
Panda3DdevManual Documentation
Release 0.0.1

frainfreeze

Aug 15, 2018

Table of Contents

1 Preface 3

2 Source tree 5
2.1 contrib . 5
2.2 direct . 5
2.3 dmodels . 5
2.4 dtool . 5
2.5 makepanda . 6
2.6 models . 6
2.7 panda . 6

2.7.1 android . 6
2.7.2 androiddisplay . 6
2.7.3 audio . 6
2.7.4 audiotraits . 6
2.7.5 awesomium . 6
2.7.6 bullet . 6
2.7.7 cftalk . 7
2.7.8 chan . 7
2.7.9 char . 7
2.7.10 cocoadisplay . 7
2.7.11 collada . 7
2.7.12 collide . 7
2.7.13 configfiles . 7
2.7.14 cull . 7
2.7.15 device . 7
2.7.16 dgraph . 7
2.7.17 display . 8
2.7.18 distort . 8
2.7.19 doc . 8
2.7.20 downloader . 8
2.7.21 downloadertools . 8
2.7.22 dxgsg9 . 8
2.7.23 dxml . 8
2.7.24 egg . 8
2.7.25 egg2pg . 8
2.7.26 egldisplay . 9

i

2.7.27 event . 9
2.7.28 express . 9
2.7.29 ffmpeg . 9
2.7.30 framework . 9
2.7.31 gles2gsg . 9
2.7.32 glesgsg . 9
2.7.33 glgsg . 9
2.7.34 glstuff . 9
2.7.35 glxdisplay . 9
2.7.36 gobj . 9
2.7.37 grutil . 10
2.7.38 gsgbase . 10
2.7.39 iphone . 10
2.7.40 iphonedisplay . 10
2.7.41 linmath . 10
2.7.42 mathutil . 10
2.7.43 movies . 10
2.7.44 nativenet . 10
2.7.45 net . 10
2.7.46 ode . 10
2.7.47 osxdisplay . 10
2.7.48 pandabase . 11
2.7.49 parametrics . 11
2.7.50 particlesystem . 11
2.7.51 pgraph . 11
2.7.52 pgraphnodes . 11
2.7.53 pgui . 11
2.7.54 physics . 11
2.7.55 physx . 11
2.7.56 pipeline . 11
2.7.57 pnmimage . 11
2.7.58 pnmimagetypes . 12
2.7.59 pnmtext . 12
2.7.60 pstatclient . 12
2.7.61 putil . 12
2.7.62 recorder . 12
2.7.63 rocket . 12
2.7.64 skel . 12
2.7.65 speedtree . 12
2.7.66 testbed . 12
2.7.67 text . 12
2.7.68 tform . 12
2.7.69 tinydisplay . 13
2.7.70 vision . 13
2.7.71 vrpn . 13
2.7.72 wgldisplay . 13
2.7.73 windisplay . 13
2.7.74 x11display . 13

2.8 pandatool . 13
2.9 samples . 13

3 File formats, specifications and similar 15
3.1 The GraphicsEngine . 15

3.1.1 GraphicsPipe . 15

ii

3.1.2 GraphicsWindow and GraphicsBuffer . 16
3.1.3 GraphicsStateGuardian . 16
3.1.4 Renderinga frame . 16
3.1.5 Using a GraphicsEngine to create windows and buffers . 17
3.1.6 Sharinggraphics contexts . 18
3.1.7 Closingwindows . 18

3.2 ppython . 18
3.3 Panda Audio Documenation . 18

3.3.1 AudioManagerand AudioSound . 18
3.3.2 ExampleUsage . 19

3.4 Codingstyle . 19
3.5 COLLISIONFLAGS . 22
3.6 eggpalettize . 23

3.6.1 HOWTO USE EGG_PALETTIZE . 23
3.6.2 GROUPINGEGG FILES . 24
3.6.3 CONTROLLINGTEXTURE PARAMETERS . 25
3.6.4 RUNNINGEGG-PALETTIZE . 26
3.6.5 WHENTHINGS GO WRONG . 26

3.7 THEPHILOSOPHY OF EGG FILES . 27
3.7.1 GENERALEGG SYNTAX . 28
3.7.2 LOCALINFORMATION ENTRIES . 29
3.7.3 GLOBALINFORMATION ENTRIES . 29
3.7.4 GEOMETRYENTRIES . 44
3.7.5 PARAMETRICDESCRIPTION ENTRIES . 49
3.7.6 MORPHDESCRIPTION ENTRIES . 53
3.7.7 GROUPINGENTRIES . 54
3.7.8 GROUPBINARY ATTRIBUTES . 54
3.7.9 GROUPSCALARS . 55
3.7.10 OTHERGROUP ATTRIBUTES . 57
3.7.11 name { type [flags] } . 58
3.7.12 {type} . 60
3.7.13 MISCELLANEOUS . 66
3.7.14 ANIMATIONSTRUCTURE . 67

3.8 HOWTO CONTROL RENDER ORDER . 71
3.8.1 CULLBINS . 72

3.9 Howto make multipart actor . 74
3.9.1 MULTIPARTACTORS vs. HALF-BODY ANIMATION 74
3.9.2 BROADOVERVIEW . 75
3.9.3 MOREDETAILS . 75
3.9.4 NUTS AND BOLTS . 75

3.10 MULTIGENMODEL FLAGS . 77
3.10.1 HANDLES . 78
3.10.2 BEHAVIORS . 78
3.10.3 PROPERTIES . 79

3.11 Multi-Texturing in Maya . 80
3.12 Config . 81

3.12.1 Using the prc files . 81
3.12.2 Defining config variables . 83
3.12.3 Directly assigning config variables . 85
3.12.4 Querying config variables . 86
3.12.5 Re-reading prc files . 87
3.12.6 Runtime prc file management . 88
3.12.7 Compile-time options for finding prc files . 89
3.12.8 Executable prc files . 91

iii

3.12.9 Signed prc files . 91

4 Miscellaneous and F.A.Q. 97

5 Appendix 99

iv

Panda3DdevManual Documentation, Release 0.0.1

Contents:

Table of Contents 1

Panda3DdevManual Documentation, Release 0.0.1

2 Table of Contents

CHAPTER 1

Preface

Book is organized in tree structure that follows panda 1.9 source tree. It might also contain doc strings and comments
from the source code.

Manual is built from several parts:

1. Source tree structured.

2. File formats, specifications and similar

3. Miscellaneous and F.A.Q.

4. Appendix

Note: Maunal may be from 2014-2016 however most of the content is much older. Some parts date from 2002 and
lots of information might be deprecated.

3

Panda3DdevManual Documentation, Release 0.0.1

4 Chapter 1. Preface

CHAPTER 2

Source tree

2.1 contrib

Code contributed by the community. This code is usually not maintained by the developers but by the respective
community contributors.

2.2 direct

Mid-level tools/subsystems which supports show development, and scene-composition. It contains pretty much all
of Panda’s Python code with some C++.Includes code which sets up and initializes PANDA (using Python wrapper
functions which call low-level C++ counterparts).Includes python modules for mid-level show coding systems: actors,
directdevices (high-level wrappers around low-level input devices such as joysticks, magnetic trackers, etc.), finite
state machines, 2D gui elements, intervals, tasks, and the DIRECT tk widget classes and panels.

2.3 dmodels

Similar to /models but processed by makepanda, models that still need to be converted to .egg at build time

Their origin is probably Disney

2.4 dtool

This tree contains base classes and core functionality that the other Panda libraries rely on, such as basic threading
constructs, file reading/writing constructs and the configuration system. It also contains interrogate, which is used to
generate Python bindings for Panda3D.

5

Panda3DdevManual Documentation, Release 0.0.1

2.5 makepanda

Panda3D building system.

2.6 models

Contains some free models for use in samples. They origin is probably CMU

2.7 panda

Low-level 3D graphics engine code. Primarily C++.

Includes code for graphics/scene graph setup/manipulation/rendering, graphic state guardians (interfaces to OpenGL,
Direct X, tinypanda(based on TinyGL)), and source code for many PANDA systems: animation, audio, gui, input
devices, particles, physics, shaders, etc.

2.7.1 android

-update me-

2.7.2 androiddisplay

-update me-

2.7.3 audio

-update me-

2.7.4 audiotraits

-update me-

2.7.5 awesomium

-update me-

2.7.6 bullet

Panda has classes that represent underlying bullet objects, that basically wrap around it and integrate it with Panda
classes and structures.

For instance, there’s BulletRigidBodyNode, which is a class that extends a PandaNode and as such can be placed
inside the panda scene graph. However, it stores a btRigidBody object from bullet, and exposes methods that are
wrappers around that underlying Bullet object.

6 Chapter 2. Source tree

Panda3DdevManual Documentation, Release 0.0.1

2.7.7 cftalk

connected frame protocol

2.7.8 chan

Animation channels. This defines the various kinds of AnimChannels that may be defined, as well as the MovingPart
class which binds to the channels and plays the animation. This is a support library for char, as well as any other
libraries that want to define objects whose values change over time.

2.7.9 char

-update me-

2.7.10 cocoadisplay

-update me-

2.7.11 collada

-update me-

2.7.12 collide

This package contains the classes that control and detect collisions

2.7.13 configfiles

This package contains the housekeeping and configuration files needed by things like attach, and emacs.

2.7.14 cull

This package contains the Cull Traverser. The cull traversal collects all state changes specified, and removes unnecce-
sary state change requests.It also does all the depth sorting for proper alphaing.

2.7.15 device

Device drivers, such as mouse and keyboard, trackers, etc. . . The base class for using various device APIs is here.

2.7.16 dgraph

Defines and manages the data graph, which is the hierarchy of devices, tforms, and any other things which might have
an input or an output and need to execute every frame.

2.7. panda 7

Panda3DdevManual Documentation, Release 0.0.1

2.7.17 display

Abstract display classes, including pipes, windows, channels, and display regions.

2.7.18 distort

-update me-

2.7.19 doc

Documentation Panda3D developers considered that doesn’t fit in any of the packages. For contents please see the part
2 (“other”) of this manual.

2.7.20 downloader

Tool to allow automatic download of files in the background.

2.7.21 downloadertools

-update me-

2.7.22 dxgsg9

Handles all communication with the DirectX backend, and manages state to minimize redundant state changes.

2.7.23 dxml

-update me-

2.7.24 egg

A.k.a. the “egg library”, this reads, writes, and manipulates egg files. It knows nothing about the scene graph structure
in the rest of the player; it lives in its own little egg world.

2.7.25 egg2pg

A.k.a. the “egg loader”, this converts the egg structure read from the egg library, above, to a scene graph structure,
suitable for rendering.

egg2pg reads egg file and converts it to a Panda scene graph. ie. in-memory structure of PandaNode etc.

I’m assuming “pg” stands for “panda graph”.

Also, technically, the “egg” tree reads the .egg file into in-memory EggData structures, and egg2pg converts those to
scene graph structures. When egg2pg converts that into scene graph structures egg files from memory get deleted. If
you want to keep them around, you can use the lower-level interfaces yourself.

8 Chapter 2. Source tree

Panda3DdevManual Documentation, Release 0.0.1

2.7.26 egldisplay

-update me-

2.7.27 event

Tools for throwing, handling and receiving events.

2.7.28 express

-update me-

2.7.29 ffmpeg

-update me-

2.7.30 framework

A simple, stupid framework around which to write a simple, stupid demo program. Handy for quickly writing pro-
grams that can open a window and display the OmniTriangle.

2.7.31 gles2gsg

-update me-

2.7.32 glesgsg

-update me-

2.7.33 glgsg

Handles all communication with the GL backend, and manages state to minimize redundant state changes.

2.7.34 glstuff

-update me-

2.7.35 glxdisplay

X windows display classes that replace Glut functionality.

2.7.36 gobj

Graphical non-scene-graph objects, such as textures and geometry primitives.

2.7. panda 9

Panda3DdevManual Documentation, Release 0.0.1

2.7.37 grutil

-update me-

2.7.38 gsgbase

Base GSG class defined to avoid cyclical dependency build.

2.7.39 iphone

-update me-

2.7.40 iphonedisplay

-update me-

2.7.41 linmath

Linear algebra library.

2.7.42 mathutil

Math utility functions, such as frustum and plane

2.7.43 movies

-update me-

2.7.44 nativenet

-update me-

2.7.45 net

Net connection classes

2.7.46 ode

-update me-

2.7.47 osxdisplay

-update me-

10 Chapter 2. Source tree

Panda3DdevManual Documentation, Release 0.0.1

2.7.48 pandabase

-update me-

2.7.49 parametrics

-update me-

2.7.50 particlesystem

Tool for doing particle systems. Contains various kinds of particles, emiters, factories and renderers.

2.7.51 pgraph

-update me-

2.7.52 pgraphnodes

-update me-

2.7.53 pgui

-update me-

2.7.54 physics

Base classes for physical objects and forces. Also contains the physics manager class.

2.7.55 physx

-update me-

2.7.56 pipeline

-update me-

2.7.57 pnmimage

Reads and writes image files in various formats, by using the pnm and tiff libraries. PNMImage class manages reading
and writing image files from disk.

One of the properties of PNMImage is that all images are laid out (almost) the same way in memory, regardless of
their properties. This makes it very easy to write a class like PNMPainter, which can paint equally well on grayscale,
grayscale/alpha, 24-bit, 32-bit, or 64-bit images.

2.7. panda 11

Panda3DdevManual Documentation, Release 0.0.1

2.7.58 pnmimagetypes

-update me-

2.7.59 pnmtext

-update me-

2.7.60 pstatclient

-update me-

2.7.61 putil

-update me-

2.7.62 recorder

-update me-

2.7.63 rocket

-update me-

2.7.64 skel

-update me-

2.7.65 speedtree

-update me-

2.7.66 testbed

C test programs, that primarily link with framework.

2.7.67 text

Package for generating renderable text using textured polygons.

2.7.68 tform

Data transforming objects that live in the data graph and convert raw data (as read from an input device, for instance)
to something more useful.

12 Chapter 2. Source tree

Panda3DdevManual Documentation, Release 0.0.1

2.7.69 tinydisplay

-update me-

2.7.70 vision

-update me-

2.7.71 vrpn

Defines the specific client code for interfacing to the VRPN API.

2.7.72 wgldisplay

Windows OpenGL specific display classes.

2.7.73 windisplay

-update me-

2.7.74 x11display

-update me-

2.8 pandatool

This tree contains various utility tools that are used to manipulate model files and convert models from other formats
to Panda3D’s .egg format (and vice versa).

2.9 samples

Contains samples to demonstrate how Panda3D works.

2.8. pandatool 13

Panda3DdevManual Documentation, Release 0.0.1

14 Chapter 2. Source tree

CHAPTER 3

File formats, specifications and similar

3.1 The GraphicsEngine

The GraphicsEngine is where it all begins. Thereis only one, global, GraphicsEngine in an application, and its job
isto keep all of the pointers to your open windows and buffers, andalso to manage the task of doing the rendering, for
all of the openwindows and buffers. Panda normally creates a GraphicsEngine for youat startup, which is available as
base.graphicsEngine.There is usually no reason to create a second GraphicsEngine.

Note also that the following interfaces arestrictly for the advanced user. Normally, if you want

to create a new window or an offscreen buffer forrendering, you would just use the

base.openWindow()

or

window.makeTextureBuffer()

interfaces, which handle all of the details foryou automatically.

However, please continue reading if you want tounderstand in detail how Panda manages

windows and buffers, or if you have special needsthat are not addressed by the above

convenience methods.

3.1.1 GraphicsPipe

Each application will also need at least oneGraphicsPipe. The GraphicsPipe encapsulates the particular API usedto
do rendering. For instance, there is one GraphicsPipe class forOpenGL rendering, and a different GraphicsPipe for
DirectX. Althoughit is possible to create a GraphicsPipe of a specific type directly,normally Panda will create a default
GraphicsPipe for you at startup,which is available in base.pipe.

The GraphicsPipe object isn’t often used directly,except to create the individual GraphicsWindow and GraphicsBuffer-
objects.

15

Panda3DdevManual Documentation, Release 0.0.1

3.1.2 GraphicsWindow and GraphicsBuffer

The GraphicsWindow class is the class thatrepresents a single onscreen window for rendering. Panda normallyopens
a default window for you at startup, which is available inbase.win. You can create as manyadditional windows
as you like. (Note, however, that some graphicsdrivers incur a performance penalty when multiple windows are
opensimultaneously.)

Similarly, GraphicsBuffer is the class thatrepresents a hidden, offscreen buffer for rendering special offscreeneffects,
such as render-to-texture. It is common for an applicationto have many offscreen buffers open at once.

Both classes inherit from the base classGraphicsOutput, which contains all of the code common to rendering toa
window or offscreen buffer.

3.1.3 GraphicsStateGuardian

The GraphicsStateGuardian, or GSG for short,represents the actual graphics context. This class manages the
actualnuts-and-bolts of drawing to a window; it manages the loading oftextures and vertex buffers into graphics mem-
ory, and has thefunctions for actually drawing triangles to the screen. (During theprocess of rendering the frame, the
“graphics state”changes several times; the GSG gets its name from the fact that mostof its time is spent managing this
graphics state.)

You would normally never call any methods on theGSG directly; Panda handles all of this for you, via theGraphicsEn-
gine. This is important, because in some modes, the GSG mayoperate almost entirely in a separate thread from all of
yourapplication code, and it is important not to interrupt that threadwhile it might be in the middle of drawing.

Each GraphicsOutput object keeps a pointer to theGSG that will be used to render that window or buffer. It is possi-
blefor each GraphicsOutput to have its own GSG, or it is possible toshare the same GSG between multiple different
GraphicsOutputs.Normally, it is preferable to share GSG’s, because this tends to bemore efficient for managing graph-
ics resources.

Consider the following diagram to illustrate therelationship between these classes. This shows a typical application-
with one window and two offscreen buffers:

| | GraphicsPipe | | | ————-: | :————: | ————– | | / | | | \ | | GraphicsOutput | GraphicsOutput | GraphicsOutput
| | | | | | | | | GSG | GSG | GSG |

The GraphicsPipe was used to create each of thethree GraphicsOutputs, of which one is a GraphicsWindow, and
theremaining two are GraphicsBuffers. Each GraphicsOutput has a pointerto the GSG that will be used for rendering.
Finally, theGraphicsEngine is responsible for managing all of these objects.

In the above illustration, each window and bufferhas its own GSG, which is legal, although it’s usually better toshare
the same GSG across all open windows and buffers.

3.1.4 Renderinga frame

There is one key interface to rendering each frameof the graphics simulation:

base.graphicsEngine.renderFrame()

This method causes all open GraphicsWindows andGraphicsBuffers to render their contents for

the current frame. In order for Panda3D to renderanything, this method must be called once per frame. Normally,
thisis done automatically by the task “igloop”, which iscreated when you start

Panda.

16 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

3.1.5 Using a GraphicsEngine to create windows and buffers

In order to render in Panda3D, you need aGraphicsStateGuardian , and either a GraphicsWindow

(for rendering into a window) or a GraphicsBuffer(for rendering offscreen). You cannot create or destroy these ob-
jectsdirectly; instead, you must use interfaces on the GraphicsEngine tocreate them. Before you can create either of
the above, you need tohave a GraphicsPipe, which specifies

the particular graphics API you want to use (e.g.OpenGL or DirectX). The default GraphicsPipe

specified in your Config.prc file has already beencreated at startup, and can be accessed by

base.pipe.

Now that you have a GraphicsPipe and aGraphicsEngine, you can create a

GraphicsStateGuardian object. This objectcorresponds to a single graphics context on the

graphics API, e.g. a single OpenGL context. (Thecontext owns all of the OpenGL or DirectX

objects like display lists, vertex buffers, andtexture objects.) You need to have at least one

GraphicsStateGuardian before you can create aGraphicsWindow:

myGsg=base.graphicsEngine.makeGsg(base.pipe)

Now that you have a GraphicsStateGuardian, you canuse it to create an onscreen

GraphicsWindow or an offscreen GraphicsBuffer:

base.graphicsEngine.makeWindow(gsg, name,sort)

base.graphicsEngine.makeBuffer(gsg, name,sort, xSize, ySize, wantTexture)

gsg is the GraphicsStateGuardian, name Is anarbitrary name you want to assign to the window/

buffer, and sort is an integer that determines theorder in which the windows/buffers will be

rendered. The buffer specific arguments xSize andySize decide the dimensions of the buffer, and

wantTexture should be set to True if you want toretrieve a texture from this buffer later on.

You can also use

graphicsEngine.makeParasite(host,name,sort,xSize,ySize)

where host is a GraphicsOutput object. It createsa buffer but it does not allocate room for itself. Instead it rendersto
the framebuffer of host. It effectively has wantTexture set toTrue so you can

retrieve a texture from it later on. See TheGraphicsOutput class and Graphics Buffers and Windows

for more information.

myWindow=base.graphicsEngine.makeWindow(myGsg,”HelloWorld”,0)

myBuffer=base.graphicsEngine.makeBuffer(myGsg,”HiWorld”,0,800,600,True)

myParasite=base.graphicsEngine.makeBuffer(myBuffer,”Ima leech”,0,800,600)

Note: if youwant the buffers to be visible add show-buffers true to yourconfiguration file.

This causes the buffers to be opened as windowsinstead, which is useful while debugging.

3.1. The GraphicsEngine 17

Panda3DdevManual Documentation, Release 0.0.1

3.1.6 Sharinggraphics contexts

It is possible to share the sameGraphicsStateGuardian among multiple different

GraphicsWindows and/or GraphicsBuffers; if you dothis, then the graphics context will be used

to render into each window one at a time. This isparticularly useful if the different windows

will be rendering many of the same objects, sincethen the same texture objects and vertex

buffers can be shared between different windows.

It is also possible to use a differentGraphicsStateGuardian for each different window. This

means that if a particular texture is to berendered in each window, it will have to be loaded

into graphics memory twice, once in each context,which may be wasteful. However, there are

times when this may be what you want to do, forinstance if you have multiple graphics cards

and you want to to render to both of themsimultaneously. (Note that the actual support for

simultaneously rendering to multiple graphicscards is currently unfinished in Panda at the

time of this writing, but the API has beendesigned with this future path in mind.)

3.1.7 Closingwindows

To close a specific window or buffer you useremoveWindow(window). To close all windows

removeAllWindows()

base.graphicsEngine.removeWindow(myWindow)

base.graphicsEngine.removeAllWindows()

More about GraphicsEngine

Here is some other useful functionality of theGraphicsEngine class.

GetNumWindows() Returns the number of windows andbuffers that this GraphicsEngine

object is managing. IsEmpty() Returns True if thisGraphicsEngine is not managing any windows or buffers. See API
foradvanced functionality of GraphicsEngine and GraphicsStateGuardianclass.

3.2 ppython

ppython.exe is used for startingPanda3D. Basicly it is only duplicated copy of python.exe renamed soyou don’t mix
Panda’s python with other python on your PATH

3.3 Panda Audio Documenation

3.3.1 AudioManagerand AudioSound

The AudioManager is a combination of a file cacheand a category

of sounds (e.g. sound effects, battle sounds, ormusic).

The first step is to decide which AudioManager touse and load it.

18 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

Once you have an AudioManager (e.g.effectsManager), a call to

get_sound() on that manager should getyou an AudioSound

(e.g. mySound = effectsManager.getSound(“bang”)).

After getting a sound from an AudioManager, youcan tell the sound

change its volume, loop, start time, play, stop,etc. There is no

need to involve the AudioManager explicitly inthese operations.

Simply delete the sound when you’re done with it. (The AudioSound

knows which AudioManager it is associated with,and will do the right

thing).

The audio system, provides an API for the rest ofPanda; and leaves a

lot of leaway to the low level sound system. Thisis good and bad.

On the good side: it’s easier to understand, andit allows for widely

varrying low level systems. On the bad side: itmay be harder to keep

the behavior consistent accross implementations(please try to keep

them consistent, when adding an implementation).

3.3.2 ExampleUsage

PythonExample:

effects=AudioManager.createAudioManager()

music=AudioManager.createAudioManager()

bang=effects.load(“bang”)

background=music.load(“background_music”)

background.play()

bang.play()

C++Example:

AudioManagereffects=AudioManager::create_AudioManager();

AudioManagermusic=AudioManager::create_AudioManager();

bang=effects.get_sound(“bang”);

background=music.get_sound(“background_music”);

background.play();

bang.play();

3.4 Codingstyle

Almostany programming language gives a considerable amount of freedom

tothe programmer in style conventions. Most programmers eventually

3.4. Codingstyle 19

Panda3DdevManual Documentation, Release 0.0.1

developa personal style and use it as they develop code.

Whenmultiple programmers are working together on one project, this

canlead to multiple competing styles appearing throughout the code.

Thisis not the end of the world, but it does tend to make the code

moredifficult to read and maintain if common style conventions are

notfollowed throughout.

Itis much better if all programmers can agree to use the same style

whenworking together on the same body of work. It makes reading,

understanding,and extending the existing code much easier and faster

foreveryone involved. This is akin to all of the animators on a

featurefilm training themselves to draw in one consistent style

throughoutthe film.

Often,there is no strong reason to prefer one style over another,

exceptthat at the end of the day just one must be chosen.

Thefollowing lays out the conventions that we have agreed to use

withinPanda. Most of these conventions originated from an

amalgamationof the different styles of the first three programmers to

domajor development in Panda. The decisions were often arbitrary,

andsome may object to the particular choices that were made.

Althoughdiscussions about the ideal style for future work are still

welcome,considerable code has already been written using these

existingconventions, and the most important goal of this effort is

consistency. Thus, changing the style at this point would require

changingall of the existing code as well.

Notethat not all existing Panda code follows these conventions. This

isunfortunate, but it in no way constitutes an argument in favor of

abandoningthe conventions. Rather, it means we should make an effort

tobring the older code into compliance as we have the opportunity.

Naturally,these conventions only apply to C and C++ code; a

completelydifferent set of conventions has been established for

Pythoncode for the project, and those conventions will not be

discussedhere.

SPACING:

Notab characters should ever appear in a C++ file; we use only space

charactersto achieve the appropriate indentation. Most editors can

beconfigured to use spaces instead of tabs.

20 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

Weuse two-character indentation. That is, each nested level of

indentationis two characters further to the right than the enclosing

level.

Spacesshould generally surround operators, e.g. i + 1 instead of i+1.

Spacesfollow commas in a parameter list, and semicolons in a for

statement. Spaces are not placed immediately within parentheses;

e.g.foo(a, b) rather than foo(a,b).

Resistwriting lines of code that extend beyond 80 columns; instead,

folda long line when possible. Occasionally a line cannot be easily

foldedand remain readable, so this should be taken as more of a

suggestionthan a fixed rule, but most lines can easily be made to fit

within80 columns.

Commentsshould never extend beyond 80 columns, especially sentence or

paragraphcomments that appear on a line or lines by themselves.

Theseshould generally be wordwrapped within 72 columns. Any smart

editorcan do this easily.

CURLYBRACES:

Ingeneral, the opening curly brace for a block of text trails the

linethat introduces it, and the matching curly brace is on a line by

itself,lined up with the start of the introducing line, e.g.:

for(inti=0;i<10;i++){

. . .

}

Commandslike if, while, and for should always use curly braces, even

ifthey only enclose one command. That is, do this:

if(foo){

bar();

}

insteadof this:

if(foo)

bar();

NAMING:

Classnames are mixed case with an initial capital, e.g. MyNewClass.

Eachdifferent class (except nested classes, of course) is defined in

itsown header file named the same as the class itself, but with the

firstletter lowercase, e.g. myNewClass.h.

3.4. Codingstyle 21

Panda3DdevManual Documentation, Release 0.0.1

Typedefnames and other type names follow the same convention as class

names:mixed case with an initial capital. These need not be defined

intheir own header file, but usually typedef names will be scoped

withinsome enclosing class.

Localvariable names are lowercase with an underscore delimiting

words:my_value. Class data members, including static data members,

arethe same, but with a leading underscore: _my_data_member. We do

notuse Hungarian notation.

Classmethod names, as well as standalone function names, are

lowercasewith a delimiting underscore, just like local variable

names:my_function().

LANGUAGECONSTRUCTS:

PreferC++ constructs over equivalent C constructs when writing C++

code. For instance, use:

staticconstintbuffer_size=1024;

insteadof:

#defineBUFFER_SIZE1024

Resistusing brand-new C++ features that are not broadly supported by

compilers. One of our goals in Panda is ease of distribution to a

widerange of platforms; this goal is thwarted if only a few compilers

maybe used.

Moreexamples of the agreed coding style may be found in

panda/src/doc/sampleClass.* fileshould be also in appendix of this manual.

3.5 COLLISIONFLAGS

floor:for things that avatars can stand on

barrier:for things that avatars should collide against that are not floors

camera-collide:for things that the camera should avoid

trigger:for things (usually not barriers or floors) that should trigger an

eventwhen avatars intersect with them

sphere:for things that should have a collision sphere around them

tube:for things that should have a collision tube (cylinder) around them

NOTES

Thebarrier & camera-collide flags are typically used together.

Currently,the camera automatically pulls itself in front of anything

22 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

markedwith the camera-collide flag, so that the view of the avatar isn’t

blocked.

Thetrigger flag implies that avatars will not collide with the object;

theycan move freely through it.

Thesphere & tube flags create a collision object that is as small as

possiblewhile completely containing the original flagged geometry.

3.6 eggpalettize

3.6.1 HOWTO USE EGG_PALETTIZE

Theprogram egg-palettize is used when building models to optimize

textureusage on all models before loading them into the show. It is

capableof collecting together several different small texture images

fromdifferent models and assembling them together onto the same image

file,potentially reducing the total number of different texture

imagesthat must be loaded and displayed at runtime from several

thousandto several hundred or fewer.

Italso can be used to group together related textures that will be

renderedat the same time (for instance, textures related to one

neighborhood),and if nothing else, it can resize textures at build

timeso that they may be painted at any arbitrary resolution according

tothe artist’s convenience, and then reduced to a suitable size for

texturememory management (and to meet hardware requirements of having

dimensionsthat are always a power of two).

Itis suggested that textures always be painted at high resolution and

reducedusing egg-palettize, since this allows the show designer the

greatestflexibility; if a decision is later made to increase the

resolutionof a texture, this may be done by changing an option with

egg-palettize,and does not require intervention of the artist.

Thebehavior of egg-palettize is largely controlled through a source

filecalled textures.txa, which is usually found in the src/maps

directorywithin the model tree. For a complete description of the

syntaxof the textures.txa file, invoke the command egg-palettize -H.

3.6. eggpalettize 23

Panda3DdevManual Documentation, Release 0.0.1

3.6.2 GROUPINGEGG FILES

Muchof the contents of textures.txa involves assigning egg files to

variousgroups; assigning two egg files to the same group indicates

thatthey are associated in some way, and their texture images may be

copiedtogether into the same palettes.

Thegroups are arbitrary and should be defined at the beginning of the

eggfile with the syntax:

:groupgroupname

Wheregroupname is the name of the group. It is also possible to

assigna directory name to a group. This is optional, but if done, it

indicatesthat all of the textures for this group should be installed

withinthe named subdirectory. The syntax is:

:groupgroupname dir dirname

Wheredirname is the name of the subdirectory. If you are

generatinga phased download, the dirname should be one of phase_1,

phase_2,etc., corresponding to the PHASE variable in the install_egg

rule(see ppremake-models.txt).

Finally,it is possible to relate the different groups to each other

hierachically. Doing this allows egg-palettize to assign textures to

theminimal common subset between egg files that share the textures.

Forinstance, if group beta and group gamma both depend on group

alpha,a texture that is assigned to both groups beta and gamma can

actuallybe placed on group alpha, to maximize sharing and minimize

duplicationof palette space.

Yourelate two groups with the syntax:

:groupgroupname with basegroupname

Onceall the groups are defined, you can assign egg files to the

variousgroups with a syntax like this:

model.egg: groupname

wheremodel.egg is the name of some egg model file built within the

tree. You can explicitly group each egg file in this way, or you can

usewildcards to group several at once, e.g.:

dog*.egg: dogs

Assigningan egg file to a group assigns all of the textures used by

thategg file to that same group. If no other egg files reference the

sametextures, those textures will be placed in one or more palette

24 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

imagesnamed after the group. If another egg file in a different

groupalso references the textures, they will be assigned to the

lowestgroup that both groups have in common (see relating the groups

hierarchically,above), or copied into both palette images if the two

groupshaving nothing in common.

3.6.3 CONTROLLINGTEXTURE PARAMETERS

Mostof the contents of the textures.txa is usually devoted to scaling

thetexture images appropriately. This is usually done with a line

somethinglike this:

texture.rgb: 64 64

wheretexture.rgb is the name of some texture image, and 64 64 is the

sizein pixels it should be scaled to. It is also possible to specify

thetarget size as a factor of the source size, e.g.:

bigtexture.rgb: 50%

specifiesthat the indicated texture should be scaled to 50% in each

dimension(for a total reduction to 0.5 * 0.5 = 25% of the original

area).

Asabove, you may group together multiple textures on the same line

usingwildcards, e.g.:

wall*.rgb: 25%

Finally,you may include one or more optional keywords on the end of

thetexture scaling line that indicate additional properties to apply

tothe named textures. See egg-palettize -H for a complete list.

Someof the more common keywords are:

mipmap- Enables mipmaps for the texture.

linear- Disables mipmaps for the texture.

omit- Omits the texture from any palettes. The texture will still

bescaled and installed, but it will not be combined with other

textures. Normally you need to do this only when the texture will

beapplied to some geometry at runtime. (Since palettizing a

texturerequires adjusting the UV’s of all the geometry that

referencesit, a texture that is applied to geometry at runtime

cannotbe palettized.)

3.6. eggpalettize 25

Panda3DdevManual Documentation, Release 0.0.1

3.6.4 RUNNINGEGG-PALETTIZE

Normally,egg-palettize is run automatically just by typing:

makeinstall

inthe model tree. It automatically reads the textures.txa file and

generatesand installs the appropriate palette image files, as part of

thewhole build process, and requires no further intervention from the

user. See ppremake-models.txt for more information on setting up the

modeltree.

Whenegg-palettize runs in the normal mode, it generates suboptimal

palettes. Sometimes, for instance, a palette image is created with

onlyone small texture in the corner, and the rest of it unused. This

happensbecause egg-palettize is reserving space for future textures,

andis ideal for development; but it is not suitable for shipping a

finishedproduct. When you are ready to repack all of the palettes as

optimallyas possible, run the command:

makeopt-pal

Thiscauses egg-palettize to reorganize all of the palette images to

makethe best usage of texture memory. It will force a regeneration

ofmost of the egg files in the model tree, so it can be a fairly

involvedoperation.

Itis sometimes useful to analyze the results of egg-palettize. You

cantype:

makepi >pi.txt

towrite a detailed report of every egg file, texture image, and

generatedpalette image to the file pi.txt.

Finally,the command:

makepal-stats >stats.txt

willwrite a report to stats.txt of the estimated texture memory usage

forall textures, broken down by group.

3.6.5 WHENTHINGS GO WRONG

Thewhole palettizing process is fairly complex; it’s necessary for

egg-palettizeto keep a record of the complete state of all egg files

andall textures ever built in a particular model tree. It generally

doesa good job of figuring out when things change and correctly

26 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

regeneratingthe necessary egg files and textures when needed, but

sometimesit gets confused.

Thisis particularly likely to happen when you have reassigned some

eggfiles from one group to another, or redefined the relationship

betweendifferent groups. Sometimes egg-palettize appears to run

correctly,but does not generate correct palettes. Other times

egg-palettizewill fail with an assertion failure, or even a segment

fault(general protection fault) when running egg-palettize, due to

thiskind of confusion. This behavior should not happen, but it does

happenevery once and a while.

Whenthis sort of thing happens, often the best thing to do is to

invokethe command:

makeundo-pal

followedby:

makeinstall

Thisremoves all of the old palettization information, including the

stateinformation cached from previous runs, and rebuilds a new set of

palettesfrom scratch. It is a fairly heavy hammer, and may take some

timeto complete, depending on the size of your model tree, but it

almostalways clears up any problems related to egg-palettize.

3.7 THEPHILOSOPHY OF EGG FILES

THEPHILOSOPHY OF EGG FILES (vs. bam files)

Eggfiles are used by Panda3D to describe many properties of a scene:

simplegeometry, including special effects and collision surfaces,

charactersincluding skeletons, morphs, and multiple-joint

assignments,and character animation tables.

Eggfiles are designed to be the lingua franca of model manipulation

forPanda tools. A number of utilities are provided that read and

writeegg files, for instance to convert to or from some other

modelingformat, or to apply a transform or optimize vertices. The

eggfile philosophy is to describe objects in an abstract way that

facilitateseasy manipulation; thus, the format doesn’t (usually)

includeinformation such as polygon connectivity or triangle meshes.

Eggfiles are furthermore designed to be human-readable to help a

3.7. THEPHILOSOPHY OF EGG FILES 27

Panda3DdevManual Documentation, Release 0.0.1

developerdiagnose (and sometimes repair) problems. Also, the egg

syntaxis always intended to be backward compatible with previous

versions,so that as the egg syntax is extended, old egg files will

continueto remain valid.

Thisis a different philosophy than Panda’s bam file format, which is

abinary representation of a model and/or animation that is designed

tobe loaded quickly and efficiently, and is strictly tied to a

particularversion of Panda. The data in a bam file closely mirrors

theactual Panda structures that are used for rendering. Although an

effortis made to keep bam files backward compatible, occasionally

thisis not possible and we must introduce a new bam file major

version.

Whereegg files are used for model conversion and manipulation of

models,bam files are strictly used for loading models into Panda.

Althoughyou can load an egg file directly, a bam file will be loaded

muchmore quickly.

Eggfiles might be generated by outside sources, and thus it makes

senseto document its syntax here. Bam files, on the other hand,

shouldonly be generated by Panda3D, usually by the program egg2bam.

Theexact specification of the bam file format, if you should need it,

isdocumented within the Panda3D code itself.

3.7.1 GENERALEGG SYNTAX

Eggfiles consist of a series of sequential and hierarchically-nested

entries. In general, the syntax of each entry is:

<Entry-type>name{contents}

Wherethe name is optional (and in many cases, ignored anyway) and the

syntaxof the contents is determined by the entry-type. The name (and

stringsin general) may be either quoted with double quotes or

unquoted. Newlines are treated like any other whitespace, and case is

notsignificant. The angle brackets are literally a part of the entry

keyword. (Square brackets and ellipses in this document are used to

indicateoptional pieces, and are not literally part of the syntax.)

Thename field is always syntactically allowed between an entry

keywordand its opening brace, even if it will be ignored. In the

syntaxlines given below, the name is not shown if it will be ignored.

28 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

Commentsmay be delimited using either the C++-style // . . . or the

C-style/* . . . */. C comments do not nest. There is also a

entrytype, of the form:

{text}

entries are slightly different, in that tools which read and

writeegg files will preserve the text within entries, but

theymay not preserve comments delimited by // or /* */. Special

charactersand keywords within a entry should be quoted;

it’ssafest to quote the entire comment.

3.7.2 LOCALINFORMATION ENTRIES

Thesenodes contain information relevant to the current level of

nestingonly.

name{value}

<Char*>name{value}

Scalarscan appear in various contexts. They are always optional,

andspecify some attribute value relevant to the current context.

Thescalar name is the name of the attribute; different attribute

namesare meaningful in different contexts. The value is either a

numericor a (quoted or unquoted) string value; the interpretation

asa number or as a string depends on the nature of the named

attribute. Because of a syntactic accident with the way the egg

syntaxevolved, and <Char*> are lexically the same andboth

canrepresent either a string or a number. <Char*> is being phased

out;it is suggested that new egg files use only .

3.7.3 GLOBALINFORMATION ENTRIES

Thesenodes contain information relevant to the file as a whole. They

canbe nested along with geometry nodes, but this nesting is

irrelevantand the only significant placement rule is that they should

appearbefore they are referenced.

{string}

Thisentry indicates the coordinate system used in the egg file; the

eggloader will automatically make a conversion if necessary. The

followingstrings are valid: Y-up, Z-up, Y-up-right, Z-up-right,

Y-up-left,or Z-up-left. (Y-up is the same as Y-up-right, and Z-up

3.7. THEPHILOSOPHY OF EGG FILES 29

Panda3DdevManual Documentation, Release 0.0.1

isthe same as Z-up-right.)

Byconvention, this entry should only appear at the beginning of the

file,although it is technically allowed anywhere. It is an error

toinclude more than one coordinate system entry in the same file.

Ifit is omitted, Y-up is assumed.

name{filename[scalars]}

Thisdescribes a texture file that can be referenced later with

{ name }. It is not necessary to make a entry for

eachtexture to be used; a texture may also be referenced directly

bythe geometry via an abbreviated inline entry, but a

separate entry is the only way to specify anything other

thanthe default texture attributes.

Ifthe filename is a relative path, the current egg file’s directory

issearched first, and then the texture-path and model-path are

searched.

Thefollowing attributes are presently implemented for textures:

alpha-file{alpha-filename}

Ifthis scalar is present, the texture file’s alpha channel is

readin from the named image file (which should contain a

grayscaleimage), and the two images are combined into a single

two-or four-channel image internally. This is useful for loading

alphachannels along with image file formats like JPEG that don’t

traditionallysupport alpha channels.

alpha-file-channel{channel}

Thisdefines the channel that should be extracted from the file

namedby alpha-file to determine the alpha channel for the

resultingchannel. The default is 0, which means the grayscale

combinationof r, g, b. Otherwise, this should be the 1-based

channelnumber, for instance 1, 2, or 3 for r, g, or b,

respectively,or 4 for the alpha channel of a four-component

image.

format{format-definition}

Thisdefines the load format of the image file. The

format-definitionis one of:

RGBA,RGBM, RGBA12, RGBA8, RGBA4,

RGB,RGB12, RGB8, RGB5, RGB332,

30 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

LUMINANCE_ALPHA,

RED,GREEN, BLUE, ALPHA, LUMINANCE

Theformats whose names end in digits specifically request a

particulartexel width. RGB12 and RGBA12 specify 48-bit texels

withor without alpha; RGB8 and RGBA8 specify 32-bit texels, and

RGB5and RGBA4 specify 16-bit texels. RGB332 specifies 8-bit

texels.

Theremaining formats are generic and specify only the semantic

meaningof the channels. The size of the texels is determined by

thewidth of the components in the image file. RGBA is the most

general;RGB is the same, but without any alpha channel. RGBM is

likeRGBA, except that it requests only one bit of alpha, if the

graphicscard can provide that, to leave more room for the RGB

components,which is especially important for older 16-bit

graphicscards (the “M” stands for “mask”, as in acutout).

Thenumber of components of the image file should match the format

specified;if it does not, the egg loader will attempt to provide

theclosest match that does.

compression{compression-mode}

Definesan explicit control over the real-time compression mode

appliedto the texture. The various options are:

DEFAULTOFF ON

FXT1DXT1 DXT2 DXT3 DXT4 DXT5

Thiscontrols the compression of the texture when it is loaded

intographics memory, and has nothing to do with on-disk

compressionsuch as JPEG. If this option is omitted or “DEFAULT”,

thenthe texture compression is controlled by the

compressed-texturesconfig variable. If it is “OFF”, texture

compressionis explicitly off for this texture regardless of the

settingof the config variable; if it is “ON”, texture compression

isexplicitly on, and a default compression algorithm supported by

thedriver is selected. If any of the other options, it names the

specificcompression algorithm to be used.

wrap{repeat-definition}

wrapu{repeat-definition}

wrapv{repeat-definition}

3.7. THEPHILOSOPHY OF EGG FILES 31

Panda3DdevManual Documentation, Release 0.0.1

wrapw{repeat-definition}

Thisdefines the behavior of the texture image outside of the

normal(u,v) range 0.0 - 1.0. It is “REPEAT” to repeat the

textureto infinity, “CLAMP” not to. The wrapping behavior may be

specifiedindependently for each axis via “wrapu” and “wrapv”,or

itmay be specified for both simultaneously via “wrap”.

Althoughless often used, for 3-d textures wrapw may also be

specified,and it behaves similarly to wrapu and wrapv.

Thereare other legal values in addtional to REPEAT and CLAMP.

Thefull list is:

CLAMP

REPEAT

MIRROR

MIRROR_ONCE

BORDER_COLOR

borderr{red-value}

borderg{green-value}

borderb{blue-value}

bordera{alpha-value}

Thesedefine the “border color” of the texture, which is

particularlyimportant when one of the wrap modes, above, is

BORDER_COLOR.

type{texture-type}

Thismay be one of the following attributes:

1D

2D

3D

CUBE_MAP

Thedefault is “2D”, which specifies a normal, 2-d texture. If

anyof the other types is specified instead, a texture image of

thecorresponding type is loaded.

If3D or CUBE_MAP is specified, then a series of texture images

mustbe loaded to make up the complete texture; in this case, the

texturefilename is expected to include a sequence of one or more

hashmark (“#”) characters, which will be filled in with the

sequencenumber. The first image in the sequence must be numbered

32 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

0,and there must be no gaps in the sequence. In this case, a

separatealpha-file designation is ignored; the alpha channel, if

present,must be included in the same image with the color

channel(s).

multiview { flag }

Ifthis flag is nonzero, the texture is loaded as a multiview

texture. In this case, the filename must contain a hash mark

(“#”)as in the 3D or CUBE_MAP case, above, and the different

imagesare loaded into the different views of the multiview

textures. If the texture is already a cube map texture, the

samehash sequence is used for both purposes: the first six images

definethe first view, the next six images define the second view,

andso on. If the texture is a 3-D texture, you must also specify

num-views,below, to tell the loader how many images are loaded

forviews, and how many are loaded for levels.

Amultiview texture is most often used to load stereo textures,

wherea different image is presented to each eye viewing the

texture,but other uses are possible, such as for texture

animation.

num-views { count }

Thisis used only when loading a 3-D multiview texture. It

specifieshow many different views the texture holds; the z height

ofthe texture is then implicitly determined as (number of images)

/(number of views).

read-mipmaps { flag }

Ifthis flag is nonzero, then pre-generated mipmap levels will be

loadedalong with the texture. In this case, the filename should

containa sequence of one or more hash mark (“#”) characters,

whichwill be filled in with the mipmap level number; the texture

filenamethus determines a series of images, one for each mipmap

level. The base texture image is mipmap level 0.

Ifthis flag is specified in conjunction with a 3D or cube map

texture(as specified above), then the filename should contain two

hashmark sequences, separated by a character such as an

underscore,hyphen, or dot. The first sequence will be filled in

withthe mipmap level index, and the second sequence will be

3.7. THEPHILOSOPHY OF EGG FILES 33

Panda3DdevManual Documentation, Release 0.0.1

filledin with the 3D sequence or cube map face.

minfilter { filter-type }

magfilter { filter-type }

magfilteralpha { filter-type }

magfiltercolor { filter-type }

Thisspecifies the type of filter applied when minimizing or

maximizing. Filter-type may be one of:

NEAREST

LINEAR

NEAREST_MIPMAP_NEAREST

LINEAR_MIPMAP_NEAREST

NEAREST_MIPMAP_LINEAR

LINEAR_MIPMAP_LINEAR

Thereare also some additional filter types that are supported for

historicalreasons, but each of those additional types maps to one

ofthe above. New egg files should use only the above filter

types.

anisotropic-degree { degree }

Enablesanisotropic filtering for the texture, and specifies the

degreeof filtering. If the degree is 0 or 1, anisotropic

filteringis disabled. The default is disabled.

envtype { environment-type }

Thisspecifies the type of texture environment to create; i.e. it

controlsthe way in which textures apply to models.

Environment-typemay be one of:

MODULATE

DECAL

BLEND

REPLACE

ADD

BLEND_COLOR_SCALE

MODULATE_GLOW

MODULATE_GLOSS

*NORMAL

*NORMAL_HEIGHT

*GLOW

34 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

*GLOSS

*HEIGHT

*SELECTOR

Thedefault environment type is MODULATE, which means the texture

coloris multiplied with the base polygon (or vertex) color. This

isthe most common texture environment by far. Other environment

typesare more esoteric and are especially useful in the presence

ofmultitexture. In particular, the types prefixed by an asterisk

(*)require enabling Panda’s automatic ShaderGenerator.

combine-rgb{combine-mode}

combine-alpha{combine-mode}

combine-rgb-source0{combine-source}

combine-rgb-operand0{combine-operand}

combine-rgb-source1{combine-source}

combine-rgb-operand1{combine-operand}

combine-rgb-source2{combine-source}

combine-rgb-operand2{combine-operand}

combine-alpha-source0{combine-source}

combine-alpha-operand0{combine-operand}

combine-alpha-source1{combine-source}

combine-alpha-operand1{combine-operand}

combine-alpha-source2{combine-source}

combine-alpha-operand2{combine-operand}

Theseoptions replace the envtype and specify the texture combiner

mode,which is usually used for multitexturing. This specifies

howthe texture combines with the base color and/or the other

texturesapplied previously. You must specify both an rgb and an

alphacombine mode. Some combine-modes use one source/operand

pair,and some use all three; most use just two.

combine-modemay be one of:

REPLACE

MODULATE

ADD

ADD-SIGNED

INTERPOLATE

SUBTRACT

3.7. THEPHILOSOPHY OF EGG FILES 35

Panda3DdevManual Documentation, Release 0.0.1

DOT3-RGB

DOT3-RGBA

combine-sourcemay be one of:

TEXTURE

CONSTANT

PRIMARY-COLOR

PREVIOUS

CONSTANT_COLOR_SCALE

LAST_SAVED_RESULT

combine-operandmay be one of:

SRC-COLOR

ONE-MINUS-SRC-COLOR

SRC-ALPHA

ONE-MINUS-SRC-ALPHA

Thedefault values if any of these are omitted are:

combine-rgb{modulate}

combine-alpha{modulate}

combine-rgb-source0{previous}

combine-rgb-operand0{src-color}

combine-rgb-source1{texture}

combine-rgb-operand1{src-color}

combine-rgb-source2{constant}

combine-rgb-operand2{src-alpha}

combine-alpha-source0{previous}

combine-alpha-operand0{src-alpha}

combine-alpha-source1{texture}

combine-alpha-operand1{src-alpha}

combine-alpha-source2{constant}

combine-alpha-operand2{src-alpha}

saved-result{flag}

Ifflag is nonzero, then it indicates that this particular texture

stagewill be supplied as the “last_saved_result” source for any

futuretexture stages.

tex-gen{mode}

Thisspecifies that texture coordinates for the primitives that

referencethis texture should be dynamically computed at runtime,

36 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

forinstance to apply a reflection map or some other effect. The

validvalues for mode are:

EYE_SPHERE_MAP(or SPHERE_MAP)

WORLD_CUBE_MAP

EYE_CUBE_MAP(or CUBE_MAP)

WORLD_NORMAL

EYE_NORMAL

WORLD_POSITION

EYE_POSITION

POINT_SPRITE

stage-name { name }

Specifiesthe name of the TextureStage object that is created to

renderthis texture. If this is omitted, a custom TextureStage is

createdfor this texture if it is required (e.g. because some

othermultitexturing parameter has been specified), or the system

defaultTextureStage is used if multitexturing is not required.

priority { priority-value }

Specifiesan integer sort value to rank this texture in priority

amongother textures that are applied to the same geometry. This

isonly used to eliminate low-priority textures in case more

texturesare requested for a particular piece of geometry than the

graphicshardware can render.

blendr { red-value }

blendg { green-value }

blendb { blue-value }

blenda { alpha-value }

Specifiesa four-component color that is applied with the color in

casethe envtype, above, is “blend”, or one of thecombine-sources

is”constant”.

uv-name { name }

Specifiesthe name of the texture coordinates that are to be

associatedwith this texture. If this is omitted, the default

texturecoordinates are used.

rgb-scale { scale }

alpha-scale { scale }

Specifiesan additional scale factor that will scale the r, g, b

3.7. THEPHILOSOPHY OF EGG FILES 37

Panda3DdevManual Documentation, Release 0.0.1

(ora) components after the texture has been applied. This is

onlyused when a combine mode is in effect. The only legal values

are1, 2, or 4.

alpha { alpha-type }

Thisspecifies whether and what type of transparency will be

performed. Alpha-type may be one of:

OFF

ON

BLEND

BLEND_NO_OCCLUDE

MS

MS_MASK

BINARY

DUAL

Ifalpha-type is OFF, it means not to enable transparency, even if

theimage contains an alpha channel or the format is RGBA. If

alpha-typeis ON, it means to enable the default transparency,

evenif the image filename does not contain an alpha channel. If

alpha-typeis any of the other options, it specifies the type of

transparencyto be enabled.

bin { bin-name }

Thisspecifies the bin name order of all polygons with this

textureapplied, in the absence of a bin name specified on the

polygonitself. See the description for bin under polygon

attributes.

draw-order { number }

Thisspecifies the fixed drawing order of all polygons with this

textureapplied, in the absence of a drawing order specified on

thepolygon itself. See the description for draw-order under

polygonattributes.

depth-offset { number }

depth-write { mode }

depth-test { mode }

Specifiesspecial depth buffer properties of all polygons with this

textureapplied. See the descriptions for the individual

attributesunder polygon attributes.

38 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

quality-level { quality }

Setsa hint to the renderer about the desired performance /

qualitytradeoff for this particular texture. This is most useful

forthe tinydisplay software renderer; for normal,

hardware-acceleratedrenderers, this may have little or no effect.

Thismay be one of:

DEFAULT

FASTEST

NORMAL

BEST

“Default”means to use whatever quality level is specified by the

globaltexture-quality-level config variable.

{ transform-definition }

Thisspecifies a 2-d or 3-d transformation that is applied to the

UV’sof a surface to generate the texture coordinates.

Thetransform syntax is similar to that for groups, except it may

defineeither a 2-d 3x3 matrix or a 3-d 4x4 matrix. (You should

usethe two-dimensional forms if the UV’s are two-dimensional, and

thethree-dimensional forms if the UV’s are three-dimensional.)

Atwo-dimensional transform may be any sequence of zero or more of

thefollowing. Transformations are post multiplied in the order

theyare encountered to produce a net transformation matrix.

Rotationsare counterclockwise about the origin in degrees.

Matrices,when specified explicitly, are row-major.

{ x y }

{ degrees }

{ x y }

{ s }

{

0001 02

1011 12

2021 22

}

Athree-dimensional transform may be any sequence of zero or more

ofthe following. See the description under , below, for

moreinformation.

3.7. THEPHILOSOPHY OF EGG FILES 39

Panda3DdevManual Documentation, Release 0.0.1

{ x y z }

{ degrees }

{ degrees }

{ degrees }

{ degrees x y z }

{ x y z }

{ s }

{

0001 02 03

1011 12 13

2021 22 23

3031 32 33

}

name { [scalars] }

Thisdefines a set of material attributes that may later be

referencedwith { name }.

Thefollowing attributes may appear within the material block:

diffr { number }

diffg { number }

diffb { number }

diffa { number }

ambr { number }

ambg { number }

ambb { number }

amba { number }

emitr { number }

emitg { number }

emitb { number }

emita { number }

specr { number }

specg { number }

specb { number }

speca { number }

shininess { number }

local { flag }

Theseproperties collectively define a “material” that controlsthe

40 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

lightingeffects that are applied to a surface; a material is only

ineffect in the presence of lighting.

Thefour color groups, diff, amb, emit, and spec specify the

diffuse,ambient, emission, and specular components of the lighting

equation,respectively. Any of them may be omitted; the omitted

component(s)take their color from the native color of the

primitive,otherwise the primitive color is replaced with the

materialcolor.

Theshininess property controls the size of the specular highlight,

andthe value ranges from 0 to 128. A larger value creates a

smallerhighlight (creating the appearance of a shinier surface).

name { vertices }

Avertex pool is a set of vertices. All geometry is created by

referringto vertices by number in a particular vertex pool. There

maybe one or several vertex pools in an egg file, but all vertices

thatmake up a single polygon must come from the same vertex pool.

Thebody of a entry is simply a list of one or more

entries, as follows:

number { x [y [z [w]]] [attributes] }

A entry is only valid within a vertex pool definition.

Thenumber is the index by which this vertex will be referenced.

Itis optional; if it is omitted, the vertices are implicitly

numberedconsecutively beginning at one. If the number is

supplied,the vertices need not be consecutive.

Normally,vertices are three-dimensional (with coordinates x, y,

andz); however, in certain cases vertices may have fewer or more

dimensions,up to four. This is particularly true of vertices

usedas control vertices of NURBS curves and surfaces. If more

coordinatesare supplied than needed, the extra coordinates are

ignored;if fewer are supplied than needed, the missing

coordinatesare assumed to be 0.

Thevertex’s coordinates are always given in world space,

regardlessof any transforms before the vertex pool or before the

referencinggeometry. If the vertex is referenced by geometry

undera transform, the egg loader will do an inverse transform to

movethe vertex into the proper coordinate space without changing

3.7. THEPHILOSOPHY OF EGG FILES 41

Panda3DdevManual Documentation, Release 0.0.1

itsposition in world space. One exception is geometry under an

node; in this case the vertex coordinates are given in

thespace of the node. (Another exception is a

;see below.)

Inneither case does it make a difference whether the vertex pool

isitself declared under a transform or an node. The

onlydeciding factor is whether the geometry that uses the

vertexpool appears under an node. It is possible for

asingle vertex to be interpreted in different coordinate spaces

bydifferent polygons.

Whileeach vertex must at least have a position, it may also have

acolor, normal, pair of UV coordinates, and/or a set of morph

offsets. Furthermore, the color, normal, and UV coordinates may

themselveshave morph offsets. Thus, the [attributes] in the

syntaxline above may be replaced with zero or more of the

followingentries:

target { x y z }

Thisspecifies the offset of this vertex for the named morph

target. See the “MORPH DESCRIPTION ENTRIES” header, below.

{ x y z [morph-list] }

Thisspecifies the surface normal of the vertex. If omitted, the

vertexwill have no normal. Normals may also be morphed;

morph-listhere is thus an optional list of entries,

similarto the above.

{ r g b a [morph-list] }

Thisspecifies the four-valued color of the vertex. Each

componentis in the range 0.0 to 1.0. A vertex color, if

specifiedfor all vertices of the polygon, overrides the polygon’s

color. If neither color is given, the default is white

(11 1 1). The morph-list is an optional list of entries.

[name] { u v [w] [tangent] [binormal] [morph-list] }

Thisgives the texture coordinates of the vertex. This must be

specifiedif a texture is to be mapped onto this geometry.

Thetexture coordinates are usually two-dimensional, with two

componentvalues (u v), but they may also be three-dimensional,

withthree component values (u v w). (Arguably, it should be

42 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

called instead of in the three-dimensional case, but

it’snot.)

Asbefore, morph-list is an optional list of entries.

Unlikethe other kinds of attributes, there may be multiple sets

ofUV’s on each vertex, each with a unique name; this provides

supportfor multitexturing. The name may be omitted to specify

thedefault UV’s.

TheUV’s also support an optional tangent and binormal. These

valuesare based on the vertex normal and the UV coordinates of

connectedvertices, and are used to render normal maps and similar

lightingeffects. They are defined within the entry because

theremay be a different set of tangents and binormals for each

differentUV coordinate set. If present, they have the expected

syntax:

[name] { u v [w] { x y z } { x y z }}

name { x y z w }

Thisspecifies some named per-vertex auxiliary data which is

importedfrom the egg file without further interpretation by

Panda. The auxiliary data is copied to the vertex data under a

columnwith the specified name. Presumably the data will have

meaningto custom code or a custom shader. Like named UV’s, there

maybe multiple Aux entries for a given vertex, each with a

differentname.

name { vertices }

Adynamic vertex pool is similar to a vertex pool in most respects,

exceptthat each vertex might be animated by substituting in values

froma table. Also, the vertices defined within a

dynamicvertex pool are always given in local coordinates, instead

ofworld coordinates.

Thepresence of a dynamic vertex pool makes sense only within a

charactermodel, and a single dynamic vertex pool may not span

multiplecharacters. Each dynamic vertex pool creates a DynVerts

objectwithin the character by the same name; this name is used

laterwhen matching up the corresponding .

Atthe present time, the DynamicVertexPool is not implemented in

Panda3D.

3.7. THEPHILOSOPHY OF EGG FILES 43

Panda3DdevManual Documentation, Release 0.0.1

3.7.4 GEOMETRYENTRIES

name {

[attributes]

{

indices

{ pool-name }

}

}

Apolygon consists of a sequence of vertices from a single vertex

pool. Vertices are identified by pool-name and index number within

thepool; indices is a list of vertex numbers within the given

vertexpool. Vertices are listed in counterclockwise order.

Althoughthe vertices must all come from the same vertex pool, they

mayhave been assigned to arbitrarily many different joints

regardlessof joint connectivity (there is no “straddle-polygon”

limitation). See Joints, below.

Thepolygon syntax is quite verbose, and there isn’t any way to

specifya set of attributes that applies to a group of polygons–the

attributeslist must be repeated for each polygon. This is why egg

filestend to be very large.

Thefollowing attributes may be specified for polygons:

{ texture-name }

Thisrefers to a named entry given earlier. It applies

thegiven texture to the polygon. This requires that all the

polygon’svertices have been assigned texture coordinates.

Thisattribute may be repeated multiple times to specify

multitexture. In this case, each named texture is applied to the

polygon,in the order specified.

{ filename }

Thisis another way to apply a texture to a polygon. The

entry is defined “inline” to the polygon, instead of

referringto a entry given earlier. There is no way to

specifytexture attributes given this form.

There’sno advantage to this syntax for texture mapping. It’s

supportedonly because it’s required by some older egg files.

{ material-name }

44 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

Thisapplies the material properties defined in the earlier

entry to the polygon.

{ x y z [morph-list] }

Thisdefines a polygon surface normal. The polygon normal will be

usedunless all vertices also have a normal. If no normal is

defined,none will be supplied. The polygon normal, like the

vertexnormal, may be morphed by specifying a series of

entries.

Thepolygon normal is used only for lighting and environment

mappingcalculations, and is not related to the implicit normal

calculatedfor CollisionPolygons.

{ r g b a [morph-list] }

Thisdefines the polygon’s color, which will be used unless all

verticesalso have a color. If no color is defined, the default

iswhite (1 1 1 1). The color may be morphed with a series of

entries.

{ boolean-value }

Thisdefines whether the polygon will be rendered double-sided

(i.e.its back face will be visible). By default, this option is

disabled,and polygons are one-sided; specifying a nonzero value

disablesbackface culling for this particular polygon and allows

itto be viewed from either side.

bin { bin-name }

Itis sometimes important to control the order in which objects

arerendered, particularly when transparency is in use. In Panda,

thisis achieved via the use of named bins and, within certain

kindsof bins, sometimes an explicit draw-order is also used (see

below).

Inthe normal (state-sorting) mode, Panda renders its geometry by

firstgrouping into one or more named bins, and then rendering the

binsin a specified order. The programmer is free to define any

numberof bins, named whatever he/she desires.

Thisscalar specifies which bin this particular polygon is to be

renderedwithin. If no bin scalar is given, or if the name given

doesnot match any of the known bins, the polygon will be assigned

tothe default bin, which renders all opaque geometry sorted by

3.7. THEPHILOSOPHY OF EGG FILES 45

Panda3DdevManual Documentation, Release 0.0.1

state,followed by all transparent geometry sorted back-to-front.

Seealso draw-order, below.

draw-order { number }

Thisworks in conjunction with bin, above, to further refine the

orderin which this polygon is drawn, relative to other geometry

inthe same bin. If (and only if) the bin type named in the bin

scalaris a CullBinFixed, this draw-order is used to define the

fixedorder that all geometry in the same will be rendered, from

smallernumbers to larger numbers.

Ifthe draw-order scalar is specified but no bin scalar is

specified,the default is a bin named “fixed”, which is a

CullBinFixedobject that always exists by default.

depth-offset { number }

Specifiesa special depth offset to be applied to the polygon.

Thismust be an integer value between 0 and 16 or so. The default

valueis 0; values larger than 0 will cause the polygon to appear

closerto the camera for purposes of evaluating the depth buffer.

Thiscan be a simple way to resolve Z-fighting between coplanar

polygons:with two or more coplanar polygons, the polygon with the

highestdepth-offset value will appear to be visible on top. Note

thatthis effect doesn’t necessarily work well when the polygons

areviewed from a steep angle.

depth-write { mode }

Specifiesthe mode for writing to the depth buffer. This may be

ONor OFF. The default is ON.

depth-test { mode }

Specifiesthe mode for testing against the depth buffer. This may

beON or OFF. The default is ON.

visibility { hidden | normal }

Ifthe visibility of a primitive is set to “hidden”, theprimitive

isnot generated as a normally visible primitive. If the

Config.prcvariable egg-suppress-hidden is set to true, the

primitiveis not converted at all; otherwise, it is converted as a

“stashed”node.

This,like the other rendering flags alpha, draw-order, and bin,

maybe specified at the group level, within the primitive level,

46 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

oreven within a texture.

name {

[attributes]

{

indices

{ pool-name }

}

}

Apatch is similar to a polygon, but it is a special primitive that

canonly be rendered with the use of a tessellation shader. Each

patchconsists of an arbitrary number of vertices; all patches with

thesame number of vertices are collected together into the same

GeomPatchesobject to be delivered to the shader in a single batch.

Itis then up to the shader to create the correct set of triangles

fromthe patch data.

Allof the attributes that are valid for Polygon, above, may also be

specifiedfor Patch.

name {

[attributes]

{

indices

{ pool-name }

}

}

APointLight is a set of single points. One point is drawn for each

vertexlisted in the . Normals, textures, and colors may

bespecified for PointLights, as well as draw-order, plus one

additionalattribute valid only for PointLights and Lines:

thick { number }

Thisspecifies the size of the PointLight (or the width of a

line),in pixels, when it is rendered. This may be a

floating-pointnumber, but the fractional part is meaningful only

whenantialiasing is in effect. The default is 1.0.

perspective { boolean-value }

Ifthis is specified, then the thickness, above, is to interpreted

asa size in 3-d spatial units, rather than a size in pixels, and

3.7. THEPHILOSOPHY OF EGG FILES 47

Panda3DdevManual Documentation, Release 0.0.1

thepoint should be scaled according to its distance from the

viewernormally.

name {

[attributes]

{

indices

{ pool-name }

}

[componentattributes]

}

ALine is a connected set of line segments. The listed N vertices

definea series of N-1 line segments, drawn between vertex 0 and

vertex1, vertex 1 and vertex 2, etc. The line is not implicitly

closed;if you wish to represent a loop, you must repeat vertex 0 at

theend. As with a PointLight, normals, textures, colors,

draw-order,and the “thick” attribute are all valid (but not

“perspective”). Also, since a Line (with more than two vertices) is

madeup of multiple line segments, it may contain a number of

entries, to set a different color and/or normal for each

linesegment, as in TriangleStrip, below.

name {

[attributes]

{

indices

{ pool-name }

}

[componentattributes]

}

Atriangle strip is only rarely encountered in an egg file; it is

normallygenerated automatically only during load time, when

connectedtriangles are automatically meshed for loading, and even

thenit exists only momentarily. Since a triangle strip is a

renderingoptimization only and adds no useful scene information

overa loose collection of triangles, its usage is contrary to the

generalegg philosophy of representing a scene in the abstract.

Nevertheless,the syntax exists, primarily to allow inspection of

48 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

themeshing results when needed. You can also add custom

TriangleStripentries to force a particular mesh arrangement.

Atriangle strip is defined as a series of connected triangles.

Afterthe first three vertices, which define the first triangle,

eachnew vertex defines one additional triangle, by alternating up

anddown.

Itis possible for the individual triangles of a triangle strip to

havea separate normal and/or color. If so, a entry

shouldbe given for each so-modified triangle:

index {

{ r g b a [morph-list] }

{ x y z [morph-list] }

}

Whereindex ranges from 0 to the number of components defined by the

trianglestrip (less 1). Note that the component attribute list

mustalways follow the vertex list.

name {

[attributes]

{

indices

{ pool-name }

}

[componentattributes]

}

Atriangle fan is similar to a triangle strip, except all of the

connectedtriangles share the same vertex, which is the first

vertex. See , above.

3.7.5 PARAMETRICDESCRIPTION ENTRIES

Thefollowing entries define parametric curves and surfaces.

Generally,Panda supports these only in the abstract; they’re not

geometryin the true sense but do exist in the scene graph and may

havespecific meaning to the application. However, Panda can create

visiblerepresentations of these parametrics to aid visualization.

Theseentries might also have meaning to external tools outside of an

interactivePanda session, such as egg-qtess, which can be used to

3.7. THEPHILOSOPHY OF EGG FILES 49

Panda3DdevManual Documentation, Release 0.0.1

convertNURBS surfaces to polygons at different levels of resolution.

Ingeneral, dynamic attributes such as morphs and joint assignment are

legalfor the control vertices of the following parametrics, but Panda

itselfdoesn’t support them and will always create static curves and

surfaces. External tools like egg-qtess, however, may respect them.

{

[attributes]

{order}

{knot-list}

{indices{pool-name}}

}

ANURBS curve is a general parametric curve. It is often used to

representa motion path, e.g. for a camera or an object.

Theorder is equal to the degree of the polynomial basis plus 1. It

mustbe an integer in the range [1,4].

Thenumber of vertices must be equal to the number of knots minus the

order.

Eachcontrol vertex of a NURBS is defined in homogeneous space with

fourcoordinates x y z w (to convert to 3-space, divide x, y, and z

byw). The last coordinate is always the homogeneous coordinate; if

onlythree coordinates are given, it specifies a curve in two

dimensionsplus a homogeneous coordinate (x y w).

Thefollowing attributes may be defined:

type{curve-type}

Thisdefines the semanting meaning of this curve, either XYZ, HPR,

orT. If the type is XYZ, the curve will automatically be

transformedbetween Y-up and Z-up if necessary; otherwise, it will

beleft alone.

subdiv{num-segments}

Ifthis scalar is given and nonzero, Panda will create a visible

representationof the curve when the scene is loaded. The number

representsthe number of line segments to draw to approximate the

curve.

{rgba[morph-list]}

Thisspecifies the color of the overall curve.

NURBScontrol vertices may also be given color and/or morph

50 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

attributes,but and entries do not apply to NURBS

vertices.

name{

[attributes]

{u-orderv-order}

<U-knots>{u-knot-list}

<V-knots>{v-knot-list}

{

indices

{pool-name}

}

}

ANURBS surface is an extension of a NURBS curve into two parametric

dimensions,u and v. NURBS surfaces may be given the same set of

attributesassigned to polygons, except for normals: ,

„ , and draw-order are all valid attributes

forNURBS. NURBS vertices, similarly, may be colored or morphed,

but and entries do not apply to NURBS vertices. The

attributesmay also include and entries; see

below.

Tohave Panda create a visualization of a NURBS surface, the

followingtwo attributes should be defined as well:

U-subdiv{u-num-segments}

V-subdiv{v-num-segments}

Thesedefine the number of subdivisions to make in the U and V

directionsto represent the surface. A uniform subdivision is

alwaysmade, and trim curves are not respected (though they will

bedrawn in if the trim curves themselves also have a subiv

parameter). This is only intended as a cheesy visualization.

Thesame sort of restrictions on order and knots applies to NURBS

surfacesas do to NURBS curves. The order and knot description may

bedifferent in each dimension.

Thesurface must have u-num * v-num vertices, where u-num is the

numberof u-knots minus the u-order, and v-num is the number of

v-knotsminus the v-order. All vertices must come from the same

vertexpool. The nth (zero-based) index number defines control

3.7. THEPHILOSOPHY OF EGG FILES 51

Panda3DdevManual Documentation, Release 0.0.1

vertex(u, v) of the surface, where n = (v * u-num) + u. Thus, it

isthe u coordinate which changes faster.

Aswith the NURBS curve, each control vertex is defined in

homogeneousspace with four coordinates x y z w.

ANURBS may also contain curves on its surface. These are one or

morenested entries included with the attributes; these

curvesare defined in the two-dimensional parametric space of the

surface. Thus, these curve vertices should have only two dimensions

plusthe homogeneous coordinate: u v w. A curve-on-surface has no

intrinsicmeaning to the surface, unless it is defined within a

entry, below.

Finally,a NURBS may be trimmed by one or more trim curves. These

arespecial curves on the surface which exclude certain areas from

theNURBS surface definition. The inside is specified using two

rules:an odd winding rule that states that the inside consists of

allregions for which an infinite ray from any point in the region

willintersect the trim curve an odd number of times, and a curve

orientationrule that states that the inside consists of the regions

tothe left as the curve is traced.

Eachtrim curve contains one or more loops, and each loop contains

oneor more NURBS curves. The curves of a loop connect in a

head-to-tailfashion and must be explicitly closed.

Thetrim curve syntax is as follows:

{

{

{

{order}

{knot-list}

{indices{pool-name}}

}

[{. . . }. . .]

}

[{. . . }. . .]

}

Althoughthe egg syntax supports trim curves, there are at present

noegg processing tools that respect them. For instance, egg-qtess

52 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

ignorestrim curves and always tesselates the entire NURBS surface.

3.7.6 MORPHDESCRIPTION ENTRIES

Morphsare linear interpolations of attribute values at run time,

accordingto values read from an animation table. In general, vertex

positions,surface normals, texture coordinates, and colors may be

morphed.

Amorph target is defined by giving a net morph offset for a series of

vertexor polygon attributes; this offset is the value that will be

addedto the attribute when the morph target has the value 1.0. At

runtime, the morph target’s value may be animated to any scalar value

(butgenerally between 0.0 and 1.0); the corresponding fraction of the

offsetis added to the attribute each frame.

Thereis no explicit morph target definition; a morph target exists

solelyas the set of all offsets that share the same target name. The

targetname may be any arbitrary string; like any name in an egg file,

itshould be quoted if it contains special characters.

Thefollowing types of morph offsets may be defined, within their

correspondingattribute entries:

target{xyz}

Aposition delta, valid within a entry or a entry.

Thegiven offset vector, scaled by the morph target’s value, is

addedto the vertex or CV position each frame.

target{xyz}

Anormal delta, similar to the position delta, valid within a

entry (for vertex or polygon normals). The given offset

vector,scaled by the morph target’s value, is added to the normal

vectoreach frame. The resulting vector may not be automatically

normalizedto unit length.

target{uv[w]}

Atexture-coordinate delta, valid within a entry (within a

entry). The offset vector should be 2-valued if the

enclosingUV is 2-valued, or 3-valued if the enclosing UV is

3-valued. The given offset vector, scaled by the morph target’s

value,is added to the vertex’s texture coordinates each frame.

target{rgba}

3.7. THEPHILOSOPHY OF EGG FILES 53

Panda3DdevManual Documentation, Release 0.0.1

Acolor delta, valid within an entry (for vertex orpolygon colors). The given 4-valued offset vector, scaled by themorph

target’svalue, is added to the color value each frame.

3.7.7 GROUPINGENTRIES

name{group-body}

A node is the primary means of providing structure to the

eggfile. Groups can contain vertex pools and polygons, as well as

othergroups. The egg loader translates nodes directly into

PandaNodesin the scene graph (although the egg loader reserves the

rightto arbitrarily remove nodes that it deems unimportant–see the

flag, below to avoid this). In addition, the following

entriescan be given specifically within a node to specify

attributesof the group:

3.7.8 GROUPBINARY ATTRIBUTES

Theseattributes may be either on or off; they are off by default.

Theyare turned on by specifying a non-zero “boolean-value”.

{boolean-value}

DCSstands for Dynamic Coordinate System. This indicates that

showcode will expect to be able to read the transform set on this

nodeat run time, and may need to modify the transform further.

Thisis a special case of , below.

{dcs-type}

Thisis another syntax for the flag. The dcs-type string

shouldbe one of either “local” or “net”, whichspecifies the kind

ofpreserve_transform flag that will be set on the corresponding

ModelNode. If the string is “local”, it indicates that the local

transformon this node (as well as the net transform) will not be

affectedby any flattening operation and will be preserved through

theentire model loading process. If the string is “net”, then

onlythe net transform will be preserved; the local transform may

beadjusted in the event of a flatten operation.

{boolean-value}

Thisindicates that the show code might need a pointer to this

particulargroup. This creates a ModelNode at the corresponding

level,which is guaranteed not to be removed by any flatten

54 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

operation. However, its transform might still be changed, but see

alsothe flag, above.

{boolean-value}

Thisindicates that this group begins an animated character. A

Characternode, which is the fundamental animatable object of

Panda’shigh-level Actor class, will be created for this group.

Thisflag should always be present within the entry at the

topof any hierarchy of ’s and/or geometry with morphed

vertices;joints and morphs appearing outside of a hierarchy

identifiedwith a flag are undefined.

{boolean-value}

Thisattribute indicates that the child nodes of this group

representa series of animation frames that should be

consecutivelydisplayed. In the absence of an “fps” scalar for

thegroup (see below), the egg loader creates a SwitchNode, and it

theresponsibility of the show code to perform the switching. If

anfps scalar is defined and is nonzero, the egg loader creates a

SequenceNodeinstead, which automatically cycles through its

children.

3.7.9 GROUPSCALARS

fps{frame-rate}

Thisspecifies the rate of animation for a SequenceNode (created

whenthe Switch flag is specified, see above). A value of zero

indicatesa SwitchNode should be created instead.

bin{bin-name}

Thisspecifies the bin name for all polygons at or below this node

thatdo not explicitly set their own bin. See the description of

binfor geometry attributes, above.

draw-order{number}

Thisspecifies the drawing order for all polygons at or below this

nodethat do not explicitly set their own drawing order. See the

descriptionof draw-order for geometry attributes, above.

depth-offset{number}

depth-write{mode}

depth-test{mode}

3.7. THEPHILOSOPHY OF EGG FILES 55

Panda3DdevManual Documentation, Release 0.0.1

Specifiesspecial depth buffer properties of all polygons at or

belowthis node that do not override this. See the descriptions

forthe individual attributes under polygon attributes.

visibility{hidden|normal}

Ifthe visibility of a group is set to “hidden”, theprimitives

nestedwithin that group are not generated as a normally visible

primitive. If the Config.prc variable egg-suppress-hidden is set

totrue, the primitives are not converted at all; otherwise, they

areconverted as a “stashed” node.

decal{boolean-value}

Ifthis is present and boolean-value is non-zero, it indicates

thatthe geometry below this level is coplanar with the geometry

atthis level, and the geometry below is to be drawn as a decal

ontothe geometry at this level. This means the geometry below

thislevel will be rendered “on top of” this geometry, butwithout

theZ-fighting artifacts one might expect without the use of the

decalflag.

decalbase{boolean-value}

Thiscan optionally be used with the “decal” scalar, above. If

present,it should be applied to a sibling of one or more nodes

withthe “decal” scalar on. It indicates which of the sibling

nodesshould be treated as the base of the decal. In the absence

ofthis scalar, the parent of all decal nodes is used as the decal

base. This scalar is useful when the modeling package is unable

toparent geometry nodes to other geometry nodes.

collide-mask{value}

from-collide-mask{value}

into-collide-mask{value}

Setsthe CollideMasks on the collision nodes and geometry nodes

createdat or below this group to the indicated values. These

arebits that indicate which objects can collide with which

otherobjects. Setting “collide-mask” is equivalent to setting

both”from-collide-mask” and “into-collide-mask” tothe same

value.

Thevalue may be an ordinary decimal integer, or a hex number in

theform 0x000, or a binary number in the form 0b000.

56 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

blend{mode}

Specifiesthat a special blend mode should be applied geometry at

thislevel and below. The available options are none, add,

subtract,inv-subtract, min, and max. See ColorBlendAttrib.

blendop-a{mode}

blendop-b{mode}

Ifblend mode, above, is not none, this specifies the A and B

operandsto the blend equation. Common options are zero, one,

incoming-color,one-minus-incoming-color. See ColorBlendAttrib

forthe complete list of available options. The default is “one”.

blendr{red-value}

blendg{green-value}

blendb{blue-value}

blenda{alpha-value}

Ifblend mode, above, is not none, and one of the blend operands

isconstant-color or a related option, this defines the constant

colorthat will be used.

occluder{boolean-value}

Thismakes the first (or only) polygon within this group node into

anoccluder. The polygon must have exactly four vertices. An

occluderpolygon is invisible. When the occluder is activated

withmodel.set_occluder(occluder), objects that are behind the

occluderwill not be drawn. This can be a useful rendering

optimizationfor complex scenes, but should not be overused or

performancecan suffer.

3.7.10 OTHERGROUP ATTRIBUTES

{type}

Thisentry indicates that all geometry defined at or below this

grouplevel is part of a billboard that will rotate to face the

camera. Type is either “axis” or “point”, describing thetype of

rotation.

Billboardsrotate about their local axis. In the case of a Y-up

file,the billboards rotate about the Y axis; in a Z-up file, they

rotateabout the Z axis. Point-rotation billboards rotate about

theorigin.

3.7. THEPHILOSOPHY OF EGG FILES 57

Panda3DdevManual Documentation, Release 0.0.1

Thereis an implicit around billboard geometry. This

meansthat the geometry within a billboard is not specified in

worldcoordinates, but in the local billboard space. Thus, a

vertexdrawn at point 0,0,0 will appear to be at the pivot point

ofthe billboard, not at the origin of the scene.

{

{

inout[fade]{xyz}

}

}

Thesubtree beginning at this node and below represents a single

levelof detail for a particular model. Sibling nodes represent

theadditional levels of detail. The geometry at this node will

bevisible when the point (x, y, z) is closer than “in” units,but

furtherthan “out” units, from the camera. “fade” ispresently

ignored.

key{value}

Thisattribute defines the indicated tag (as a key/value pair),

retrievablevia NodePath::get_tag() and related interfaces, on

thisnode.

3.7.11 name { type [flags] }

Thisentry indicates that geometry defined at this group level is

actuallyan invisible collision surface, and is not true geometry.

Thegeometry is used to define the extents of the collision

surface. If there is no geometry defined at this level, then a

childis searched for with the same collision type specified, and

itsgeometry is used to define the extent of the collision

surface(unless the “descend” flag is given; see below).

Validtypes so far are:

Plane

Thegeometry represents an infinite plane. The first polygon

foundin the group will define the plane.

Polygon

Thegeometry represents a single polygon. The first polygon is

used.

58 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

Polyset

Thegeometry represents a complex shape made up of several

polygons. This collision type should not be overused, as it

providesthe least optimization benefit.

Sphere

Thegeometry represents a sphere. The vertices in the group are

averagedtogether to determine the sphere’s center and radius.

Box

Thegeometry represents a box. The smalles axis-alligned box

thatwill fit around the vertices is used.

InvSphere

Thegeometry represents an inverse sphere. This is the same as

Sphere,with the normal inverted, so that the solid part of an

inversesphere is the entire world outside of it. Note that an

inversesphere is in infinitely large solid with a finite hole

cutinto it.

Tube

Thegeometry represents a tube. This is a cylinder-like shape

withhemispherical endcaps; it is sometimes called a capsule or

alozenge in other packages. The smallest tube shape that will

fitaround the vertices is used.

Theflags may be any zero or more of:

event

Throwsthe name of the entry, or the name of the

surfaceif the entry has no name, as an event whenever

anavatar strikes the solid. This is the default if the

entry has a name.

intangible

Ratherthan being a solid collision surface, the defined surface

representsa boundary. The name of the surface will be thrown

asan event when an avatar crosses into the interior, and

name-outwill be thrown when an avater exits.

descend

Insteadof creating only one collision object of the given type,

eachgroup descended from this node that contains geometry will

definea new collision object of the given type. The event

3.7. THEPHILOSOPHY OF EGG FILES 59

Panda3DdevManual Documentation, Release 0.0.1

name,if any, will also be inherited from the top node and

sharedamong all the collision objects.

keep

Don’tdiscard the visible geometry after using it to define a

collisionsurface; create both an invisible collision surface

andthe visible geometry.

level

Storesa special effective normal with the collision solid that

pointsup, regardless of the actual shape or orientation of the

solid. This can be used to allow an avatar to stand on a

slopingsurface without having a tendency to slide downward.

3.7.12 {type}

Thisis a short form to indicate one of several pre-canned sets of

attributes. Type may be any word, and a Config definition will be

searchedfor by the name “egg-object-type-word”, where “word”is

thetype word. This definition may contain any arbitrary egg

syntaxto be parsed in at this group level.

Anumber of predefined ObjectType definitions are provided:

barrier

Thisis equivalent to { Polyset descend }. The

geometrydefined at this root and below defines an invisible

collisionsolid.

trigger

Thisis equivalent to { Polyset descend intangible }.

Thegeometry defined at this root and below defines an invisible

triggersurface.

sphere

Equivalentto { Sphere descend }. The geometry is

replacedwith the smallest collision sphere that will enclose

it. Typically you model a sphere in polygons and put this flag

onit to create a collision sphere of the same size.

tube

Equivalentto { Tube descend }. As in sphere, above,

butthe geometry is replaced with a collision tube (a capsule).

Typicallyyou will model a capsule or a cylinder in polygons.

60 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

bubble

Equivalentto { Sphere keep descend }. A collision

bubbleis placed around the geometry, which is otherwise

unchanged.

ghost

Equivalentto collide-mask { 0 }. It means that the

geometrybeginning at this node and below should never be

collidedwith–characters will pass through it.

backstage

Thishas no equivalent; it is treated as a special case. It

meansthat the geometry at this node and below should not be

translated. This will normally be used on scale references and

othermodeling tools.

Theremay also be additional predefined egg object types not

listedhere; see the *.pp files that are installed into the etc

directoryfor a complete list.

{transform-definition}

Thisspecifies a matrix transform at this group level. This

definesa local coordinate space for this group and its

descendents. Vertices are still specified in world coordinates

(ina vertex pool), but any geometry assigned to this group will

beinverse transformed to move its vertices to the local space.

Thetransform definition may be any sequence of zero or more of

thefollowing. Transformations are post multiplied in the order

theyare encountered to produce a net transformation matrix.

Rotationsare defined as a counterclockwise angle in degrees about

aparticular axis, either implicit (about the x, y, or z axis), or

arbitrary. Matrices, when specified explicitly, are row-major.

{xyz}

{degrees}

{degrees}

{degrees}

{degreesxyz}

{xyz}

{s}

{

3.7. THEPHILOSOPHY OF EGG FILES 61

Panda3DdevManual Documentation, Release 0.0.1

00010203

10111213

20212223

30313233

}

Notethat the block should always define a 3-d

transformwhen it appears within the body of a , while it

maydefine either a 2-d or a 3-d transform when it appears within

thebody of a . See , above.

{transform-definition}

Thisdefines an optional default pose transform, which might be a

differenttransform from that defined by the entry,

above. This makes sense only for a . See the

description,below.

Thedefault pose transform defines the transform the joint will

maintainin the absence of any animation being applied. This is

differentfrom the entry, which defines the coordinate

spacethe joint must have in order to keep its vertices in their

(globalspace) position as given in the egg file. If this is

differentfrom the entry, the joint’s vertices will

notbe in their egg file position at initial load. If there is

no entry for a particular joint, the implicit

default-posetransform is the same as the entry.

Normally,the entry, if any, is created by the

egg-optchar-defpose option. Most other software has little

reasonto specify an explicit .

{indices{pool-name}}

Thismoves geometry created from the named vertices into the

currentgroup, regardless of the group in which the geometry is

actuallydefined. See the description, below.

{

fps{float-value}

num-frames{integer-value}

}

Oneor more AnimPreload entries may appear within the that

containsa entry, indicating an animated character (see

62 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

above). These AnimPreload entries record the minimal preloaded

animationdata required in order to support asynchronous animation

binding. These entries are typically generated by the egg-optchar

programwith the -preload option, and are used by the Actor code

whenallow-async-bind is True (the default).

name{group-body}

An node is exactly like a node, exceptthat

verticesreferenced by geometry created under the node

arenot assumed to be given in world coordinates, but are instead

givenin the local space of the node itself (including

anytransforms given to the node).

Inother words, geometry under an node is defined in

localcoordinates. In principle, similar geometry can be created

underseveral different nodes, and thus can be positioned

ina different place in the scene each instance. This doesn’t

necessarilyimply the use of shared geometry in the Panda3D scene

graph,but see the syntax, below.

Thisis particularly useful in conjunction with a entry, to

loadexternal file references at places other than the origin.

Aspecial syntax of entries does actually createshared

geometryin the scene graph. The syntax is:

name{

{group-name}

[{group-name}. . .]

}

Inthis case, the referenced group name will appear as a duplicate

instancein this part of the tree. Local transforms can be applied

andare relative to the referencing group’s transform. The

referencedgroup must appear preceding this point in the egg file,

andit will also be a part of the scene in the point at which it

firstappears. The referenced group may be either a or an

of its own; usually, it is a nested within an

earlier entry.

name{[transform][ref-list][joint-list]}

Ajoint is a highly specialized kind of grouping node. A tree of

jointsis used to specify the skeletal structure of an animated

3.7. THEPHILOSOPHY OF EGG FILES 63

Panda3DdevManual Documentation, Release 0.0.1

character.

Ajoint may only contain one of three things. It may contain a

entry, as above, which defines the joint’s unanimated

(rest)position; it may contain lists of assigned vertices or CV’s;

andit may contain other joints.

Atree of nodes only makes sense within a character

definition,which is created by applying the flag to a group.

See, above.

Thevertex assignment is crucial. This is how the geometry of a

characteris made to move with the joints. The character’s geometry

isactually defined outside the joint tree, and each vertex must be

assignedto one or more joints within the tree.

Thisis done with zero or more entries per joint, as the

following:

{indices[membership{m}]{pool-name}}

Thisis syntactically similar to the way vertices are assigned to

polygons. Each entry can assign vertices from only one

vertexpool (but there may be many entries per joint).

Indicesis a list of vertex numbers from the specied vertex pool, in

anarbitrary order.

Themembership scalar is optional. If specified, it is a value

between0.0 and 1.0 that indicates the fraction of dominance this

jointhas over the vertices. This is used to implement

soft-skinning,so that each vertex may have partial ownership in

severaljoints.

The entry may also be given to ordinary nodes.

Inthis case, it treats the geometry as if it was parented under the

groupin the first place. Non-total membership assignments are

meaningless.

name{table-list}

Atable is a set of animated values for joints. A tree of tables

withthe same structure as the corresponding tree of joints must be

definedfor each character to be animated. Such a tree is placed

undera node, which provides a handle within Panda to the

treeas a whole.

Bundlesmay only contain tables; tables may contain more tables,

64 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

bundles,or any one of the following (entries are optional,

anddefault as shown):

<S$Anim>name{

fps{24}

{values}

}

Thisis a table of scalar values, one per frame. This may be

appliedto a morph slider, for instance.

<Xfm$Anim>name{

fps{24}

order{srpht}

contents{ijkabcrphxyz}

{values}

}

Thisis a table of matrix transforms, one per frame, such as may

beapplied to a joint. The “contents” string consists of asubset

ofthe letters “ijkabcrphxyz”, where each letter correspondsto a

columnof the table; is a list of numbers of length(contents)

*num_frames. Each letter of the contents string corresponds to a

typeof transformation:

i,j, k - scale in x, y, z directions, respectively

a,b, c - shear in xy, xz, and yz planes, respectively

r,p, h - rotate by roll, pitch, heading

x,y, z - translate in x, y, z directions

Thenet transformation matrix specified by each row of the table

isdefined as the net effect of each of the individual columns’

transform,according to the corresponding letter in the contents

string. The order the transforms are applied is defined by the

orderstring:

s - all scale and shear transforms

r,p, h - individual rotate transforms

t - all translation transforms

<Xfm$Anim_S$>name{

fps{24}

order{srpht}

<S$Anim>i{. . . }

3.7. THEPHILOSOPHY OF EGG FILES 65

Panda3DdevManual Documentation, Release 0.0.1

<S$Anim>j{. . . }

. . .

}

Thisis a variant on the <Xfm$Anim> entry, where each column of

thetable is entered as a separate <S$Anim> table. This syntax

reflectsan attempt to simplify the description by not requiring

repetitionof values for columns that did not change value during

ananimation sequence.

name{

width{table-width}

fps{24}

{values}

}

Thisis a table of vertex positions, normals, texture coordinates,

orcolors. These values will be subsituted at runtime for the

correspondingvalues in a . The name of the

tableshould be “coords”, “norms”, “texCoords”,or “colors”,

accordingto the type of values defined. The number table-width

isthe number of floats in each row of the table. In the case of

acoords or norms table, this must be 3 times the number of

verticesin the corresponding dynamic vertex pool. (For texCoords

andcolors, this number must be 2 times and 4 times, respectively.)

3.7.13 MISCELLANEOUS

{filename}

Thisincludes a copy of the referenced egg file at the current

point. This is usually placed under an node, so that the

currenttransform will apply to the geometry in the external file.

Theextension “.egg” is implied if it is omitted.

Aswith texture filenames, the filename may be a relative path, in

whichcase the current egg file’s directory is searched first, and

thenthe model-path is searched.

66 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

3.7.14 ANIMATIONSTRUCTURE

Unanimatedmodels may be defined in egg files without much regard to

anyparticular structure, so long as named entries like VertexPools

andTextures appear before they are referenced.

However,a certain rigid structural convention must be followed in

orderto properly define an animated skeleton-morph model and its

associatedanimation data.

Thestructure for an animated model should resemble the following:

CHARACTER_NAME{

{1}

JOINT_A{

{. . . }

{. . . }

{. . . }

JOINT_B{

{. . . }

{. . . }

{. . . }

}

JOINT_C{

{. . . }

{. . . }

{. . . }

}

. . .

}

}

The flag is necessary to indicate that this group begins an

animatedmodel description. Without the flag, joints will be

treatedas ordinary groups, and morphs will be ignored.

Inthe above, UPPERCASE NAMES represent an arbitrary name that you

maychoose. The name of the enclosing group, CHARACTER_NAME, is

takenas the name of the animated model. It should generally match

thebundle name in the associated animation tables.

Withinthe group, you may define an arbitrary hierarchy of

entries. There may be as many entries as you like,

3.7. THEPHILOSOPHY OF EGG FILES 67

Panda3DdevManual Documentation, Release 0.0.1

andthey may have any nesting complexity you like. There may be

eitherone root , or multiple roots. However, you must

alwaysinclude at least one , even if your animation consists

entirelyof morphs.

Polygonsmay be directly attached to joints by enclosing them within

the group, perhaps with additional nesting entries,

asillustrated above. This will result in the polygon’s vertices

beinghard-assigned to the joint it appears within. Alternatively,

youdeclare the polygons elsewhere in the egg file, and use

entries within the group to associate the

verticeswith the joints. This is the more common approach, since

itallows for soft-assignment of vertices to multiple joints.

Itis not necessary for every joint to have vertices at all. Every

jointshould include a transform entry, however, which defines the

initial,resting transform of the joint (but see also ,

above). If a transform is omitted, the identity transform is

assumed.

Someof the vertex definitions may include morph entries, as

describedin MORPH DESCRIPTION ENTRIES, above. These are meaningful

onlyfor vertices that are assigned, either implicitly or

explicitly,to at least one joint.

Youmay have multiple versions of a particular animated model–for

instance,multiple different LOD’s, or multiple different clothing

options. Normally each different version is stored in a different

eggfile, but it is also possible to include multiple versions

withinthe same egg file. If the different versions are intended to

playthe same animations, they should all have the same

CHARACTER_NAME,and their joint hierarchies should exactly match in

structureand names.

Thestructure for an animation table should resemble the following:

CHARACTER_NAME{

JOINT_A{

<Xfm$Anim_S$>xform{

<Char*>order{sphrt}

fps{24}

<S$Anim>x{00101020. . . }

68 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

<S$Anim>y{00000. . . }

<S$Anim>z{2020202020. . . }

}

JOINT_B{

<Xfm$Anim_S$>xform{

<Char*>order{sphrt}

fps{24}

<S$Anim>x{. . . }

<S$Anim>y{. . . }

<S$Anim>z{. . . }

}

}

JOINT_C{

<Xfm$Anim_S$>xform{

<Char*>order{sphrt}

fps{24}

<S$Anim>x{. . . }

<S$Anim>y{. . . }

<S$Anim>z{. . . }

}

}

}

}

<S$Anim>MORPH_A{

fps{24}

{0000.10.20.31. . . }

}

<S$Anim>MORPH_B{

fps{24}

{. . . }

}

<S$Anim>MORPH_C{

fps{24}

{. . . }

}

}

3.7. THEPHILOSOPHY OF EGG FILES 69

Panda3DdevManual Documentation, Release 0.0.1

}

}

The entry begins an animation table description. This

entrymust have at least one child: a named “”

(thisname is a literal keyword and must be present). The children

ofthis entry should be a hierarchy of additional

entries,one for each joint in the model. The joint structure and

namesdefined by the hierarchy should exactly match the

jointstructure and names defined by the hierarchy in the

correspondingmodel.

Each that corresponds to a joint should have one child, an

<Xfm$Anim_S$>entry named “xform” (this name is a literal keyword

andmust be present). Within this entry, there is a series of up to

twelve<S$Anim> entries, each with a one-letter name like “x”,”y”,

or”z”, which define the per-frame x, y, z position of the

correspondingjoint. There is one numeric entry for each frame, and

allframes represent the same length of time. You can also define

rotation,scale, and shear. See the full description of

<Xfm$Anim_S$>,above.

Withina particular animation bundle, all of the various components

throughoutthe various should define the same number of

frames,with the exception that if any of them define exactly one

framevalue, that value is understood to be replicated the

appropriatenumber of times to match the number of frames defined by

othercomponents.

(Notethat you may alternatively define an animation table with an

<Xfm$Anim>entry, which defines all of the individual components in

onebig matrix instead of individually. See the full description

above.)

Eachjoint defines its frame rate independently, with an “fps”

scalar. This determines the number of frames per second for the

framedata within this table. Typically, all joints have the same

framerate, but it is possible for different joints to animate at

differentspeeds.

Eachjoint also defines the order in which its components should be

composedto determine the complete transform matrix, with an “order”

70 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

scalar. This is described in more detail above.

Ifany of the vertices in the model have morphs, the top-level

alsoa literal keyword). This table in turn contains a list of

<S$Anim>entries, one for each named morph description. Each table

containsa list of numeric values, one per frame; as with the joint

data,there should be the same number of numeric values in all

tables,with the exception that just one value is understood to mean

holdthat value through the entire animation.

The”morph” table may be omitted if there are no morphs definedin

themodel.

Thereshould be a separate definition for each different

animation. The name should match the CHARACTER_NAME used

forthe model, above. Typically each bundle is stored in a separate

eggfile, but it is also possible to store multiple different

animationbundles within the same egg file. If you do this, you may

violatethe CHARACTER_NAME rule, and give each bundle a different

name;this will become the name of the animation in the Actor

interface.

Althoughanimations and models are typically stored in separate egg

files,it is possible to store them together in one large egg file.

TheActor interface will then make available all of the animations

itfinds within the egg file, by bundle name.

3.8 HOWTO CONTROL RENDER ORDER

Inmost simple scenes, you can naively attach geometry to the scene

graphand let Panda decide the order in which objects should be

rendered. Generally, it will do a good enough job, but there are

occasionsin which it is necessary to step in and take control of the

process.

Todo this well, you need to understand the implications of render

order. In a typical OpenGL- or DirectX-style Z-buffered system, the

orderin which primitives are sent to the graphics hardware is

theoreticallyunimportant, but in practice there are many important

reasonsfor rendering one object before another.

Firstly,state sorting is one important optimization. This means

3.8. HOWTO CONTROL RENDER ORDER 71

Panda3DdevManual Documentation, Release 0.0.1

choosingto render things that have similar state (texture, color,

etc.)all at the same time, to minimize the number of times the

graphicshardware has to be told to change state in a particular

frame. This sort of optimization is particularly important for very

high-endgraphics hardware, which achieves its advertised theoretical

polygonthroughput only in the absence of any state changes; for many

suchadvanced cards, each state change request will completely flush

theregister cache and force a restart of the pipeline.

Secondly,some hardware has a different optimization requirement, and

maybenefit from drawing nearer things before farther things, so that

theZ-buffer algorithm can effectively short-circuit some of the

advancedshading features in the graphics card for pixels that would

beobscured anyway. This sort of hardware will draw things fastest

whenthe scene is sorted in order from the nearest object to the

farthestobject, or “front-to-back” ordering.

Finally,regardless of the rendering optimizations described above, a

particularsorting order is required to render transparency properly

(inthe absence of the specialized transparency support that only a

fewgraphics cards provide). Transparent and semitransparent objects

arenormally rendered by blending their semitransparent parts with

whathas already been drawn to the framebuffer, which means that it is

importantthat everything that will appear behind a semitransparent

objectmust have already been drawn before the semitransparent parts

ofthe occluding object is drawn. This implies that all

semitransparentobjects must be drawn in order from farthest away to

nearest,or in “back-to-front” ordering, and furthermore that the

opaqueobjects should all be drawn before any of the semitransparent

objects.

Pandaachieves these sometimes conflicting sorting requirements

throughthe use of bins.

3.8.1 CULLBINS

TheCullBinManager is a global object that maintains a list of all of

thecull bins in the world, and their properties. Initially, there

arefive default bins, and they will be rendered in the following

order:

72 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

BinName Sort Type

“background” 10 BT_fixed

“opaque” 20 BT_state_sorted

“transparent” 30 BT_back_to_front

“fixed” 40 BT_fixed

“unsorted” 50 BT_unsorted

WhenPanda traverses the scene graph each frame for rendering, it

assignseach Geom it encounters into one of the bins defined in the

CullBinManager. (The above lists only the default bins. Additional

binsmay be created as needed, using either the

CullBinManager::add_bin()method, or the Config.prc “cull-bin”

variable.)

Youmay assign a node or nodes to an explicit bin using the

NodePath::set_bin()interface. set_bin() requires two parameters, the

binname and an integer sort parameter; the sort parameter is only

meaningfulif the bin type is BT_fixed (more on this below), but it

mustalways be specified regardless.

Ifa node is not explicitly assigned to a particular bin, then Panda

willassign it into either the “opaque” or the “transparent”bin,

accordingto whether it has transparency enabled or not. (Note that

thereverse is not true: explicitly assigning an object into the

“transparent”bin does not automatically enable transparency for the

object.)

Whenthe entire scene has been traversed and all objects have been

assignedto bins, then the bins are rendered in order according to

theirsort parameter. Within each bin, the contents are sorted

accordingto the bin type.

Thefollowing bin types may be specified:

BT_fixed

Renderall of the objects in the bin in a fixed order specified by

theuser. This is according to the second parameter of the

NodePath::set_bin()method; objects with a lower value are drawn

first.

BT_state_sorted

Collectstogether objects that share similar state and renders

3.8. HOWTO CONTROL RENDER ORDER 73

Panda3DdevManual Documentation, Release 0.0.1

themtogether, in an attempt to minimize state transitions in the

scene.

BT_back_to_front

Sortseach Geom according to the center of its bounding volume, in

lineardistance from the camera plane, so that farther objects are

drawnfirst. That is, in Panda’s default right-handed Z-up

coordinatesystem, objects with large positive Y are drawn before

objectswith smaller positive Y.

BT_front_to_back

Thereverse of back_to_front, this sorts so that nearer objects

aredrawn first.

BT_unsorted

Objectsare drawn in the order in which they appear in the scene

graph,in a depth-first traversal from top to bottom and then from

leftto right.

3.9 Howto make multipart actor

3.9.1 MULTIPARTACTORS vs. HALF-BODY ANIMATION

Sometimesyou want to be able to play two different animations on the

sameActor at once. Panda does have support for blending two

animationson the whole Actor simultaneously, but what if you want to

playone animation (say, a walk cycle) on the legs while a completely

differentanimation (say, a shoot animation) is playing on the torso?

AlthoughPanda doesn’t currently have support for playing two

differentanimations on different parts of the same actor at once

(half-bodyanimation), it does support loading up two completely

differentmodels into one actor (multipart actors), which can be used

toachieve the same effect, albeit with a bit more setup effort.

Multipartactors are more powerful than half-body animations, since

youcan completely mix-and-match the pieces with parts from other

characters:for instance, you can swap out short legs for long legs to

makeyour character taller. On the other hand, multipart actors are

alsomore limited in that there cannot be any polygons that straddle

theconnecting joint between the two parts.

74 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

3.9.2 BROADOVERVIEW

Whatyou have to do is split your character into two completely

differentmodels: the legs and the torso. You don’t have to do this

inthe modeling package; you should be able to do it in the conversion

process. The converter needs to be told to get out the entire

skeleton,but just a subset of the geometry. Maya2egg, for instance,

willdo this with the -subset command-line parameter.

Then,in a nutshell, you load up a multipart actor with the legs and

thetorso as separate parts, and you can play the same animation on

bothparts, or you can use the per-part interface to play a different

animationon each part.

3.9.3 MOREDETAILS

Thatnutshell oversimplifies things only a little bit. Unless your

differentanimations are very similar to each other, you will have

issueskeeping the different parts from animating in different

directions. To solve this, you need to parent them together properly,

sothat the torso is parented to the hips. This means exposing the

hipjoint in the legs model, and subtracting the hip joint animation

fromthe torso model using egg-topstrip (because it will pick it up

againwhen it gets stacked up on the hips). Also, you should strongly

consideregg-optchar to remove the unused joints from each part’s

skeleton,although this step is just an optimization.

Unfortunately,all this only works if your character has no polygons

thatstraddle the connecting joint between the hips and the torso. If

itdoes, you may have to find a clever place to draw the line between

them(under a shirt?) so that the pieces can animate in different

directionswithout visible artifacts. If that can’t be done, then the

onlysolution is to add true half-body animation support to Panda. :)

3.9.4 NUTS AND BOLTS

You need to parent the two parts together in Panda. The complete

processis this (of course, you’ll need to flesh out the details of

themaya2egg command line according to the needs of your model, and

insertyour own filenames and joint names where appropriate):

3.9. Howto make multipart actor 75

Panda3DdevManual Documentation, Release 0.0.1

(1)Extract out the model into two separate files, legs and torso.

Extractthe animation out twice too, even though both copies will

bethe same, just so it can conveniently exist in two different

eggfiles, one for the legs and one for the torso.

maya2egg-subset legs_group -a model -cn legs -o legs-model.egg myFile.mb

maya2egg-a chan -cn legs -o legs-walk.egg myFile.mb

maya2egg-subset torso_group -a model -cn torso -o torso-model.egg myFile.mb

maya2egg-a chan -cn torso -o torso-walk.egg myFile.mb

Notethat I use the -cn option to give the legs and torso pieces

differentcharacter names. It helps out Panda to know which

animationsare intended to be played with which models, and the

charactername serves this purpose–this way I can now just type:

pviewlegs-model.egg legs-walk.egg torso-model.egg torso-walk.eggPanda willbind up the

appropriateanimations to their associated

modelsautomatically, and I should see my character walking

normally. We could skip straight to step (5) now, but the

characterisn’t stacked up yet, and he’s only sticking together

nowbecause we’re playing the walk animation on both parts at the

sametime–if we want to play different animations on different

parts,we have to stack them.

(2)Expose the hip joint on the legs:

egg-optchar-d opt -expose hip_joint legs-model.egg legs-walk.egg

(3)Strip out the hip joint animation from the torso and egg-optchar

itto remove the leg joints:

egg-topstrip-d strip -t hip_joint torso-model.egg torso-walk.egg

egg-optchar-d opt strip/torso-model.egg strip/torso-walk.egg

(4)Bamify everything.

egg2bam-o legs-model.bam opt/legs-model.egg

egg2bam-o legs-walk.bam opt/legs-walk.egg

egg2bam-o torso-model.bam opt/torso-model.egg

egg2bam-o torso-walk.bam opt/torso-walk.egg

(5)Create a multipart character in Panda. This means loading up the

torsomodel and parenting it, in toto, to the hip joint of the

legs. But the Actor interface handles this for you:

fromdirect.actorimportActor

a=Actor.Actor(

76 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

#part dictionary

{‘torso’:’torso-model.bam’,

‘legs’:’legs-model.bam’,

},

#anim dictionary

{‘torso’:{‘walk’:’torso-walk.bam’},

‘legs’:{‘walk’:’legs-walk.bam’},

})

#Tell the Actor how to stack the pieces.

a.attach(‘torso’,’legs’,’hip_joint’)

(6)You can now play animations on the whole actor, or on only part ofit:

a.loop(‘walk’)

a.stop()

a.loop(‘walk’,partName=’legs’)

3.10 MULTIGENMODEL FLAGS

Thisdocument describes the different kinds of model flags one can placein

thecomment field of MultiGen group beads. The general format for amodel

flagis:

{ {value} }

Themost up-to-date version of this document can be found in:

$PANDA/src/doc/howto.MultiGenModelFlags

QUICKREF

FLAG DESCRIPTION

{ {1} } Handle to show/hide, color, etc.a chunk

{ {1} } Handle to move, rotate, scale achunk

{ {barrier} } Invisible collision surface

{ {trigger} } Invisible trigger polygon

{ {floor} } Collides with vertical ray

(usedto specify avatar height and zone)

{ {sphere} } Invisible spherecollision surface

{ {trigger-sphere} } Invisible spherecollision surface

3.10. MULTIGENMODEL FLAGS 77

Panda3DdevManual Documentation, Release 0.0.1

{ {camera-collide} } Invisiblecollision surface for camera

{ {camera-collide-sphere} } Invisiblecollision surface for camera

{ {camera-barrier} } Invisible collisionsurface for camera and colliders

{ {camera-barrier-sphere} } Invisible spherecollision surface for camera and colliders

{ {backstage} } Modeling reference object

{ {1} } Decal the node below to me

(likea window on a wall)

{ fps { # } } Set rate of animation for apfSequence

DETAILS

Theplayer uses several different types of model flags: HANDLES,BEHAVIORS,

andPROPERTIES. The following sections give examples of some of the most

commonflag/value pairs and describes what they are used for.

3.10.1 HANDLES

Theseflags give the programmers handles which they can use to

show/hide,move around, control the texture, etc. of selected segments

(chunks)of the model. The handle is the name of the object bead in

whichone places the flag (so names like red-hut are more useful than

nameslike o34).

{ {1} }

Usedto show/hide, change the color, or change the collision properties

ofa chunk.

{ {1} }

Usedto move, rotate, or scale a chunk of the model. Also can be used

(likethe flag) to show/hide, change the color, and changethe

collisionproperties of a chunk.

3.10.2 BEHAVIORS

Theseflags are used to control collision properties, visibility and

behaviorof selected chunks. An “X” in the associated column means:

VISIBLE the object can be seen (see NOTE below for invisible objects)

SOLID avatars can not pass through the object

EVENT an event is thrown whenever an avatar collides with the object

78 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

VISIBLE SOLID EVENT

——- ——- ——-

{ {barrier} } X X

{ {trigger} } X

{ {backstage} }

Descriptions

- BARRIERS are invisible objects that block the avatars. Use these

tofunnel avatars through doorways, keep them from falling off

bridges,and so on.

- TRIGGERS can be used to signal when avatars have entered a certain

areaof the model. One could place a trigger polygon in front of

adoor, for example, so the player can tell when the avatar has

movedthrough the door.

- BACKSTAGE objects are not translated over to the player. Modelers

shoulduse this flag on reference objects that they include to help

inthe modeling task (such as scale references)

IMPORTANTNOTE

Itis not necessary, and in fact some cases it will actually cause

problemsif you set the transparency value for the invisible objects

above(barrier, trigger, eye-trigger) to 0.0. These objects will

automaticallybe invisible in the player if they have been flagged as

oneof these three invisible types. If you wish to make it clear in

MultiGenthat these objects are invisible objects, set the transparency

valueto some intermediate level (0.5). Again, do not set the

transparencyvalue to 0.0.

3.10.3 PROPERTIES

Theseare used to control properties of selected chunks.

{ fps { frame-rate } }

Thisspecifies the rate of animation for a pfSequence node

NOTES

1)Combinations

MultipleFlag/value pairs can be combined within an single field.

Forexample:

3.10. MULTIGENMODEL FLAGS 79

Panda3DdevManual Documentation, Release 0.0.1

{ {1}

{barrier} }

Generally,the flag can be combined with most other flags

(exceptDCS). Each bead, however, can only have one flag.

2)Newlines, spaces, and case (usually) do not matter. This above entry

couldalso be written as:

{{1}{barrier}}

3)Where to place the flags

Allmodel flags except flags are generally placed in the

topmostgroup bead of the geometry to which the flag applies.

GROUP <- place flags here, except

|

-————————–

| | |

OBJECT1 OBJECT2 OBJECT3

| | |

polygons polygons polygons <- place flag here

Flagscan also be placed in object beads, though for consistency sake

itsbetter to place them in the group beads.

4)Flags at different levels in the model

Flagsin lower level beads generally override flags in upper level

beads.

5)For more detailed information see $PANDA/src/doc/eggSyntax.txt.

3.11 Multi-Texturing in Maya

A good rule of thumb is to create yourMulti-Layered shader first to get an idea of what kind of blendmodeyou want.
You can do that by using Maya’s kLayeredShader.

Following blendmode from Maya is supporteddirectly in Panda.

“Multiply” => “Modulate”

“Over” => “Decal”

“Add” => “Add”

More blendmodes will be supported very soon. Youshould be able to pview this change if you restart Maya from
the”runmaya.bat” (or however you restart maya).

Once the shader is setup, you should create thetexture coordinates or uvsets for your multitexture. Make sure, theuvset
name matches the shader names that you made

in the kLayeredShader. For Example, if the twoshaders (not the texure file name) in your kLayeredShader are
called”base” and “top”, then your geometry (that willhave

80 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

the layeresShader) will have two uvsets called”base” and “top”.

After this you will link the uvsets to theappropriate shaders.

A reminder note: by default the alpha channel ofthe texture on the bottom is dropped in the conversion. If you wantto
retain the alpha channel of your texture,

please make a connection to the alpha channel inMaya when setting up the shader (alpha on the layerShader will
behighlighted in yellow).

3.12 Config

This document describes the use of the Panda’sConfig.prc

configuration files and the runtime subsystem thatextracts values

from these files, defined in dtool/src/prc.

The Config.prc files are used for runtimeconfiguration only, and are

not related to the Config.pp files, which controlcompile-time

configuration. If you are looking fordocumentation on the Config.pp

files, see howto.use_ppremake.txt, andppremake-*.txt, in this

directory.

3.12.1 Using the prc files

In its default mode, when Panda starts up it willsearch in the

install/etc directory (or in the directory namedby the environment

variable PRC_DIR if it is set) for all files named*.prc (that is, any

files with an extension of “prc”) andread each of them for runtime

configuration. (It is possible to change thisdefault behavior; see

COMPILE-TIME OPTIONS FOR FINDING PRC FILES,below.)

All of the prc files are loaded in alphabeticalorder, so that the

files that have alphabetically later names areloaded last. Since

variables defined in an later file may shadowvariables defined in an

earlier file, this means that filenames towardsthe end of the

alphabet have the most precedence.

Panda by default installs a handful of system prcfiles into the

install/etc directory. These files have namesbeginning with digits,

like 20_panda.prc and 40_direct.prc, so that theywill be loaded in a

particular order. If you create your own prc filein this directory,

we recommend that you begin its filename withletters, so that it will

sort to the bottom of the list and will thereforeoverride any of the

default variables defined in the system prc files.

3.12. Config 81

Panda3DdevManual Documentation, Release 0.0.1

Within a particular prc file, you may define anynumber of

configuration variables and their associatedvalue. Each definition

must appear one per line, with at least one spaceseparating the

variable and itsdefinition, e.g.:

load-display pandagl

This specifies that the variable “load-display”should have the value

“pandagl”.

Comments may also appear in the file; they areintroduced by a leading

hash mark (#). A comment may be on a line byitself, or it may be on

the same line following a variable definition; ifit is on the same

line as a variable definition, the hash mark mustbe preceded by at

least one space to separate it from thedefinition.

The legal values that you may specify for anyparticular variable

depends on the variable. The complete list ofavailable variables and

the valid values for each is not documented here(a list of the most

commonly modified variables appears in anotherdocument, but also see

cvMgr.listVariables(), below).

Many variables accept any string value (such asload-display, above);

many others, such as aspect-ratio, expect anumeric value.

A large number of variables expect a simpleboolean true/false value.

You may observe the Python convention of using 0vs. 1 to represent

false vs. true; or you may literally type “false”or “true”, or just

“f” and “t”. For historicalreasons, Panda also recognizes the Scheme

convention of “#f” and “#t”.

Most variables only accept one value at a time. If there are two

different definitions for a given variable in thesame file, the

topmost definition applies. If there are twodifferent definitions in

two different files, the definition given in thefile loaded later

applies.

However, some variables accept multiple values. This is particularly

common for variables that name search directories,like model-path.

In the case of this kind of variable, alldefinitions given for the

variable are taken together; it is possible toextend the definition

by adding another prc file, but you cannot removeany value defined in

a previously-loaded prc file.

82 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

3.12.2 Defining config variables

New config variables may be defined on-the-fly ineither C++ or Python

code. To do this, create an instance of one ofthe following classes:

ConfigVariableString

ConfigVariableBool

ConfigVariableInt

ConfigVariableDouble

ConfigVariableFilename

ConfigVariableEnum (C++ only)

ConfigVariableList

ConfigVariableSearchPath

These each define a config variable of thecorresponding type. For

instance, a ConfigVariableInt defines a variablewhose value must

always be an integer value. The most commonvariable types are the

top four, which are self-explanatory; theremaining four are special

types:

ConfigVariableFilename -

This is a convenience class which behaves verymuch like a

ConfigVariableString, except that itautomatically converts from

OS-specific filenames that may be given in theprc file to

Panda-specific filenames, and it alsoautomatically expands

environment variable references, so that theuser may name a file

based on the value of an environment variable

(e.g. $PANDAMODELS/file.egg).

ConfigVariableEnum -

This is a special template class available inC++ only. It provides

a convenient way to define a variable that mayaccept any of a

handful of different values, each of which isdefined by a keyword.

For instance, the text-encoding variable may beset to any of

“iso8859”, “utf8”, or”unicode”, which correspond to

TextEncoder::E_iso8859, E_utf8, and E_unicode,respectively.

The ConfigVariableEnum class relies on a havingsensible pair of

functionsdefined for operator << (ostream) and operator >>(istream)

for the enumerated type. These two functionsshould

reverse each other, so that the output operatorgenerates a keyword

for each value of the enumerated type, and theinput operator

3.12. Config 83

Panda3DdevManual Documentation, Release 0.0.1

recognizes each of the keywords generated by theoutput operator.

This is a template class. It is templated onits enumerated type,

e.g. ConfigVariableEnum<TextEncoder::Encoding>.

ConfigVariableList -

This class defines a special config variablethat records all of its

definitions appearing in all prc files andretrieves them as a list,

instead of a standard config variable thatreturns only the topmost

definition. (See “some variables acceptmultiple values”, above.)

Unlike the other kinds of config variables, aConfigVariableList is

read-only; it can be modified only by loadingadditional prc files,

rather than directly setting its value. Also,its constructor lacks

a default_value parameter, since there is nodefault value (if the

variable is not defined in any prc file, itsimply returns an empty

list).

ConfigVariableSearchPath -

This class is very similar to aConfigVariableList, above, except

that it is intended specifically to representthe multiple

directories of a search path. In general, a

ConfigVariableSearchPath variable can be used inplace of a

DSearchPath variable.

Unlike ConfigVariableList, instances of thisvariable can be locally

modified by appending or prepending additionaldirectory names.

In general, each of the constructors to the aboveclasses accepts the

following parameters:

(name, default_value, description = “”,flags = 0)

The default_value parameter should be of the sametype as the variable

itself; for instance, the default_value for aConfigVariableBool must

be either true or false. The ConfigVariableListand ConfigVariableSearchPath constructors do not have a default_value

parameter.

The description should be a sentence or twodescribing the purpose of

the variable and the effects of setting it. Itwill be reported with

variable.getDescription() orConfigVariableManager.listVariables();

see QUERYING CONFIG VARIABLES, below.

The flags variable is usually set to 0, but it maybe an integer trust

level and/or the union of any of the values in theenumerated type

ConfigFlags::VariableFlags. For the most part,this is used to

84 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

restrict the variable from being set by unsignedprc files. See

SIGNED PRC FILES, below.

Once you have created a config variable of theappropriate type, you

may generally treat it directly as a simplevariable of that type.

This works in both C++ and in Python. Forinstance, you may write

code such as this:

ConfigVariableInt foo_level(“foo-level”,-1, “The level of foo”);

if (foo_level < 0) {

cerr << “You didn’t specify a validfoo_level!\n”;

} else {

// Four snarfs for every foo.

int snarf_level = 4 * foo_level;

}

In rare cases, you may find that the implicittypecast operators

aren’t resolved properly by the compiler; if thishappens, you can use

variable.get_value() to retrieve the variable’svalue explicitly.

3.12.3 Directly assigning config variables

In general, config variables can be directlyassigned values

appropriate to their type, as if they wereordinary variables. In

C++, the assignment operator is overloaded toperform this function,

e.g.:

foo_level = 5;

In Python, this syntax is not possible–theassignment operator in

Python completely replaces the value of theassigned symbol and cannot

be overloaded. So the above statement in Pythonwould replace

foo_level with an actual integer of the value 5. In many cases, this

is close enough to what you intended anyway, butif you want to keep

the original functionality of the config variable(e.g. so you can

restore it to its original value later), you needto use the

set_value() method instead, like this:

fooLevel.setValue(5)

When you assign a variable locally, the newdefinition shadows all prc

files that have been read or will ever be read,until you clear your

definition. To restore a variable to its originalvalue as defined by

the topmost prc file, use clear_local_value():

3.12. Config 85

Panda3DdevManual Documentation, Release 0.0.1

fooLevel.clearLocalValue()

This interface for assigning config variables isprimarily intended

for the convenience of developing an applicationinteractively; it is

sometimes useful to change the value of a variableon the fly.

3.12.4 Querying config variables

There are several mechanisms for finding out thevalues of individual

config variables, as well as for finding thecomplete list of

available config variables.

In particular, one easy way to query an existingconfig variable’s

value is simply to create a new instance of thatvariable, e.g.:

print ConfigVariableInt(“foo-level”)

The default value and comment are optional ifanother instance of the

same config variable has previously been created,supplying these

parameters. However, it is an error if noinstance of a particular

config variable specifies a default value. It isalso an error (but

it is treated as a warning) if two differentinstances of a variable

specify different default values.

(Note that, although it is convenient to create anew instance of the

variable in order to query or modify its valueinteractively, we

recommend that all the references to a particularvariable in code

should use the same instance wherever possible. This minimizes the

potential confusion about which instance shoulddefine the variable’s

default value and/or description, and reduceschance of conflicts

should two such instances differ.)

If you don’t know the type of the variable, youcan also simply create

an instance of the generic ConfigVariable class,for the purpose of

querying an existing variable only (you should notdefine a new

variable using the generic class).

To find out more detail about a variable and itsvalue, use the ls()

method in Python (or the write() method in C++),e.g.:

ConfigVariable(“foo-level”).ls()

In addition to the variable’s current and defaultvalues, this also

prints a list of all of the prc files thatcontributed to the value of

the variable, as well as the description providedfor the variable.

To get a list of all known config variables, usethe methods on

86 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

ConfigVariableManager. In C++, you can get apointer this object via

ConfigVariableManager::get_global_ptr(); inPython, use the cvMgr

builtin, created by ShowBase.py.

print cvMgr

Lists all of the variables in active use: allof the variables

whose value has been set by one or more prcfiles, along with the

name of the prc file that defines that value.

cvMgr.listVariables()

Lists all of the variables currently known tothe config system;

that is, all variables for which aConfigVariable instance has

been created at runtime, whether or not itsvalue has been changed

from the default. This may omit variablesdefined in some unused

subsystem (like pandaegg, for instance), andit will omit

variables defined by Python code which hasn’tyet been executed

(e.g. variables within defined with a functionthat hasn’t yet been called).

This will also omit variables deemed to be”dynamic” variables,

for instance all of the notify-level-*variables, and variables

such as pstats-active-*. These are omittedsimply to keep the

list of variable names manageable, since thelist of dynamic

variable names tends to be very large. Use

cvMgr.listDynamicVariables() if you want tosee these variable

names.

cvMgr.listUnusedVariables()

Lists all of the variables that have beendefined by some prc

file, but which are not known to the configsystem (no

ConfigVariable instance has yet been createdfor this variable).

These variables may represent misspellings ortypos in your prc

file, or they may be old variables which areno longer used in the

system. However, they may also be legitimatevariables for some

subsystem or application which simply has notbeen loaded; there

is no way for Panda to make this distinction.

3.12.5 Re-reading prc files

If you modify a prc file at some point after Pandahas started, Panda

will not automatically know that it needs toreload its config files

and will not therefore automatically recognizeyour change. However,

3.12. Config 87

Panda3DdevManual Documentation, Release 0.0.1

you can force this to happen by making thefollowing call:

ConfigPageManager::get_global_ptr()->reload_implicit_pages()

Or, in Python:

cpMgr.reloadImplicitPages()

This will tell Panda to re-read all of the prcfiles it found

automatically at startup and update the variables’values accordingly.

3.12.6 Runtime prc file management

In addition to the prc files that are found andloaded automatically by Panda at startup, you can load files up atruntime
as needed. The

functions to manage this are defined inload_prc_file.h:

ConfigPage *page = load_prc_file(“myPage.prc”)

. . .

unload_prc_file(page);

(The above shows the C++ syntax; the correspondingPython code is

similar, but of course the functions are namedloadPrcFile() and

unloadPrcFile().)

That is to say, you can call load_prc_file() toload up a new prc file

at any time. Each file you load is added to aLIFO stack of prc

files. If a variable is defined in more than oneprc file, the

topmost file on the stack (i.e. the one mostrecently loaded) is the

one that defines the variable’s value.

You can call unload_prc_file() at any time tounload a file that you

have previously loaded. This removes the filefrom the stack and

allows any variables it modified to return totheir previous value.

The single parameter to unload_prc_file() shouldbe the pointer that

was returned from the corresponding call toload_prc_file(). Once you

have called unload_prc_file(), the pointer isinvalid and should no

longer be used. It is an error to callunload_prc_file() twice on the

same pointer.

The filename passed to load_prc_file() may referto any file that is

on the standard prc file search path (e.g.$PRC_DIR), as well as on

the model-path. It may be a physical file ondisk, or a subfile of a

multifile (and mounted via Panda’s virtual filesystem).

If your prc file is stored as an in-memory stringinstead of as a disk

file (for instance, maybe you just built it up),you can use the

88 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

load_prc_file_data() method to load the prc filefrom the string data.

The first parameter is an arbitrary name to assignto your in-memory

prc file; supply a filename if you have one, oruse some other name

that is meaningful to you.

You can see the complete list of prc files thathave been loaded into

the config system at any given time, includingfiles loaded explicitly

via load_prc_file(), as well as files found in thestandard prc file

search path and loaded implicitly at startup. Simply use

ConfigPageManager::write(), e.g. in Python:

print cpMgr

3.12.7 Compile-time options for finding prc files

As described above in USING THE PRC FILES, Panda’s default startup

behavior is to load all files named *.prc in the directory named by

the environment variable PRC_DIR. This isactually a bit of an

oversimplification. The complete default behavioris as follows:

(1) If PRC_PATH is set, separate it into a list ofdirectories and

make a search path out of it.

(2) If PRC_DIR is set, prepend it onto the searchpath defined by

PRC_PATH, above.

(3) If neither was set, put the compiled-in valuefor DEFAULT_PRC_DIR,

which is usually the install/etc directory,alone on the search

path.

Steps (1), (2), and (3) define what isreferred to in this

document as “the standard prc searchpath”. You can query this

search path via cpMgr.getSearchPath().

(4) Look for all files named *.prc on eachdirectory of the resulting

search path, and load them up in reversesearch path order, and

within each directory, in forward alphabeticalorder. This means

that directories listed first on the searchpath override

directories listed later, and within adirectory, files

alphabetically later override filesalphabetically earlier.

This describes the default behavior, without anymodifications to

Config.pp. If you wish, you can further fine-tuneeach of the above

steps by defining various Config.pp variables atcompile time. The

following Config.pp variables may be defined:

3.12. Config 89

Panda3DdevManual Documentation, Release 0.0.1

#define PRC_PATH_ENVVARS PRC_PATH

#define PRC_DIR_ENVVARS PRC_DIR

These name the environment variable(s) to useinstead of PRC_PATH

and PRC_DIR. In either case, you may namemultiple environment

variables separated by a space; each variable isconsulted one at a

time, in the order named, and the results areconcatenated.

For instance, if you put the following line inyour Config.pp file:

#define PRC_PATH_ENVVARS CFG_PATH ETC_PATH

Then instead of checking $PRC_PATH in step (1),above, Panda will

first check $CFG_PATH, and then $ETC_PATH, andthe final search path

will be the concatenation of both.

You can also define either or both ofPRC_PATH_ENVVARS or

PRC_DIR_ENVVARS to the empty string; this willdisable runtime

checking of environment variables, and force allprc files to be

loaded from the directory named byDEFAULT_PRC_DIR.

#define PRC_PATTERNS *.prc

This describes the filename patterns that areused to identify prc

files in each directory in step(4), above. Thedefault is *.prc,

but you can change this if you have any reasonto. You can specify

multiple filename patterns separated by a space. For instance, if

you still have some config files named”Configrc”, following an

older Panda convention, you can define thefollowing in your

Config.pp file:

#define PRC_PATTERNS *.prc Configrc

This will cause Panda to recognize files named”Configrc”, as well

as any file ending in the extension prc, as alegitimate prc file.

#define DEFAULT_PRC_DIR $[INSTALL_DIR]/etc

This is the directory from which to load prcfiles if all of the

variables named by PRC_PATH_ENVVARS andPRC_DIR_ENVVARS are

undefined or empty.

#define DEFAULT_PATHSEP

This doesn’t strictly apply to the configsystem, since it globally

affects search paths throughout Panda. Thisspecifies the character

or characters used to separate the differentdirectory names of a

search path, for instance $PRC_PATH. Thedefault character is ‘:’

on Unix, and ‘;’ on Windows. If you specifymultiple characters,

90 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

any of them may be used as a separator.

3.12.8 Executable prc files

One esoteric feature of Panda’s config system isthe ability to

automatically execute a standalone program whichgenerates a prc file

as output.

This feature is not enabled by default. To enableit, you must define

the Config.pp variable PRC_EXECUTABLE_PATTERNSbefore you build Panda.

This variable is similar to PRC_PATTERNS,described above, except it

names file names which, when found along thestandard prc search path,

should be taken to be the name of an executableprogram. Panda will

execute each of these programs, in the appropriateorder according to

alphabetical sorting with the regular prc files,and whatever the

program writes to standard output is taken to bethe contents of a prc

file.

By default the contents of the environmentvariable

$PRC_EXECUTABLE_ARGS are passed as arguments tothe executable

program. You can change this to a differentenvironment variable by

redefining PRC_EXECUTABLE_ARGS_ENVVAR in yourConfig.pp (or prevent

the passing of arguments by defining this to theempty string).

3.12.9 Signed prc files

Another esoteric feature of Panda’s config systemis the ability to

restrict certain config variables to modificationonly by a prc file

that has been provided by an authorized source. This is primarily

useful when Panda is to be used for deployment ofapplications (games,

etc.) to a client; it has little utility in afully trusted

environment.

When this feature is enabled, you can specify anoptional trust level

to each ConfigVariable constructor. The trustlevel is an integer

value, greater than 0 (and <=ConfigFlags::F_trust_level_mask), which

should be or’ed in with the flags parameter.

A number of random keys must be generated ahead oftime and compiled

into Panda; there must be a different key for eachdifferent trust

level. Each prc file can then optionally besigned by exactly one of

the available keys. When a prc file has beensigned by a recognized

3.12. Config 91

Panda3DdevManual Documentation, Release 0.0.1

key, Panda assigns the corresponding trust levelto that prc file. An

unsigned prc file has an implicit trust level of0.

If a signed prc file is modified in any way afterit has been signed,

its signature will no longer match the contents ofthe file and its

trust level drops to 0. The newly-modified filemust be signed again

to restore its trust level.

When a ConfigVariable is constructed with anonzero trust level, that

variable’s value may then not be set by any prcfile with a trust

level lower that the variable’s trust level. If aprc file with an

insufficient trust level attempts to modify thevariable, the new

value is ignored, and the value from the previoustrusted prc file (or

the variable’s default value) is retained.

The default trust level for a ConfigVariable is 0,which means the

variable can be set by any prc file, signed orunsigned. To set any

nonzero trust level, pass the integer trust levelvalue as the flags

parameter to the ConfigVariable constructor. Toexplicitly specify a

trust level of 0, pass ConfigFlags::F_open.

To specify a ConfigVariable that cannot be set byany prc files at

all, regardless of trust level, useConfigFlags::F_closed.

This feature is not enabled by default. It issomewhat complicated to

enable this feature, because doing so requresgenerating one or more

private/public key pairs, and compiling the publickeys into the

low-level Panda system so that it can recognizesigned prc files when

they are provided, and compiling the private keysinto standalone

executables, one for each private key, that can beused to officially

sign approved prc files. This initial setuptherefore requires a bit

of back-and-forth building and rebuilding in thedtool directory.

To enable this feature, follow the followingprocedure.

(1) Decide how many different trust levels yourequire. You can have

as many as you want, but most applicationswill require only one

trust level, or possibly two. The rareapplication will require

three or more. If you decide to use multipletrust levels, you

can make a distinction between configvariables that are somewhat

sensitive and those that are highly sensitive.

(2) Obtain and install the OpenSSL library, if itis not already

installed (http://www.openssl.org). Adjustyour Config.pp file as

92 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

necessary to point to the installed OpenSSLheaders and libraries

(in particular, define SSL_IPATH andSSL_LIBS), and then ppremake

and make install your dtool tree. It is notnecessary to build

the panda tree or any subsequent trees yet.

(3) Set up a directory to hold the generatedpublic keys. The

contents of this directory must be accessibleto anyone building

Panda for your application; it also must havea lifetime at least

as long as the lifetime of your application. It probably makes

sense to make this directory part of yourapplication’s source

tree. The contents of this directory will notbe particularly

sensitive and need not be kept any more secretthan the rest of

your application’s source code.

(4) Set up a directory in a secure place to holdthe generated private

keys. The contents of this directory shouldbe regarded as

somewhat sensitive, and should not beavailable to more than a

manageable number of developers. It need notbe accessible to

people building Panda. However, thisdirectory should have a

lifetime as long as the lifetime of yourapplication. Depending

on your environment, it may or may not makesense to make this

directory a part of your application’s sourcetree; it can be the

same directory as that chosen for (3), above.

(5) Run the program make-prc-key. This programgenerates the public

and private key pairs for each of your trustlevels. The

following is an example:

make-prc-key -a /keys.cxx -b/sign#.cxx 1 2

The output of make-prc-key will be compilableC++ source code.

The first parameter, -a, specifies the name ofthe public key

output file. This file will contain all of thepublic keys for

the different trust levels, and will becomepart of the libdtool

library. It is not particularly sensitive,and must be accessible

to anyone who will be compiling dtool.

The second parameter, -b, specifies acollection of output files,

one for each trust level. Each file can becompiled as a

standalone program (that links with libdtool);the resulting

program can then be used to sign any prc fileswith the

corresponding trust level. The hash character’#’ appearing in

3.12. Config 93

Panda3DdevManual Documentation, Release 0.0.1

the filename will be filled in with thenumeric trust level.

The remaining arguments to make-prc-key arethe list of trust

levels to generate key pairs for. In theexample above, we are

generating two key pairs, for trust level 1and for trust level 2.

The program will prompt you to enter a passphrase for each

private key. This pass phrase is used toencrypt the private key

as written into the output file, to reduce thesensitivity of the

prc signing program (and its source code). The user of the

signing program must re-enter this pass phrasein order to sign a

prc file. You may specify a different passphrase for each trust

level, or you may use the -p “passphrase” command-line option to

provide the same pass phrase for all trustlevels. If you do not

want to use the pass phrase feature at all,use -p “”, and keep

the generated programs in a safe place.

(6) Modify your Config.pp file (for yourself, andfor anyone else who

will be building dtool for your application)to add the following

line:

#define PRC_PUBLIC_KEYS_FILENAME/keys.cxx

Where /keys.cxx is the filenamed by -a, above.

Consider whether you want to enforce the trustlevel in the

development environment. The default is torespect the trust

level only when Panda is compiled for arelease build, i.e. when

OPTIMIZE is set to 4. You can redefinePRC_RESPECT_TRUST_LEVEL if

you want to change this default behavior.

Re-run ppremake and then make install indtool.

(7) Set up a Sources.pp file in your private keydirectory to compile

the files named by -b against dtool. Itshould contain an entry

something like these for each trust level:

#begin bin_target

#define OTHER_LIBS dtool

#define USE_PACKAGES ssl

#define TARGET sign1

#define SOURCES sign1.cxx

#end bin_target

#begin bin_target

#define OTHER_LIBS dtool

94 Chapter 3. File formats, specifications and similar

Panda3DdevManual Documentation, Release 0.0.1

#define USE_PACKAGES ssl

#define TARGET sign2

#define SOURCES sign2.cxx

#end bin_target

(8) If your private key directory is not a part ofyour application

source hierarchy (or your application does notuse ppremake),

create a Package.pp in the same directory tomark the root of a

ppremake source tree. You can simply copy thePackage.pp file

from panda/Package.pp. You do not need to dothis if your private

key directory is already part of appremake-controlled source

hierarchy.

(9) Run ppremake and then make install in theprivate key directory.

This will generate the programs sign1 andsign2 (or whatever you

have named them). Distribute these programsto the appropriate

people who have need to sign prc files, andtell them the pass

phrases that you used to generate them.

(10) Build the rest of the Panda trees normally.

Advanced tip: if you follow the directions above,your sign1 and sign2

programs will require libdtool.dll at runtime, andmay need to be

recompiled from time to time if you get a newversion of dtool. To

avoid this, you can link these programsstatically, so that they are

completely standalone. This requires one moreback-and-forth

rebuilding of dtool:

(a) Put the following line in your Config.pp file:

#define LINK_ALL_STATIC 1

(b) Run ppremake and make clean install in dtool. Note that you must

make clean. This will generate a staticversion of libdtool.lib.

(c) Run ppremake and make clean install in yourprivate key directory,

to recompile the sign programs against the newstatic libdtool.lib.

(d) Remove (or comment out) the LINK_ALL_STATICline in your Config.pp

file.

(e) Run ppremake and make clean install in dtoolto restore the normal

dynamic library, so that future builds ofpanda and the rest of

your application will use the dynamiclibdtool.dll properly.

3.12. Config 95

Panda3DdevManual Documentation, Release 0.0.1

96 Chapter 3. File formats, specifications and similar

CHAPTER 4

Miscellaneous and F.A.Q.

lorem ipsum

97

Panda3DdevManual Documentation, Release 0.0.1

98 Chapter 4. Miscellaneous and F.A.Q.

CHAPTER 5

Appendix

lorem ipsum

99

	Preface
	Source tree
	contrib
	direct
	dmodels
	dtool
	makepanda
	models
	panda
	android
	androiddisplay
	audio
	audiotraits
	awesomium
	bullet
	cftalk
	chan
	char
	cocoadisplay
	collada
	collide
	configfiles
	cull
	device
	dgraph
	display
	distort
	doc
	downloader
	downloadertools
	dxgsg9
	dxml
	egg
	egg2pg
	egldisplay
	event
	express
	ffmpeg
	framework
	gles2gsg
	glesgsg
	glgsg
	glstuff
	glxdisplay
	gobj
	grutil
	gsgbase
	iphone
	iphonedisplay
	linmath
	mathutil
	movies
	nativenet
	net
	ode
	osxdisplay
	pandabase
	parametrics
	particlesystem
	pgraph
	pgraphnodes
	pgui
	physics
	physx
	pipeline
	pnmimage
	pnmimagetypes
	pnmtext
	pstatclient
	putil
	recorder
	rocket
	skel
	speedtree
	testbed
	text
	tform
	tinydisplay
	vision
	vrpn
	wgldisplay
	windisplay
	x11display

	pandatool
	samples

	File formats, specifications and similar
	The GraphicsEngine
	GraphicsPipe
	GraphicsWindow and GraphicsBuffer
	GraphicsStateGuardian
	Renderinga frame
	Using a GraphicsEngine to create windows and buffers
	Sharinggraphics contexts
	Closingwindows

	ppython
	Panda Audio Documenation
	AudioManagerand AudioSound
	ExampleUsage

	Codingstyle
	COLLISIONFLAGS
	eggpalettize
	HOWTO USE EGG_PALETTIZE
	GROUPINGEGG FILES
	CONTROLLINGTEXTURE PARAMETERS
	RUNNINGEGG-PALETTIZE
	WHENTHINGS GO WRONG

	THEPHILOSOPHY OF EGG FILES
	GENERALEGG SYNTAX
	LOCALINFORMATION ENTRIES
	GLOBALINFORMATION ENTRIES
	GEOMETRYENTRIES
	PARAMETRICDESCRIPTION ENTRIES
	MORPHDESCRIPTION ENTRIES
	GROUPINGENTRIES
	GROUPBINARY ATTRIBUTES
	GROUPSCALARS
	OTHERGROUP ATTRIBUTES
	name { type [flags] }
	{type}
	MISCELLANEOUS
	ANIMATIONSTRUCTURE

	HOWTO CONTROL RENDER ORDER
	CULLBINS

	Howto make multipart actor
	MULTIPARTACTORS vs. HALF-BODY ANIMATION
	BROADOVERVIEW
	MOREDETAILS
	NUTS AND BOLTS

	MULTIGENMODEL FLAGS
	HANDLES
	BEHAVIORS
	PROPERTIES

	Multi-Texturing in Maya
	Config
	Using the prc files
	Defining config variables
	Directly assigning config variables
	Querying config variables
	Re-reading prc files
	Runtime prc file management
	Compile-time options for finding prc files
	Executable prc files
	Signed prc files

	Miscellaneous and F.A.Q.
	Appendix

