PARyOpt Documentation Release 1.0.1 Balaji Pokuri, Alec Lofquist # Contents: | 1 | Instal | llation | 1 | |----|--------|---|------------| | 2 | Intro | duction | 3 | | 3 | | Opt package | 5 | | | 3.1 | Subpackages | | | | 3.3 | PARyOpt.acquisition_functions module | | | | 3.4 | PARyOpt.paryopt module | | | | 3.5 | PARyOpt.utils module | | | | 3.6 | Module contents | | | 4 | Exam | aples | 31 | | | 4.1 | Getting Started | 31 | | | 4.2 | Custom functions for surrogate construction | 35 | | | 4.3 | Restart from previous state | 38 | | | 4.4 | Local asynchronous evaluator | 39 | | | 4.5 | Kriging | 13 | | 5 | Indic | es and tables | 1 5 | | Py | thon N | Todule Index | 17 | ## CHAPTER 1 ## Installation PARyOpt requires Python 3.5 or above, NumPy, and SciPy for basic functionality. Paramiko is required for cost functions evaluated on remote machines (HPC clusters). Matplotlib is used for visualization for these examples, but is not required. These all will be installed when you do a ``` pip install paryopt ``` (if you are on Ubuntu, you may need to do sudo apt-get install python3-pip and use pip3 here instead!) Or, if you prefer an Anaconda environment: conda create -n paryopt python=3.5 numpy scipy matplotlib paramiko activate paryopt ### Or, if you are using a manual download: ``` tar -xvf paryopt-1.0.1.tar.gz cd paryopt/ python3.5 setup.py install ``` ## CHAPTER 2 ## Introduction We consider a general minimization problem: $$\min_{\mathbf{x}} \ y(\mathbf{x})$$ Bayesian optimization proceeds through construction of a surrogate cost function $\tilde{y}(\mathbf{x})$. This surrogate is represented as a basis function expansion, around each evaluated point($\mathbf{x}_i, i \in [1, N]$). This ensures that the surrogate passes through (interpolates) the evaluated points. In the case of evaluations with noisy data, the surrogate shall pass within 1 standard deviation from the mean at the evaluated points. Analytically, the surrogate $\tilde{y}(\mathbf{x})$ after N function evaluations is represented as $$\tilde{y}(\mathbf{x}) = \sum_{i=1}^{N} w_i k(\mathbf{x}, \mathbf{x}_i)$$ where $k(\mathbf{x}, \mathbf{x}_i)$ is a kernel function, i.e., it takes in two arguments, \mathbf{x} , \mathbf{x}_i and returns a scalar value. This scalar is representative of how correlated is the function $y(\mathbf{x})$ at \mathbf{x} and \mathbf{x}_i . The weights w_i are calculated by solving the system of N linear equations in w_i . In matrix notation, this is represented using a covariance matrix(\mathbf{K}): $$\mathbf{K} \, \overline{w} = y$$ $$\mathbf{K}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j), \ i, j \in [1, N]$$ $$y_i = y(\mathbf{x}_i), \ i \in [1, N]$$ $$\overline{w} = \{w_i\}, \ i \in [1, N]$$ Hence the weights are calculated through the inversion $\bar{w} = \mathbf{K}^{-1} y$. Note that the covariance matrix \mathbf{K} is a Gram matrix of a positive definite kernel function, making it symmetric and positive semi-definite. Furthermore, since with every iteration only a finite number of rows are added to the covariance matrix, efficient inversion is possible through incremental Cholesky decomposition. The mean and variance of the surrogate are then calculated as: $$\mu(\mathbf{x}_{N+1}) = \mathbf{k}^T \mathbf{K}^{-1} y_{1:N}$$ $$\sigma^2(\mathbf{x}_{N+1}) = k(\mathbf{x}_{N+1}, \mathbf{x}_{N+1}) - \mathbf{k}^T \mathbf{K}^{-1} \mathbf{k}$$ where $$\mathbf{k} = k(\mathbf{x}_{1:N}, \mathbf{x}_{N+1}) = [k(\mathbf{x}_1, \mathbf{x}_{N+1}) k(\mathbf{x}_2, \mathbf{x}_{N+1}) ... k(\mathbf{x}_N, \mathbf{x}_{N+1})]$$ At each iteration, the surrogate is updated with new data from the cost function. The locations where the next evaluation is done is determined through optimization of an *acquisition function*. An acquisition function is a means to estimate the new information content at a location. It uses the mean and variance calculated in the above steps. Some sample radial kernel functions include: • squared exponential kernel function: Infinitely differentiable $$k(r) = \theta_0 exp(-\frac{r^2}{\theta^2})$$ • Matern class of kernel function: $$k_{Matern}(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} (\frac{\sqrt{2\nu}r}{l})^{\nu} K_{\nu} (\frac{\sqrt{2\nu}r}{l})$$ where K_{ν} is the modified Bessel function, ν, l are positive constants • Rational quadratic kernel function: $$k_{RQ}(r) = (1 + \frac{r^2}{2\alpha l^2})^{-\alpha}$$ where $r = ||\mathbf{x}_1 - \mathbf{x}_2||$ Some example acquisition functions are: Confidence bounds $$LCB = \mu - \kappa \sigma$$ Probability of improvement $$PI = \mathbf{cdf}(\gamma)$$ • Expectation of improvement $$EI = sqrt(variance) * (\gamma * \mathbf{cdf}(\gamma) + \mathbf{pdf}(\gamma))$$ where $\gamma = \frac{\mu}{\sigma}$, cdf is cumulative normal distribution function and pdf is normal probability distribution function ## CHAPTER 3 ## PARyOpt package ## 3.1 Subpackages ## 3.1.1 PARyOpt.evaluators package #### **Submodules** ### PARyOpt.evaluators.async module Bases: object Abstract base class for long-running cost functions (e.g. external simulations). Must be subclassed. Subclasses should fill in start() and check_for_results(). Automatically saves state as jobs are submitted. #### **Parameters** - \mathbf{x} the point to evaluate the cost function at - data user data returned by start(x) **Returns** an instance of ValueNotReady if such, EvaluationFailed(reason), or the cost function value at x (float) ``` evaluate_population (xs: List[<built-in function array>], if_ready_xs: List[<built-in function array>] = []) \rightarrow Tuple[List[Tuple[<built-in function array>, float]], List[<built-in function array>], List[<built-in function array>] ``` Evaluates a population of x values, encoded as a list of 1D numpy arrays. Returns a tuple containing three lists: - Completed values: [(x1, y1), (x2, y2), ...] - Pending values evaluation is in progress, but not complete: $[x_1, x_2, ...]$ - Failed values evaluation completed unsuccessfully: [x1, x2, ...] The union of completed, failed, and pending is equal to the union of xs and if_ready_xs. The __init__ parameter required_fraction tunes how many completed/pending values are returned. #### **Parameters** - **xs** list of new points to check - if_ready_xs List of points to include in the return tuple if they available by the time we evaluate the minimum required percentage of xs. These points do not count towards the minimum required completed points. ``` Returns ([(x, y), ...] completed, [x, ...] pending, [x, ...] failed) ``` ``` start (x: < built-in function array>) \rightarrow Any ``` Start a cost function evaluation at the given x location. This method may return anything - the data will be passed on to check_for_result(). The only restriction is that the return value should be pickle-able to enable restart support. **Parameters** \mathbf{x} – point to begin evaluation at **Returns** user data that will be fed into check_for_result() ``` class PARyOpt.evaluators.async.EvaluateAgain(reason: str) Bases: object ``` Indicates evaluation needs to be done again, due to some reason (for eg., during hardware failures) ### class PARyOpt.evaluators.async.EvaluationFailed(reason: str) Bases: object Indicates evaluation was not able to complete successfully, with an error value (i.e. an exception). ### class PARyOpt.evaluators.async.ValueNotReady Bases: object Indicates a function value is not ready yet. ### PARyOpt.evaluators.async_local module ``` class PARyOpt.evaluators.async_local.AsyncLocalEvaluator(job_generator: Callable[[str, <bul>built- in func- tion ar- ray>], None- Type], run_cmd_generator: Callable[[str, <bul>built- in func- tion ar- ray>1, Union[str, List[Any]]], parse_result: Callable[[str, <bul>built- in func- tion ar- ray>1, float], jobs_dir: str = '/home/docs/checkouts/read re- quired_fraction=1.0, ``` Bases: PARyOpt.evaluators.async.AsyncFunctionEvaluator Class for cost functions that evaluated by launching a long-running process on the local machine. #### **Parameters** • job_generator – callable that sets up the run directory for a given x (by e.g. writing config files). It will be passed two arguments: the job $max_pending=4$) directory and the point to evaluate at (x). - run_cmd_generator callable that returns the command to run the job. It will be passed two arguments: the job directory and the point to evaluate at (x). If run_cmd_generator returns a string, the string will be run by the default shell (typically /bin/sh) via Popen with shell=True. If run_cmd_generator returns a list, it will be passed to Popen. In both cases, the CWD is set to the job directory. - parse_result callable that returns the cost function evaluated at x. It will be passed two arguments: the job directory and the point to evaluate a t (x). This will be called after the command returned by run_cmd_generator has terminated (gracefully or otherwise). If the process did not terminate successfully or the result is otherwise unavailable, parse_result should raise any exception. This will signal the optimization routine to not try this point again. - jobs_dir optional base directory to run jobs in default is \$PWD/opt_jobs. - required_fraction fraction of points which must complete before continuing to the next iteration see AsyncEvaluator for more info and implementation - max_pending maximum simultaneous processes, defaults to multiprocessing.cpu_count() see AsyncEvaluator for implementation Checks the status of pid, in data, and calls parse_result if the job is done. #### **Parameters** - \mathbf{x} location of function evaluation - data list of directory and pid **Returns** either ValueNotReady float or EvaluationFailed() start (x: <built-in function array>) -> (<class 'str'>, <class 'int'>) Start a cost function evaluation at the given x location. This method may return anything - the data will be passed on to check_for_result(). The only restriction is that the return value should be
pickle-able to enable restart support. **Parameters** \mathbf{x} – point to begin evaluation at **Returns** user data that will be fed into check for result() | PARyOpt Documentation, Release 1.0.1 | | | | | | |---------------------------------------|--|--|--|--|--| | Arry Opt Documentation, Helease 1.0.1 | ## PARyOpt.evaluators.async_parse_result_local module class PARyOpt.evaluators.async_parse_result_local.AsyncLocalParseResultEval 3.1. Subpackages Fills files in a set of folders and periodically checks if the external evaluator has finished evaluation. Supports asynchronous evaluations. Only on a local machine. #### **Variables** - folder num folder into which the location values are written into - job_generator callable that sets up the run directory for a given x (by e.g. writing config files). It will be passed two arguments: the job directory and the point to evaluate at (x). - jobs_dir base directory where the jobs are written into - parse_result function to parse result from directory, if not specified, it will search in jobs_dir/folder_<folder_num>/if_parse.txt and y.txt - total folders total number of folders to write into - wait_time min time to wait before parsing the results folder Function to check if a location has been evaluated or not (ValueNotReady). If it completes, categorize the result as one of a float, EvaluationFailed or EvaluateAgain #### **Parameters** - x location to evaluate - data directory **Returns** Union[ValueNotReady, EvaluationFailed, EvaluateAgain, float] **start** (x: <built-in function array>) -> (<class 'str'>, <class 'datetime.datetime'>) function to start a cost function evaluation (write to file in this case) given the location of evaluation **Parameters** \mathbf{x} – location of evaluation **Returns** folder name in which it was submitted ### PARyOpt.evaluators.async_sbatch module ``` class PARyOpt.evaluators.async_sbatch.AsyncSbatchEvaluator(host: Opt.evaluators.connection job_generator: Callable[[str, <bul>built- in func- tion ar- ray>], None- Type], job_script: Union[str, Callable[[str, <bul>built- in func- tion ar- ray>], str]], lcl_parse_result: Callable[[str, str, PARy- Opt.evaluators.connection <bul>built- in func- tion ar- ray>], float] None, re- mote_parse_result: Callable[[str, <bul>built- in func- tion ``` Class for cost functions that evaluated by launching a job on a remote machine running the SLURM job scheduler. #### **Parameters** - host Host object containing the credentials for the server to connect to - job_generator callable that sets up the run directory for a given x (by e.g. writing config files). It will be passed two arguments: the job directory and the point to evaluate at (x). - job_script either a string (for a fixed job script), or a callable that returns the job script string. In the latter case, job_script will be passed two arguments: the job directory and the point to evaluate at (x). - remote_parse_result callable that returns the cost function evaluated at x. It will be passed two arguments: the job directory and the point to evaluate at (x). This will be called after the command returned by run_cmd_generator has terminated (gracefully or otherwise). If the process did not terminate successfully or the result is otherwise unavailable, parse_result should raise any exception. This will signal the optimization routine to not try this point again. This function will be executed *on the remote host*. This requires the remote host to have a matching version of Python installed and the dill module. - lcl_parse_result callable that returns the cost function evaluated at X. It is passed three arguments: the local job dir, remote job dir, the Connection object to the remote, and X. It is executed on the local machine. This does not require the remote to have Python installed. - lcl_jobs_dir optional base directory to generate jobs in default is \$PWD/opt_jobs. - **remote_jobs_dir** optional base directory to upload jobs to default is \$HOME/paryopt_jobs. - **squeue_update_rate** minimum time between squeue calls. Lower for better job latency, higher to be more polite - required_fraction fraction of points which must complete before continuing to the next iteration see AsyncEvaluator for more info and implementation - max_pending maximum simultaneous queued jobs, defaults to 25, see AsyncEvaluator for implementation ``` check_for_result (x: <built-in function array>, data: (<class 'str'>, <class 'str'>, <class 'int'>, <class 'datetime.datetime'>)) → Union[PARyOpt.evaluators.async.ValueNotReady, PARyOpt.evaluators.async.EvaluateAgain, PARy- Opt.evaluators.async.EvaluationFailed, float] checks for result if the jobid is complete and ping time is after update rate ``` #### **Parameters** - x location of evaluation - data data related to the location. Typically this is directory information, job id and submit time Returns one of ValueNotReady, EvaluateAgain, EvaluationFailed or float ``` squeue() ``` PARyOpt.evaluators.async_sbatch.**VALUE_FROM_FILE** (filename) ### PARyOpt.evaluators.connection module Call a function created on this system on a remote system with args. This is done by pickling it with dill, SFTPing it to a file on the remote, executing a Python script on the remote that un-dills the file, calls the function, dills the result and prints it to stdout. Finally, stdout is un-dilled on the local machine to give the return value. This requires the remote to have a matching Python version. #### **Parameters** - remote_func function to call - args any arguments to call the function with - **remote_cwd** directory on the remote to call the script from (must have write access to this directory) **Returns** value returned by f connect (host: PARyOpt.evaluators.connection.Host) **exec_command** (cmd: str, cwd=None, check_exitcode=True, encoding='utf-8') -> (<class 'str'>, <class 'str'>, <class 'int'>) Executes cmd in a new shell session on the remote host. #### **Parameters** - cmd command to execute - **cwd** directory to execute the command in performed by prepending 'cd [cwd] && ' to cmd - **check_exitcode** if true, instead of returning the exit code of cmd as part of the return tuple, verify that the return code is zero. If it is not, an exception is raised with the contents of stderr. - encoding encoding to decode stdout/stderr with. Defaults to utf-8. **Returns** if check_exitcode is True, (stdout: str, stderr: str). If it is False, (stdout, stderr, rc: int). stdout and stderr are decoded according to encoding. - $\mathtt{get_dir}$ (remote_dir: str, local_dir: str) \rightarrow None Download directory from remote directory to local directory - $\texttt{get_file}$ (remote_path: str, local_path: str) \rightarrow None Downloads a file from the remote, same as paramiko.SFTPClient.get - $mkdirs(remote_dir) \rightarrow None$ Creates remote_dir recursively as a directory on the remote, creating any necessaries parent directories along the way. Similar to *mkdir -p*, except it doesn't error if the directory already exists. put_dir (local_path: str, remote_path: str) → None Compresses local_path into a .tar.gz archive, uploads it to the remote, extracts it into remote_path, and finally deletes the temporary tar archive. Assumes the remote has the 'tar' utility available. $put_file (local_path: str, remote_path: str) \rightarrow None$ Uploads a local file to the remote host, same as paramiko.SFTPClient.put #### remote_python() \rightarrow str Returns a string that, when invoked as a command on the remote, will execute a Python that: - Matches the version that this script was invoked with (i.e. matching sys.version_info) - Has the 'dill' module installed The remote Python is discovered by trial and error using common Python names. The search is performed once and then cached. If no such Python is available, this will return None. **sftp**() → paramiko.sftp_client.SFTPClient ``` class PARyOpt.evaluators.connection.Host (username, port=22) Bases: object get_interactive (title: str, instructions: str, prompts: List[str]) \rightarrow List[str] ``` Handles the ssh 'interactive' authentication mode (user answers a series of prompts). #### **Parameters** - **title** title of the window - **instructions** instructions, to be shown before any prompts - prompts the list of prompts **Returns** the list of responses (in the same order as the prompts) ``` get_keys() ``` **Returns** a list of public/private keys to try authenticating with ``` get_password() ``` **Returns** the password for the host #### Module contents The simplest function evaluator - evaluates a Python function for each point. **Parameters** func – cost function to evaluate at each x evaluate_population (xs: List[<built-in function array>], old_xs: List[<built-in function array>] = []) \rightarrow Tuple[List[Tuple[<built-in function array>], List[<built-in function array>], List[<built-in function array>]] ## 3.1.2 PARyOpt.kernel package #### **Submodules** ### PARyOpt.kernel_function module ``` class PARyOpt.kernel.kernel_function.KernelFunction Bases: object Attributes: ``` #### **Variables** - **theta** Kernel parameters. Can be None, a scalar, or a vector. Should be initialized to the appropriate type/len during initialization. - theta0 Scaling factor **derivative** (x1: <built-in function array>, x2: <built-in function array>) \rightarrow <built-in function array> Evaluate the derivative of the kernel #### **Parameters** - **x1** location 1 - **x2** location 2 #### Returns **eval** (x1: <built-in function array>, x2: <built-in function array>) \rightarrow float Evaluate the kernel function #### **Parameters** - **x1** location 1 - **x2** location 2 #### **Returns** theta = None theta0 = 1.0 ###
PARyOpt.kernel.matern module ``` class PARyOpt.kernel.matern.Matern32 ``` Bases: PARyOpt.kernel.kernel_function.KernelFunction 3/2 matern function rbf **derivative** (x1: <built-in function array>, x2: <built-in function array>) \rightarrow <built-in function array> Evaluate the derivative of the kernel #### **Parameters** - **x1** location 1 - **x2** location 2 #### **Returns** **eval** (x1: < $built-in\ function\ array>$, x2: < $built-in\ function\ array>$) \to float Evaluate the kernel function #### **Parameters** - **x1** location 1 - **x2** location 2 #### Returns ``` theta = 1.0 ``` class PARyOpt.kernel.matern.Matern52 Bases: PARyOpt.kernel.kernel_function.KernelFunction 5/2 matern function rbf **derivative** (x1: <built-in function array>, x2: <built-in function array>) \rightarrow <built-in function array> Evaluate the derivative of the kernel #### **Parameters** - **x1** location 1 - **x2** location 2 #### Returns **eval** (x1: <built-in function array>, x2: <built-in function array>) \rightarrow float Evaluate the kernel function #### **Parameters** - **x1** location 1 - **x2** location 2 #### **Returns** theta = 1.0 ### PARyOpt.kernel.squared_exponential module ``` class PARyOpt.kernel.squared_exponential.SquaredExponential Bases: PARyOpt.kernel.kernel_function.KernelFunction ``` Squared exponential rbf **derivative** (x1: <built-in function array>, x2: <built-in function array>) \rightarrow <built-in function array> Evaluate the derivative of the kernel #### **Parameters** • **x1** – location 1 ``` • x2 – location 2 ``` #### Returns **eval** (x1: <built-in function array>, x2: <built-in function array>) \rightarrow float Evaluate the kernel function #### **Parameters** - **x1** location 1 - **x2** location 2 #### **Returns** theta = 1.0 #### **Module contents** ## 3.2 Submodules ## 3.3 PARyOpt.acquisition_functions module PARyOpt.acquisition_functions.expected_improvement (mean: ``` float, variance: float, curr_best: float = 0.0, _: float = 1.0) \rightarrow float ``` Expected improvement of objective function 'A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning' #### **Parameters** - mean mean of surrogate - variance variance of surrogate - curr_best current best evaluated point - kappa exploration exploitation tradeoff parameter **Returns** expectation of improvement 3.2. Submodules 21 PARyOpt.acquisition_functions.lower_confidence_bound(mean: ``` float, variance: float, curr_best: float = 0.0, kappa: float = 1.0) \rightarrow float ``` lower confidence bound of improvement: used for minimization problems #### **Parameters** - mean mean of surrogate - variance variance of surrogate - curr_best current best evaluated point - **kappa** exploration exploitation tradeoff parameter ### Returns lower confidence bound PARyOpt.acquisition_functions.probability_improvement (mean: ``` float, variance: float, curr_best: float = 0.0, \quad \therefore float = 1.0) \rightarrow float ``` Probability of improvement of objective function 'A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning' #### **Parameters** - mean mean of surrogate - variance variance of surrogate - curr_best current best evaluated point - kappa exploration exploitation tradeoff parameter **Returns** probability of improvement PARyOpt.acquisition_functions.upper_confidence_bound(mean: float, variance: float, curr_best: float = 0.0, kappa: float = 1.0) \rightarrow float upper confidence bound of improvement: used in the case of maximization problems #### **Parameters** - mean mean of surrogate - variance variance of surrogate - curr_best current best evaluated point - **kappa** exploration exploitation tradeoff parameter Returns upper confidence bound ## 3.4 PARyOpt.paryopt module class PARyOpt.paryopt.BayesOpt (cost_function: Union[Callable[[List[<built-</pre> function array>11, *Tuple*[*List*[*Tuple*] < *built-in* function ray>, float]], List[<built-in function array>], List[<built-in function array>]]], *Callable[[List[<built-in]* function ray>], List[<built-in function array>]], *Tuple*[*List*[*Tuple*[<*built-in function array*>, *float*]], *List*[<*built-in function array*>], *List[<built-in function array>]]]], l_bound:*

 built-in function array>, u_bound:

 builtin function array>, n_dim: int, n_opt: int = 1, n_init : int = 0, $init_strategy$: Callable[[int, int, <built-in function array>,

 built-in function array>], List[
 built-in function array>]] = None, do_init: bool = True, kern_function: Union[str, PARy-Opt.kernel.kernel_function.KernelFunction] acq func: None. *Union[str,* Callable[[float, float, float], float]] = *None, acq_func_optimizer: Callable = None,* kappa_strategy: Union[List[Callable[[int], float]], Callable[[int], float], NoneType] = None, constraints: List[Callable[[<built-in function array>], bool]] = [], if_restart: bool = None, restart_filename: 'opt state.dat') \rightarrow None Bases: object Bayesian optimization class. #### **Variables** - curr_iter iteration number of optimizer - n_surrogate_opt number of optima to get during surrogate optimization - n_init initial population size (>2) - n_dim dimensions of optimization - u_bound (1_bound,) lower and upper bounds on variables - total_population total set of population: list of arrays - **func_vector** functional values for the population : scalar for each population - K covariance matrix - K inv inverse of covariance matrix - **K_inv_y K_**inv * func_vector : pre-computation to save costly / unstable inversion - **acquisition_function** acquisition function to optimize the surrogate - **cost_function** cost function to MINIMIZE: should be able to take a vector of locations - **constraints** list of constraint functions (only points that satisfy these functions will be visited) NOT enforced in the default init strategy!! - if_restart whether it should restart or not - **restart_filename** file to restart from. it will be *opt_state.dat* if nothing is specified - acq_func_optimizer optimizer for acquisition function. Should take in function, initial guess, bounds and function derivative. Returns the optimal location **acquisition** (x: <built-in function array>, kappa: float, avoid: List[<built-in function array>] = None, opt_indx: int = 0) \rightarrow float Calculates the acquisition function + penalty function at the given query location. If the query point is outside the bounds, it will return an infinity This is the function that needs to be optimized. #### **Parameters** - \mathbf{x} location to evaluate acquisition function : shape: (1, self.n dim) - kappa kappa value to pass to acquisition function - avoid list of x values to avoid (forwarded to penalty function) - opt indx index of acquisition function that is being called **Returns** scalar acquisition function at x **add_point** (x: <built-in function array>, y: float = None, if_check_nearness: bool = True, is_failed: bool = False) \rightarrow None Adds ONLY ONE point to the current set of data we have. if_check_nearness specifies if it is needed to check nearness constraints before adding the point into total_population. This should be true if the user is manually adding points into the population. Updates following variables: K, K_inv, total_population, func_vector If the point is a failed evaluation, then it does not add into total_population and func_vector #### **Parameters** - \mathbf{x} array of shape (1, self.n_dim) - y cost function value at that location - if_check_nearness boolean, whether to check nearness or not. - is_failed boolean, whether the point to add is a failed evaluation or not #### Returns None estimate_best_kernel_parameters ($theta_bounds=None$) \rightarrow None Calculates and *sets* the best shape-parameter/characteristic length-scale for RBF kernel function and applies it to the current model. Parameters theta_bounds – array of bounds for theta Returns None evaluate_surrogate_at (x: <built-in function array>, include_failed: bool = False) \rightarrow tuple Evaluates the surrogate at given point Taken from: https://arxiv.org/pdf/1012.2599.pdf: "A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning" Note that it returns sigma^2 and not sigma The mean of the surrogate will not be affected by the failed points, they will only affect the variance of the surrogate #### **Parameters** - \mathbf{x} location to evaluate the surrogate rbf approximation - include_failed whether to include failed points for surrogate **Returns** mean(mu), variance (sigma^2) **export_csv** (*path: str*, **kwargs) → None Writes the data from all completed function evaluations (i.e. x, y pairs) to a CSV file. The file starts with the following header row: x0, x1, ..., $x[n_dim-1]$, y. Additional arguments will be forwarded to the csv.writer function, which can be used to control the formatting of the CSV file. To write a TSV instead of CSV, you can pass dialect='exceltab'. #### **Parameters** - path Path to write the file to. If the file already exists, it will be overwritten. - **kwargs** Forwarded to csv.writer(), can be used to override the CSV dialect and set formatting options. #### **get_current_best**() → tuple returns the location of current best and value of current best **Returns** location, func_value #### get_current_iteration() → int Returns the current iteration number **Returns** integer $\texttt{get_total_population}$ () \rightarrow Tuple[List[<built-in function array>], List[float]] returns the total population : for visualization purposes **Returns** total_population and function values at that location **penalty_function** (x:
 built-in function array>, kappa: float, avoid:
 List[<built-in function <math>array>] = [])
\rightarrow float
 Calculates the penalty function, to prevent local optima to repeat #### **Parameters** - x location - **kappa** kappa value used in acquisition function - avoid extra points to avoid (other than self.total_pop/self.pending/self.failed) **Returns** penalty function value at x **set_new_kernel_parameters** (theta: Union[float, <built-in function array>] = 1.0, theta0: float = 1.0) \rightarrow None sets the kernel parameters: called from the user script. The covariance matrix needs to be re-calculated when this function is called #### **Parameters** - theta scaling of dimensions used with the distance function - theta0 scaling of kernel function Returns None **update_iter** ($$iter_max: int = 1$$) \rightarrow None Finds the next query point and updates the data for the next iteration Returns None #### $update_surrogate() \rightarrow None$ updates the inverse of covariance function. In order to incorporate failed locations as interpolated values, this update is 2 staged: - 1. Create the surrogate (K,K_inv) with only the successfully evaluated points - 2. (a) Evaluate the mean of the surrogate at the failed points (b) Incorporate the interpolated failed locations into the surrogate and update the surrogate (K,K_inv) Updates the values of self.K_success, self.K_inv_success, self.K_inv_y_success, self.K_inv_and self.K_inv_y Returns None ## 3.5 PARyOpt.utils module PARyOpt.utils.cdf_normal (x: <built-in function array>, mean: <built-in function array> = 0.0, sigma_sq: <built-in function array> = 1.0) \rightarrow float Cumulative distribution function of standard normal distribution #### **Parameters** - **x** scalar / location - mean mean of distribution - **sigma_sq** variance of distribution (sigma^2) **Returns** cdf of normal distribution PARyOpt.utils.distance (x1: <built-in function array>, x2: <built-in function array>) \rightarrow float returns the distance between two query points #### **Parameters** - **x1** point 1 - **x2** point 2 **Returns** euclidean distance between the two points PARyOpt.utils.erf(x) error function of x: used in calculating cumulative distribution. Unable to import from scipy, so writing our own function **Parameters** \mathbf{x} – float **Returns** error function of x PARyOpt.utils.lhs (n: int, samples: int = None, criterion: str = None, iterations: int = None) Generate a latin-hypercube design #### **Parameters** • **n** – The number of factors to generate samples for - **samples** The number of samples to generate for each factor (Default: n) - **criterion** Allowable values are "center" or "c", "maximin" or "m", "centermaximin" or "cm", and "correlation" or "corr". If no value given, the design is centermaximin. - **iterations** The number of iterations in the maximin and correlations algorithms (Default: 5). **Return H** An n-by-samples design matrix that has been normalized so factor values are uniformly spaced between zero and one. #### **Example** A 3-factor design (defaults to 3 samples): #### A 4-factor design with 6 samples: #### A 2-factor design with 5 centered samples: # A 3-factor design with 4 samples where the minimum distance between all samples has been maximized: A 4-factor design with 5 samples where the samples are as uncorrelated as possible (within 10 iterations): ``` >>> lhs(4, samples=5, criterion='correlate', iterations=10) ``` PARyOpt.utils.pdf_normal (x:
 <built-in function array>, mean:
 <built-in function array> = 0.0, $sigma_sq$: float = 1.0) \rightarrow float Probability distribution function of standard normal distribution, returns the pdf of a location from given mean with variance sigma_sq #### **Parameters** - **x** scalar/location - mean mean of distribution - **sigma_sq** variance of distribution (sigma^2) Returns pdf of normal distribution ## 3.6 Module contents ## CHAPTER 4 ## Examples This provides a demonstration of the exhaustive functionality of PARyOpt. These are very intricately connected to the examples on BitBucket, so the user is suggested to go through them simultaneously. The examples are structured as follows: Table 1: Description of Examples | Example # | Description | |------------------------------|--| | Example 0 | A dive into setting up the optimization routine. | | Getting Started | | | Example 1 | Using the same problem as example 0, the modularity of the | | Custom functions for surro- | framework is demonstrated. All the functions that can be cus- | | gate construction | tomized are shown. | | Example 2 | Explains the restart capabilities of the framework and how one | | Restart from previous state | can use in case of (hardware/resource) failure. | | Example 3 | Asynchronocity is introduced and a local asynchronous imple- | | Local asynchronous evaluator | mentation of example 0 is shown. This implementation can be | | | easily extended to an asynchronous remote evaluator. | | Example 4 | Explains the kriging functionality of the framework and how | | Kriging | data can be assimilated to perform kriging | ## 4.1 Getting Started This example shows how one gets started with the optimization software. One is expected to see through **example_0.py** for a better understanding. Just like any optimization, we should have information about the following: - 1. dimensionality of the problem n_dim - 2. cost function that has to be minimized function - 3. bounds on the variables 1_bound, u_bound Some more parameters for Bayesian Optimization - 4. number of initial evaluations for constructing the prior -n_init - 5. type of kernel function kern_function - 6. number of evaluations per iteration n_opt - 7. platform of evaluation local computer / remote computer - 8. parallel / serial evaluations cost_function - 9. asynchronocity of evaluations cost_function - 10. acquisition function (list) acq_func - parallelization of acquisition function kappa_strategy The kappa_strategy defines exploration vs exploitation of the optimizer. Those with a *large* kappa value will explore and a *small* kappa value will exploit. In this example, we shall solve a simple parabolic cost function, on a local machine with no parallelization. The evaluations will, therefore, be fully synchronous. As part of the example, we shall do an exploration dominated search in the optimization. The parameters that will be used are as follows: ``` from PARyOpt.evaluators import FunctionEvaluator import numpy as np from PARyOpt import BayesOpt n_dim = 1 l_bound = np.asarray([-12.]) u_bound = np.asarray([12.]) n init = 2 kern function = 'sqr exp' # squared exponential acq func = 'LCB' # lower confidence bound def my_cost_function(x: np.array) -> float: y = np.sum((x-2.5) ** 2 + 5) return float(y) # instantiate an evaluator that evaluates serially on the local machine evaluator = FunctionEvaluator(my_cost_function) def my_kappa(curr_iter: int) -> float: return 1000.0 # large value for exploration ``` #### 4.1.1 Initialization Having defined these parameters, we shall now initialize the optimizer: The stage is now set for optimization to be performed. Since this package does not provide any standard termination criteria, the user is expected to design a termination based on the nature of the problem. In this example, we shall look at a very simple termination criterion of number of iterations. ``` max_iter = 10 ``` ## 4.1.2 Update The user shall manually update the optimization every iteration. This provides ways to post-process user required metrics every iteration, as well as do a regular *hyper-parameter optimization* for optimized surrogate. ``` for curr_iter in range(max_iter): b_opt.update_iter() ``` ## 4.1.3 Hyper parameter optimization An implementation of the standard hyper parameter optimization is done in estimate_best_kernel_parameters(). This minimizes a maximum likelihood estimate of the constructed surrogate and eventually sets the *optimal* kernel length scale. It can be invoked by calling: Hyper parameter optimization need not be performed every iteration as the surrogate may not change much with the addition of a single data point. Hence its call can be periodic based on the iteration number. #### 4.1.4 Surrogate query Having constructed the surrogate, one may need to query it for several purposes, including visualization, post-processing and termination criteria. This functionality is provided through the evaluate_surrogate_at() function. It returns the value of the mean and variance of the surrogate at the queried location. ``` location_to_query = np.asarray([0.5]) mean, variance = b_opt.evaluate_surrogate_at(location_to_query) ``` ## 4.1.5 Logging PARyOpt uses the python logging module for logging. The user has to instantiate the logger in the main code. If the logger is not initiated, the logs will be streamed to stdout. An example of using the logger is also in the above example: ## 4.1.6 Saving data The framework provides multiple ways to save data, particularly with ready methods to export in .csv format. It can be done be calling: ``` b_opt.export_csv('my_data.csv') ``` Alternately, data can be custom exported, as get methods exist to get the population and the respective function values. ``` total_population, function_values = b_opt.get_total_population() ``` The next example shows how to custom change the various functions used in the optimization method. ## 4.2 Custom functions for surrogate construction This example discusses the modularity provided by the framework to change various optimizer and surrogate related methods. More specifically, we look at changing the following accessory functions: - *Initialization strategy* - *Kernel functions (Class)* - Acquisition functions - Acquisition optimizer Through this tutorial, we shall not solve any new problem. However, explanations will be provided to how can one add custom definitions to these standard methods. We shall use an external implementation of the standard methods for the user
to easily compare with *Getting Started*. While the example shows the usage of all of these at once, the user is encouraged to understand the effect of changing each of these accessory functions separately: ## 4.2.1 Initialization strategy Several situations arise when the user has to specify his own initialization strategies. Some of these include: - **Constraints**, such as equality, inequality and PDE based constraints. In such situations, all locations determined by the upper and lower bounds may not be feasible. PARyOpt requires all the initial evaluation points to be successful evaluations, hence a general latin hypercube sampling may not work in all cases. - **Biased sampling** of search domain. There could be situations where the user knows strategic locations and thus can help PARyOpt to sample in those locations right from the beginning - User defined sampling strategy. The user may want a completely different sampling strategy which has a better coverage of the domain for that specific optimization problem. In order to specify custom initialization strategy, the user should define a function with the following signature: and then pass it during initialization to the parameter init_strategy=my_init_strategy. ## 4.2.2 Kernel functions (Class) Kernel function embeds most of the information about the **continuity** of the underlying function. Thus, it is one of the critical parameters to be selected by the user. For example, Matern class of kernel functions have only finite differentiability while the squared exponential kernel function is infinitely differentiable. Some other situations where the user may want to change the kernel function are: - Underlying function continuity and differentiability, as discussed above. - **Prior information about periodicity** of the underlying function. In such situations, periodicity can be embedded into the kernel function. This can drastically improve the number of function evaluations. One such example of a periodic kernel function is: $$k_{periodic}(x_1, x_2) = \theta_0 exp(-2sin(\frac{\pi}{p} \frac{||x_1 - x_2||}{l})^2)$$ where p is the periodicity interval and l is the length scale of the kernel. • Anisotropic kernels may be used when the function behaviour is different across different optimization parameters. For example, if the function varies logarithmically in one parameter and linearly in another parameter To specify custom kernel functions, the user has to derive the base kernel class. An example to specify the standard Matern 3/2 function by the user is as follows: ``` class MyKernelFunction (KernelFunction): user customized kernel function theta = 1.0 def eval(self, x1: np.array, x2: np.array) -> float: actual kernel function :param x1: :param x2: :return: x1 = np.divide(x1, self.theta) x2 = np.divide(x2, self.theta) dist = utils.distance(x1, x2) rval = np.sqrt(3.0) * dist return self.theta0 * (1+rval) * np.exp(-rval) def derivative(self, x1: np.array, x2: np.array) -> np.array: derivative of kernel function ``` (continues on next page) (continued from previous page) ``` currently not useful, so we will not implement anything here :param x1: :param x2: :return: """ pass ``` This derived class requires defining the eval() and derivative() methods of the class. The parameter theta should contain all the hyper-parameters, for ex. length scale, related to the supplied kernel. This will be used by PARyOpt during hyper-parameter optimization. This kernel class can be passed to the constructor through the parameter kern_function=MyKernelFunction(). ## 4.2.3 Acquisition functions Acquisition function define informative regions of the surrogate. Since the software is designed for minimization, areas of high information should have small acquisition values. In normal circumstances, the user should not need to change this. However, if the user wants implementing **safety constraints** and **biased informativeness**, it can be be done by passing a user defined function, with the following signature, to the constructor as acq_func=my_acquisition_function. ## 4.2.4 Acquisition optimizer Bayesian optimization proceeds by evaluating locations with maximum information content. Hence, it requires finding the optimum (minimum in PARyOpt) of the acquisition function (cheap to evaluate). While the core software comes with a standard Powell algorithm, the user may quite often want to change this for a better global optimum. Some of the reasons include: - Dimensionality of optimization could impose restrictions on the type of optimizer used - **Heuristic optimization** can be an alternative for multi-modal functions. Since evaluating the acquisition is fast, these optimizers will also be efficient. - Robust **in-house optimizers** may be available with research groups tailored for specific problems. The process of adding user-defined acquisition optimizer is very similar to defining custom acquisition function. The function signature is : which is passed to the constructor as acq_func_optimizer=my_acq_optimizer. ## 4.3 Restart from previous state This example shows how the user can deal with optimization failures, either due to hardware failure or due to wrong selection of accessory functions. This will also be useful in cases of changing optimization platform but resuming the same optimization task. In order to create an optimization state, we shall first run a standard optimization problem for a certain number of iterations. This can be done either by running example 0(*Getting Started*), or by re-doing the whole procedure. For the benefit of the user, we shall take the latter way. #### 4.3.1 Restart In example 1, we have seen that our custom initialization is not the best compared to the default latin hypercube sampling. In fact, such an example provides the best motivation for a restart. Hence, in this example, we provide a custom initialization method, the same as in example 1 (*Custom functions for surrogate construction*). Once the optimization is done for 10 iterations, we shall create another instance of BayesOpt that starts from this existing optimization state. Note that the restarted optimization need not have the same accessory functions, like kernel, acquisition and kappa strategy. By enabling if_restart and providing the restart_filename, the framework re-creates the optimization state from which the user can continue the optimization, for example, ``` restarted_bo.update_iter(5) ``` will update 5 iterations at once. This API helps to reduce redundant loops in the user code. #### 4.3.2 Intra-iteration restart It has to be noted here that the evaluator also has an inbuilt check-pointing per iteration, so that hard interrupts such as the KeyboardInterrupt can also be handled for restart. The user need not do any extra changes to enable this **intra-iteration** restart functionality. ## 4.4 Local asynchronous evaluator In this example, we shall see how to use the local async evaluator. This is particularly useful when the cost function takes a long time to evaluate, and sometimes with uncertain evaluation times. In such situations, a better way to parallelize evaluations is to run as individual jobs on the evaluation platform (local machine) and keep track of the completion of the jobs through the process id in the process table. This approach naturally supports asynchronous bayesian update, i.e., update the iteration without completing all the jobs per iteration. The un-assimilated jobs will be used for the update in the subsequent iterations. To achieve this, the framework creates individual job directories for each cost function evaluation. It also provides an interface for the user to set up these directories for a *self-contained* evaluation. The cost function needs to write out a file with the result(cost value) which will later be parsed by the framework upon execution completion. For this, the user needs to provide functions that - 1. generate necessary files in the folder for function evaluation - 2. provide the command for executing the cost function, and - 3. parse the result file generated by the cost function In the rest of the document, we shall see how to set up a sample cost function, a folder generator, run command and result parser. Once again, we shall use the same parabolic cost function for easy understanding, but in 2 dimensions. ## 4.4.1 Out-of-script cost function The first step to performing out-of-script evaluation is to re-define the cost function. While a generic cost function in an optimization framework is like a python function that returns the cost function value, out-of-script functions need to be defined differently. Firstly, they do not have any defined arguments and secondly, such out-of-script cost function also cannot directly pass the function value to the optimization framework. While there are several ways to overcome these difficulties, this framework requires the following template to be followed: - Input: the cost function can either take inline arguments or read from file - Output: the cost function should write to a standard file For example, the following code evaluates the parabola in 2 dimensions and writes to file result.txt. Location of evaluation are passed as inline arguments. ``` import sys import numpy as np import time import examples.examples_all_functions as exf # read the command line arguments into an array ``` (continues on next page) (continued from previous page) #### 4.4.2 Folder generator Many common simulations require not just the location of evaluation but also several other systems to be in place for proper working. For example, many finite element simulations require a geometry mesh file that represent the domain of simulation. The optimizer calls this function, job_generator() with two arguments – the folder of evaluation (more to come on this) and the location x at which the cost function is executed. ``` def folder_generator(directory, x) -> None: """ prepares a given folder for
performing the simulations. The cost_ function (out-of-script) will be executed in this directory for location x. Typically this involves writing_ a config file, generating/copying meshes and In our example, we are running a simple case and so does not_ require any files to be filled. We shall pass the location of cost function as a command line argument """ with open(os.path.join(directory, 'config.txt'), 'w') as f: pass # write file pass ``` #### 4.4.3 Run command Just like a folder of files for execution, the user may need to provide command line arguments to the cost function during execution. To achieve this, the optimizer calls the function run_cmd_generator() with the folder of evaluation and location x at which the cost function has to be evaluated. Thus it can allow change of run-time arguments based on the evaluation point. ## 4.4.4 Result parser Once the cost function writes the cost value into a file, the result parser is supposed to read and return that cost value to the optimizer. Some local post processing operations can go into this function. Care should be taken to return **only float values**, otherwise it can lead to Type inconsistencies in the optimization routine. The function signature is the same as that for run_cmd_generator() and job_generator() ``` def result_parser(directory, x) -> float: """ Parses the result from a file and returns the cost function. The file is written be the actual cost function. One can also do_ →post processing in this function and return the subsequent value. Based on the construct of our cost function_ →example3_evaluator.py, the generated result.txt will be in this 'directory' """ with open(os.path.join(directory, 'result.txt'), 'r') as f: return float(f.readline()) ``` ## 4.4.5 Asynchronous optimization Once the above functions are created, the only new procedure to use asynchronous evaluations is *setting up the evaluator*. This requires passing in the three functions, namely, job_generator(), run_cmd_generator() and parse_result(). Along with these, it is optional to pass in the location of function evaluations. The evaluator creates separate folders in these directory (relative path) for each cost function evaluation. Each cost function call is assigned a (randomly named) directory within this specified jobs_dir where the run_cmd (from run_cmd_generator()) is called. Since we are using multiple optima per iteration, we can take advantage of it deploy simultaneous exploration and exploitation in the acquisition function. For example, the following code creates a list of two functions – one exploratory (kappa = 1000) and another exploitatory (kappa = 0.1). This list is then passed to the optimizer, like in the previous examples. ``` n_opt = 2 my_kappa_funcs = [] my_kappa_funcs.append(lambda iter_num: 1000) # exploration my_kappa_funcs.append(lambda iter_num: 0.1) # exploitation ``` One can get more crafty in designing these kappa strategies and create a so-called annealing kappa, one that starts with a large value and eventually reduces to a small value, at different rates. The remaining part of the optimization remains the same, except for the initialization of BayesOpt object. ## 4.5 Kriging Kriging or Gaussian process regression is a method of interpolation for which the interpolated values are modeled by a Gaussian process governed by prior covariances. In this example, we show how PARyOpt can be used to generate response surfaces using available data. As with the previous examples, we shall use the standard parabola as the underlying function to be approximated. There are several ways to use PARyOpt for Kriging, one of which is shown here. This is possibly the easiest and cleanest way to perform Kriging using PARyOpt. **Data generation**: Since the underlying function is known, we shall generate data by invoking this function at some random locations within the bounds and storing them in an external file. This is achieved through the following snippet: **Data assimilation**: PARyOpt provides an add_point() to add external data manually. The user has to supply the x location and any available y values to this method to add data to the BayesOpt instance. An example usage of add_point() using the above generated data can be: ``` def load_from_csv(b_opt: BayesOpt, filename: str) -> BayesOpt: """ load data from csv file and add to PARyOpt """ with open(filename, 'r') as csvfile: csv_file_lines = csv.reader(csvfile, delimiter=',') for row_num, row in enumerate(csv_file_lines): if row_num == 0: # skipping the header pass else: ``` (continues on next page) 4.5. Kriging 43 (continued from previous page) Note that the user has to manually invoke update_surrogate(). This is currently for efficiency purposes and hope to be replaced in the upcoming versions. Finally, since the user wants to add data manually and does not want the standard initialization required for bayesian optimization, we provide a switch do_init to turn off the initialization. Since there is no cost function to be optimized, the evaluator should be passed in an empty function for evaluation. Note that since we are not providing any actual cost function here, update_iter() does nothing useful. In case the user is looking for an instantaneous Kriging model, i.e., creating a Kriging surface and updating it, the actual cost function should be provided. Just like the previous examples, one may use evaluator from example-3_ and do Kriging similar to optimization. Now that the surrogate is created and hyper-parameters optimized, one can start querying it using evaluate_surrogate_at() ``` location = np.array([1.0]) mean, variance = krig.evaluate_surrogate_at(location) ``` PARyOpt (pronounced **pur-yopt**, with a hard *y*) is a modular asynchronous Bayesian optimization package that enables remote function evaluation. It is written to solve optimization problems where the cost function is very expensive to evaluate (on the order of hours), and where cost functions must be evaluated on remote machines (HPC clusters). # CHAPTER 5 # Indices and tables - genindex - modindex - search | DADUOnt Decumentation Delegas 4.0.4 | | |--------------------------------------|--| | PARyOpt Documentation, Release 1.0.1 | ## Python Module Index ``` р PARyOpt, 30 PARyOpt.acquisition_functions, 21 PARyOpt.evaluators, 18 PARyOpt.evaluators.async, 5 PARyOpt.evaluators.async_local, 8 PARyOpt.evaluators.async_parse_result_local, 11 PARyOpt.evaluators.async_sbatch, PARyOpt.evaluators.connection, 16 PARyOpt.kernel, 21 PARyOpt.kernel.kernel_function, 18 PARyOpt.kernel.matern, 19 PARyOpt.kernel.squared_exponential, PARyOpt.paryopt, 24 PARyOpt.utils, 28 ``` # Index | A | method), 12 | |--|---| | acquisition() (PARyOpt.paryopt.BayesOpt | check_for_result() (PARy- | | method), 25 | Opt.evaluators.async_sbatch.AsyncSbatchEvaluator | | add_point() (PARyOpt.paryopt.BayesOpt | method), 15 | | method), 25 | connect() (PARy- | | AsyncFunctionEvaluator (class in PARy- | Opt.evaluators.connection.Connection | | Opt.evaluators.async), 5 | method), 16 | | AsyncLocalEvaluator (class in PARy- | | | Opt.evaluators.async_local), 8 | Opt.evaluators.connection), 16 | | AsyncLocalParseResultEvaluator | D | | (class in PARy- | derivative() (PARy- | | Opt.evaluators.async_parse_result_loca | Opt.kernel.kernel_function.KernelFunction | | 11 AsymaChatahEvaluatan (alass in DADy | method), 19 | | AsyncSbatchEvaluator (class in PARy-Opt.evaluators.async_sbatch), 14 | derivative() (PARyOpt.kernel.matern.Matern32 | | Opt.evaluators.asyne_soaten), 14 | method), 19 | | В | derivative() (PARyOpt.kernel.matern.Matern52 | | BayesOpt (class in PARyOpt.paryopt), 24 | method), 20 | | | derivative() (PARy- | | C | Opt.kernel.squared_exponential.SquaredExponential | | call_on_remote() (PARy- | method), 20 | | Opt.evaluators.connection.Connection | distance() (in module PARyOpt.utils), 28 | | method), 16 | E | | cdf_normal() (in module PARyOpt.utils), 28 | erf() (in module PARyOpt.utils), 28 | | check_for_result() (PARy-
Opt.evaluators.async.AsyncFunctionEv | estimate best kernel parameters() (PARy- | | Opt.evaluators.async.AsyncFunctionEv | Opt.paryopt.BayesOpt method), 26 | | method), 5 | eval() (PARyOpt.kernel.kernel_function.KernelFunction | | check_for_result() (PARy- | method), 19 | | Opt.evaluators.async_local.AsyncLocal method), 9 | eval() (PARyOpt.kernel.matern.Matern32 | | 1 1 C 1(() (DAD | method), 19 | | Ont evaluators async parse result loca | eval() (PARyOpt.kernel.matern.Matern52
l.AsyncLocalParseResultEvaluator
method), 20 | | opile variations as y ne_parse_result_resu | method), 20 | | $eval() (PARyOpt.kernel.squared_exponential.Squ$ | aredExpo nethixd), 18 | |--|---| | method), 21 | get_password() (PARy- | | evaluate_population() (PARy- | Opt.evaluators.connection.Host | | Opt.evaluators.async.AsyncFunctionEva | luator method), 18 | | method), 6 | get_total_population() (PARy- | | evaluate_population() (PARy- | Opt.paryopt.BayesOpt method), | | Opt.evaluators.FunctionEvaluator | 27 | | method), 18 | Н | | evaluate_surrogate_at() (PARy- | | | | Host (class in PARyOpt.evaluators.connection), | | 26 | 17 | | EvaluateAgain (class in PARy- | K | | Opt.evaluators.asvnc), 6 | | | | KernelFunction (class in PARy- | | Opt.evaluators.async), 6 | Opt.kernel.kernel_function), 18 | | exec_command() (PARy- | L | | Opt.evaluators.connection.Connection | lhs() (in module PARyOpt.utils), 28 | | method), 16 | lower_confidence_bound() (in module PARy- | | expected_improvement() (in module PARy- | Opt.acquisition_functions),
21 | | Opt.acquisition_functions), 21 | | | export_csv() (PARyOpt.paryopt.BayesOpt method), 26 | M | | | Matern32 (class in PARyOpt.kernel.matern), 19 | | F | Matern52 (class in PARyOpt.kernel.matern), 20 | | FunctionEvaluator (class in PARy- | mkdirs() (PARy- | | Opt.evaluators), 18 | Opt.evaluators.connection.Connection | | | method), 17 | | G | Р | | get_current_best() (PARy- | | | Opt.paryopt.BayesOpt method), | PARyOpt (module), 30 | | 26 | PARyOpt.acquisition_functions (module), 21 | | get_current_iteration() (PARy- | PARyOpt.evaluators (module), 18 | | Opt.paryopt.BayesOpt method), | PARyOpt.evaluators.async (module), 5 | | 27 | PARyOpt.evaluators.async_local (module), 8 | | get_dir() (PARy- | PARyOpt.evaluators.async_parse_result_local | | Opt.evaluators.connection.Connection | (module), 11 | | method), 17 | PARyOpt evaluators async_sbatch (module), 14 | | get_file() (PARy- | PARyOpt.evaluators.connection (module), 16
PARyOpt.kernel (module), 21 | | Opt.evaluators.connection.Connection | PARyOpt.kernel.kernel_function (module), 18 | | method), 17 | PARyOpt.kernel.matern (module), 19 | | get_interactive() (PARy- | PARyOpt.kernel.squared_exponential (mod- | | Opt.evaluators.connection.Host | ule), 20 | | method), 18 | PARyOpt.paryopt (module), 24 | | get_keys() (PARy- | PARyOpt.utils (module), 28 | | Opt.evaluators.connection.Host | J T (| 50 Index | pdf_normal() (i
penalty_function | n module PARyOpt.u | tils), 30
(PARy- | theta | (PARyOpt.kernel.matern.Matern52 attribute), 20 | | |-------------------------------------|--|---------------------|----------|---|---------| | Opt.par | ryopt.BayesOpt | method), | theta (| (PARyOpt.kernel.squared_exponential.SquaredEx | ponenti | | 27 | .0.0 | 1 DAD | .1 . 0 | attribute), 21 | | | | provement() (in mod
quisition_functions), 2 | • | theta0 |) (PARyOpt.kernel.kernel_function.KernelFunction attribute), 19 | n | | put_dir() | | (PARy- | IJ | | | | Opt.eva
method | aluators.connection.Coll), 17 | onnection | • | e_iter() (PARyOpt.paryopt.BayesOpt | | | put_file() | ,, | (PARy- | | method), 27 | | | Opt.eva
method | aluators.connection.Col), 17 | onnection | update | e_surrogate() (PARy-
Opt.paryopt.BayesOpt method), | | | R | | | | 27 | | | remote_python | () | (PARy- | upper_ | c_confidence_bound() (in module PARy-
Opt.acquisition_functions), 22 | | | | aluators.connection.Co | , | V | · · · · · · · · · · · · · · · · · · · | | | S | | | VALU | UE_FROM_FILE() (in module PARy-
Opt.evaluators.async_sbatch), 16 | | | set_new_kernel
Opt.par
27 | _parameters()
ryopt.BayesOpt | (PARy-
method), | Valuel | NotReady (class in PARy-Opt.evaluators.async), 7 | | | | ot.evaluators.connection | on.Connection | on | | | | SquaredExpone | | - | | | | | squeue() | | (PARy- | | | | | Opt.eva
method | aluators.async_sbatch 1), 16 | .AsyncSbato | chEvalu | uator | | | start() (PARyO _I method | pt.evaluators.async.As | syncFunction | nEvalua | aator | | | start() (PARyO _I method | pt.evaluators.async_lo | cal.AsyncL | ocalEva | aluator | | | | pt.evaluators.async_pa | arse_result_ | local.As | syncLocalParseResultEvaluator | | | | pt.evaluators.async_st | oatch.Async | SbatchI | Evaluator | | | Т | | | | | | | theta (PARyOpt | t.kernel.kernel_function | on.KernelFu | nction | | | | attribut | * * | | | | | | theta (PARyC tribute) | Opt.kernel.matern.Mat
, 20 | ern32 at- | | | | Index 51