

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pambox documentation

pambox

pambox [https://github.com/achabotl/pambox] is a Python package to
facilitate the development of auditory models, with a focus on speech
intelligibility prediction models.

The Grand Idea is for pambox to be a repository of published auditory models,
as well as a simple and powerful tool for developing auditory models.
Components should be reusable and easy to modify.
pambox uses a standard interface for all speech intelligibility prediction
models in the package, which should simplify comparisons across models.

In case Python is not your thing and you prefer Matlab, the Auditory Modeling
Toolbox [http://amtoolbox.sourceforge.net] is an excellent alternative.

Installing

Right now, pambox is only available through Github. It should be available
via pip soon. To install pambox from source:

git clone https://github.com/achabotl/pambox.git
cd pambox
python setup.py install

You’ll also need all the requirements in requirements.txt [https://github.com/achabotl/pambox/blob/develop/requirements.txt]. If you use conda [https://store.continuum.io/cshop/anaconda/], you can simply run the
following to install all the dependencies:

conda install --file requirements.txt

Structure of the toolbox

The structure of the toolbox is inspired by the auditory system. The classes
and functions are split between “peripheral” and “central” parts. The
“peripheral” part is directly accessible through an inner,
a middle, and an outer module.
The central part is more general and contains the
modules and functions for central processes, without much extra separation
for now.

The speech module contains speech intelligibility models and
various functions and classes to facilitate speech intelligibility prediction
experiments.

The utils module contains functions for manipulating
signals, such as setting levels, or padding signals, that are not directly
auditory processes.

The distort module contains distortions and processes that
can be applied to signals. Most of them are used in speech intelligibility
experiments.

The audio module is a thin wrapper around pyaudio [http://people.csail.mit.edu/hubert/pyaudio/] that simplifies the playback of
numpy arrays, which is often useful for debugging.

Conventions

In the spirit of Python [https://wiki.python.org/moin/TOOWTDI], pambox has
a few conventions about “the way to do things”.

	Single channels signals always have the shape (N,), where N is the
length of the signal.

	Multi-channels signals always have the shape (M, N), where M is the
number of channels and N is the signals’ length. This greatly simplifies
looping over channels.

	Filterbanks are classes with names ending in Filterbank and must take
at least the sampling frequency and the center frequencies as
arguments, for example: GeneralFilterbank(fs, center_frequencies=(100,
200), *args, **kgwars). center_frequencies can have a default
value. Filtering is done via a filter method that only takes the
signal to filter and return multi-channel signals, for example:
GeneralFilterbank(fs=44100).filter(x) returns a (M, N) array, where
M can be 1.

	Speech intelligibility models are classes with a predict method. See
Speech Intelligibility Models for more details.

Contents

	Audio
	API

	Inner ear processing
	Filterbanks

	Envelope extraction

	Other functions

	API

	Middle ear processes
	API

	Outer ear processes
	API

	Central auditory processing
	API

	Speech Intelligibility Models and Experiments
	Introduction

	Speech Intelligibility Models

	Speech Materials

	Speech Intelligibility Experiment

	API

	Signal Distortion and Processing
	API

	Utilities
	Signal levels

	Adding signals and adjusting their lengths

	FFT Filtering and general speedups

	API

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pambox documentation

Audio

The audio module provides a single function,
play(). By default, the output is scaled to
prevent clipping and the sampling frequency is 44.1 KHz. Here a simple
example where we play some white noise created with NumPy:

from pambox import audio
import numpy as np
audio.play(np.random.randn(10000))

To play back the signal without normalization, simply set normalize to
False. Be careful here! It might get loud! [https://www.youtube.com/watch?v=Ul6xOdPCsCE]):

audio.play(np.random.randn(10000), normalize=False)

API

audio provides a simple wrapper around pyaudio to simplify
sound playback.

	
pambox.audio.play(x, fs=44100, normalize=True)

	Plays sound.

	Parameters:	x : array_like,

Signal to be played. The shape should be nChannels x Length.

fs : int (optional)

Sampling frequency. The default is 44100 Hz.

normalize : bool (optional)

Normalize the signal such that the maximum (absolute value) is 1 to
prevent clipping. The default is True.

Examples

To playback a numpy array:

>>> from pambox import audio
>>> import numpy as np
>>> audio.play(np.random.randn(10000))

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pambox documentation

Inner ear processing

This module groups properties and processes of the inner ear, namely
peripheral filtering and envelope extraction.

Filterbanks

All filterbanks provide a filter() method that takes only the input signal.
The filterbank’s parameters must be defined when creating the filterbank. For example,
here we create a Gammatone filterbank for a sampling frequency of 44.1 kHz and a sequence
of octave-spaced center frequencies:

>>> import numpy as np
>>> from pambox.inner import GammatoneFilterbank
>>> g = GammatoneFilterbank(44100, [250, 500, 1000, 2000, 4000])
>>> x = np.random.randn(2 * 44100)
>>> y = g.filter(x)
>>> y.shape
(5, 88200)

	GammatoneFilterbank is a gammatone filterbank which uses Malcom Slaney’s implementation.

	RectangularFilterbank performs bandpass filtering of a signal using rectangular filters.

Envelope extraction

	hilbert_envelope() extracts the Hilbert envelope of a
signal.

	lowpass_env_filtering() low-pass filters a signal using
a Butterworth filter.

Other functions

	erb_bandwidth() gives the ERB bandwidth for a given center
frequencies.

API

pambox.inner regroups processes of the inner ear.

	
pambox.inner.erb_bandwidth(fc)

	Bandwitdh of an Equivalent Rectangular Bandwidth (ERB).

	Parameters:	fc : ndarray

Center frequency, or center frequencies, of the filter.

	Returns:	ndarray or float

Equivalent rectangular bandwidth of the filter(s).

	
pambox.inner.hilbert_envelope(signal)

	Calculates the Hilbert envelope of a signal.

	Parameters:	signal : array_like

Signal on which to calculate the hilbert envelope. The calculation
is done along the last axis (i.e. axis=-1).

	Returns:	ndarray

	
pambox.inner.lowpass_env_filtering(x, cutoff=150.0, n=1, fs=22050)

	Low-pass filters a signal using a Butterworth filter.

	Parameters:	x : ndarray

cutoff : float, optional

Cut-off frequency of the low-pass filter, in Hz. The default is 150 Hz.

n : int, optional

Order of the low-pass filter. The default is 1.

fs : float, optional

Sampling frequency of the signal to filter. The default is 22050 Hz.

	Returns:	ndarray

Low-pass filtered signal.

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pambox documentation

Middle ear processes

There’s nothing here right now.

API

pambox.periph.middle regroups processes of the middle ear.

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pambox documentation

Outer ear processes

There’s nothing here right now, but there should be some things to access
HRTF databases pretty soon.

API

pambox.periph.outer regroups processes of the outer ear.

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pambox documentation

Central auditory processing

The central module regroups what is not considered to be part of
the outer, middle, or inner ear. It’s a rather broad concept.

It contains:

	An Equalization–Cancellation (EC) stage, in EC.

	An implementation of the EPSM modulation filterbank in EPSMModulationFilterbank.

	An Ideal Observer, IdealObs, as used in the
Sepsm model.

API

central contains processes performed by the ‘central’ auditory system.

Classes

	EC – An Equalization–Cancellation stage, as used by [wan2014].

	EPSMModulationFilterbank – EPSM modulation filterbank, as used by [jorgensen2011].

	IdealObs – An IdealObserver, as used by [jorgensen2011].

	
class pambox.central.EC(fs, win_len=None, overlap=0.5, sigma_e=0.25, sigma_d=0.000105, padding_windows=10, fast_cancel=True)

	Equalization-Cancellation process used by the STEC model [wan2014].

The equalize method finds the optimal gains and delays that minimizes
the energy of the cancelled signal.

The cancel method uses the gains and delays found by the equalize
method to “cancel” the two signals.

The jitter method applies amplitude and time jitters to the input as a
form of internal noise.

References

	[wan2014]	(1, 2, 3) Wan, R., Durlach, N. I., and Colburn, H. S. (2014).
“Application of a short-time version of the Equalization-Cancellation
model to speech intelligibility experiments with speech maskers”,
The Journal of the Acoustical Society of America, 136(2), 768–776

Examples

>>> ec = EC()
>>> alphas, taus = ec.equalize(left, right, cf)
>>> y = ec.cancel(left, right, alphas, taus)

	
static apply_jitter(x, epsilons, deltas, out=None)

	Apply jitter to a signal

	Parameters:	x : ndarray

Input signal.

epsilons : ndarray of floats

Amplitude jitter coefficients.

deltas : ndarray of ints

Time jitters, they have to be integers because they will be
used as indices.

out : array or None

Array where to write the output. If None, which is the default,
the function returns a new array.

	Returns:	out : ndarray

Jittered signal.

	
cancel(left, right, alpha, tau)

	Cancel left and right signal using gains and delays.

	Parameters:	left, right : array_like

Signals for which to find the optimal parameters. They can be 1D
or 2D. If they are 2D, the signals are cancelled along the last
dimension.

alpha : ndarray

Optimal amplitude cancellation gains.

tau : ndarray

Optimal cancellation delays.

	Returns:	y : ndarray

	
create_jitter(x)

	Create amplitude and time jitter for a signal.

	Parameters:	x : ndarray

Input signal.

	Returns:	alphas : ndarray of floats

Amplitude jitters.

deltas : ndarray of ints

Jitter indices.

	
equalize(left, right, cf)

	Finds the optimal gains and delays that minimize the energy of the
cancelled signals.

	Parameters:	left, right : ndarrays

Signals for which to find the optimal parameters. They can be 1D
or 2D. If they are 2D, the signals are cancelled along the last
dimension.

cf : float or list of floats

Center frequency of the channel at which the equalization takes
place. If the inputs are multi-channel, then cf must be a list of
center frequencies.

	Returns:	alphas : ndarray

Optimal gains. The shape depends on the input signals and on the
win_len and overlap attributes.

taus : ndarrays

Optimal delays in seconds. The shape depends on the input signals
and on the win_len and overlap attributes.

	
jitter(x, out=None)

	Applies amplitude and time jitter to a signal.

	Parameters:	x : array_like

Input signal, will be casted to ‘float’. It can be one or 2
dimensional.

out : None or array_like

Define where to write the jitter signal. Defaults to None,
i.e. creates a new array. Can be used to jitter an array “in
place”.

	Returns:	out : ndarray

Jittered signal.

Notes

The amplitude jitters are taken from a normal Gaussian distribution
with a mean of zero and a standard distribution of sigma_e. The time
jitters are taken from a normal Gaussian distribution with mean zero
and standard distribution sigma_d in seconds. The default jitter
values come from [durlach1963].

References

	[durlach1963]	(1, 2) Durlach, N. I. (1963). “Equalization and
Cancellation Theory of Binaural Masking-Level Differences”, J. Acoust.
Soc. Am., 35(), 1206–1218

	
class pambox.central.EPSMModulationFilterbank(fs, modf, q=1.0, low_pass_order=3.0)

	Implementation of the EPSM modulation filterbank.

	Parameters:	fs : int

Sampling frequency of the signal.

modf : array_like

List of the center frequencies of the modulation filterbank.

q : float

Q-factor of the modulation filters. Defaults to 1.

low_pass_order : float

Order of the low-pass filter. Defaults to 3.

Notes

The envelope power spectrum model (EPSM) filterbank was defined in
[ewert2000] and the implementation was validated against the Matlab
implementation of [jorgensen2011].

References

	[ewert2000]	(1, 2) S. D. Ewert and T. Dau: Characterizing frequency
selectivity for envelope fluctuations.. J. Acoust. Soc. Am. 108
(2000) 1181–1196.

	[jorgensen2011]	(1, 2, 3, 4, 5) S. Jørgensen and T. Dau: Predicting speech
intelligibility based on the signal-to-noise envelope power ratio
after modulation-frequency selective processing. J. Acoust. Soc. Am.
130 (2011) 1475–1487.

Methods

	filter(signal)
	Filters the signal using the modulation filterbank.

	
filter(signal)

	

	Parameters:	signal : ndarray

Temporal envelope of a signal

Returns

——-

tuple of ndarray

Integrated power spectrum at the output of each filter
Filtered time signals.

	
class pambox.central.IdealObs(k=<Mock name='mock.sqrt()' id='140637145424912'>, q=0.5, sigma_s=0.6, m=8000.0)

	Statistical ideal observer.

Converts input values (usually SNRenv) to a percentage.

	Parameters:	k : float, optional

(Default value = sqrt(1.2)

q : float, optional

(Default value = 0.5)

sigma_s : float, optional

(Default value = 0.6)

m : int, optional

Number of words in the vocabulary. (Default value = 8000)

Notes

Implemented as described in [jorgensen2011].

Examples

Converting values to percent correct using the default parameters
of the ideal observer:

>>> from pambox import central
>>> obs = central.IdealObs()
>>> obs.transform((0, 1, 2, 3))

	
fit_obs(values, pcdata, sigma_s=None, m=None, tries=10)

	Finds the parameters of the ideal observer.

Finds the paramaters k, q, and sigma_s, that minimize the
least-square error between a data set and transformed SNRenv.

By default the m parameter is fixed and the property m is used.
It can also be defined as an optional parameter.

It is also possible to fix the sigma_s parameter by passing it as
an optional argument. Otherwise, it is optimized with k and q.

	Parameters:	values : ndarray

The linear SNRenv values that are to be converted to percent
correct.

pcdata : ndarray

The data, in percentage between 0 and 1, of correctly understood
tokens. Must be the same shape as values.

sigma_s : float, optional

(Default value = None)

m : float, optional

(Default value = None)

tries : int, optional

How many attempts to fit the observer if the start values do not
converge. The default is 10 times.

	Returns:	self

	
get_params()

	Returns the parameters of the ideal observer as dict.

	Parameters:	None

	Returns:	params : dict

Dictionary of internal parameters of the ideal observer.

	
transform(values)

	Converts inputs values to a percent correct.

	Parameters:	values : array_like

Linear values to transform.

	Returns:	pc : ndarray

Array of intelligibility percentage values, of the same shape as
values.

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pambox documentation

Speech Intelligibility Models and Experiments

Introduction

The speech module groups together speech intelligibility models
and other tools to facilitate the creation of speech intelligibility
prediction “experiments”.

Speech Intelligibility Models

Speech intelligibility models are classes that take at least a fs
argument. All predictions are done via a predict method with the
signature: predict(clean=None, mix=None, noise=None).
This signature allows models to require only a subset of the inputs. For example,
blind models might only require the mixture of processed speech and noise: predict(mix=noisy_speech); or just the
clean signal and the noise: predict(clean=speech, noise=noise).

The reference level is that a signal with an RMS value of 1 corresponds to 0 dB SPL.

Here is a small example, assuming that we have access to two signals, mix which is a mixture of the clean speech
and the noise, and noise, which is the noise alone.

>>> from pambox.speech import Sepsm
>>> s = Sepsm(fs=22050)
>>> res = s.predict(mix=mix, noise=noise)

For models that do not take time signals as inputs,
such as the Sii, two other types of interfaces are
defined:

	predict_spec if the model takes frequency spectra as its inputs. Once
again, the spectra of the clean speech, of the mixture, and of the noise
should be provided:

>>> from pambox.speech import Sii
>>> s = Sii(fs=22050)
>>> res = s.predict_spec(clean=clean_spec, noise=noise_spec)

	predict_ir if the models takes impulse responses as its inputs. The
function then takes two inputs, the impulse response to the target,
and the concatenated impulse responses to the maskers:

>>> from pambox.speech import IrModel
>>> s = IrModel(fs=22050)
>>> res = s.predict_ir(clean_ir, noise_irs)

Intelligibility models return a dictionary with at least the following key:

	p (for “predictions”): which is a dictionary with the outputs of the
model. They keys are the names of the outputs. This allows models to have
multiple return values. For example, the MrSepsm
returns two prediction values:

>>> s = MrSepsm(fs=22050)
>>> res = s.predict(clean, mix, noise)
>>> res['p']
{'lt_snr_env': 10.5, 'snr_env': 20.5}

It might seem a bit over-complicated, but it allows for an easier storing of
the results of an experiment.

Additionally, the models can add any other keys to the results dictionary. For
example, a model can return some of its internal attributes, its internal
representation, etc.

Speech Materials

The Material class simplifies the
access to the speech files when doing speech intelligibility prediction
experiments.

When creating the class, you have to define:

	where the sentences can be found

	their sampling frequency

	their reference level, in dB SPL (the reference is that a signal with an
RMS value of 1 corresponds to 0 dB SPL),

	as well as the path to a file where the corresponding speech-shaped noise for
this particular material can be found.

For example, to create a speech material object for IEEE sentences stored in
the ../stimuli/ieee folder:

>>> sm = SpeechMaterial(
... fs=25000,
... path_to_sentences='../stimuli/ieee',
... path_to_ssn='ieee_ssn.wav',
... ref_level=74
... name='IEEE'
...)

Each speech file can be loaded using its name:

>>> x = sm.load_file(sm.files[0])

Or files can be loaded as an iterator:

>>> all_files = sm.load_files()
>>> for x in all_files:
... # do some processing on `x`
... pass

By default, the list of files is simply all the files found in
the path_to_sentences. To overwrite this behavior, simply replace the
files_list() function:

>>> def new_files_list():
... return ['file1.wav', 'file2.wav']
>>> sm.files_list = new_files_list

It is common that individual sentences of a speech material are not adjusted
to the exact same level. This is typically done to compensate for differences
in intelligibility between sentences. In order to keep the inter-sentence
level difference, it is recommended to use the
set_level() method of the speech material.
The code below sets the level of the first sentence to 65 dB SPL,
with the reference that a signal with an RMS value of 1 has a level of 0 dB SPL.

>>> x = sm.load_file(sm.files[0])
>>> adjusted_x = sm.set_level(x, 65)

Accessing the speech-shaped noise corresponding the speech material is done
using the ssn() function:

>>> ieee_ssn = sm.ssn()

By default, this will return the entirety of the SSN. However, it is often
required to select a section of noise that is the same length as a target
speech signal, therefore, you can get a random portion of the SSN of the same
length as the signal x using:

>>> ssn_section = sm.ssn(x)

If you are given a speech material but you don’t know it’s average level, you
can use the help function average_level() to
find the average leve, in dB, of all the sentences in the speech material:

>>> average_level = sm.average_level()

Speech Intelligibility Experiment

Performing speech intelligibility experiments usually involves a tedious
process of looping through all conditions to study, such as different SNRs,
processing conditions, and sentences. The Experiment
class simplifies and automates the process of going through all the
experimental conditions. It also gathers all the results in a way that is
simple to manipulate, transform, and plot.

Basic Example

An experiment requires at least: a model, a speech material, and a list of SNRs.

>>> from pambox.speech import Experiment, Sepsm, Material
>>> models = Sepsm()
>>> material = Material()
>>> snrs = np.arange(-9,-5, 3)
>>> exp = Experiment(models, material, snrs, write=False)
>>> df = exp.run(2)
>>> df
 Distortion params Model Output SNR Sentence number Value
0 None Sepsm snr_env -9 0 1.432468
1 None Sepsm snr_env -6 0 5.165170
2 None Sepsm snr_env -9 1 6.308387
3 None Sepsm snr_env -6 1 10.314227

Additionally, you can assign a type of processing, such as reverberation,
spectral subtraction, or any arbitrary type of processing. To keep things
simply, let’s apply a compression to the mixture and to the noise. Your
distortion function must return the clean speech, the mixture, and the
noise alone.

>>> def compress(clean, noise, power):
... mixture = (clean + noise) ** (1 / power)
... noise = noise ** (1 / power)
... return clean, mixture, noise
...
>>> powers = range(1, 4)
>>> exp = Experiment(models, material, snrs, mix_signals, powers)
>>> df = exp.run(2)
>>> df

If the distortion parameters are stored in a list of dictionaries,
they will be saved in separate columns in the output dataframe. Otherwise,
they will be saved as tuples in the “Distortion params” column.

API

The pambox.speech module gather speech intelligibility
models, a framework to run intelligibility experiments, as well as a wrapper
around speech materials.

	
class pambox.speech.Sepsm(fs=22050, cf=(63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000), modf=(1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0), downsamp_factor=10, noise_floor=0.01, snr_env_limit=0.001, name='sEPSM')

	Implement the sEPSM intelligibility model [1].

	Parameters:	fs : int

(Default value = 22050)

cf : array_like

(Default value = _default_center_cf)

modf : array_like

(Default value = _default_modf)

downsamp_factor : int

(Default value = 10)

noise_floor : float

(Default value = 0.01)

snr_env_limit : float

(Default value = 0.001)

Notes

Modifed on 2014-10-07 by Alexandre Chabot-Leclerc: Remove the unnecessary
factor to compensate for filter bandwidth when computing the bands above
threshold. The diffuse hearing threshold are already adjusted for filter
bandwidth.

References

	[R2]	S. Jørgensen and T. Dau: Predicting speech intelligibility based
on the signal-to-noise envelope power ratio after modulation-
frequency selective processing. J. Acoust. Soc. Am. 130 (2011)
1475–1487.

	
plot_bands_above_thres(res)

	Plot bands that were above threshold as a bar chart.

	Parameters:	res : dict

A dict as output by the sEPSM model. The dictionary must have a
bands_above_threshold_idx key.

	Returns:	None

	
plot_exc_ptns(res, db=True, attr='exc_ptns', vmin=None, vmax=None)

	Plot the excitation patterns from a prediction.

	Parameters:	res : dict

Results from an sEPSM prediction. The dictionay should have a
“exc_ptns” key. Otherwise, the key to use can be defined using the
attr parameter.

db : bool, optional, (Default value = True)

Plot as dB if True, otherwise plots linear values.

attr : string, optional, (Default value = ‘exc_ptns’)

Dictionary key to use for plotting the excitation patters

vmin, vmax : float, optional, (Default = None)

Minimum and maximum value to normalize the color scale.

	
plot_filtered_envs(envs, fs, axes=None)

	Plot the filtered envelopes.

	Parameters:	envs : ndarray

List of envelope signals.

fs : int

Sampling frequency.

axes : axes, (Default value = None)

Matplotlib axes where to place the plot. Defaults to creating a
new figure is None.

	
plot_snr_env_matrix(res, ax=None, vmin=None, vmax=None)

	

	Parameters:	res : dict

Output of the predict() function.

ax : ax object

Matplotlib axis where the data should be plotted. A new axis
will be created if the value is None. (Default value = None)

vmin : float, optional

Minimum value of the heatmanp. The minimum value will be infered
from the data if None. (Default value = None)

vmax : float, optional

Maxiumum value of the heatmanp. The maximum value will be infered
from the data if None. (Default value = None)

	
predict(clean=None, mix=None, noise=None)

	Predicts intelligibility.

The sEPSM requires at least the mixture and the noise alone to make a
prediction. The clean signal will also be processed if it is
available, but it is not used to make the prediction.

	Parameters:	clean : ndarray (optional)

Clean speech signal, optional.

mix : ndarray

Mixture of the processed speech and noise.

noise : ndarrays

Processed noise signal alone.

	Returns:	res : dict

Dictionary of the model predictions. The keys are as follow:
- ‘p’: is a dictionary with the model predictions. In this case
it contains a ‘snr_env’ key.
- ‘snr_env_matrix’: 2D matrix of the SNRenv as a function audio
frequency and modulation frequency.
- ‘exc_ptns’: Modulation power at the output of the modulation
filterbank for the intput signals. It is a (N_SIG, N_CHAN,
N_MODF) array.
- ‘band_above_thres_idx’: Array of the indexes of the bands that
were above hearing threshold.

	
class pambox.speech.MrSepsm(fs=22050, cf=(63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000), modf=(1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0), downsamp_factor=10, noise_floor=0.001, snr_env_limit=0.001, snr_env_ceil=None, min_win=None, name='MrSepsm', output_time_signals=False)

	Multi-resolution envelope power spectrum model (mr-sEPSM).

	Parameters:	fs : int, optional, (Default value = 22050)

Sampling frequency.

cf : array_like, optional

Center frequency of the cochlear filters.

modf : array_like, optional (Default value = _default_modf)

Center frequency of modulation filters.

downsamp_factor : int, optional, (Default value = 10)

Envelope downsampling factor. Simply used to make calculattion faster.

noise_floor : float, optional, (Default value = 0.001)

Value of the internal noise floor of the model. The default is -30 dB.

snr_env_limit : float, optional, (Default value = 0.001)

Lower limit of the SNRenv values. Default is -30 dB.

snr_env_ceil : float, optional, (Default value = None)

Upper limit of the SNRenv. No limit is applied if None.

min_win : float, optional, (Default value = None)

Minimal duration of the multi-resolution windows, in ms.

name : string, optional, (Default value = ‘MrSepsm’)

Name of the model.

output_time_signals : bool, optional

Output the time signals signals in the results dictionary. Adds the
keys ‘chan_sigs’, ‘chan_envs’, and ‘filtered_envs’.

References

	[jorgensen2013multi]	S. Joergensen, S. D. Ewert, and T. Dau: A
multi-resolution envelope-power based model for speech
intelligibility. J Acoust Soc Am 134 (2013) 436–446.

	
plot_mr_exc_ptns(ptns, dur=None, db=True, vmin=None, vmax=None, fig_subplt=None, attr='exc_ptns', add_cbar=True, add_ylabel=True, title=None)

	Plots multi-resolution representation of envelope powers.

	Parameters:	ptns : dict

Predictions from the model. Must have a mr_snr_env_matrix
key.

dur : bool

Display dB values of the modulation power or SNRenv values. (Default: True.)

vmax : float

Maximum value of the colormap. If None,
the data’s maxium value is used. (Default: None)

db : bool

Plot the values in dB. (Default value = True)

vmin : float

Minimum value of the heatmap. The value will be infered from the
data if None. (Default value = None)

fig_subplt : tuple of (fig, axes)

Matplotlib figure and axes objects where the data should be
plotted. If None is provided, a new figures with the necessary
axes will be created. (Default value = None)

attr : string

Key to query in the ptns dictionary. (Default value = ‘exc_ptns’)

add_cbar : bool

Add a colorbar to the figure. (Default value = True)

add_ylabel : bool

Add a y-label to the axis. (Default value = True)

title : bool

Add a title to the axis. (Default value = None)

	
predict(clean=None, mix=None, noise=None)

	Predicts intelligibility using the mr-sEPSM.

The mr-sEPSM requires at least the mix and the noise alone to make a
prediction. The clean signal will also be processed if it is
available, but it is not used to make the prediction.

	Parameters:	clean : ndarray (optional)

Clean speech signal, optional.

mix : ndarray

Mixture of the processed speech and noise.

noise : ndarrays

	Returns:	dict

Dictionary with the predictions by the model.

	
class pambox.speech.BsEPSM(fs=22050, name='BinauralMrSepsm', cf=(63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000), modf=(1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0), downsamp_factor=10, noise_floor=0.001, snr_env_limit=0.001, sigma_e=0.25, sigma_d=0.000105, fast_cancel=True, debug=False, win_len=0.02, ec_padding_windows=10)

	Binaural implementation of the sEPSM model.

Implementation used in [chabot-leclerc2016].

References

	[chabot-leclerc2016]	(1, 2)

	
plot_tau_hist(res, cfs=None, bins=None, return_ax=False)

	Plot histogram of tau values.

	Parameters:	res : dict

Results from the predict function.

cfs : list

Index of center frequencies to plot.

bins : int

Number of bins in the histogram. If None, uses bins between
-700 us and 700 us. Default is None.

return_ax : bool, optional

If True, returns the figure Axes. Default is False.

	
predict(clean=None, mixture=None, noise=None)

	Predict intelligibility.

	Parameters:	clean, mixture, noise : ndarray

Binaural input signals.

	Returns:	res : dict

Model predictions and internal values. Model predictions are
stored as a dictionary under the key ‘p’.

	
class pambox.speech.SII(T=0.0, I=0)

	Speech intelligibility index model, [ansi1997sii].

	Parameters:	T : float or array_like, optional, (Default is 0)

Hearing threshold. 18 values in dB HL or a single value.

I : int, optional, (Default is 0, normal speech)

Band importance function selector. See Notes section below.

Notes

Arguments for ‘I’:

A scalar having a value of either 0, 1, 2, 3, 4, 5, or 6. The
Band-importance functions associated with each scalar are:

	0: Average speech as specified in Table 3 (DEFAULT)

	
	1: various nonsense syllable tests where most English phonemes occur

	equally often (as specified in Table B.2)

	2: CID-22 (as specified in Table B.2)

	3: NU6 (as specified in Table B.2)

	4: Diagnostic Rhyme test (as specified in Table B.2)

	
	5: short passages of easy reading material (as specified in

	Table B.2)

	6: SPIN (as specified in Table B.2)

References

	[ansi1997sii]	(1, 2, 3, 4) American National Standards Institute: American
National Standard methods for calculation of the Speech Intelligibility
Index (1997).

	
predict_spec(clean=None, mix=None, noise=-50)

	Predicts intelligibility based on the spectra levels of the speech
and the noise.

	Parameters:	clean: array_like or float

Speech level in dB SPL. Equivalent to “E” in [ansi1997sii].

mix : ignored

This argument is present only to conform to the API.

noise: array_like, optional, (Default is -50 dB SPL)

Noise level in dB SPL. Equivalent to N in [ansi1997sii].

	Returns:	res: dict

Dictionary with prediction values under res[‘p’][‘sii’].

	
class pambox.speech.Material(fs=22050, path_to_sentences='../stimuli/clue/sentencesWAV22', path_to_maskers=None, path_to_ssn='../stimuli/clue/SSN_CLUE22.wav', ref_level=74, name='CLUE', force_mono=False)

	Load and manipulate speech materials for intelligibility experiments

	
average_level()

	Calculate the average level across all sentences.

The levels are calculated according to the toolbox’s reference
level.

	Returns:	mean : float

Mean level across all sentences, in dB SPL.

std : float

Standard deviation of the levels across all sentences.

See also

utils.dbspl

	
create_filtered_ssn(files=None, duration=5)

	Create speech-shaped noise based on the average long-term spectrum
of the speech material.

	Parameters:	files : list, optional

List of files to concatenate. Each file should be an ndarray.
If files is None, all the files from the speech material
will be used. They are loaded with the method load_files().

duration : float, optional

Duration of the noise, in seconds. The default is 5 seconds.

	Returns:	ssn : ndarray

	
create_ssn(files=None, repetitions=200)

	Creates a speech-shaped noise from the sentences.

Creates a speech-shaped noise by randomly adding together sentences
from the speech material. The output noise is 75% the length of all
concatenated sentences.

	Parameters:	files : list, optional

List of files to concatenate. Each file should be an ndarray.
If files is None, all the files from the speech material
will be used. They are loaded with the method load_files().

repetitions : int

Number of times to superimpose the randomized sentences. The
default is 120 times.

	Returns:	ssn : ndarray

Notes

Before each addition, the random stream of sentences is jittered to
prevent perfect alignment of all sentences. The maximum jitter is
equal to 25% of the length of the concatenated sentences.

	
files_list()

	Return a list of all the .wav files in the path_to_sentences
directory.

	Returns:	files : list

List of all files.

	
load_file(filename)

	Read a speech file by name.

	Parameters:	filename : string

Name of the file to read. The file just be in the directory
defined by root_path and path_to_sentences.

	Returns:	ndarray

Wav file read from disk, as floating point array.

	
load_files(n=None)

	Read files from disk, starting from the first one.

	Parameters:	n : int, optional

Number of files to read. Default (None) is to read all files.

	Returns:	generator

Generator where each item is an ndarray of the file loaded.

	
static pick_section(signal, section=None)

	Pick section of signal

	Parameters:	section : int or ndarray, optional

If an integer is given, returns section of length n
Alternatively, if section is an ndarray the signal returned
will be of the same length as the section signal. If x is
None, the full signal is returned.

Returns

——-

ndarray

Speech-shaped noise signal.

	
set_level(x, level)

	Set level of a sentence, in dB.

	Parameters:	x : ndarray

sentence

level : float

Level, in dB, at which the sentences are recorded. The reference
is that and RMS of 1 corresponds to 0 dB SPL.

	Returns:	array_like

Adjusted sentences with a level db SPL with the reference
that a signal with an RMS of 1 corresponds to 0 db SPL.

	
ssn(x=None)

	Returns the speech-shaped noise appropriate for the speech material.

	Parameters:	x : int or ndarray, optional

If an integer is given, returns a speech-shaped noise of length
n Alternatively, if a sentenced is given, the speech-shaped
noise returned will be of the same length as the input signal.
If x is None, the full SSN signal is returned.

Returns

——-

ndarray

Speech-shaped noise signal.

	
class pambox.speech.Experiment(models, material, snrs, distortion=None, dist_params=(None,), fixed_level=65, fixed_target=True, name=None, write=True, output_path='./output/', timestamp_format='%Y%m%d-%H%M%S', adjust_levels_bef_proc=False)

	Performs a speech intelligibility experiment.

The masker is truncated to the length of the target, or is padded with
zeros if it is shorter than the target.

	Parameters:	models : single model, or list

List of intelligibility models.

materials : object

object that implements a next interface that returns the next
pair of target and maskers.

snrs : array_like

List of SNRs.

name : str,

name of experiment, will be appended to the date when writing to file.

write : bool, optional

Write the result to file, as CSV, the default is True.

output_path : string, optional.

Path where the results will be written if write is True. The
default is ‘./output’.

timestamp_format : str, optional

Datetime timestamp format for the CSV file name. The default is of
the form YYYYMMDD-HHMMSS.

	
adjust_levels(target, masker, snr)

	Adjusts level of target and maskers.

Uses the self.fixed_level as the reference level for the target and
masker. If self.fixed_target is True, the masker level is varied to
set the required SNR, otherwise the target level is changed.

	Parameters:	
	target – ndarray
Target signal.

	masker – ndarray
Masker signal.

	snr – float
SNR at which to set the target and masker.

	Returns:	tuple
Level adjusted target and masker.

	
append_results(df, res, model, snr, i_target, params, **kwargs)

	Appends results to a DataFrame

	Parameters:	df : dataframe

DataFrame where the new results will be appended.

res : dict

Output dictionary from an intelligibility model.

model: object

Intelligibility model. Will use it’s name attribute,
if available, to add the source model to the DataFrame. Otherwise,
the __class__.__name__ attribute will be used.

snr : float

SNR at which the simulation was performed.

i_target : int

Number of the target sentence

params : object

Parameters that were passed to the distortion process.

	Returns:	df : dataframe

DataFrame with new entry appended.

	
classmethod pred_to_pc(df, fc, col='Value', models=None, out_name='Intelligibility')

	Converts the data in a given column to percent correct.

	Parameters:	df : Dataframe

Dataframe where the intelligibility predictions are stored.

fc : function

The function used to convert the model outputs to
intelligibility. The function must take a float as input and
returns a float.

col : string

Name of the column to convert to intelligibility. The default is
“Value”.

models : string, list or dict

This argument can either be a string, with the name of the model
for which the output value will be transformed to
intelligibility, or a list of model names. The argument can also
be a dictionary where the keys are model names and the values are
“output names”, i.e. the name of the value output by the model.
This is useful if a model has multiple prediction values. The
default is None, all the rows will be converted with the same
function.

out_name : str

Name of the output column (default: ‘Intelligibility’)

	Returns:	df : dataframe

Dataframe with the new column column with intelligibility values.

	
static prediction(model, target, mix, masker)

	Predicts intelligibility for a target and masker pair. The target and
masker are simply added together to create the mixture.

	Parameters:	model :

target :

masker :

	Returns:	

	return:	

	
preprocessing(target, masker, snr, params)

	Applies preprocessing to the target and masker before setting the
levels. In this case, the masker is padded with zeros if it is longer
than the target, or it is truncated to be the same length as the target.

	Parameters:	
	target –

	masker –

	Returns:	

	
run(n=None, seed=0, parallel=False, profile=None, output_filename=None)

	Run the experiment.

	Parameters:	n : int

Number of sentences to process.

seed : int

Seed for the random number generator. Default is 0.

parallel : bool

If False, the experiment is ran locally, using a for-loop. If
True, we use IPython.parallel to run the experiment in parallel.
We try to connect to the current profile.

output_filename : string

Name of the output file where the results will be saved. If the
filename contains directories, they will be created in
self.output_path. If it is None, the default is to use the
current date and time. The default is None.

	Returns:	df : pd.Dataframe

Pandas dataframe with the experimental results.

	
classmethod srts_from_df(df, col='Intelligibility', srt_at=50, model_srts=None)

	Get dataframe with SRTs

	Parameters:	df : Data Frame

DataFrame resulting from an experiment. It must have an
“Intelligibility” column.

col : string (optional)

Name of the column to use for the SRT calculation. The default
value is the ‘Intelligibility’ column.

srt_at : float, tuple (optional)

Value corresponding to the SRT. The default is 50 (%).

model_srts : dict

Overrides default srt_at for particular models. The dictionary
must be a tuple of the model name and model output: (‘Model’,
‘Output’)

Returns

——-

out : Data frame

Data frame, with an SRT column.

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pambox documentation

Signal Distortion and Processing

The distort module groups together various distortions and
types of processing that can be applied to signals.

	mix_noise() adds together two signals at a given SNR.

	noise_from_signal() creates a noise with the same
spectrum as the input signal. Optionally, it can also keep the signal’s
envelope.

	overlap_and_add() reconstructs a signal using the
overlap and add method.

	phase_jitter() applies phase jitter to a signal.

	spec_sub() applies spectral subtraction to a signal.

API

pambox.distort regroups various types of distortions and processings
that can be applied to signals.

	
class pambox.distort.WestermannCrm(fs=40000)

	Applies HRTF and BRIR for a given target and masker distance.

	Parameters:	fs : int

Samping frequenc of the process. (Default value = 40000)

References

	[R1]	A. Westermann and J. M. Buchholz: Release from masking through
spatial separation in distance in hearing impaired listeners.
Proceedings of Meetings on Acoustics 19 (2013) 050156.

Attributes

	brir
	(dict) Binaural room impulse responses for each distance.

	delays
	(dict) Delay until the first peak in the BRIR for each distance.

	dist
	(ndarray) List of the valid distances (0.5, 2, 5, and 10 meters).

	
apply(x, m, tdist, mdist, align=True)

	Applies the “Westermann” distortion to a target and masker.

target and masker are not co-located, the masker is equalized before
applying the BRIR, so that both the target and masker will have the
same average spectrum after the BRIR filtering.

By default, the delay introduced by the BRIR is compensated for,
such that the maxiumum of the BRIR happen simulatenously.

	Parameters:	x : ndarray

Mono clean speech signal of length N.

m : ndarray

Mono masker signal of length N.

tdist : float

Target distance, in meters.

mdist : float

Masker distance, in meters.

align : bool

Compensate for the delay in the BRIRs with distance (default is
True).

	Returns:	mix : (2, N) ndarray

Mixture processesed by the BRIRs.

noise : (2, N)

Noise alone processed by the BRIRs.

	
pambox.distort.mix_noise(clean, noise, sent_level, snr=None)

	Mix a signal signal noise at a given signal-to-noise ratio.

	Parameters:	clean : ndarray

Clean signal.

noise : ndarray

Noise signal.

sent_level : float

Sentence level, in dB SPL.

snr :

Signal-to-noise ratio at which to mix the signals, in dB. If snr is
None, no noise is mixed with the signal (Default value = None)

	Returns:	tuple of ndarrays

Returns the clean signal, the mixture, and the noise.

	
pambox.distort.noise_from_signal(x, fs=40000, keep_env=False)

	Create a noise with same spectrum as the input signal.

	Parameters:	x : array_like

Input signal.

fs : int

Sampling frequency of the input signal. (Default value = 40000)

keep_env : bool

Apply the envelope of the original signal to the noise. (Default
value = False)

	Returns:	ndarray

Noise signal.

	
pambox.distort.overlap_and_add(powers, phases, len_window, shift_size)

	Reconstruct a signal with the overlap and add method.

	Parameters:	powers : ndarray

Magnitude of the power spectrum of the signal to reconstruct.

phases : ndarray

Phase of the signal to reconstruct.

len_window : int

Frame length, in samples.

shift_size : int

Shift length. For non overlapping signals, in would equal len_window.
For 50% overlapping signals, it would be len_window/2.

	Returns:	ndarray

Reconstructed time-domain signal.

	
pambox.distort.phase_jitter(x, a)

	Apply phase jitter to a signal.

The expression of phase jitter is:

\[y(t) = s(t) * cos(\Phi(t)),\]

where \(\Phi(t)\) is a random process uniformly distributed over
\([0, 2\pi\alpha]\). The effect of the jitter when \(\alpha\)
is 0.5 or 1 is to completely destroy the carrier signal, effectively
yielding modulated white noise.

	Parameters:	x : ndarray

Signal

a : float

Phase jitter parameter, typically between 0 and 1, but it can be
anything.

	Returns:	ndarray

Processed signal of the same dimension as the input signal.

	
pambox.distort.reverb(x, rt)

	Applies reverberation to a signal.

	Parameters:	x : ndarray

Input signal.

rt : float

Reverberation time

	Returns:	ndarray

Processed signal.

	
pambox.distort.spec_sub(x, noise, factor, w=512.0, padz=512.0, shift_p=0.5)

	Apply spectral subtraction to a signal.

The defaul values of the parameters are typical for a sampling frequency of
44100 Hz. Note that (W+padz) is the final frame window and hence the fft
length (it is normally chose as a power of 2).

	Parameters:	x : ndarray

Input signal

noise :

Input noise signal

factor : float

Noise subtraction factor, must be larger than 0.

w : int

Frame length, in samples. (Default value = 1024 / 2.)

padz : int

Zero padding (pad with padz/2 from the left and the right) (Default
value = 1024 / 2.)

shift_p : float

Shift percentage (overlap) between each window, in fraction of the
window size (Default value = 0.5)

	Returns:	clean_estimate : ndarray

Estimate of the clean signal.

noise_estimate : ndarray

Estimate of the noisy signal.

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pambox documentation

Utilities

The utils groups together function that are not auditory
processes but that are, nonetheless, useful or essential to manipulate signals.

Signal levels

pambox defines a reference level for digital signals. The convention is
that a signal with a root-mean-square (RMS) value of 1 corresponds to a level
of 0 dB SPL. In other words:

\[L [dB SPL] = 20 * \log_{10}\frac{P}{Ref},\]

where \(Ref\) is 1.

The functions setdbspl(),
dbspl(), and rms() help in
doing this conversion.

Adding signals and adjusting their lengths

Adding together signals loaded from disks is often problematic because they
tend to have different lengths. The functions
add_signals() and
make_same_length() simplify this. The former simply
adds two signals and pads the shortest one with zeros if necessary. The
latter force two signals to be of the same lengths by either zero-padding the
shortest (default) or by cutting the second signal to the length of the
first, for example:

>>> a = [1, 1]
>>> b = [2, 2, 2]
>>> make_same_length(a, b)
[1, 1, 0], [2, 2, 2]
>>> make_same_length(a, b, extend_first=False)
[1, 1], [2, 2]

This can be useful when using models operating in the envelope domain,
as padding with zeros increase the energy at low modulation frequencies.

The int2srt() function finds the speech reception
threshold (SRT) for a given intelligibility curve. It is actually a more
general linear interpolation function, but the most common use case in this
toolbox is to find SRTs.

The function psy_fn() calculates a psychometric
function based on a mean (that would be the SRT @ 50%) and a standard
deviation. This function can be useful when trying to fit a psychometric
function to a series of data points.

FFT Filtering and general speedups

FIR filtering is rather slow when using long impulse responses. The function
fftfilt() makes such filtering faster by executing the
filtering using the overlap-and-add method in the frequency domain
rather than as a convolution. It is largely inspired from the Matlab
implementation and was adapted from a suggested addition to Scipy [http://projects.scipy.org/scipy/attachment/ticket/837/fftfilt.py].
It might be removed from the toolbox if fftfilt becomes a part of Scipy.

The function next_pow_2() is a convenient way to
obtain the next power of two for a given integer. It’s mostly useful when
picking an FFT length.

API

	
pambox.utils.add_signals(a, b)

	Adds two vectors of different lengths by zero padding the shortest one.

	Parameters:	a,b : ndarray

Arrays to make of the same length.

	Returns:	ndarray

Sum of the signal, of the same length as the longest of the two inputs.

	
pambox.utils.dbspl(x, ac=False, offset=0.0, axis=-1)

	Computes RMS value of signal in dB.

By default, a signal with an RMS value of 1 will have a level of 0 dB
SPL.

	Parameters:	x : array_like

Signal for which to caculate the sound-pressure level.

ac : bool

Consider only the AC component of the signal, i.e. the mean is
removed (Default value = False)

offset : float

Reference to convert between RMS and dB SPL. (Default value = 0.0)

axis : int

Axis on which to compute the SPL value (Default value = -1, last axis)

	Returns:	ndarray

Sound-pressure levels.

See also

setdbspl, rms

References

	[R3]	Auditory Modeling Toolbox, Peter L. Soendergaard
B. C. J. Moore. An Introduction to the Psychology of Hearing. Academic
Press, 5th edition, 2003.

	
pambox.utils.fftfilt(b, x, n=None)

	FIR filtering using the FFT and the overlap-add method.

Filters the data in x using the FIR coefficients in b. If x is a
matrix, the rows are filtered. If b is a matrix, each filter is applied
to x. If both b and x are matrices with the same number of rows,
each row of x is filtered with the respective row of b.

	Parameters:	b : array_like

Coefficients of the FIR filter.

x : array_like

Signal to filter.

n : int, optional.

Length of the FFT. If n is not provided, a value of n will be
chosen by fftfilt. See Notes for details.

	Returns:	y : ndarray

Filtered signal.

Notes

Filter the signal x with the FIR filter described by the
coefficients in b using the overlap-add method. If the FFT
length n is not specified, it and the overlap-add block length
are selected so as to minimize the computational cost of
the filtering operation.

If x is longer than b, then n and L will be chosen as to minimize
the product of the number of blocks and the number of flops per FFT.

If a value of n is provided, the FFT length will be the next power of 2
after n and each block of data will be of length N_fft - N_b + 1. If
n is smaller than the length of b, the FFT length will be the length
of b.

Examples

>>> import pambox.utils
>>> b = [1, 1]
>>> x = [0, 1, 2, 3, 4, 5]
>>> y = pambox.utils.fftfilt(b, x)

The FFT length can also be specified:
>>> y = pambox.utils.fftfilt(b, x, 16)

	
pambox.utils.hilbert(x, N=None, axis=-1)

	Computes the analytic signal using the Hilbert transform.

The transformation is done along the last axis by default.

	Parameters:	x : array_like

Signal data. Must be real.

N : int, optional

Number of Fourier components. Default: x.shape[axis]

axis : int, optional

Axis along which to do the transformation. Default: -1.

	Returns:	xa : ndarray

Analytic signal of x, of each 1-D array along axis

Notes

NOTE: This code is a copy-paste from the Scipy codebase. By
redefining it here, it is possible to take advantage of the speed
increase provided by using the MKL’s FFT part of Enthough’s distribution.

The analytic signal x_a(t) of signal x(t) is:

\[x_a = F^{-1}(F(x) 2U) = x + i y\]

where F is the Fourier transform, U the unit step function,
and y the Hilbert transform of x. [R4]

In other words, the negative half of the frequency spectrum is zeroed
out, turning the real-valued signal into a complex signal. The Hilbert
transformed signal can be obtained from np.imag(hilbert(x)), and the
original signal from np.real(hilbert(x)).

License:
This code was copied from Scipy. The following license applies for this
function:

Copyright (c) 2001, 2002 Enthought, Inc.
All rights reserved.

Copyright (c) 2003-2012 SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Enthought nor the names of the SciPy Developers
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

References

	[R4]	(1, 2) Wikipedia, “Analytic signal”.
http://en.wikipedia.org/wiki/Analytic_signal

	
pambox.utils.impz(b, a=1)

	Plot step and impulse response of an FIR filter.

	b : float

	Forward terms of the FIR filter.

	a : float

	Feedback terms of the FIR filter. (Default value = 1)

From http://mpastell.com/2010/01/18/fir-with-scipy/

	Returns:	None

	
pambox.utils.int2srt(x, y, srt_at=50.0)

	Finds intersection using linear interpolation.

This function finds the x values at which a curve intersects with a
constant value.

	Parameters:	x : array_like

“x” values

y : array_like

“y” values

srt_at : float

Value of y at which the interception is calculated. (Default value
= 50.0)

	Returns:	float

	
pambox.utils.make_same_length(a, b, extend_first=True)

	Make two vectors the same length.

	Parameters:	a,b : array_like

Arrays to make of the same length.

extend_first : bool, optional

Zero-pad the first array if it is the shortest if True. Otherwise,
cut array b to the length of a. (Default value = True)

	Returns:	tuple of ndarrays

Two arrays with the same length along the last dimension.

	
pambox.utils.mfreqz(b, a=1, fs=22050.0)

	Plot the frequency and phase response of an FIR filter.

From http://mpastell.com/2010/01/18/fir-with-scipy/

	Parameters:	b : float

Forward terms of the FIR filter.

a : float

Feedback terms of the FIR filter. (Default value = 1)

fs : float

Sampling frequency of the filter. (Default value = 22050.0)

	Returns:	None

	
pambox.utils.next_pow_2(x)

	Calculates the next power of 2 of a number.

	Parameters:	x : float

Number for which to calculate the next power of 2.

	Returns:	int

	
pambox.utils.noctave_center_freq(lowf, highf, width=3)

	Calculate exact center N-octave space center frequencies.

In practive, what is often desired is the “simplified” center frequencies,
so this function is not of much use.

	Parameters:	lowf : float

Lowest frequency.

highf : float

Highest frequency

width : float

Number of filters per octave. (Default value = 3)

	Returns:	ndarray

List of center frequencies.

	
pambox.utils.psy_fn(x, mu=0.0, sigma=1.0)

	Calculates a psychometric function with a given mean and variance.

	Parameters:	x : array_like

“x” values of the psychometric functions.

mu : float, optional

Value at which the psychometric function reaches 50%, i.e. the mean
of the distribution. (Default value = 0)

sigma : float, optional

Variance of the psychometric function. (Default value = 1)

	Returns:	pc : ndarray

Array of “percent correct”, between 0 and 100.

	
pambox.utils.read_wav_as_float(path)

	Reads a wavefile as a float.

	Parameters:	path : string

Path to the wave file.

	Returns:	wav : ndarray

	
pambox.utils.rms(x, ac=False, axis=-1)

	Calculates the RMS value of a signal.

	Parameters:	x : array_like

Signal.

ac : bool

Consider only the AC component of the signal. (Default value = False)

axis :

Axis on which to calculate the RMS value. The default is to calculate
the RMS on the last dimensions, i.e. axis = -1.

	Returns:	ndarray

RMS value of the signal.

	
pambox.utils.setdbspl(x, lvl, ac=False, offset=0.0)

	Sets the level of signal in dB SPL, along its last dimension.

	Parameters:	x : array_like

Signal.

lvl : float

Level, in dB SPL, at which to set the signal.

ac : bool

Calculate the AC RMS power of the signal by default (ac=True),
e.g. the mean is removed. If False, considers the non-RMS power.
(Default value = False)

offset : float

Level, in dB SPL, corresponding to an RMS of 1. By default, an RMS of
1 corresponds to 0 dB SPL, i.e. the default is 0.

	Returns:	ndarray

Signal of the same dimension as the original.

	
pambox.utils.write_wav(fname, fs, x, normalize=False)

	Writes floating point numpy array to 16 bit wavfile.

Convenience wrapper around the scipy.io.wavfile.write function.

The ‘.wav’ extension is added to the file if it is not part of the
filename string.

Inputs of type np.float are converted to int16 before writing to file.

	Parameters:	fname : string

Filename with path.

fs : int

Sampling frequency.

x : array_like

Signal with the shape N_channels x Length

normalize : bool

Scale the signal such that its maximum value is one.

	Returns:	None

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pambox documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pambox	

 	
 	
 pambox.audio	

 	
 	
 pambox.central	

 	
 	
 pambox.distort	

 	
 	
 pambox.inner	

 	
 	
 pambox.middle	

 	
 	
 pambox.outer	

 	
 	
 pambox.speech	

 	
 	
 pambox.utils	

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pambox documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	

 	add_signals() (in module pambox.utils)

 	adjust_levels() (pambox.speech.Experiment method)

 	append_results() (pambox.speech.Experiment method)

 	

 	apply() (pambox.distort.WestermannCrm method)

 	apply_jitter() (pambox.central.EC static method)

 	average_level() (pambox.speech.Material method)

B

 	

 	BsEPSM (class in pambox.speech)

C

 	

 	cancel() (pambox.central.EC method)

 	create_filtered_ssn() (pambox.speech.Material method)

 	

 	create_jitter() (pambox.central.EC method)

 	create_ssn() (pambox.speech.Material method)

D

 	

 	dbspl() (in module pambox.utils)

E

 	

 	EC (class in pambox.central)

 	EPSMModulationFilterbank (class in pambox.central)

 	equalize() (pambox.central.EC method)

 	

 	erb_bandwidth() (in module pambox.inner)

 	Experiment (class in pambox.speech)

F

 	

 	fftfilt() (in module pambox.utils)

 	files_list() (pambox.speech.Material method)

 	

 	filter() (pambox.central.EPSMModulationFilterbank method)

 	fit_obs() (pambox.central.IdealObs method)

G

 	

 	get_params() (pambox.central.IdealObs method)

H

 	

 	hilbert() (in module pambox.utils)

 	

 	hilbert_envelope() (in module pambox.inner)

I

 	

 	IdealObs (class in pambox.central)

 	impz() (in module pambox.utils)

 	

 	int2srt() (in module pambox.utils)

J

 	

 	jitter() (pambox.central.EC method)

L

 	

 	load_file() (pambox.speech.Material method)

 	load_files() (pambox.speech.Material method)

 	

 	lowpass_env_filtering() (in module pambox.inner)

M

 	

 	make_same_length() (in module pambox.utils)

 	Material (class in pambox.speech)

 	mfreqz() (in module pambox.utils)

 	

 	mix_noise() (in module pambox.distort)

 	MrSepsm (class in pambox.speech)

N

 	

 	next_pow_2() (in module pambox.utils)

 	noctave_center_freq() (in module pambox.utils)

 	

 	noise_from_signal() (in module pambox.distort)

O

 	

 	overlap_and_add() (in module pambox.distort)

P

 	

 	pambox.audio (module)

 	pambox.central (module)

 	pambox.distort (module)

 	pambox.inner (module)

 	pambox.middle (module)

 	pambox.outer (module)

 	pambox.speech (module)

 	pambox.utils (module)

 	phase_jitter() (in module pambox.distort)

 	pick_section() (pambox.speech.Material static method)

 	play() (in module pambox.audio)

 	plot_bands_above_thres() (pambox.speech.Sepsm method)

 	

 	plot_exc_ptns() (pambox.speech.Sepsm method)

 	plot_filtered_envs() (pambox.speech.Sepsm method)

 	plot_mr_exc_ptns() (pambox.speech.MrSepsm method)

 	plot_snr_env_matrix() (pambox.speech.Sepsm method)

 	plot_tau_hist() (pambox.speech.BsEPSM method)

 	pred_to_pc() (pambox.speech.Experiment class method)

 	predict() (pambox.speech.BsEPSM method)

 	

 	(pambox.speech.MrSepsm method)

 	(pambox.speech.Sepsm method)

 	predict_spec() (pambox.speech.SII method)

 	prediction() (pambox.speech.Experiment static method)

 	preprocessing() (pambox.speech.Experiment method)

 	psy_fn() (in module pambox.utils)

R

 	

 	read_wav_as_float() (in module pambox.utils)

 	reverb() (in module pambox.distort)

 	

 	rms() (in module pambox.utils)

 	run() (pambox.speech.Experiment method)

S

 	

 	Sepsm (class in pambox.speech)

 	set_level() (pambox.speech.Material method)

 	setdbspl() (in module pambox.utils)

 	SII (class in pambox.speech)

 	

 	spec_sub() (in module pambox.distort)

 	srts_from_df() (pambox.speech.Experiment class method)

 	ssn() (pambox.speech.Material method)

T

 	

 	transform() (pambox.central.IdealObs method)

W

 	

 	WestermannCrm (class in pambox.distort)

 	

 	write_wav() (in module pambox.utils)

 Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pambox documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pambox documentation »

 All modules for which code is available

		pambox.audio

		pambox.central.decision_metrics

		pambox.central.ec

		pambox.central.modulation_filterbanks

		pambox.distort

		pambox.inner

		pambox.speech.bsepsm

		pambox.speech.experiment

		pambox.speech.material

		pambox.speech.mrsepsm

		pambox.speech.sepsm

		pambox.speech.sii

		pambox.utils

 © Copyright 2014-2016, Alexandre Chabot-Leclerc.
 Created using Sphinx 1.3.5.

