large volumes of e-mail

	An attractive, intuitive web-based user interface

	An interactive user-friendly setup procedure

	Native Windows and Mac packages

	Native support for downloading mail using the IMAP protocol

	New interfaces for discovering and importing PGP keys

	We have published a [[Security Roadmap]], explaining the how, why and when of Mailpile security

This release builds on our earlier progress:

	[[Alpha II Release, July 2014|Release-Notes-201406-Alpha-II]]

	[[Alpha Release, January 2014|Release-Notes-201401-Alpha]]

Known issues

These are the some of the more important issues we already know about, most of which we hope to fix by the 1.0 release, which is tentatively planned for December 2014. There is no need to report issues from this list to our bug tracker, but there should be an issue filed for each of them which interested parties can subscribe to for updates (this list will be updated with links to GitHub as we catch up on filing and organizing over the next few days).

Known issues in the beta release:

	General

	The HTML user interface is entirely unoptimized and can be very slow

	We lack a mechanism for tracking usage and notifying users about updates/news

	Most translations are very incomplete due to rapid development and changes leading up to the release

	PGP and Security (see the [[Security Roadmap]] for more details)

	Gravatar and key-server lookups are not sent over Tor, thus leaking metadata about user communication

	Keys are not yet attached to outgoing mail automatically

	There are still some bugs in generation or validation of PGP/MIME messages

	Non-ASCII characters in PGP key UIDs are not handled correctly during setup

	Outgoing TLS (HTTPS, STARTTLS) connections do not validate certificates or prefer good ciphers

	Encrypted/signed messages with attachments are incompatible with Google’s end-to-end and other non-PGP/MIME capable mailers

	E-mail basics

	HTML mail is rendered as plain text, which may lose important formatting

	Messages written by the notmuch mail client may not display correctly

	MacMaildir (Mail.app) mail sources do not work yet

	Upload feedback for non-image attachments is poor

	It is not possible to remove an attachment from a draft using the web interface

	IMAP

	There may be noticable delays between when a message is downloaded and when it appears in UI

	Does not yet recognize whether messages are “new” or already read (so all are marked as new)

	Can not yet delete from server or otherwise synchronize local changes

	Non-ASCII characters in folder names are not properly decoded

	Support for STARTTLS is missing

	Platform integration (Mac, Windows, Linux, …)

	We don’t have official Linux packages yet

	Image support (thumbnail generation) is broken on most Macs

	It is currently only possible to run one instance of the app at a time (without manual tweaks)

	The Windows launcher crashes after shutting down the python app (#889)

Changes since the Alphas

A few things have changed since our Alpha releases, which may catch long-time users or testers off guard:

	A GnuPG key is required for the Beta to work and will be created if you do not already have one

	The ~/.mailpile folder is no longer the default location for Mailpile’s data, we now use platform-specific defaults: ~/.local/share/Mailpile on Linux, ~/Library/Application Support/Mailpile/ on the Mac and a similarly appropriate location on Windows. The old folder will be used if it exists already, but new installations will not create it anymore.

Migration from a very old configuration may not work well, so if you do not have any critical data in your pile, then removing the ~/.mailpile/ folder before upgrading to the Beta is recommended.

 [image:]

The Beta II release of Mailpile is available for download from github, with pre-built packages availble for Windows and Mac OS X.

This release is a technology preview release, meant for developers, very patient early adopters, usability testers and our community of translators. It might also be useful for reading and writing e-mail, you never know!

See the release blog post for details.

Note: Please consult the list of known issues below before filing bugs! Thanks!

Getting the release

Pre-built packages:

	Live demo: https://www.mailpile.is/demos/

	Windows: HTTPS download [https://www.mailpile.is/files/releases/Mailpile-Installer-Beta-II.exe]

	Mac OS X: HTTPS download [https://www.mailpile.is/files/releases/Mailpile-Installer-Beta-II.dmg]

The source code [https://github.com/pagekite/Mailpile]:

git clone -b release/beta https://github.com/pagekite/Mailpile.git

This branch may receive minor updates (bug-fixes) over the next couple of weeks, but core development will continue on the master branch. Please see the Getting Started page for further details.

Highlights of this release

	A powerful e-mail client capable of reading, writing, organizing and searching large volumes of e-mail

	An attractive, intuitive web-based user interface

	An interactive user-friendly setup procedure

	Native Windows and Mac packages

	Native support for downloading mail using the IMAP and POP3 protocols

	New interfaces for discovering and importing PGP keys

	We have published a [[Security Roadmap]], explaining the how, why and when of Mailpile security

Highlights since the previous Beta:

	We fixed a bug in key generation:

	instead of 4096 bit PGP keys, we were generating relatively weak 1024 bit keys for new users

	Usability studies on PGP key management and working with encrypted mail led to many UI/UX improvements

	Performance of the web UI was improved

	IMAP and POP3 support are much improved, but still a work in progress

	Usability fixes, bug fixes, …

This release builds on our earlier progress:

	[[Beta Release, September 2014|Release-Notes-201409-Beta]]

	[[Alpha II Release, July 2014|Release-Notes-201406-Alpha-II]]

	[[Alpha Release, January 2014|Release-Notes-201401-Alpha]]

Known issues

These are the some of the more important issues we already know about, most of which we hope to fix by the 1.0 release. There is no need to report issues from this list to our bug tracker, but there should be an issue filed for each of them which interested parties can subscribe to for updates (this list will be updated with links to GitHub as we catch up on filing and organizing over the next few days).

Known issues in the Beta II release:

	General

	The HTML user interface is not responsive and still rather slow in places

	We lack a mechanism for tracking usage and notifying users about updates/news

	Most translations are very incomplete due to rapid development and changes leading up to the release

	PGP and Security (see the [[Security Roadmap]] for more details)

	Gravatar and key-server lookups are not sent over Tor, thus leaking metadata about user communication

	There are still some bugs in generation or validation of PGP/MIME messages

	Non-ASCII characters in PGP key UIDs are not handled correctly during setup

	Outgoing TLS (HTTPS, STARTTLS) connections do not validate certificates or prefer good ciphers

	Encrypted/signed messages with attachments are incompatible with Google’s end-to-end and other non-PGP/MIME capable mailers

	There is a nasty 5 minute delay on importing new PGP keys before they become actually usable Issue #1123 [https://github.com/mailpile/Mailpile/issues/1123]

	E-mail basics

	HTML mail is rendered as plain text, which may lose important formatting

	Rough HTML viewing is implemented, but does not sanitize or check for malicious attachments at all

	Messages written by the notmuch mail client may not display correctly

	MacMaildir (Mail.app) mail sources do not work yet

	IMAP

	Does not yet recognize whether messages are “new” or already read (so all are marked as new)

	Can not yet delete from server or otherwise synchronize local changes

	Support for STARTTLS is missing

	Platform integration (Mac, Windows, Linux, …)

	We don’t have official Linux packages yet

	Image support (thumbnail generation) is broken on most Macs

	It is currently only possible to run one instance of the app at a time (without manual tweaks)

	The Windows launcher crashes after shutting down the python app (#889)

Changes since the Alphas

A few things have changed since our Alpha releases, which may catch long-time users or testers off guard:

	A GnuPG key is required for the Beta to work and will be created if you do not already have one

	The ~/.mailpile folder is no longer the default location for Mailpile’s data, we now use platform-specific defaults: ~/.local/share/Mailpile on Linux, ~/Library/Application Support/Mailpile/ on the Mac and a similarly appropriate location on Windows. The old folder will be used if it exists already, but new installations will not create it anymore.

Migration from a very old configuration may not work well, so if you do not have any critical data in your pile, then removing the ~/.mailpile/ folder before upgrading to the Beta is recommended.

 [image:]

The Beta III release of Mailpile is available for download from github, with
pre-built packages available for Windows and Mac OS X.

This release is a technology preview release, meant for developers, early
adopters, usability testers and our community of translators. It might also
be useful for reading and writing e-mail, you never know!

See the release blog post [https://www.mailpile.is/blog/2015-07-20_Mailpile_Beta_III.html] for details.

Note: Please consult the list of known issues below before filing bugs!
Thanks!

Getting the release

Pre-built packages:

	Live demo: https://www.mailpile.is/demos/

	Windows: Currently unavailable

	Mac OS X: Currently unavailable

The source code [https://github.com/pagekite/Mailpile]:

git clone -b release/beta https://github.com/pagekite/Mailpile.git

This branch may receive minor updates (bug-fixes) over the next couple of weeks, but core development will continue on the master branch. Please see the Getting Started page for further details.

Highlights of this release

	A powerful e-mail client capable of reading, writing, organizing and searching large volumes of e-mail

	An attractive, intuitive web-based user interface

	Support for multiple accounts and multiple PGP keys

	Streamlined PGP key discovery

	Native Windows and Mac packages

	Native support for downloading mail using the IMAP and POP3 protocols

	We have published a [[Security Roadmap]], explaining the how, why and when of Mailpile security

Highlights since the previous Beta:

	Simplified setup process

	Much improved PGP key handling (discovery and passphrase management)

	Interactive browser for finding and configuring local mailboxes

	Tools for printing, saved searches and data extraction

	Usability fixes, bug fixes, …

This release builds on our earlier progress:

	[[Beta II Release, January 2015|Release-Notes-201501-Beta-II]]

	[[Beta Release, September 2014|Release-Notes-201409-Beta]]

	[[Alpha II Release, July 2014|Release-Notes-201406-Alpha-II]]

	[[Alpha Release, January 2014|Release-Notes-201401-Alpha]]

Known issues

These are the some of the more important issues we already know about, most of which we hope to fix by the 1.0 release. There is no need to report issues from this list to our bug tracker, but there should be an issue filed for each of them which interested parties can subscribe to for updates (this list will be updated with links to GitHub as we catch up on filing and organizing over the next few days).

Known issues in the Beta III release:

	General

	The HTML user interface is not responsive and still rather slow

	We lack a mechanism for tracking usage and notifying users about updates/news

	Most translations are very incomplete due to rapid development and changes leading up to the release

	Translations were not included in the demo and packages for this release

	PGP and Security (see the [[Security Roadmap]] for more details)

	Gravatar and key-server lookups are not sent over Tor, thus leaking meta-data about user communication

	Non-ASCII characters in PGP key UIDs are not always handled correctly

	Outgoing TLS (HTTPS, STARTTLS) connections do not validate certificates or prefer good ciphers

	Encrypted/signed messages with attachments are incompatible with Google’s end-to-end and other non-PGP/MIME capable mailers

	PGP-encrypted attachments (non-PGP/MIME) are not handled natively

	E-mail basics

	The composer address input field may lose input if focus changes

	HTML mail is rendered as plain text, which may lose important formatting

	Rough HTML viewing is implemented, but does not sanitize or check for malicious attachments at all

	Messages written by the notmuch mail client may not display correctly

	IMAP/POP3

	Can not yet delete from server or otherwise synchronize local changes

	Platform integration (Mac, Windows, Linux, …)

	We don’t have official Linux packages yet

	Image support (thumbnail generation) is broken on most Macs

	It is currently only possible to run one instance of the app at a time (without manual tweaks)

	The Windows launcher crashes after shutting down the python app (#889)

 [image: SMTorP Image]

SMTorP is the Simple Mail Tor Protocol (a.k.a. SMTP over Tor).

The idea can be summarized as follows:

	SMTorP is e-mail, but delivered over a secure channel which protects
the metadata as well as message contents.

	SMTorP defines an e-mail address format: addresses ending in .onion

	SMTorP servers are enhanced SMTP servers which run as Tor hidden services

	Mailpile as an MUA should ship with both an SMTorP client and server
built-in, and be bundled with Tor (Win, Mac) or depend on Tor on Linux.

Note: This document is a rough draft of notes and ideas, once this
has been polished and proof of concept code written, we should draft an
RFC and get the community to weigh in.

Proof of concept

A very rough 1st proof of concept was added to Mailpile at the Tor developer
summit hackdays (Reykjavík, Feb 20th & 21st, 2014) validating that the idea
is at least quite simple to implement. To test it yourself:

	Install Tor and the Python socksipy or socksipychain module

	Configure Tor for a hidden service mapping [https://www.torproject.org/docs/tor-hidden-service]
something.onion:25 to localhost:33412

	Enable the smtp_server plugin:

mailpile> append sys.plugins smtp_server

	Restart Mailpile.

	Set the SMTP server port to the port used above:

mailpile> set sys.smtpd.port = 33412

	Restart Mailpile again.

You should now be able to send mail to foo@bar.onion, and receive
incoming on the Tor hidden service domain configured in step 2.

WARNING: This exposes the built-in SMTP server to the Tor network,
anyone who knows (or guesses?) your .onion address may connect to the
SMTP server and wreak havoc. The SMTP server is currently known to be
a security hole, see https://github.com/pagekite/Mailpile/issues/532
for details and progress on this issue.

High level goals

The primary goal of SMTorP is to provide a fully decentralized and largely
backwards-compatible upgrade path for e-mail, which aims to make it very
difficult for an adversary to know that two users have communicated. The
protocol should protect both message content and the metadata of e-mail
from spying.

Non-goals:

	SMTorP does not aim provide stronger security guarantees than the
Tor network itself, which means that at the very least a sufficiently
powerful adversary may be able to infer that two users are probably
communicating, based on statistical analysis of network traffic at both
endpoints (timing attacks). This is a problem inherited from Tor itself
and is considered out of scope for SMTorP.

	Anonymous communication (allowing 2 parties to communicate securely
without knowing each others identity) is not a primary goal for SMTorP,
although users who take special care not to reveal personally identifying
information may well be able to use it in this manner.

Preventing spam

We are interested in implementing a mandatory hashcash-like proof of
work system, to make bulk unsolicited e-mail over SMTorP economically
infeasable.

Since hashcash was invented, hardware advances (primarily widespread GPU
availability) have rendered the original proposals obsolete. However,
research is being done into developing hashing algorithms which are
“SIMD-hard”, “Memory-hard” or difficult in other dimensions which may
make them potential candidates. We need to look at the relevant
literature (Wikipedia probably is probably a good place to start, if not
Ella tells us to talk to Matt Green).

We also probably need to specify an upgrade path, so broken algorithms
can be phased out and replaced with harder problems to solve. One thing
to do here, is offer multiple algorithms, but scale the difficulty on
deprecated algorithms faster than on the algos we actually like.

SMTorP message format

The SMTorP message format is the same as SMTP e-mail (RFC822 and
successors). PGP/MIME is recommended.

The SMTorP server

The SMTorP server is a standard ESMTP server, exposed to the Internet
using TLS on a Tor hidden service. TLS is mandatory (probably a
minimum of version 1.2).

Open questions:

	Does SMTorP need additional protocol verbs for implementing hashcash
or checking the state of relayed mail (when using an outgoing relay)?

	Would ever want to use STARTTLS? Why?

	Should we provide a stand-alone server implemetation, or just Mailpile
native?

	How to manage keys and prevent MITM? TOFU? Fingerprints in addresses?

SMTorP address format

An SMTorP address has the same format as a normal SMTP e-mail address,
with additional constraints on the domain part:

<user>@[<tls-cert-fingerprint>.]<tor-hidden-service-hash>.onion

This syntax has the benefit of being largely backwards compatible with
existing MUAs and in line with user expectations, allowing a staged
rollout of SMTorP.

The optional(?) tls-cert-fingerprint part of the address can be used to
signal to the sending MUA what TLS credentials to expect the server to
present upon connection. This improves the security of self-signed
certificates and makes active man-in-the-middle attacks much more
difficult. The difficulty level (and security) can be tuned by adjusting
how many bits of the fingerprint are included in the e-mail address.
MUAs could be encouraged to “upgrade” the addresses stored in a user’s
address book to the full length automatically on first use, the
abbreviated form would primarily be manual scenarios.

The main drawback of this address syntax is it is not very human
readable, hashes are notoriously long and hard to write. Some potential
mitigation strategies are discussed below.

Auto-upgrade

Users with SMTorP addresses may choose to advertise them in their
e-mail signatures or in a custom header, allowing compatible MUAs to
recognize that a more secure path is available and opportunistically
upgrading to the more secure protocol.

QR-codes

An SMTorP address fits in a reasonably sized QR-code, for printing
on business cards.

mailto: URLs

The format of SMTorP addresses is a subset of normal SMTP e-mail
addresses and the standard mailto: URL spec can be used, although
there is risk of poor user experience when legacy e-mail clients
attempt to send mail to an SMTorP address (see deployment strategy
below).

DNS-based address discovery

DNS TXT records could be used to map individual addresses, or entire
domains to SMTorP addresses. The pros and cons of this approach should
be explored further.

Deployment strategy

Ideally, SMTorP will be natively supported by MUAs, and Mailpile will
provide the initial proof-of-concept.

However, since SMTorP inherits most of its characteristics from legacy
e-mail it should be easy to implement plugins or proxies which add
SMTorP support to legacy infrastructure.

Any traditional e-mail provider or in-house mail server should be able
to upgrade their SMTP submission servers to support SMTorP addresses in
addition to legacy e-mail, if they so desire, merely by installing Tor
and configuring the SMTP server to use a different policy for delivery
of .onion addresses. One partial implementation for exim was discussed
by Johannes Berg [http://johannes.sipsolutions.net/Projects/exim-tor-hidden-mail].

Peer-to-peer SMTorP or relay-based SMTorP

Whether SMTorP should always be purely peer-to-peer or whether it should
allow for intermediate relays (analogous to fallback MX servers in the
SMTP world) is an open question. There are two primary relay strategies
available:

	Sending relays (an SMTP submission server)

	Receiving relays (an SMTP MX server)

SMTorP could support either or both, but as the system is expected to
operate independently of DNS, the question remains how to encode a
fallback strategy into the addresses themselves without everything
becoming illegible (always delivering through a relay is just asking
for MITM attacks, we prefer direct delivery whenever possible).

[TODO: Write more. Bjarni doesn’t like relays, Ella contends they are
necessary for users with intermittent networking. We met in the middle
agreeing that sending relays may be a reasonable compromise.]

User Privacy

Running a hidden service of this nature makes it easier to track whether
a particular user is online, as long as you know their SMTorP address.

Although this is an active attack, it may be possible to check that the
hidden service is online, without the hidden service ever seeing
traffic, which makes this undetectable by the user.

If this is considered a serious problem, then it argues in favour of
running SMTorP relays.

SMTorP and PGP/MIME

When deployed as a peer-to-peer solution, SMTorP alone provides strong
protection against network-based monitoring.

However, the security of Tor hidden services is not generally considered
to be entirely future-proof and SMTorP cannot protect the integrity of
data at rest, once the mail has been delivered. So a “belt and
suspenders” approach of using PGP/MIME for messages delivered over
SMTorP is still recommended.

The only hypothetical reason to not use PGP/MIME, would be to allow
for plausible deniability. It is our opinion that this currently has no
real world benefit.

User interface guidelines

	When a message is being sent over SMTorP, the user should be made
aware, e.g. by putting a lock or SMTorP logo on the send button.

	Mixing SMTorP and legacy e-mail addresses in the same e-mail should
be prevented by the MUA, both for security reasons and to prevent
the usability nightmare of the legacy recipients being unable to
reply-all to everyone.

 Underneath the hood of Mailpile is a powerful search query engine that you can feed all sorts of custom queries to narrow or expand your search! These commands can be typed into the web GUI search box or into the command line interface (CLI). If you are typing them in the CLI they are args for the search command.

Tags

Query	Description
——–	—————————————————————
in:tag	messages with a given tag assigned
-in:tag	omits messages with a given tag assigned

Email Addresses

Query	Description
————————-	———————————————-
from:name@address.com	messages sent from a given address
to:name@address.com	messages sent to a given address
contacts:name@address.com	messages either from or to address

Mailboxes

Query	Description
————–	———————————————————
mailbox:name	messages from one or more mailboxes which match name
mailbox:boxid	messages from only the specified mailbox id

Date

Query	Description
——–	—————————————————————
dates:2011..2012	messages between a range of years
dates:2011-06..2011-07	messages between range of years and months
date:2011-06-11	messages from exact date (can add +date values)
year:2001	messages from specified year
month:8	messages from specified month

Various

Query	Description
——–	—————————————————————
subject:keyword	messages with keyword in subject only
att:jpg	messages with attachments of file type “jpg”
has:attachment	messages with one or more attachments
has:crypto	messages that are encrypted and/or signed

 [image: Technical documentation]

Search results

(note: Work in progress)

Search results are the most important part of the Mailpile API and
largely define what can and can not be done in the UI.

This result format is used by all the search and view API endpoints.

The following is an example the data returned by a Mailpile search,
formatted as JSON (e.g. the output of /in/inbox/as.json) with some
unix-style comments prefixed with the # character.

{
 "command": "message",
 "elapsed": "0.268",
 "message": "OK",
 "status": "success"

 "result": {

 # For result pagination. The full results are (will be) cached in
 # RAM in the Mailpile server, so paging through duplicate results
 # should be pretty fast.
 "stats": {
 "start": 1,
 "end": 1,
 "total": 1
 "count": 1,
 }

 # This is what was searched for.
 "search_tags": [],
 "search_terms": [],

 # These are the actual results, in the requested sort order.
 # The IDs reference details found in the "data" section below.
 # Depending on what is searched for, only some of these may
 # be present.
 "people": ["EID", ...],
 "threads": ["MID", ...],
 "messages": ["MID", ...],

 # This section contains actual data about tags, contacts,
 # threads and messages. Depending on how the search function
 # is invoked, this section may be missing entirely or may only
 # contain partial data. Most critically, the "message" section
 # generally only contains full details about a few messages,
 # that data cannot be served directly from RAM.
 "data": {
 "tag": {
 "TID": { ... }
 },
 "contact": {
 "EID": {... /search/address/ style details ...},
 ...
 },
 "thread": {
 "MID": [["EID", "MID"], ...],
 },
 "metadata" {
 "MID": {
 "id": "yqgQdw184xFp9qPkpUfEJmxn4tc",
 "mid": "2CLQ",
 "urls": {
 "thread": "/thread/=2CLQ/",
 "message": "/thread/=2CLQ/"
 "raw_message": "/thread/=2CLQ/"
 }
 "timestamp": 1234512345,
 "from": {
 "name": "Lulu.com",
 "email": "lulu@email.lulu.com",
 "eid": "EID",
 },
 "subject": "Black Friday. Mastered. Holiday Shopping. Done.",
 "tag_tids": ["1", ...],
 "to_eids": ["EID", ...],
 "thread_mid": "MID",
 "body": {
 "snippet": "Black Friday. Mastere "
 },
 # These flags are based on interpreting the metadata.
 "flags": {
 "from_me": 1,
 "unread": 1,
 "trash": 1,
 "spam": 1,
 "encrypted": 1,
 "signed": 1,
 "ghost": 1,
 }
 },
 },
 "message": {
 "MID": {
 "raw_headers": [["Date", "..."], ...],
 "attachments": [...],
 "html_parts": [
 {
 "charset": "utf-8",
 "data": "<div><body><div>\n<table ... ",
 "openpgp_data": "",
 "openpgp_status": "",
 "type": "html"
 }
],
 "text_parts": [
 {
 "charset": "utf-8",
 "data": "\n\nBlack Friday. Mastered.\nHoliday ...",
 "openpgp_data": "",
 "openpgp_status": "",
 "type": "text"
 }
]
 },
 },
 },
 },
}

 [image: Security]

Misc Security Notes

(These are misellaneous security notes, collected during and
around the threat modeling sessions with Eleanor Saitta.)

Security testing

	Fuzzing: e-mail parser and httpd should be fuzzed constantly

	We should accept the Syndis offer to get audited and pentested

	We should use SSLlabs to make sure we don’t forget to upgrade
our TLS configs when new vulnerabilities are found

	Look into XSS/CSRF/… test suites, beg for free licenses from
vendors if necessary. (Ella can give advice & leads)

	We should test the GnuPG interface code extra carefully, as
not all versions of gpg are the same. An example of GPG behavior
to watch for is old versions of –recv-keys do not actually verify
they got the requested key from the keyserver!

Side note: it might make sense to run the GPG tests on setup and
make sure the app isn’t making promises it can’t keep. Reporting back
incompatibilities would help development, as long as we respect user
privacy.

Downloading data from the Internet

Any data downloaded from the internt (keys, gravatars, etc.) should
be downloaded using Tor if possible, and we should make an effort to:

	Look like other common apps/browsers so we can’t be targeted with
exploits

	Change Tor identity frequently to prevent the data provider or
exit node operator from being able to infer information about our
mail or social graph.

Logging

Anonymizing logs is important so users can send us bug reports
without leaking confidential data.

The Tor project has done some interesting work on privacy friendly
global logging for gathering of statistics, we should look at what
they are doing.

Multiple personalities and GPG

Users need to understand that the multiple personalities features of
Mailpile are “soft” and if they want to be sure no data leaks from one
personality to another, they should run separate instances of the app.

Ella had some very specific scenarios where information about GPG
keys and trust levels could leak from one persona to another. She
felt this pertained most strongly to SMTorP use.

Software updates

Use the UW protocol [https://updateframework.com/]?

Or… bittorrent prevents us from targeting individual users!

Securing Workflows

It can be important to make sure workflows can only be done in
the order specified. This can be done by passing variables that
link step1 to step2 so skipping step1 (or tricking someone into
skipping step1) is impossible.

Watch out for interacting with the filesystem

Comparisons with strings in Python may differ with those in the
OS/FS layer, especially due to Unicode complicating everything.

Treating paths as byte-lists and strictly limiting which chars
are allowed (kill the unicode) can help.

Unicode scaryness

An entire class of bugs can be eliminated if data is dumbed down
to ASCII as soon as it enters the system. This may be OK for things
like the URL path, impossible for input variable values.

Faking type-strictness in Python (taint checking)

Wrapper classes that have funny instance variables or getters
which signify “untainted” data. Passing a string directly or
some other data which has not been “cleaned” will trigger an
AttributeError exception.

Libraries

This library is an anti-XSS library. Check it?
http://code.google.com/p/reform/

OWASP anti-samy, helps make HTML safe to display.

Viruses

Statement of intent? How do we deal with them? Format verification,
include ClamAV? Recommended way would be to neutralize content into
known-safe forms by converting images to themselves, PDF rendered in
JS, etc.

Anonymity

Support Tor for connecting to IMAP/SMTP.

Mixmaster/mixminion (later): We know the NSA can probably do
timing analysis on Tor. Mix networks, if they had traffic and
were maintained, would resist this. Clearsigned e-mails
exiting from mix nodes could provide cover traffic. Ask users
“do you wanna help make the network anonymous?”. Delays
things… button to “send fast”? ….. Ella says: IMPORTANT.
Consider this as an alternate transport.

The SSL/TLS nightmare

Backwards compatibility is bad. We want to just support new browsers
and real security if at all possible.

Optimal case:

	Help people buy domains

	Buy keys

	Make end-to-end TLS over pagekite easy

Make sure SPF gets configured, think about DKIM.

Others: self-signed, pagekite MITM.

 [image: Security]

The Mailpile Security Objectives and Roadmap

What is this?

The two primary goals of the Mailpile project are to improve the privacy and independence of its users. We have a relatively clear idea of how we hope to achieve these goals, but as the project is a large one we know we won’t be able to deliver everything at once.

This document aims to outline in more detail what our security-related goals are, where we are now, where we want to be in the future, and how we get from A to B. This document will inevitably be a work in progress for quite some time!

This is a very broad and complex subject, so please accept our apologies in advance for how obtuse and technical this document is. It is our hope that this will communicate to our users and project backers how Mailpile approaches security, encourage feedback from the security community, and inform other projects in this space so they may benefit from our efforts.

(This document and strategy is informed by formal threat model work done with Eleanor Saitta, extended discussions and consultation between her and the core Mailpile team, and the collective experience of Mailpile’s authors)

Long term goals

	Basics: It should be safe, easy and convenient to read, write, search and organize your e-mail.

	People should be able to communicate privately. For e-mail that means:

	Delivery: Messages are delivered intact and in a timely fashion.

	Privacy: The contents of the messages have not been eavesdropped on.

	Integrity: Messages are authentic (not forged).

	Metadata Privacy: The identities of the people communicating are known only to the people involved in the conversation.

	People should be able to store their e-mail long term, with a strong confidence that:

	Storage Privacy: It cannot be read by unauthorized 3rd parties.

	Storage Integrity: It cannot be modified by unauthorized 3rd parties.

	Availability: They have convenient and reliable access to the contents.

Non-goals

	Mailpile is not attempting to enable anonymous communication, which is communication where the participants in a conversation do not know each others’ identities. Most people consider e-mail from anonymous strangers to be spam, and we have no particular interest in making it easier to send spam. This is different from point 2.4 above which states that outsiders shouldn’t know who you are communicating with.

	Mailpile is not attempting to enable deniable communication, which is the ability to send a message which you can later disavow having written. This is a non-goal, simply because potential for abuse is high, while the real-world benefit of this feature is largely theoretical. Deniability is not a part of most users’ mental models for e-mail (unlike chat): quite the opposite, most users expect e-mail to be “on the record”.

	Mailpile is not a research project.

	The Mailpile project will not create new cryptographic protocols or implement cryptographic algorithms unless it is absolutely unavoidable. Using established standards and tried-and-tested implementations is preferred whenever possible.

	Mailpile is not designed to be “Software as a Service”, as given current technology, we believe SaaS to be incompatible with goals 2.2, 2.3, 2.4, 3.1 and 3.2, in addition to going against the high level goal of fostering user independence.

Overall strategy

Goal 1: Basics

	Implement a convenient web-based user interface for reading and writing mail.

	Implement a fast search engine and a tag-based model for sorting and categorizing mail.

	Implement a statistical (bayesian) spam filter to ensure that important messages aren’t lost in a sea of junk.

	The spam filter also serves the purpose of protecting the user from malware.

	In order to limit the impact of malware, Mailpile will not display HTML mail until sanitization, sandboxing and anonymization mechanisms are in place.

	Attachment types known to be risky or from unknown sources should be marked as such in the user interface.

	If possible without creating new attack surfaces, lossless data format transformation should be applied to incoming attachments, to disarm implentation exploits (e.g. convert PDF to Postscript and back again, or JPG/PNG -> TIFF -> JPG/PNG).

Goal 2.1: Delivery

	Mailpile should minimize the number of intermediate relays, as each one may delay, reject or lose e-mail.

	When possible, direct peer-to-peer delivery will be preferred (bypassing the legacy Internet SMTP network entirely, e.g. using SMTP over Tor (SMTorP), DIME (if applicable) or other emerging protocols).

	If direct delivery is impossible, traditional delivery using established SMTP relays shall be used.

	Direct delivery from the mail client to a legacy SMTP server is not desirable, as this is known to trigger spam filters and may prevent reliable message delivery.

	Mailpile should employ appropriate queue-and-retry strategies, and clearly inform the user if a message cannot be delivered in a timely fashion.

Goals 2.2 and 2.3: Privacy and Integrity

	Mailpile will support the OpenPGP and PGP/MIME standards for encryption and digital signatures of e-mail (see below for details).

	These standards are flawed in that they do not protect the message headers (including the subject, from and to lines), but they are the only reasonable standard available to us at the moment.

	This end-to-end encryption should be augmented by using TLS and/or Tor for message delivery whenever possible, as that can provide at least partial protection for metadata (2.4) and information not protected by the standard OpenPGP encryption, and can compensate for situations where end-to-end encryption is infeasible. Industry best practices should be used in all cases, which means using strong ciphers supporting forward secrecy whenever possible.

	When the details of the DIME (Dark Mail) protocol are made public, it should be evaluated as an alternate or complementary strategy, as it aims to also provide Privacy, Integrity and in some cases Metadata Privacy (2.4) as well.

	Other projects to integrate with are LEAP or PEP, for similar reasons.

Goal 2.4: Metadata Privacy

	This requires anonymizing any secondary data collection performed by Mailpile, including:

	outgoing requests to search engines

	the Gravatar image database

	and PGP key servers

	We plan to use Tor for this.

	Once HTML mail is allowed, it will be important to anonymize or disable entirely downloads of remote images, as those can be used for tracking and targeting.

Goals 2.2, 2.3, 2.4: User Interface concerns

In general, Mailpile needs to clearly indicated where messages come from and who they are being sent to, as well as any information that is available about the privacy and authenticity of the mail. A balance needs to be struck between making things clear to non-technical users (reducing cognitive load and complexity), and not obscuring or omitting critical information.

Critical for Privacy, Integrity and Metadata Integrity is implementing a user interface which helps the user avoid making common mistakes. This includes things like detecting when previously encrypted content is being forwarded over an insecure channel, explaining what is going on when a signature fails to validate, as well as communicating the basic limitations of what is and what is not encrypted/signed.

For users for whom security is of greater importance, implementing an alternate user interface mode which simply disables and disallows all insecure communication protocols would greatly lessen the cognitive load and reduce the risk of user error. This mode cannot be the default, because that would render Mailpile useless for most people and nip in the bud any long term plans to incrementally improve security - and for similar reasons we need to strive to interoperate with other encrypted e-mail solutions.

Goals 3.1 and 3.2: Storage Privacy and Storage Integrity

These are largely a matter of using trusted hardware to store the e-mail (this means user education, packaging for consumer operating systems and collaboration with home-server projects), encrypting and checksumming data at rest, and deleting e-mail from upstream 3rd party mail servers.

The public-facing interfaces of Mailpile (if any) must also be secure against intrusions.

Goal 3.3: Availability

This requires detecting and repairing on-disk corruption, as well as having secure backups of all data, including the public and private key material. Users need to be educated and assisted with this.

For a more detailed discussion of data availability and backups, see this blog post [https://www.mailpile.is/blog/2016-11-23_Protecting_Your_Local_Data.html]. The “executive summary” is: we would like to use malleable encryption and error correction codes for local storage (so flipped bits do not destroy entire files) and leverage users’ existing IMAP accounts for automated remote backups. Secret-sharing with trusted contacts will be considered for passphrase/password recovery.

Goals 3.x: Remote access

Storage Privacy, Storage Integrity and Availability, in today’s world of smartphones and ubiquitous Internet access, also imply that many Mailpile instances will need to be reachable from the public Internet so users can interact with their mail even though they are not carrying it on their own person.

For non-technical users this means building in native support for accessing the Mailpile web interface (and REST API) as a Tor hidden service, over a relay system like PageKite, or other solutions which side-step the problems posed by IPv4 scarcity, ubiquitous firewalls and NAT (Note: The Mailpile strategy for remote access is incomplete and requires further research).

PGP Key Strategy

When deploying OpenPGP, the “chicken and egg” problem of encryption not being usable because nobody has PGP keys, and nobody having PGP keys because encryption is never used, needs to be resolved.

Further, the existing methods for assessing the authenticity of PGP keys have traditionally depended on centralized infrastructure (key servers) and the Web of Trust. We have rejected the Web of Trust as a reasonable model due to the fact that it publicizes the social graph of the participants. In accordance to goal 2.4 (Metadata Privacy), the social graph should be kept private. Keyservers may still be useful, but in order to acheive 2.4 care must be taken to communicate anonymously with them (over Tor or other anonymizing networks) so the keyserver itself cannot build profiles of who communicates with whom.

Mailpile’s PGP key strategy is as follows:

	Generate keys for all users when Mailpile is first installed.

	Help users make safe backups of their key material and passphrase.

	Sign mail by default, encrypt when the user requests it or there is a reasonable expectation that the recipient will be able to read it.

	Distribute public keys in an ad-hoc/opportunistic manner by attaching them to outgoing mail.

	Assess key validity using a “Trust upon first use/contact” (TOFU) strategy.

To elaborate on point 3, we consider it strategic (and critical to goal 2.3, Integrity) to make availability of encryption visible by signing. However, it would be counterproductive to encrypt mail when that is likely to inconvenience users to the point that they turn the security systems off. Of particular concern are the many users who read their mail both on a desktop/laptop and on a mobile phone - even if they have a PGP enabled mail client on one device, they may not have it on the other. Mailpile will need to build up an internal historic profile of how a contact communicates, so it can make a reasonable guess as to when it is “safe” to automatically encrypt outgoing mail.

Regarding 4: Attached keys (and signatures) are confusing to recipients that do not have an OpenPGP enabled e-mail client. We will embed sent keys (and signatures) in HTML wrappers that explain what the contents are for to reduce confusion, and will use similar logic as we use for suggesting encryption to determine whether to attach a key or not. See issue #1693 [https://github.com/mailpile/Mailpile/issues/1693] for details.

Regarding 5: Although TOFU is not impervious to all attacks, it has the benefit of being simple to implement, entirely decentralized (and thus capable of Internet-scale), and provides strong assurance that the person you are communicating with “today” is the same person as you communicated with “yesterday”. We believe this is sufficient for many common use cases and is a very clear improvement over today’s norm of unencrypted and easily forged mail. Secondary user interfaces will be provided for users that need stronger security assurances than can be provided by the TOFU model.

Within Mailpile, the trigger to import and begin trusting a key will be triggered by the user’s intent to send mail to someone. We do not want to blindly import all keys, as that opens up the keychain to automated denial-of-service and spam attacks. When a key is imported, historic data from previously received mail (signatures etc.) should be used to increase the odds that we import the correct key.

Our strategy for handling key expiration and revocation is incomplete at this time. It is also very likely that interoperating with other projects, in particular LEAP, will offer alternate models for handling key trust and discovery. This needs to be explored in more detail.

Roadmap

Beta release security goals

	Basic mail client (read, write, organize, search) and spam filter

	Render HTML-only mail as readable plain text

	Standard SMTP delivery, queue-and-retry

	Experimental 1st draft of SMTorP peer-to-peer message delivery

	Basic support for PGP encryption and signatures

	Basic support for PGP key discovery and importing (key servers and searching received mail for keys).

	Assist users with backing up critical key material and their passphrase

	Encryption by default of data at rest: downloaded mail, message metadata, search index and settings

	Prevent unauthorized access to the Mailpile user interface and REST API

	Prevent accidental exposure of Mailpile to public Internet (listens only on localhost by default)

	Show as correct contact information as possible (including e-mail address) on senders, recipients, etc.

1.0 release security goals

	Incremental improvements (bugfixes) to all Beta security deliverables

	Fully implement TOFU key validation and ad-hoc key distribution

	Implement 1st draft of historic security profiling, to enable automatic opportunistic encryption

	Fully integrate Tor for anonymized communication with key servers (and Gravatar, and others)

	Improve encryption of data at rest, so it does not increase the odds of data loss

	Implement HTML mail sanitization and sandboxing

	Implement attachment suppression/warnings based on sender reputation

	Implement delete-from-server in Mailpile’s IMAP and POP3 clients

Post 1.0 security goals

	Implement secure deleting of mail

	Implement native support for off-site backups (e.g. upload encrypted data to an IMAP server)

	Implement internal API for content (attachment) sanitzation

	Finalize SMTorP specification, enable opportunistic use of SMTorP by default

	Implement “secure UI mode” which disables insecure protocols

	Implement remote access protocols, so Mailpile can be left running on secure hardware in a secure location

	Implement automated test suites which test and verify the key aspects of Mailpile’s security systems, to prevent regressions

	Improve compatibility of Mailpile’s OpenPGP implementation with Google’s end-to-end, Mailvelope and other active e-mail crypto projects

Post 1.0 security ideas

	Implement DIME

	Implement LEAP

	Implement PEP

	PGP Smartcard support (#926 [https://github.com/pagekite/Mailpile/issues/926])

 [image: Security]

	[[Security roadmap]]

	[[Threat model]]

	[[GnuPG interface security]]

	[[Key management]]

	[[Datastore security]]

	Miscellaneous [[security notes]].

 [image: Features]

[image: Social Messaging]

We’ve been creating a plugin [https://github.com/mailpile/social-archiver] that downloads social media messages from Facebook (and eventually Twitter) and formats the messages so they can be imported into Mailpile or other standards compliant email applications.

Private conversations on social media (and chat clients) are usually many short messages in close succession. This is a fundamentally different type of conversation than the bulk of email conversations (longer and further spaced in time). However, the metadata around the two conversations is nearly identical, so identical that Facebook’s Conversation API spits out data that looks like email and has the attribute email:653983917@facebook.com to represent a participant.

Directory & File Name

How to store personal messages downloaded to a local disk. There are a few goals this should achieve

	Gracefully scale to 10 / 100s of thousands of messages

	Segment messages intelligently so that it informs of the conversations contained therein

	Be easy to index by other software applications and services

	Be easy for a person to browse via their operating system’s GUI file manager & the command line

Organization by date is the first most obvious idea

	/2014/05/conversation-id.file

	/2014/05/25/conversation-id.file

This would scale nicely for importing data from multiple different services

	/2014/05/facebook-conversation-id.file

	/2014/05/twitter-conversation-id.file

Another direction may be to organize based on conversation or contact id at the highest level, then cascade into more granular date directories.

	/contact-id/2014/05/

	/facebook-contact-id/2014/05/

One downside is, this is less intuitive to normal people browsing their filesystem and seeing long strings of numbers compared to the date hierarchy. However, many of these social sites have usernames of the person(s) in a thread, which are more human

	/rickjames/2014/05/conversation-id.file

	/rickjames/2014/05/facebook-conversation-id.file

	/rickjames-salliejoe-1202033566/facebook-conversation-id.file (third segment is a user with no username)

The “From” Value

The data that Facebook spits out for conversation from id looks like 653983917@facebook.com Twitter IDs do not resemble this structure at all, but can be forced to do so. Jabber addresses look like email addresses. All that is needed for nice standards compliant recording of these values is to prepend the Name and < > around the address.

	Brennan Novak <653983917@facebook.com>

	Brennan Novak <17958179@twitter.com>

	Brennan Novak <bnvk@jabber.ccc.de>

UNIX Mbox Format Messages

Conversation threads are segmented by data or number of messages into separate files that follow the UNIX Mbox format for storing emails.

	Each email message is a file that contains a segmented Facebook conversation thread

	Media are embedded as base64 encoded email attachments, they are also saved to disk as normal files

	The Plain text part of the email has a simple chat style conversation that should degrade nicely to older clients

	The HTML part of the email contains Microformats [http://microformats.org] data that can be extracted with a Microformats parser that maintains data integrity.

	This will allow random clients that don’t follow mime standards perfectly to still display all the data perfectly

	This keeps scale & load of single sentence messages in high volumes in a meaningful way

DRAFT / WORK IN PROGRESS

From social-archiver
To: Martin Luther King Jr. <mlkjr@facebook.com>
From: Malcom X <mx@facebook.com>
Cc: Chelsea Manning <cmanning@facebook.com>, Edward Snowden <esnowden@facebook.com>
Subject: Conversation with Martin Luther King Jr., Malcom X, Chelsea Manning, and Edward Snowden
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=RANDOMSTRING

--RANDOMSTRING
Content-Type: multipart/alternative; boundary=OTHERBOUNDARYSTRING
Content-Transfer-Encoding: 8bit

--OTHERBOUNDARYSTRING
Content-Type: text/plain; charset=utf-8
Content-Disposition: inline

May 25, 2014 at 3:01, Edward Snowden:
Hi everyone. I highly suggest we stop using Facebook and move to a platform with heavy encryption!

May 25, 2014 at 3:15, Chelsea Manning:
I definitely agree. Maybe we can host a crypto party at the hacker space?

May 25, 2014 at 3:17, Malcom X:
I'm not sure what encryption or crypto parties are, but I trust you two.

May 25, 2014 at 3:21, Martin Luther King Jr.:
I'll start organizing with the community and find a location to do this at! Chelsea, what is a hackerspace?

--OTHERBOUNDARYSTRING
Content-Type: text/html; charset=utf-8
Content-Disposition: inline

<div class="h-entry">
 <time class="dt-published" datetime="2014-05-25T03:01:00+00:00">May 25, 2014 at 3:01</time>

 Edward Snowden
 123456789
 https://facebook.com/123456789

 Hi everyone. I highly suggest we stop using Facebook and move to a platform with heavy encryption!
 m_mid.5d2c646
 inbox
 read
 source:web
</div>
<div class="h-entry">
 <time class="dt-published" datetime="2014-05-25T03:15:00+00:00">May 25, 2014 at 3:15</time>

 Chelsea Manning
 987654321
 https://facebook.com/987654321

 I definitely agree. Maybe we can host a crypto party at the hacker space?
 m_mid.453ic628
 inbox
 read
 source:web
</div>
<div class="h-entry">
 <time class="dt-published" datetime="2014-05-25T03:17:00+00:00">May 25, 2014 at 3:17</time>

 Chelsea Manning
 987612345
 https://facebook.com/987612345

 I'm not sure what encryption or crypto parties are, but I trust you two.
 m_mid.234w65d4
 inbox
 read
 source:web
</div>
<div class="h-entry">
 <time class="dt-published" datetime="2014-05-25T03:21:00+00:00">May 25, 2014 at 3:21</time>

 Martin Luther King Jr.
 34569871
 https://facebook.com/34569871

 I'll start organizing with the community and find a location to do this at! Chelsea, what is a hackerspace?
 m_mid.2342413313
 inbox
 read
 source:web
</div>

--OTHERBOUNDARYSTRING--

--RANDOMSTRING
Content-Type: image/jpeg
Content-Disposition: attachment
Content-Transfer-Encoding: base64

BASE64 ENCODED IMAGE DATA

--RANDOMSTRING
Content-Type: image/jpeg
Content-Disposition: attachment
Content-Transfer-Encoding: base64

BASE64 ENCODED IMAGE DATA

--RANDOMSTRING--

 [image: Features]

[image: Super Contacts]

Social networks like Facebook & Twitter solve the problem of displaying the most recently up to date contact info, avatars, and email addresses by centralizing all of the relevant profile data each time a client requests anything. Since decentralization is one of Mailpiles core goals, creating a centralized contact syncing server is out of the question. This is also why we’re not using CardDav. Note, we will probably end up supporting CardDav with a plugin, as there is demand for it.

Email, being decentralized, makes for interesting solutions to this problem. After some discussion, we’ve outlined a flow that we think solves this problem in a persistent (but not spammy way) while maintaining the beautifully decentralized nature of email.

DRAFT / WORK IN PROGRESS

	I e-mail you, my PGP key and VCard are attached and a header says “I am a Mailpile compatible address book”

	This could happen a) always, b) manually, or c) based on some clever heuristics

	Automatically attach details to messages sent to new people we haven’t contacted before

	Include a checkbox in the composer to manually toggle that on or off.

	We keep a list of the last 500 people to get sent keys/cards, and when people drop off the list they become candidates for getting things again.

	Your Mailpile sees the attachments, offers to update keychain and address book

	You say yes, and tick a little box that says “subscribe to updates” or “keep up to date automatically”

	Your Mailpile sends a specially formatted e-mail back to me, requesting a subscription to my key and contact info

	Time passes

	I update my photo and add a new address in my Mailpile

	Might want manual action “We noticed you updated your profile. Do you want to notify your subscribers of this update?”

	An updated VCard is sent to you automatically

 [image: Technical documentation]

This is a technical method of synchronizing with Thunderbird. If you use the mail sources setup, you can achieve the same result in a much simpler way. This documentation might help if you’re trying to do something weird.

A lot of people use Thunderbird (or Icedove) as their main mail application, and may wish to use Thunderbird as their mail importer and frontend during this phase in the development of Mailpile. There are two things Mailpile can import from Thunderbird presently: Thunderbird’s mboxes, which contain mail, and its Mork databases, which are contact address books.

Finding your profile

Your Thunderbird data resides in your Thunderbird profile directory, this is in different places on different operating systems:

	On Windows \AppData\Roaming\Thunderbird\Profiles\<Profile name>\

	On MacOS ~/Library/Thunderbird/Profiles/<Profile name>/

	Other MacOS ~/Library/Application Support/Thunderbird/Profiles/<Profile name>/

	And on other systems ~/.thunderbird/<Profile name>

The <Profile name> part is the name of the profile, since you can have multiple profiles in Thunderbird. Generally this name is something like a1b2c3de.default - i.e., some random characters. If you have multiple profiles, you might need to dig around a bit to find the one you want.

Importing mail

In the profile directory, there are folders called Mail, which contains POP3 mail, and ImapMail which contains your IMAP folders. In those directories there will two files and possibly a directory for each folder represented in Thunderbird’s folder list. The file with a “.msf” ending can be ignored, but the other file, with no particular ending, is a mailbox that you may wish to index.

The directory will have a “.sbd” ending, and inside it you will find any subfolders in the same format.

If you are using Linux or MacOS, you can find all of the mail directories by running:

$ find . -name "*.msf" | sed 's:.msf::'

from the Mail or ImapMail. Remember to expand to the full path.

Once you have the directories, add them to Mailpile using the add command, e.g.:

mailpile> add ~/.thunderbird/a1b2c3de.default/ImapMail/mail.example.com/INBOX

Do this once for each directory.

Setting IMAP to download

Note that if you’re using Thunderbird as an IMAP client, you need to make sure Thunderbird downloads all the mail. To do so, go to Thunderbird’s settings, choose Synchronization & Storage, and hit Advanced. There, make sure all the relevant folders are checked as “Download”.

Importing contacts

Thunderbird stores your contacts in two places in the profile: a file called abook.mab, and one called history.mab. The difference here is that abook.mab contains the address book that you have created through your interactions in Thunderbird, whereas history.mab has addresses that Thunderbird has collected from your e-mail.

To add them to Mailpile, use the prefs.vcard.importers.mork attribute in the settings. Simplest is to go to the Mailpile command line and type, e.g.:

mailpile> set prefs.vcard.importers.mork.0.filename = ~/.thunderbird/a1b2c3de.default/abook.mab

The 0 there is the number of the importer. If you have more than one Mork file, remember to increase that number for each one.

Synchronizing

Once you’ve done all of this, just rescan and you’ll be on your way.

 [image: Technical documentation]

Tags are a central concept in Mailpile’s design. Tagging of messages is used
in various ways to denote status, context, importance, display properties
and many other things.

Some tags are “user visible”, others are used internally by the app.

Tags may be assigned to messages manually by the user, automatically by
Mailpile internals or via [[Filters]].

Setting tag attributes

You can set tag attributes through the command line using ‘set’, if you know
the tag’s tid value: set tags.tid.field = value.

Tag metadata

Tag metadata falls into a couple of categories. Some pertains to how the
app treats the tag internally, other metadata describes to the user interface
how and where it should display the tag (if at all).

Display metadata

Field	Values	Default	Description
————-	—————-	——-	———————————————————
display	priority, tag, subtag, archive, invisible	tag	Display context in UI
display_order	float	0	The order of tags in a list
icon		“”	The icon to display with this tag
label	true, false	true	Whether the tag has a label
label_color	color	“”	Color the tag in a particular way
name	string	“”	A name for the tag
parent	b36int		Parent tag tid
slug	string	“”	A URL-friendly version of the name (unique)
url	url	“”	The URL to access the tag through

Internal technical metadata

Field	Values	Default	Description
————-	—————-	——-	———————————————————
flag_hides	true, false	false	Hide tagged messages from searches?
flag_editable	true, false	false	Mark tagged messages as editable?
search_terms	string	“in:%(slug)s”	The search query to perform to populate the tag
search_order	string	“”	Default search order
template	string	“index”	Default tag display template
tid	b36int	auto	Automatically generated unique identifier for the tag
type	tag, group, attribute, unread, drafts, blank, outbox, sent, replied, fwded, tagged, read, ham, trash, spam	tag	Tag type

Note: Generally, these technical metadata should be ignored by the
user-interface, aside from code which is directly manipulating them (e.g. a
“Tag settings” page), as they are for internal use by the Mailpile back-end
and are likely to change as the app develops.

type

Valid values: tag, folder, group, attribute, unread, drafts, trash, spam,
ham

The type field explains the role of the tag. The most basic and default type
is ‘tag’, with other types having other roles.

	tag: Non-exclusive identifier. A message can have multiple ‘tag’-type tags simultaneously.

	folder: Exclusive identifier. A message can not exist in two ‘folder’-type tags simultaneously.

	group: Used to delineate a social group, based on senders and recipients.

	attribute: An internally meaningful behavioral characteristic that applies to the messages.

	unread: An attribute suggesting that a message is unread.

	drafts: An attribute suggesting that a message is a draft.

	trash: A non-exclusive identifier of messages to be discarded.

	spam: Junk messages.

	ham: Explicitly non-junk messages.

display

Valid values: priority, tag, subtag, archive, invisible

	priority: Of high relevance to the user

	tag: A normal tag (default)

	subtag: A tag with a parent, for treelike displays.

	archive: An archive, used to store older messages but not intended to display generally.

	invisible: A tag that never displays.

display_order

icon

label

label_color

name

parent

slug

stats

There are three statistics on each tag, all automatically generated.

	all: The number of messages with this tag.

	new: The number of messages with this tag that are also tagged as unread.

	not: The number of messages in the pile that do not have this tag.

tid

url

search_terms

search_order

flag_hides

flag_editable

template

 [image: Technical documentation]

Getting Started

	Make sure you have a instance of Mailpile installed and working properly

	Make sure you have completed steps in our [[Front End Development Guide]]

	Copy the default-theme located in shared-data/ to shared-data/your-theme/

Architecture

Mailpile supports themes. They live in shared-data/, so the directory shared-data/default-theme contains the theme named default-theme. Note that any files living in a theme folder will be accessible via the /static/* URL in the HTTP interface. It is not currently possible to access files via the HTTP interface from themes other than the current theme.

Mailpile’s default-theme theme contains:

	css/ all the CSS stylesheets get compiled to

	html/ all Jinja2 HTML templates

	img/ all images

	js/ all the JavaScript code

	less/ all of the LESS [http://lesscss.org]

	webfonts/ all of custom fonts & icon fonts

	theme.json a manifest file specifies strings, icons, and colors for JS to access

Changing Themes

Currently, you can only change the them from the Mailpile CLI. To do so type

mailpile> set sys.path.html_theme=/full/path/to/your-theme

That is the structure that Mailpile’s theme ships with, but when making your own theme, just copy this directory and organize your assets however you like.

Additional Themes

	ArchivePile [https://github.com/TransparencyToolkit/ArchivePile/] - a read-only theme for browsing archives

 [image: Security]

Threat Model

A preliminary round of requirements threat modeling, using the Trike
methodology [http://octotrike.org/] has been completed. This has given
us an initial set of Security Objectives (see below).

Eleanor Saitta [https://twitter.com/Dymaxion] has been guiding this
process (and being helpful about security stuff in general).

How to use Security Objectives

	During design work, the Security Objectives should be kept in mind and
reviewed before a design is finalized. Often they will be obvious, but they
should help us avoid forgetting important things.

	When designing and implementing the security test framework, the Security
Objectives should inform what is tested for.

	Security Objectives can be used to rank and prioritize bug reports.

	Security Objectives define what problems Mailpile is and is not solving, in
the security realm. This is what the user interface should communicate, both
what is protected against, and what is not.

What happens next?

The next step of Threat Modeling is to do the Architecture Model, which has
the following benefits:

	Help formalize what workflows within the system actually look like - in
this case what the software does.

	Helps identify places in the architecture where systemic violations of
Security Objectives might occur - finding design bugs.

	Identify and document assumed security properties of systems we rely on -
what is out of scope, and what can break us? What risks are we accepting,
what can and what can we not do?

	For any workflow in the system, the Architecture Model identifies what can
go wrong at any given step. During development, this lets us have a list of
what checks need to be performed and what invariants need to be maintained.
During test, that gives us a complete list of which things need to be
tested for. Helps interpret and triage found bugs and evaluate their actual
impact and priority.

	Helps write documentation which explains security trade-offs.

When?

The Architecture Model is pretty involved and Mailpile is currently not ready
to start this work, things are still very much in flux and we are still
deciding which features to provide in the first release - our requirements
have not stabilized. However, the Architecture Model is there to help identify
design flaws and from that perspective, the sooner work begins, the better.

So we will revisit this and begin work after the Alpha release.

Architecture Model work can happen in stages and we do expect that to be the
case for Mailpile.

Our 1st Threat Model

1st Pass, Inputs

In the first round, we identified the following things:

	Actors - People and robots

	Owner

	Mail Sender

	Mail Recipient

	Mail Admin

	Internet Mailserver

	Anonymous

	Assets - things we care about

	Message Content

	Pile

	Contact

	Group

	Workflow

	Message Identity

	Who can acton what, when? (matrix)

	Threats, ranked by severity and classified by type

	Security objectives

1st Pass, Security Objectives

The Security Objectives are the result of evaluating what the Actors
should or should not be able to do with our Assets.

Elevation of Privilege around message integrity and confidentiality

SO1.1: Mailpile shall not allow Anonymous, Sender, Mail Admin or
Recipients to read, update or delete Message Content or Message Identity. If
such an attacker tries, Mailpile shall thwart the attack.

Denial of Service around reading and sending mail

SO2.1: Mailpile shall not allow Anonymous, Sender, or Mail Admin to prevent
Owner from reading Message Content. If such an attacker tries, Mailpile shall
thwart the attack.

SO2.2: Mailpile shall not allow Anonymous, Sender, Mail Admin, or
Recipient to prevent Owner from creating Message Content and Identity. If such
an attacker tries, Mailpile shall thwart the attack.

SO2.3: Mailpile shall not allow Anonymous, Sender, Mail Admin, or Recipient
to prevent Owner from executing a Workflow. If such an attacker tries,
Mailpile shall thwart the attack.

SO2.4: Mailpile shall not allow Anonymous, Sender, Mail Admin, or Recipient
to prevent Owner from executing a Workflow. If such an attacker tries,
Mailpile shall thwart the attack.

Mail forgery and prevention of forgery detection

SO3.1: Mailpile shall not allow Anonymous, Sender, or Mail Admin to update
a contact or group. If such an attacker tries, Mailpile shall thwart the
attack.

SO3.2: Mailpile shall not allow Anonymous, Sender, or Mail Admin to create
Message Content with an incorrect Message Identity. If such an attacker tries,
Mailpile shall thwart the attack.

SO3.3: Mailpile shall not allow Anonymous, Sender, or Mail Admin to
prevent Owner from reading a Contact or Group. If such an attacker tries,
Mailpile shall thwart the attack.

Spamming

SO4.1: Mailpile shall not allow Owner, Sender, Mail Admin, or Anonymous to
prevent others from creating, reading, updating, or deleting other
applications data in Internet Mailservers. If such an attacker tries, Mailpile
shall rate limit the attack.

 [image: Technical documentation]

Most of the translation work is happening on Transifex, at https://www.transifex.com/otf/mailpile/

Contributing

To contribute, it’s best to create a transifex account there and start working on the strings.

Using/testing translations

By now, the process is a bit rough:

	open a transifex account

	install the transifex client on your machine. (ex: on debian apt install transifex-client)

	Fill ~/.transifexrc [https://docs.transifex.com/client/client-configuration] with your transifex credentials

	make transifex will retrieve the translations with more than 50% of strings already translated

	make compilemessages will make them available to Mailpile

	Start mailpile, it should start with the locale of your system (if available).

If you want to force a different locale than your system locale (ex: fr_FR.UTF-8), run mailpile that way:

LANG=fr_FR.UTF-8 ./mp

 [image: Technical documentation]

This is currently a catch all page for people who run into issues with new or existing installs of Mailpile that get broken due to upgrading and such! Feel free to submit situations you encounter and how you manage to resolve the issue.

	Search Index and history

	Mailboxes and Mail Sources

	Checking & Fixing Mailboxes

	Backing up (and restoring) downloaded mail

	Downloaded mail seems wonky

	ImportError when running ./mp inside a virtualenv

	Notification messages are acting wonky

	Delete & Start from Scratch

If you’re comfortable on the command line (CLI), make sure you have debugging enabled [https://github.com/mailpile/Mailpile/wiki/Development-guide#turning-on-debugging] as it will greatly increase figuring how what isn’t working

Any filesystem operation on mailpile data files (those lying in your ~/.local/share/mailpile) should not be done on a running mailpile.

Search Index and History

I broke my search index, how to fix it ?

If you use development version and follow updates, it’s possible your search index get damaged at some point (e.g: format change), the symptom is only recent messages are searchable. To rebuild your whole search index:

	Ensure mailpile is shut down

	remove ~/.local/share/Mailpile/default/kw-journal.dat file (if any)

	remove ~/.local/share/Mailpile/default/search/ directory

	start mailpile and login

	in mailpile shell, do an empty search: search

	in mailpile shell, do a rescan all and be patient :).

This operation is harmless (does not destroy tag information or anything else), but it may take a while!

I broke my search history, how to fix it ?

Your search history may get damaged at some point (e.g: data corruption), the symptom is an error at login, like ValueError: insecure string pickle. To flush your search history.

	Ensure mailpile is shut down

	remove ~/.local/share/Mailpile/default/search-history.dat file

	start mailpile and login

	in mailpile shell, do an empty search: search

Mailboxes and Mail Sources

How do I look at my mail source settings?

You can use the print command to print out the relevant section(s) of the Mailpile configuration. Since the output can be quite verbose, you may prefer to use the -flat argument to avoid looking at all the data at once. If you need to double-check your passwords, you’ll use the -secrets argument.

Some examples:

List which mail sources exist
mailpile> print -flat sources
{
 "sources": {
 "9e6bc04lzz8": "{ ... }",
 "x7skvlsdk3f": "{ ... }"
 }
}

Examine one of them in more detail
mailpile> print -flat sources.9e6bc04lzz8
{
 "sources.9e6bc04lzz8": {
 "discovery": "{ ... }",
 "enabled": true,
 "host": "imap.gmail.com",
 "interval": 300,
 "keepalive": false,
 "mailbox": "{ ... }",
 "name": "GMail",
 "password": "(SUPPRESSED)",
 "port": 993,
 "post_command": "",
 "pre_command": "",
 "protocol": "imap_ssl",
 "username": "somemailpileuserorother@gmail.com"
 }
}

To look at the password, you could do this:
mailpile> print -flat -secrets sources.9e6bc04lzz8

or this:
mailpile> print sources.9e6bc04lzz8.password

Checking & Fixing Mailboxes

There is a tool which exists that checks and attempts to fix issues with given mailboxes such as duplicates and such. To use this functionality run the following command whereby 001a is the mailbox id:

mailpile> plugins/load hacks
mailpile> hacks/chkmbx -clean 001a

Backing up (and restoring) downloaded mail

It is a good idea to make a backup of any mail you have downloaded, before performing manual surgery on your Mailpile’s mailboxes and mail sources. The steps are as follows:

	Use print to figure out the mailbox ID or IDs you want to back up

	Use order to disable threading in search results

	Use search to find the mail in that mailbox

	Use export to make a copy of the mail

	Use add to re-add the exported mail to your Mailpile (optional)

Note: this procedure applies to any mail you can find with a search, not just mail source data - just skip step 1 and use what ever search describes the mail you want backed up / exported.

Examples:

Print a list of mailboxes associated with a particular mail source
The list may be long, in this example we just show the INBOX entry
mailpile> print sources.9e6bc04lzz8.mailbox
...
 "0006": {
 "apply_tags": {
 "0000": "c"
 },
 "local": "/home/user/.local/share/Mailpile/default/mail/df30f",
 "name": "INBOX",
 "path": "@0006",
 "policy": "read",
 "primary_tag": "16",
 "process_new": true
 },
...

Disable threading in this session
mailpile> order rev-flat-date

Search for mail found in that mailbox:
mailpile> search mailbox:0006

If you want to include messages that have been trashed or marked
as spam, you need to do this:
mailpile> search all:mail +in:trash +in:spam mailbox:0006

Save the results of the previous search to a file
mailpile> export -flat all mbox:/home/user/exported-0006.mbx

If you only want to save messages 5, 6 and 11:
mailpile> export -flat 5 6 11 mbox:/home/user/exported-0006.mbx

If you want to back up entire conversations (potentially including
mail not matching the original search query), omit the -flat argument
mailpile> export 5 6 11 mbox:/home/user/exported-0006.mbx

To re-import exported mail, put the mbox file somewhere nice and:
mailpile> add /path/to/exported-0006.mbx

Downloaded mail seems wonky

If you have the feeling that too much or too little mail is being downloaded, you can try to reset the local copy of a remote mail source and see if things behave better. The procedure is as follows:

	Find the mailbox ID of the copy you want reset

	Make a backup of the mail (optional, see above)

	Shut down Mailpile

	Delete the pickled mailbox state file, .../Mailpile/default/pickled-mailbox.XXID

	Delete the downloaded mail, .../Mailpile/default/mail/XXXXX

	Restart Mailpile

	Add the backups as a local mailbox (optional)

	Rescan your mail

Note that this procedure inevitably will force Mailpile to download your mail all over again. If you have deleted things from the IMAP server, you will lose them permanently unless you make backups. This can be quite annoying, as metadata about those messages will remain in the search index, potentially leading to ghost results.

See above for hints on how to find your Mailpile folder and for the basics on finding your mail source settings.

Examples of relevant commands:

Finding mailbox details - here you can see the mailbox with the ID 0006
stores local mail here: /home/user/.local/share/Mailpile/default/mail/df30f
#
mailpile> print sources.SOURCEID.mailbox
...
 "0006": {
 "apply_tags": {
 "0000": "c"
 },
 "local": "/home/user/.local/share/Mailpile/default/mail/df30f",
 "name": "INBOX",
 "path": "@0006",
 "policy": "read",
 "primary_tag": "16",
 "process_new": true
 },
...

Rescanning your mail (press CTRL-C to abort at any time)
mailpile> rescan both

ImportError when running ./mp inside a virtualenv

$./mp
ImportError: No module named jinja2

Check that you’re using a recent version of virtualenv (1.7 doesn’t work, 1.11 does).

Virtualenv works by overriding the python command in your current shell by modifying PATH.

Older versions did not override python2. The mp script specifies python2 as its interpreter. So with old versions of virtualenv, when your shell invokes python2 it runs outside of the virtualenv and without your dependencies.

#1106 [https://github.com/mailpile/Mailpile/issues/1106] shows the fix on Ubuntu 12.04

Notification messages are acting wonky

There are cases when a notifications from a completed or uncompleted task keep popping up in your screen. You can try running the following command from Mailpile’s CLI:

mailpile> eventlog/cancel all

If you feel confident reading debugging messages, you can also try running the following to see if it leads to any clues:

mailpile> eventlog/watch

Delete & Start from Scratch

If you decide you just want to say “screw it” and start from scratch with the most recent codebase of Mailpile, you can delete EVERYTHING pertaining to your install by deleting the following directory pertaining to your operating system:

	On Linux the ~/.local/share/Mailpile/

	On macOS the ~/Libary/Application Support/Mailpile/

	On all operating systems check for ~/.mailpile

Mailpile URL map (autogenerated by mailpile/urlmap.py)

The URL space is divided into three main classes:

	Versioned API endpoints

	Nice looking shortcuts to common data

	Shorthand paths to API endpoints (current version only)

Depending on the endpoint, it is often possible to request alternate
rendering templates or generate output in a variety of machine readable
formats, such as JSON, XML or VCard. This is done by appending a
psuedo-filename to the path. If ending in .html, the full filename is
used to choose an alternate rendering template, for other extensions the
name is ignored but the extension used to choose an output format.

The default rendering for API endpoints is JSON, for other endpoints
it is HTML. It is strongly recommended that only the versioned API
endpoints be used for automation.

The API paths (version=0, JSON output)

GET (also accept POST)

/api/0/abortabortabort/ ?no_save=[Do not try to save state]
/api/0/auth/login/
... POST only: user=[User to authenticate as]&pass=[Password or passphrase]
/api/0/auth/logout/ [<session/ID>]/
/api/0/cached/ [<cache-id>]/
 ?id=[Cache ID of command to redisplay]
/api/0/contacts/ [--lines]/[<terms>]/
 ?q=[search terms]&count=[how many to display (default=40)]&offset=[skip how many in the display (default=0)]&format=[lines or mpCard (default)]
/api/0/contacts/add/ [all]/<msgs>/OR/<email>/=/<name>/
... POST only: note=[Note about contact]&mid=[Message ID]&email=[E-mail address]&name=[Contact name]
/api/0/contacts/import/ [<parameters>]/
/api/0/contacts/importers/
/api/0/contacts/view/ [<email>]/
/api/0/crypto/gpg/keylist/<address>/
 ?address=[E-mail address]
/api/0/crypto/gpg/keylist/secret/<address>/
/api/0/crypto/gpg/searchkey/<terms>/
 ?q=[search terms]
/api/0/crypto/gpg/statistics/<address>/
 ?address=[E-mail address]
/api/0/crypto/keylookup/ <address>/[<allowremote>]/
 ?allowremote=[Whether to permit remote key lookups (defaults to true)]&address=[The nick/address to find a key for]
/api/0/crypto_policy/ [<emailaddresses>]/
/api/0/eventlog/ [incomplete]/[wait]/[<count>]/[<field>=<val>/...]/
 ?private_data=[var:value]&source=[source class]&flag=[require a flag]&flags=[match all flags]&event_id=[an event ID]&since=[wait for new data?]&data=[var:value]&incomplete=[incomplete events only?]&wait=[seconds to wait for new data]
/api/0/filter/list/ [<search>|=<id>|@<type>]/
 ?search=[Text to search for]&type=[Filter type]&id=[Filter ID]
/api/0/help/ [<command-group>]/
/api/0/help/splash/
/api/0/help/urlmap/ [<prefix>]/
/api/0/help/variables/
/api/0/jsapi/ ?ts=[Cache busting timestamp]
/api/0/message/ [raw]/<message>/
 ?mid=[metadata-ID]
/api/0/message/download/ <msgs>/<att>/[><fn>]/
/api/0/message/draft/ [<messages>]/
 ?mid=[metadata-ID]
/api/0/page/
/api/0/profiles/ [--lines]/[<terms>]/
 ?q=[search terms]&count=[how many to display (default=40)]&offset=[skip how many in the display (default=0)]&format=[lines or mpCard (default)]
/api/0/profiles/add/ [all]/<msgs>/OR/<email>/=/<name>/
... POST only: note=[Note about contact]&route_id=[Route ID for sending mail]&mid=[Message ID]&name=[Contact name]&email=[E-mail address]
/api/0/profiles/choose_from/<MIDs/or/addresses>/
 ?no_from=[Ignore From: lines]&mid=[Message ID]&email=[E-mail address]
/api/0/profiles/view/ <nickname>/
/api/0/ps/
/api/0/quitquitquit/
/api/0/search/ [@<start>]/<terms>/
 ?qr=[search refinements]&end=[end position]&q=[search terms]&start=[start position]&full=[return all metadata]&context=[refine or redisplay an older search]&order=[sort order]
/api/0/search/address/ [<terms>]/
 ?q=[search terms]&count=[number of results]&ms=[deadline in ms]&offset=[offset results]
/api/0/settings/ [-short|-secrets|-flat]/<var>/
 ?var=[section.variable]&secrets=[Set True to show passwords and other secrets]&short=[Set True to omit unchanged values (defaults)]
... POST only: user=[Authenticate as user]&pass=[Authenticate with password]
/api/0/setup/ [do_gpg_stuff]/
 ?_path=[Redirect path]
... POST only: advance=[Yes or No, advance setup flow]&testing=[Yes or No, if testing]
/api/0/setup/configure_key/?_path=[Redirect path]
... POST only: advance=[Yes or No, advance setup flow]&testing=[Yes or No, if testing]
/api/0/setup/crypto/ ?_path=[Redirect path]
... POST only: advance=[Yes or No, advance setup flow]&passphrase_confirm=[Confirm the passphrase]&encrypt_mail=[y/n: encrypt locally stored mail?]&testing=[Yes or No, if testing]&encrypt_misc=[y/n: encrypt plugin and misc data?]&encrypt_index=[y/n: encrypt search index?]&index_encrypted=[y/n: index encrypted mail?]&encrypt_events=[y/n: encrypt event log?]&passphrase=[Specify a passphrase]&choose_key=[Select an existing key to use]&encrypt_vcards=[y/n: encrypt vcards?]
/api/0/setup/email_servers/?email=[E-mail address]&_path=[Redirect path]
... POST only: advance=[Yes or No, advance setup flow]&testing=[Yes or No, if testing]
/api/0/setup/profiles/ ?_path=[Redirect path]
... POST only: note=[Profile note]&advance=[Yes or No, advance setup flow]&name=[Name associated with this e-mail]&route_id=[Route ID for sending mail]&testing=[Yes or No, if testing]&pass=[Password for remote accounts]&email=[Create a profile for this e-mail address]
/api/0/setup/welcome/ ?_path=[Redirect path]
... POST only: advance=[Yes or No, advance setup flow]&testing=[Yes or No, if testing]&language=[Language selection]
/api/0/tags/ [<wanted>|!<wanted>]/[...]/
/api/0/tags/add/ <tag>/
... POST only: magic_terms=[magic search terms associated with this tag]&label_color=[the color of the label]&name=[tag name]&template=[tag template type]&display=[tag display type]&parent=[parent tag ID]&label=[display as label in search results, or not]&search_terms=[default search associated with this tag]&slug=[tag slug]&icon=[icon-tag]

POST

/api/0/auth/login/
... POST only: user=[User to authenticate as]&pass=[Password or passphrase]
/api/0/auth/logout/ [<session/ID>]/
/api/0/contacts/add/ [all]/<msgs>/OR/<email>/=/<name>/
... POST only: note=[Note about contact]&mid=[Message ID]&email=[E-mail address]&name=[Contact name]
/api/0/contacts/remove/ <email|x-mailpile-rid>/
... POST only: rid=[delete by x-mailpile-rid]&email=[delete by e-mail]
/api/0/crypto/gpg/importkey/<key_file>/
 ?key_data=[Contents of public key to be imported]&key_file=[Location of file containing the public key]
/api/0/crypto/gpg/importkeyfrommail/<mid>/
 ?att=[Attachment ID]&mid=[Message ID]
/api/0/crypto/gpg/receivekey/<keyid>/
 ?keyid=[ID of key to fetch]
/api/0/crypto/gpg/signkey/<keyid>/[<signingkey>]/
 ?signingkey=[The key to sign with]&keyid=[The key to sign]
/api/0/crypto/keyimport/ <address>/<fingerprint,...>/<origins/...>/
... POST only: fingerprints=[List of fingerprints we want]&origins=[List of origins to search]&address=[The nick/address to find a key for]
/api/0/crypto_policy/set/ <email/address>/none|sign|encrypt|sign-encrypt|default/
 ?policy=[new policy]&email=[contact email]
/api/0/eventlog/cancel/ all|<eventIDs>/
... POST only: event_id=[Event ID]
/api/0/eventlog/undo/ <eventID>/
... POST only: event_id=[Event ID]
/api/0/filter/list/ [<search>|=<id>|@<type>]/
 ?search=[Text to search for]&type=[Filter type]&id=[Filter ID]
/api/0/groups/addlines/ <email>/<[[<NR>]=]line>/.../
... POST only: name=[Line name]&value=[Line value]&replace=[int=replace line by number]&replace_all=[If nonzero, replaces all lines]&rid=[update by x-mailpile-rid]&email=[update by e-mail]
/api/0/message/attach/ <messages>/[<path/to/file>]/
... POST only: file-data=[file data]&mid=[metadata-ID]&name=[(ignored)]
/api/0/message/compose/ [ephemeral]/
... POST only: body=[..]&from=[..]&cid=[canned response metadata-ID]&cc=[..]&encryption=[..]&mid=[metadata-ID]&bcc=[..]&to=[..]&attachment=[..]&attach-pgp-pubkey=[..]&subject=[..]
/api/0/message/forward/ [att|ephemeral]/<messages>/
 ?atts=[forward attachments]&ephemeral=[ephemerality]&mid=[metadata-ID]&cid=[canned response metadata-ID]
/api/0/message/reply/ [all|ephemeral]/<messages>/
 ?reply_all=[reply to all]&ephemeral=[ephemerality]&mid=[metadata-ID]&cid=[canned response metadata-ID]
/api/0/message/send/ <messages>/[<emails>]/
... POST only: to=[recipients]&mid=[metadata-ID]
/api/0/message/unattach/ <mid>/<atts>/
... POST only: att=[Attachment IDs or filename]&mid=[metadata-ID]
/api/0/message/unthread/
... POST only: mid=[message-id]
/api/0/message/update/ <messages>/<<filename>/
... POST only: body=[..]&file-data=[file data]&from=[..]&name=[(ignored)]&cc=[..]&encryption=[..]&mid=[metadata-ID]&bcc=[..]&to=[..]&attachment=[..]&attach-pgp-pubkey=[..]&subject=[..]
/api/0/message/update/send/
... POST only: body=[..]&file-data=[file data]&from=[..]&name=[(ignored)]&cc=[..]&encryption=[..]&mid=[metadata-ID]&bcc=[..]&to=[..]&attachment=[..]&attach-pgp-pubkey=[..]&subject=[..]
/api/0/profiles/add/ [all]/<msgs>/OR/<email>/=/<name>/
... POST only: note=[Note about contact]&route_id=[Route ID for sending mail]&mid=[Message ID]&name=[Contact name]&email=[E-mail address]
/api/0/profiles/remove/ <email|x-mailpile-rid>/
... POST only: rid=[delete by x-mailpile-rid]&email=[delete by e-mail]
/api/0/rescan/ [full|vcards|vcards:<src>|both|mailboxes|sources|<msgs>]/
... POST only: which=[[full|vcards|vcards:<src>|both|mailboxes|sources|<msgs>]]
/api/0/settings/ [-short|-secrets|-flat]/<var>/
 ?var=[section.variable]&secrets=[Set True to show passwords and other secrets]&short=[Set True to omit unchanged values (defaults)]
... POST only: user=[Authenticate as user]&pass=[Authenticate with password]
/api/0/settings/add/ <section.variable>/<value>/
... POST only: section.variable=[value|json-string]
/api/0/settings/set/ <section.variable>/<value>/
... POST only: _section=[common section, create if needed]§ion.variable=[value|json-string]
/api/0/settings/unset/ <var>/
... POST only: var=[section.variables]
/api/0/setup/configure_key/?_path=[Redirect path]
... POST only: advance=[Yes or No, advance setup flow]&testing=[Yes or No, if testing]
/api/0/setup/crypto/ ?_path=[Redirect path]
... POST only: advance=[Yes or No, advance setup flow]&passphrase_confirm=[Confirm the passphrase]&encrypt_mail=[y/n: encrypt locally stored mail?]&testing=[Yes or No, if testing]&encrypt_misc=[y/n: encrypt plugin and misc data?]&encrypt_index=[y/n: encrypt search index?]&index_encrypted=[y/n: index encrypted mail?]&encrypt_events=[y/n: encrypt event log?]&passphrase=[Specify a passphrase]&choose_key=[Select an existing key to use]&encrypt_vcards=[y/n: encrypt vcards?]
/api/0/setup/profiles/ ?_path=[Redirect path]
... POST only: note=[Profile note]&advance=[Yes or No, advance setup flow]&name=[Name associated with this e-mail]&route_id=[Route ID for sending mail]&testing=[Yes or No, if testing]&pass=[Password for remote accounts]&email=[Create a profile for this e-mail address]
/api/0/setup/test_route/ ?_path=[Redirect path]
... POST only: username=[User name]&advance=[Yes or No, advance setup flow]&protocol=[Messaging protocol]&name=[Route name]&testing=[Yes or No, if testing]&route_id=[ID of existing route]&host=[Host]&command=[Shell command]&password=[Password]&port=[Port]
/api/0/setup/welcome/ ?_path=[Redirect path]
... POST only: advance=[Yes or No, advance setup flow]&testing=[Yes or No, if testing]&language=[Language selection]
/api/0/tag/ <[+|-]tags>/<msgs>/
... POST only: add=[tags]&del=[tags]&mid=[message-ids]&context=[search context, for tagging relative results]
/api/0/tag/later/ <seconds>/<[+|-]tags>/<msgs>/
... POST only: add=[tags]&del=[tags]&mid=[message-ids]&context=[search context, for tagging relative results]
/api/0/tag/tmp/ <seconds>/<[+|-]tags>/<msgs>/
... POST only: add=[tags]&del=[tags]&mid=[message-ids]&context=[search context, for tagging relative results]
/api/0/tags/add/ <tag>/
... POST only: magic_terms=[magic search terms associated with this tag]&label_color=[the color of the label]&name=[tag name]&template=[tag template type]&display=[tag display type]&parent=[parent tag ID]&label=[display as label in search results, or not]&search_terms=[default search associated with this tag]&slug=[tag slug]&icon=[icon-tag]
/api/0/tags/delete/ <tag>/
... POST only: tag=[tag(s) to delete]
/api/0/vcards/addlines/ <email>/<[[<NR>]=]line>/.../
... POST only: name=[Line name]&value=[Line value]&replace=[int=replace line by number]&replace_all=[If nonzero, replaces all lines]&rid=[update by x-mailpile-rid]&email=[update by e-mail]

UPDATE

/api/0/groups/addlines/ <email>/<[[<NR>]=]line>/.../
... POST only: name=[Line name]&value=[Line value]&replace=[int=replace line by number]&replace_all=[If nonzero, replaces all lines]&rid=[update by x-mailpile-rid]&email=[update by e-mail]
/api/0/message/attach/ <messages>/[<path/to/file>]/
... POST only: file-data=[file data]&mid=[metadata-ID]&name=[(ignored)]
/api/0/message/unattach/ <mid>/<atts>/
... POST only: att=[Attachment IDs or filename]&mid=[metadata-ID]
/api/0/message/unthread/
... POST only: mid=[message-id]
/api/0/message/update/ <messages>/<<filename>/
... POST only: body=[..]&file-data=[file data]&from=[..]&name=[(ignored)]&cc=[..]&encryption=[..]&mid=[metadata-ID]&bcc=[..]&to=[..]&attachment=[..]&attach-pgp-pubkey=[..]&subject=[..]
/api/0/message/update/send/
... POST only: body=[..]&file-data=[file data]&from=[..]&name=[(ignored)]&cc=[..]&encryption=[..]&mid=[metadata-ID]&bcc=[..]&to=[..]&attachment=[..]&attach-pgp-pubkey=[..]&subject=[..]
/api/0/settings/add/ <section.variable>/<value>/
... POST only: section.variable=[value|json-string]
/api/0/settings/set/ <section.variable>/<value>/
... POST only: _section=[common section, create if needed]§ion.variable=[value|json-string]
/api/0/vcards/addlines/ <email>/<[[<NR>]=]line>/.../
... POST only: name=[Line name]&value=[Line value]&replace=[int=replace line by number]&replace_all=[If nonzero, replaces all lines]&rid=[update by x-mailpile-rid]&email=[update by e-mail]

DELETE

/api/0/contacts/remove/ <email|x-mailpile-rid>/
... POST only: rid=[delete by x-mailpile-rid]&email=[delete by e-mail]
/api/0/profiles/remove/ <email|x-mailpile-rid>/
... POST only: rid=[delete by x-mailpile-rid]&email=[delete by e-mail]
/api/0/tags/delete/ <tag>/
... POST only: tag=[tag(s) to delete]

Pretty shortcuts (HTML output)

/ Redirects to /in/inbox/ for now. (FIXME)
/in/ Map /in/TAG_NAME/[@<pos>]/ to tag searches.
/static/ RESERVED FOR LATER.
/thread/ Map /thread/METADATA_ID/... to view or extract commands.

Default command URLs (HTML output)

These accept the same arguments as the API calls above.

/abortabortabort/
/auth/login/
/auth/logout/
/cached/
/contacts/
/contacts/add/
/contacts/import/
/contacts/importers/
/contacts/remove/
/contacts/view/
/crypto/gpg/importkey/
/crypto/gpg/importkeyfrommail/
/crypto/gpg/keylist/
/crypto/gpg/keylist/secret/
/crypto/gpg/receivekey/
/crypto/gpg/searchkey/
/crypto/gpg/signkey/
/crypto/gpg/statistics/
/crypto/keyimport/
/crypto/keylookup/
/crypto_policy/
/crypto_policy/set/
/eventlog/
/eventlog/cancel/
/eventlog/undo/
/filter/list/
/groups/addlines/
/help/
/help/splash/
/help/urlmap/
/help/variables/
/jsapi/
/message/
/message/attach/
/message/compose/
/message/download/
/message/draft/
/message/forward/
/message/reply/
/message/send/
/message/unattach/
/message/unthread/
/message/update/
/message/update/send/
/page/
/profiles/
/profiles/add/
/profiles/choose_from/
/profiles/remove/
/profiles/view/
/ps/
/quitquitquit/
/rescan/
/search/
/search/address/
/settings/
/settings/add/
/settings/set/
/settings/unset/
/setup/
/setup/configure_key/
/setup/crypto/
/setup/email_servers/
/setup/profiles/
/setup/test_route/
/setup/welcome/
/tag/
/tag/later/
/tag/tmp/
/tags/
/tags/add/
/tags/delete/
/vcards/addlines/

 [image: Guide]

WAT? Mailpile is an amazing email client made with much love, care, and awesomeness- why would you ever want to uninstall Mailpile? Well, OK, we are still a little rough around the edges. For example, we have not even had a proper release yet.

So, if you want to delete your install we understand…

Uninstalling manually

IMPORTANT: We recommend making backups of all data before deleting, in case you make a mistake and end up regretting it! Alternately, consider renaming folders and files instead of deleting them.

To uninstall Mailpile do the following:

	Delete the Mailpile app itself. Depending on how you installed, that is either:

	The Mailpile folder you cloned from Github

	The Mailpile.app in Applications, on a Mac

	Use the uninstaller app created during installation on Windows

	Delete your Mailpile data folder, it lives in your home directory.

	On *nix system that is usually /home/username/.local/share/Mailpile

	On a Mac that is /Users/username/Library/Application Support/Mailpile

	On a Windows XP and earlier: C:\Documents and Settings\username\Application Data\Mailpile

	On a Windows Vista and later: C:\Users\username\AppData\Roaming\Mailpile

	Note that early versions of Mailpile (pre-beta) stored data $HOME/.mailpile (the value of $HOME depends on your operating system), so check that location as well.

	You may need to delete your GnuPG data as well, if you have lost the passphrase to your PGP key.

	On Linux and the Mac, that is probably a folder named $HOME/.gnupg

	On a Windows XP and earlier: C:\Documents and Settings\username\Application Data\GnuPG

	On a Windows Vista and later: C:\Users\username\AppData\Roaming\GnuPG

Be warned, deleting the Mailpile data folder will delete any mail that was sent from your Mailpile, and deleting your GPG keyring will permanently make any encrypted mail you have been sent unreadable.

So that’s that. So long and thanks for all the fish!

We hope you’ll stop by again and give us a try once we are a little more finished ;)

 [image: Technical documentation]

The most important command Mailpile supports is the search command.
The second most important is probably help. :-)

All commands can be abbreviated to only their first character (the less
commonly used commands use capital letters for this).

Searching

Some searching examples:

$./mp
mailpile> search bjarni einarsson
...
mailpile> search subject:bjarni
...
mailpile> search from:bjarni to:somebody
...
mailpile> search from:bjarni -from:pagekite
...
mailpile> search group:family -from:mom
...
mailpile> s att:pdf
...
mailpile> s has:attachment
...
mailpile> s date:2011-1-30 +date:2011-1-29
...
mailpile> s year:2011 month:12
...
mailpile> s dates:2011-12..2012-04-15
...
mailpile> s mailbox:path/fragment/or/filename
...

The default search will search in message bodies, from lines, attachment
names and subjects. Using a to/from/subject/att/... prefix will
search that part of the message only. There’s no way to only search
bodies, they’re too full of crap anyway.

Adding terms narrows the search, unless the extra terms are prefixed with
a +, then results are combined. Prefixing with - removes matches for
that term instead.

You can paginate through results using next and previous.

To view a message, use the view command with the number of the result
or one of the magic words all or these:

mailpile> search year:2011 month:12
...
mailpile> view 1 2 6
...

(Mailpile currently assumes you have less installed and in your path for
viewing e-mail. This is a temporary hack.)

You can also search from the command line with mp -s term,
but that will be a bit slower because the metadata index has to be
loaded into RAM on each invocation.

Special search terms

Here is a brief list of the special search terms:

all:mail All messages
att:<word> Search within attachment file names
dates:..<E> Search dates from B to E
in:spam Same as tag:Spam
in:trash Same as tag:Trash
is:unread Same as tag:New
group:<name> Messages from people in a group
has:attachment Messages with attachments
has:pgp Messages with signed or encrypted content
togroup:<name> Messages to people in a group

Sorting the results

The order command lets you sort results. Available sort orders
are: index, random, date, from and subject. Threading
may be disabled by prefixing the order with flat-, and the order
may be reversed by further prefixing it with rev-. Examples:

mailpile> order rev-subject # Reverse subject order
...
mailpile> order rev-flat-date # Flat reverse date order
...
mailpile> order # Default sort order
...

You can also change the default sort order by using the order
setting:

mailpile> set order = rev-flat-date # Change default order
...
mailpile> unset order # Use program defaults
...

Tags and filters

Mailpile allows you to create tags and attach any number of tags to each
message. For example:

mailpile> tags/add Inbox
...
mailpile> search to:bre from:klaki
...
mailpile> tag +Inbox all
...
mailpile> inbox
...

The tag command accepts a single tag name, prefixed with a + or -
(for adding or removing the tag), followed by a description of messages.
The message description can be:

	all will affect all messages

	these will affect currently listed messages

	A list of numbers or ranges (1 2 3 5-10 15)

All these are relative to the last search, so 1 is the first result
of the most recent search and all would be all matching messages.

Tags names are themselves recognized as specialized search commands in
the mailpile CLI.

If you want Mailpile to automatically tag (or untag) messages based on
certain search criteria, you can use the filter command instead:

mailpile> tags/add Lists/Diaspora
...
mailpile> search list:diaspora
...
mailpile> filter +lists/diaspora -inbox Diaspora Mail
...

This will tag all the search results and then apply the same rules as
new messages are received.

Filters are always processed in a fixed order, so even if one filter
adds a tag, a subsequent one may remove it again. This allows you to
define common patterns such as “All mail goes to the Inbox and is
tagged as new, except this mailing list and that junk mail”. Run the
filter command on its own to get a brief summary of how to remove,
edit or reorder the filters.

 [image: Technical documentation]

Mailpile has a built-in web server and will eventually include a proper
web-based interface for searching, reading and composing e-mail.

If you want to run the web UI without the CLI interface, start the
program like this:

$./mp --www --wait

The server listens on localhost:33411 by default, meaning you cannot
access it from a different computer (for security reasons). You can change
the host and port by setting the http_host and http_port variables
(more about internal variables below).
For example if you want to run the server to be accessible
from another computer as well, you can run Mailpile with:

$./mp --www=0.0.0.0:33411 --wait

Alternately, you can change the sys.http_host variable to 0.0.0.0. Setting
this variable to disabled disables the server entirely.

 [image: Technical documentation]

FIXMES

	This encryption needs to be optional, not everyone values security vs.
usabilty / portability / reliability the same way. (bnvk)

	If optional, making the unencrypted data-store compatible with Maildir
or some other popular mailbox format would be optimal. (bre)

Rationale

Mailpile stores e-mail and a large amount of other sensitive data. One
of the design goals of the project is to encrypt all the data we store
to disk, in order to mitigate privacy leaks in the event that hardware
is physically stolen or lost.

Due to our goal of providing robust security to non-technical users, we
do not consider it sufficient to delegate this security to the operating
system’s full-disk encryption, as that encryption is not guaranteed to
be active or even available in many cases.

E-mail is largely a “write once, read many” medium, although there is
also a need to be able to delete messages.

Encrypting all the data, although good for privacy, has the downside of
making the data more brittle. A single flipped bit can render an entire
message useless and unparsable. However, storage is relatively cheap and
e-mail relatively small by modern standards, making it feasible to
improve robustness simply by duplicating data. Simple duplication is
more flexible than error correction codes, in that it allows duplicates
to reside on physically separate medium when possible.

Finally, there is a need to be able to potentially store data outside
the normal filesystem (e.g. in an IMAP server or other database), or
replicate it from one system to another. Storing individual messages as
uniquely named plain-text ASCII files which are considered immutable
until they are deleted, greatly simplifies both of these use cases.

WERVD Capabilities

The Mailpile encrypted data store provides the following capabilities:

W - write once
E - encrypt data
R - read many
V - verify integrity (detect corruption & recover)
D - delete

Capabilities NOT provided include append and update.

The verification strategy allows for multiple copies of data to be written
to disk and automatic detection and recovery from corruption.

WERVD Implementation

Encryption and File Format

The encryption used is AES-256-CBC, with a per-file nonce. The file
format embeds the encryption scheme, so this can be changed at a later
date. The file content is stored as base64 data (base64 encoded after
encryption), with a simple header and footer delimiting the beginning
and end of the data, as follows:

-----BEGIN MAILPILE ENCRYPTED DATA-----
cipher: aes-256-cbc
nonce: NONCE-STRING

...BASE64-ENCODED-DATA...
-----END MAILPILE ENCRYPTED DATA-----

The order of the cipher and nonce headers is not considered important,
and other headers following the same RFC822-inspired format may be added
later.

Newlines may be either CRLF or LF sequences and the trailing newline is
considered part of both the beginning and ending delimeters.

Verification IDs

Verification IDs serve the dual purpose of uniquely identifying a file
within the WERVP store and verifying the contents are not corrupt.

Verification IDs are generated by calculating an MD5 message digest over
the entire encrypted and encoded message, including both delimiters and
their trailing newlines. During digest calculation, all newlines should
be encoded as CRLF pairs.

This MD5 sum is then encoded using a web-safe variant of BASE64 (all
whitespace stripped and any + characters replaced with -), and the
end-result is used as the canonical identifier for this data in the
Mailpile WERVD data-store.

These verification identifiers may be truncated depending on the
uniqueness and robustness requirements of the calling code.

File-system Mapping & Duplication

Mapping the data’s Verification ID to N duplicate file paths in the
filesystem is done as so:

1. Calculate and MD5 digest of the concatenation of the verification ID
 and the decimal string representation of the replica number.
2. Generate a web-safe base64 encoding of the MD5 digest.
3. Truncate the web-safe base64 encoding to the desired length,
 generally 10 characters.
4. Use the first two characters of the truncated base64 as a
 directory name and the remaining characters as a file-name within
 that folder.
5. The duplication ID may be used to select alternate root paths for
 the storage tree, facilitating duplication to alternate physical
 media.

Implementation notes

	In practice, Verification IDs and file system paths may be
generated together so the truncation of the Verification ID can be
adjusted in order to avoid name collisions in the file-system.

	The operating system’s native hard link mechanism must NOT be used
when generating duplicates, otherwise no fault tolerance will be gained.

	Mailpile will use the Verification ID as the “PTR” in the metadata
index.

 [image: Technical documentation]

Packaging Mailpile for Windows currently uses the Nullsoft Installer System.

All the files for it live in packages/windows/. A Makefile there provides the necessary build commands. The result should be a self-extracting EXE.

 _images/Super-Contacts.png
X

Y

_images/Wiki-Docs.png
S 101
hgf mailpile

_images/SMTorP-Wiki.png

_images/Social-Messaging.png

_images/apicommands.png
APl Commands

Search o
st
Contact
Group Delete
Compose Some commands
have subcommands.
- All commands return
internal Python
1E3 datastructures.

_images/commandstructure.png
Console: > command subcommand arguments
HTTP: http://mailpile/_/command/subcommand/?args-arguments

_images/Mailpile-dmg.png

 Skip to content

 		

 Why GitHub?

 Features →

 		Code review

 		Project management

 		Integrations

 		Actions

		Team management

 		Social coding

 		Documentation

 		Code hosting

 		Case Studies →

 		Security →

 		
 Enterprise

 		

 Explore

 		Explore GitHub →

 Learn & contribute

 		Topics

 		Collections

 		Trending

 		Learning Lab

 		Open source guides

 Connect with others

 		Events

 		Community forum

 		GitHub Education

 		
 Marketplace

 		

 Pricing

 Plans →

 		Compare plans

 		Contact Sales

 		Nonprofit →

 		Education →

 [image:]

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 		
 No suggested jump to results

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 Sign in
 Sign up

 		

 Watch

 1

 		

 Star

 0

 		

 Fork

 0

 haraldnagel/Mailpile-OS-X-screenshots

 Code

 Issues
 0

 Pull requests
 0

 Projects
 0

 Insights

 Permalink

 Dismiss

 Join GitHub today

 GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.

 Sign up

 Branch:
 master

 Find file

 Copy path

 Mailpile-OS-X-screenshots/0.4.0/Mailpile-dmg.png

 Fetching contributors…

 [image:]
 Cannot retrieve contributors at this time

 Download
 History

 39.7 KB

 [image: Mailpile-dmg.png]

 Go

 		© 2019 GitHub, Inc.

 		Terms

 		Privacy

 		Security

 		Status

 		Help

 		Contact GitHub

 		Pricing

 		API

 		Training

 		Blog

 		About

 You can’t perform that action at this time.

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.

 Press h to open a hovercard with more details.

_images/Mailpile-menu.png

 Skip to content

 		

 Why GitHub?

 Features →

 		Code review

 		Project management

 		Integrations

 		Actions

		Team management

 		Social coding

 		Documentation

 		Code hosting

 		Case Studies →

 		Security →

 		
 Enterprise

 		

 Explore

 		Explore GitHub →

 Learn & contribute

 		Topics

 		Collections

 		Trending

 		Learning Lab

 		Open source guides

 Connect with others

 		Events

 		Community forum

 		GitHub Education

 		
 Marketplace

 		

 Pricing

 Plans →

 		Compare plans

 		Contact Sales

 		Nonprofit →

 		Education →

 [image:]

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 		
 No suggested jump to results

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 Sign in
 Sign up

 		

 Watch

 1

 		

 Star

 0

 		

 Fork

 0

 haraldnagel/Mailpile-OS-X-screenshots

 Code

 Issues
 0

 Pull requests
 0

 Projects
 0

 Insights

 Permalink

 Dismiss

 Join GitHub today

 GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.

 Sign up

 Branch:
 master

 Find file

 Copy path

 Mailpile-OS-X-screenshots/0.4.0/Mailpile-menu.png

 Fetching contributors…

 [image:]
 Cannot retrieve contributors at this time

 Download
 History

 5.03 KB

 [image: Mailpile-menu.png]

 Go

 		© 2019 GitHub, Inc.

 		Terms

 		Privacy

 		Security

 		Status

 		Help

 		Contact GitHub

 		Pricing

 		API

 		Training

 		Blog

 		About

 You can’t perform that action at this time.

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.

 Press h to open a hovercard with more details.

_images/Gatekeeper-warning.png

 Skip to content

 		

 Why GitHub?

 Features →

 		Code review

 		Project management

 		Integrations

 		Actions

		Team management

 		Social coding

 		Documentation

 		Code hosting

 		Case Studies →

 		Security →

 		
 Enterprise

 		

 Explore

 		Explore GitHub →

 Learn & contribute

 		Topics

 		Collections

 		Trending

 		Learning Lab

 		Open source guides

 Connect with others

 		Events

 		Community forum

 		GitHub Education

 		
 Marketplace

 		

 Pricing

 Plans →

 		Compare plans

 		Contact Sales

 		Nonprofit →

 		Education →

 [image:]

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 		
 No suggested jump to results

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

		

 [image:]

 In this repository

 All GitHub

 ↵

 Jump to
 ↵

 Sign in
 Sign up

 		

 Watch

 1

 		

 Star

 0

 		

 Fork

 0

 haraldnagel/Mailpile-OS-X-screenshots

 Code

 Issues
 0

 Pull requests
 0

 Projects
 0

 Insights

 Permalink

 Dismiss

 Join GitHub today

 GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.

 Sign up

 Branch:
 master

 Find file

 Copy path

 Mailpile-OS-X-screenshots/0.4.0/Gatekeeper-warning.png

 Fetching contributors…

 [image:]
 Cannot retrieve contributors at this time

 Download
 History

 28.6 KB

 [image: Gatekeeper-warning.png]

 Go

 		© 2019 GitHub, Inc.

 		Terms

 		Privacy

 		Security

 		Status

 		Help

 		Contact GitHub

 		Pricing

 		API

 		Training

 		Blog

 		About

 You can’t perform that action at this time.

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.

 Press h to open a hovercard with more details.

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/page-technical.png
{) Technical

_images/ppuf100X91.gif
g

_images/pgpbackend.png
PGP backend

_static/ajax-loader.gif

_images/outputformats.png
Output formats

Console Ul

JSON

HTML

JSON

XMLRPC

_images/mailmanagementbackend.png
Mail management backend

Mail box

Mail box

Mail box

_images/page-guide.png
Guide

_images/page-features.png
‘ O Features

_images/page-security.png
‘ 8 Security

_images/page-guide1.png
Guide

_images/datastores.png
Mail management backend

Mail box

Mail box

Mail box

Contact management backend

PGP backend I

_images/contactbackend.png
Contact management backend

_images/logo-275x200.png

_images/interactionmodes.png
Interaction modes

Console

HTTP Server

XMLRPC*

_static/up.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

_static/down.png

