

The Minecraft Overviewer

See also the Github Homepage [https://github.com/overviewer/Minecraft-Overviewer] and the Updates Blog [https://overviewer.org/blog/], and follow us on
our Twitter account [https://twitter.com/mcoverviewer].

Introduction

The Minecraft Overviewer is a command-line tool for rendering high-resolution
maps of Minecraft Java Edition worlds. It generates a set of static html and
image files and uses Leaflet to display a nice interactive map.

The Overviewer has been in active development for several years and has many
features, including day and night lighting, cave rendering, mineral overlays,
and many plugins for even more features! It is written mostly in Python with
critical sections in C as an extension module.

For a simple example of what your renders will look like, head over to The
“Exmaple” Map [https://overviewer.org/example/]. For more user-contributed
examples, see The Example Wiki Page [https://github.com/overviewer/Minecraft-Overviewer/wiki/Map-examples].

[image: _images/front_page_screenshot.png]

Documentation Contents

	Installing
	Windows

	Debian / Ubuntu

	CentOS / RHEL / Fedora

	Building the Overviewer from Source
	Get The Source

	Build Instructions For Various Operating Systems

	Running the Overviewer
	Rendering your First Map

	Usage

	Installing the Textures

	The Configuration File
	Examples

	Config File Specifications

	Custom Rendermodes and Rendermode Primitives

	Signs and Markers
	Configuration File

	Generating the POI Markers

	Predefined Filter Functions

	Marker Icons Overviewer ships by default

	Windows Newbie Guide
	Common Pitfalls

	Using GitHub Gist

	Frequently Asked Questions
	General Questions

	Contributing
	Prerequisites

	Acquiring the Source Code

	Finding Your Way around the Code Base

	Code Style

	Example Scenarios

	Good Git Practices

	Talking with other Developers

	Design Documentation
	Background Info

	Overviewer at a High Level

	Block Rendering

	Chunk Rendering

	Chunk Placement

	Tile Rendering

	Quadtrees

	Reading the Data Files

	Image Composition

	Multiprocessing

	Caching

	Lighting

	Cave Mode

Features

	Renders high resolution images of your world, lets you “deep zoom” and see
details!

	Gloriously awesome smooth lighting is here!
(rendermode name is smooth_lighting)

	Customizable textures! Pulls textures straight from your installed texture
pack!

	Choose from four rendering angles.

	Generates a Leaflet powered map!

	Runs on Linux, Windows, and Mac platforms!

	Renders efficiently in parallel, using as many simultaneous processes as you
want!

	Only requires: Python, Numpy, and PIL (all of which are included in the
Windows download!)

	Utilizes caching to speed up subsequent renderings of your world. Only parts
that need re-rendering are re-rendered.

	Throw the output directory up on a web server to share your Minecraft world
with the internet!

	Run The Overviewer from a command line or on a cron schedule for constantly
updated maps! Run it for your Minecraft server world to provide your users
with a detailed map!

	Supports Nether and The End dimensions!

	Built-in support for Biomes!

What The Overviewer is not

Full disclosure disclaimers of what The Overviewer is not.

	It does not run fast. Because of the high level of detail, initial renders of
a world can take some time. Expect minutes for medium worlds, hours for large
to huge worlds. Subsequent renders are much faster due to the caching.

Also note that speed is improving all the time. We continually make efficiency
improvements to The Overviewer. Besides, for the level of detail provided,
our users consider it worth the time!

	The Overviewer is not targeted at end users. We mainly see Overviewer fitting
in best with server operators, rendering their server’s map for all users to
view.

You are welcome to use The Overviewer for your single player worlds, and it
will work just fine. However, since the only interface is currently command
line based, you will need to know a bit about the command line in order to
operate The Overviewer.

	The Overviewer does not support Bedrock/Win10/Portable Edition worlds.

	The Overviewer is not a potato.

Requirements

This is a quick list of what’s required to run The Overviewer. It runs on
Windows, Mac, and Linux as long as you have these software packages installed:

	Python 3.4 or above (we are no longer compatible with Python 2.x)

	PIL (Python Imaging Library) or Pillow

	Numpy

	Either a Minecraft Client installed or a textures/ folder for the textures (possibly from a texturepack)

The first three are included in the Windows download. Also, there are additional
requirements for compiling it (like a compiler). More details are available in
either the Building or Installing pages.

Getting Started

The Overviewer works with Linux, Mac, and Windows! We provide Windows and Debian
built executables for your convenience. Find them as well as the full sources on
our Github Homepage [https://github.com/overviewer/Minecraft-Overviewer].

If you are running Windows, Debian, or Ubuntu and would like the pre-built
packages and don’t want to have to compile anything yourself, head to the
Installing page.

Running Windows and not familiar with the command line? Head to the
Windows Newbie Guide page.

If you would like to build the Overviewer from source yourself (it’s not that
bad), head to the Building page.

For all other platforms you will need to build it yourself.
Building the Overviewer from Source.

After you have The Overviewer built/installed see Running the Overviewer and
The Configuration File.

Help

IF YOU NEED HELP COMPILING OR RUNNING THE OVERVIEWER feel free to chat with
us live in IRC: #overviewer on Libera.Chat. There’s usually someone on there that
can help you out. Not familiar with IRC? Use the web client [https://overviewer.org/irc]. (If there’s no immediate
response, wait around or try a different time of day; we have to sleep sometime)

Also check our Frequently Asked Questions page.

If you think you’ve found a bug or other issue, file an issue on our Issue
Tracker [https://github.com/overviewer/Minecraft-Overviewer/issues]. Filing or
commenting on an issue sends a notice to our IRC channel, so the response time
is often very good!

Indices and tables

	Index

	Module Index

	Search Page

Installing

This page is for installing the pre-compiled binary versions of the Overviewer.
If you want to build the Overviewer from source yourself, head to Building. If you have already built The Overviewer, proceed to
Running the Overviewer.

The latest prebuilt packages for various systems will always be found
at the Overviewer Downloads [https://overviewer.org/downloads] page.

Windows

Running Windows and don’t want to compile the Overviewer? You’ve come to the
right place!

	Head to the Downloads [https://overviewer.org/downloads] page and download the most recent Windows download for your architecture (32 or 64 bit).

	For 32 bit you may need to install the VC++ 2008 (x86) [http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf] and VC++ 2010 (x86) [http://www.microsoft.com/downloads/en/details.aspx?familyid=a7b7a05e-6de6-4d3a-a423-37bf0912db84] redistributables.

For 64 bit, you’ll want these instead: VC++ 2008 (x64) [http://www.microsoft.com/downloads/en/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6] and VC++ 2010 (x64) [http://www.microsoft.com/download/en/details.aspx?id=14632]

	That’s it! Proceed with instructions on Running the Overviewer.

Debian / Ubuntu

We provide an APT repository with pre-built Overviewer packages for
Debian and Ubuntu users. To do this, add the following line to your
/etc/apt/sources.list

deb https://overviewer.org/debian ./

Note that you will need to have the apt-transport-https package installed
for this source to work.

Our APT repository is signed. To install the key (and allow for
automatic updates), run

wget -O - https://overviewer.org/debian/overviewer.gpg.asc | sudo apt-key add -

Then run apt-get update and apt-get install minecraft-overviewer and
you’re all set! See you at the Running the Overviewer page!

CentOS / RHEL / Fedora

Prerequisites for CentOS/RHEL 7

Enable EPEL to get a release of Python 3:

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

The official instructions [https://fedoraproject.org/wiki/EPEL] also recommend enabling a few
additional repositories, as some EPEL packages may depend on them. However, this is only relevant
if you are not using CentOS:

subscription-manager repos --enable "rhel-*-optional-rpms" --enable "rhel-*-extras-rpms" --enable "rhel-ha-for-rhel-*-server-rpms"

Installing the Overviewer

We provide a RPM repository with pre-built packages for users on RPM-based
distros. To add the Overviewer repository to YUM, just run

wget -O /etc/yum.repos.d/overviewer.repo https://overviewer.org/rpms/overviewer.repo

Then to install Overviewer run

yum install Minecraft-Overviewer

After that head to the Running the Overviewer page!

Building the Overviewer from Source

These instructions are for building the C extension for Overviewer. Once you
have finished with these instructions, head to Running the Overviewer.

Note

Pre-built Windows and Debian executables are available on the
Installing page. These kits already contain the compiled code and
require no further setup, so you can skip to the next section of the docs:
Running the Overviewer.

Get The Source

First step: download the platform-independent source! Either clone with Git
(recommended if you know Git) or download the most recent snapshot:

	Git URL to clone: git://github.com/overviewer/Minecraft-Overviewer.git

	Download most recent tar archive [https://github.com/overviewer/Minecraft-Overviewer/tarball/master]

	Download most recent zip archive [https://github.com/overviewer/Minecraft-Overviewer/zipball/master]

Once you have the source, see below for instructions on building for your
system.

Build Instructions For Various Operating Systems

	Windows Build Instructions

	Prerequisites

	Building with Visual Studio

	Building with mingw-w64 and msys2

	Building with mingw

	Linux

	macOS

Windows Build Instructions

First, you’ll need a compiler. You can either use Visual Studio, or
cygwin/mingw. The free Visual Studio Community [https://www.visualstudio.com/vs/community/] is okay. You will need to select the “Desktop Development with C++” WORKLOAD. Microsoft has been changing up the names on this with the “Community” edition of Visual Studio. If nothing else works, just install every Individual Visual C++ component you can find :)

Prerequisites

You will need the following:

	Python 3.x [https://www.python.org/downloads/windows/]

	A copy of the Pillow sources [https://github.com/python-pillow/Pillow].

	The Pillow Extension for Python.

	The Numpy Extension for Python.

	The extensions can be installed via:

c:\python37\python.exe -m pip -U numpy pillow

Building with Visual Studio

	Get the latest Overviewer source code as per above.

	From the Start menu, navigate to ‘Visual Studio 2017’ and open the ‘Developer Command Prompt for VS 2017’ (or whatever year) shortcut. A regular command or powershell prompt will NOT work for this.

	cd to the folder containing the Overviewer source code.

	Copy Imaging.h and ImPlatform.h from your Pillow sources into the current working directory.

	First try a build:

c:\python37\python setup.py build

If you encounter the following errors:

error: Unable to find vcvarsall.bat

then try the following:

set DISTUTILS_USE_SDK=1
set MSSdk=1
c:\python37\python setup.py build

If the build was successful, there should be a c_overviewer.pyd file in your current working directory.

Building with mingw-w64 and msys2

This is the recommended way to build on Windows without MSVC.

	Install msys2 by following all the instructions on
the msys2 installation page [https://msys2.github.io/].

	Install the dependencies:

pacman -S git mingw-w64-x86_64-python3-numpy mingw-w64-x86_64-python3-Pillow mingw-w64-x86_64-python3 mingw-w64-x86_64-toolchain

	Clone the Minecraft-Overviewer git repository:

git clone https://github.com/overviewer/Minecraft-Overviewer.git

The source code will be downloaded to your msys2 home directory, e.g.
C:\msys2\home\Potato\Minecraft-Overviewer

	Close the msys2 shell. Instead, open the MinGW64 shell.

	Build the Overviewer by changing your current working directory into the source
directory and executing the build script:

cd Minecraft-Overviewer
python3 setup.py build

After it finishes, you should now be able to execute overviewer.py from the MINGW64
shell.

Building with mingw

	Open a MinGW shell.

	cd to the Overviewer directory.

	Copy Imaging.h and ImPlatform.h from your Pillow sources into the current working directory.

	Build:

python3 setup.py build --compiler=mingw32

If the build fails with complaints about -mno-cygwin, open the file Lib/distutils/cygwincompiler.py
in an editor of your choice, and remove all mentions of -mno-cygwin. This is a bug in distutils,
filed as Issue 12641 [http://bugs.python.org/issue12641].

Linux

You will need the gcc compiler and a working build environment. On Ubuntu and
Debian, this can be done by installing the build-essential package.

You will need the following packages on Debian-derived distributions (e.g. Ubuntu):

	python3-pil or python3-pillow (the latter is usually aliased to the former)

	python3-dev

	python3-numpy

Note

If you choose to install pillow through pip instead of your distribution’s package
manager, you won’t get the pillow headers which Overviewer requires to build its C
extension. In that case, you should manually download the header files specific to
the version of pillow you installed, and point at them with the PIL_INCLUDE_DIR
environment variable. A version mismatch between the installed pillow library and
the headers can lead to segfaults while running Overviewer due to an ABI mismatch.

Then to build:

python3 setup.py build

At this point, you can run ./overviewer.py from the current directory, so to run it you’ll have to be in this directory and run ./overviewer.py or provide the the full path to overviewer.py. Another option would be to add this directory to your $PATH. Note that there is a python3 setup.py install step that you can run which will install things into /usr/local/bin, but this is strongly not recommended as it might conflict with other installs of Overviewer.

macOS

	Install the Xcode Command Line Tools by running the following command in a terminal (located in your /Applications/Utilities folder):

xcode-select --install

	Install Python 3 if you don’t already have it, for example from the official Python website [https://www.python.org/downloads/mac-osx/].

	Install PIP, e.g. with:

sudo easy_install pip

	Install Pillow (overviewer needs PIL, Pillow is a fork of PIL that provides the same functionality):

pip install Pillow

	Download the Pillow source files from https://github.com/python-pillow/Pillow/releases/latest and unpack the tar.gz file and move it to a directory you can remember

	Download the Minercaft Overviewer source-code from https://overviewer.org/builds/overviewer-latest.tar.gz

	Extract overviewer-[Version].tar.gz and move it to a directory you can remember

	Go into your Pillow-[Version] folder and navigate to the /src/libImaging directory

	Drag the following files from the Pillow-[Version]/src/libImaging folder to your overviewer-[Version] folder:

	Imaging.h

	ImagingUtils.h

	ImPlatform.h

	Make sure your installation of Python 3 is in $PATH

	In a terminal, change your current working directory to your overviewer-[Version] folder (e.g. by using cd Desktop/overviewer-[Version])

	Build:

python3 setup.py build

You should now be able to run Overviewer with ./overviewer.py inside of the
Overviewer directory.

Running the Overviewer

Rendering your First Map

Overviewer is a command-line application, and so it needs to be run from the
command line. If you installed Overviewer from a package manager, the command is
overviewer.py. If you downloaded it manually, open a terminal window and
navigate to wherever you downloaded Overviewer. For pre-compiled Windows builds,
the command is overviewer.exe. For other systems, it’s overviewer.py.

What follows in this section is a few examples to get you started. For full
usage, see the Usage section.

So, let’s render your first map! Let’s say you want to render your single player
world called “My World”. Let’s also say you want to save it c:mcmap. You
would type into your command prompt the following:

overviewer.exe "My World" c:\mcmap

If you’re on Linux or a Mac, you could do something like one of the following:

overviewer.py "My World" /home/username/mcmap

or

overviewer.py "My World" /Users/username/mcmap

Those will look for a single player world by that name. You can also specify the
path to the world you want to render. This is useful for rendering servers.

Let’s say you have a server installed in /home/username/mcserver. This command
will render the default dimension (in the case of Bukkit multiworld servers, the
default world is used. You can also specify the directory to the specific world
you want to render).

overviewer.py /home/username/mcserver /home/username/mcmap

After you enter one of the commands, The Overviewer should start rendering your
map. When the render is done, open up index.html using your web-browser of
choice. Pretty cool, huh? You can even upload this map to a web server to share
with others! Simply upload the entire folder to a web server and point your
users to index.html!

Incremental updates are just as easy, and a lot faster. If you go and change
something inside your world, run the command again and The Overviewer will
automatically re-render only what’s needed.

Specifying a different rendermode

There are a few built-in rendermodes for you to choose from. Each will render
your map differently. For example, if you want smooth lighting (which looks
really good), you would add --rendermodes=smooth-lighting to your command.
e.g.

overviewer.py --rendermodes=smooth-lighting /home/username/mcserver /home/username/mcmap

The rendermodes you have to choose from are:

	normal (the default)

	lighting

	smooth-lighting

	cave

You can specify more than one. Just separate them with a comma!

Usage

For this section, we assume the executable is overviewer.py. Replace that
with overviewer.exe for windows.

Overviewer usage:

overviewer.py [--rendermodes=...] [options] <World> <Output Dir>
overviewer.py --config=<config file> [options]

The first form is for basic or quick renderings without having to create a
config file. It is intentionally limited because the amount of configuration was
becoming unmanageable for the command line.

The second, preferred usage involves creating a configuration file which
specifies all the options including what to render, where to place the output,
and all the settings. See The Configuration File for details on that.

For example, on Windows if your Minecraft server runs out of c:\server\ and you want
to put the rendered map in c:\mcmap\, run this:

overviewer.exe c:\server\world c:\mcmap

For Mac or Linux builds from source, you would run something like this with the
current directory in the top level of the source tree:

./overviewer.py /opt/minecraft/server/world /opt/minecraft/mcmap

The first render can take a while, depending on the size of your world.

Options

The following options change the way The Overviewer generates or updates the
map, and are intended to be things you only have to use in special situations.
You should not normally have to specify these options; the default is
typically correct.

	
--no-tile-checks

	With this option, The Overviewer will determine which tiles to render by
looking at the saved last-render timestamp and comparing it to the
last-modified time of the chunks of the world. It builds a tree of tiles
that need updating and renders only those tiles.

This option does not do any checking of tile mtimes on disk, and thus is
the cheapest option: only rendering what needs updating while minimising
disk IO.

The caveat is that the only thing to trigger a tile update is if Minecraft
updates a chunk. Any other reason a tile may have for needing re-rendering
is not detected. This means that changes in your render configuration will
not be reflected in your world except in updated chunks. It could also cause
problems if the system clock of the machine running Minecraft is not stable.

This option is the default unless --forcerender or
--check-tiles is in effect. This option conflicts with
--forcerender and --check-tiles.

	
--check-tiles

	Forces The Overviewer to check each tile on disk and check to make sure it
is up to date. This also checks for tiles that shouldn’t exist and deletes
them.

This is functionally equivalent to --no-tile-checks with the
difference that each tile is individually checked. It is therefore useful if
the tiles are not consistent with the last-render timestamp that is
automatically stored. This option was designed to handle the case where the
last render was interrupted – some tiles have been updated but others
haven’t, so each one is checked before it is rendered.

This is slightly slower than --no-tile-checks due to the
additional disk-io involved in reading tile mtimes from the filesystem

Since this option also checks for erroneous tiles, It is also useful after
you delete sections of your map, e.g. with worldedit, to delete tiles that
should no longer exist. Overviewer greatly overestimates tiles to be
rendered and time needed to complete.

The caveats with this option are the same as for --no-tile-checks
with the additional caveat that tile timestamps in the filesystem must be
preserved. If you copy tiles or make changes to them with an external tool
that modifies mtimes of tiles, it could cause problems with this option.

This option is automatically activated when The Overviewer detects the last
render was interrupted midway through. This option conflicts with
--forcerender and --no-tile-checks

	
--forcerender

	Forces The Overviewer to re-render every tile regardless of whether it
thinks it needs updating or not. It does no tile mtime checks, and therefore
ignores the last render time of the world, the last modification times of
each chunk, and the filesystem mtimes of each tile. It unconditionally
renders every tile that exists.

The caveat with this option is that it does no checks, period. Meaning it
will not detect tiles that do exist, but shouldn’t (this can happen if your
world shrinks for some reason. For that specific case,
--check-tiles is actually the appropriate mode).

This option is useful if you have changed a render setting and wish to
re-render every tile with the new settings.

This option is automatically activated for first-time renders. This option
conflicts with --check-tiles and --no-tile-checks

	
--genpoi

	
Note

Don’t use this flag without first reading Signs and Markers!

Generates the POI markers for your map. This option does not do any tile/map
generation, and ONLY generates markers. See Signs and Markers on how to
configure POI options.

	
-p <procs>, --processes <procs>

	This specifies the number of worker processes to spawn on the local machine
to do work. It defaults to the number of CPU cores you have, if not
specified.

This option can also be specified in the config file as processes

	
--skip-scan

	
Note

Don’t use this flag without first reading Signs and Markers!

When generating POI markers, this option prevents scanning for entities and
tile entities, and only creates the markers specified in the config file.
This considerably speeds up the POI marker generation process if no entities
or tile entities are being used for POI markers. See Signs and Markers on
how to configure POI options.

	
-v, --verbose

	Activate a more verbose logging format and turn on debugging output. This
can be quite noisy but also gives a lot more info on what The Overviewer is
doing.

	
-q, --quiet

	Turns off one level of logging for quieter output. You can specify this more
than once. One -q will suppress all INFO lines. Two will suppress all
INFO and WARNING lines. And so on for ERROR and CRITICAL log messages.

If --verbose is given, then the first -q will counteract
the DEBUG lines, but not the more verbose logging format. Thus, you can
specify -v -q to get only INFO logs and higher (no DEBUG) but with the
more verbose logging format.

	
--update-web-assets

	Update web assets, including custom assets, without starting a render.
This won’t update overviewerConfig.js, but will recreate overviewer.js

Installing the Textures

Note

This procedure has changed with Minecraft 1.6’s Resource Pack update. The
latest versions of Overviewer are not compatible with Minecraft 1.5 client
resources.

If Overviewer is running on a machine with the Minecraft client installed, it
will automatically use the default textures from Minecraft.

Note

Overviewer will only search for installed client release versions, not
snapshots. If you want to use a snapshot client jar for the textures,
you must specify it manually with the texturepath
option.

If, however, you’re running on a machine without the Minecraft client installed,
or if you want to use different textures, you will need to provide the textures
manually. This is common for servers.

If you want or need to provide your own textures, you have several options:

	The easy solution is to download the latest client jar to the location the
launcher would normally install it. Overviewer will find it and use it.

You can use the following commands to download the client jar on Linux or Mac.
Run the first line in a terminal, changing the version string to the latest as appropriate
(these docs may not always be updated to reflect the latest). Then paste the second line into
your terminal to create directories if necessary. Then paste the third line
into your terminal to download the latest version. ${VERSION} will be replaced
by the actual version string from the first line. These 3 lines can be included in a shell
script prior to map generation to ensure the proper textures are always downloaded.

VERSION=1.16.1
mkdir -p ~/.minecraft/versions/${VERSION}/
wget https://overviewer.org/textures/${VERSION} -O ~/.minecraft/versions/${VERSION}/${VERSION}.jar

If that’s too confusing for you, then just take this single line and paste it into
a terminal to get 1.16 textures:

wget https://overviewer.org/textures/1.16.1 -O ~/.minecraft/versions/1.16.1/1.16.1.jar

	You can also just run the launcher to install the client.

	You can transfer the client jar to the correct place manually, from a computer
that does have the client, to your server. The correct places are:

	For Linux: ~/.minecraft/versions/<version>/<version>.jar

	For Mac: ~/Library/Application Support/minecraft/versions/<version>/<version>.jar

	For Windows: %APPDATA%/.minecraft/versions/<version>/<version>.jar

	You can download and use a custom resource pack. Download the resource pack
file and specify the path to it with the
texturepath option.

If you copy your world before you render it

The important thing to be careful about when copying world files to another
location is file modification times, which Overviewer uses to figure out what
parts of the map need updating. If you do a straight copy, usually this will
update the modification times on all the copied files, causing Overviewer to
re-render the entire map. To copy files on Unix, while keeping these
modification times intact, use cp -p. For people who render from backups,
GNU tar automatically handles modification times correctly. rsync -a
--delete will handle this correctly as well. If you use some other tool,
you’ll have to figure out how to do this yourself.

HTTPS support

In order to support displaying maps over HTTPS, Overviewer loads the Google
maps API and JQuery over HTTPS. This avoids security warnings for HTTPS
sites, and is not expected to cause problems for users.

If this change causes problems, take a look at the
custom web assets option. This allows you to
provide a custom index.html which loads the required Javascript libraries
over HTTP.

The Configuration File

Using a configuration file is now the preferred way of running The Overviewer.
You will need to create a blank file and specify it when running The Overviewer
like this:

overviewer.py --config=path/to/my_configfile

The config file is formatted in Python syntax. If you aren’t familiar with
Python, don’t worry, it’s pretty simple. Just follow the examples.

Note

You should always use forward slashes (“/”), even on
Windows. This is required because the backslash (”") has special meaning
in Python.

Examples

The following examples should give you an idea of what a configuration file looks
like, and also teach you some neat tricks.

A Simple Example

worlds["My world"] = "/home/username/server/world"

renders["normalrender"] = {
 "world": "My world",
 "title": "Normal Render of My World",
}

outputdir = "/home/username/mcmap"

This defines a single world, and a single render of that world. You can see
there are two main sections.

	The worlds dictionary

	Define items in the worlds dictionary as shown to tell The Overviewer
where to find your worlds. The keys to this dictionary (“My world” in the
example) is a name you give, and is referenced later in the render
dictionary. If you want to render more than one world, you would put more
lines like this one. Otherwise, one is sufficient.

	The renders dictionary

	Each item here declares a “render” which is a map of one dimension of one
world rendered with the given options. If you declare more than one render,
then you will get a dropdown box to choose which map you want to look at
when viewing the maps.

You are free to declare as many renders as you want with whatever options
you want. For example, you are allowed to render multiple worlds, or even
render the same world multiple times with different options.

Note

Since this is Python syntax, keep in mind you need to put quotation marks
around your strings. worlds[My world] will not work. It must be
worlds["My world"]

A more complicated example

worlds["survival"] = "/home/username/server/survivalworld"
worlds["creative"] = "/home/username/server/creativeworld"

renders["survivalday"] = {
 "world": "survival",
 "title": "Survival Daytime",
 "rendermode": smooth_lighting,
 "dimension": "overworld",
}

renders["survivalnight"] = {
 "world": "survival",
 "title": "Survival Nighttime",
 "rendermode": smooth_night,
 "dimension": "overworld",
}

renders["survivalnether"] = {
 "world": "survival",
 "title": "Survival Nether",
 "rendermode": nether_smooth_lighting,
 "dimension": "nether",
}

renders["survivalnethersouth"] = {
 "world": "survival",
 "title": "Survival Nether",
 "rendermode": nether_smooth_lighting,
 "dimension": "nether",
 "northdirection" : "lower-right",
}

renders["creative"] = {
 "world": "creative",
 "title": "Creative",
 "rendermode": smooth_lighting,
 "dimension": "overworld",
}

outputdir = "/home/username/mcmap"
texturepath = "/home/username/my_texture_pack.zip"

This config defines four maps for render. Two of them are of the survival
world’s overworld, one is for the survival’s nether, and one is for the creative
world.

Notice here we explicitly set the dimension property on each render. If
dimension is not specified, the default or overworld dimension is used. It is
necessary e.g. for the nether render.

Also note here we specify some different rendermodes. A rendermode refers to how
the map is rendered. The Overviewer can render a map in many different ways, and
there are many preset rendermodes, and you can even create your own (more on
that later).

And finally, note the usage of the texturepath option. This specifies a
texture pack (also called a resource pack) to use for the rendering. Also note
that it is set at the top level of the config file, and therefore applies to
every render. It could be set on individual renders to apply to just those
renders.

Note

See the sample_config.py file included in the repository for another
example.

A dynamic config file

It might be handy to dynamically retrieve parameters. For instance, if you
periodically render your last map backup which is located in a timestamped
directory, it is not convenient to edit the config file each time to fit the
new directory name.

Using environment variables, you can easily retrieve a parameter which has
been set by, for instance, your map backup script. In this example, Overviewer
is called from a bash script, but it can be done from other shell scripts
and languages.

#!/bin/bash

Add these lines to your bash script

Setting up an environment variable that child processes will inherit.
In this example, the map's path is not static and depends on the
previously set $timestamp var.
MYWORLD_DIR=/path/to/map/backup/$timestamp/YourWorld
export MYWORLD_DIR

Running the Overviewer
overviewer.py --config=/path/to/yourConfig.py

Note

The environment variable will only be local to the process and its child
processes. The Overviewer, when run by the script, will be able to access
the variable since it becomes a child process.

A config file example

Importing the os python module
import os

Retrieving the environment variable set up by the bash script
worlds["My world"] = os.environ['MYWORLD_DIR']

renders["normalrender"] = {
 "world": "My world",
 "title": "Normal Render of My World",
}

outputdir = "/home/username/mcmap"

Config File Specifications

The config file is a python file and is parsed with python’s execfile() builtin.
This means you can put arbitrary logic in this file. The Overviewer gives the
execution of the file a local dict with a few pre-defined items (everything in
the overviewer_core.rendermodes module).

If the above doesn’t make sense, just know that items in the config file take
the form key = value. Two items take a different form:, worlds and
renders, which are described below.

General

	worlds

	This is pre-defined as an empty dictionary. The config file is expected to
add at least one item to it.

Keys are arbitrary strings used to identify the worlds in the renders
dictionary.

Values are paths to worlds (directories with a level.dat)

e.g.:

worlds['myworld'] = "/path/to/myworld"

You must specify at least one world

Reminder: Always use forward slashes (“/”), even on Windows.

	renders

	This is also pre-defined as an empty dictionary. The config file is expected
to add at least one item to it. By default, it is an ordered dictionary; the
order you add entries to it will determine the default render in the output
map and the order the buttons appear in the map UI.

Keys are strings that are used as the identifier for this render in the
javascript, and also as the directory name for the tiles, but it’s
essentially up to you. It thus is recommended to make it a string with no
spaces or special characters, only alphanumeric characters.

Values are dictionaries specifying the configuration for the render. Each of
these render dictionaries maps strings naming configuration options to their
values. Valid keys and their values are listed in the Render Dictionary Keys
section.

e.g.:

renders['myrender'] = {
 'world': 'myworld',
 'title': 'Minecraft Server Title',
 }

You must specify at least one render

	outputdir = "<output directory path>"

	This is the path to the output directory where the rendered tiles will
be saved.

e.g.:

outputdir = "/path/to/output"

Reminder: Always use forward slashes (“/”), even on Windows.

Required

	processes = num_procs

	This specifies the number of worker processes to spawn on the local machine
to do work. It defaults to the number of CPU cores you have, if not
specified.

This can also be specified with --processes

e.g.:

processes = 2

Observers

	observer = <observer object>

	This lets you configure how the progress of the render is reported. The
default is to display a progress bar, unless run on Windows or with stderr
redirected to a file. The default value will probably be fine for most
people, but advanced users may want to make their own progress reporter (for
a web service or something like that) or you may want to force a particular
observer to be used. The observer object is expected to have at least start,
add, update, and finish methods.

If you want to specify an observer manually, try something like:

from .observer import ProgressBarObserver
observer = ProgressBarObserver()

There are currently three observers available: LoggingObserver,
ProgressBarObserver and JSObserver.

	LoggingObserver

	This gives the normal/older style output and is the default when output
is redirected to a file or when running on Windows

	ProgressBarObserver

	This is used by default when the output is a terminal. Displays a text based
progress bar and some statistics.

	JSObserver(outputdir[, minrefresh][, messages])

	This will display render progress on the output map in the bottom right
corner of the screen. JSObserver.

	
	outputdir="<output directory path"

	Path to overviewer output directory. For simplicity, specify this
as outputdir=outputdir and place this line after setting
outputdir = "<output directory path>".

Required

	
	minrefresh=<seconds>

	Progress information won’t be written to file or requested by your
web browser more frequently than this interval.

	
	messages=dict(totalTiles=<string>, renderCompleted=<string>, renderProgress=<string>)

	Customises messages displayed in browser. All three messages must be
defined similar to the following:

	totalTiles="Rendering %d tiles"
The %d format string will be replaced with the total number of
tiles to be rendered.

	renderCompleted="Render completed in %02d:%02d:%02d"
The three format strings will be replaced with the number of hours.
minutes and seconds taken to complete this render.

	renderProgress="Rendered %d of %d tiles (%d%% ETA:%s)""
The four format strings will be replaced with the number of tiles
completed, the total number of tiles, the percentage complete, and the ETA.

Format strings are explained here: http://docs.python.org/library/stdtypes.html#string-formatting
All format strings must be present in your custom messages.

from .observer import JSObserver
observer = JSObserver(outputdir, 10)

	MultiplexingObserver(Observer[, Observer[, Observer ...]])

	This observer will send the progress information to all Observers passed
to it.

	All Observers passed must implement the full Observer interface.

An example that updates both a LoggingObserver and a JSObserver
Import the Observers
from .observer import MultiplexingObserver, LoggingObserver, JSObserver

Construct the LoggingObserver
loggingObserver = LoggingObserver()

Construct a basic JSObserver
jsObserver = JSObserver(outputdir) # This assumes you have set the outputdir previous to this line

Set the observer to a MultiplexingObserver
observer = MultiplexingObserver(loggingObserver, jsObserver)

	ServerAnnounceObserver(target, pct_interval)

	This Observer will send its progress and status to a Minecraft server
via target with a Minecraft say command.

	
	target=<file handle to write to>

	Either a FIFO file or stdin. Progress and status messages will be written to this handle.

Required

	
	pct_interval=<update rate, in percent>

	Progress and status messages will not be written more often than this value.
E.g., a value of 1 will make the ServerAnnounceObserver write to its target
once for every 1% of progress.

Required

	RConObserver(target, password[, port][, pct_interval])

	This Observer will announce render progress with the server’s say
command through RCon.

	
	target=<address>

	Address of the target Minecraft server.

Required

	
	password=<rcon password>

	The server’s rcon password.

Required

	
	port=<port number>

	Port on which the Minecraft server listens for incoming RCon connections.

Default: 25575

	
	pct_interval=<update rate, in percent>

	Percentage interval in which the progress should be announced, the same as
for ServerAnnounceObserver.

Default: 10

Custom web assets

	customwebassets = "<path to custom web assets>"

	This option allows you to specify a directory containing custom web assets
to be copied to the output directory. Any files in the custom web assets
directory overwrite the default files.

If you are providing a custom index.html, the following strings will be replaced:

	{title}
Will be replaced by ‘Minecraft Overviewer’

	{time}
Will be replaced by the current date and time when the world is rendered
e.g. ‘Sun, 12 Aug 2012 15:25:40 BST’

	{version}
Will be replaced by the version of Overviewer used
e.g. ‘0.9.276 (5ff9c50)’

Render Dictionary Keys

The render dictionary is a dictionary mapping configuration key strings to
values. The valid configuration keys are listed below.

Note

Any of these items can be specified at the top level of the config file to
set the default for every render. For example, this line at the top of the
config file will set the world for every render to ‘myworld’ if no world is
specified:

world = 'myworld'

Then you don’t need to specify a world key in the render dictionaries:

renders['arender'] = {
 'title': 'This render doesn't explicitly declare a world!',
 }

General

	world

	Specifies which world this render corresponds to. Its value should be a
string from the appropriate key in the worlds dictionary.

Required

	title

	This is the display name used in the user interface. Set this to whatever
you want to see displayed in the Map Type control (the buttons in the upper-
right).

Required

	dimension

	Specified which dimension of the world should be rendered. Each Minecraft
world has by default 3 dimensions: The Overworld, The Nether, and The End.
Bukkit servers are a bit more complicated, typically worlds only have a
single dimension, in which case you can leave this option off.

The value should be a string. It should either be one of “overworld”,
“nether”, “end”, or the directory name of the dimension within the world.
e.g. “DIM-1”

Note

If you choose to render your nether dimension, you must also use a
nether rendermode. Otherwise you’ll
just end up rendering the nether’s ceiling.

Note

For the end, you will most likely want to turn down the strength of
the shadows, as you’d otherwise end up with a very dark result.

e.g.:

end_lighting = [Base(), EdgeLines(), Lighting(strength=0.5)]
end_smooth_lighting = [Base(), EdgeLines(), SmoothLighting(strength=0.5)]

Default: "overworld"

Rendering

	rendermode

	This is which rendermode to use for this render. There are many rendermodes
to choose from. This can either be a rendermode object, or a string, in
which case the rendermode object by that name is used.

e.g.:

"rendermode": "normal",

Here are the rendermodes and what they do:

	"normal"

	A normal render with no lighting. This is the fastest option.

	"lighting"

	A render with per-block lighting, which looks similar to Minecraft
without smooth lighting turned on. This is slightly slower than the
normal mode.

	"smooth_lighting"

	A render with smooth lighting, which looks similar to Minecraft with
smooth lighting turned on.

This option looks the best but is also the slowest.

	"night"

	A “nighttime” render with blocky lighting.

	"smooth_night"

	A “nighttime” render with smooth lighting

	"nether"

	A normal lighting render of the nether. You can apply this to any
render, not just nether dimensions. The only difference between this and
normal is that the ceiling is stripped off, so you can actually see
inside.

Note

Selecting this rendermode doesn’t automatically render your nether
dimension. Be sure to also set the
dimension option to ‘nether’.

	"nether_lighting"

	Similar to “nether” but with blocky lighting.

	"nether_smooth_lighting"

	Similar to “nether” but with smooth lighting.

	"cave"

	A cave render with depth tinting (blocks are tinted with a color
dependent on their depth, so it’s easier to tell overlapping caves
apart)

Default: "normal"

Note

The value for the ‘rendermode’ key can be either a string or
rendermode object (strings simply name one of the built-in rendermode
objects). The actual object type is a list of rendermode primitive
objects. See Custom Rendermodes and Rendermode Primitives for more information.

	northdirection

	This is direction or viewpoint angle with which north will be rendered. This north direction will
match the established north direction in the game where the sun rises in the
east and sets in the west.

Here are the valid north directions:

	"upper-left"

	"upper-right"

	"lower-left"

	"lower-right"

Default: "upper-left"

	overlay

	This specifies which renders that this render will be displayed on top of.
It should be a list of other renders. If this option is confusing, think
of this option’s name as “overlay_on_to”.

If you leave this as an empty list, this overlay will be displayed on top
of all renders for the same world/dimension as this one.

As an example, let’s assume you have two renders, one called “day” and one
called “night”. You want to create a Biome Overlay to be displayed on top
of the “day” render. Your config file might look like this:

Note

When ‘overlay’ is used the imgformat must be set to a transparent image
format like "png". Otherwise the overlay is rendered without transparency
and the render underneath will not show.

outputdir = "output_dir"

worlds["exmaple"] = "exmaple"

renders['day'] = {
 'world': 'exmaple',
 'rendermode': 'smooth_lighting',
 'title': "Daytime Render",
}
renders['night'] = {
 'world': 'exmaple',
 'rendermode': 'night',
 'title': "Night Render",
}

renders['biomeover'] = {
 'world': 'exmaple',
 'rendermode': [ClearBase(), BiomeOverlay()],
 'title': "Biome Coloring Overlay",
 'overlay': ['day']
}

Default: [] (an empty list)

	texturepath

	This is a where a specific texture or resource pack can be found to use
during this render. It can be a path to either a folder or a zip/jar file
containing the texture resources. If specifying a folder, this option should
point to a directory that contains the assets/ directory (it should not
point to the assets directory directly or any one particular texture image).

Its value should be a string: the path on the filesystem to the resource
pack.

	crop

	You can use this to render one or more small subsets of your map. The format
of an individual crop zone is (min x, min z, max x, max z); if you wish to
specify multiple crop zones, you may do so by specifying a list of crop zones,
i.e. [(min x1, min z1, max x1, max z1), (min x2, min z2, max x2, max z2)]

The coordinates are block coordinates. The same you get with the debug menu
in-game and the coordinates shown when you view a map.

Example that only renders a 1000 by 1000 square of land about the origin:

renders['myrender'] = {
 'world': 'myworld',
 'title': "Cropped Example",
 'crop': (-500, -500, 500, 500),
}

Example that renders two 500 by 500 squares of land:

renders['myrender'] = {
 'world': 'myworld',
 'title': "Multi cropped Example",
 'crop': [(-500, -500, 0, 0), (0, 0, 500, 500)]
}

This option performs a similar function to the old --regionlist option
(which no longer exists). It is useful for example if someone has wandered
really far off and made your map too large. You can set the crop for the
largest map you want to render (perhaps (-10000,-10000,10000,10000)). It
could also be used to define a really small render showing off one
particular feature, perhaps from multiple angles.

Warning

If you decide to change the bounds on a render, you may find it produces
unexpected results. It is recommended to not change the crop settings
once it has been rendered once.

For an expansion to the bounds, because chunks in the new bounds have
the same mtime as the old, tiles will not automatically be updated,
leaving strange artifacts along the old border. You may need to use
--forcerender to force those tiles to update. (You can use
the forcerender option on just one render by adding 'forcerender':
True to that render’s configuration)

For reductions to the bounds, you will need to render your map at least
once with the --check-tiles mode activated, and then once with
the --forcerender option. The first run will go and delete tiles that
should no longer exist, while the second will render the tiles around
the edge properly. Also see this faq entry.

Sorry there’s no better way to handle these cases at the moment. It’s a
tricky problem and nobody has devoted the effort to solve it yet.

Image options

	imgformat

	This is which image format to render the tiles into. Its value should be a
string containing “png”, “jpg”, “jpeg” or “webp”.

Note

For WebP, your PIL/Pillow needs to be built with WebP support. Do
keep in mind that not all browsers support WebP images.

Default: "png"

	imgquality

	This is the image quality used when saving the tiles into the JPEG or WebP
image format. Its value should be an integer between 0 and 100.

For WebP images in lossless mode, it determines how much effort is spent
on compressing the image.

Default: 95

	imglossless

	Determines whether a WebP image is saved in lossless or lossy mode. Has
no effect on other image formats.

Default: True

optimizeimg

Warning

Using image optimizers will increase render times significantly.

Note

With the port to Python 3, the import line has changed. Prefix the
optimizeimages module with a period, so
from .optimizeimages import foo, bar.

This option specifies which additional tools overviewer should use to
optimize the filesize of rendered tiles.
The tools used must be placed somewhere where overviewer can find them, for
example the “PATH” environment variable or a directory like /usr/bin.

The option is a list of Optimizer objects, which are then executed in
the order in which they’re specified:

Import the optimizers we need
from .optimizeimages import pngnq, optipng

worlds["world"] = "/path/to/world"

renders["daytime"] = {
 "world":"world",
 "title":"day",
 "rendermode":smooth_lighting,
 "optimizeimg":[pngnq(sampling=1), optipng(olevel=3)],
}

Note

Don’t forget to import the optimizers you use in your config file, as shown in the
example above.

Here is a list of supported image optimization programs:

	pngnq

	pngnq quantizes 32-bit RGBA images into 8-bit RGBA palette PNGs. This is
lossy, but reduces filesize significantly. Available settings:

	sampling

	An integer between 1 and 10, 1 samples all pixels, is slow and yields
the best quality. Higher values sample less of the image, which makes
the process faster, but less accurate.

Default: 3

	dither

	Either the string "n" for no dithering, or "f" for Floyd
Steinberg dithering. Dithering helps eliminate colorbanding, sometimes
increasing visual quality.

Warning

With pngnq version 1.0 (which is what Ubuntu 12.04 ships), the
dithering option is broken. Only the default, no dithering,
can be specified on those systems.

Default: "n"

Warning

Because of several PIL bugs, only the most zoomed in level has transparency
when using pngnq. The other zoom levels have all transparency replaced by
black. This is not pngnq’s fault, as pngnq supports multiple levels of
transparency just fine, it’s PIL’s fault for not even reading indexed
PNGs correctly.

	optipng

	optipng tunes the deflate algorithm and removes unneeded channels from the PNG,
producing a smaller, lossless output image. It was inspired by pngcrush.
Available settings:

	olevel

	An integer between 0 (few optimizations) and 7 (many optimizations).
The default should be satisfactory for everyone, higher levels than the default
see almost no benefit.

Default: 2

	oxipng

	An optipng replacement written in Rust. Works much like optipng.

	olevel

	An integer between 0 (few optimizations) and 6 (many
optimizations). The default should be satisfactory for everyone,
higher levels than the default see almost no benefit.

Default: 2

	threads

	An integer specifying how many threads per process to use. Note that
Overviewer spawns one oxipng process per Overviewer worker process,
so increasing this value if you already have one Overviewer process
per CPU thread makes little sense, and can actually slow down the
rendering.

Default: 1

	pngcrush

	pngcrush, like optipng, is a lossless PNG recompressor. If you are able to do so, it
is recommended to use optipng instead, as it generally yields better results in less
time.
Available settings:

	brute

	Either True or False. Cycles through all compression methods, and is very slow.

Note

There is practically no reason to ever use this. optipng will beat pngcrush, and
throwing more CPU time at pngcrush most likely won’t help. If you think you need
this option, then you are most likely wrong.

Default: False

	jpegoptim

	jpegoptim can do both lossy and lossless JPEG optimisation. If no options are specified,
jpegoptim will only do lossless optimisations.
Available settings:

	quality

	A number between 0 and 100 that corresponds to the jpeg quality level. If the input
image has a lower quality specified than the output image, jpegoptim will only do
lossless optimisations.

If this option is specified and the above condition does not apply, jpegoptim will
do lossy optimisation.

Default: None (= Unspecified)

	target_size

	Either a percentage of the original filesize (e.g. "50%") or a target filesize
in kilobytes (e.g. 15). jpegoptim will then try to reach this as its target size.

If specified, jpegoptim will do lossy optimisation.

Warning

This appears to have a greater performance impact than just setting quality.
Unless predictable filesizes are a thing you need, you should probably use quality
instead.

Default: None (= Unspecified)

Default: []

Zoom

These options control the zooming behavior in the JavaScript output.

	defaultzoom

	This value specifies the default zoom level that the map will be
opened with. It has to be greater than 0, which corresponds to the
most zoomed-out level. If you use minzoom or maxzoom, it
should be between those two.

Default: 1

	maxzoom

	This specifies the maximum, closest in zoom allowed by the zoom
control on the web page. This is relative to 0, the farthest-out
image, so setting this to 8 will allow you to zoom in at most 8
times. This is not relative to minzoom, so setting
minzoom will shave off even more levels. If you wish to
specify how many zoom levels to leave off, instead of how many
total to use, use a negative number here. For example, setting
this to -2 will disable the two most zoomed-in levels.

Note

This does not change the number of zoom levels rendered, but allows
you to neglect uploading the larger and more detailed zoom levels if bandwidth
usage is an issue.

Default: Automatically set to most detailed zoom level

	minzoom

	This specifies the minimum, farthest away zoom allowed by the zoom
control on the web page. For example, setting this to 2 will
disable the two most zoomed-out levels.

Note

This does not change the number of zoom levels rendered, but allows
you to have control over the number of zoom levels accessible via the
slider control.

Default: 0 (zero, which does not disable any zoom levels)

Other HTML/JS output options

	showlocationmarker

	Allows you to specify whether to show the location marker when accessing a URL
with coordinates specified.

Default: True

	base

	Allows you to specify a remote location for the tile folder, useful if you
rsync your map’s images to a remote server. Leave a trailing slash and point
to the location that contains the tile folders for each render, not the
tiles folder itself. For example, if the tile images start at
http://domain.com/map/world_day/ you want to set this to http://domain.com/map/

	markers

	This controls the display of markers, signs, and other points of interest
in the output HTML. It should be a list of dictionaries.

Note

Setting this configuration option alone does nothing. In order to get
markers and signs on our map, you must also run the genPO script. See
the Signs and markers section for more details and documenation.

Default: [] (an empty list)

	poititle

	This controls the display name of the POI/marker dropdown control.

Default: “Signs”

	showspawn

	This is a boolean, and defaults to True. If set to False, then the spawn
icon will not be displayed on the rendered map.

	bgcolor

	This is the background color to be displayed behind the map. Its value
should be either a string in the standard HTML color syntax or a 4-tuple in
the format of (r,b,g,a). The alpha entry should be set to 0.

Default: #1a1a1a

	center

	This is allows you to specify a list or a tuple of Minecraft world coordinates
that should be used as the map’s default center, e.g. [800, 64, -334].

You may also specify only two coordinates, in case they will be interpreted as
X and Z coordinates, and Y is assumed to be 64 (sea level).

Default: The coordinates of your spawn, or [0, 64, 0] if the regionset
has no spawn.

Map update behavior

	rerenderprob

	This is the probability that a tile will be rerendered even though there may
have been no changes to any blocks within that tile. Its value should be a
floating point number between 0.0 and 1.0.

Default: 0

	forcerender

	This is a boolean. If set to True (or any non-false value) then this
render will unconditionally re-render every tile regardless of whether it
actually needs updating or not.

The --forcerender command line option acts similarly, but with
one important difference. Say you have 3 renders defined in your
configuration file. If you use --forcerender, then all 3 of those
renders get re-rendered completely. However, if you just need one of them
re-rendered, that’s unnecessary extra work.

If you set 'forcerender': True, on just one of those renders, then just
that one gets re-rendered completely. The other two render normally (only
tiles that need updating are rendered).

You probably don’t want to leave this option in your config file, it is
intended to be used temporarily, such as after a setting change, to
re-render the entire map with new settings. If you leave it in, then
Overviewer will end up doing a lot of unnecessary work rendering parts of
your map that may not have changed.

Example:

renders['myrender'] = {
 'world': 'myworld',
 'title': "Forced Example",
 'forcerender': True,
}

	renderchecks

	This is an integer, and functions as a more complex form of
forcerender. Setting it to 1 enables --check-tiles
mode, setting it to 2 enables --forcerender, and 3 tells
Overviewer to keep this particular render in the output, but
otherwise don’t update it. It defaults to 0, which is the usual
update checking mode.

	changelist

	This is a string. It names a file where it will write out, one per line, the
path to tiles that have been updated. You can specify the same file for
multiple (or all) renders and they will all be written to the same file. The
file is cleared when The Overviewer starts.

This option is useful in conjunction with a simple upload script, to upload
the files that have changed.

Warning

A solution like rsync -a --delete is much better because it also
watches for tiles that should be deleted, which is impossible to
convey with the changelist option. If your map ever shrinks or you’ve
removed some tiles, you may need to do some manual deletion on the
remote side.

Custom Rendermodes and Rendermode Primitives

We have generalized the rendering system. Every rendermode is made up of a
sequence of rendermode primitives. These primitives add some functionality to
the render, and stacked together, form a functional rendermode. Some rendermode
primitives have options you can change. You are free to create your own
rendermodes by defining a list of rendermode primitives.

There are 9 rendermode primitives. Each has a helper class defined in
overviewer_core.rendermodes, and a section of C code in the C extension.

A list of rendermode primitives defines a rendermode. During rendering, each
rendermode primitive is applied in sequence. For example, the lighting
rendermode consists of the primitives “Base” and “Lighting”. The Base primitive
draws the blocks with no lighting, and determines which blocks are occluded
(hidden). The Lighting primitive then draws the appropriate shading on each
block.

More specifically, each primitive defines a draw() and an is_occluded()
function. A block is rendered if none of the primitives determine the block is
occluded. A block is rendered by applying each primitives’ draw() function in
sequence.

The Rendermode Primitives

	Base

	This is the base of all non-overlay rendermodes. It renders each block
according to its defined texture, and applies basic occluding to hidden
blocks.

Options

	biomes

	Whether to render biome coloring or not. Default: True.

Set to False to disable biomes:

nobiome_smooth_lighting = [Base(biomes=False), EdgeLines(), SmoothLighting()]

	Nether

	This doesn’t affect the drawing, but occludes blocks that are connected to
the ceiling.

	HeightFading

	Draws a colored overlay on the blocks that fades them out according to their
height.

Options

	sealevel

	sealevel of the word you’re rendering. Note that the default,
128, is usually incorrect for most worlds. You should
probably set this to 64. Default: 128

	Depth

	Only renders blocks between the specified min and max heights.

Options

	min

	lowest level of blocks to render. Default: 0

	max

	highest level of blocks to render. Default: 255

	Exposed

	Only renders blocks that are exposed (adjacent to a transparent block).

Options

	mode

	when set to 1, inverts the render mode, only drawing unexposed blocks. Default: 0

	NoFluids

	Don’t render fluid blocks (water, lava).

	EdgeLines

	Draw edge lines on the back side of blocks, to help distinguish them from
the background.

Options

	opacity

	The darkness of the edge lines, from 0.0 to 1.0. Default: 0.15

	Cave

	Occlude blocks that are in direct sunlight, effectively rendering only
caves.

Options

	only_lit

	Only render lit caves. Default: False

	Hide

	Hide blocks based on blockid. Blocks hidden in this way will be
treated exactly the same as air.

Options

	blocks

	A list of block ids, or (blockid, data) tuples to hide.

	DepthTinting

	Tint blocks a color according to their depth (height) from bedrock. Useful
mainly for cave renders.

	Lighting

	Applies lighting to each block.

Options

	strength

	how dark to make the shadows. from 0.0 to 1.0. Default: 1.0

	night

	whether to use nighttime skylight settings. Default: False

	color

	whether to use colored light. Default: False

	SmoothLighting

	Applies smooth lighting to each block.

Options

(same as Lighting)

	ClearBase

	Forces the background to be transparent. Use this in place of Base
for rendering pure overlays.

	SpawnOverlay

	Color the map red in areas where monsters can spawn. Either use
this on top of other modes, or on top of ClearBase to create a
pure overlay.

Options

	overlay_color

	custom color for the overlay in the format (r,g,b,a). If not
defined a red color is used.

	SlimeOverlay

	Color the map green in chunks where slimes can spawn. Either use
this on top of other modes, or on top of ClearBase to create a
pure overlay.

Options

	overlay_color

	custom color for the overlay in the format (r,g,b,a). If not
defined a green color is used.

	MineralOverlay

	Color the map according to what minerals can be found
underneath. Either use this on top of other modes, or on top of
ClearBase to create a pure overlay.

Options

	minerals

	A list of (blockid, (r, g, b)) tuples to use as colors. If not
provided, a default list of common minerals is used.

Example:

MineralOverlay(minerals=[(64,(255,255,0)), (13,(127,0,127))])

	StructureOverlay

	Color the map according to patterns of blocks. With this rail overlays
or overlays for other small structures can be realized. It can also be
a MineralOverlay with alpha support.

This Overlay colors according to a patterns that are specified as
multiple tuples of the form (relx, rely, relz, blockid). So
by specifying (0, -1, 0, 4) the block below the current one has to
be a cobblestone.

One color is then specified as
((relblockid1, relblockid2, ...), (r, g, b, a)) where the
relblockid* are relative coordinates and the blockid as specified
above. The relblockid* must match all at the same time for the
color to apply.

Example:

StructureOverlay(structures=[(((0, 0, 0, 66), (0, -1, 0, 4)), (255, 0, 0, 255)),
 (((0, 0, 0, 27), (0, -1, 0, 4)), (0, 255, 0, 255))])

In this example all rails(66) on top of cobblestone are rendered in
pure red. And all powerrails(27) are rendered in green.

If structures is not provided, a default rail coloring is used.

	BiomeOverlay

	Color the map according to the biome at that point. Either use on
top of other modes or on top of ClearBase to create a pure overlay.

Options

	biomes

	A list of (“biome name”, (r, g, b)) tuples to use as colors. Any
biome not specified won’t be highlighted. If not provided then
a default list of biomes and colors is used.

Example:

BiomeOverlay(biomes=[("Forest", (0, 255, 0)), ("Desert", (255, 0, 0))])

	HeatmapOverlay

	Color the map according to when a chunk was last visited. The color for Timestamps
between t_invisible and t_full will be interpolated between 0 and 255.
This RenderPrimitive might require use of the forcerender option.
Otherwise the Overlay might not get updated for not visited chunks (resulting in them
always being the brightest color, as if recently visited).

Options

	t_invisible

	The timestamp when the overlay will get invisible. The default is 30 days ago.

	t_now

	The timestamp when the overlay will be fully visible. The default is today.

Example:

HeatmapOverlay(
 t_invisible=int((t_now - timedelta(days=2)).timestamp()),
 t_full=int(t_now.timestamp()),
)

Defining Custom Rendermodes

Each rendermode primitive listed above is a Python class that is automatically
imported in the context of the config file (They come from
overviewer_core.rendermodes). To define your own rendermode, simply define a
list of rendermode primitive objects like so:

my_rendermode = [Base(), EdgeLines(), SmoothLighting()]

If you want to specify any options, they go as parameters to the rendermode
primitive object’s constructor:

my_rendermode = [Base(), EdgeLines(opacity=0.2),
 SmoothLighting(strength=0.5, color=True)]

Then you can use your new rendermode in your render definitions:

renders["survivalday"] = {
 "world": "survival",
 "title": "Survival Daytime",
 "rendermode": my_rendermode,
 "dimension": "overworld",
}

Note the lack of quotes around my_rendermode. This is necessary since you
are referencing the previously defined list, not one of the built-in
rendermodes.

Built-in Rendermodes

The built-in rendermodes are nothing but pre-defined lists of rendermode
primitives for your convenience. Here are their definitions:

normal = [Base(), EdgeLines()]
lighting = [Base(), EdgeLines(), Lighting()]
smooth_lighting = [Base(), EdgeLines(), SmoothLighting()]
night = [Base(), EdgeLines(), Lighting(night=True)]
smooth_night = [Base(), EdgeLines(), SmoothLighting(night=True)]
nether = [Base(), EdgeLines(), Nether()]
nether_lighting = [Base(), EdgeLines(), Nether(), Lighting()]
nether_smooth_lighting = [Base(), EdgeLines(), Nether(), SmoothLighting()]
cave = [Base(), EdgeLines(), Cave(), DepthTinting()]

Signs and Markers

The Overviewer can display signs, markers, and other points of interest on your
map. This works a little differently than it has in the past, so be sure to read
these docs carefully.

In these docs, we use the term POI (or point of interest) to refer to entities and
tileentities.

Configuration File

Filter Functions

A filter function is a python function that is used to figure out if a given POI
should be part of a markerSet or not, and to control how it is displayed.
The function should accept one argument (a dictionary, also know as an associative
array), and return a string representing the text to be displayed. For example:

def signFilter(poi):
 if poi['id'] == 'Sign' or poi['id'] == 'minecraft:sign':
 return "\n".join([poi['Text1'], poi['Text2'], poi['Text3'], poi['Text4']])

Note

This example is intended as a teaching aid and does not escape HTML,
so if you are concerned that your Minecraft players will put HTML/JS into
their signs, see below for a version that does do escaping.

If a POI doesn’t match, the filter can return None (which is the default if a python
functions runs off the end without an explicit ‘return’).

The single argument will either a TileEntity, or an Entity taken directly from
the chunk file. It could also be a special entity representing a player’s location
or a player’s spawn. See below for more details.

In this example, this function returns all 4 lines from the sign
if the entity is a sign.
For more information of TileEntities and Entities, see
the Chunk Format [http://www.minecraftwiki.net/wiki/Chunk_format] page on
the Minecraft Wiki.

A more complicated filter function can construct a more customized display text:

def chestFilter(poi):
 if poi['id'] == "Chest" or poi['id'] == 'minecraft:chest':
 return "Chest with %d items" % len(poi.get('Items', []))

It is also possible to return a tuple from the filter function to specify a hovertext
different from the text displayed in the info window. The first entry of the tuple will
be used as the hover text, the second will be used as the info window content:

def chestFilter(poi):
 if poi['id'] == "Chest" or poi['id'] == 'minecraft:chest':
 return ("Chest", "Chest with %d items" % len(poi.get('Items', [])))

Additionally, you can filter based on other Block Entity data by including references to other
Minecraft Block Entity fields. For instance, you can filter out world-generated lootable chests
that have not yet been opened by players by filtering out chests that still have loot tables:

def chestFilter(poi):
 if poi['id'] == "Chest" or poi['id'] == 'minecraft:chest':
 if "LootTable" in poi:
 return None
 else:
 return ("Chest", "Chest with %d items" % len(poi.get('Items', [])))

Because of the way the config file is loaded, if you need to import a function or module
for use in your filter function, you need to explicitly load it into the global namespace:

global escape
from html import escape
def signFilter(poi):
 if poi['id'] == 'Sign' or poi['id'] == 'minecraft:sign':
 return escape("\n".join([poi['Text1'], poi['Text2'], poi['Text3'], poi['Text4']]))

Since writing these filters can be a little tedious, a set of predefined filters
functions are provided. See the Predefined Filter Functions section for
details.

Special POIs

There are currently two special types of POIs. They each have a special id:

	PlayerSpawn

	Used to indicate the spawn location of a player. The player’s name is set
in the EntityId key, and the location is in the x,y,z keys.

	Player

	Used to indicate the last known location of a player. The player’s name is set
in the EntityId key, and the location is in the x,y,z keys.

Note

The player location is taken from level.dat (in the case of a single-player world)
or the player.dat files (in the case of a multi-player server). The locations are
only written to these files when the world is saved, so this won’t give you real-time
player location information.

Here’s an example that displays icons for each player:

def playerIcons(poi):
 if poi['id'] == 'Player':
 poi['icon'] = "https://overviewer.org/avatar/%s" % poi['EntityId']
 return "Last known location for %s" % poi['EntityId']

Note how each POI can get a different icon by setting poi['icon']. These icons must exist in either
the output folder, or in your custom web assets folder. If the icon file does not exist in the correct
location, your markers will be shown without an icon - making them invisible!

Manual POIs

It is also possible to manually define markers. Each render can have a render dictionary key
called manualpois, which is a list of dicts. Each dict represents a marker, and is required
to have at least the attributes x, y, z and id, with the coordinates being Minecraft
world coordinates. (i.e. what you see in-game when you press F3)

An example which adds two POIs with the id “town”, and then uses a filter function to filter for them:

def townFilter(poi):
 if poi['id'] == 'Town':
 return poi['name']

renders['myrender'] = {
 'world':'myworld',
 'title':'Example',
 'manualpois':[
 {'id':'Town',
 'x':200,
 'y':64,
 'z':200,
 'name':'Foo'},
 {'id':'Town',
 'x':-300,
 'y':85,
 'z':-234,
 'name':'Bar'}],
 'markers': [dict(name="Towns", filterFunction=townFilter)],
}

Here is a more complex example where not every marker of a certain id has a certain key:

def townFilter(poi):
 if poi['id'] == 'Town':
 try:
 return (poi['name'], poi['description'])
 except KeyError:
 return poi['name'] + '\n'

renders['myrender'] = {
 'world':'myworld',
 'title':'Example',
 'manualpois':[
 {'id':'Town',
 'x':200,
 'y':64,
 'z':200,
 'name':'Foo',
 'description':'Best place to eat hamburgers'},
 {'id':'Town',
 'x':-300,
 'y':85,
 'z':-234,
 'name':'Bar'}],
 'markers': [dict(name="Towns", filterFunction=townFilter, icon="markers/marker_town.png")],
 ### Note: The 'icon' parameter allows you to specify a custom icon, as per
 ### standard markers. This icon must exist in the same folder as your
 ### custom webassets or in the same folder as the generated index.html
 ### in this case, we use the marker_town.png icon which comes with
 ### the Overviewer by default, located in a subdirectory of web_assets.
}

Render Dictionary Key

Each render can specify a list of zero or more filter functions. Each of these
filter functions become a selectable item in the ‘Signs’ drop-down menu in the
rendered map. Previously, this used to be a list of functions. Now it is a list
of dictionaries. For example:

renders['myrender'] = {
 'world': 'myworld',
 'title': "Example",
 'markers': [dict(name="All signs", filterFunction=signFilter),
 dict(name="Chests", filterFunction=chestFilter, icon="chest.png", createInfoWindow=False)]
}

The following keys are accepted in the marker dictionary:

	name

	This is the text that is displayed in the ‘Signs’ dropdown.

	filterFunction

	This is the filter function. It must accept at least 1 argument (the POI to filter),
and it must return either None or a string.

	icon

	Optional. Specifies the icon to use for POIs in this group. If omitted, it defaults
to a signpost icon. Note that each POI can have different icon by setting the key ‘icon’
on the POI itself. (this can be done by modifying the POI in the filter function. See the
example above)

	createInfoWindow

	Optional. Specifies whether or not the icon displays an info window on click. Defaults to True

	showIconInLegend

	Optional. Specifies whether or not the icon is displayed in the legend. Defaults to False

	checked

	Optional. Specifies whether or not this marker group will be checked(visible) by default when
the map loads. Defaults to False

Generating the POI Markers

Note

Markers will not be updated or added during a regular overviewer.py map render!
You must use one of the following options to generate your markers.

The –genpoi option

Running overviewer.py with the --genpoi option flag will generate your
POI markers. For example:

/path/to/overviewer.py --config /path/to/your/config/file.conf --genpoi

Note

A –genpoi run will NOT generate a map render, it will only generate markers.

If all went well, you will see a “Markers” button in the upper-right corner of
your map.

genPOI.py

The genPOI.py script is also provided, and can be used directly. For example:

/path/to/overviewer/genpoi.py --config=/path/to/your/config.file

This will generate the necessary JavaScript files needed in your config file’s
outputdir.

Options

genPOI comes with a few options of its own.

	
-c <file>, --config=<file>

	The config file to use for the genPOI operation. This must be the same
config file that you use for your normal rendering runs.

	
-q, --quiet

	Outputs less information onto the terminal while running.

	
--skip-scan

	Skip scanning the world for entities and tile entities. Useful if you only
want to generate markers for players or through manual POIs, as you can
speed up the genPOI operation considerably.

	
--skip-players

	Skip reading and retrieving player data during genPOI runs. This is useful
if you don’t plan on generating markers for the player locations.

Predefined Filter Functions

TODO write some filter functions, then document them here

Marker Icons Overviewer ships by default

Overviewer comes with multiple small icons that you can use for your markers.
You can find them in the overviewer_core/data/web_assets/markers directory.

If you want to make your own in the same style, you can use the provided
marker_base_plain.svg and marker_base_plain_red.svg as template, with
a vector editing software such as Inkscape [http://inkscape.org].

Windows Newbie Guide

If you’re running Windows and aren’t as familiar with the Windows command
prompt as the rest of the documentation assumes you are, this page is for you!

The Overviewer is a command line tool, which means you will need to use the command line to run it.

	First step: Open the command line.

	Open your Start menu and type in the box ‘cmd’ and press enter. If you’re
running XP you’ll go to the “run” option instead and then type ‘cmd’ and
press enter.

[image: ../_images/opening_cmd.png]
This should bring up the command prompt, a black window with a prompt
where you can type commands. The prompt part will probably look something
like C:\Users\andrew> followed by a cursor where you type your commands.

[image: ../_images/cmd.png]
Leave this window open and move on to step 2.

Now that you know how to open a command line, and haven’t been scared off yet,
the next step is to download the latest Overviewer.

	Step 2: Download Overviewer

	Go to the Downloads Page [https://overviewer.org/downloads] and
download the latest version for your architecture, either 32 bit
or 64 bit.

This is important. If you don’t know which to choose, 32 or 64, then you
can find out by clicking on the start menu, right clicking on the
“Computer” icon or “My Computer” icon (depending on your version of
Windows), and then selecting “Properties.” Somewhere among the information
about your computer it should tell you if you’re running a 32 bit operating
system or 64 bit operating system.

[image: ../_images/computer_properties.png]
[image: ../_images/system.png]
Once you know if your computer is 32 or 64 bit, go and download the latest
version. We make small changes all the time, and a new version is uploaded
to that page for every change we make. It’s usually best to just get the
latest.

Okay, you’ve got a command prompt open. You’ve got The Overviewer downloaded.
We’re half way there!

	Step 3: Extract the Overviewer zip you downloaded.

	This is easy. I assume you know how to unzip things. Unzip the contents to
somewhere you can find easily. You’ll need to find it in the command
prompt. It may help to leave the window with the unzipped contents open so
you can remind yourself where it is.

Keep all those files together! They’re all needed to run The Overviewer.

[image: ../_images/extracting.png]

	Step 4: Change directory in command prompt to the location of overviewer.exe

	You remember the location of the files you just extracted? Windows doesn’t
always make it easy. Here’s how in windows 7: just click on the little icon
to the left of the directory name.

[image: ../_images/location1.png]
[image: ../_images/location2.png]
Got the location? Good. We’re going to change directory to that directory
with the command prompt. Bring the command prompt window back up. The
command we’re going to use is called cd, it stands for … change
directory!

I’m going to illustrate this with an example. Let’s say you extracted
Overviewer to the directory
c:\users\andrew\overviewer. Here is exactly
what you’ll type into the command prompt and then press enter:

cd c:\users\andrew\overviewer

[image: ../_images/changed_dir.png]
Okay, did it work? Your command prompt should now have the current
working directory in it. If your prompt changed to the directory that you
just cd’d to, then your current directory changed successfully! You’re ready
for the next step!

Okay before we actually run Overviewer for real, let’s do a checkpoint. You
should have cd’d to the directory where overviewer.exe is. To test, type this
in and you should see the help text print out:

overviewer.exe --help

note the two hyphens before “help”. You should see something like this:

[image: ../_images/usage.png]
The help text displays the usage of overviewer.exe, or the parameters it takes
to run it. It’s kind of long, I had to make my window larger to show it all.

Usage:
overviewer.exe [--rendermodes=...] [options] <World> <Output Dir>

Command line tool usage convention says that items in [square brackets] are
optional, while items in <angled brackets> are required.

	Step 5 Render a map!

	Okay, so to render a map, you have to run overviewer.exe with two
parameters: the world path and a destination directory.

Let’s say you have a world named “Singleplayer world” and you want to put
the tiles into a directory on your desktop. Singleplayer worlds are stored
on your hard drive at a location called %appdata%\.minecraft\saves. Try
typing this into the command prompt:

overviewer.exe "%appdata%\.minecraft\saves\Singleplayer World" c:\users\andrew\desktop\mymap

Note

You must use quotation marks around a path that has spaces in it.

Note

%appdata% is a special windows “variable” that refers to the
location on your drive where applications can store their data. Typing
%appdata% instead of the full path is a convenient shortcut.

If everything went according to plan, The Overviewer should now be churning
away furiously on your world, rendering thousands of image files that
compose a map of your world.

When it’s done, open up the file index.html in a web browser and you
should see your map!

I hope this has been enough to get some of you Windows noobs started on The
Overviewer. Sorry there’s no easy-to-use graphical interface right now. We want
to make one, we really do, but we haven’t had the time and the talent to do so
yet.

The preferred way to run The Overviewer is with a configuration file. Without
one, you can only do the most basic of renders. Once you’re ready, head to the
The Configuration File page to see what else The Overviewer can do. And as always,
feel free to drop by in IRC [https://overviewer.org/irc/] if you have any
questions! We’re glad to help!

Common Pitfalls

	Wrong working directory:

"overviewer.exe" is not recognised as an internal or external
command, operable program, or batch file.

This is a common mistake to make, especially for people unfamiliar
with the command line. This happens if your current working directory
does not contain overviewer.exe. This is likely because you’ve forgot
to change the working directory to the directory you have unzipped
overviewer into. Re-read Step 4 for instructions on how to do that.

	Overviewer is on a different drive than C:

You may have Overviewer located on a different partition than C:,
and for some odd reason the windows command line does not accept
“cd D:” as a way to switch partitions. To do this, you have to just
type the drive letter followed by a colon:

D:

This should switch your current working directory to D:

Using GitHub Gist

Sometimes, when helping people with issues with Overviewer, we’ll often
ask to see the config file you’re using, or, if there was an Overviewer
error, a full copy of an error message. Unfortunately, IRC [https://overviewer.org/irc/]
is not a good way to send large amounts of text. So we often ask users
to create a Gist [https://gist.github.com/] containing the text we want
to see. Sites like these are also called Pastebins, and you are welcome
to use your favorite pastebin site, if you’d like.

	First, go to http://gist.github.com/

	Second, paste your text into the primary text entry area:

[image: ../_images/gist1.png]

	Third, click the ‘Create Secret Gist’ button. A secret gist means that
only someone with the exact URL can view your gist.

[image: ../_images/gist2.png]

	Finally, send us the URL. This will let us easily view your properly formatted Gist.

[image: ../_images/gist3.png]

Frequently Asked Questions

	General Questions

	Does the Overviewer work with mod blocks?

	Can I view Overviewer maps without having an internet connection?

	When my map expands, I see remnants of another zoom level.

	You’ve added a new feature or changed textures, but it’s not showing up on my map!

	The background color of the map is black, and I don’t like it!

	I downloaded the Windows version but when I double-click it, the window closes real fast.

	The Overviewer is eating up all my memory!

	How can I log The Overviewer’s output to a file?

	I’ve deleted some sections of my world, but they still appear in the map.

	My map is zoomed out so far that it looks (almost) blank.

	I want to put manual POI definitions or other parts of my config into a separate file.

General Questions

Does the Overviewer work with mod blocks?

The Overviewer will render the world, but none of the blocks added by mods
will be visible. Currently, the blocks Overviewer supports are hardcoded, and
because there is no official Minecraft modding API as of the time of writing,
supporting mod blocks is not trivial.

Can I view Overviewer maps without having an internet connection?

Yes, absolutely. The Overviewer switched away from the Google Maps API and
now uses Leaflet. All files which Overviewer needs are included in the output,
so even if you have no internet connection, you will still be able to view the
map without any issues.

When my map expands, I see remnants of another zoom level.

When your map expands (“Your map seems to have expanded beyond its previous
bounds”) you may see tiles at a zoom level that shouldn’t be there, usually
around the borders. This is probably not a bug, but is typically caused by
copying the map tiles from their render destination to another location (such as
a web server).

When you’re copying the rendered map, you need to be sure files that don’t
exist in the source are deleted in the destination.

Explanation: When Overviewer re-arranges tiles to make room for another zoom
level, it moves some tiles at a particular zoom level and places them at a
higher zoom level. The tiles that used to be at that zoom level should no longer
exist there, but if you’re copying tiles, there is no mechanism to delete
those files at the copy destination.

If that explanation doesn’t make full sense, then just know that you must do one
of the following:

	Render the tiles directly to the destination.

	Copy the tiles from the render destination in a way that deletes extra files,
such as using rsync with --delete.

	Erase and re-copy the files at the final destination when the map expands.
Map expansions double the width and height of the map, so you will eventually
hit a map size that is unlikely to need another level.

You’ve added a new feature or changed textures, but it’s not showing up on my map!

Some new features will only show up in newly-rendered areas. Use the
--forcerender option to update the entire map. If you have a really
large map and don’t want to re-render everything, take a look at
the rerenderprob configuration option.

The background color of the map is black, and I don’t like it!

You can change the background color by specifying a new one in the configuration
file. See the The Configuration File page for more details.

I downloaded the Windows version but when I double-click it, the window closes real fast.

The Overviewer is a command line program and must be run from a command line. It
is necessary to become at least a little familiar with a command line to run The
Overviewer (if you have no interest in this, perhaps this isn’t the mapping
program for you). A brief guide is provided on the
Windows Newbie Guide page.

Unfortunately, A full tutorial of the Windows command line is out of scope for this
documentation; consult the almighty Google for tutorials and information on
the Windows command line. (If you would like to contribute a short tutorial to
these docs, please do!)

Batch files are another easy way to run the Overviewer without messing with
command lines, but information on how to do this has also not been written.

On a related note, we also welcome contributions for a graphical interface for
the Overviewer.

The Overviewer is eating up all my memory!

We have written The Overviewer with memory efficiency in mind. On even the
largest worlds we have at our disposal to test with, it should not be taking
more than a gigabyte or two. It varies of course, that number is only an
estimate, but most computers with a reasonable amount of RAM should run just
fine.

If you are seeing exorbitant memory usage, then it is likely either a bug or a
subtly corrupted world. Please file an issue or come talk to us on IRC so we can
take a look! See Help.

How can I log The Overviewer’s output to a file?

If you are on a UNIX-like system like MacOSX or Linux, you can use shell redirection
to write the output into a file:

overviewer.py --config=myconfig.py > renderlog.log 2>&1

What this does is redirect the previous commands standard output to the file “renderlog.log”,
and redirect the standard error to the standard output. The file will be overwritten each time
you run this command line; to simply append the output to the file, use two greater than signs:

overviewer.py --config=myconfig.py >> renderlog.log 2>&1

I’ve deleted some sections of my world, but they still appear in the map.

Okay, so making edits to your world in e.g. worldedit has some caveats,
especially regarding deleting sections of your world.

This faq also applies to using the crop option.

Under normal operation with vanilla Minecraft and no external tools fiddling
with the world, Overviewer performs correctly, rendering areas that have
changed, and everything is good.

Often with servers one user will travel reeeeally far out and cause a lot of
extra work for the server and for The Overviewer, so you may be tempted to
delete parts of your map. This can cause problems, so read on to learn what you
can do about it.

First some explanation: Until recently (Mid May 2012) The Overviewer did not
have any facility for detecting parts of the map that should no longer exist.
Remember that the map is split into small tiles. When Overviewer starts up, the
first thing it does is calculate which tiles should exist and which should be
updated. This means it does not check or even look at tiles that should not
exist. This means that parts of your world which have been deleted will hang
around on your map because Overviewer won’t even look at those tiles and notice
they shouldn’t be there. You may even see strange artifacts around the border as
tiles that should exist get updated.

Now, with the --check-tiles option, The Overviewer will look for and
remove tiles that should no longer exist. So you can render your map once with
that option and all those extra tiles will get removed automatically. However,
this is only half of the solution. The other half is making sure the tiles along
the border are re-rendered, or else it will look like your map is being cut off.

Explanation: The tiles next to the ones that were removed are tiles that should
continue to exist, but parts of them have chunks that no longer exist. Those
tiles then should be re-rendered to show that. However, since tile updates are
triggered by the chunk last-modified timestamp changing, and the chunks that
still exist have not been updated, those tiles will not get re-rendered.

The consequence of this is that your map will end up looking cut-off around the
new borders that were created by the parts you deleted. You can fix this one of
two ways.

	You can run a render with --forcerender. This has the unfortunate
side-effect of re-rendering everything and doing much more work than is
necessary.

	Manually navigate the tile directory hierarchy and manually delete tiles
along the edge. Then run once again with --check-tiles to re-render
the tiles you just deleted. This may not be as bad as it seems. Remember each
zoom level divides the world into 4 quadrants: 0, 1, 2, and 3 are the upper
left, upper right, lower left, and lower right. It shouldn’t be too hard to
navigate it manually to find the parts of the map that need re-generating.

	The third non-option is to not worry about it. The problem will fix itself if
people explore near there, because that will force that part of the map to
update.

My map is zoomed out so far that it looks (almost) blank.

We see this quite a bit, and seems to stem from a bug in the Minecraft terrain
generation.

Explanation: Minecraft generates chunks of your world as it needs them. When
Overviewer goes to render your map, it looks at how big the world is, and
calculates how big the maps needs to be in order to fit it all in.
Occasionally, we see that Minecraft has generated a few chunks of the world
extremely far away from the main part of the world. These erroneous chunks have
most likely not been explored * and should not exist.

There are two solutions. The preferred is to delete the offending chunks. Open
up your region folder of your world and look at the region file names. They are
numbered r.##.##.mcr where ## is a number. The two numbers indicate the
coordinates of that region file. Look for region files with coordinates much
larger in magnitude than any others. Most likely you will find around 1–3
region files with coordinates much larger than any others. Delete or otherwise
remove those files, and re-render your map.

The other option is to use the crop option to tell Overviewer not
to render all of your map, but instead to only render the specified region.

As always, if you need assistance, come chat with us on irc.

	*

	They could also have been triggered by an accidental teleport where the coordinates were typed in manually.

I want to put manual POI definitions or other parts of my config into a separate file.

This can be achieved by creating a module and then importing it in
your config. First, create a file containing your markers
definitions. We’ll call it manualmarkers.py.

mymarkers = [{'id':'town', 'x':200, 'y':64, 'z':-400, 'name':'Pillowcastle'},
 {'id':'town', 'x':500, 'y':70, 'z': 100, 'name':'brownotopia' }]

The final step is to import the very basic module you’ve just created
into your config. In your config, do the following

import sys
sys.path.append("/wherever/your/manualmarkers/is/") # Replace this with your path to manualmarkers.py,
 # so python can find it

from manualmarkers import * # import our markers

all the usual config stuff goes here

renders["myrender"] = {
 "title" : "foo",
 "world" : "someworld",
 "manualpois" : mymarkers, # IMPORTANT! Variable name from manualmarkers.py
 # and here goes the list of the filters, etc.
}

Now you should be all set.

Contributing

In this page, you’ll be given some pointers on how to start contributing to the
Minecraft-Overviewer project. This is useful for people who want to help develop
the Overviewer, but don’t quite know where to start.

This page is mostly focused on where to look for things and how to get your
changes back into the project, for help on how to compile the Overviewer, check
Building.

Prerequisites

Ideally you’re familiar with Python (Overviewer uses Python 3), and know the
basics of Git. Both have various very good resources online that help you in
learning them, but the best way of learning is always to use them in the real
world, so don’t hesitate to jump right in after having a basic grasp and ask
questions along the way.

Additionally, some parts of Overviewer are written in C, though unless you’re
interested in the drawing and compositing routines or the rendermodes, you don’t
need to know C.

Last but not least, some of the Overviewer’s code is written in JavaScript,
namely the part that runs in your browser when you view the map.

Acquiring the Source Code

First, you’ll need to get the Overviewer source code. We do version management
of code through Git [https://git-scm.com/], which allows multiple people to work on the code at the
same time. Naturally, this means you’ll also be getting the source code through
Git. For this to work, you’ll have to install Git on your computer.

Our source code is hosted on GitHub [https://github.com/overviewer/Minecraft-Overviewer], so it’s a good idea to make an account
there if you don’t already have one.

This page won’t go into the details of how to use Git, but it’ll give you some
advice on how your workflow should be to avoid some trouble.

Finding Your Way around the Code Base

At first glance, all the code can be a bit overwhelming. So here’s a quick
overview of the important parts.

	setup.py is the build script. If you need to make any changes to how the
Overviewer is built, you’ll want to look there.

	overviewer.py is the entry-point of the application. It imports all the
other functionality, and does the command line parsing.

	overviewer_core/ is the directory where the vast majority of the
Overviewer’s functionality is. More on that below.

	overviewer_core/aux_files/genPOI.py is where the genPOI functionality is
implemented. If you’re looking into changing the way markers are generated,
look there.

	overviewer_core/src/ is the directory for all the files that are part of
Overviewer’s C extension. This includes things such as rendermodes, which are
stored in the primitives sub-directory.

	overviewer_core/data/ mostly contains the parts that make up Overviewer’s
web front-end, with js_src containing the JS files and web_assets
containing the index.html, CSS files and image files such as icons or the
compass.

	docs/ contains the documentation, which can be built with the included
Makefile if you have sphinx installed.

overviewer_core

Let’s take a closer look at the overviewer_core/ directory:

	assetmanager.py controls how the HTML and JS output are written out, as
well as the overviewerConfig.js format.

	cache.py implements a Least-Recently-Used (LRU) cache, which is used for
caching chunks in memory as the rendering happens.

	config_parser.py contains some code that sets up how the config is parsed,
but is not really involved in the definitions of individual settings therein.

	dispatcher.py is the code that sets up multiprocessing, so Overviewer can
use all available CPU threads on a machine.

	files.py implements helpful routines which allow you to determine whether
some file operations such as replacing a file work in a given directory, and
also implements the FileReplacer class which can then safely replace a
file given the capabilities of the filesystem.

	items.py is a remnant of the past and entirely unused.

	logger.py sets up and implements Overviewer’s logging facilities.

	nbt.py contains the code that is used to parse the Minecraft NBT file
structure.

	observer.py defines all the observers that are available. If you want to
add a new observer, this is the place where you’ll want to look.

	optimizeimages.py defines all the optimizeimg tools and how they’re
called.

	progressbar.py implements the fancy progress bar that the Overviewer has.

	rcon.py implements an rcon client for the Minecraft server, used by the
RConObserver.

	rendermodes.py contains definitions and glue code for the rendermodes in
the C extension.

	settingsDefinitions.py includes all definitions for the Overviewer
configuration file. If you want to add a new configuration option, this is
where you’ll want to start.

	settingsValidators.py contains validation code for the settings
definitions, which ensures that the values are all good.

	signals.py is multiprocessing communication code. Scary stuff.

	textures.py contains all the block definitions and how Overviewer should
render them. If you want to add a new block to the Overviewer, this is where
you’ll want to do it. Additionally, this code also controls how the textures
are loaded.

	tileset.py contains code that maps a render dict entry to the output tiled
image structure.

	util.py contains random utility code that has no home anywhere else.

	world.py is a whole lot of code that does things like choosing which
chunks to load and to cache, and general functionality revolving around the
concept of Minecraft worlds.

docs

The documentation is written in reStructuredText [http://docutils.sourceforge.net/rst.html], a markup format. It can be
compiled into an HTML output using the Makefile in the docs/ subtree by
typing make. You’ll need to have sphinx [http://www.sphinx-doc.org/en/stable/] installed for this to work.

The theme that will be used in the locally generated HTML is different than what
is used on http://docs.overviewer.org. However, it should still be sufficient
to get a good idea of how your changes will end up looking like when they’re on
the main docs page.

Code Style

To be honest, currently the Overviewer’s codebase is a bit of a mess. There is
no consistent code style in use right now. However, it’s probably a good idea
to stick to PEP8 [https://www.python.org/dev/peps/pep-0008/] when writing new code. If you’re refactoring old code, it
would be great if you were to fix it to make it PEP8 compliant as well.

To check whether the code is PEP8 compliant, you can use pycodestyle [https://pypi.python.org/pypi/pycodestyle]. You can
easily install it with pip by using pip3 install pycodestyle.

Example Scenarios

This section will demonstrate by example how a few possible contributions might
be made. These serve as guidelines on how to quickly get started if you’re
interested in doing a specific task that many others before you have done too
in some other form.

Adding a Block

Let’s assume you want to add support for a new block to the Overviewer. This is
probably one of the most common ways people start contributing to the project,
as all blocks in the Overviewer are currently hardcoded and code to handle them
needs to be added by hand.

The place to look here is textures.py. It contains the block definitions,
which are assisted by Python decorators [https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators], which make it quite a bit simpler to
add new blocks.

The big decorator in question is @material, which takes arguments such as
the blockid (a list of block IDs this block definition should handle), and
data (a list of possible data values for this block). Additionally, it can
also take various additional arguments for the different block properties, such
as solid=True to indicate that the block is a solid block.

Simple Solid 6-Sided Block

A lot of times, new blocks are basically just your standard full-height block
with a new texture. For a block this simple, we don’t even really need to use
the material decorator. As an example, check out the definition of the coal
block:

block(blockid=173, top_image="assets/minecraft/textures/blocks/coal_block.png")

Block with a Different Top

Another common theme is a block where the top is a different texture than the
sides. Here we use the @material decorator to create the jukebox block:

@material(blockid=84, data=range(16), solid=True)
def jukebox(self, blockid, data):
 return self.build_block(self.load_image_texture("assets/minecraft/textures/blocks/jukebox_top.png"), self.load_image_texture("assets/minecraft/textures/blocks/noteblock.png"))

As you can see, we define a method called jukebox, taking the parameters
blockid and data, decorated by a decorator stating that the following
definition is a material with a blockid of 84 and a data value range
from 0 to 15 (or range(16)), which we won’t use as it doesn’t affect
the rendering of the block. We also specify that the block is solid.

Inside the method, we then return the return value of self.build_block(),
which is a helper method that takes a texture for the top and a texture for the
side as its arguments.

Block with Variable Colors

Occasionally, blocks can have colors stored in their data values.
textures.py includes an easy mapping list, called color_map, to map
between data values and Minecraft color names. Let’s take stained hardened clay
as an example of how this is used:

@material(blockid=159, data=range(16), solid=True)
def stained_clay(self, blockid, data):
 texture = self.load_image_texture("assets/minecraft/textures/blocks/hardened_clay_stained_%s.png" % color_map[data])

 return self.build_block(texture,texture)

As you can see, we specify that the block has 16 data values, then depending
on the data value we load the right block texture by looking up the color name
in the color_map list, formatting a string for the filename with it.

Good Git Practices

How you structure your Git workflow is ultimately up to you, but here are a few
recommendations to make your life and the life of the people who want to merge
your pull requests easier.

	Commit your changes in a separate branch, and then submit a pull request
from that branch. This makes it easier for you to rebase your changes, and
allows you to keep your repository’s master branch in-sync with our master
branch, so you can easily split off a new branch from master if you want to
develop a new change while your old change still isn’t merged into the master.

	Format your commit messages properly. The first line should be a 50
character long summary of the change the commit makes, in present tense, e.g.
“Add a spinner to the progress bar”. This should be followed by a blank line,
and a longer explanation of the change the commit actually does, wrapped at
72 characters.

	Don’t merge master into your branch. If you plan on submitting a change as
a pull request and the master branch has moved in the meantime, then don’t
merge the master branch into the branch of your pull request. Instead, rebase
your branch on top of the updated master.

	Keep commits logically separated. Don’t try to cram unrelated changes into
just one commit unless it’s a commit full of small fixes. If you find yourself
struggling to keep the commit summary below 50 characters, and find yourself
using the word “and” in it, rethink whether the changes you’re making should
be just one commit.

It’s also a good idea to look at the output of git diff before committing a
change, to make sure nothing was unintentionally changed in the file where you
weren’t expecting it. git diff will also highlight blank lines with spaces
in them with a solid red background.

Talking with other Developers

Occasionally, the issue tracker simply doesn’t cut it. You need to talk with
another developer, maybe to brainstorm a new feature or ask a question about
the code. For this, we have an IRC channel on Libera.Chat [https://overviewer.org/irc/], which allows you to
talk with other developers that are on the IRC channel in real-time.

Since most developers have jobs or are in college or university, it may
sometimes take a few moments to get a reply. So it’s useful to stick around and
wait for someone who can help you to be around.

Design Documentation

So you’d like a technical overview of how The Overviewer works, huh? You’ve come
to the right place!

This document’s scope does not cover the details of the code. The code is fairly
well commented and not difficult to understand. Instead, this document is
intended to give an explanation to how the Overviewer was designed, why certain
decisions were made, and how all the pieces fit together. Think of this document
as commenting on how all the high level pieces of the code work.

This document is probably a good read to anyone that wants to get involved in
Overviewer development.

So let’s get started!

Note

This page is continually under construction.

Contents

	Design Documentation

	Background Info

	Overviewer at a High Level

	Block Rendering

	Top Transformation

	Side Transformation

	An Entire Cube

	Chunk Rendering

	Block Positioning

	The size of a chunk

	Assembling a Chunk

	Chunk Placement

	Chunk Addressing

	Chunk Positioning

	Tile Rendering

	Tile Layout

	Quadtrees

	Quadtree Size

	Quadtree Paths

	get_range_by_path

	Reading the Data Files

	Image Composition

	Multiprocessing

	Caching

	Lighting

	Smooth Lighting

	Cave Mode

Background Info

The Overviewer’s task is to take Minecraft worlds and render them into a set of
tiles that can be displayed with a Leaflet interface. This section goes over how
Minecraft worlds work and are stored.

A Minecraft world extends indefinitely along the two horizontal axes, and are
exactly 256 units high. Minecraft worlds are made of voxels (volumetric pixels),
hereby called “blocks”, where each block in the world’s grid has a type that
determines what it is (grass, stone, …). This makes worlds relatively
uncomplicated to render, the Overviewer simply determines what blocks to draw
and where. Since everything in Minecraft is aligned to a strict grid, placement
and rendering decisions are completely deterministic and can be performed
iteratively.

The coordinate system for Minecraft has three axes. The X and Z axes are the
horizontal axes. They extend indefinitely towards both positive and negative
infinity. (There are practical limits, but no theoretical limits). The Y axis
extends from 0 to 255, which corresponds with the world height limit. Each
block in Minecraft has a coordinate address, e.g. the block at 15,78,-35 refers
to 15 along the X axis, -35 along the Z axis, and 78 units up from bedrock.

The world is organized in a three-layer hierarchy. At the finest level are the
blocks (voxels). A 16x16x16 array of blocks is called a chunk section. A
vertical column of 16 chunk sections makes a chunk. A chunk is therefore a 16
by 16 area of the world that extends from bedrock to sky. In other words, a 16
by 256 by 16 “chunk” of the world. A 32 by 32 area of chunks is called a
region. Regions are stored on disk one per file.

While blocks have a global coordinate (the ones you see in the debug output
in-game), they also have a local coordinate within a chunk section and within a
chunk. Also, chunks and regions have their own coordinates to identify
themselves. To find which chunk a block is in, simply divide its coordinates by
16 and take the floor. To find which region a chunk is in, divide the chunk
coordinates by 32 and take the floor. To find which chunk section a block is in,
take its Y coordinate and floor-divide by 16.

Minecraft worlds are generated on-the-fly by the chunk. This means not all
chunks will exist, and not all sections within a chunk will exist. There is no
pattern to which chunks are generated, the game generates them as needed as
players explore the area. A region file may not exist if none of its chunks
exist.

Overviewer at a High Level

Minecraft worlds are rendered in an approximated Isometric projection at an
oblique angle. In the original design, the projection acts as if your eye is
infinitely far away looking down at the world at a 45 degree angle in the
South-East direction (now, the world can be rendered at any of the 4 oblique
directions).

[image: A screenshot of Overviewer output]
The Overviewer is a sprite-based renderer. Each block type corresponds to a
pre-rendered sprite (a small image). The basic idea is to iterate over the
blocks of the world and draw these sprites to the appropriate location on the
map.

These are the high-level tasks The Overviewer must perform in rendering a map:

	Render each block sprite from the textures

	Scan the chunks of the world and determine which tiles need rendering

	Render a chunk by drawing the appropriate blocks sprites on an image

	Render a tile of the map from several chunk images

	Compose the lower-zoom tiles from the higher-zoom tiles

The next sections will go over how these tasks work.

Block Rendering

The first step is rendering the block sprites from the textures. Each block is
“built” from its textures into an image of a cube and cached in a
Textures object.

Textures come from files inside of a “textures” folder. If the file is square (has equal width
and height dimensions), it is scaled down to 16 x 16 pixels. Non-square images are used with animated
textures. In this case, the first frame of the animated texture is used, and also scaled to a 16 by 16 image.
In order to draw a cube out of the textures, an affine transformation [http://en.wikipedia.org/wiki/Affine_transformation] is applied to
the images for the top and sides of the cube in order to transform it to the
appropriate perspective.

Note

This section goes over the simple case for a regular cube, which are most of
the blocks in Minecraft. There are lots of irregular blocks that aren’t
cubes (fences, torches, doors) which require custom rendering. Irregular
blocks are not covered by this design document. Each type of block has its
own function in overviewer_core.textures that defines how to render
it.

[image: A texture gets rendered into a cube]
Every block sprite is exactly 24 by 24 pixels in size. This particular size for
the cubes was chosen for an important reason: 24 is divisible by 2 and by 4.
This makes placement much easier. E.g. in order to draw two cubes that are next
to each other in the world, one is drawn exactly 12 pixels over and 6 pixels
down from the other. All placements of the cubes happen on exact pixel
boundaries and no further resolution is lost beyond the initial transformations.
(This advantage will become clear in the Block Positioning section; all
offsets are a nice even 6, 12, or 24 pixels)

A cube sprite is built in two stages. First, the texture is transformed for the
top of the cube. Then the texture is transformed for the left side of the cube,
which is mirrored for the right side of the cube.

Top Transformation

The transformation for the top face of the cube is a simple affine
transformation [http://en.wikipedia.org/wiki/Affine_transformation] from the original square texture. It is actually several affine
transformations: a re-size, a rotation, and a scaling; but since multiple affine
transformations can be chained together simply by multiplying the transformation
matrices together, only one transformation is actually done.

This can be seen in the function
overviewer_core.textures.transform_image(). It performs three steps:

	The texture is re-sized to 17 by 17 pixels. This is done because the diagonal
of a square with sides 17 is approximately 24, which is the target size for
the bounding box of the cube image. So when it’s rotated, it will be the
correct width. (Better to scale it now than after we rotate it)

	The image is rotated 45 degrees about its center.

	The image is scaled on the vertical axis by a factor of 1/2.

This produces an image of size 24 by 12 as seen in the following sequence.

[image: The 4 steps for transforming a texture square into the top of the cube.]
The final image, shown below, becomes the top of the cube.

[image: Top of the cube]
On the left is what will become the top of the block at actual size after the
transformation, the right is the same but blown up by a factor of 10 with no
interpolation to show the pixels.

Side Transformation

The texture square is transformed for the sides of the cube in the
textures.transform_image_side() function. This is another affine
transformation [http://en.wikipedia.org/wiki/Affine_transformation], but this time only two transformations are done: a re-size and
a shear.

	First the texture is re-sized to 12 by 12 pixels. This is half the width of
24 so it will have the correct width after the shear.

	The 12 by 12 square is sheared by a factor of 1.5 in the Y direction,
producing an image that is bounded by a 12 by 18 pixel square.

[image: Texture being sheared for the side of the cube.]
This image is simply flipped along the horizontal axis for the other visible
side of the cube.

[image: The sides of the block]
Again, shown on the left are the two sides of the block at actual size, the
right is scaled with no interpolation by a factor of 10 to show the pixels.

An Entire Cube

These three images, the top and two sides, are pasted into a single 24 by 24
pixel image to get the cube sprite, as shown.

However, notice from the middle of the three images in the sequence below that
the images as transformed don’t fit together exactly. There is some overlap when
put in the 24 by 24 box in which they must fit.

[image: How the cube parts fit together]
There is one more complication. The cubes don’t tessellate perfectly. A six
pixel gap is left between the lower-right border and upper-left border of blocks
in this arrangement:

[image: Cubes don't tessellate perfectly]
The solution is to manually touch up those 6 pixels. 3 pixels are added on the
upper left of each cube, 3 on the lower right. Therefore, they all line up
perfectly!

This is done at the end of Textures.build_block()

[image: The 6 pixels manually added to each cube.]

Chunk Rendering

With these cube sprites, we can draw them together to start constructing the
world. The renderer renders a single chunk section (a 16 by 16 by 16 group of
blocks) at a time.

This section of the design doc goes over how to draw the cube sprites together
to draw an entire chunk section.

How big is a chunk section going to be? A chunk section is a cube of 16x16x16
blocks.

Rendered at the appropriate perspective, we’ll have a cube made up of 4096
smaller cubes, like this:

[image: Perspective rendering of a chunk section.]
Each of those cubes shown is where one of the pre-rendered block sprites gets
pasted; the entire thing is a chunk section. The renderer iterates over a chunk
layer-at-a-time from bottom to top, drawing the sprites. The order is important
so that the it gets drawn correctly. Obviously if a sprite in the back is pasted
on the image after the sprites in the front are drawn, it will be drawn on top
of everything instead of behind.

Block Positioning

A single block is a 24 by 24 pixel image. Before we can construct a chunk
section out of individual blocks, we must figure out how to position neighboring
blocks.

First, to review, these are the measurements of a block sprite:

[image: The measurements of a block sprite]

	The image is bounded by a 24 by 24 pixel square.

	The side vertical edges are 12 pixels high.

	The top (and bottom) face of the block takes 12 vertical pixels (and 24
horizontal pixels).

	The edges of the top and bottom of the block take up 6 vertical pixels and 12
horizontal pixels each.

Two blocks that are neighbors after projection to the image (diagonally
neighboring in the world) have a horizontal offset of 24 pixels from each other,
as shown below on the left. This is mostly trivial, since the images don’t
overlap at all. Two blocks in the same configuration but rotated 90 degrees have
some overlap as shown on the right, and are only vertically offset by 12 pixels.

[image: Two blocks horizontally positioned are offset by 24 pixels on the X axis.]
Now for something slightly less intuitive: two blocks that are stacked on top of
each other in the world. One is rendered lower on the vertical axis of the
image, but by how much?

[image: Two blocks stacked are offset in the image by 12 pixels.]
Interestingly enough, due to the projection, this is exactly the same offset as
the situation above for diagonally neighboring blocks. The block outlined in green
is drawn 12 pixels below the other one. Only the order that the blocks are drawn
is different.

And finally, what about blocks that are next to each other in the world —
diagonally next to each other in the image?

[image: Cubes that are neighbors are offset by 12 on the X and 6 on the Y]
The block outlined in green is offset on the horizontal axis by half the block
width, or 12 pixels. It is offset on the vertical axis by half the height of the
block’s top, or 6 pixels. For the other 3 directions this could go, the
directions of the offsets are changed, but the amounts are the same.

The size of a chunk

Now that we know how to place blocks relative to each other, we can begin to
construct an entire chunk section.

Since the block sprites are 24 by 24 pixels, and the diagonal of the 16 by 16
grid is 16 squares, the width of one rendered chunk section will be 384 pixels.
Just considering the top layer of blocks within a section:

[image: Illustrating the width of a single chunk]
Since blocks next to each other in the same “diagonal row” are offset by 24
pixels, this is trivially calculated.

The height is a bit more tricky to calculate. Let’s start by calculating the
height of a single stack of 16 blocks.

The non-overlapping edge of each block sprite is 12 pixels high. Since there are
16 blocks in this stack, that’s 192 pixels high. There are also 6 additional
pixels at the top and bottom of the stack as shown, giving a total height of 204
pixels.

[image: A stack of 16 cubes takes 204 vertical pixels to draw.]
But that’s just for one column of blocks. What about the entire chunk section?
Take a look at this diagram:

[image: The highest and lowest positioned cubes in a chunk]
The green highlighted blocks are the stack we calculated just above and have a
height of 204 pixels. The red highlighted blocks each take 12 pixels of vertical
space on the image, and there are 15 of them. So 204 + 12*15 is 384 pixels.

So the total size of a chunk section in pixels is 384 wide by 384 tall.

Assembling a Chunk

Now that we know how to place blocks, here’s how they are arranged to form an
entire chunk section. The coordinate system is arranged as shown, with the
origin being at the left corner.

[image: Illustrating how cubes are addressed in a chunk]
To ensure that block closer to the viewer are drawn on top while blocks that
should be obstructed are drawn are hidden, the blocks are drawn one layer at a
time from bottom to top (Y=0 to Y=15) and from back to front.

From the data file on disk, block information in a chunk is a three-dimensional
array of bytes, each representing a block id [http://www.minecraftwiki.net/wiki/Data_values#Block_IDs_.28Minecraft_Beta.29].
The process of assembling a chunk is simply a matter of iterating over this
array, reading the blockid values, looking up the appropriate sprite, and
pasting it on the chunk image at the appropriate location.

Chunk Placement

Now that we know how to draw a single chunk, let’s move on to how to place
chunks relative to each other.

Before we get started, let’s take a moment to remember that one chunk section is
only 1/16th of a chunk:

[image: An entire chunk]
A chunk is 16 chunk sections stacked together.

Since this is pretty tall, the diagrams in this section are simplified to only
show the top face of a chunk, as shown in green here:

[image: The top of a chunk is highlighted]
This makes it easier and less cumbersome to describe how to place chunks
together on a tile. Just remember that chunks are actually very tall and extend
down far beyond the drawn diamonds in these diagrams.

Chunk Addressing

Chunks in Minecraft have an X,Z address, with the origin at 0,0 and extending to
positive and negative infinity on both axes (Recall from the introduction that
chunk addresses are simply the block addresses divided by 16). Since we’re going
to render at a diagonal perspective, it is convenient to perform a change of
coordinate system. For that, we translate X,Z coordinates into column,row
coordinates. Consider this grid showing 25 chunks around the origin. They are
labeled with their X,Z chunk addresses.

[image: A grid of 5x5 chunks showing how chunks are addressed.]
Now, we want to transform each chunk to a row/column address as shown here:

[image: A grid of 5x5 chunks showing how chunks are addressed.]
So the chunk at address 0,0 would be at col 0, row 0; while the chunk at address
1,1 would be at col 2, row 0. The intersection of the red and green lines
addresses the chunk in col,row format.

Note

As a consequence of this addressing scheme, there is no chunk at e.g. column
1 row 0. There are some col,row addresses that lie between chunks, and
therefore do not correspond to a chunk. (as can be seen where the red/green
lines intersect at a chunk boundary instead of the middle of a chunk).

So how does one translate between them? It turns out that a chunk’s column
address is simply the sum of the X and the Z coordinate, while the row is the
difference. Try it!

col = X + Z
row = Z - X

X = (col - row) / 2
Z = (col + row) / 2

Chunk Positioning

This section will seem very familiar to the block positioning. In fact, it is
exactly the same but with different numbers (because blocks and chunk sections
have the exact same proportions), so let’s speed through this.

A chunk’s top face is 384 pixels wide by 192 pixels tall. They therefore have
these offsets from their neighbors:

[image: Chunk positioning diagram]

Tile Rendering

Now that we know how to translate chunk coordinates to col/row coordinates, and
know how to calculate the offset from the origin on the final image, we could
easily draw the chunks in one large image. However, for large worlds, that would
quickly become too much data to handle at once. (Early versions of the
Overviewer did this, but the large, unwieldy images quickly motivated the
development of rendering to individual tiles).

Hence choosing a technology like Google Maps or Leaflet, which draws small
tiles together to make it look like one large image, lets rendering even the
largest worlds possible. The Overviewer can draw each tile separately and not
have to load the entire map into memory at once. The next sections describe
how to determine which chunks to render in which tiles, and how to reason
about tile ↔ chunk mappings.

Tile Layout

Instead of rendering to one large image, chunks are rendered to small tiles.
Only a handful of chunks need to be rendered into each tile. The downside is
that chunks must be rendered multiple times for each tile they appear in, but
the upside is that arbitrarily sized maps can be viewed.

The Overviewer uses a tile size of 384 by 384 pixels. This is the same as the
size of a chunk section and is no coincidence. Just considering the top face of
a chunk, the 8 chunks directly below it get rendered into a tile in this
configuration:

[image: The 8 chunks that get rendered into a tile]

Note

Don’t forget that chunks are tall, so many more than 8 chunks get rendered
into this tile. If you think about it, chunks from the rows above the ones
in that diagram may have blocks that fall into this tile, since the diamonds
in the diagram correspond to the tops of the chunks, and chunks extend
down.

Note

This is an important diagram and we’ll be coming back to it. Make sure it makes
sense. As a side note, if anything in this document doesn’t make sense, please
let us know in IRC or by filing an issue. I want these docs to be as clear as
possible!

So the overall strategy is to convert all chunks into diagonal col,row
coordinates, then for each tile decide which chunks belong in it, then render
them in the appropriate place on the tile.

The rendering routines are actually passed a range of chunks to render, e.g.
rows 4-6, cols 20-24. The lower bound col,row chunk given in the range is
rendered at position 0,0 in the diagram above. That is, at offset -192,-96
pixels.

The rendering routines takes the given range of columns and rows, converts it
back into chunk coordinates, and renders the given 8 chunks plus all chunks from
the 16 rows above the given range (see the note below). The chunks are
positioned correctly with the above positioning rules, so any chunks that are
out of the bounds get rendered off the tile and don’t affect the final image.
(There is therefore no penalty for rendering out-of-bounds chunks for a tile
except increased processing)

Since every other column of chunks is half-way in two tiles, they must be
rendered twice. Each neighboring tile is therefore only 2 columns over, not 3 as
one may suspect at first. Same goes for the rows: The next tile down is 4 rows
down, not 5.

To further illustrate this point, here are four tiles arranged on the grid of
chunks. Notice how the tiles are addressed by the col,row of the chunk in the
upper-left corner. Also notice how neighboring tiles are 2 columns apart but 4
rows apart.

[image: 4 tiles arranged on the grid of chunks]

Quadtrees

Tiles are rendered and stored in a quadtree on disk. Each node is a tile of the
world, and each node has four children representing a zoomed-in tile of the four
quadrants.

[image: A tile has 4 children, each is a zoomed-in tile of one of the quadrants.]
The tree is generated from the bottom-up. The highest zoom level is rendered
directly from the chunks and the blocks, then four of those rendered tiles are
shrunk and concatenated to get the next zoom level. The tree is built up in this
way until the entire world is compressed down to a single tile.

We’ve already seen how tiles can be identified by the column,row range of the
chunks that make up the tile. More precisely, since tiles are always the same
size, the chunk that goes in the tile’s 0,0 col,row slot identifies the tile.

Now, tiles are also identified by their path in the quadtree. For example,
3/0/0/1/1/2.png refers to the tile starting at the base, under the third
quadrant, then the 0th quadrant, then the 0th, and so fourth.

Quadtree Size

The size of the quadtree must be known before it’s generated, that way the code
knows where to save the images. This is easily calculated from a few
realizations. Each depth in the quadtree doubles the number of tiles in each
dimension, or, quadruples the total tiles. While there is only one tile at level
0, there are four at level 1, 16 at level 2, and 4^n at level n.

To find how deep the quadtree must be, we look at the size of the world. First
find the maximum and minimum row and column of the chunks. Just looking at
columns, let’s say the maximum column is 82 and the minimum column is -136. A
zoom level of 6 will be 2^6 tile across and 2^6 tiles high at the highest level.

Since horizontally tiles are two chunks wide, multiply 2^6 by 2 to get the total
diameter of this map in chunks: 2*2^6. Is this wide enough for our map?

It turns out it isn’t (2*2^6=128, 136+82=218). A zoom level of 7 is 2^7 tiles
across, or 2*2^7 chunks across. This turns out is wide enough (2*2^7 = 256),
however, Overviewer maps are always centered at point 0,0 in the world. This is
so tiles will always line up no mater how the map may expand in the future.

So zoom level 7 is not enough because, while the chunk diameter is wide
enough, it only extends half that far from the origin. The chunk radius is 2^7
(half the diameter) and 2^7=128 is not wide enough for the minimum column at
absolute position 136.

So this example requires zoom level 8 (at least in the horizontal direction.
The vertical direction must also be checked).

Quadtree Paths

To illustrate the relationship between tile col,row addresses and their path,
consider these 16 tiles from a depth 2 quadtree:

[image: Addresses and paths for 16 tiles in a depth 2 tree]
The top address in each tile is the col,row address, where the chunk outlined in
green in the center is at 0,0. The lower address in each tile is the path. The
first number indicates which quadrant the tile is in overall, and the second is
which quadrant within the first one.

get_range_by_path

Reading the Data Files

Image Composition

Multiprocessing

Caching

Lighting

Minecraft stores precomputed lighting information in the chunk files
themselves, so rendering shadows on the map is a simple matter of
interpreting this data, then adding a few extra steps to the render
process. These few extra steps may be found in
rendermode-lighting.c or rendermode-smooth-lighting.c,
depending on the exact method used.

Each chunk contains two lighting arrays, each of which contains one
value between 0 and 15 for each block. These two arrays are the
BlockLight array, containing light received from other blocks, and the
SkyLight array, containing light received from the sky. Storing these
two seperately makes it easier to switch between daytime and
nighttime. To turn these two values into one value between 0 and 1
representing how much light there is in a block, we use the following
equation (where lb and ls are the block light and
sky light values, respectively):

[image: c = 0.8^{15 - min(l_b, l_s)}]
For night lighting, the sky light values are shifted down by 11 before
this lighting coefficient is calculated.

Each block of light data applies to all the block faces that touch
it. So, each solid block doesn’t receive lighting from the block it’s
in, but from the three blocks it touches above, to the left, and to
the right. For transparent blocks with potentially strange shapes,
lighting is approximated by using the local block lighting on the
entire image.

[image: The lighting process]
For some blocks, notably half-steps and stairs, Minecraft doesn’t
generate valid lighting data in the local block like it does for all
other transparent blocks. In these cases, the lighting data is
estimated by averaging data from nearby blocks. This is not an ideal
solution, but it produces acceptable results in almost all cases.

Smooth Lighting

In the smooth-lighting rendermode, solid blocks are lit per-vertex
instead of per-face. This is done by covering all three faces with a
quadralateral where each corner has a lighting value associated with
it. These lighting values are then smoothly interpolated across the
entire face.

To calculate these values on each corner, we look at lighting data in
the 8 blocks surrounding the corner, and ignore the 4 blocks behind
the face the corner belongs to. We then calculate the lighting
coefficient for all 4 remaining blocks as normal, and average them to
obtain the coefficient for the corner. This is repeated for all 4
corners on a given face, and for all visible faces.

[image: An example face and vertex, with the 4 light sources.]
The ambient occlusion [http://en.wikipedia.org/wiki/Ambient_occlusion] effect so strongly associated with smooth
lighting in-game is a side effect of this method. Since solid blocks
have both light values set to 0, the lighting coefficient is very
close to 0. For vertices in corners, at least 1 (or more) of the 4
averaged lighting values is therefore 0, dragging the average down,
and creating the “dark corners” effect.

Cave Mode

Index

 Symbols
 | C

Symbols

 	
 	
 --check-tiles

 	command line option

 	
 --forcerender

 	command line option

 	
 --genpoi

 	command line option

 	
 --no-tile-checks

 	command line option

 	
 --skip-players

 	command line option

 	
 --skip-scan

 	command line option, [1]

 	
 	
 --update-web-assets

 	command line option

 	
 -c <file>, --config=<file>

 	command line option

 	
 -p <procs>, --processes <procs>

 	command line option

 	
 -q, --quiet

 	command line option, [1]

 	
 -v, --verbose

 	command line option

C

 	
 	
 command line option

 	--check-tiles

 	--forcerender

 	--genpoi

 	--no-tile-checks

 	--skip-players

 	--skip-scan, [1]

 	--update-web-assets

 	-c <file>, --config=<file>

 	-p <procs>, --processes <procs>

 	-q, --quiet, [1]

 	-v, --verbose

 _static/ajax-loader.gif

_images/topofchunk.png

_images/usage.png
icrosoft Windows LUersion 6.1.76081
opyright (o> 2089 Microsoft Corporation. A1l rights reserved.

\Users\andreudcd overviewer
:\Users\andrewNovervieuerdoverviever.exe ——help
sage

vervieuer.exe [-—rendernodes=...1 [options] CHorld> <Output Dir>
vervieuer exe ——config=Cconfig file> [options]

ptions
“h. —help show this help message and exit
Gonf ig=CONFIG Specify the config file to use.
-p PROCS, ——processes=PROCS
The nunber of local worker processes to spaun.

Defaults to the number of CPU cores your computer has
rendernodes=RENDERMODES

If you’re not using a config file, specify which
rendernodes to render with this option. This is a
conna-separated list.
Force re-rendering the entire map.
Check each tile on disk and re-render old tiles
Only render tiles that come from chunks that have
changed since the last render Cthe default)
Prints the location and hash of terrain.png, useful
for debugging terrain.png problens
Displays version information and then exits
Print less output. You can specify this option
nultiple tines.
Print more output. You can specify this option
nultiple tines.

\Users\andreuNovervieuer>

_images/chunk_height.png

_static/comment.png

_images/chunk_perspective.png
A
A LT
BANRNA0S
SRR
SRR

b
X

%

VTI7 777777777777

000000 VTI7777 777777777
ooooooiiiiiiiiiiiiiii
NN
LT L]
ML

STT 7777777777777

_static/down-pressed.png

_images/changed_dir.png
opyright (o> 2089 Microsoft Corporation. A1l rights reserved.

\Usershandrewdcd c:\users\andreuNovervieuer

\Users\andreuNovervieuer>_

_static/comment-bright.png

_images/chunk_coords.png
o
O\

&
X3
\ QOKNEN
2o AR
S e
XXX o
ORI 7
e
QRN
R
/....:....

_static/comment-close.png

_images/chunkgridwithrowcol.png
Row -4
Row -3
Row -2
Row -1
Row 0
Row 1
Row 2
Row 3
Row 4

_images/chunkpositioning.png
192
—384— 34—

192 Q %

_images/chunk_width.png
AXORRON
L

AORAORS
Ao S
7
7
7
7
7
7
7
/7
7
7
7
0 7

——24—+—24—

_static/down.png

_images/chunkgrid.png

_images/chunksintile.png
Rows: 0

A W N -

Cols:

0

384

_images/cmd.png
opyright (o> 2089 Microsoft Corporation. A1l rights reserved.

:\Users\andrew>_

_images/4children.png

_images/computer_properties.png
Getting Started »

B comectton pojector

= andre
Caleulator

I sty ots

L siping Too!

»
P P

XPSViewer Open
Manage

ment;

Picture:

Music

& Windows Faxand Scan e

AL Remote Desktop Connection Disconnect netuwork drive

Default Progra

Show on Desktap
Magnifier

Help and Supp Rename

Propertes
> AllPrograms i

(S programs v 7]

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 The Minecraft Overviewer

 		
 Installing

 		
 Windows

 		
 Debian / Ubuntu

 		
 CentOS / RHEL / Fedora

 		
 Prerequisites for CentOS/RHEL 7

 		
 Installing the Overviewer

 		
 Building the Overviewer from Source

 		
 Get The Source

 		
 Build Instructions For Various Operating Systems

 		
 Windows Build Instructions

 		
 Linux

 		
 macOS

 		
 Running the Overviewer

 		
 Rendering your First Map

 		
 Specifying a different rendermode

 		
 Usage

 		
 Options

 		
 Installing the Textures

 		
 If you copy your world before you render it

 		
 HTTPS support

 		
 The Configuration File

 		
 Examples

 		
 A Simple Example

 		
 A more complicated example

 		
 A dynamic config file

 		
 Config File Specifications

 		
 General

 		
 Render Dictionary Keys

 		
 Custom Rendermodes and Rendermode Primitives

 		
 The Rendermode Primitives

 		
 Defining Custom Rendermodes

 		
 Built-in Rendermodes

 		
 Signs and Markers

 		
 Configuration File

 		
 Filter Functions

 		
 Special POIs

 		
 Manual POIs

 		
 Render Dictionary Key

 		
 Generating the POI Markers

 		
 The –genpoi option

 		
 genPOI.py

 		
 Options

 		
 Predefined Filter Functions

 		
 Marker Icons Overviewer ships by default

 		
 Windows Newbie Guide

 		
 Common Pitfalls

 		
 Using GitHub Gist

 		
 Frequently Asked Questions

 		
 General Questions

 		
 Does the Overviewer work with mod blocks?

 		
 Can I view Overviewer maps without having an internet connection?

 		
 When my map expands, I see remnants of another zoom level.

 		
 You’ve added a new feature or changed textures, but it’s not showing up on my map!

 		
 The background color of the map is black, and I don’t like it!

 		
 I downloaded the Windows version but when I double-click it, the window closes real fast.

 		
 The Overviewer is eating up all my memory!

 		
 How can I log The Overviewer’s output to a file?

 		
 I’ve deleted some sections of my world, but they still appear in the map.

 		
 My map is zoomed out so far that it looks (almost) blank.

 		
 I want to put manual POI definitions or other parts of my config into a separate file.

 		
 Contributing

 		
 Prerequisites

 		
 Acquiring the Source Code

 		
 Finding Your Way around the Code Base

 		
 overviewer_core

 		
 docs

 		
 Code Style

 		
 Example Scenarios

 		
 Adding a Block

 		
 Good Git Practices

 		
 Talking with other Developers

 		
 Design Documentation

 		
 Background Info

 		
 Overviewer at a High Level

 		
 Block Rendering

 		
 Top Transformation

 		
 Side Transformation

 		
 An Entire Cube

 		
 Chunk Rendering

 		
 Block Positioning

 		
 The size of a chunk

 		
 Assembling a Chunk

 		
 Chunk Placement

 		
 Chunk Addressing

 		
 Chunk Positioning

 		
 Tile Rendering

 		
 Tile Layout

 		
 Quadtrees

 		
 Quadtree Size

 		
 Quadtree Paths

 		
 get_range_by_path

 		
 Reading the Data Files

 		
 Image Composition

 		
 Multiprocessing

 		
 Caching

 		
 Lighting

 		
 Smooth Lighting

 		
 Cave Mode

_static/minus.png

_static/plus.png

_images/cube_neighbors.png

_images/cube_parts.png
v & @

_images/cube_horizontal_offset.png
N
[}

—— 24—

_static/up.png

_images/cube_measurements.png
24—

Fo+—0—+od

——

—12——12—

_images/cube_stacking.png

_images/cube_top.png

_images/cube_sides.png

_images/cube_stack16.png
12

12

12¥16

_images/depth2addresses.png

_static/file.png

_images/entirechunk.png

_images/extracting.png
Select a Destination and Extract Files.

Files will be extracted to this folder

[CAUsrnarewiovanews] =

) Show sxtracted files when complete

_images/gist2.png
A=

rama et o oy - rceron

sl v = emeerme s

3+ st s -
Pl Ve
5T o e of e,

)
et = “omesaroms /|

o i Spason | oo s0 2 -

_images/gist3.png
Quitibeseszciazasdesse x

& C ft |8 https://g hub.com/anonymous/be9e52c13339de5be 1a0

GitHub Gist

anonymous / gist:be9e52c13339de5be1a0d

Croated just now

Gist Detail [gisttlet.py
Revisions 1 1 worlds["My world"] = "/home/username/server/world"
2
3 renders[“normalrender"]
& Download Gist S werld®s my world”,
5 “title": "Normal Render of My World",
Clone this gist 6 }
7
e aesact] | 7

_images/front_page_screenshot.png
il T

_images/gist1.png
=

_images/location1.png
(O [fyr onirew » overiewer »

~[4]|

_images/location2.png

_images/light-eqn.png
c=
— (.. 15—mi
g15—min(ly,ls)

_images/lighting-process.png
Unhit Light Data Used Lit

Solid Block . —> & —> .

Transparent Block ‘ — —> ‘

_images/pixelfix.png

_images/screenshot.png

_images/opening_cmd.png
[ond <] [eeselr)

2 IEG

_images/tessellation.png

_images/texturecubing.png
T

16

—16—

—_— 24—

_images/smooth-average.png

_images/system.png
View basic information about your computer
Windows edition

Windows 7 Professionsl

Copyright © 2009 Microsoft Corporstion. Allghts reserved.

Get more features with a new edition of Windows 7

St
Ratng: Y indons Sperncende
Processor: ‘QEMU Virtual CPU version 0.125 3.00 GHz

Computer name, domain, and workgroup settings.

Computername: andrew-pC @ Change settings
Full computername: andrew-PC

Computerdescripton:

Workgroup: WORKGROUP

Windows activation

_images/tilegrid.png

_images/texturesidesteps.png
16 — > 12

—16—

_)
Flz —

_images/texturetopsteps.png
16

T

—>1

—16— —17—

_)

»—24—|

T
¢

24—

