
Fast Neural Architecture Search of Compact Semantic Segmentation Models
via Auxiliary Cells

Vladimir Nekrasov∗ Hao Chen∗ Chunhua Shen Ian Reid
The University of Adelaide, Australia

E-mail: {vladimir.nekrasov,hao.chen01,chunhua.shen,ian.reid}@adelaide.edu.au

Abstract

Automated design of neural network architectures tai-
lored for a specific task is an extremely promising, albeit
inherently difficult, avenue to explore. While most results
in this domain have been achieved on image classification
and language modelling problems, here we concentrate on
dense per-pixel tasks, in particular, semantic image seg-
mentation using fully convolutional networks. In contrast to
the aforementioned areas, the design choices of a fully con-
volutional network require several changes, ranging from
the sort of operations that need to be used—e.g., dilated
convolutions—to a solving of a more difficult optimisation
problem.

In this work, we are particularly interested in searching
for high-performance compact segmentation architectures,
able to run in real-time using limited resources. To achieve
that, we intentionally over-parameterise the architecture
during the training time via a set of auxiliary cells that pro-
vide an intermediate supervisory signal and can be omitted
during the evaluation phase. The design of the auxiliary
cell is emitted by a controller, a neural network with the
fixed structure trained using reinforcement learning. More
crucially, we demonstrate how to efficiently search for these
architectures within limited time and computational bud-
gets. In particular, we rely on a progressive strategy that
terminates non-promising architectures from being further
trained, and on Polyak averaging coupled with knowledge
distillation to speed-up the convergence. Quantitatively,
in 8 GPU-days our approach discovers a set of architec-
tures performing on-par with state-of-the-art among com-
pact models on the semantic segmentation, pose estimation
and depth prediction tasks.

1. Introduction
For years, the design of neural network architectures was

thought to be solely a duty of a human expert - it was

∗Equal contribution.

her responsibility to specify which type of architecture to
use, how many layers should there be, how many channels
should convolutional layers have and etc. This is no longer
the case as the automated neural architecture search - a way
of predicting the neural network structure via a non-human
expert (an algorithm) - is fast-growing. Potentially, this may
well mean that instead of manually adapting a single state-
of-the-art architecture for a new task at hand, the algorithm
would discover a set of best-suited and high-performing ar-
chitectures on given data.

Few decades ago, such an algorithm was based on evo-
lutionary programming strategies where best seen so far ar-
chitectures underwent mutations and their most promising
off-springs were bound to continue evolving [2]. Now, we
have reached the stage where a secondary neural network,
oftentimes called controller, replaces a human in the loop,
by iteratively searching among possible architecture candi-
dates and maximising the expected score on the held-out
set [48]. While there is a lack of theoretical work behind this
latter approach, several promising empirical breakthroughs
have already been achieved [3, 49].

At this point, it is important to emphasise the fact that
such accomplishments required an excessive amount of
computational resources—more than 20, 000 GPU-days for
the work of Zoph and Le [48] and 2, 000 for Zoph et al. [49].
Although a few works have reduced those to single digit
numbers on image classification and language processing
tasks [22, 29], we consider more challenging dense per-
pixel tasks that produce an output for each pixel in the input
image and for which no efficient training regimes have been
previously presented. Although here we concentrate only
on semantic image segmentation, our proposed methodol-
ogy can immediately be applied to other per-pixel predic-
tion tasks, such as depth estimation and pose estimation. In
our experiments, we demonstrate the transferability of the
discovered segmentation architecture to the latter problems.
Notably, all of them play an important role in computer vi-
sion and robotic applications and so far have been relying
on manually designed accurate low-latency models for real-
world scenarios.

1

ar
X

iv
:1

81
0.

10
80

4v
2 

 [
cs

.C
V

] 
 2

9 
N

ov
 2

01
8



The focus of our work is to automatically discover com-
pact high-performing fully convolutional architectures, able
to run in real-time on a low-computational budget, for ex-
ample, on the Jetson platform. To this end, we are explic-
itly looking for structures that not only improve the perfor-
mance on the held-out set, but also facilitate the optimisa-
tion during the training stage. Concretely, we consider the
encoder-decoder type of a fully-convolutional network [24],
where encoder is represented by a pre-trained image classi-
fier, and the decoder structure is emitted by the controller
network. The controller generates the connectivity struc-
ture between encoder and decoder, as well as the sequence
of operations (that form the so-called cell) to be applied on
each connected path. The same cell structure is used to form
an auxiliary classifier, the goal of which is to provide inter-
mediate supervision and to implicitly over-parameterise the
model. Over-parameterisation is believed to be the primary
reason behind the successes of deep learning models, and a
few theoretical works have already addressed it in simpli-
fied cases [8, 38]. Along with empirical results, this is the
primary motivation behind the described approach.

Last, but not least, we devise a search strategy that per-
mits to find high-performing architectures within a small
number of days using only few GPUs. Concretely, we pur-
sue two goals here:

i.) To prevent ‘bad’ architectures from being trained for
long; and

ii.) To achieve a solid performance estimate as soon as
possible.

To tackle the first goal, we divide the training process during
the search into two stages. During the first stage, we fix the
encoder’s weights and pre-compute its outputs, while only
training the decoder part. For the second stage, we train the
whole model end-to-end. We validate the performance after
the first stage and terminate the training of non-promising
architectures. For the second goal, we employ Polyak aver-
aging [30] and knowledge distillation [12] to speed-up con-
vergence.

To summarise, our contributions in this work are to
propose an efficient neural architecture search strategy for
dense-per-pixel tasks that (i.) allows to sample compact
high-performing architectures, and (ii.) can be used in real-
time on low-computing platforms, such as JetsonTX2. In
particular, the above points are made possible by:

• Devising a progressive strategy able to eliminate poor
candidates early in the training;
• Developing a training schedule for semantic segmenta-

tion able to provide solid results quickly via the means
of knowledge distillation and Polyak averaging;
• Searching for an over-parameterised auxiliary cell that

provides better training and is obsolete during infer-
ence.

2. Related Work
Traditionally, architecture search methods have been

relying upon evolutionary strategies [2, 40, 41], where
a population of networks (oftentimes together with their
weights) is continuously mutated, and less promising net-
works are being discarded. Modern neuro-evolutionary ap-
proaches [23, 31] rely on the same principles and benefit
from available computational resources, that allow them to
achieve impressive results. Bayesian optimisation methods
estimating the probability density of objective function have
long been used for hyper-parameter search [4, 37]. Scaling
up Bayesian methods for architecture search is an ongoing
work, and few kernel-based approaches have already shown
solid performance [14, 42].

Most recently, neural architecture search (NAS) strate-
gies based on reinforcement learning (RL) have attained
state-of-the-art results on the tasks of image classification
and natural language processing [3, 48, 49]. Relying on
enormous computational resources, these algorithms com-
prise a separate neural network, the so-called ‘controller’,
that emits an architecture design and receives a scalar re-
ward after the emitted architecture is trained on the task
of interest. Notably, thousand of iterations and GPU-days
are needed for convergence. Rather than searching for the
whole network structure from scratch, these methods tend to
look for cells—repeatable motifs that can be stacked multi-
ple times in a feedforward fashion.

Several solutions for making NAS methods more effi-
cient have been recently proposed. In particular, Pham et
al. [29] unroll the computational graph of all possible ar-
chitectures and allow sharing the weights among different
architectures. This dramatically reduces the number of re-
sources needed for convergence. In a similar vein of re-
search, Liu et al. [22] exploit a progressive strategy where
the network complexity is gradually increased, while the
ranking network is trained in parallel to predict the perfor-
mance of a new architecture. A few methods have been
built around continuous relaxation of the search problem.
Particularly Luo et al. [25] use an encoder to embed the ar-
chitecture description into a latent space, and estimator to
predict the performance of an architecture given its embed-
ding. While these methods make the search process more
efficient, they achieve so by sacrificing the expressiveness
of the search space, and hence, may arrive to a sub-optimal
solution.

In semantic segmentation [18, 19, 20], up to now all the
architectures have been manually designed, closely follow-
ing the winner entries of image classification challenges.
Two prominent directions have emerged over the last few
years: the encoder-decoder type [18, 24, 28], where bet-
ter features are learned at the expense of having a spa-
tially coarse output mask; whereas other popular approach
discards several down-sampling layers and relies on di-



lated convolutions for keeping the receptive field size in-
tact [6, 45, 47]. Chen et al. [7] have also shown that the
combination of those two paradigms lead to even better re-
sults across different benchmarks. In terms of NAS in se-
mantic segmentation, independently of us and in parallel to
our work, a straightforward adaptation of image classifica-
tion NAS methods was proposed by Chen et al. [5]. In it
they randomly search for a single segmentation cell design
and achieve expressive results by using almost 400 GPUs
over the range of 7 days. In contrast to that, our method first
and foremost is able to find compact segmentation models
only in a fraction of that time. Secondly, it differs signifi-
cantly in terms of the search design and search methodol-
ogy.

For the purposes of a clearer presentation of our ideas,
we briefly review knowledge distillation, an approach pro-
posed by Hinton et al. [12] to successfully train a compact
model using the outputs of a single (or an ensemble of) large
network(s) pre-trained on the current task. In it, the logits
of the pre-trained network are being used as an additional
regulariser for the small network. In other words, the lat-
ter has to mimic the outputs of the former. Such a method
was shown to provide a better learning signal for the small
network. As a result of that, it has already found its way
across multiple domains: computer vision [46], reinforce-
ment learning [32], continuous learning [17] – to name a
few.

3. Methodology
We start with the problem formulation, proceed with the

definitions of an auxiliary cell and knowledge distillation
loss, and conclude with the overall search strategy.

We primarily focus on two research questions: (i.) how
to acquire a reliable estimate of the segmentation model
performance as quickly as possible; and (ii.) how to im-
prove the training process of the segmentation architecture
through over-parameterisation, obsolete during inference.

3.1. Problem Formulation

We consider dense prediction task T , for which we have
multiple training tuples {(Xi, yi)}, where both Xi and yi
are 3-dimensional tensors with equal spatial and arbitrary
third dimensions. In this work, Xi is a 3-channel RGB im-
age, while yi is a C-channel one-hot segmentation mask
with C being equal to the number of classes, which corre-
sponds to semantic image segmentation. Furthermore, we
rely on a mapping f : X → y with parameters θ, that is
represented by a fully convolutional neural network. We
assume that the network f can further be decomposed into
two parts: e - representing encoder, and d - for decoder. We
initialise encoder e with weights from a pre-trained classifi-
cation network consisting of multiple down-sampling oper-
ations that reduce the spatial dimensions of the input. The

decoder part, on the other hand, has access to several out-
puts of encoder with varying spatial and channel dimen-
sions. The search goal is to choose which feature maps to
use and what operations to apply on them. We next describe
the decoder search space in full detail.

3.1.1 Search Space

We restrict our attention to the decoder part, as it is currently
infeasible to perform a full segmentation network search
from scratch.

As mentioned above, the decoder has access to multi-
ple layers from the pre-trained encoder with varying di-
mensions. To keep sampled architectures compact and of
approximately equal size, each encoder output undergoes
a single 1×1 convolution with the same number of out-
put channels. We rely on a recurrent neural network, the
controller, to sequentially produce pairs of indices of which
layers to use, and what operations to apply on them. In par-
ticular, this sequence of operations is combined to form a
cell (see example in Fig. 1). The same cell but with dif-
ferent weights is applied to each layer inside the sampled
pair, and the outputs of two cells are summed up. The re-
sultant layer is added to the sampling pool. The number of
times pairs of layers are sampled is controlled by a hyper-
parameter, which we set to 3 in our experiments, allowing
the controller to recover such encoder-decoder architectures
as FCN [24], or RefineNet [18]. All non-sampled summa-
tion outputs are concatenated, before being fed into a single
1×1 convolution to reduce the number of channels followed
by the final classification layer.

Each cell takes a single input with the controller first de-
ciding which operation to use on that input. The controller
then proceeds by sampling with replacement two locations
out of two, i.e., of input and the result of the first operation,
and two corresponding operations. The outputs of each op-
eration are summed up, and all three layers (from each op-
eration and the result of their summation) together with the
initial two can be sampled on the next step. The number of
times the locations are sampled inside the cell is controlled
by another hyper-parameter, which we also set to 3 in our
experiments in order to keep the number of all possible ar-
chitectures to a feasible amount1. All existing non-sampled
summation outputs inside the cell are summed up, and used
as the cell output. In this case, we resort to sum as concate-
nation may lead to variable-sized outputs between different
architectures.

Based on existing research in semantic segmentation, we
consider 11 operations:

1Taking into account symmetrical – thus, identical – architectures, we
estimate the number of unique connections in the decoder part to be 120,
and the number of unique cells ∼1010, leading to ∼1012, which is on-par
with concurrent works.



conv1x1 cell

conv1x1

conv1x1 cell

Decoder Structure

cell

select 
index 

select 
index 

block 4

cell

select 
index 

select 
index 

cell

block 5

block 4 block 5

sample decoder connections

select 
op 

select 
index 

select 
index 

select 
op 

select 
op 

op1 op0

op2

branch 1 branch 2

sample cell structure

co
nt

ro
lle

r R
N

N
de

co
de

r 
en

co
de

r o
ut

pu
t 

forward pass
select index
select op

aux cell aux clf

clf

output

input 0

bl
oc

k 
0

bl
oc

k 
1

bl
oc

k 
2

bl
oc

k 
3

index 1 index 3 index 2 index 3 op1 index 0 index 1 op2 op0

concat

y

conv1x1

0 1 2 3 0 1 2 3 0 1 3 4 0 1 2 3 4 0 1 2 0 1 0 1 0 1 2 0 1 22

Figure 1 – Example of the encoder-decoder auxiliary search layout. Controller RNN (bottom) first generates connections between encoder and decoder
(top left), and then samples locations and operations to use inside the cell (top right). All the cells (including auxiliary cell) share the emitted design.
In this example, the controller first samples two indices (block1 and block3), both of which pass through the corresponding cells, before being summed up
to create block4. The controller then samples block2 and block3 that are merged into block5. Since block4 was not sampled, it is concatenated with block5
and fed into 1×1 convolution followed by the final classifier. The output of block4 is also passed through an auxiliary cell for intermediate supervision.
To emit the cell design, the controller starts by sampling the first operation applied on the cell input (op1), followed by sampling of two indices – index0,
corresponding to the cell input, and index1 of the output layer after the first operation. Two operations – op2 and op0 – are applied on each index,
respectively, and their summation serves as the cell output.

• conv 1× 1,
• conv 3× 3,
• separable conv 3× 3,
• separable conv 5× 5,
• global average pooling followed by upsampling and

conv 1× 1,
• conv 3× 3 with dilation rate 3,
• conv 3× 3 with dilation rate 12,
• separable conv 3× 3 with dilation rate 3,
• separable conv 5× 5 with dilation rate 6,
• skip-connection,
• zero-operation that effectively nullifies the path.

An example of the search layout with 2 decoder blocks and
2 cell branches is depicted on Fig. 1.

3.2. Search Strategy

We divide the training set into two disjoint sets - meta-
train and meta-val. The meta-train subset is used to train the

sampled architecture on the given task (i.e., semantic seg-
mentation), whereas meta-val, on the other hand, is used to
evaluate the trained architecture and provide the controller
with a scalar, oftentimes called reward in the reinforcement
learning literature. Given the sampled sequence, its loga-
rithmic probabilities and the reward signal, the controller
is optimised via proximal policy optimisation (PPO) [35].
Hence, there are two training processes present: inner - op-
timisation of the sampled architecture on the given task, and
outer - optimisation of the controller. We next concentrate
on the inner loop.

3.2.1 Progressive Stages

We divide the inner training process into two stages. Dur-
ing the first stage, the encoder weights are fixed and its out-
puts are pre-computed, while only decoder is being trained.
This leads to a quick adaptation of the decoder weights and
a reasonable estimate of the performance of the sampled ar-



chitecture. We exploit a simple heuristic to decide whether
to continue training the sampled architecture for the second
stage, or not. Concretely, the current reward value is being
compared with the running mean of rewards seen so far, and
if it is higher, we continue training. Otherwise, with prob-
ability 1 − p we terminate the training process. The prob-
ability p is annealed throughout our search (starting from
0.9).

The motivation behind this is straightforward: the results
of the first stage, while noisy, can still provide a reasonable
estimate of the potential of the sampled architecture. At
the very least, they would present a reliable signal that the
sampled architecture is non-promising, while spending only
few seconds on it. Such a simple approach encourages ex-
ploration during early stages of search akin to the ε-greedy
strategy often used in the multi-armed bandit problem [43].

3.2.2 Fast Training via Knowledge Distillation and
Weights’ Averaging

Semantic segmentation models are notable for requiring
many iterations to converge. Partially, this is addressed by
initialising the encoder part from a pre-trained classification
network. Unfortunately, no such thing exists for decoder.

Fortunately, though, we can explore several alternatives
that provide faster convergence. Besides tailoring our op-
timisation hyper-parameters, we rely on two more tricks:
firstly, we keep track of the running average of the parame-
ters during each stage and apply them before the final val-
idation [30]. Secondly, we append an additional l2−loss
term between the logits of the current architecture and a
pre-trained teacher network. We can either pre-compute the
teacher’s outputs beforehand, or acquire them on-the-fly in
case the teacher’s computations are negligible.

The combination of both of these approaches allows us
to receive a very reliable estimate of the performance of the
semantic segmentation model as quickly as possible without
a significant overhead.

3.2.3 Intermediate Supervision via Auxiliary Cells

We further look for ways of easing optimisation during fast
search, as well as during a longer training of semantic seg-
mentation models. Thus, still aligning with the goal of hav-
ing a compact but accurate model, we explicitly aim to find
ways of performing steps that are beneficial during training
and obsolete during evaluation.

One approach that we consider here is to append an aux-
iliary cell after each summation between pairs of main cells
- the auxiliary cell is identical to the main cell and can either
be conditioned to output ground truth directly, or to mimic
the teacher’s network predictions (or the combination of the
above two). At the same time, it does not influence the out-
put of the main classifier either during the training or testing

and merely provides better gradients for the rest of the net-
work. In the end, the reward per the sampled architecture
will still be decided by the output of the main classifier. For
simplicity, we only apply the segmentation loss on all aux-
iliary outputs.

The notion of intermediate supervision is not novel in
neural networks, but to the best of our knowledge, prior
works have merely been relying on a simple auxiliary clas-
sifier, and we are the first to tie up the design of decoder with
the design of the auxiliary cell. We demonstrate the quanti-
tative benefits of doing so in our ablation studies (Sect. 4.2).

Furthermore, our motivation behind searching for cells
that may also serve as intermediate supervisors stems from
ever-growing empirical (and theoretical under certain as-
sumptions) evidence that deep networks benefit from over-
parameterisation during training [8, 38]. While auxiliary
cells provide an implicit notion of over-parameterisation,
we could have explicitly increased the number of channels
and then resorted to pruning. Nonetheless, pruning meth-
ods tend to result in unstructured networks often carrying
no tangible benefits in terms of the runtime speed, whereas
our solution simply permits omitting unused layers during
inference.

4. Experiments
We conduct extensive experiments on PASCAL VOC

which is an established semantic segmentation benchmark
that comprises 20 semantic classes and provides 1464 train-
ing images [9]. For the search process, we extend those to
more than 10000 by exploiting annotations from BSD [11].
As commonly done, during search, we keep 10% of those
images for validation of the sampled architectures that pro-
vides the controller with the reward signal. For the first
stage, we pre-compute the encoder outputs on 4000 images
and store them for faster processing.

The controller is a two-layer recurrent LSTM [13] neural
network with 100 hidden units. All the units are randomly
initialised from a uniform distribution. We use PPO [35] for
optimisation with the learning rate of 0.0001.

The encoder part of our network is MobileNet-v2 [33],
pretrained on MS COCO [21] for semantic segmenta-
tion using the Light-Weight RefineNet decoder [27]. We
omit the last layers and consider four outputs from lay-
ers 2, 3, 6, 8 as inputs to decoder; 1×1 convolutional lay-
ers used for adaptation of the encoder outputs have 48 out-
put channels during search and 64 during training. De-
coder weights are randomly initialised using the Xavier
scheme [10]. To perform knowledge distillation, we use
Light-Weight RefineNet-152 [27], and apply `2−loss with
the coefficient of 0.3. The knowledge distillation outputs
are pre-computed for the first stage and omitted during the
second one in the interests of time. Polyak averaging is
applied with the decay rates of 0.9 and 0.99, correspond-



[0,400]

(400,800]

(800,1200]

(1200,1600]

0.3 0.4 0.5 0.6 0.7 0.8
Reward

S
ea

rc
h 

Ite
ra

tio
n

RL Stage−1

RL Stage−2

RS Stage−1

RS Stage−2

Figure 2 – Distribution of rewards per each training stage for reinforce-
ment learning (RL) and random search (RS) strategies. Higher peaks
correspond to higher density.

ingly. Batch normalisation statistics are updated during
both stages.

All our search experiments are being conducted on two
1080Ti GPU cards, with the search process being termi-
nated after 4 days. All runtime measurements are carried
out on a single 1080Ti card, or on JetsonTX2, if mentioned
otherwise. In particular, we perform the forward pass 100
times and report the mean result together with standard de-
viation.

4.1. Search Results

For the inner training of the sampled architectures, we
devise a fast and stable training strategy: we exploit the
Adam learning rule [15] for the decoder part of the net-
work, and SGD with momentum - for encoder. In partic-
ular, we use learning rates of 3e-3 and 1e-3, respectively.
We pre-train each sampled architecture for 5 epochs on the
first stage, and for 1 on the second (in case the stopping cri-

0.55

0.60

0.65

0.70

baseline +Polyak +Polyak+AUX +Polyak+AUX+KD

R
ew

ar
d

Stage−1

Stage−2

Figure 3 – Distribution of rewards during each training stage of the
search process across setups with Polyak averaging (Polyak), intermedi-
ate supervision through auxiliary cells (AUX) and knowledge distillation
(KD).

terion is not triggered). As the reward signal, we consider
the geometric mean of three quantities: namely,

i.) mean intersection-over-union (IoU), or Jaccard
Index [9], primarily used across semantic segmentation
benchmarks;

ii.) frequency-weighted IoU, that scales each class IoU
by the number of pixels present in that class, and

iii.) mean-pixel accuracy, that averages the number of
correct pixels per each class. When computing, we do not
include background class as it tends to skew the results due
to a large number of pixels belonging to background. As
mentioned above, we keep the running mean of rewards af-
ter the first stage to decide whether to continue training a
sampled architecture.

We visualise the reward progress during both stages on
Figure 2. As evident from it, the quality of the emitted ar-
chitectures grows with time - it is even possible that more
iterations would lead to better results, although we do not
explore that to save the time spent. On the other hand, while
random search has the potential of occasionally sampling
decent architectures, it finds only a fraction of them in com-
parison to the RL-based controller.

Moreover, we evaluate the impact of the inclusion of
Polyak averaging, auxiliary cells and knowledge distillation
on each training stage. To this end, we randomly sample
and train 140 architectures. We visualise the distributions
of rewards on Fig. 3. All the tested settings significantly
outperform baseline on both stages, and the highest rewards
on the second stage are attained when using all of the com-
ponents above.

4.2. Effect of Intermediate Supervision via Auxil-
iary Cells

After the search process is finished, we select 10 archi-
tectures discovered by the RL controller with highest re-
wards and proceed by carrying out additional ablation stud-
ies aimed to estimate the benefit of the proposed auxiliary
scheme in case the architectures are allowed to train for
longer.

In particular, we train each architecture for 20 epochs on
BSD together with PASCAL VOC and 30 epochs on PAS-
CAL VOC only. For simplicity, we omit Polyak averaging
and knowledge distillation. Three distinct setups are being
tested: concretely, we estimate whether intermediate super-
vision helps at all, and whether auxiliary cell is superior to
a plain auxiliar classifier

The results of these ablation studies are given in Fig. 4.
Auxiliary supervised architectures achieve significantly
higher mean IoU, and, in particular, architectures with aux-
iliary cells attain best results in 8 out of 10 cases, reaching 3
absolute best values across all the setups and architectures.



69

70

71

72

73

Architectures

M
ea

n 
Io

U
, %

cell clf none

Figure 4 – Ablation studies on the value of intermediate supervision
(none), and the type of supervision (cell or clf ). Each tick on the x-axis
corresponds to a different architecture.

4.3. Relation between search rewards and training
performance

We further measure the effect of correlation between
rewards acquired during the search process with the RL-
based controller and mean IoU attained by same architec-
tures trained for longer.

To this end, we randomly sample 30 architectures out
of those explored by the controller: for fair comparison,
we sample 10 architectures with poor search performance
(with rewards being less than 0.4), 10 with medium rewards
(between 0.4 and 0.6), and 10 with high rewards (> 0.6).
We train each architecture on BSD+VOC and VOC as in
Sect. 4.2, rank each according to its rewards, and mean IoU,
and measure the Spearman’s rank correlation coefficient.
As visible in Fig. 5, there is a strong correlation between
rewards after each stage, as well as between the final re-
ward and mean IoU. This signals that our search process is
able to reliably differentiate between poor-performing and
well-performing architectures.

0.3

0.4

0.5

0.6

0.7

0.3 0.4 0.5 0.6 0.7
Search: Stage−1

S
ea

rc
h:

 S
ta

ge
−

2

(a) ρ = 0.9341

0.3

0.4

0.5

0.6

0.7

0.50 0.55 0.60 0.65 0.70
Train: BSD+VOC/VOC

S
ea

rc
h:

 S
ta

ge
−

2

(b) ρ = 0.9239

Figure 5 – Correlation between rewards acquired during search
stages (a) and mean IoU after full training (b) of 30 architectures on
BSD+VOC/VOC.

4.4. Full Training Results

Finally, we choose 3 best performing architectures from
Sect. 4.2 and train each on the full training set, augmented
with annotations from MS COCO [21]. The training setup
is analogous to the aforementioned one with the first stage
being trained for 30 epochs (on COCO+BSD+VOC), the
second stage - for 50 (BSD+VOC), and the last one - for 100
(VOC only). After each stage, the learning rates are halved.
Additionally, halfway through the last stage we freeze the
batch norm statistics and divide the learning rate in half.
We exploit intermediate supervision via auxiliary cells with
coefficients of 0.3, 0.25, 0.2, 0.15 across the stages.

cell

cell

cell

cell

concat

y

conv1x1

x

sep5x5 
rate 6 

conv3x3 

sep5x5 
rate 6 

conv3x3 
rate 3 

gap 

y

Decoder Structure Cell Structure

conv1x1

conv1x1

conv1x1

bl
oc

k 
0

bl
oc

k 
1

bl
oc

k 
2

bl
oc

k 
3

cell

cell
sep5x5 
rate 6 

sep3x3 

Figure 6 – Automatically discovered decoder architecture (arch0). We
visualise the connectivity structure between encoder and decoder (top),
and the cell design (bottom).

⊕
represents an element-wise summation

operation applied to each branch scaled to the highest spatial resolution
among them (via bilinear interpolation), while ‘gap’ stands for global
average pooling.

Quantitative results are given in Table 1 and few quali-
tative examples are in Fig. 7. The architectures discovered
by our method achieve competitive performance in compar-
ison to state-of-the-art compact models and even do so with
a significantly lower number of floating point operations for
same output resolution. At the same time, the found archi-
tectures can be run in real-time both on a generic GPU card
and JetsonTX2.

We visualise the structure of the highest performing ar-
chitecture (arch0) on Fig. 6. Having multiple branches en-
coding information of different scales, it resembles sev-
eral prominent blocks in semantic segmentation, notably
the ASPP module [7]. Importantly, the cell found by our
method differs in the way the receptive field size is con-
trolled. Whereas ASPP solely relies on various dilation
rates, here convolutions with different kernel sizes arranged
in a cascaded manner allow much more flexibility. Further-
more, this design is more computationally efficient and has
better expressiveness as intermediate features can be easily
re-used.

4.5. Transferability to other Dense Output Tasks

4.5.1 Pose Estimation

We further apply the found architectures on the task of pose
estimation. In particular, the MPII [1] and MS COCO Key-



Model Val mIoU,%, MAdds,B Params,M Output Res Runtime,ms (JetsonTX2/1080Ti)
DeepLab-v3-ASPP [33] 75.7 5.8 4.5 32×32 69.67±0.53 8.09±0.53

DeepLab-v3 [33] 75.9 8.73 2.1 64×64 122.07±0.58 11.35±0.43
RefineNet-LW [27] 76.2 9.3 3.3 128×128 144.85 ± 0.49 12.00±0.26

Ours (arch0) 78.0 4.47 2.6 128×128 109.36±0.39 14.86±0.31
Ours (arch1) 77.1 2.95 2.8 64×64 67.57±0.54 11.04±0.23
Ours (arch2) 77.3 3.47 2.9 64×64 64.60±0.33 8.86±0.26

Table 1 – Results on validation set of PASCAL VOC after full training on COCO+BSD+VOC. All networks share the same backbone - MobileNet-v2.
FLOPs and runtime are being measured on 512× 512 inputs. For DeepLab-v3 we use official models provided by the authors.

Image GT Ours (arch0) RF-LW [27] DL-v3 [33]

Figure 7 – Inference results of our model (arch0) on validation set
of PASCAL VOC, together with Light-Weight-RefineNet (RF-LW) and
DeepLab-v3 (DL-v3). All the models rely on MobileNet-v2 as the en-
coder.

point [21] datasets are used as our benchmark. MPII in-
cludes 25K images containing 40K people with 16 anno-
tated body joints. The evaluation measure is PCKh [34]
with thresholds of 0.5 and 0.1. The COCO dataset com-
prises 200K images of 250K people with 17 body joints.
Based on object keypoint similarity (OKS)2, we report av-
erage precision (AP) and average recall (AR) over 10 dif-
ferent OKS thresholds.

Our quantitative results are in Table 2. We follow the
training protocol of Xiao et al. [44] and do not tune our
architectures. As can be seen from the results, the discov-
ered architectures achieve competitive performance even in
comparison to a more powerful ResNet-50-based model.

MPII COCO
Model Mean@0.5 Mean@0.1 AP AR Params,M

DeepLab-v3+ [7] 86.6 31.7 0.668 0.700 5.8
ResNet-50 [44] 88.5 33.9 0.704 0.763 34.0

Ours (arch0) 86.5 31.4 0.658 0.691 2.6
Ours (arch1) 87.0 32.0 0.659 0.694 2.8
Ours (arch2) 87.1 31.8 0.659 0.693 2.9

Table 2 – Comparisons on MPII validation and COCO val2017. Flip test
is used. For COCO, the same detector as in [44] is used for all models.
DeepLab-v3+ is our re-implementation based on the official code.

2http://cocodataset.org/#keypoints-eval

4.5.2 Depth Estimation

Finally, we train the architectures on NYUDv2 [36] for the
depth estimation task. Following previous work [26], we
only use 25K training images with depth annotations col-
lected with the Kinect sensor. We report validation results
on 654 images in Table 3. Among other compact real-time
networks, we achieve significantly better results across all
the metrics without any additional tricks. Note also that the
work in [26] trained the depth model jointly with semantic
segmentation, thus using extra information.

Ours
arch0 arch1 arch2 RF-LW [26] CReaM [39]

RMSE (lin) 0.523 0.526 0.525 0.565 0.687
RMSE (log) 0.184 0.183 0.189 0.205 0.251
abs rel 0.136 0.131 0.140 0.149 0.190
sqr rel 0.089 0.086 0.093 0.105 −
δ < 1.25 0.830 0.832 0.820 0.790 0.704
δ < 1.252 0.967 0.968 0.966 0.955 0.917
δ < 1.253 0.992 0.992 0.992 0.990 0.977
Parameters, M 2.6 2.8 2.9 3.0 1.5

Table 3 – Quantitative results on the validation set of NYUDv2. For
RMSE, abs rel and sqr rel lower values are better, whereas for accuracy
(δ) higher values are better.

5. Discussion and Conclusions

There is little doubt that manual design of neural archi-
tectures is a tedious and difficult task to handle. It is even
more complicated to come up with a design of compact and
high-performing architecture on challenging dense predic-
tion problems, such as semantic segmentation. In this work,
we showcased a simple and reliable approach of search-
ing for fully convolutional architectures within a reasonable
amount of time and computational resources. Our method is
based around over-parameterisation of small networks that
allows them to converge to better solutions. We achieved
competitive performance to manually designed state-of-the-
art compact architectures on PASCAL VOC, while search-
ing only for 4 days on 2 GPU cards. Furthermore, best
found segmentation architectures also attained excellent re-
sults on other dense per-pixel tasks, namely, pose estimation
and depth prediction.

Our future goals include exploration of alternative ways
of over-parameterisation and search space description.

http://cocodataset.org/#keypoints-eval


Acknowledgements
VN, CS, IR’s participation in this work were in part sup-

ported by ARC Centre of Excellence for Robotic Vision.
CS was also supported by the GeoVision CRC Project. Cor-
respondence should be addressed to CS.

References
[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the
art analysis. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2014.

[2] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolu-
tionary algorithm that constructs recurrent neural networks.
IEEE Trans. Neural Networks, 1994.

[3] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neu-
ral network architectures using reinforcement learning. Proc.
Int. Conf. Learn. Representations, 2017.

[4] J. Bergstra, D. Yamins, and D. D. Cox. Making a science
of model search: Hyperparameter optimization in hundreds
of dimensions for vision architectures. In Proc. Int. Conf.
Mach. Learn., 2013.

[5] L. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph,
F. Schroff, H. Adam, and J. Shlens. Searching for efficient
multi-scale architectures for dense image prediction. arXiv:
Comp. Res. Repository, abs/1809.04184, 2018.

[6] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. IEEE Trans. Pattern Anal. Mach. Intell., 2018.

[7] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. In Proc. Eur. Conf. Comp. Vis.,
2018.

[8] S. Du and J. Lee. On the power of over-parametrization in
neural networks with quadratic activation. In Proc. Int. Conf.
Mach. Learn., 2018.

[9] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn,
and A. Zisserman. The pascal visual object classes (VOC)
challenge. Int. J. Comput. Vision, 2010.

[10] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proc. Int.
Conf. Artificial Intell. & Stat., 2010.

[11] B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and J. Ma-
lik. Semantic contours from inverse detectors. In Proc. IEEE
Int. Conf. Comp. Vis., 2011.

[12] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-
edge in a neural network. Proc. Advances in Neural Inf. Pro-
cess. Syst., 2014.

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 1997.

[14] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, and
E. Xing. Neural architecture search with bayesian optimisa-
tion and optimal transport. arXiv: Comp. Res. Repository,
2018.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv: Comp. Res. Repository, abs/1412.6980,
2014.

[16] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and

N. Navab. Deeper depth prediction with fully convolutional
residual networks. In Proc. Int. Conf. 3D Vision, 2016.

[17] Z. Li and D. Hoiem. Learning without forgetting. In Proc.
Eur. Conf. Comp. Vis., 2016.

[18] G. Lin, A. Milan, C. Shen, and I. D. Reid. RefineNet: Multi-
path refinement networks for high-resolution semantic seg-
mentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2017.

[19] G. Lin, C. Shen, I. D. Reid, and A. van den Hengel. Efficient
piecewise training of deep structured models for semantic
segmentation. Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
pages 3194–3203, 2016.

[20] G. Lin, C. Shen, A. van den Hengel, and I. Reid. Exploring
context with deep structured models for semantic segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 2017.

[21] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: com-
mon objects in context. In Proc. Eur. Conf. Comp. Vis., 2014.

[22] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li,
L. Fei-Fei, A. L. Yuille, J. Huang, and K. Murphy. Progres-
sive neural architecture search. In Proc. Eur. Conf. Comp.
Vis., 2018.

[23] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu. Hierarchical representations for efficient
architecture search. Proc. Int. Conf. Learn. Representations,
2018.

[24] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., 2015.

[25] R. Luo, F. Tian, T. Qin, and T. Liu. Neural architecture opti-
mization. Proc. Advances in Neural Inf. Process. Syst., 2018.

[26] V. Nekrasov, T. Dharmasiri, A. Spek, T. Drummond,
C. Shen, and I. D. Reid. Real-time joint semantic segmen-
tation and depth estimation using asymmetric annotations.
arXiv: Comp. Res. Repository, abs/1809.04766, 2018.

[27] V. Nekrasov, C. Shen, and I. D. Reid. Light-weight refinenet
for real-time semantic segmentation. In Proc. British Ma-
chine Vis. Conf., 2018.

[28] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In Proc. IEEE Int. Conf.
Comp. Vis., 2015.

[29] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Ef-
ficient neural architecture search via parameter sharing. In
Proc. Int. Conf. Mach. Learn., 2018.

[30] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control and
Optimization, 1992.

[31] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu,
J. Tan, Q. V. Le, and A. Kurakin. Large-scale evolution of
image classifiers. In Proc. Int. Conf. Mach. Learn., 2017.

[32] A. A. Rusu, S. G. Colmenarejo, Ç. Gülçehre, G. Desjardins,
J. Kirkpatrick, R. Pascanu, V. Mnih, K. Kavukcuoglu, and
R. Hadsell. Policy distillation. Proc. Int. Conf. Learn. Rep-
resentations, 2016.

[33] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and
L. Chen. Inverted residuals and linear bottlenecks: Mo-
bile networks for classification, detection and segmentation.
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

[34] B. Sapp and B. Taskar. MODEC: multimodal decompos-
able models for human pose estimation. In Proc. IEEE Conf.



Comp. Vis. Patt. Recogn., pages 3674–3681, 2013.
[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov. Proximal policy optimization algorithms. arXiv:
Comp. Res. Repository, 2017.

[36] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from RGBD images. In
Proc. Eur. Conf. Comp. Vis., 2012.

[37] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian
optimization of machine learning algorithms. In Proc. Ad-
vances in Neural Inf. Process. Syst., 2012.

[38] M. Soltanolkotabi, A. Javanmard, and J. D. Lee. The-
oretical insights into the optimization landscape of over-
parameterized shallow neural networks. IEEE Transactions
on Information Theory, 2018.

[39] A. Spek, T. Dharmasiri, and T. Drummond. CReaM: Con-
densed real-time models for depth prediction using convolu-
tional neural networks. Proc. IEEE/RSJ Int. Conf. Intelligent
Robots & Systems, 2018.

[40] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A
hypercube-based encoding for evolving large-scale neural
networks. Artificial Life, 2009.

[41] K. O. Stanley and R. Miikkulainen. Evolving neural network
through augmenting topologies. Evolutionary Computation,
2002.

[42] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. A. Os-
borne. Raiders of the lost architecture: Kernels for bayesian
optimization in conditional parameter spaces. arXiv: Comp.
Res. Repository, 2014.

[43] C. J. C. H. Watkins. Learning from delayed rewards. PhD
thesis, King’s College, Cambridge, 1989.

[44] B. Xiao, H. Wu, and Y. Wei. Simple baselines for human
pose estimation and tracking. In Proc. Eur. Conf. Comp. Vis.,
2018.

[45] F. Yu, V. Koltun, and T. A. Funkhouser. Dilated residual
networks. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
2017.

[46] A. R. Zamir, A. Sax, W. B. Shen, L. J. Guibas, J. Malik,
and S. Savarese. Taskonomy: Disentangling task transfer
learning. Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

[47] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid
scene parsing network. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., 2017.

[48] B. Zoph and Q. V. Le. Neural architecture search with rein-
forcement learning. Proc. Int. Conf. Learn. Representations,
2017.

[49] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-
ing transferable architectures for scalable image recognition.
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.



Supplementary

6. Search Space
6.1. Decoder connectivity structure

Our fully-convolutional networks follow the encoder-
decoder design paradigm. In particular, in place of the
encoder we rely on an existing image classifier - here,
MobileNet-v2 [33]. The decoder has access to 4 layers from
the encoder with varying dimensions. To form connections
inside the decoder part, we i.) first sample a pair of in-
dices out of 4 possible choices with replacement, ii.) apply
the same set of operations (cell) on each sample index, iii.)
sum up the outputs (Fig. 8), and iv.) add the resultant layer
into the sampling pool. In total, we repeat this process 3
times. Finally, all non-sampled summation outputs are con-
catenated, before being fed into a single 1 × 1 convolution
to reduce the number of channels followed by the final clas-
sification layer.

cell

cellx2

x1
y

Figure 8 – Block structure of the decoder. The same cell operation is
applied to two different layers specified by the connectivity configura-
tion. If the two features have different size, the smaller one is scaled up
via bilinear upsampling to match the larger one.

6.2. Cell structure

The cell structure is similarly generated via sampling a
set of operations and corresponding indices. Nevertheless,
there are several notable differences:

1. The operation at each position can vary;

2. A single operation is applied to the input without any
aggregation operator;

3. After that, two indices and two operations are be-
ing sampled with replacement, with the corresponding
outputs being summed up (this is repeated 3 times);

4. The outputs of each operation along with their summa-
tion layer are added into the sampling pool.

An example of the cell structure with its complete search
space is illustrated in Fig. 9.

6.3. Architecture description

We use a list of integers to encode the architecture found
by the controller, corresponding to the output sequence of
the RNN. Specifically, the list describes the connectivity
structure and the cell configuration. For example, the fol-
lowing connectivity structure [[c1, c2], [c3, c4], [c5, c6]] con-
tains three pairs of digits, indicating the input index ck of a

op1x
op2

op3

op4

op5

op6

op7
y

0 1

2

3
4

5

6

8

7
9

Figure 9 – Example cell structure of the decoder. The digit at the upper
left corner of each operator is the index of the intermediate features. The
cell is designed to utilize these features by skip connections. Except
the first operator, other operators can be connected from any previous
outputs. The solid black lines indicate the used paths and dashed grey
lines are other unused possible paths. The cell configuration to generate
the above cell is [op1, [1, 0, op2, op3], [4, 3, op4, op5], [2, 0, op6, op7]].

corresponding layer in the sampling pool. The cell con-
figuration, [o1, [i2, i3, o2, o3], [i4, i5, o4, o5], [i6, i7, o6, o7],
comprises the first operation o1 followed by three cell
branches with the operation oj applied on the index ij .

We provide the description of operations in Table 4,
and visualise the discovered structures in Fig. 10 (arch0),
Fig. 11 (arch1), and Fig. 12 (arch2). Note that inside the
cell only the final summation operator is displayed as inter-
mediate summations would lead to identical structures.

Index Abbreviation Description
0 conv1x1 conv 1×1
1 conv3x3 conv 3×3
2 sep3x3 separable conv 3×3
3 sep5x5 separable conv 5×5
4 gap global average pooling fol-

lowed by upsampling and conv
1×1

5 conv3x3 rate 3 conv 3×3 with dilation rate 3
6 conv3x3 rate 12 conv 3×3 with dilation rate 12
7 sep3x3 rate 3 separable conv 3×3 with dila-

tion rate 3
8 sep5x5 rate 6 separable conv 5×5 with dila-

tion rate 6
9 skip skip-connection

10 zero zero-operation that effectively
nullifies the path

Table 4 – Operation indices and abbreviations used to describe the cell
configuration.

7. Experimental results
7.1. Semantic Segmentation

We start training with the learning rates of 1e-3 and 3e-3
- for the encoder and the decoder, respectively. The encoder
weights are updated using SGD with the momentum value



cell

cell

cell

cell

concat

y

conv1x1

x

sep5x5 
rate 6 

conv3x3 

sep5x5 
rate 6 

conv3x3 
rate 3 

gap 

y

Decoder Structure Cell Structure

conv1x1

conv1x1

conv1x1

bl
oc

k 
0

bl
oc

k 
1

bl
oc

k 
2

bl
oc

k 
3

cell

cell
sep5x5 
rate 6 

sep3x3 

Figure 10 – arch0: [[[3, 3], [3, 2], [3, 0]], [8, [0, 0, 5, 2], [0, 2, 8, 8], [0, 5, 1, 4]]]

conv1x1

conv1x1

conv1x1

cell

cell

cell

cell

cell

cell

concat

yconv1x1

x

conv3x3 
rate 12 

conv3x3 

sep3x3 

sep3x3 

sep5x5 

sep5x5 
rate 6 

conv3x3 
rate 12 

y

Decoder Structure Cell Structure

bl
oc

k 
1

bl
oc

k 
2

bl
oc

k 
3

Figure 11 – arch1: [[[2, 3], [3, 1], [4, 4]], [2, [1, 0, 3, 6], [0, 1, 2, 8], [2, 0, 6, 1]]]

cell

cell

cell

cell

concat

y

conv1x1
x

conv3x3 
rate 3 

gap 

conv3x3 

conv3x3 

y

Decoder Structure Cell Structure

conv1x1

conv1x1

conv1x1

bl
oc

k 
1

bl
oc

k 
2

bl
oc

k 
3

conv1x1 

cell

cell

conv3x3 
rate 3 

conv1x1 

Figure 12 – arch2: [[[1, 3], [4, 3], [2, 2]], [5, [0, 0, 4, 1], [3, 2, 0, 1], [5, 6, 5, 0]]]

of 0.9, whereas for the decoder part we rely on Adam [15]
with default parameters of β1=0.9, β2=0.99 and ε=0.001.
We exploit the batch size of 64, evenly divided over two
1080Ti GPU cards. Each image in the batch is randomly
scaled in the range of [0.5, 2.0], randomly mirrored, be-
fore being randomly cropped and padded to the size of
450×450. During training, in order to calculate the loss
term, we upsample the logits to the size of the target mask.

In addition to the results presented in the main text, we
provide per-class intersection-over-union values across the
models in Table 5.

7.2. Pose estimation

For pose estimation, we crop the human instance with
fixed aspect ratios, 1:1 for MPII [1] and 3:4 for COCO [21].
Following Xiao et al. [44], the bounding box is further re-
sized such that the longer side is equal to 256. For MPII,
±25% scale, ±30 degree rotation and random flip are used
for data augmentation. The scale and rotation factors for
COCO are ±30% and ±40 degrees, respectively. We gen-
erate keypoint heatmaps of output stride 4 with Gaussian

distribution with σ = 2. The MobileNet-v2 encoder is ini-
tialised from ImageNet. We use the Adam optimiser with
the base learning rate of 1e−3, and reduce it by 10 after
epochs 90 and 120. The training terminates at the epoch
140. We use the batch size of 128 evenly split between two
1080Ti GPU cards.

We provide detailed quantitative results on MPII in Ta-
ble 6 and COCO in Table 7 along with a few qualitative
examples on Fig. 13.

7.3. Depth estimation

For depth estimation, we start training with the learning
rates of 1e-3 and 7e-3 - for the encoder and the decoder, re-
spectively. For both we use SGD with the momentum value
of 0.9, and anneal the learning rates via the ‘Poly’ sched-
ule: lr ∗ (1 − epoch

400 )0.9. The training is stopped after 300
epochs. We exploit the batch size of 32, evenly divided over
two 1080Ti GPU cards. Each image in the batch is ran-
domly scaled in the range of [0.5, 2.0], randomly mirrored,
before being randomly cropped and padded to the size of
500×500. We upsample the logits to the size of the target
mask and use the inverse Huber loss [16] for optimisation,
ignoring pixels with missing depth measurements.

We visualise qualitative results on the validation set in
Fig. 14.

8. Note on the JetsonTX2 runtime
During our experiments we observed a significant differ-

ence between models’ runtime on JetsonTX2 and 1080Ti.
To better understand it, we additionally measured runtime
of each discovered architecture together with Light-Weight
RefineNet [27] varying the input resolution.

As evident from Fig. 15, the models with a larger num-
ber of floating point operations (i.e., Arch0 and RF-LW)
do not scale well with the input resolution. The effect
is even more pronounced on JetsonTX2, as been indepen-
dently confirmed by an NVIDIA employer in a private con-
versation.



Model bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
DeepLab-v3 [33] 0.94 0.873 0.416 0.849 0.647 0.753 0.937 0.86 0.904 0.391 0.893 0.564 0.847 0.892 0.831 0.844 0.578 0.859 0.525 0.852 0.677 0.759

RefineNet-LW [27] 0.942 0.895 0.594 0.872 0.761 0.669 0.912 0.85 0.876 0.383 0.801 0.605 0.804 0.886 0.835 0.854 0.603 0.843 0.479 0.834 0.703 0.762
Ours (arch0) 0.947 0.885 0.558 0.885 0.748 0.74 0.944 0.868 0.898 0.429 0.863 0.604 0.846 0.842 0.866 0.86 0.592 0.869 0.593 0.875 0.669 0.780
Ours (arch1) 0.944 0.888 0.615 0.866 0.781 0.733 0.933 0.865 0.894 0.394 0.828 0.603 0.833 0.848 0.854 0.855 0.568 0.829 0.555 0.85 0.662 0.771
Ours (arch2) 0.947 0.873 0.589 0.887 0.753 0.75 0.943 0.885 0.895 0.372 0.829 0.635 0.845 0.832 0.867 0.866 0.555 0.843 0.537 0.851 0.671 0.773

Table 5 – Per-class intersection-over-union on the validation set of PASCAL VOC.

Model Head Shoulder Elbow Wrist Hip Knee Ankle Mean Mean@0.1
DeepLab-v3+ [7] 96.180 94.735 86.859 81.037 87.312 81.281 76.121 86.609 31.735
ResNet-50 [44] 96.351 95.329 88.989 83.176 88.420 83.960 79.594 88.532 33.911

Ours (arch0) 95.873 94.378 86.296 80.195 87.139 81.160 75.885 86.526 31.435
Ours (arch1) 96.317 94.548 86.501 80.932 87.242 81.583 77.374 86.971 31.951
Ours (arch2) 96.146 94.769 87.097 80.574 87.848 81.382 77.586 87.119 31.782

Table 6 – Per-keypoint pose estimation results on the validation set of MPII.

GT arch0 arch1 arch2 DeepLab-v3+ ResNet-50 [44]

Figure 13 – Inference results of our models (arch0, arch1, arch2) on validation set of MPII, along with that of DeepLab-v3+-MobileNet-v2 and ResNet-
50 [44].



Model AP AP50 AP75 APm APl AR

DeepLab-v3+ [7] 0.668 0.894 0.740 0.641 0.707 0.700
ResNet-50 [44] 0.704 0.886 0.783 0.671 0.772 0.763

Ours (arch0) 0.658 0.894 0.730 0.631 0.701 0.691
Ours (arch1) 0.659 0.884 0.729 0.633 0.698 0.694
Ours (arch2) 0.659 0.890 0.729 0.631 0.700 0.693

Table 7 – Pose estimation results on the validation set of COCO2017. We report average precision (AP) and average recall (AR). AP50 and AP75 stand
for average precision computed with the object keypoint similarity (OKS) values of 0.5 and 0.75, respectively, whereas APm and APl are average
precision metrics as measured at medium and large area ranges.

Image GT arch0 arch1 arch2 RF-LW [26]

Figure 14 – Our depth estimation qualitative results on NYUDv2, along with that of Joint Light-Weight RefineNet [26]. Dark-blue pixels in ground truth
are pixels with missing depth measurements.

30

50

70

90

110

130

150

64x64 128x128 256x256 384x384 512x512
Input Resolution

R
un

tim
e,

 m
s

Arch0 Arch1 Arch2 RF−LW

(a) JetsonTX2

5

10

15

64x64 128x128 256x256 384x384 512x512
Input Resolution

R
un

tim
e,

 m
s

Arch0 Arch1 Arch2 RF−LW

(b) 1080Ti

Figure 15 – Models’ runtime on JetsonTX2 (a) and 1080Ti (b). We visualise mean together with standard deviation values over 100 passes of each
model.


