

Welcome to Papyrus Network documentation!

Papyrus Network is a blockchain and decentralised applications platform, based on the Papyrus protocol, which was created as refined vesrion of Ethereum protocol with Proof-of-Authority consensus for better scalability, security, robustness and user-friendly application interfaces.

Mission of Papyrus Network is to stimulate adoption of decentralized applications in B2C and enterprise segments across the globe by resolving issues, which are slowing down their practical adoption, such as limited network throughput, security risks, volatile transactional fees, complicated user onboarding process.

Papyrus Network is compatible with Ethereum ecosystem of 3rd party software, user wallets, developer libraries and productivity tools. Ethereum dApps can be launched within Papyrus Network, achieving improved stability, scalability, speed and security, while also simplifying user onboarding process by removing barriers like calculation of gas limit and gas price, and enabling removal of transactional fees for users completely.

Major advantages of Papyrus Network are:

	Proof-of-Authority conesnsus with variable Authority Nodes count, which is energy-efficient (no PoW waste), faster (one second blocks interval and fast block finality), cheaper (no need to store thousands of data replicas and involve thousands of nodes to consensus protocol, if protocol have governance model, which deliver same or higher level of security by utilising small number of credible Authority Nodes) and more secure (small scale PoW networks are subject to 51% reorg attacks, dPoS networks are subject to the power of minority (“whales”) of large token holders), than other approaches for the public distributed ledger network consensus.

	Token staking as a way to allocate network resources, similar to the one in EOS network, where network resources are tokenised and application developers are able to use subscriptional model to pay for network resources by staking resource tokens. Staking enables developers to have predictable cost on their application operations, ability to have reliable models for their financials, and allows developers to provide free-of-charge transactions for their application users, so that dApp can be accessed even by those with empty wallet, if application smart contract allows it. That is a major step for building user-friendly dApp interfaces and improving user onboarding conversions.

	Programmed decentralized governance and high network security, based on Constitution and Network BIOS contract, which splits power between Authority Nodes and token holders, and tries to establish system of checks and balances to ensure that everyone is incentivised to behave in a best way to achieve better Papyrus Network service and wider Papyrus Network adoption, also providing instruments to tolerate attack attempts and maintain efficient self-governance. Papyrus Network sets initial governance vision and implementation and supports evolution of it by BIOS contract upgrades, which might be executed by the community according to certain rules, as likely there will be new things to address as network develops.

	Support of Ethereum ecosystem of developer libraries and productivity tools, wallets and Solidity smart contracts. It enables usage of Papyrus Network by the Ethereum developers community.

Contents:

	Vision (or Why I should run my dApp on Papyrus instead of Ethereum?)
	Which challenges does Papyrus Network solve?

	How we address these issues

	The main advantages of Papyrus Network

	Governance
	Papyrus Network User Agreement

	Definitions

	Adding new Authority Node

	Authority Nodes Management

	1. Election

	2. Blacklist

	Changing BIOS contract parameters

	Authority Nodes token reward recommendation

	Governance attack considerations

	Comparison of Public Blockchain Networks

	Consensus

	Authority Nodes
	Recommended Authority Node configuration:

	How to deploy Authority Node

	Expected Authority Node rewards:

	Staking
	How to stake tokens

	Code Examples

	Network Performance
	Results

	Papyrus API
	BIOS Contract

	API: Staking

	API: Voting

	Tools

	FAQ
	What is Papyrus Network?

	What is the prospects of Papyrus Network?

	What differs Papyrus Network from Ethereum, EOS and TRON?

	What are Authority nodes?

	Papyrus Network key facts

	Work in progress

Indices and tables

	Index

	Module Index

	Search Page

Vision (or Why I should run my dApp on Papyrus instead of Ethereum?)

Papyrus Network is a new Ethereum-based public blockchain designed for ultimate mass adoption of decentralised applications.
Main idea of Papyrus Network design was to make a perfect ecosystem, which removes limitations, which slow down growth of the user base in existing public blockchain networks such as Ethereum and EOS.

Papyrus Network have couple of characterisitics, which makes it a great choice for application developers, as it reduces network costs, while improving at the same time network robustness, scalability, and ability to serve for user-friendly applications with easy user onboarding.

Major changes to Ethereum, which we implemented in Papyrus Network, are:

	Instead of energy intensive Proof-of-Work a lightweight Proof-of-Authority consensus is used, where fixed amount of network nodes called “Authority Nodes” are elected and operated by credible organizations. Papyrus Network has native system of checks and balances, which lead to better and secure governance.

	Instead of gas transaction fee model token staking model is implemented, where token supply represents available network throughput and each token represents fraction of it. Application developers need to stake tokens (locking them for specific period of time) to receive access to required network bandwidth and may adjust staked amount from time to time accordingly to their needs. Developers don’t need to worry about token price volatility between revisions of their bandwidth requirements.

Which challenges does Papyrus Network solve?

Nowadays there are a lot of challenges of using public blockchains as application platforms:

	Lack of trust (network is usually controlled by anonymous elite, which control largest mining pools or use coalitions of network nodes in own interest).

	Lack of reliability (network is not protected from failures and application developer may experience large losses due to mistakes of others).

	Lack of responsibility (there is no any formal responsibility by network operators for application developers).

	Lack of support (application developers need to find solution for every problem themselves).

	Poor user experience (existing solutions are too complex and push users away by requiring them to use sophisticated wallets and plugins).

	Extreme costs and volatility (application developers need to care about cryptocurrency prices because they are used to pay network fees, they cannot build stable business model because of too high dependence on cryptocurrency market).

How we address these issues

By introducing elements of permissioned blockchain networks to public network setup.

	Trust – control of the network authority nodes belongs to decentralized consortium of credible organizations with full public disclosure of governance processes, by having multiple different organizations in the consortium network achieves trust that they won’t collude and risk their reputation by attacking the network

	Reliability – network architecture ensures network resources allocation between registered application developers to avoid network overload

	Responsibility – being publicly exposed and having their business and reputation at risk authority nodes owners are accountable for their activities

	Great user experience – moving obligation to pay network fees from user to application developer, significantly improve user experience as now users don’t need to care about keeping positive crypto wallet balance, calculating transaction fees and confirming them

	Reasonable and predictable costs – application developers are able to reserve necessary network bandwidth for specified period of time with reasonable upfront payment, it allows them to provision their expenses and eliminate crypto volatility impact on their business models; overall cost of ownership is low because of limited amount of authority nodes in the network

The main advantages of Papyrus Network

	Compatibility with existing Ethereum ecosystem including wallets, smart contracts, and other tools; no need to study new languages and frameworks.

	Increased Network speed and reliability: no more worries about application scalability and availability issues.

	High standard of network security provided by the authority nodes managed by credible organizations, which cannot be achieved in the environment of anonymous mining pools.

	An Unprecedented level of user experience  —  token staking model with no need to install complex plugins or browsers, pay various fees and make gas calculations; just use your application like any other  —  Facebook or Amazon.

	An easy way of making money without building complex token economies — you can simply sell subscriptions or in-app services to your application users, accepting both traditional payments and cryptocurrencies.

	Low network resource cost and low volatility: you can plan your infrastructure expenses in advance thanks to token staking resource allocation model.

	Network reliability network is protected from spam and DoS attacks by having staking procedure to consume network resources.

	Authority node owners are all identified credible organizations which put their reputation and business at risk in case of abuse.

Governance

There are many issues with governance paradigms used in other blockchain solutions, which lead to unacceptable level of centralization. For instance, EOS network is governed by Constitution and 21 Block Producers, which execute EOS protocol and are elected using dPoS mechanism. But voting thresholds to become elected BPs are low due to absence of quorum requirements, and power is consolidated in the hands of few people with significant token holdings and influence over BP decisions. Political systems, where power is consolidated in the hands of richest, are called plutocracy. In another dPoS network - TRON - situation is even worse, as not only BPs are elected by elite token holders with large stakes, but BPs are allowed to buy votes from token holders, and they spend their mining rewards to attract votes, instead of investments in better service and infrastructure. On the opposite, PoW networks have an issue with consolidation of power in large mining pools, controlling a significant percentage of network’s hashpower and effectively controlling the network itself.

Our design goal in Papyrus Network was to construct governance protocol, which is aligned with Proof-of-Authority consensus for network scalability reasons, in a way to maintain greater level of decentralization and incentivize benefit of everyone: token holders, miners (authority nodes) and network customers (application developers and users). To achieve this goal we implemented flexible governance protocol, which somewhat reflects how corporations are managed in the modern world by shareholders and the board of directors. We believe that this is the best construction to be used as the network evolves to stimulate its growth.

Papyrus Network User Agreement

Definitions

Papyrus Network User Agreement: This document (PNUA)

Chain ID: 32328

BIOS Contract: An Papyrus Network smart contract with a dynamic permissions structure, which defines network governance procedures.

User: Any person or organization of persons who maintain(s) direct or indirect ownership of an Papyrus Network address, or property connected to an Papyrus Network address.

Ownership: Direct or indirect access to an Papyrus Network address through one or more valid permissions checks. Ownership may be partially shared between Users through the use of multi-signature permissions.

Authority Nodes: Users who have created new blocks in Papyrus Network.

On-Chain: Any transaction, smart contract, or Ricardian contract which is located within a block that is irreversible and appended to the Papyrus Network.

Papyrus Network-based Property: Anything that requires a valid permission in order to directly manipulate, alter, transfer, influence, or otherwise effect on the Papyrus Network

Call: To submit an action to the Papyrus Network.

Authorizations & Permissions: Permissions are arbitrary names used to define the requirements for a transaction sent on behalf of that permission. Permissions can be assigned for authority over specific contract actions.

Article I -  User Acknowledgement of Risks
If User loses access to their Papyrus Network address on chain_id and has not taken appropriate measures to secure access to their Papyrus Network address by other means, the User acknowledges and agrees that that Papyrus Network address will become inaccessible. Users acknowledge that the User has an adequate understanding of the risks, usage and intricacies of cryptographic tokens and blockchain-based software. The User acknowledges and agrees that the User is using the Papyrus Network at their sole risk.

Article II - Consent of the PNUA
The nature of the Papyrus Network User Agreement is such that it serves as a description of the current Papyrus Network Mainnet governance functions that are in place. These functions, enforced by code, do not require the consent of Users as these functions are inherent and systemic to the Papyrus Network Mainnet itself.

Article III - Governing Documents
Current version of PNUA is referred by its SHA256 hash in Papyrus Network BIOS Contract and modifications to the PNUA may be made using BIOS Contract.

Article IV - Native Unit of Value
The native unit of value on Papyrus Network chain_id shall be the PPR token as defined by Papyrus Network software.

Article V - Maintaining the Papyrus Network
Papyrus Network code is published in open GitHub repositories and open source developers community is supposed to maintain the active blockchain codebase which includes, but is not limited to, the implementation of all modifications of all features, optimizations, and upgrades: present and future.

Article VI - No Fiduciary
No User shall have a fiduciary purpose to support the value of the PPR token. No User can authorize anyone to hold assets, borrow, speak, contract on behalf of other Papyrus Network Users or the Papyrus Network chain_id collectively. Papyrus Network shall have no owners, managers, or fiduciaries.

Article VII - User Security
All items pertaining to personal account security, including but not limited to the safekeeping of private keys, is solely the responsibility of the User to secure.

Article VIII - Authority Nodes Limited Liability
The User acknowledges and agrees that, to the fullest extent permitted by any applicable law, this disclaimer of liability applies to any and all damages or injury whatsoever caused by or related to risks of, use of, or inability to use, the PPR token or the Papyrus Network under any cause of action whatsoever of any kind in any jurisdiction, including, without limitation, actions for breach of warranty, breach of contract or tort (including negligence) and that Authority Nodes shall not be liable for any indirect, incidental, special, exemplary or consequential damages, including for loss of profits, goodwill or data.

Adding new Authority Node

Any Authority Node can make proposal on adding new Authority Node to the network, which follows the approval process.
Any Authority Node can vote for proposed Authority Node candidate, if it is not blacklisted in either authority nodes blacklist or stakeholders blacklist. In total each Authority Node can vote for a maximum of 7 other Authority Nodes or candidates. Authority Node can move their votes from one Node to another at any time.
Candidate Node becomes Authority Node if it keeps minimum 3 votes and holds in the top 47 Candidate and Authority Nodes by received votes number for continuous 7 days. Only votes from Authority Nodes are counted.

Authority Nodes Management

1. Election

New Authority Nodes are elected by existing Authority Nodes.

Authority Node candidate can be proposed by any of existing Authority Nodes.
After Authority Node candidate is proposed, voting for the Authority Node candidate begins and last 14 days.

Any Authority Nodes is able to vote for other Authority Nodes and Authority Node candidates.
The following contraints are applied in network BIOS contract:

	Authority Node have maximum of 7 votes to be casted for different Authority Nodes

	Authority Node can’t cast more than 1 vote for the same Node

	Authority Node can cast one vote for itself

	Authority Node can withdraw a vote from any node with immediate effect

	Withdrawed votes can be casted again only after 14 days vote cooldown period

After 14 days of voting for a new candidate Authority Node, decision is made based on received votes.
If by the end of voting period candidate received minimum of 3 votes from Authority Nodes AND is not added to the blacklist (see below), than candidate becomes Authority Node.

Additional rule to be implemented by upgrading BIOS contract in the near time:

If by the end of voting period candidate fits with ALL of the following:

	received minimum of 3 votes from Authority Nodes

	is not added to the blacklist (see below)

	current number of Authorty Nodes < 47 OR there is an Authority Node, which have less received votes than candidate node

Than candidate is promoted to Authority Node.
If number of Authority Nodes = 47, than simulatneously existing Authority Node with lowest amount of received votes is excluded from Authority Nodes.
This logic ensures that maximum number of Authority Nodes is limited with 47.

Otherwise, candidate node is rejected and not promoted to Authority Node.

2. Blacklist

Authority Node and candidate for Authority Node can be blacklisted by existing Authority Nodes.

To add candidate or Authority Node to the blacklist, any Authority Node can create blacklist proposal and initiate proposal voting.
Voting period for blacklist proposal is 5 days, which enables ability of blacklisting for Authority Node candidates before candidate voting period of 14 days ends.
Only Authority Nodes can cast votes in the blacklist voting.
Each Authority Node can cast 1 vote for the proposal.

After 5 days of blacklist proposal voting, proposal is deemed successful, if:

	amount of votes for proposal is > 50% of Authority Nodes count

Otherwise, proposal is rejected.

If proposal is successful, Authority Node or Authority Node candidate is added to the blacklist.
Any node inlcuded into the blacklist can’t be Authority Node.

Community blacklist to be implemented by upgrading BIOS contract in the near time:

Authority Node and candidate for Authority Node can be blacklisted by owners of PPR token stakes.
Blacklist formed based on PPR token stake holders voting is called community blacklist.

To add candidate or Authority Node to the blacklist, any owner of PPR token stake can create community blacklist proposal and initiate proposal voting by staking minimum amount of PPR tokens towards the proposal (minimum is to be determined).

Voting period for community blacklist proposal is 5 days, which enables ability of blacklisting for Authority Node candidates before candidate voting period of 14 days ends.
Only owners of PPR token stakes can cast votes in the community blacklist voting.
Each owner of PPR token stake can cast vote proportional to their token stake.
In case of voting for blacklist proposal stake withdrawal period for stake owner is increased to 5 days starting at the time of voting, so he can never vote twice in the same voting using the same stake.
Each vote for community blacklist can be either positive (for) or negative (against).

After 5 days of blacklist proposal voting, proposal is deemed successful, if:
- amount of positive votes is bigger, than amount of negative votes
- total amount of votes is > 10% of total token stake owner votes possible in the network based on existing network-wide amount of token stakes (quorum)

If proposal is successful, Authority Node or Authority Node candidate is added to the community blacklist.
Any node inlcuded into the community blacklist can’t be Authority Node.

Changing BIOS contract parameters

BIOS contract refers to Papyrus Network User Agreement using its SHA-256 hash code, linking network operations with the agreement.

Parameters such as maximum amount of Authority Nodes or mining rewards are configured in BIOS contract as well.

Upon network launch Papyrus have ownership rights on BIOS contract and can override / reconfigure it in case of network issues. In the future Papyrus will surrender ownership of BIOS contract so that no party will be controlling it.

To achieve decentralised governance, BIOS contract may be upgraded by supermajority decision of Authority Nodes, which is not objected by voting of the community of token stake owners.

Implementation of this voting will be deployed to BIOS contract in the near time.

Authority Nodes token reward recommendation

To incentivize Authority Nodes participation, they shall receive token rewards for each block, which they include in the blockchain. With 1 seconds block interval it is recommended to set block reward at 1.5*K PPR tokens per block, where K = {AMOUNT OF AUTHORITY NODES}/47. It will keep annual inflation of PPR token supply under 5% for the network with 47 Authority Nodes, and it will avoid Authority Node reward dilution due to new nodes joining the network. As rewards aren’t diluted, Authority Nodes will be incentivized to propose new nodes inclusion to increase trust and adoption of the network, influencing token value.

Governance attack considerations

Network governance and resistance to attacks is considered sufficient, assuming that >50% of Authority Nodes are controlled by honest owners at all times.
When amount of Authority Nodes in the network is between 5 and 47, three or more nodes can collude to include more their allies as nodes into the network with the idea of eventually getting control over 50%+ Authority Nodes and performing network attack. Assuming that honest Nodes represent at least 50% of the Authority Nodes at the moment of attack preparation suspicion, they shall blacklist proposed node candidates to tolerate potential attack.
In case of very unlikely situation, where network attack such as double spending is made by attackers, which manged to get control over more than 50% of Authority Nodes, token stake owners together with honest Authority Nodes can make hard fork of the blockchain and use media to distribute incident information and guides on necessary updates for network customers.

Comparison of Public Blockchain Networks

[image: ../_images/p5.jpg]

Consensus

Papyrus Network is a distributed computing system, where network nodes has to agree on transactions, before they are included in the distributed ledger, to maintain synchronized copies of the ledger and avoid inappropriate transactions. How network nodes reach the agreement is determined by consensus protocol, deisgned with the goal to maintain system reliability in the presence of a number of faulty processes.

Assumptions used in Papyrus Network design

	Cost of network protocol manipulation should exceed potential benefit for an attacker;

	If total amount of value stored in the network is X, than cost of an attack on the network should be >X;

	Economy processes within the network is complemented with economy processes outside the network:

	poor behaviour of network node owned by some business entity, may be covered in the media and cause reputational damage to the entity’s other businesses, leading to its financial losses;

	attack on the network by a group of network nodes will cause their removal from the network and possible hard fork, meaning that they will lose ability to receive mining rewards in the network;

	There are governance rules, initially established as constitutional for the network, which require agreement not only between network nodes, but also between token holders, to change protocol;

	Technically collusion/agreement between minimum of >50% of active network nodes should be required to manipulate/change the protocol, but it is not enough to run a successful attack, as it will be detected and considered as constitution violation, if change was not approved by token holders according to established policy.

Keeping in mind these assumptions we developed a Proof-of-Authority consensus for Papyrus Network, which have the following features:

	Network nodes allowed to participate in consensus protocol for network transactions confirmation are called Authority Nodes;

	Amount of Authority Nodes is allowed to be in a range of 5 to 47 nodes, upper limit of 47 is chosen as reasonable to avoid excessive infrastructure cost, while keeping network security at high level;

	We use the same logic as in EIP225 (https://eips.ethereum.org/EIPS/eip-225) Clique consensus to reach an agreement between Authority Nodes, but change the voting logic to elect Authority Nodes (see http://docs.papyrus.network/en/latest/doc/network_architecture.html for more details).

Authority Nodes

Papyrus Network is operated by Authority Nodes, which provide their hardware capacities to run Papyrus Network software, which implements Papyrus Network protocol. Authority Nodes are operated by identified business entities and are elected by other Authority Nodes according to established network governance model (see http://docs.papyrus.network/en/latest/doc/network_architecture.html for more details).

Papyrus Network protocol allows up to 47 Authority Nodes to be a part of the network.

In exchange for maintaining network operations Authority Nodes get mining rewards equal to 1.5*K PPR tokens per block, where K = {AMOUNT OF AUTHORITY NODES}/47.
This formula ensures that existing Authority Nodes will keep receiving same amount of daily/monthly rewards with the growth of amount of Authority Nodes in the network.
It fact, Authority Nodes are incentivised to make network more decentralised and invite new nodes to the network without losing own rewards.

PPR token is a native token of Papyrus Network required to allocate network resources to execute transactions.
There are 1 000 000 000 PPR tokens distributed at the genesis block, and according to mining rewards schedule with 1 second block interval annual inflation is limited with a maximum amount of new tokens equal to (60 blocks per minute)*60*24*365*1.5*(47/47)= 47 304 000 PPR, ie ~ 4.7% of total emission.

Mining rewards are subject to change only based on community voting (see Governance documentation).

Initially Papyrus Network mainnet is launched with 5 Authority Nodes chosen by Papyrus, few of them will be initially operated by Papyrus.

After the launch Authority Nodes election procedures are activated, network governance becomes decentralised and existing Authority Nodes are able to elect new Authority Nodes.
To make proper decisions as Authority Node owner Papyrus will audit each current and potential node owner entity’s mission, executive leadership, net annual revenue, number of full-time employees, years in business, organizational structure, and the industry they are a part of, to ensure that existing network Authority Nodes are reliable enough.

Following network launch Papyrus team will be pursuing full network decentralisation, where all Authority Nodes will be operated by other organisations without Papyrus involvement.
To achieve that Papyrus will be removing own nodes from the network, when new Authority Nodes are joining it.

It is strongly recommended in the interest of network reliability that all existing Authority Nodes do a regular audit of current and potential Authority Node owner entity’s mission, executive leadership, net annual revenue, number of full-time employees, years in business, organizational structure, and the industry they are a part of.
In case of doubt in other Authority Node reliability, Authority Nodes should use BIOS Contract to set a vote on adding suspicious Nodes to the Blacklist.
Papyrus Wallet and Papyrus Explorer support necessary functionality.

If you would like to run an Authority Node and receive mining rewards in Papyrus Network, you can apply here:
https://papyrusglobal.typeform.com/to/Va9wX5

Instruction on how to set up a node can be found here:
https://github.com/papyrusglobal/papyrus

Recommended Authority Node configuration:

CPU - Intel® Core™ i7 or more powerful

RAM: 64Gb+

Hard drive: 512Gb+ (SSD recommended)

Connection: 100 MBit/s+ port

How to deploy Authority Node

Prerequisites
You need have Docker and Docker Compose installed.

To start a node, run the following docker command. It will download the image and start it. Optionally, you may add keys such as –rpc or –ws (see the ‘geth’ command line options) to the end of the command.

docker run -d --name=my-node -p 33309:33309 -p 33309:33309/udp -v my-node-volume:/root/.ethereum --restart unless-stopped papyrusglobal/geth-papyrus:latest --port 33309 --ethstats='my-node-public-name:ante litteram@status-server.papyrus.network:3800'

Additionally, if you are authority node:
You will then need to copy your <account.json> to the container where node runs.

docker cp account.json my-node:/root/.ethereum/keystore/
docker exec -it my-node ./console.sh 'personal.unlockAccount(eth.accounts[0], "<<<passphrase>>>", 0)'
docker exec -it my-node ./console.sh 'miner.setEtherbase(eth.accounts[0]); miner.start()'

Expected Authority Node rewards:

Expected monthly PPR reward for active Authority Node is equal to 60*60*24*30*(K/47)*(1.5/K) = ~82,723 PPR

Staking

Why we implemented token staking in Papyrus Network?

Token staking is the method to allocate network bandwidth to specific user or application developer needs. We use idea of tokenisation to manage network resources and avoid network flood and sybil attacks on the network.

There is a fixed amount of network bandwidth tokens issued at every point in time (every block formed in the network).
Imagine that to get right to use X% of network bandwidth you have to freeze X% of issued tokens, making them unavailable to transfers and any other usage. You can always unfreeze them by requesting that, but you will have to wait 3 days and will lose ability to use X% of network bandwidth. That is the simple illustration, how network bandwidth may be tokenised with fixed amount of tokens.

In Papyrus Network native token is called PPR and it is used for network bandwidth tokenisation. Rules around token staking/unstaking and resource allocation are slightly more complex in the real Papyrus Network and are described below.
Also Papyrus Network supports delegation of allocated bandwidth, meaning that application developer can make own stake to allocate network bandwidth for his application and then allow to use it for free for their smart contract users.

If existing stake provides bandwidth, that is not enough to run required transactions for the user or smart contract, it will result in transaction failure. Still transaction can be retried again, as bandwidth allocation for the stake becomes refilled with the time. Application developers and users should plan their bandwidth allocation in advance and increase/decrease their stakes as necessary.

Ultimately stake-based resource management allows application developers to plan network resources cost in advance and build reliable business models for their dApps. As an example, dApp developer could charge users off-chain (via Google Play or Apple App Store) and put them into on-chain whitelist to execute smart contract functions for free using developer’s stake, thus significantly simplifying their onboarding to dApp.

How to stake tokens

The easyest way to stake/unstake tokens is to use Papyrus Wallet. [https://docs.papyrus.network/en/latest/doc/tools.html]
Papyrus Wallet works with MetaMask extension and gives you a particularly user-friendly interface for all features of Papyrus Network.
To stake your tokens just chose staking tab and then fill the fields with stakes or gaslimit and press Stakes button.
By default - stake will be processed onto your address. To stake on smartcontract - just fill its address to the field and push stake button! Remember that only one stake is available to the one smartcontract.
Main Papyrus Wallet inteface you could see on the screenshot:

[image: ../_images/w1.png]
You can easily unstake your tokens, just go to the Unstake tab and enter value for unstaking.
When unstaking is done your tokens are frozen and you have to wait for some time to process with withdraw.

[image: ../_images/w2.png]

Code Examples

Examples - how to use stakes in your DApp you could find in the API section [https://papyrus-network.readthedocs.io/en/latest/doc/api/api-staking.html]

Network Performance

Papyrus network designed as high loaded solution that should be able to process more than 1000 tps.
To achieve these performance results we reimplement batching and buffers to allow them to aggregate more data. To do that first of all we had to increase potential number of transaction in queue.

	peer.go class that contains constants that are responsible for queue sizes.

We conducted a series of load tests and, after internal modeling, we stopped at the following set of values:

 // maxQueuedTxs is the maximum number of transaction lists to queue up before
 // dropping broadcasts. This is a sensitive number as a transaction list might
 // contain a single transaction, or thousands.
 maxQueuedTxs = /*128*/ 16384

 // maxQueuedProps is the maximum number of block propagations to queue up before
 // dropping broadcasts. There's not much point in queueing stale blocks, so a few
 // that might cover uncles should be enough.
 maxQueuedProps = /*4*/ 32

 // maxQueuedAnns is the maximum number of block announcements to queue up before
 // dropping broadcasts. Similarly to block propagations, there's no point to queue
 // above some healthy uncle limit, so use that.
 maxQueuedAnns = /*4*/ 32

 handshakeTimeout = 5 * time.Second
)

Next step was in increasing up to ten times size of transaction chain. For that reason few more classes were tuned by changing its constant values

	sync.go - here where have overridden result size of our tansactions pack.

 // This is the target size for the packs of transactions sent by txsyncLoop.
 // A pack can get larger than this if a single transactions exceeds this size.
 txsyncPackSize = /*100 * 1024*/ 1000 * 1024

In the next three classes - ethstats.go, server.go, worker.go we need to increase the size of chain head size.

	ethstats.go

 // The number is referenced from the size of tx pool.
 txChanSize = 4096
 // chainHeadChanSize is the size of channel listening to ChainHeadEvent.
 chainHeadChanSize = /*10*/ 100

	server.go

 func (pm *ProtocolManager) blockLoop() {
 pm.wg.Add(1)
 headCh := make(chan core.ChainHeadEvent, /*10/* 100)
 headSub := pm.blockchain.SubscribeChainHeadEvent(headCh)

	worker.go

 txChanSize = 4096

 // chainHeadChanSize is the size of channel listening to ChainHeadEvent.
 chainHeadChanSize = /*10*/ 100

	tx_pool.go class that contains most of logic for the transaction pool. As in previous classes - we had to override chain size and after that, according to our model, we significantly reworked the sizes of the slots

	1
2
3
4
5
6
7
8
9

	 DefaultTxPoolConfig = TxPoolConfig{
 PriceLimit: 1,
 PriceBump: 10,

 AccountSlots: /*16*/ 8192,
 GlobalSlots: /*4096*/ 131072,
 AccountQueue: /*64*/ 4096,
 GlobalQueue: /*1024*/ 32768,
 }

After that we added transaction batching and overhauled buffers.
This kind of transaction packaging lets us to drastically increase network performance without compromising security.
In order to unlock the full potential of this approach, we also had to rework the queue sizes for pending and queued transactions.
While these changes implied new changes in parameters of the maximum number of permissible transactions, and, most importantly,
in the total number of transactions.

	tx_pool.go

// feedLoop continuously sends batches of txs from the txFeedBuf to the txFeed.
func (pool *TxPool) feedLoop() {
 defer pool.wg.Done()

 const batchSize = 1000
 for {
 select {
 case <-pool.chainHeadSub.Err():
 return
 case tx := <-pool.txFeedBuf:
 var event NewTxsEvent
 event.Txs = append(event.Txs, tx)
 for i := 1; i < batchSize; i++ {
 select {
 case tx := <-pool.txFeedBuf:
 event.Txs = append(event.Txs, tx)
 default:
 break
 }
 }
 pool.txFeed.Send(event)
 }
 }
}

// feedSend queues tx to eventually be sent on the txFeed.
func (pool *TxPool) feedSend(tx *types.Transaction) {
 select {
 case pool.txFeedBuf <- tx:
 return
 default:
 go func() { pool.txFeedBuf <- tx }()
 }
}

The result is a tenfold increase in performance. For multiple tests, we used a specific utility to load the network with 1500 transactions every second.
The test results showed that the network successfully handles 1500 transactions per second and works stably at such a load for a long period of time.
Below you can find the logs of the utility and the logs of the node.
The logs show that all 1500 transactions fall into a block, which is generated every second. During the test, we used the type of configuration, suggesting the entire load to be applied to one gateway node, while the gateway-node is not engaged in the generation of blocks.
Blocks are generated by several sealer nodes.

Results

Utility logs:

[image: ../_images/utility_logs.png]
Node logs:

[image: ../_images/node_logs.png]
A visual representation, which can be seen on our monitor explorer (screenshot):

[image: ../_images/explorer_logs.png]
The test shows, that 1500 transactions fall into a block every second it is generated.

As a result, we got the desired and unique combination of a quality network.

Papyrus API

The following are the core APIs that could be used in the development of Papyrus Dapps:

Contents:

	BIOS Contract
	Overview

	BIOS Addresses

	BIOS Usages examples

	API: Staking
	Contract overview

	Functions

	API Usage Example

	API: Voting
	Contract overview

	Proposal Functions

	Proposal Examples

	Voting Functions

	Voting Examples

BIOS Contract

Overview

Bios.sol - is the main kernel smartcontract with all the logic about consensus, staking and voting. Its based on the QueueHelper that brings queue implementation code.
Latest version of the Bios contact you can always find in our repo [https://github.com/papyrusglobal/papyrus/blob/master/papyrus-stuff/contracts/Bios.sol]

BIOS Addresses

To track the current address of the Bios contract, there is a Versioner [https://github.com/papyrusglobal/papyrus/blob/master/papyrus-stuff/contracts/Versioner.sol] contract located at fixed address 0x0000000000000000000000000000000000000022. To query it for the Bios contract address, use bios public method. Here is an example in javascript:

const versionerAbi = [
 {
 constant: true,
 inputs: [],
 name: 'bios',
 outputs: [{ name: '', type: 'address' }],
 payable: false,
 stateMutability: 'view',
 type: 'function'
 }
];
const versionerAddress = '0x0000000000000000000000000000000000000022';
const versioner = new web3.eth.Contract(versionerAbi, versionerAddress);
const biosAddress = await versioner.methods.bios().call({ from: account });

Note that the resulting address may be zero, this means that the Bios contract is not yet installed.

BIOS Usages examples

Let’s take a look at the simple example of Javascript code that will get all authorities nodes from our BIOS contract.

 const { eth } = require('./web3relay');
 const ABI = require('../abi/bios');
 const { getConfig } = require('../utils');

 const config = getConfig();
 if (!config.biosAddress) throw new Error('Setup config.biosAddres');
 const contract = new eth.Contract(ABI, config.biosAddress);

 module.exports = function (req, res) {
 if (typeof contract.methods.getAuthorities !== 'function') {
 console.error('Contract method \'getAuthorities\' not found', err);
 res.send([]);
 res.end();
 }
 contract.methods.getAuthorities().call()
 .then(authorities => {
 res.send(authorities);
 res.end();
 })
 .catch(err => {
 console.error('Can\'t get authorities from contract. Silently return empty array', err);
 res.send([]);
 res.end();
 })
 };

If you are interested to see more examples how to call BIOS contact API you could check our API documentation sections for example - Voting API [https://papyrus-network.readthedocs.io/en/latest/doc/api/api-staking.html#api-usage-example]

API: Staking

Contract overview

Bios.sol - is the main kernel smartcontract with all the logic about consensus and staking. Its based on the QueueHelper that brings queue implementation code.

Functions

	function freeze() payable public

Stake the specified amount of tokens.
The value is on the contract account and thus inaccessible to the sender.
Input parameter : “msg.value” the value to be staked.
Output parameter : none

	function freezeForContract(address contract_) payable public

Stake the specified amount of money to the given contract account.
The value is on the contract account and thus inaccessible to the sender.
(address contract_) payable public {
Input parameter : “msg.value” the value to be staked.
Input parameter : address - the contract to stake for.
Output parameter : none

	function melt(uint224 val) public

Unstake the specified value of tokens.
The value is put to the melting queue and can be withdrawn after freezeGap.
Input parameter : “val” - value to unstake.
Output parameter : none

	function meltFromContract(address contract_, uint224 val) public

Function to unstake the specified value of money from the contract account.
The value is put to the melting queue and can be withdrawn after kFreezeStake.
Input parameter : “val” - value to unstake.
Input parameter : address - the contract to unstake from.
Output parameter : none

	function withdraw() public

Withdraw the previously unstaked amount of tokens provided the freezeGap time had passed since its unstake.
Every ‘unstake’ call must match ‘withdraw’ call.
Takes the latest melting queue element and transfers its tokens amoun to the sender’s account.
Input parameter : none
Output parameter : none

	function getFreeMeltingSlots() view public returns (uint8)

Service function, calculates the number of queue elements (slots) is aviable in the melting conveyer for the sender’s account.
Every unstake call consumes a slot, every withdrawal releases it.
Input parameter : none
Output parameter : uint8 - slots number

	function getMeltingHead() view public returns (uint224 stake, uint32 timestamp)

Service function, calculates the latest melting conveyer slot to bewithdrawn first.
Return Stake and timestamp pair, where stake is the amount of money unstaked and timestamp is the time of the unstake call.
Input parameter : none
Output parameter : uint8 - stake
Output parameter : uint8 - timestamp

	function getFreeMeltingSlots() view public returns (uint8)

Service function, calculates the number of queue elements (slots) is aviable in the melting conveyer for the sender’s account.
Every unstake call consumes a slot, every withdrawal releases it.
Input parameter : none
Output parameter : uint8 - number of free slots that could be used for the unstaking

	function getMeltingHead() view public returns (uint224 stake, uint32 timestamp)

Service function, calculates the latest melting conveyer slot to be withdrawn first.
Input parameter : none
Output parameter : uint224 stake, uint32 timestamp - pair, where stake is the amount of money unstaked and timestamp is the time of the unstake call.

API Usage Example

Below you can see typical JS example of usage Bios.sol smartcontract.

 const gatewayUrl = 'http://148.251.152.112:18545/'; // url to the Papyrus testnet
 const biosAddress = '0x142ac51e2b05a107c1482f4832b73c5bc55b6fd5'; // Address of the Bios contract in the network

 const ether = 10 ** 18;
 let contract;
 let account;
 let web3;

 web3 = new Web3(window.web3.currentProvider);
 const accounts = await web3.eth.getAccounts();
 account = accounts[0];
 const netId = await web3.eth.net.getId();
 const balance = await web3.eth.getBalance(account);
 contract = new web3.eth.Contract(abi, biosAddress);

 //lets freeze some tokens
 contract.methods.freeze().send({ from: account, gas: 0, value })

 //lets unfreeze some tokens
 contract.methods.melt(value).send({ from: account, gas: 0 })

 //After freeze gap time - lets unfreeze our tokens
 contract.methods.withdraw().send({ from: account, gas: 100000 })

API: Voting

Contract overview

Bios.sol - is the main kernel smartcontract with all the logic about consensus, staking and voting. Its based on the QueueHelper that brings queue implementation code.

Voting mechanism consists of two parts - firs is “proposal call” that initiates possibility for voting for any change for other participants (for instance - adding new Authority node or Bios contract changing etc).
After that voting begins and in the in a certain period of time Authority Nodes could vote for any active initiatives.

Proposal Functions

	function proposeNewAuthority(address participant) public

Propose a poll for a new authority.
Input parameter : “address participant” - the address of the new Autority Node.
Output parameter : none

	function proposeBlacklistAuthority(address participant) public

Propose a poll for blacklisting the authority to the authority black list.
Input parameter : “address participant” - the address of the Autority Node that should be added to the black list.
Output parameter : none

Proposal Examples

Below you can see JS example of usage Bios.sol smartcontract from the Papyrus Wallet implemetation:

 async proposeNewAuthority(address, callbacks = {}) {
 return this.process(
 this.contract.methods.proposeNewAuthority(address).send({
 from: this.account,
 gas: 100000
 }),
 callbacks
);
 }

Voting Functions

	function voteForNewAuthority(uint slot, address participant) public

Function that could be called by existing Authority Vote for the voting for the new Authority Node
Input parameter : “slot” - number of voting slot to bet.
Input parameter : “participant” - address of the proposed authority.
Output parameter : none

	function voteForBlackListAuthority(address participant) public

Function that could be called by existing Authority Vote for the voting for the adding another Authority Node to the blacklist
Input parameter : “slot” - number of voting slot to bet.
Input parameter : “participant” - address of the proposed authority.
Output parameter : none

	function handleClosedPolls() public

Handle all pollings where time is up. Anybody could call this function.
Input parameter : none
Output parameter : none

Voting Examples

import Web3 from 'web3';
import abi from '@/abis/abi.json';

const noop = () => {};
const cbCaller = function(fn, ...args) {
 if (fn && typeof fn === 'function') {
 fn(...args);
 }
};

export class Web3Service {
web3 = null;
contract = null;
provider = null;
account = null;

constructor(provider) {
 this.provider = provider;
 this.web3 = new Web3(provider);
 this.contract = new this.web3.eth.Contract(
 abi,
 process.env.VUE_APP_BIOS_ADDRESS
);
}

async voteForNewAuthority(votes, address, callbacks = {}) {
 return this.process(
 this.contract.methods.voteForNewAuthority(votes, address).send({
 from: this.account,
 gas: 100000
 }),
 callbacks
);
}

async voteForBlackListAuthority(address, callbacks = {}) {
 return this.process(
 this.contract.methods.voteForBlackListAuthority(address).send({
 from: this.account,
 gas: 100000
 }),
 callbacks
);
}

Tools

There are many tools created for developers and users of Papyrus Network.

1. Papyrus Explorer

MainNet - https://explorer.papyrus.network

TestNet - https://explorer-testnet.papyrus.network

Repository - https://github.com/papyrusglobal/explorer

2. Papyrus Network Status

MainNet - https://status.papyrus.network

TestNet - https://status.papyrus.network

3. Papyrus Wallet

MainNet - https://wallet.papyrus.network

TestNet - https://wallet-testnet.papyrus.network

Repository - https://github.com/papyrusglobal/wallet

4. Papyrus-Ethereum Bridge

MainNet<->Ethereum MainNet - https://bridge.papyrus.network

TestNet<->Rinkeby Bridge - https://bridge-testnet.papyrus.network

Backend repository - https://github.com/papyrusglobal/papyrus-token-bridge

Frontend repository - https://github.com/papyrusglobal/papyrus-token-bridge-web

5. Papyrus Roulette dApp demo

TestNet - https://roulette-testnet.papyrus.network/

Repository - https://github.com/papyrusglobal/roulette

FAQ

What is Papyrus Network?

Papyrus Network is a decentralized blockchain platform for supporting smart contracts and high throughput designed for mass adoption and enterprise usage. Papyrus Network is an operating system which will allow developers to deploy their own decentralized applications and will allow companies integrate custom blockchain for their business needs.

What is the prospects of Papyrus Network?

We aim to build a Papyrus Network ecosystem that everyone can participate in and benefit from. Some of the features of Papyrus Network are:

	Users are able to reduce costs, enjoy convenience, and build fortunes by using different DApp functions deployed in Papyrus Network. Instead of gas transaction fee model token staking model is implemented to allocate network processing power and storage facilities.

	Developers have a vast range of rights including deploying DApp in Papyrus Network net, expanding business and gaining traction as influencers and authority leaders.

	Authority node holders demonstrate support for Papyrus Network and its abundant returns.

Everyone will devote their energy to the construction of the Papyrus Network ecosystem, and will benefit from helping to build Papyrus Network regardless of their role as users, developers or Papyrus Network Authority node holders.

What differs Papyrus Network from Ethereum, EOS and TRON?

Papyrus Network combines the best features of Ethereum and EOS avoiding their weaknesses and having something different inside:

	Consensus Module

Instead of energy intensive Proof-of-Work lightweight Proof-of-Authority consensus and Separation of Powers are realised, where fixed amount of network nodes called Authority Nodes are operated by credible organizations with public exposure. As a result resource wastage can be eliminated inherent to Proof-of-Work and ensure reasonable transaction costs.

	Token Staking

Instead of gas transaction fee model token staking model is implemented, where token supply represents total available network throughput and each token represents fraction of it. Application developers need to stake tokens (locking them for specific period of time) for their dApp contracts to receive access to required network bandwidth and may adjust staked amount from time to time accordingly to their needs. Developers don’t need to worry about token price volatility between revisions of their bandwidth requirements.

For more information on what differs Papyrus Network from others, go check Comparison page in the Docs.

What are Authority nodes?

They are active network nodes, which participate in Proof-of-Authority consensus. Initial set of Authority nodes was appointed by Papyrus team. After network is launched Authority nodes self-elect themselves from current set of eligible node candidates. Inclusion or exclusion of Authority nodes is based on votes from other Authority nodes. Maximum amount of Authority nodes is fixed as 47, as in our view it is good tradeoff between network speed, scalability and resistance to attacks.

Papyrus Network key facts

This section presents key variables of Papyrus Network setup, which dApp developers need to know.

	ChainId = 32328

	Block interval = 1 second

	Native token for resource allocation = PPR

	Native token emission at genesis block = 1000000000 PPR

	Mining rewards = (1.5 * A) / 47 PPR per mined block, where A equals to the count of Authority Nodes

	Block gas limit = 210284448

	Unstaking lock period = 3 * 24 hours (3 days)

	Gas refill allocation for an address with X PPR stake = X in wei * blockGasLimit * 60 * 60 / totalStake in wei, where blockGasLimit = block gas limit, totalStake = total amount of PPRs staked in the network with X included (implementation notice: for the first stake created for the address gas is allocated immediately, for subsequent stakes gas is allocated once in an hour by gas refill process)

	Gas refill interval = 60 * 60 seconds (1 hour)

	Maximum gas allocation limit for an address with X PPR stake = 3 * 24 * X in wei * blockGasLimit * 60 * 60 / totalStake in wei, where blockGasLimit = block gas limit, totalStake = total amount of PPRs staked in the network with X included

	New Authority Node voting period = 14 days

	Authority Node blacklist voting period = 5 days

	Minimum votes required for Authority Node candidate approval = 3

	Maximum number of Authority Nodes and candidates each Authority Nodes can vote for = 7

	Vote withdrawal lock period = 14 days

	BIOS contract versioner address: 0x0000000000000000000000000000000000000022 (see http://docs.papyrus.network/en/latest/doc/api/api-bios.html)

	Actual version of BIOS contract:

https://github.com/papyrusglobal/papyrus/blob/master/papyrus-stuff/contracts/Bios.sol

	Current BIOS contract address (do not hardcode it in your applications, use versioner to resolve BIOS address in all cases!): 0x196facabb6512c8343ffa8bca4c0174d7b301ff9

	Actual version of Papyrus Network User Agreement:

https://github.com/papyrusglobal/papyrus/blob/master/PNUA

	SHA-256 hash of Papyrus Network User Agreement verifiable in network BIOS contract: 0x5c366dc1ffa995d93fae49888f1283d5e8429a372757f43af315a79e84cd1583

	Network explorer provided by Papyrus:

https://explorer.papyrus.network

	MetaMask wallet extension for token staking and Authority Nodes voting provided by Papyrus:

https://wallet.papyrus.network

	Network status page:

https://status.papyrus.network

	HTTP RPC gateways provided by Papyrus:

https://gateway.papyrus.network

https://gateway2.papyrus.network

Work in progress

Papyrus Network further development directions:

	Implementation of Community blacklist voting.

	Implementation of 47 Authority Nodes limit and governance improvements.

	Research on Ethereum wallets compatibility and usability.

	Support for dApp developers.

	R&D: native enthropy beacon.

	R&D: blockchain history pruning via state snapshots and epochs to reduce data storage requirements for blockchain nodes.

	R&D: performance optimisations.

Index

Migration

How to deploy my smart contract to Papyrus Network?

To deploy your smart contract in the Papyrus Network you need to have stake PPR tokens and receive ~ 500k of the gas limit.
All information regarding the stakes could be found in a separate section of our documentation - Staking [https://papyrus-network.readthedocs.io/en/latest/doc/staking.html]

The easyest way to do a stake is by using Papyrus Wallet:
https://wallet-testnet.papyrus.network

Papyrus network on-boarding manual

Prerequisites

	You need to have a machine capable of running ethereum client
[geth](https://geth.ethereum.org/).

	Your network firewall should allow connection to at least one TCP and UDP
port. This manual uses port number 30301 but you can change it to any other
number.

	You need docker installed on your machine.

To quickly install docker on Ubuntu, follow these steps:

curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh

I also recommend adding your user to the docker group so you can run
following docker commands without sudo prefix.

sudo usermod -aG docker $USER

⚠ Note that you need to log out all you existing sessions. Then log in
again.

Run the node

sudo docker run -d –name=my-node -p 32303:32303 -p 32303:32303/udp papyrusglobal/geth-papyrus:test2-latest –port 32303 –ethstats=’My node:ante litteram@head.papyrus.network:3500’

This command downloads and runs the docker container
“papyrusglobal/geth-papyrus:test-latest” that will use ports 30301/tcp and
30301/udp for peer communication and report statistics to public server as “My
node”.

You may use standard docker commands (start/stop/rm/exec) to operate the
container. For example, to see logs, run docker logs my-node.

For more useful parameters that you may want to add, see sections below.

Statistics

Network statistics is on http://status.papyrus.network. If you allowed stats
reporting (–ethstats option above), you should see your node there too.

Optional parameters

You can use any geth command line options
(https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options).

I recommend the following useful additions to your command line:

To allow rpc interface, to use it for your application, consider adding the
following options:

–rpc –rpcaddr=‘0.0.0.0’
–rpccorsdomain=”*”

⚠ Note that you need to add -p 8545:8545 option to the docker part of the
command to expose the port to your machine network.

⚠ Note also that if you want to connect Metamask or other software from the
outside of your machine, make sure that your firewall accepts incoming
8545/tcp port connections. Port number may be changed with –rpcport option.

The same for websocket interface.

	--ws

	–wsaddr=‘0.0.0.0’

–wsorigins=”*”

Same notes above apply to the default websocket port 8546/tcp.

To add much more verbose logs, add the following. Remember to remove this as
you don’t need it anymore to save space.

–verbosity=5

Commands

To add a new account:

docker exec -it my-node geth account new

Or to import the existing account:

docker cp path/to/account.json my-node:/root/.ethereum/keystore/

To check accounts you have:

docker exec -it my-node geth account list

To unlock the account the first account with password “password” for unlimited
time:

docker exec -it my-node ./console.sh ‘personal.unlockAccount(eth.accounts[0], “password”, 0)’

To check the sealers, run:

docker exec -it my-node ./console.sh ‘papyrus.getSigners()’

To vote for the new sealer, run:

docker exec -it my-node ./console.sh ‘papyrus.propose(“0x123…321”, true)’

To start mining, using your first account for the coin-base, run:

docker exec -it my-node ./console.sh ‘miner.setEtherbase(eth.accounts[0]); miner.start()’

Required knowledge

Good news is that if you already had some experience with Ethereum, it can be applied in Papyrus Network. The same EVM fully compatible with Solidity is used in Papyrus network and as result, all your knowledge will be useful and existing smart contracts may be transferred to Papyrus to achieve greater performance and convenience.

One of the key differences is that in Ethereum you have to pay gas for any transaction but in the Papyrus network you can divide the contract execution fee between the contract developer and users by token staking.
Here (TODO link to Papyrus PoA blockchain) you could read more about this staking system.

If you have no any experience in Ethereum, don’t you worry! Solidity itself is a pretty simple language and its syntax is very similar to JavaScript.

	You can familiarize yourself with it by taking any guide, for example this one:

https://ethereumbuilders.gitbooks.io/guide/content/en/solidity_tutorials.html
And this generic tutorial:
https://solidity.readthedocs.io/en/v0.4.24/

	Next step - to chose IDE. Remix IDE can be a suitable choice for the beginning - it is written in Java Script and supports all e2e development steps such as building/testing/debugging and deployment.

	Geth — it is the official client software provided by the Ethereum Foundation. It contains Papyrus consensus, so you may deploy your own testnet or connect to Papyrus network or testnet.

What if I do not have required scope of knowledge?

If you or your team do not have some of the skills mentioned above, it is not a big deal.
Papyrus Network core team is always here to help you to develop smart contracts tailored to one’s business needs either from scratch, or just port it from Ethereum, if the business has a smart contract written in Solidity.
If you are interested, please do not hesitate to leave an inquiry here https://papyrusglobal.typeform.com/to/opWAfy

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/w2.png
4% PAPYRUS

'hgj! NETWORK

STAKING VOTING

L

Ox4a2D0F1EBb52E130d4C5ebF9d59563E0F 7129734

0 PPR-wei
My stake My limit All stakes
0 PPR-wei 0 gas 0 PPR-wei
Stake Unstake
PPR-wei to unstake Gas you lose
To address

0x4a2D0F1EBb52E130d4C5ebF9d59563E0F 7129734

_static/ajax-loader.gif

_images/utility_logs.png
it —fond s %2
2019/01/11 19:01:28 start sender Loop

2019/01/11 19:01:29 send bathc signal for accounts: batchisize: 1500
2019/01/11 13:01:30 send bothc signal for accounts: botchSize: 1500
2019/01/11 13:01:31 send bothc signal for accounts: botchSize: 1500
2019/01/11 13:01:32 send bothc signal for accounts: botchSize: 1500
2019/01/11 19:01:33 send bothc signal for accounts: borchSize: 1500
2019/01/11 19:01:34 send bothc signal for accounts: borchsize: 1500
2019/01/11 19:01:35 send bathc signal for accounts: batchSize: 1500
2019/01/11 13:01:3 send bothc signal for accounts: batchSize: 1500
2019/01/11 13:01:37 send bothe signal for accounts: botchSize: 1500
2019/01/11 13:01:3 send bothc signal for accounts: botchSize: 1500
2019/01/11 19:01:39 send bothc signal for accounts: borchSize: 1500
2019/01/11 19:01:40 send bothc signal for accounts: botchSize: 1500
2w/ send bathc stgnal for accounts: botehSize: 1500
2019/01/11 13:01:42 send bathc signal for accounts: batchiSize: 1500
2019/01/11 13:01:43 send bothe signal for accounts: botchSize: 1500
2019/01/11 13:01:44 send bothc signal for accounts: botchSize: 1500
2019/01/11 19:01:45 send bothc signal for accounts: botchSize: 1500

2w/01/11 Send bathe signal. for accounts: batcnSize: 1500
2w/ send bathc stgnal for accounts: botchSize: 1500
2o/ Send bathc signal for accounts: botchSize: 1500
2w9/01/11 send bathe signal for accounts: botchSize: 1500
2m/01/11 send bathe signal for accounts: botchSize: 1500
aw9/01/11 send bathe signal for accounts: botenSize: 1500
2m9/01/11 send bathe signal for accounts: botchSize: 1500
2w/01/11 send bathc stanal for accounts: botchSize: 1500

w0/ Send bathc stgnal for accounts: botchSize: 1500
2019/01/11 13:01:55 send bathe signal for accounts: batchSize: 1500
2019/01/11 13:01:56 send bothc signal for accounts: botchSize: 1500
2019/01/11 13:01:57 send bothc signal for accounts: botchSize: 1500
2019/01/11 19:01:55 send bothc signal for accounts: botchsize: 1500

2w/01/11 Report - fotal | dure30s xs-d3500 errs-0 tps-1450
2w/01/11 Report - recent dure30s txa43500 erra-0 tps-1450
ams/ou/n1 Report - lotest 305 txa43500 erra-0 tps 140

2w9/01/11 send bathe signal for accounts: botchSize: 1500
aw/01/11 send bathe signal for accounts: botenSize: 1500
2019/61/11 19:02:01 send bathe signal for accounts: batchSize: 1500

_images/w1.png
PAPYRUS

NETWORK

STAKING VOTING

L

Ox4a2DOF1EBb52E130d4C5ebF9d59563E0F7129734

0 PPR-wei
0 PPR-wei 0 gas 0 PPR-wei
Stake Unstake
]
PPR-wei at stake Gas you receive

18168576307200

It will increase your gas limit at
18168576307200 gas per 3 days

To address

Ox4a2DO0F1EBb52E130d4(5ebF9d59563E0F 7129734

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Papyrus Network documentation!

 		
 Vision (or Why I should run my dApp on Papyrus instead of Ethereum?)

 		
 Which challenges does Papyrus Network solve?

 		
 How we address these issues

 		
 The main advantages of Papyrus Network

 		
 Governance

 		
 Papyrus Network User Agreement

 		
 Definitions

 		
 Adding new Authority Node

 		
 Authority Nodes Management

 		
 1. Election

 		
 2. Blacklist

 		
 Changing BIOS contract parameters

 		
 Authority Nodes token reward recommendation

 		
 Governance attack considerations

 		
 Comparison of Public Blockchain Networks

 		
 Consensus

 		
 Authority Nodes

 		
 Recommended Authority Node configuration:

 		
 How to deploy Authority Node

 		
 Expected Authority Node rewards:

 		
 Staking

 		
 How to stake tokens

 		
 Code Examples

 		
 Network Performance

 		
 Results

 		
 Papyrus API

 		
 BIOS Contract

 		
 Overview

 		
 BIOS Addresses

 		
 BIOS Usages examples

 		
 API: Staking

 		
 Contract overview

 		
 Functions

 		
 API Usage Example

 		
 API: Voting

 		
 Contract overview

 		
 Proposal Functions

 		
 Proposal Examples

 		
 Voting Functions

 		
 Voting Examples

 		
 Tools

 		
 FAQ

 		
 What is Papyrus Network?

 		
 What is the prospects of Papyrus Network?

 		
 What differs Papyrus Network from Ethereum, EOS and TRON?

 		
 What are Authority nodes?

 		
 Papyrus Network key facts

 		
 Work in progress

_images/node_logs.png
2016 A s ot
2826 oot e riing vt

D0 0 1180142 145 Comt e i st
D (351188141018 Sty snt e blck
0 0 11180143015 5 ek rsrad onomca i
Do (L1801 43015 i ptamil e

0 [0 150143 17 oy e riing vt
D0 0 T1180143023 Comit e i st

00 3-S11801-4013 sty ot e blck
D0 011180144015 5 ek rsctad oo i
D [0 1150144 015 4 it prretor e

0 0 1118014403 ot e siing s

e 0 1110144100 Comtt ek riing ok

Do 01115014507 sty st e blck
Do o i

Do (o 11
o o
B o i
Do o i
o o i
o -1
e i
o o 13
o o

4612 Comt e i st
47 0] Sty st e blck

4756 Comt e i s
AL] Sty et e blck
D0 0 11150145 01 5 tek rscad omorca i
Do 0 11501 4501) 4 i il e

o 0 1150148 07 oty e riing vt

0 DL D1180148.1563 Comit e iing sk

D 351186145426 sy e e blck

Do [0 11180149010 5 ek rsctad oromca rin
e [0 11100113010 it prretoh et
0 011150145018 ot e i vt

e 0011180149134 Comtt et riing tork
o [0 11150150 010 sy sentn e block
D60 (3111149150 014) 9tk reenad conc
0 0 11180150010 4 i vt et

D 011150150006 Comit e i w0t

e [0 1150150 151 Comit ot riing ot

o 01150158516 T4 115 sy reasst

TS LA e ereo 05 Sovenaroty seted 2 Bk

o e
R e, B £ e S
e
e e B 2 SRS
IR e, B £ e SR
e N
o NI
T AN

_images/p5.jpg
Energy
consumption

Block Time

Consensus

Resource

Management

Average tx fee

Smart Contracts

Usage complexity

Developer
community

Network
availability

Governance model

Trust model

Ethereum

19.07 TWh / year (0.09%
of world’'s electricity
consumption)

Proof-of-Work

~ $0.13 USD per average
transaction

EVM/Solidity

Very difficult for both
app developers and
users

Strongest community
globally, estimated as
250 000 developers by
ConsenSys

Not guaranteed, network
clogging can paralyze
all applications
(CryptoKitties case)

Community-driven,
anonymous miners; in
reality control of the
network is very
centralized and
consolidated in the
hands of few mining
pools

51% Pol attack is
expensive and
economically not
reasonable for large
mining pools

EOS

Negligible

Delegated Proof-of-Stake

Token staking

~ $0.1 USD to reserve
CPU for average
transaction; ~ $0.159
USD - Cost to persist 1
Kb of data in RAM; ~
$0.1 USD/ms/Day - Cost
to reserve 1 ms/Day CPU
Bandwidth; ~ $0.001
USD/Kb/Day - Cost to
reserve 1 Kb/Day
Network Bandwidth

Token staking
significantly improves
app developers and user
experience

Growth stage, but much
smaller than in
Ethereum

Ensured by having
active and reserve
block producers,
staking-based resource
allocation, lack of
transparency on block
producer operations
increase risks

Community-driven,
Constitution, token
holders approval voting
for 21 active Block
Producers, according to
Constitution Block
Producers can’t pay for
votes; in reality
control of the network
is very centralized and
consolidated by the
group of Block
Producers, some of them
hiddenly buy votes to
be elected (plutocracy)

21 Block Producers are
incentivized to behave
well to keep being
elected by token
holders; in reality
they may just buy votes

TRON

Negligible

Delegated Proof-of-Stake

Gas and Token Staking

~ $0.7 USD to reserve
bandwidth for average
transaction; ~ $0.14
USD/ms/Day - Cost to
reserve 1 ms/Day CPU
Bandwidth; ~ $3.5
USD/Kb/Day - Cost to
reserve 1 Kb/Day
Network Bandwidth

TUM/Solidity

Token staking
significantly improves
app developers and user
experience

Potentially equal to
Ethereum community, but
TRON have many
differences and rqeuire
more work for Ethereum
applications migration

Ensured by having
active and reserve
super representatives,
staking-based resource
allocation, but lack of
transparency on super
representatives
operations and their
ability to buy votes
increase risks of
network destabilization

Community-driven, No
constitution, token
holders approval voting
for 27 active Super
Representatives, Super
Representatives are
encouraged to pay for
votes; control of the
network is very
centralized and
consolidated by the
group of Super
Representatives, which
might manipulate the
network as they wish,
network IS NOT SECURE

Completely unreliable,
27 Super
Representatives
currently they have to
pay their rewards to
voters to keep being
elected, they have no
incentive to provide
quality services and
avoid network
manipulation, network
could collapse anytime
when major token
holders affiliated with
Super Representatives
will decide to exit

Papyrus Network

Negligible

Proof-of-Authority

Token staking

< 0.001 USD

EVM/Solidity

Token staking
significantly improves
app developers and user
experience

Equal to Ethereum
community, as network is
fully compatible with
Ethereum applications

Ensured by having
Authority Node
eligibility criteria,
staking-based resource
allocation, separation
of powers to token
stakeholders and
Authority Nodes

No individual or group
gains too much control,
governance have
established Constitution
and two independent
branches - Token
Stakeholders and
Authority Nodes;
Separation of powers and
system of checks and
balances ensures
governance in the best
interests of network
consumers; Constitution
is designed to avoid
plutocracy and forbids
paying for votes; Due to
transparency and
separation of powers it
is very hard to obtain
significant power by
buying votes

Up to 47 Authority Nodes
are all identified
eligible organizations,
which are elected by
other existing Authority
Nodes and may be vetoed
by Token Stakeholders;
Authority Nodes put
their reputation and
business at risk; At
least half of Authority
Nodes should be
compromised to perform
successful attack

_static/up.png

_images/explorer_logs.png
4 Ethereum Network Statt

explorer.papyrus.network

Clixplorer Papyrus

© Bestblock @ Last sealer

80 0x21b63ac543f1a418...

& Transactions & Blocks

Tx Oxeac3f0203931fb... Block 80 2019-01-11 21:01:49 +0300

0x240499F2(6A3d9.. 3 0x580139a91eC9a3 Sealed by 0x21b63ac543f1a418.

0.000000000000000017 ether n 58 Transactions. 0.000000000000021145 ether
LB T e 2019-01-11 21:01:48 +0300
0x240499F216A3d9.. 9 OXDDAddIcTBI2eRC. Block 79 h
0.000000000000000016ather by 0x21b63ac543f 18418,
80 Transactions, 0.000000000000021425ater
Tx 0x9ca8aadbc02bca...
0x240499F2f6A3d9.. 3 0x0CIDaABSB1993F. Block 78 2019-01-11 21:01:47 +0300
0.000000000000000013 ethr
Sex by 0x21b63ac543f1a418,
618 Transactions. 0.000000000000023346 ether
Tx 0x26a67c28e42444...
OX240499F2(6A349.. 3 OxBASCDAESbaSFAL..
e o Block 77 2019-01-11 21:01:46 +0300

by 0x21b63ac543f1a418.

24 Transactions.

Tx 0x2dd456774a8147... nc

