

OSMNames documentation

	Introduction
	What can I do with OSMNames?

	Where to Start?

	Output Format

	Getting Started
	System requirements

	Run OSMNames

	Extracting countries

	Components
	Docker

	Imposm3

	PostgreSQL

	Implementation
	Initialize Database

	Import Wikipedia

	Import OSM

	Prepare Data

	Export OSMNames

	Development
	Contributing / Issues

	Testing

	Logging

	Consistency Checks

	Tips

	Others
	Performance

Introduction

OSMNames is an open source tool that allows creating geographical gazetteer data
out of OpenStreetMap OSM files.

There is a need for a data set consisting of street names of the world. Such
gazetteer data, however, is either not available for every country
(openaddresses.io) or is not in a suitable format. Furthermore, if such data
exists, it is often not for free. A global data set can be downloaded at
https://osmnames.org.

A current implementation on how the data looks like in a geocoder is a
available at https://osmnames.org

[image: OSMNames Geocoder]

What can I do with OSMNames?

With OSMNames, you can create your own geocoder data set based on
OpenStreetMap. It currently includes all addresses available. For each feature,
the hierarchy, as well as a Wikipedia-based importance, is calculated.

Where to Start?

To download the newest set of data go to https://osmnames.org.

To process OpenStreetMap data yourself, check out the Getting Started
document.

If you want to have a look at the Source Code or contribute to the project,
check out the Development documentation. The source code
is available in our GitHub Repository [https://github.com/OSMNames/OSMNames/issues].

Output Format

The exported file geonames.tsv contains the following columns:

	Column name
	Description

	name
	The name of the feature (default language is en, others available are de, es, fr, ru, zh)

	alternative_names
	All other available and distinct names separated by commas

	osm_type
	The OSM type of the feature (node, way, relation)

	osm_id
	The unique osm_id as identifier for the house numbers in the second file housenumbers.tsv

	class
	The class of the feature e.g. boundary

	type
	The type of the feature e.g. administrative

	lon
	The decimal degrees (WGS84) longitude of the centroid of the feature

	lat
	The decimal degrees (WGS84) latitude of the centroid of the feature

	place_rank
	Rank from 1-30 ascending, 1 being the highest. Calculated with the type and class of the feature.

	importance
	Importance of the feature, ranging [0.0-1.0], 1.0 being the most important.

	street
	The name of the street if the feature is some kind of street

	city
	The name of the city of the feature, if it has one

	county
	The name of the county of the feature, if it has one

	state
	The name of the state of the feature, it it has one

	country
	The name of the country of the feature

	country_code
	The ISO-3166 2-letter country code of the feature

	display_name
	The display name of the feature representing the hierarchy, if available in English

	west
	The western decimal degrees (WGS84) longitude of the bounding box of the feature

	south
	The southern decimal degrees (WGS84) latitude of the bounding box of the feature

	east
	The eastern decimal degrees (WGS84) longitude of the bounding box of the feature

	north
	The northern decimal degrees (WGS84) latitude of the bounding box of the feature

	wikidata
	The wikidata associated with the feature

	wikipedia
	The wikipedia URL associated with the feature

	housenumbers
	All house numbers, comma separated, associated to this element. Coordinates of the house numbers are part of the second output file housenumbers.tsv

Note

All coordinates are rounded to seven digits after the decimal point.

Note

The housenumbers column is a redundant information of all house
numbers contained in the file housenumbers.tsv. The redundancy is accepted
due to advantages for the full-text search of geocoders.

The second file housenumber.tsv contains the following columns:

	Column name
	Description

	osm_id
	The unique osm_id for debug purposes

	street_id
	The osm_id of the element, the house number is associated to

	street
	The name of the street it is associated to for debug purposes

	housenumber
	The actual house number

	lon
	The decimal degrees (WGS84) longitude of the centroid of the house number

	lat
	The decimal degrees (WGS84) latitude of the centroid of the house number

Getting Started

System requirements

With the following set of commands one can easily setup OSMNames in a matter of
minutes. Prerequisites are a working installation of Docker
https://www.docker.com/ along with Docker Compose.

Note

In order to increase the speed of the processing, an SSD disk is recommended.
It is also recommended to tweak the database settings to match the
specficiations of your system.

Run OSMNames

To run OSMNames, follow these steps:

	Checkout source from GitHub

git clone https://github.com/OSMNames/OSMNames.git

	Specify the URL to the PBF file in the .env file

PBF_FILE_URL=http://download.geofabrik.de/europe/switzerland-latest.osm.pbf

Alternatively place a custom PBF file in the data/import directory and define it in the .env file

PBF_FILE=Zuerich.osm.pbf

If PBF_FILE is defined PBF_FILE_URL will be ignored.

	
	Now run OSMNames

	docker-compose run --rm osmnames

This command will:

	Initialize the database inside a docker container

	Download and import a wikipedia dump

	Download and process the specified PBF file

	Export the OSMNames data

The export files for example, switzerland_geonames.tsv.gz and
switzerland_housenumbers.tsv.gz can be found in the export directory
data/export.

A more detailed and technical overview can be found in the documentation
about the Implementation.

Note

The execution time is highly dependent from the size of the PBF file and
the available hardware. More details about the performance can be found in
the corresponding documentation.

Extracting countries

The TSV file from the planet export includes more than 21‘000‘000 entries. The
current data export can be downloaded at https://osmnames.org. If one is only
interested in a specific country, download the file and extract the information
with the following command:

awk -F $'\t' 'BEGIN {OFS = FS}{if (NR!=1) {if ($16 =="[country_code]") {print}} else {print}}' planet-latest.tsv > countryExtract.tsv

where [country_code] needs to be replaced with the ISO-3166 2-letter country code.

Components

OSMNames consists of the following components:

Docker

OSMNames is built with Docker [https://www.docker.com/] and is therefore
shipped in containers. This allows to have an extra layer of abstraction and
avoids overhead of a real virtual machine. Specifically, it is built with
docker-compose [https://docs.docker.com/compose/] thus allowing to define a
multi-container architecture defined in a single file.

Imposm3

Imposm3 [https://imposm.org/docs/imposm3/latest/index.html] by Omniscale is
a data importer for OpenStreetMap data. It reads PBF files and writes the data
into the PostgreSQL database. In OSMNames it is used in favor of osm2pgsql
mainly because of its superior speed results. It makes heavy use of parallel
processing favoring multicore systems. Explicit tag filters are set in order to
have only the relevant data imported.

PostgreSQL

PostgreSQL [http://postgresql.org] is the open source database powering
OMSNames.

OSMNames uses PostgreSQL for the following tasks:

	Storing OSM data read from PBF file.

	OSM data processing

	data export to TSV file

At this moment OSMNames runs PostgreSQL 9.6.x version.

PostGIS

PostGIS [http://postgis.net] is the extension which adds spatial
capabilities to PostgreSQL. It allows working with geospatial types or running
geospatial functions in PostgreSQL.

At this moment OSMNames runs PostGIS 2.3 version.

Implementation

This document describes the implementational aspects of OSMNames.

OSMNames is written in Python. Whereas the main entry point is the file run.py [https://github.com/philippks/OSMNames/blob/master/run.py]. The script calls
the necessary tasks in the correct order. The following diagram shows the full
process of OSMNames:

[image: OSMNames Process]
Details about the tasks can be found in the particular documents:

	Initialize Database

	Import Wikipedia

	Import OSM
	Import Helper Tables

	Prepare Data
	configure for preparation

	set names

	delete unusable entries

	set place ranks

	set country codes

	determine linked places

	create hierarchy

	merge corresponding linestrings

	prepare housenumbers

	Export OSMNames
	create functions

	create views

	export geonames

	export housenumbers

	gzip tsv files

Initialize Database

The initialization of the database is skipped, if it is already present.

The database is created with the template template_postgis. The user and
password are set via the environment variables DB_USER and DB_PASSWORD. The
default values are osm and password.

Import Wikipedia

To have an importance value for each feature, a wikipedia helper table is
downloaded from a Nominatim server. This is the same information Nominatim uses
to determine the importance. It was decided to take this pre-calculated data
instead of calculating it due to longer processing times (up to several days!).
Also, the same calculations are applied, to achieve the same results.
The initialization of the database is skipped, if it is already present.

The download and import of the wikipedia dump are skipped, if it is already
present. Since the dump was created with the username brian, a temporary user
is created to restore the dump, which is dropped after transferring the
ownership to the osm user.

Import OSM

[image: Import OSM]
The PBF file can be set with the environment variable PBF_FILE_URL or
PBF_FILE. When defining the URL, the file is download, if not already present
in the import directory. When the file is defined directly, the download is
skipped.

Before importing the PBF file with Imposm, the database is sanitized by
dropping all previously imported tables.

To import the PBF file Imposm3 [https://imposm.org/docs/imposm3/latest/] is
used, which is an importer for OpenStreetMap data. The corresponding mapping
can be found here [https://github.com/OSMNames/OSMNames/blob/master/data/import/mapping.yml].
After the import, the following tables will be created:

	osm_linestring

	osm_polygon

	osm_point

	osm_housenumber

	osm_relation

	osm_relation_member

More details about the columns of the tables can be found in the mapping of
Impsom3 [https://github.com/OSMNames/OSMNames/blob/master/data/import/mapping.yml].
Additionally, will the tables be extended with custom columns when preparing
the data.

Import Helper Tables

Besides the OpenStreetMap data, are the following tables imported:

	Table
	Description

	country_osm_grid
	Contains the country code and geometries for all countries.

	country_name
	Contains the country code and country names of all countries.

The tables are later used to enrich the imported data. Both are provided by
Nominatim [https://github.com/openstreetmap/Nominatim].

Prepare Data

The preparation of the imported OpenStreetMap data for the export is the heart
of OSMNames. Missing names are completed, a hierarchy is created, unusable
entries are removed and more. In this document are all involved steps explained
in detail. The following diagram shows the full process of preparing the data:

[image: Prepare Data]

configure for preparation

This step configures the database for the other steps. This involves:

	Dropping unused indexes for better performance

	Add custom columns, necessary for the preparation, to tables imported in
import_osm. The added columns can be found here [https://github.com/OSMNames/OSMNames/blob/master/osmnames/import_osm/create_custom_columns.sql].

	Set tables to unlogged for better performance

set names

The following approaches are used to complete the name and alternative_names
attribute on polygons, linestrings and points.

set names from tags

All tags of polygons, linestrings and points imported. On some elements is the
name not set with the key name but with a different key, e.g. name:en. The
value of the name attribute is tried to set with following approaches, whereas
the order matches the priority:

	Set the name to the imported name if present.

	
	Set the name to the first present value of these keys, whereas the order matches the priority:

	
	name:en

	name:fr

	name:de

	name:es

	name:ru

	name:zh

	If still no name is found, take the first alternative name.

Additionally is the attribute alternative_names set with all available names,
except the value of the name attribute. The value of alternative_names is a
comma separated string.

Note

All available names for the alternative names are determined by the
keys of the tags. Keys starting with name: and others are considered. Details
about the relevant keys can be found in the corresponding query [https://github.com/OSMNames/OSMNames/blob/master/osmnames/prepare_data/set_names/set_names_from_tags.sql].

Note

Tabs in the name or alternative_names are replaced with spaces, since
the final export format is TSV.

Example

A node was imported with following attributes:

	Attribute
	Value

	name
	NULL

	all_tags
	{ “name:de”: “Matterhorn”, “name:fr”: “Cervin”, “name:it”: “Cervino” }

After running set_names_from_tags, the following values are set:

	Attribute
	Value
	Explanation

	name
	Cervin
	The French name from all_tags because the name
attribute was empty and French has a higher priority then German

	alternative_names
	Matterhorn, Cervino
	All remaining names from all_tags, except the French, since it was set as name

set linestring names from relations

Sometimes is the name not set on a linestring directly, but on the relation,
where the linestring is a member. If so, the name is set to the name of the
relation.

Implemented with Issue #106 [https://github.com/OSMNames/OSMNames/issues/106].

delete unusable entries

Elements are unusable and deleted if:

	Name attribute of polygons, points or linestrings is still empty.

	Geometry of polygons is empty.

set place ranks

The place rank indicates how important a element is (lower means more
important). A continent for example has a place_rank of 2, which is the lowest
place_rank possible. The place_rank is either the double of the admin_level, if
the admin_level is set, or a value depending on the type of the element. The
mapping can be found here [https://github.com/OSMNames/OSMNames/blob/master/osmnames/import_osm/set_place_ranks.sql].

set country codes

To determine the country of a element, the country_code must be present on each
polygon. It is only necessary for polygons since the country code of all other
elements can be determined based on the hierarchically associated polygon.

If present the imported country_code is taken. Otherwise is the country code
set based on the country_osm_grid.

determine linked places

In order to determine linked places (points linked with polygons) additional
tags about the relations are imported. Specifically, the role values
admin_centre and label are of interest.

This information is later on used in the export mainly to rule out point
features linked to their polygon features as well as determining city types
instead of administrative types.

For example the relation Kreuzberg [http://www.openstreetmap.org/relation/55765] is linked to the member node
Kreuzberg [http://www.openstreetmap.org/node/262328235] with the role
label. Since they are linked, only the polygon will be exported.

create hierarchy

The hierarchy of the elements is created based on their geometries. The process
is as simple as this:

	Set the parent id of each element within a polygon, with the place rank 22,
to the id of the polygon. Polygons with the place rank 22 have the admin
level 11 or the type neighbourhood or residential.

Note

The parent id of a polygon is only set if the place rank is higher than the
place rank of the parent. This prevents a meaningless hierarchy.

	When all polygons with the place rank 22 are processed, the same step is
done with all polygons with the place rank 21, 20, 19 and so forth.

	It ends with the place rank 2, which corresponds to polygons of the type
continent.

Note

If a element is contained in a polygon, is determined with the PostGIS
function st_contains [http://postgis.net/docs/manual-1.4/ST_Contains.html].
Since it only returns true if a geometry is fully contained in another
geometry, the child elements are determined only with the center of a geometry
and not the full geometry. The centers of geometries are set here [https://github.com/OSMNames/OSMNames/blob/master/osmnames/import_osm/create_hierarchy/set_geometry_centers.sql].

Note

Polygons of the type water, desert, bay and reservoir are
ignored, since it makes no sense to assign them as parents of other elements.

merge corresponding linestrings

Linestrings are merged to one linestring if all of these conditions are met:

	They have the same name

	They have the same polygon as parent

	They are at least 1000 meters near each other

When merging the linestring a new table osm_merged_linestring is created,
which contains, besides the shared attributes of the sub-linestrings, following
attributes:

	Attribute
	Description

	osm_id
	Smallest id of the sub-linestring ids.

	member_ids
	The ids of the sub-linestrings.

	type
	Types of the sub-linestrings, comma separated.

	geometry
	Combination of the sub-linestring geometries.

Note

The geometry of the merged linestring is sligthly simplified with the
PostGIS function st_simplify [https://postgis.net/docs/ST_Simplify.html],
see Issue #90 [https://github.com/OSMNames/OSMNames/issues/90]

After creating the table osm_merged_linestring, the attribute merged_into
of the original linestrings in the table osm_linestring are updated to the
osm_id of the linestring they have been merged into.

Examples

For example the linestrings with the OSM IDs 26085954 [http://www.openstreetmap.org/way/26085954], 289620118 [http://www.openstreetmap.org/way/289620118], 289620119 [http://www.openstreetmap.org/way/289620119] are merged to one linestring.

Other examples can be found in the issues #74 [https://github.com/OSMNames/OSMNames/issues/74] and #85 [https://github.com/OSMNames/OSMNames/issues/85].

prepare housenumbers

The goal of preparing the house numbers is, to connect each geometry, which has
an house number as attribute, to a corresponding street or place. All
geometries with an house number are imported into the osm_housenumber table.
Some of them have already the street attribute set, with the name of a
street. Others do only have the housenumber attribute and nothing else set.
For these house numbers multiple approaches are applied to complete the missing
street attributes. The steps are shown by the following diagram:

[image: Prepare House Numbers]

Note

The individual steps are sorted according to their costs. It is for
example fast to determine the missing street attribute from a relation, if one
exists. But it is slow and costly to find the nearest street depending on the
geometry.

set street attributes by street relation members

If a house number is part of a relation, where another member has the role
street or associatedStreet, set the street_id and the street to the
osm_id and name of this member.

set street names by relation attributes

If a house number is part of a relation with the type street or
associatedStreet, set the street to the street or name attribute of
this relation.

normalize street names

To match house numbers with streets by the street name, the attributes
normalized_street and normalized_name of house numbers and linestrings are
set to a normalized version of the street and name. The name is normalized by:

	removing all white spaces and dashes

	lower casing the name

	removing accents

Some examples for normalized names and streets:

	Name / Street
	Normalized Name / Street

	Bietinger Weg
	bietingerweg

	Cité Préville
	citepreville

	Chemin du Pra-de-Villars
	chemindupradevillars

	Rue de’Gare
	ruedegare

set street ids by street name

It is tried to set the street_id of the house numbers to the osm_id of a
linestring, which has the same parent_id and a matching name. These
approaches are executed in the given order:

	Find a linestring with the same parent_id and the exactly same name as
the street of the house number.

	Find a within 1000 meters and the exactly same name as the
street of the house number.

	Find a linestring with the same parent_id and the most similar name.
This approach makes use of the PostgreSQL module pg_trgm [https://www.postgresql.org/docs/9.6/static/pgtrgm.html].

	Find a within 1000 meters and the most similar name. This
approach makes use of the PostgreSQL module pg_trgm [https://www.postgresql.org/docs/9.6/static/pgtrgm.html].

Note

The approaches are executed in this order because the more accurate
and best performing approaches are executed first. If still no street was
found, the restrictions are softened.

Here some examples for the matching street names. Note that in the queries the
matching is done with the normalized name.

	House number street
	Linestring name

	Haldenweg
	Haldenweg

	Bochslenrasse
	Bochslenstrasse

	Cité Préville 19
	Cité Préville

set street attributes by nearest street

Still not all house numbers will have a street assigned at this point. As the
last approach will the nearest street be assigned to the house number. Note
that this is very slow, expensive and inaccurate and therefore is only
executed if no street was found with the previous approaches.

Export OSMNames

When exporting OSMNames the output files get created. This documents describes
the implementation of the export. Details about the output format can be found
in the introduction.

create functions

This step creates the SQL functions later used for the export.

Besides the following descriptions of the functions are the unit tests of
Python [https://github.com/OSMNames/OSMNames/tree/master/tests/export_osmnames] a
good entry point to understand how the functions work.

determine_class

Returns a class for a given type. For example, the type city leads to the class place.

The full mapping can be found in the code [https://github.com/OSMNames/OSMNames/blob/master/osmnames/export_osmnames/functions.sql].

get_parent_info

This function makes use of the hierarchy and the place rank to return the
following information for an element:

	city

	county

	state

	country_code

	display name

Whereas the display name is a concatenation of the name of the element and all
other information.

Note

More information about the impelementation of the function can
be found in the PR #82 [https://github.com/OSMNames/OSMNames/pull/82]

Example

These elements exists:

	Type
	ID
	Name
	Parent ID

	Linestring
	1
	Oberseestrasse
	2

	Polygon
	2
	Rapperswil-Jona
	3

	Polygon
	3
	Wahlkreis See-Gaster
	4

	Polygon
	4
	Sankt Gallen
	5

	Polygon
	5
	Schweiz
	-

When calling the function get_parent_info with the parent id and the name of
linestring Oberseestrasse following information will be returned:

	Attribute
	Value

	city
	Rapperswil-Jona

	county
	Wahlkreis See-Gaster

	state
	Sankt Gallen

	country_code
	ch

	display name
	Oberseestrasse, Rapperswil-Jona, Wahlkreis See-Gaster, Sankt Gallen, Switzerland

Note

The decision which polygon is the city, county or state is based on
the corresponding place rank.

get_country_name

Returns the name of a country for a given country code. The name will be
returned in the first language present, following the precedence: [English ->
native name -> French -> German -> Spanish -> Russian -> Chinese].

The names are read from the helper table country_name (see
Import Helper Tables).

get_importance

This function returns an importance for an element by its URL to a wikipedia
article if present or its place rank.

If a feature has a wikipedia URL a matching entry in the wikipedia helper table
is taken for calculating the importance with the following formula:

importance = log (totalcount) / log(max(totalcount))

where totalcount is the number of references to the article from other
wikipedia articles. In case there is no wikipedia information or no match was
found, the following formula is applied:

importance = 0.75 - (place_rank/40)

Since every feature has a rank, it is ensured that every feature also has an
importance.

get_country_language_code

Returns the default language for a country. The value is read from the helper
table country_name (see Import Helper Tables).

get_housenumbers

Returns a comma separated string of all house numbers, associated to the given
osm_id.

get_bounding_box

This functions takes a geometry, a country code and an admin_level as attribute
and determines a bounding box. It is only used for polygons to handle these
special cases:

	Some countries do have colonies where are big bounding box is returned. Since
this is inconvenient from a user perspective, a smaller bounding box, only
covering the main country is returned. See Issue #57 [https://github.com/OSMNames/OSMNames/issues/57] for more details.

	When a polygons intersects the antimeridian, a unintuitive bounding box is
returned. In this case the bounding box is shifted manually. See Issue #94 [https://github.com/OSMNames/OSMNames/issues/94] for more details.

create views

This function creates the views, which are later used to export the geonames
and house numbers. The columns of the views equals the output format of
OSMNames.

export geonames

This function exports all rows of the polygon, linestring and point view to the
file <import-file-name>_geonames.tsv. This by making use of the PostgreSQL
function COPY [https://www.postgresql.org/docs/current/static/sql-copy.html].

export housenumbers

This function exports all rows of house number view to the file
<import-file-name>_housenumbers.tsv. This by making use of the PostgreSQL
function COPY [https://www.postgresql.org/docs/current/static/sql-copy.html].

Note

House numbers unable to associated to a street or place when
preparing the data, are not exported.

gzip tsv files

This function finally uses gzip [http://www.gzip.org/] to compress the tsv
files created before.

Development

Contributing / Issues

If you like to contribute feel free to create an issue on the OSMNames GitHub
repository [https://github.com/OSMNames/OSMNames/issues]. It is optimal if the
issue description includes some real examples, like OSM IDs of existing
OpenStreetMap elements. Additionally should each new functionality or bugfix
be covered by a new test case (see Testing).

Keep in mind that the following styleguides should be respected:

	PEP8 <https://www.python.org/dev/peps/pep-0008/>_ for Python code

	SQL Style Guide <http://www.sqlstyle.guide/>_ for SQL

Testing

To have a sustainable code base, tests are indispensable. OSMNames uses the
Python testing framework pytest [https://docs.pytest.org/en/latest/] for
testing.

The tests run inside a docker container and uses the same docker container for
the database, as the main process of OSMNames. To run the tests, following
command can be executed:

docker-compose run --rm osmnames bash run_tests.sh

This executes the script run_tests.sh inside the docker container.

Alternatively can a path be added as argument to execute a specific test:

docker-compose run --rm osmnames bash run_tests.sh tests/prepare_data/test_delete_unusable_entries.py

Some important notes about the architecture of the tests:

	The tests can be found in the directory tests/

	The name of the Python test files and the name of the functions must have the
prefix test_ to be executed by pytest.

	When including the pytest fixture session in a test method, the test
database is dropped and recreated before the test. The fixture is defined
here [https://github.com/OSMNames/OSMNames/blob/master/tests/conftest.py].

	A good way to structure a test, is to import a SQL dump with the necessary
schema, after the database was recreated by the session fixture.

	To create rows in Python code, the helper class Tables [https://github.com/OSMNames/OSMNames/blob/master/osmnames/database/tables.py]
can be used.

Example for a Test

The following code tests the functionality of the function
delete_unusable_entries. For better understanding are some parts of the file
conftest.py also listed.

tests/conftest.py:

...

@pytest.fixture(scope="module")
def engine():
 wait_for_database()
 _recreate_database()

 yield connection.engine

 connection.engine.dispose()

@pytest.fixture(scope="function")
def session(engine):
 session = Session(engine)

 yield session

 session.close()

@pytest.fixture(scope="module")
def tables(engine):
 return Tables(engine)

...

tests/prepare_data/test_delete_unusuable_entries.py:

...

@pytest.fixture(scope="module")
def schema():
 current_directory = os.path.dirname(os.path.realpath(__file__))
 exec_sql_from_file('fixtures/test_prepare_imported_data.sql.dump', cwd=current_directory)

def test_osm_polygon_with_blank_names_get_deleted(session, schema, tables):
 session.add(tables.osm_polygon(name="gugus"))
 session.add(tables.osm_polygon(name=""))
 session.commit()

 delete_unusable_entries()

 assert session.query(tables.osm_polygon).count(), 1

def test_osm_polygon_with_null_names_get_deleted(session, schema, tables):
 session.add(tables.osm_polygon(name="gugus"))
 session.add(tables.osm_polygon())
 session.commit()

 delete_unusable_entries()

 assert session.query(tables.osm_polygon).count(), 1

...

The method test_osm_polygon_with_blank_names_get_deleted includes the
fixtures session, schema and tables. The fixture engine is also included
indirectly, since the fixture session in conftest includes it. The fixture
schema will be executed after the database was recreated and restores the SQL
dump fixtures/test_prepare_imported_data.sql.dump which contains relevant
database schema for the test. The following diagram visualizes this process:

[image: Testing Example]

Note

Since the fixture engine and schema are in the scope module
they are only executed once per file and not for each test.

Logging

To analyze the progress of OSMNames multiple ways of logging are available.

Python Logs

To write logging messages from Python code, a logger can be used, which is
implemented here [https://github.com/OSMNames/OSMNames/blob/master/osmnames/logger.py]. It
makes use of the logging facility of Python [https://docs.python.org/2/library/logging.html]. It can be defined and
called like this:

log = logger.setup(__name__)

#...
def some_method():
 log.debug('some method called')
 #...
 log.error('some method failed')

The log entries are sent to the default output and to a log file inside the
directory data/logs/.

Python Profiling

Besides the logger is also the profiling facility of Python [https://docs.python.org/2/library/profile.html] used. In the file run.py
is the profiler started at the beginning and the statistics are written after
the whole process. This results in a file with the suffix .cprofile in the
directory data/logs. It contains statistics how often and for how long
various parts of the program have been executed.

A simple way to look at these data is the tool RunSnakeRun [http://www.vrplumber.com/programming/runsnakerun/], which results in a GUI
like this:

[image: Example Output of RunSnakeRun]
PostgreSQL Logs

The simplest way to have a look at the log files of PostgreSQL is by using the
logging capabilities of docker-compose. The following command follows the log
files of PostgreSQL:

docker-compose logs -f -t postgres

Consistency Checks

Consistency checks do some checking while processing the data to get a feedback
how well the preparation is working. For example, after running the function
set_parent_ids, when creating the hierarchy, a consistency check writes to
the log how many elements still have no parent id set. This could be because of
a wrong functionality or invalid input from OpenStreetMap (e.g. missing
attributes which should be set, invalid geometries, spelling mistakes and so
forth).

The consistency checks are defined here [https://github.com/OSMNames/OSMNames/blob/master/osmnames/consistency_check.py]
and called at the relevant position in the code.

Tips

These tips may help for efficient development:

	Use a small PBF file, for example your hometown, to test the your changes
locally by running the full process.

	OSMNames vacuums [https://www.postgresql.org/docs/current/static/sql-vacuum.html] the
Postgres database a lot. This only makes sense when processing a large PBF
file. When running a small PBF file the environment variable SKIP_VACUUM
can be set to True in the .env file.

	When working with a small file in development, one can forget about the
performance influences for large files easily. Some minutes more for small
files can lead to a increased runtime of multiple hours for the whole planet.

Others

Performance

The following tips can help to improve the performance for processing large PBF
files with OSMNames.

Database Configuration

For better performance, the database needs to be configured according to the
resources of the host system, the process runs on. A custom configuration can
be added by creating a file /docker-entrypoint-initdb.d/alter_system.sh
inside the postgres container and marking it as executable. The script is
executed when restarting the database container.

Here is an example for the content of the script:

#!/bin/bash
set -o errexit
set -o pipefail
set -o nounset

function alter_system() {
 echo "Altering System parameters"
 PGUSER="$POSTGRES_USER" psql --dbname="$POSTGRES_DB" <<-EOSQL
 alter system set autovacuum_work_mem = '4GB';
 alter system set checkpoint_completion_target = '0.9';
 alter system set checkpoint_timeout = '20min';
 alter system set datestyle = 'iso, mdy';
 alter system set default_statistics_target = '500';
 alter system set default_text_search_config = 'pg_catalog.english';
 alter system set dynamic_shared_memory_type = 'posix';
 alter system set effective_cache_size = '96GB';
 alter system set fsync = 'off';
 alter system set lc_messages = 'en_US.utf8';
 alter system set lc_monetary = 'en_US.utf8';
 alter system set lc_numeric = 'en_US.utf8';
 alter system set lc_time = 'en_US.utf8';
 alter system set listen_addresses = '*';
 alter system set log_checkpoints = 'on';
 alter system set log_temp_files = '1MB';
 alter system set log_timezone = 'UTC';
 alter system set maintenance_work_mem = '96GB';
 alter system set max_connections = '20';
 alter system set random_page_cost = '1.1';
 alter system set shared_buffers = '96GB';
 alter system set synchronous_commit = 'off';
 alter system set temp_buffers = '120MB';
 alter system set timezone = 'UTC';
 alter system set track_counts = 'on';
 alter system set wal_buffers = '16MB';
 alter system set max_wal_size = '5GB';
 alter system set work_mem = '6GB';
 alter system set log_statement = 'all';
EOSQL
}

alter_system

Determining the best configuration for a host is not easy. A good starting
point for that is PgTune [http://pgtune.leopard.in.ua/].

tmpfs

To improve the performance of OSMNames the database can be hold in the RAM
while processing. The easiest way to do this, is by adding following line to
the docker-compose.yml file:

...
postgres:
 ...
 tmpfs: /var/lib/postgresql/data:size=300G

This only makes sense if the necessary amount of RAM is available. Additionally
keep in mind that the data will be lost when restarting the docker container.

Index

 _static/runsnake_example.png
Name Calls Realls Local scall cum rca

check call 000038 000001 21.84709
cal 27 27 000129 000005 21.84671
eintr_retry._call 54 54 000076 000001 21.81280
wait 27 27 000087 000003 2174759
<posixwaitpid> 7 7 2174587 080540 2174587
exec sql_from file 2 2 000224 000009 1519532

prepare_data
mport osm
mport_pbf file

export osmnames
create_osm_grid table
prepare_housenumbers

000015 000015 1387813
000003 000003 655207
000005 000005 646968
000005 000005 354279
000002 000002 326197
000054 000054 291433
000005 000005 274335
000005 000005 233511

create views
create_hierarchy

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1
et names 1 1 000003 000003 178499
exec sl 19 19 000060 000003 170945
set names_from tags 1 1 000002 000002 161186
<method ‘execute’ o ‘psycopg2. ps... 19 19 15921 008417 159934
set street ids by street name 1 1 000027 000027 138344
et country codes 1 1 000003 000003 1.15900
et geometry centers 1 1 000002 000002 1.10213
create linestrings view 1 1 000002 000002 032076
normalize street names 1 1 000001 000001 081421
et tables unlogged 1 1 000041 000041 078557
create_housenumbers view 1 1 000002 000002 078106
cluster_geometries 1 1 000012 000012 065827
merge corresponding linestrings 1 1 000002 000002 055074
et parent ids 1 1 000002 000002 0.49871
g2ip v files 1 1 000012 000012 042210
copyfileobj 2 2 000049 000025 0.41987
write 124 124 000197 000002 041804
et street attributes by nearestst.. 1 1 000001 000001 041389
<builtin method compress> 124 124 041114 000332 041114

create_polygons view 1 1 000002 000002 034695

<posixwaitpid>@~0 [21.7465]

<posixwaitpid>@~0 [21.7465]

<posixwaitpid>@-

<posixwait

<posixwaitpid

<posixwaitpid>@~0 [21.7465]

_static/comment.png

_images/run.png
database I I I I osmnames I

process started osmnames
‘exported

_static/plus.png

_static/down-pressed.png

_images/testing_example.png
execute fiture

runtest

which creates
database and
opens.
connection

which creates
database
schema

which opens
new session

execute fxure
O Soute Soute 2l execute one test close session X e
engine(I schemag I session) I I
Thor tests o
exeae?

O

test fished

_static/bpmns/initialize_database.png

_images/prepare_housenumbers.png
setsteet
atbutes by settreetnames e | st sy | ceteet |
street relation e I strestnames strestname Y

members attibutes neareststieet
prepare
housenumbers

housenumbers
prepared

_static/bpmns/testing_example.png
execute fiture

runtest

which creates
database and
opens.
connection

which creates
database
schema

which opens
new session

execute fxure
O Soute Soute 2l execute one test close session X e
engine(I schemag I session) I I
Thor tests o
exeae?

O

test fished

_images/map_preview.png
len

Michelbachle-Bas

Michelbach-le
ut

o

<

Folgensbourg
“uikipedia’

7554658,
47.519205,
7.63414,
47.589897

“country": "Suitzerland”,
“place_rank": 16

“fornatted_nane"
“fornatted_type"

"Basel,

Attens

iller

Wentzwiller

-

“de.wikipedia. org/uiki/Basel",

Hagenthal-le-Bas

Hagenthal-le-Haut

Basel-City, Suitzerland”,

“adninistrative’

\

Buschwiller

Schonenbuch

\

EuroAirport Basel-)
Mulhouse-Freiburg

Neuwiller

\‘ Al \} — —
SAINT-LOUIS Basel, Basel-City, Switzerland (administrative)

LA CH

sseE

-

— —

basel

Basel, Lo Bamechea, Provincia de Santiago, Region Metrop.

Basel, Jerusalem, Jerusalem District, Israel (residential,serv.
Basel, Lo Bamechea, Provincia de Santiago, Region Metrop.
Basel, Valle de los Molinos, Zapopan, Jalisco, Mexico (street)
Basel, Arica, Provincia de Arica, XV Region de Arica y Parin
Basel, Bat Yam, Bat Yam, Tel Aviv District, Israel (street)
A\ | Basel, Holon, Israel (street)

Basel, Tel Aviv, Tel Aviv-Yafo, Tel Aviv District, Israel (stree)

Basel, X mibw, Beer Sheva, South District, Israel (stree)

o T
or
NGEN- A

A
[B316]
saLzerT
(317]
Obertilingen |~ (a5 Cher
Niedereict
b Inzlingen

)

/" _/Efimingen “r q
f

DEGERFELDEN

Rithrberg J \ﬁ
Herten (Baden)

Grenzach-Wyhlen

Vi =

\ Pratteln

B o s et ContbuIorS

_images/runsnake_example.png
Name Calls Realls Local scall cum rca

check call 000038 000001 21.84709
cal 27 27 000129 000005 21.84671
eintr_retry._call 54 54 000076 000001 21.81280
wait 27 27 000087 000003 2174759
<posixwaitpid> 7 7 2174587 080540 2174587
exec sql_from file 2 2 000224 000009 1519532

prepare_data
mport osm
mport_pbf file

export osmnames
create_osm_grid table
prepare_housenumbers

000015 000015 1387813
000003 000003 655207
000005 000005 646968
000005 000005 354279
000002 000002 326197
000054 000054 291433
000005 000005 274335
000005 000005 233511

create views
create_hierarchy

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1
et names 1 1 000003 000003 178499
exec sl 19 19 000060 000003 170945
set names_from tags 1 1 000002 000002 161186
<method ‘execute’ o ‘psycopg2. ps... 19 19 15921 008417 159934
set street ids by street name 1 1 000027 000027 138344
et country codes 1 1 000003 000003 1.15900
et geometry centers 1 1 000002 000002 1.10213
create linestrings view 1 1 000002 000002 032076
normalize street names 1 1 000001 000001 081421
et tables unlogged 1 1 000041 000041 078557
create_housenumbers view 1 1 000002 000002 078106
cluster_geometries 1 1 000012 000012 065827
merge corresponding linestrings 1 1 000002 000002 055074
et parent ids 1 1 000002 000002 0.49871
g2ip v files 1 1 000012 000012 042210
copyfileobj 2 2 000049 000025 0.41987
write 124 124 000197 000002 041804
et street attributes by nearestst.. 1 1 000001 000001 041389
<builtin method compress> 124 124 041114 000332 041114

create_polygons view 1 1 000002 000002 034695

<posixwaitpid>@~0 [21.7465]

<posixwaitpid>@~0 [21.7465]

<posixwaitpid>@-

<posixwait

<posixwaitpid

<posixwaitpid>@~0 [21.7465]

_static/bpmns/run.png
database I I I I osmnames I

process started osmnames
‘exported

_images/import_osm.png
check if flename in
PBF_FILE_URL already
presentin DATA_DIR

o
T Atendy X S

Import OSM File

Import Helper

O X yes

Import OSM
PEF_FILE

enviranment

variable set?

Sanatize for
Import

with imposm I

Tables. I

O

OsM imported

_images/prepare_data.png
i ks set counts determine create hierarchy merge prepare
configure for setnames delete unusable | | set place ranks vy | Setemine corresponding [| PEPRS
preparation entries codes inked plac linestrings
data prepared
prepare data

_static/bpmns/import_osm.png
check if flename in
PBF_FILE_URL already
presentin DATA_DIR

o
T Atendy X S

Import OSM File

Import Helper

O X yes

Import OSM
PEF_FILE

enviranment

variable set?

Sanatize for
Import

with imposm I

Tables. I

O

OsM imported

_static/minus.png

_static/bpmns/prepare_data.png
i ks set counts determine create hierarchy merge prepare
configure for setnames delete unusable | | set place ranks vy | Setemine corresponding [| PEPRS
preparation entries codes inked plac linestrings
data prepared
prepare data

nav.xhtml

 Table of Contents

 		OSMNames documentation

 		Introduction

 		What can I do with OSMNames?

 		Where to Start?

 		Output Format

 		Getting Started

 		System requirements

 		Run OSMNames

 		Extracting countries

 		Components

 		Docker

 		Imposm3

 		PostgreSQL

 		PostGIS

 		Implementation

 		Initialize Database

 		Import Wikipedia

 		Import OSM

 		Import Helper Tables

 		Prepare Data

 		configure for preparation

 		set names

 		delete unusable entries

 		set place ranks

 		set country codes

 		determine linked places

 		create hierarchy

 		merge corresponding linestrings

 		prepare housenumbers

 		Export OSMNames

 		create functions

 		create views

 		export geonames

 		export housenumbers

 		gzip tsv files

 		Development

 		Contributing / Issues

 		Testing

 		Logging

 		Consistency Checks

 		Tips

 		Others

 		Performance

 		Database Configuration

 		tmpfs

_static/bpmns/prepare_housenumbers.png
setsteet
atbutes by settreetnames e | st sy | ceteet |
street relation e I strestnames strestname Y

members attibutes neareststieet
prepare
housenumbers

housenumbers
prepared

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/map_preview.png
len

Michelbachle-Bas

Michelbach-le
ut

o

<

Folgensbourg
“uikipedia’

7554658,
47.519205,
7.63414,
47.589897

“country": "Suitzerland”,
“place_rank": 16

“fornatted_nane"
“fornatted_type"

"Basel,

Attens

iller

Wentzwiller

-

“de.wikipedia. org/uiki/Basel",

Hagenthal-le-Bas

Hagenthal-le-Haut

Basel-City, Suitzerland”,

“adninistrative’

\

Buschwiller

Schonenbuch

\

EuroAirport Basel-)
Mulhouse-Freiburg

Neuwiller

\‘ Al \} — —
SAINT-LOUIS Basel, Basel-City, Switzerland (administrative)

LA CH

sseE

-

— —

basel

Basel, Lo Bamechea, Provincia de Santiago, Region Metrop.

Basel, Jerusalem, Jerusalem District, Israel (residential,serv.
Basel, Lo Bamechea, Provincia de Santiago, Region Metrop.
Basel, Valle de los Molinos, Zapopan, Jalisco, Mexico (street)
Basel, Arica, Provincia de Arica, XV Region de Arica y Parin
Basel, Bat Yam, Bat Yam, Tel Aviv District, Israel (street)
A\ | Basel, Holon, Israel (street)

Basel, Tel Aviv, Tel Aviv-Yafo, Tel Aviv District, Israel (stree)

Basel, X mibw, Beer Sheva, South District, Israel (stree)

o T
or
NGEN- A

A
[B316]
saLzerT
(317]
Obertilingen |~ (a5 Cher
Niedereict
b Inzlingen

)

/" _/Efimingen “r q
f

DEGERFELDEN

Rithrberg J \ﬁ
Herten (Baden)

Grenzach-Wyhlen

Vi =

\ Pratteln

B o s et ContbuIorS

_static/data_model.png
osm_polygon osm_linestring
TEGER o INTEGER.
iGNt omm.ia sianT
CHARACTER VARYING e CHARACTER VARYING
CHARACTER VARYING name CHARACTER VARYING
CHARACTER VARYING name it CHARACTER VARYING
CHARACTER VARYING CHARACTER VARYING
CHARACTER VARYING name_de CHARACTER VARYING
CHARACTER VARYING CHARACTER VARYING
CHARACTER VARYING name_ru CHARACTER VARYING
CHARACTER VARYING name_zn CHARACTER VARYING
CHARACTER VARYING vpeda CHARACTER VARYING
CHARACTER VARYING vadata CHARACTER VARYING
CHARACTER VARYING admn vl INTEGER.
admin_tevel ITEGER geomety geometry
geamery geomety rank_search INTEGER.
i search INTEGER parten INTEGER.
partton TEGER caculsted _country_cods CHARACTER VARYINGE)
catuiated_counry.code CHARACTER VARYING(Z) paent i siGwT
parent 4 BiGINT merged sooLEAn
nked_osm i BNt
osm_point osm_merged_multi_linestring osm_relation
S rEGER 7 member_ids TeceR e semau
osmia iGNt Text smia BGNT
s CHARACTER VARYING CHARACTER VARYING member BIGNT
name CHARACTER VARYING Text e CHARACTERVARYING
name_tr CHARACTER VARYING Text wee SMALLNT
name_en CHARACTER VARYING Text name CHARACTERVARYING
name_de CHARACTER VARYING Text gscmatry gecmety
name_es CHARACTER VARYING Text
name_ CHARACTER VARYING Text
name_zn CHARACTER VARYING Text
vidpedia CHARACTER VARYING Text
widata CHARACTER VARYING geometry
admin_tevel TEGER INTEGER.
geamety geomety cakculied_couriry_cods TEXT
i search INTEGER rank_searcn INTEGER.
partton TEGER paentia siGwT
catuiaed_counry.code CHARACTER VARYING(Z)
parent 4 BiGINT
ke sooLeaN
wikipedia_article country_name country_osm_grid
7 lnguage TEXT country_code CHARACTER VARYINGE) country._code CHARACTER VARYING(2)
e Text nam haters ama DOUBLE PRECISION
langeount INTEGER counry._defaut_langusge_code CHARACTER VARYINGEZ) geomatry _geometry
omercaunt INTEGER parsion INTEGER
ttalount INTEGER
M DOUBLE PRECISION
n DOUBLE PRECISION
importance DOUBLE PRECISION
osm_tpe CHARACTER(T)
omid BGINT
infobox_type TEXT
popuiston BIGINT
vebste TEXT

_static/down.png

