

Welcome to Overscaler’s documentation!

Contents:

	Overscaler
	How it works

	Usage

	Credits

	Installation
	From sources

	Labels
	Overscaler labels

	Metrics

	Rules

	overscaler
	overscaler package

Indices and tables

	Index

	Module Index

	Search Page

Overscaler

[image: _images/overscaler.svg]
 [https://circleci.com/gh/GleamAI/overscaler][image: Documentation Status]
 [http://overscaler.readthedocs.io/en/latest/?badge=latest][image: _images/badge.svg]
 [https://codecov.io/gh/GleamAI/overscaler]Stateful sets autoscaler for Google Kubernetes Engine.

	Documentation: https://overscaler.readthedocs.io.

How it works

Since Kubernetes lacks a autoscale system for Stateful Set pods, it is necessary to implement a new service to play this role. Overscaler may run externally or be deployed as a new Stateful Set within the cluster, in any case, permissions are required to access Kubernetes internal services.

	Monitoring and autoscaling is based on Stateful Sets labels and each one should include a series of labels that define:

	
	Overscaler is On or Off for this Stateful Set

	Metrics that will be monitored.

	Rules that will be applied to rescale.

Periodically, Overscaler scans full cluster to obtain the Stateful Sets labels and, after checking them, starts monitoring each Pod.

During this monitoring, Overscaler realizes a set of GET requests to an internal Kubernete service called Heapster [https://github.com/kubernetes/heapster] that returns metrics related to Pods status, and checks if any limit established by the rules is exceeded to rescale the respective Stateful Set.

Usage

Login and cluster credentials

The first step is to login with gcloud and get the cluster credentials to monitor. To login run:

$ gcloud auth login

Or if you prefer to log in with a service account:

$ gcloud auth activate-service-account --key-file /path/to/credentials.json

For more information about gcloud login with visit login [https://cloud.google.com/sdk/gcloud/reference/auth/login]

To get credentials run:

$ gcloud container clusters get-credentials CLUSTER_NAME --zone ZONE_NAME --project PROJECT_NAME

Run Overscaler

Usage:

$ overscaler start [OPTIONS]

Start Overscaler to monitor and autoscale.

Monitoring and autoscaling are based on labels. Each Stateful Set must
include a series of labels that define:

	Overscaler is On or Off for this Stateful Set.

	Metrics that will be monitored.

	Rules that will be applied to rescale.

	Options:

	
	-pr, --project TEXT

	Project name. [required]

	-c, --cluster TEXT

	Cluster name. [required]

	-z, --zone TEXT

	Project zone name [required]

	-n, --namespace TEXT

	Cluster namespace, default to “default”.

	--refresh_cluster INTEGER

	Refresh period for cluster labels (seconds).
Default to 600.

	--refresh_statefulset INTEGER

	Refresh period for stateful set labels
(seconds).
Default to 300. (seconds).

	--refresh_auth INTEGER

	Refresh period for Api authentication
(seconds).
Default to 300. (seconds).

	--help

	Show this message and exit.

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

From sources

The sources for Overscaler can be downloaded from the Github repo [https://github.com/GleamAI/overscaler].

You can either clone the public repository:

$ git clone git@github.com:GleamAI/overscaler.git

Or:

$ git clone https://github.com/GleamAI/overscaler.git

Once you have a copy of the source, you can install it with:

$ cd overscaler
$ make install

Or if you prefer to install with pip:

$ cd overscaler
$ make pip-install

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Labels

As already mentioned this system is based on labels to know what metrics to get and what rules to apply. This labels must be written in spec.template.metadata.labels within the deployment yaml file.

Overscaler labels

In addition to metrics and rules it is also necessary to add some extra labels for the correct operation of the system.

	app: Stateful Set name.

	overscaler: “true” or “false”, active or deactivate overscaler in this Stateful set.

	current-count: Rescaling counter. During monitoring, this value is reduced until 0, then is possible to rescale.

	autoscaler-count: Value to be assigned in “current-count” after rescaling.

	min-replicas: Maximum number of replicas for this stateful set.

	max-replicas: Minimum number of replicas for this stateful set.

	rescaling: Flag to know when a Stateful Set is being rescaled.

Current-count and autoscaler-count labels play a key role. Each type of service requires a certain time after start to configure and start working in parallel with the other replicas. With these labels we guarantee that time.

Metrics

Overscaler is designed for a customizable monitoring through labels, adding a label for each metric to monitor, and there are different sets of node and pod metrics.

Label format:

metric-n: “metric-name”

Example:

metric-1: "cpu-usage-percent"

However, it is still possible to monitor the entire node or pod using the label “all-metrics: true”.

Node metrics

These metrics determine the status of the different nodes and are assigned by labels in the Google Kubernetes Engine.

Node metrics

	Metric Name

	Description

	cpu-limit

	Cpu hard limit in millicores.

	cpu-node-capacity

	Cpu capacity of a node.

	cpu-node-allocatable

	Cpu allocatable of a node.

	cpu-node-reservation

	Share of cpu that is reserved on the node allocatable.

	cpu-node-utilization

	Cpu utilization as a share of node allocatable.

	cpu-request

	Cpu request (the guaranteed amount of resources) in millicores.

	cpu-usage

	Cumulative cpu usage on all cores.

	cpu-usage-rate

	Cpu usage on all cores in millicores.

	cpu-usage-percent

	Cpu usage percent of total cpu Node.

	memory-limit

	Memory hard limit in bytes.

	memory-major-page-faults

	Number of major page faults.

	memory-major-page-faults-rate

	Number of major page faults per second.

	memory-node-capacity

	Memory capacity of a node.

	memory-node-allocatable

	Memory allocatable of a node.

	memory-node-reservation

	Share of memory that is reserved on the node allocatable.

	memory-node-utilization

	Memory utilization as a share of memory allocatable.

	memory-page-faults

	Number of page faults.

	memory-page-faults-rate

	Number of page faults per second.

	memory-request

	Memory request (the guaranteed amount of resources) in bytes.

	memory-usage

	Total memory usage.

	memory-rss

	RSS memory usage.

	memory-working-set

	Total working set usage. Working set is the memory being used and not easily dropped by the kernel.

	memory-usage-percent

	Memory usage percent of total memory Node.

	network-rx

	Cumulative number of bytes received over the network.

	network-rx-errors

	Cumulative number of errors while receiving over the network.

	network-rx-errors-rate

	Number of errors while receiving over the network per second.

	network-rx-rate

	Number of bytes received over the network per second.

	network-tx

	Cumulative number of bytes sent over the network

	network-tx-errors

	Cumulative number of errors while sending over the network

	network-tx-errors-rate

	Number of errors while sending over the network

	network-tx-rate

	Number of bytes sent over the network per second.

	uptime

	Number of milliseconds since the container was started.

Pod metrics

These metrics determine the status of any Pods and are assigned by labels in the different Stateful sets.

Pod metrics

	Metric Name

	Description

	cpu-limit

	Cpu hard limit in millicores.

	cpu-request

	Cpu request (the guaranteed amount of resources) in millicores.

	cpu-usage-rate

	Cpu usage on all cores in millicores.

	cpu-usage-percent

	Cpu usage percent of total node cpu.

	memory-limit

	Memory hard limit in bytes.

	memory-major-page-faults-rate

	Number of major page faults per second.

	memory-page-faults-rate

	Number of page faults per second.

	memory-request

	Memory request (the guaranteed amount of resources) in bytes.

	memory-usage

	Total memory usage.

	memory-rss

	RSS memory usage.

	memory-working-set

	Total working set usage. Working set is the memory being used and not easily dropped by the kernel.

	memory-usage-percent

	Memory usage percent of total node memory.

	network-rx

	Cumulative number of bytes received over the network.

	network-rx-errors

	Cumulative number of errors while receiving over the network.

	network-rx-errors-rate

	Number of errors while receiving over the network per second.

	network-rx-rate

	Number of bytes received over the network per second.

	network-tx

	Cumulative number of bytes sent over the network

	network-tx-errors

	Cumulative number of errors while sending over the network

	network-tx-errors-rate

	Number of errors while sending over the network

	network-tx-rate

	Number of bytes sent over the network per second.

	uptime

	Number of milliseconds since the container was started.

Rules

The rules for scaling are also assigned by labels and must have a specific syntax:

Label format:

rule-n: “metric_greater|lower_limit_scale|reduce”

	metric: Previously established metrics.

	greater or lower: “>” or “<” that limit.

	limit: Number that establishes a limit

	scale or reduce: Action to be realized when the limit is exceeded.

Example:

rule-1: "cpu-usage-percent_greater_90_scale"
rule-2: "memory-usage-percent_greater_90_scale"
rule-3: "cpu-usage-percent_lower_10_reduce"
rule-4: "memory-usage-percent_lower_10_reduce"

overscaler

	overscaler package
	Submodules

	overscaler.overcli module

	overscaler.overprint module

	overscaler.overtools module

	Module contents

overscaler package

Submodules

overscaler.overcli module

overscaler.overprint module

	
overscaler.overprint.print_cluster_info(autoscale, current_nodes, max_nodes, min_nodes, metrics)

	Prints Cluster information by console.

	Parameters:

	
	
	autoscale: bool

	True if the node autoscale is active.

	
	current_nodes: int

	Number of current nodes.

	
	max_nodes: int

	Maximum number of allowed nodes.

	
	min_nodes: int

	Minimum number of allowed nodes.

	
	metrics: array list

	List of cluster metrics to monitor.

	
overscaler.overprint.print_node_status(node_status)

	Prints Node status by console.

	Parameters:

	
	
	node_status: dict

	Dictionary with all the information about the status of each node.

	
overscaler.overprint.print_pod_status(pod_status)

	Prints Pod status by console.

	Parameters:

	
	
	pod_status: dict

	Dictionary with all the information about the status of each pod.

	
overscaler.overprint.print_statefulset_info(statefulset_labels)

	Prints Stateful Set information by console.

	Parameters:

	
	
	statefulset_lables: dict

	Dictionary with metrics and rules of each stateful set.

overscaler.overtools module

	
overscaler.overtools.actions(api, namespace, pod_status, statefulset_labels, max_nodes)

	Decision making based on pods status and stateful set rules.

	Parameters:

	
	
	api: pykube.http.HTTPClient

	Http client for requests to Kubernetes Api.

	
	namespace: str

	Project namespace.

	
	pod_status: dict

	Dictionary with status pod information.

	
	statefulset_lables: dict

	Dict with metrics and rules of each stateful set.

	
	max_nodes: int

	Maximum number of allowed nodes.

	
overscaler.overtools.check_rule(rule, typ)

	Checks the rules are well written.

Format rule: “metric_greater|lower_limit_scale|reduce”

	Parameters:

	
	
	rule: str

	Rule to check.

	
	type: str

	Rule type, can be for node or pod

	Returns:

	
	
	check: bool

	True if the rule has correct format.

	
overscaler.overtools.get_cluster_labels(cluster_info)

	Gets cluster information.

Returns information about the number of nodes and their limits,
node autoscale function and labels.

	Parameters:

	
	
	cluster_info: dict

	Dictionary with all cluster information.

	Returns:

	
	
	autoscale: bool

	True if node autoscale is active.

	
	max_nodes: int

	Maximum number of allowed nodes.

	
	min_nodes: int

	Minimum number of allowed nodes.

	
	metrics: list

	List of cluster metrics to monitor.

	
overscaler.overtools.get_mean(metric)

	Calculates the arithmetic mean of a metric.

	Parameters:

	
	
	metric: dict

	Dictionary with status metrics.

	Returns:

	
	
	mean: float

	Arithmetic mean.

	
overscaler.overtools.get_metrics(labels, typ)

	Get metrics from a dictionary of labels.

	Parameters:

	
	
	labels: dict

	Dictionary with all metrics.

	
	typ: str

	Metrics type, “pod” or “cluster”.

	Returns:

	
	
	metrics: str lst

	List with metrics to monitor.

	
overscaler.overtools.get_node_status(metrics)

	Gets Node status.

Returns information about state of all nodes.

	Parameters:

	
	
	metrics: str list

	List of metrics to monitor.

	Returns:

	
	
	node_status: dict

	Dictionary with all the information.

	Returned dict format:

	
	{

	
	node_name1:{

	
	metric-1: float,

	Metric-1 value.

	metric-2: float,

	Metric-2 value.

…
}

node_name2:{
…
}

…
}

	
overscaler.overtools.get_num_nodes()

	Returns number of active nodes.

	Returns:

	
	
	num_nodes: int

	Number of current nodes.

	
overscaler.overtools.get_pod_status(api, namespace, statefulset_labels, memory_allocatable, cpu_allocatable)

	Gets Pod status.

Returns information about state of all stateful set pods.

	Parameters:

	
	
	api: pykube.http.HTTPClient

	Http client for requests to Kubernetes Api.

	
	namespace: str

	Project namespace.

	
	statefulset_lables: dict

	Dict with metrics for each stateful set.

	
	memory_allocatable: int

	Maximum memory allowed per node, expressed in bytes.

	
	cpu_allocatable: int

	Maximum memory allowed per node, expressed in minicores.

	Returns:

	
	
	pod_status: dict

	Dictionary with all the information.

Returned dict format:

	{

	
	node_name1:{

	
	pod-name1:{

	
	metric-1: float,

	Metric-1 value.

	metric-2: float,

	Metric-2 value.

…
}

	pod-name2:{

	…
}

}

	node_name2:{

	…
}

…
}

	
overscaler.overtools.get_rules(labels, name)

	Get rules from a dictionary of labels.

	Parameters:

	
	
	labels: dict

	Dictionary with all rules.

	
	name: str

	Stateful Set name.

	Returns:

	
	
	rules: str list

	List with all rules to apply.

	
overscaler.overtools.get_statefulset_labels(statefulset_info)

	Gets Stateful Set information.
Returns information about labels, metrics and rules.

	Parameters:

	
	
	statefulset_info: dict

	Dictionary with all Stateful Set information.

	Returns:

	
	
	statefulset_labels: dict

	Dictionary with only the information needed for the overscaler.

	Returned dict format:

	
	{

	
	statefulset_name1:{

	
	overscaler: bool,

	Is overscaler active?

	current-count:int,

	Autoscale pause counter.

	autoscaler-count: int number,

	Number of waiting cycles after rescalling.

	max-replicas: int,

	Maximum number of replicas.

	min-replicas: int,

	Minimum number of replicas.

	metrics: [str, str…],

	List with all metrics to monitor.

	rules: [str,str…]

	List with all rules for this Stateful Set.

…
}

	statefulset_name2:{

	…
}

…
}

	
overscaler.overtools.rescale(api, namespace, statefulset_name, action, max_nodes)

	Sets a new number of replicas for a given stateful set.

	Parameters:

	
	
	api: pykube.http.HTTPClient

	Http client for requests to Kubernetes Api.

	
	namespace: str

	Project namespace.

	
	statefulset_name: dict

	Name of the statefulset to be rescaled.

	
	action: str

	Action to be realized. Can be “scale” o “reduce”, one pods more or one pod less, respectively.

	
	max_nodes: dict

	Maximum number of allowed nodes.

	
overscaler.overtools.start_proxy()

	Starts local proxy to Kubernetes cluster, host: 127.0.0.1:8001

	
overscaler.overtools.update_current_count(api, namespace, statefulsets_labels)

	Updates the “current-count” label of all Stateful sets.

If its value is 0, this stateful set is ready to be scaled if is necessary.

	Parameters:

	
	
	api: pykube.http.HTTPClient

	Http client for requests to Kubernetes Api.

	
	namespace: str

	Project namespace.

	
	statefulset_lables: dict

	Dict with metrics and rules of each stateful set.

Module contents

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 overscaler	

 	
 	
 overscaler.overcli	

 	
 	
 overscaler.overprint	

 	
 	
 overscaler.overtools	

Index

 A
 | C
 | G
 | O
 | P
 | R
 | S
 | U

A

 	
 	actions() (in module overscaler.overtools)

C

 	
 	check_rule() (in module overscaler.overtools)

G

 	
 	get_cluster_labels() (in module overscaler.overtools)

 	get_mean() (in module overscaler.overtools)

 	get_metrics() (in module overscaler.overtools)

 	get_node_status() (in module overscaler.overtools)

 	
 	get_num_nodes() (in module overscaler.overtools)

 	get_pod_status() (in module overscaler.overtools)

 	get_rules() (in module overscaler.overtools)

 	get_statefulset_labels() (in module overscaler.overtools)

O

 	
 	overscaler (module)

 	overscaler.overcli (module)

 	
 	overscaler.overprint (module)

 	overscaler.overtools (module)

P

 	
 	print_cluster_info() (in module overscaler.overprint)

 	print_node_status() (in module overscaler.overprint)

 	
 	print_pod_status() (in module overscaler.overprint)

 	print_statefulset_info() (in module overscaler.overprint)

R

 	
 	rescale() (in module overscaler.overtools)

S

 	
 	start_proxy() (in module overscaler.overtools)

U

 	
 	update_current_count() (in module overscaler.overtools)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Overscaler’s documentation!

 		
 Overscaler

 		
 How it works

 		
 Usage

 		
 Login and cluster credentials

 		
 Run Overscaler

 		
 Credits

 		
 Installation

 		
 From sources

 		
 Labels

 		
 Overscaler labels

 		
 Metrics

 		
 Node metrics

 		
 Pod metrics

 		
 Rules

 		
 overscaler

 		
 overscaler package

 		
 Submodules

 		
 overscaler.overcli module

 		
 overscaler.overprint module

 		
 overscaler.overtools module

 		
 Module contents

_static/up.png

_static/up-pressed.png

